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An expression for the probability distribution of the interspike interval
of a leaky integrate-and-fire (LIF) model neuron is rigorously derived,
based on recent theoretical developments in the theory of stochastic pro-
cesses. This enables us to find for the first time a way of developing
maximum likelihood estimates (MLE) of the input information (e.g., af-
ferent rate and variance) for an LIF neuron from a set of recorded spike
trains. Dynamic inputs to pools of LIF neurons both with and without
interactions are efficiently and reliably decoded by applying the MLE,
even within time windows as short as 25 msec.

1 Introduction

Neurons receive and emit spike trains, which are typically stochastic in
nature due to the combination of their intrinsic channel fluctuations, the
failure of their synaptic vesicle releases, and the variability in the input they
receive. As a consequence, how to accurately and efficiently read out the
input information from spike waves (simultaneously recorded multispike
trains) remains elusive and is one of the central questions in (theoretical)
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neuroscience (Rieke, Warland, & Steveninck, 1997; Gerstner & Kistler, 2002;
Feng, 2003; Memmesheimer & Timme, 2006; Cateau & Reyes, 2006). For a
given neuron or neuronal network, the most commonly used method to
read out the input information is undoubtedly the maximum likelihood
estimate (MLE), which is optimal under mild conditions. However, in or-
der to rigorously perform the MLE, the prerequisite is knowing the exact
expression of the interspike interval (ISI) distribution of efferent spikes of
a neuron or a neuronal network. This is a difficult task in general. Even
for the simplest leaky integrate-and-fire (LIF) model with constant input,
such a distribution, which is equivalent to the first-passage of an Ornstein-
Uhlenbeck (OU) process, was only obtained from the numerical inversion
of its Laplace transform (Gerstner & Kistler, 2002; Tuckwell, 1988).

Other than in neuroscience, the first passage time of an OU process is also
of prominent importance in many other fields, such as physics, engineering,
and finance, and the topic has been widely addressed in many textbooks
(Stratonovich, 1967; Risken & Frank, 1984; Gardiner, 1985). Thanks to recent
developments (Göing-Jaeschke & Yor, 2003; Alili, Patie, & Pedersen, 2005)
in stochastic process theory, three expressions of the interspike interval
distribution have become available. The first two are deterministic methods
based on the knowledge of Laplace transform of the first hitting time, and
the third is a probability method in which the probability density of ISIs can
be numerically simulated by the Monte Carlo method. Here we prefer to
implement the third one, based on which the maximum likelihood estimate
(MLE) for the LIF model is successfully developed. Despite the fact that
the MLE for a spiking neural model has been discussed intensively by
a few authors (Deneve, Latham, & Pouget, 1999; Sanger, 2003; Feng &
Ding, 2004; Paninski, Pillow, & Simoncelli, 2004; Ditlevsen & Lansky, 2005;
Truccolo & Eden, 2005), to the best of our knowledge, our approach is the
first one based on the exact expression of the ISI distribution of the LIF
model.

This letter presents an MLE strategy to decode statistic inputs (rate and
variance) in a single LIF neuron. By calculating the related Fisher informa-
tion as well as the confidence intervals of the model parameters, it is found
that both the input rate and variance can be reliably decoded. We then
employ the MLE to decode dynamic input signals for a spiking network.
Within a short time window (∼25 msec), the dynamic inputs can be read out
accurately by an ensemble of 100 LIF neurons. This is an interesting result,
and it may provide an answer to a puzzling issue in neuroscience. Thorpe,
Fiz, and Marlot (1996) and Hung, Kreiman, Poggio, and DiCarlo (2005)
pointed out that the required time from sensory inputs to motor reactions
is around 200 msec. This suggests that only a few spikes can be generated
in each layer to (encode) decode the input information and that the spikes
should be deterministic rather than stochastic. Here we demonstrate that
with neuron pools of a reasonable size, the input information can be read
out reliably within a very short time window from random spikes if the
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MLE is employed. Therefore, the stochasticity in spikes does not contradict
the time constraint.

Certainly neurons in a microcolumn interact with each other. By includ-
ing lateral inhibition and the time delay of the synaptic inputs, we find
that the input information can still be reliably read out from spike waves of
an interacting neuronal network using the MLE strategy mentioned above.
The results should open up many new and challenging problems for further
research in both theory and application. For example, we would ask how
to implement MLE for multilayer interacting spiking neuronal networks.

2 Theoretical Results

2.1 Probability Distribution of ISIs of an LIF Neuron. We start our
discussion from a single LIF model. When the membrane potential V(t) is
below the threshold Vth , its dynamics is determined by

dV = − V
γ

dt + d Isyn(t), V ≤ Vth, (2.1)

with V(0) = Vrest < Vth and where γ is the decay time constant. The synaptic
input is

Isyn(t) = a
m∑

i=1

Ei − b
n∑

j=1

I j ,

where Ei = {Ei (t), t ≥ 0}, I j = {I j (t), t ≥ 0} are inhomogeneous Poisson
processes with rates λE,i and λI, j , respectively (Shadlen & Newsome, 1994),
a > 0, b > 0 are the magnitudes of each excitatory postsynaptic potential
(EPSP) and inhibitory postsynaptic potential (IPSP), and m and n are the
total number of active excitatory and inhibitory synapses. Once V(t) crosses
Vth from below, a spike is generated, and V is reset to Vrest , the rest potential.

If there are numerous presynaptic inputs, we can use diffusion approxi-
mation to approximate the synaptic inputs (Tuckwell, 1988). For simplicity,
we further assume Vrest = 0, a = b, m = n. Thus, the LIF model is simplified
as

dV = − V
γ

dt + μdt + √
σd Bt, V ≤ Vth (2.2)

with

{
μ = aλ(t)(1 − r )

σ = a2λ(t)(1 + r ),
(2.3)
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where λ(t) =∑i λE,i (t) and rλ(t) =∑ j λI, j (t), r is the ratio between the
inhibitory input and the excitatory input. If μ(t)γ = Vth , the input is termed
exactly balanced input because it ensures that the stable state of V(t) is Vth ,
provided that noise is absent. Actually, the exactly balanced condition is
equivalent to the following balanced relationship between λ and r :

r (t) = 1 − Vth

aλ(t)γ
. (2.4)

Biologically, equation 2.4 roughly describes the well-known push-pull effect
of the inhibitory input to maintain the balanced inputs: the stronger the
input (larger λ) is, the stronger the inhibitory input (larger r ) is.

Feng and Ding (2004) derived an MLE formula of the input rate λ under
the exactly balanced condition, equation 2.4. However, finding the exact
MLE of the input for the general case remains an open question. In this
letter, we develop an MLE strategy without this restriction, and both the
input rate λ and the ratio r (or equivalently, σ ) can be decoded at the same
time. The idea of developing an MLE strategy of decoding both the input
rate and the ratio between the inhibitory input and the excitatory input is
interesting for biological applications (see section 4). One could easily adopt
our approach to estimate other sets of parameters.

Let us first consider static inputs. The ISI of the efferent spikes can be
expressed as

T = inf{t > 0 : V(t) ≥ Vth |V(0) = 0}, (2.5)

which is a random variable. More precisely, we should define

{
τi = inf{t > τi−1 : V(t) ≥ Vth |V(τi−1) = 0}, i ≥ 1,

τ0 = 0,
(2.6)

and Ti = τi − τi−1, i ≥ 1. It is readily seen that {Ti , i ≥ 1} is an independent
and identically distributed (i.i.d.) sequence and has the identical probability
density as T .

By setting U = (V − μγ )/
√

σ , the distribution of the ISIs of efferent
spikes of the LIF model, equation 2.2, is equivalent to the distribution of the
first-passage time of the following OU process,

dU = −U
γ

dt + d Bt, (2.7)
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starting at Ure = − μγ√
σ

to hit Uth = Vth−μγ√
σ

. The corresponding ISIs of efferent
spikes can be expressed as

T = inf{t > 0 : U(t) ≥ (Vth − μγ )/
√

σ |U(0) = −μγ/
√

σ }. (2.8)

Let pλ,r (t) be the probability density of T . As mentioned above, the first-
passage time problem, which occurs in many areas, was once believed to
have no general explicit analytical formula (Gerstner & Kistler, 2002), except
a momentary expansion of the first-passage time distribution for constant
input. Recently Alili et al. (2005) summarized what we know about the
density of the first-passage time of an OU process, where three expressions
of the distribution of T—the series representation, the integral representa-
tion, and the Bessel bridge representation—are presented. For numerical
approximation, the authors pointed out that the first two approaches are
easy to implement but require knowledge of the Laplace transform of the
first hitting time, which can be computed only for some specific continuous
Markov processes, while the Bessel bridge approach overcomes the prob-
lem of detecting the time at which the approximated process crosses the
boundary (Alili et al., 2005). For this reason, we prefer to apply the Bessel
bridge method under which the probability density of T has the following
form (see the appendix),

pλ,r (t) = exp
(−V2

th + 2μγ Vth

2γ σ
+ t

2γ

)
p(0)(t)

× E0→Vth

{
exp

[
− 1

2γ 2σ

∫ t

0
(vs − Vth + μγ )2ds

]}
, (2.9)

where

p(0)(t) = Vth√
2πσ t3

exp
(

− V2
th

2tσ

)
(2.10)

is the probability density of the nonleaky integrate-and-fire model and
{vs}0≤s≤t is the so-called three-dimensional Bessel bridge from 0 to Vth over
the interval [0, t]. Mathematically, it satisfies the following stochastic differ-
ential equation:

dvs =
(

Vth − vs

t − s
+ σ

vs

)
ds + √

σd Bs, 0 < s < t, v0 = 0, vt = Vth .

(2.11)

In equation 2.9, E0→Vth represents the expectation with respect to the stochas-
tic process {vs}0≤s≤t with starting point 0 and ending point Vth .
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Figure 1: (A). Sampling trajectory of {vs}0≤s≤t from 0 to Vth = 20. (B). Sampling
trajectories of {wλ

s }0≤s≤t , {wr
s }0≤s≤t , which are the derivatives of {vs}0≤s≤t with

respect to λ and r , respectively. (C). pλ,r (t) (dashed curve) and histogram (solid
curve) from a direct simulation of the LIF model.

At first glance, the expression of probability density 2.9 looks some-
what complicated, as it is an expectation of a singular stochastic process.
However, we can use the Monte Carlo method to numerically evaluate the
expectation. To do this, we have to generate a large number, say M, of inde-
pendent sampling paths of a three-dimensional Bessel bridge. It should be
pointed out that in numerical simulations, we do not use equation 2.11 to
directly simulate the process {vs}0≤s≤t since it is degenerate at s = 0. Instead
we consider the process {v2

s }0≤s≤t , which satisfies

d(vs)2 = 2vsdvs + σds. (2.12)

Note that the second term on the right-hand side of the equation above is
due to the Ito integral. According to this, the iterating procedure to simulate
the stochastic process vs is as follows (we simply denote v( j) as v( j�t)):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u( j + 1) = u( j) + �t ·
(

2v( j)(Vth − v( j))
t − j�t

+ 3σ

)
+ 2v( j) · √

σ · �B( j),

v( j + 1) = √u( j + 1),

with v(1) = 0, u(1) = 0 and where �t is the time step. �B( j) = B( j�t +
�t) − B( j�t) is the increment of the Brownian motion with distribution
Norm (0,�t). The three-dimensional Bessel bridge vs has a trajectory as
shown in Figure 1A.

Denote {vi (k�t)} the ith sampling trajectory, and let

f1(t) = exp
(−V2

th + 2μγ Vth

2γ σ
+ t

2γ

)
· p(0)(t).
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Then the approximation formula for equation 2.9 is

p̄λ,r (t) = f1(t) · 1
M

M∑
i=1

exp

[
− 1

2γ 2σ

n∑
k=1

(vi (k�t) − Vth + μγ )2 · �t

]
,

(2.13)

where �t = t
n . The ISI density calculated from pλ,r (t) is plotted in Figure 1C,

which demonstrates that p̄λ,r matches the histogram obtained from a direct
simulation of the LIF model very well.

2.2 MLE Decoding Strategy. Having an exact function of the distribu-
tion pλ,r (t), we can perform the MLE decoding procedure. The likelihood
function is given by

L(λ, r ) �=
N∏

i=1

pλ,r (Ti ), (2.14)

where N is the total number of spikes. Then

ln L(λ, r ) =
N∑

i=1

ln pλ,r (Ti ). (2.15)

The optimal estimate of the input information (λ, r ) corresponds to the
root of the equation,

⎧⎪⎪⎨
⎪⎪⎩

∂ ln L(λ, r )
∂λ

= 0

∂ ln L(λ, r )
∂r

= 0

. (2.16)

Denote wx
s

�= dvs/dx (x = λ, r ). As the density function pλ,r (t) includes
a singular stochastic process {vs}0≤s≤t whose derivatives with respect to λ

and r , that is, {wλ
s }0≤s≤t and {wr

s }0≤s≤t , are also singular stochastic processes,
we should pay additional attention to calculate ∂ ln L/∂x (x = λ, r ). First,
let us derive the equation of wx

s (x = λ, r ). It follows from equation 2.11 that
wx

s (x = λ, r ) satisfies the following equation,

dws =
(−wx

s

t − s
+ σ ′

x

vs
− σ

v2
s
wx

s

)
ds + σ ′

x

2
√

σ
d Bs, x = λ, r, (2.17)

where σ ′
x = ∂σ

∂x , v0 = 0 and wx
0 = 0 (x = λ, r ). Sampling trajectories of wλ

s
and wr

s are shown in Figure 1B.
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Let

f2(t) = exp
[
− 1

2γ 2σ

∫ t

0
(vs − Vth + μγ )2ds

]
;

then

ln pλ,r (t) = ln f1(t) + ln E0→Vth [ f2(t)].

The derivatives of f1(t) and f2(t) are

∂

∂x
ln f1(t) = hx + V2

thσ
′
x

2σ 2t
,

with

hx = V2
thσ

′
x

2σ 2γ
+ (μ′

xσ − μσ ′
x)Vth

2σ 2 − σ ′
x

2σ
,

and

gx(t) �= ∂

∂x
f2(t)

= f2(t) · σ ′
x

2σ 2γ 2

∫ t

0

[
(vs − Vth + μγ )2 − 2σ

σ ′
x

(vs − Vth + μγ )

· (wx
s + μ′

xγ )
]

ds, x = λ, r. (2.18)

Then

∂

∂x
ln E0→Vth [ f2(t)] = E0→Vth

[
∂
∂x f2(t)

]
E0→Vth [ f2(t)]

= E0→Vth [gx(t)]
E0→Vth [ f2(t)]

.

Therefore,

∂ ln L
∂x

= N · hx + V2
thσ

′
x

2σ 2

N∑
i=1

T−1
i + σ ′

x

2σ 2γ 2

N∑
i=1

E0→Vth [gx(Ti )]
E0→Vth [ f2(Ti )]

, x = λ, r.

(2.19)
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Figure 2: MLE of a single neuron. (A). MLE of (λ, r ) from 1000 interspike
intervals. Dots represent true values, while stars are estimated from the MLE
method. (B). MLE (star points) of λ versus the input rate λ for a fixed ratio
r = 0.25. (C). MLE (star points) of r versus the input rate r for a fixed input rate
λ = 7. Parameters are Vth = 20 mV, γ = 20 msec, and a = 2.

Substituting equation 2.16 with 2.19, we know that the MLE of the input
information (λ, r ) is the root to the following two equations:

N · hλ + V2
thσ

′
λ

2σ 2

N∑
i=1

T−1
i + σ ′

λ

2σ 2γ 2

N∑
i=1

E0→Vth [gλ(Ti )]
E0→Vth [ f2(Ti )]

= 0, (2.20)

N · hr + V2
thσ

′
r

2σ 2

N∑
i=1

T−1
i + σ ′

r

2σ 2γ 2

N∑
i=1

E0→Vth [gr (Ti )]
E0→Vth [ f2(Ti )]

= 0. (2.21)

Though it is difficult to find an analytical solution to equations 2.20
and 2.21, we can numerically find its root, denoting it as (λ̂, r̂ ). Figure 2A
depicts the value (λ̂, r̂ ) versus its actual value (λ.r ) for the model defined by
equation 2.2, where each point of (λ̂, r̂ ) is obtained by using 1000 interspike
intervals. It is clearly shown that the estimated value (λ̂, r̂ ) almost exactly
matches the true value (λ.r ).

2.3 Fisher Information Matrix and Confidence Interval. Knowing the
likelihood function, the information contents about the model parameters
can be analyzed using another important statistical quantity, Fisher infor-
mation, which sets the lowest bound of an unbiased estimate via Cramér-
Rao inequality. Furthermore, when the sampling size is large enough, the
central limit theorem tells us that the likelihood function asymptotically
obeys a gaussian distribution whose mean is the true value of the parame-
ter and whose covariance is the inverse of Fisher information matrix (Feng,
2003). Thus, the Fisher information also gives the confidence interval of the
MLE.
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Let us look at the Fisher information in our model. Define

I1(λ, r ) =

⎡
⎢⎢⎢⎣

E
(

∂ ln pλ,r (t)
∂λ

)2

E
(

∂ ln pλ,r (t)
∂λ

∂ ln pλ,r (t)
∂r

)

E
(

∂ ln pλ,r (t)
∂λ

∂ ln pλ,r (t)
∂r

)
E
(

∂ ln pλ,r (t)
∂r

)2

⎤
⎥⎥⎥⎦.

(2.22)

As

∂ ln pλ,r (t)
∂x

= hx + V2
thσ

′
x

2σ 2t
+ σ ′

x

2σ 2γ 2

E0→Vth [gx(t)]
E0→Vth [ f2(t)]

, x = λ, r,

we can numerically calculate the four terms in the above matrix—for
example,

I1(λ, r )11 =
∫ (

hλ + V2
thσ

′
λ

2σ 2t
+ E0→Vth [gλ(t)]

E0→Vth [ f2(t)]

)2

pλ,r (t)dt,

I1(λ, r )12 =
∫ (

hλ + V2
thσ

′
λ

2σ 2t
+ σ ′

λ

2σ 2γ 2

E0→Vth [gλ(t)]
E0→Vth [ f2(t)]

)

×
(

hr + V2
thσ

′
r

2σ 2t
+ σ ′

r

2σ 2γ 2

E0→Vth [gr (t)]
E0→Vth [ f2(t)]

)
pλ,r (t)dt.

We also calculate the other two elements.
The Fisher information matrix is defined as

I(λ, r ) = NI1(λ, r ).

For a given sampling number N, we have

(λ̂, r̂ ) → Norm((λ, r ), I(λ, r )−1),

in the distribution sense, or briefly,

(λ̂, r̂ ) ≈ Norm((λ, r ), I(λ, r )−1).

The confidence intervals of the model parameters (λ̂, r̂ ) for a given N can
be computed as

[
λ −

√
(I(λ, r )−1)11, λ +

√
(I(λ, r )−1)11

]
,

[
r −

√
(I(λ, r )−1)22, r +

√
(I(λ, r )−1)22

]
,
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where (I(λ, r )−1)i i is the i ith component of the inverse Fisher information
matrix.

In Figures 2B and 2C, we plot the confidence intervals for parameters λ

and r for N = 1000, respectively. Interestingly, one can see that the confi-
dence interval of the parameter λ is enlarged, while the confidence interval
of the ratio parameter r becomes smaller with the increase of input fre-
quency. As Feng and Ding (2004), pointed out, the higher the input rate, the
more variable the output spikes (i.e., the larger the CV, the smaller the Fisher
information). This is why we observe such opposite increasing properties of
the confidence intervals by noticing that increasing the ratio between the in-
hibitory input and the excitatory input tends to decrease the CV of the firing.

Remark. In our toy model here, we assume that the input takes the form of
a Poisson process. Hence, the remaining variable in the input variance could
be the ratio r or the EPSP magnitude. It is easily seen that our approach is
equivalent to estimating the input mean and variance, although we estimate
λ, r here. Certainly in many cases, the ratio r is fixed in a biological circuit.
Suppose that only the input rate λ is to be decoded. The MLE of λ is the root
to equation 2.20. The corresponding Fisher information is then given by

I (λ) = E
(

∂ ln pλ(t)
∂λ

)2

=
∫ (

hλ + V2
thσ

′
λ

2σ 2t
+ E0→Vth [gλ(t)]

E0→Vth [ f2(t)]

)2

pλ(t)dt,

(2.23)

where pλ(t) has the same expression as equation 2.9 but with r being fixed.
Thus, to estimate the single parameter λ, the confidence interval is

[
λ − 1√

NI (λ)
, λ + 1√

NI (λ)

]
. (2.24)

2.4 Comparison with Rate Decoding. One might ask why we do not
decode the input information by simply fitting the firing rate and CV since
the first and second moments of ISIs are known. Such a rate decoding
approach has been extensively discussed in the literature. It is known that
when the sampling number is large enough, both MLE and rate coding
methods give reasonable results. However, from the viewpoint of parameter
estimation, the advantage of the MLE method is obvious. By the Cramér-
Rao lower bound, we know that MLE is optimal but rate decoding is not.

To give a numerical comparison of the two approaches, let us fix the
ratio r = 0 and perform decoding of the afferent rate λ. Figure 3A shows
the MLE method and Figure 3B the rate decoding approach. It is known
from equation 2.3 that with the input rate increasing, the variation also
increases; thus, the errors of decoding with both the MLE and rate coding
increase in the regime of high λ. However, as can be seen from Figure 3A,
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Figure 3: Comparison of two methods. (A) Estimate of afferent input λ via the
MLE method. Dashed lines are confidence intervals calculated from equation
2.24. (B). Estimate of afferent input λ via the rate coding method. Here we fix
r = 0, a = 1 and choose 200 ISI intervals.

the decoding error using the MLE method is bounded by the Cramér-Rao
lower bound, while the error using the rate coding approach may be out
of this range. From this point of view, the MLE is optimal. The advantage
of the MLE over rate coding is quite obvious even for a relatively small
sampling number (here we take N = 200).

3 MLE of Dynamic Inputs

3.1 Decoding of Dynamic Inputs in Networks Without Interactions.
Usually a postsynaptic neuron receives dynamic inputs from presynaptic
neurons, and we have to decode the input within a short time window.
Based on the above decoding strategy, let us now further employ the MLE
to decode dynamic inputs in pools of neurons. The network is composed
of 100 neurons, as schematically plotted in Figure 4A. We assume that the
input is varying slowly compared with the timescale of the neuronal dy-
namics, so that in each time window of fixed length TW, the ISI distribution
adiabatically follows the stationary one.

Under the exactly balanced condition, equation 2.4, the problem has been
investigated by Rossoni and Feng (2007). However, the method presented
there cannot be extended to a more general case without knowing the
exact relationship between the input and the output of the LIF neuron.
Nevertheless, on the basis of this theoretical development, we can now
relax the restriction of the exactly balanced condition and read out both
the input rate and variance from spike waves in a short time window (see
Figure 4B).

To express the main idea of how to apply the MLE to decode dynamics
input information, we assume that each neuron receives a common excita-
tory Poisson synaptic input (r = 0); the procedure below is also valid for
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Figure 4: MLE in a network without interactions. (A) Schematic plot of reading
dynamic inputs from an ensemble of neurons. For a fixed time window (indi-
cated by Ti

w, T j
w ), the spikes are collected and the input is decoded by means of

MLE. (B) Raster plot of spikes in five different decoding windows. The infor-
mation is read out from the spikes in each window. (C) An example of reading
out the dynamic input rates from an ensemble of neurons. The original signal
λ(t) is plotted in the continuous line, while dots are estimated values of λ(t).

other ratios between the inhibitory input and the excitatory input. We sup-
pose that the waveform of input is λ(t) = 2 + 4(sin2(2πt) + sin2( 3

2πt)). Here
the timescale of the input is measured in seconds; thus, it varies slowly
compared with the timescale of the neuronal dynamics. Note that during
the decoding procedure, any ISI longer than Tw will not be included in the
MLE estimate, so the estimated input λ̂(t) is bound to be biased—a typical
situation in survival analysis. To obtain an unbiased estimate, the censored
intervals have to be included, and more detailed calculations are required.
However, the numerical results (see Figure 4C) indicate that the bias is very
limited, and we simply ignore the issue of censored intervals here.

Figure 4C depicts the MLE versus the input frequency for time windows
Tw = 25 ms. Although Tw is very short, we can see that the estimate is
excellent (except that it is slightly downward biased).

The results also provide a possible answer for a long-standing issue in
neuroscience. Thorpe et al. (1996) pointed out that the time interval between
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sensory inputs and motor outputs is around 200 msec. They then argued
that only a few interspike intervals could be used to estimate the input
in each layer, and therefore a stochastic dynamics is implausible in the
nervous system. Our results clearly show that within a very short time
window (∼25 msec), the spikes generated from an array of neurons contain
enough information for the central nervous system to decode the input
information. Hence, even without the overlap of the processing time of
each layer in the nervous system, within 200 msec it could reliably read out
the information for around 10 layers.

3.2 Decoding of Input Information in Networks with Interactions.
So far we have assumed that neurons in the same column are regraded as
independent. Certainly neurons in a microcolumn interact with each other,
which might considerably change all conclusions in the previous sections.
Can we or the central nervous system read out the input information from
spike waves? In this section, we further investigate such an issue. The
purpose is to read out the information of an external stimulus even in the
presence of interactions between neurons in a microcolumn.

The strategy adopted here (or possibly by the nervous system) is based
on including the lateral inhibition and the time delay of the synaptic inputs.
As a result, all neurons in a network behave independently before the inter-
actions kick in. The depolarization caused by the external inputs evokes the
hyperpolarizing effect of inhibitory interactions between neurons, which
subsequently shuts down the firing of all neurons (first epoch) and enables
the neurons in the microcolumn to act independently again.

The model we consider here consists of PE = 100 excitatory and PI =
100 inhibitory neurons with all-to-all connectivity. The corresponding LIF
equation for each neuron is

dVj

dt
= − Vj

γ
+ I E

j (t) + I S
j (t), Vj ≤ Vth, j = 1, 2, . . . , Nn = PE + PI ,

(3.1)

where

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I E
j (t) = aλ j (t) + a

√
λ j (t)ξ j (t),

I S
j (t) =

PE∑
k=1

∑
tm
k +τ<t

wE
jkδ(t − tm

k − τ ) − rE I

PI∑
l=1

∑
tm
l +τ<t

w I
jlδ(t − tm

l − τ ).

(3.2)

In the equation, I E
j (t) is the external input from the stimulus with an input

rate λ j (t) and magnitude a , ξ j (t), and j = 1, . . . , Nn are independent white
noises. I S

j (t) is the spiking input from other neurons to the j th neuron.
wE

jk, k = 1, . . . , PE and w I
jl , l = 1, . . . , PI are EPSP and IPSP sizes that the
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Figure 5: (A) Trajectories of three excitatory neurons in an interacting network
for λ = 4, D = 2. (B) Raster plots of 100 excitatory neurons. (C) The histogram
(solid curve) obtained from a direct simulation of the model and the theoretical
density (dashed curve). (D) The solid curve is the histogram from the filtered
interspike intervals (the first modes in C); the dashed one is the same as in B.

j th neuron receives from the kth and the lth neurons, rE I is the ratio between
the inhibitory and the excitatory interactions, tm

k is the mth spike generated
from the kth neuron, and τ is the synaptic time delay. We suppose that
wE

jk and w I
jl are uniformly distributed in [0, D] (D is termed the maximal

coupling strength or, simply, the coupling strength), and λi (t) = λ j (t) = λ(t).
In our numerical simulations, we fix a = 1, τ = 5 msec, rE I = 1.8.

Figures 5A and 5B show one simulation with the setup as above by fixing
D = 2. As expected, with the application of the external inputs, all neurons
start responding, and some fire a few spikes. However, once the inhibitory
neurons fire, they send spikes to other neurons, which causes a hyperpolar-
ization effect on these postsynaptic neurons, and all neuronal activities are
shut down after a certain time delay of the synaptic transmission. Once the
network becomes silent, the interactions between neurons disappear, and
neurons in the network act as independent units again. Hence the external
inputs evoke the second epoch of the spikes. This procedure repeats itself.
Consequently, the network will produce rhythmic oscillations by properly
cooperating the local inhibition and the time delay of the synaptic transmis-
sion, a well-known phenomenon observed in many biological experiments.
In noisy networks of LIF neurons, it is shown that the oscillation frequency
is of the order of the inverse of the synaptic delay (Brunel & Hakim, 2008).
Here we will investigate how the network rhythm is related to information
decoding.

We might ask ourselves why neurons use pulsed interactions to com-
municate between them rather than other forms of interactions such as gap
junctions. The difference between gap junctions and pulsed interactions is
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that the former exchange information continuously, while the latter only
react to each other when the membrane potential exceeds a threshold that
results in the independent phases in Figure 5B.

Based on such an inhibition-induced shutting-down mechanism, let us
now investigate how afferent input rate λ(t) can be read out accurately by
applying the MLE strategy. The problem of introducing interactions in a
fixed time window is that the decoding may have a significant bias. To
resolve this issue, we first look at the histogram of the ISIs of equation 2.3
in the case that the input rate λ(t) is time independent, say, λ(t) = λ = 4. It
is clearly indicated in Figure 5C that the histogram now has two modes:
the one with short ISIs corresponds to the actual ISIs driven by the external
input, and the other is due to the interactions. After filtering out the second
mode, the obtained histogram fits well with the theoretical density (the
dashed trace in Figure 5D). To decode the input information, we filter out
the spikes corresponding to the second mode and exclusively use the ISIs
of the first mode. We will show that in a short time window, the input rate
can be reliably decoded.

In Figures 6A and B, we test our algorithm in a dynamic input with
waveform λ(t) = 2 + 4(sin2(2π t) + sin2( 3

2π t)), for different values of cou-
pling strength. Here t is measured in seconds, which ensures the ISI distri-
bution being adiabatically stationary in each time window of length around
25 msec. To show the network behaviors under different coupling intensi-
ties, the ensemble voltage traces and the corresponding raster plots of 100
excitatory cells for λ(t) = λ = 3 are depicted in the top and middle pan-
els of Figures 6A and 6B, respectively. Interestingly, the network displays
rhythmic activity when the coupling strength is strong and the decoding
(shown in the bottom trace of Figure 6B) is quite accurate; however, for
weak values of the coupling strength, no rhythmic activities are observed,
and, as expected, the estimated values (see the bottom trace of Figure 6A)
are much less accurate than in the rhythmic case.

Figures 6A and 6B suggest that there should exist a critical value of
the coupling strength Dc , after which the network can perform decoding
accurately. To see this, we plot the relative decoding error λ̂−λ

λ
versus the

coupling intensity D in Figure 6C, for constant afferent inputs (we choose
λ = 4, λ = 5, and λ = 8). For D = 0, the decoding is very accurate, which is
the case discussed in section 3.1. When D slightly increases, the absolute
decoding error increases. This is because the interactions between neurons
cannot be shut down for weak coupling strengths. After about D = 0.25,
the absolute decoding error gradually decreases, and after about D = 0.8,
the input rate can be reliably read out; meanwhile, the network exhibits
clear rhythmic activities.

If only interspike intervals are concerned, then for a time window that
is too short, it is difficult to perform a decoding task because there are
not enough spikes. And if the time window is too long, the informative
interspike intervals generated by the external inputs interfere with the ones
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Figure 6: MLE in a network with interactions. (A, B) Top traces: The trajecto-
ries of 100 excitatory neurons and the corresponding mean voltages for λ = 3
during 0 ∼ 60 ms. Middle traces: Raster plots corresponding to the above trace.
Bottom traces: Reading out the dynamic inputs (the solid curve) from 100 ex-
citatory neurons, every dot is estimated by the MLE approach within a fixed
time window of Tw = 25 msec. Left column is for D = 0.3, and right column
is for D = 1.5. (C) The optimal coupling intensities for reading out the input
information within a fixed time window Tw = 25 msec.

due to interactions. We conclude that there should be an optimal decoding
time window Toptim

w in which the input information is optimally decoded.
To test this, we plot the relative decoding errors |λ̂−λ|

λ
versus different time

windows for intermediate input rates in Figure 7A and for high input rates
in Figure 7B. It is shown that for moderate input rates (2 ≤ λ ≤ 5), such
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Figure 7: (A) Decoding errors of reading out intermediate input rates within
different time windows, where optimal time windows are shown to be around
15 to 40 msec. (B) Decoding errors of reading out high input rates are shown
to be very small within both short and large time windows. (C) Relationship of
the optimal decoding windows and the periods of the network oscillations. For
moderate input rates, Toptim

w ≈ Tnet . D = 1.5.

optimal windows exist and are around 15 to 40 msec, which are in the
gamma range; for a high input rate λ, the decoding errors are small (<5%)
for both the short and long time windows. The accuracy of decoding with
high input rates stems from the fact that spikes are generated within a very
short time (5 msec or less, the synaptic delay time), which implies that
neurons in a pool have no time to interact with each other before starting
the next epoch of firings. Hence, in response to a high input rate, neurons in
a network act independently. This is why a small decoding error is achieved
even for long time windows.

To explore how the optimal decoding windows for moderate input rates
come about and how they are related with the periods Tnet of the network
oscillations, we further depict these two time windows (Tnet and Toptim

w )
versus the input rate λ in Figure 7C. The definition of Tnet is clear (see
Figure 6B). For a reasonable range of input rates λ (about 2 ≤ λ ≤ 5), the
optimal decoding windows are approximately equal to the network peri-
ods. The consistency of the optimal decoding windows and the periods
of the network oscillations for moderate input rates shows that the spikes
generated from a pool of neurons within the period of the network rhythm
are sufficient to read out input rates. Time windows that are too small or
too large will either have insufficient input information or redundant inter-
spike intervals, both of which will introduce bias in decoding. The results
in Figures 6 and 7 may serve as a good example to show the functional role
of the gamma rhythm (30 to 80 Hz) in information processing, which has
been extensively discussed by many authors (see Buzsáki, 2006).

3.3 Tracking a Moving Stimulus. Now let us consider a more biologi-
cally realistic setup. Assume that an ensemble of identical but independent
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neurons, say 1000 LIF neurons, are grouped into N = 10 columns, and each
100 neurons in a same column share an identical tuning curve defined by

λ(xi ; x(t)) = λ0 + c · λ0 exp
(

− (x(t) − xi )2

2d2

)
, (3.3)

where c is a constant scaling factor, d is the tuning width, xi is the column’s
field center, and x is the position. For example, the neuron in the ith column
receives an input that is the position information x(t) ∈ [0, L] (we take
L = 11 here), and the response of the neuron is given by λ(xi , x(t)). The task
is to read out the position information x(t). The setup mimics the situation
of reading out the position of a rat from simultaneous recordings of place
cells in hippocampus (Truccolo & Eden, 2005).

For simulation, we fix c = 2, d = 1.5, and λ0 = 2. We assume that the
target position x changes in time according to x(t) =∑N

j=1 ξ jχ(t ∈ I j ), where
ξ j are independent random variables uniformly distributed in [0, L], and
I j = {t : ( j − 1)Tw < t < jTw}, that is, we consider a target hopping every Tw

to a new random position between 0 and L. An outcome of our performance
is shown in Figure 8.

Let us further investigate the tracking problem within interacting neu-
ronal networks. The setup is similar to that in Figure 8A. An ensemble of
2000 LIF neurons is grouped into 10 columns. Neurons in different columns
do not have interaction, but each 200 neurons in the same column interact
with each other in an all-to-all connection with equations 3.1 and 3.2, and
these 200 neurons share an identical tuning curve defined by equation 3.3.
Figure 9A depicts the tuning curve and the estimate of λ(x; xi ) by using the
MLE method described above. The task of the tracking problem is to read
out the position information x(t). As shown in Figure 9B, the decoding is
still accurate even though neurons in the network interact with each other.

4 Discussion

We have presented a study on how to perform MLE on spike waves. First,
a rigorous algorithm of the MLE based on the ISI distribution is developed.
The algorithm enabled us to address a few key issues in neuroscience. We
have shown that the MLE can be successfully applied to read out either
steady or dynamic inputs in single or pools of neurons. Even within short
time windows, the decoded information is of high accuracy. We have also
addressed that even for spiking neural networks with interactions, we can
employ MLE to decode dynamic inputs by properly including the local
inhibitory interactions in a microcolumn and the delay of synaptic currents.

We have included only a very brief account of our applications here
and will publish more results (e.g. on tracking moving stimuli, decoding
multistimuli, constructing IF-type visual cortex, and exploring the gamma
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Figure 8: MLE in position tracking (the network is without interactions).
(A) Setup of encoding and decoding. The place information x(t) is fed to 1000
neurons organized in 10 columns with different preferred position xi . For each
column, spikes are collected in the window Tw , and the MLE is applied. The
position is read out by first solving equation 3.3, obtaining the corresponding
x̂, and fitting a gaussian curve to all 10 data points x̂. The maximum point of
the fitted gaussian curve is the decoded position. (B) One example of λ̂ versus
columns. (C) An example of 10 decoded results of stimulus positions.

Figure 9: MLE in position tracking (the network is with interactions). (A) One
example of the tuning curve (dots) and the estimate of λ(x; xi ) (star points).
(B) An example of decoding stimulus positions.
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rhythm in signal decoding) elsewhere. Furthermore, our approach may
help us to answer another long-standing problem: What is the ratio between
inhibitory and excitatory inputs in a biological neuron? Although it has been
found that the number of inhibitory neurons is smaller than the number
of excitatory neurons in the cortex (Shadlen & Newsome, 1998; Leng et al.,
2001), it is generally agreed that inhibitory neurons send stronger signals
than excitatory neurons (Destexhe & Contreras, 2006). Therefore, the exact
ratio between inhibitory and excitatory inputs remains elusive. With the
MLE developed in this letter, we may be able to reliably estimate the ratio
between inhibitory and excitatory inputs to a LIF neuron.

As a simplified phenomenological neuronal model, the LIF equation
preserves spiking properties of a neuron, and the input information can
be reliably read out, as we show here. However, the LIF model fails to
capture many biophysical details. Some other models are more biophysi-
cally accurate but still mathematically simple, such as quadratic IF neurons
(Feng & Brown, 2000a; Brunel & Latham, 2003), exponential IF neurons
(Fourcaud-Trocme, Hansel, van Vreeswijk, & Brunel, 2003), and, more re-
cently, adaptive exponential IF neurons (Brette & Gerstner, 2005). It is shown
that adaptive exponential IF neurons give an effective description of neuron
activities and can reliably predict the voltage trace of a naturalistic pyra-
midal neuron from a dynamic I-V curve (Badel et al., 2008). We realized
that generalizing the MLE strategy developed for the LIF neurons to these
nonlinear IF neurons needs more investigation, as it is not easy to derive
exact expressions of the distributions of ISIs for these nonlinear IF neurons.

Appendix: Derivation of Equation 2.9

The probability density of the first hitting time of an Ornstein-Uhlenbeck
(OU) process has been presented in the literature (Göing-Jaeschke & Yor,
2003; Alili et al., 2005). However, readers who are not familiar with stochas-
tic process theory may not follow the mathematical proof there. In this
appendix, we provide a derivation of equation 2.9 and explain the proba-
bility meaning of the expression.

A.1 Some Preliminary Results. We first introduce some stochastic pro-
cesses related to equation 2.9.

Let B �= {Bt}t≥0 be a Brownian motion starting at B0 = x with its incre-
ment Bt+�t − Bt ∼ N(0,�t). If x = 0, then B is called a standard Brownian
motion. Denote P B M

x the corresponding probability law defined on the fol-
lowing sampling space,

� = {ω : ω(t) = Xt(ω), t ≥ 0},
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where {Xt}t≥0 is the canonical process, with Ft = σ {Xs, s ≤ t} being infor-
mation before time t.

The OU process starting from x ∈ R with parameter α ∈ R is the solution
to the following stochastic differential equation:

dUt = d Bt − αUtdt, U0 = x ∈ R. (A.1)

Under the canonical measure P B M
x , this process is no longer a Brownian

motion. We hope to find a new law, denoted as P OU(α)
x , under which the pro-

cess Wt
�= Bt − ∫ t

0 Usds, t ≥ 0 is still a Brownian motion. Using the Girsanov
theorem (the same idea was also employed in Feng & Brown (2000b)), we
find that such a new law exists, and the density transformation from P B M

x

to P OU(α)
x along the canonical path is given by

d P OU(α)
x

d P B M
x

(ω) = exp
[
−α

2
(B2

t − x2 − t) − α2

2

∫ t

0
B2

s ds
]
. (A.2)

Based on the Brownian motion, we can have another stochastic process,
the so-called three-dimensional Bessel process {R(t)}t≥0 starting at R0 = 0,
which is constructed from three independent standard Brownian motions
{Bi,t}t≥0, i = 1, 2, 3:

Rt
�=
√

B2
1,t + B2

2,t + B2
3,t, t ≥ 0. (A.3)

Rt is actually the unique solution to the following stochastic differential
equation,

d Rt = d Bt + n − 1
2Rt

dt, R0 = x ≥ 0, (A.4)

with n = 3, based on the following two facts:

1. The increment of a Brownian motion is of the order
√

dt, thus d B2
t =

2Btd Bt + dt.
2. For two independent standard Brownian motions,

B1,td B1,t + B2,td B2,t =
√

B2
1,t + B2

2,td Bt,

where Bt is another standard Brownian motion.

A Brownian bridge {Bx,y
s }0≤s≤t from x to y of length t is a Brownian

motion, given (B0 = x, Bt = y). Mathematically, it can be expressed as

Bx,y
s = x + Bs + s

t
(y − x − Bt), 0 ≤ s ≤ t. (A.5)
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Starting from three independent Brownian bridge {B0,0
i,s }0≤s≤t, i = 1, 2, 3, the

process

Rx,y
s

�=
√(

x + s
t

(y − x) + B0,0
1,s

)2

+ (B0,0
2,s

)2 + (B0,0
3,s

)2
, 0 ≤ s ≤ t (A.6)

is the three-dimensional Bessel bridge from x to y of length t. Similar to the
derivation of equation A.4 from A.3, {Rx,y

s }0≤s≤t can be characterized as the
solution to the following stochastic process:

drs =
(

1
rs

+ y − rs

t − s

)
ds + d Bs, 0 < s < t, r0 = x, rt = y. (A.7)

A.2 Distribution of the First Passage Time of the OU Process. Let
{Xt}t≥0 be a stochastic process and

τa = inf{t ≥ 0 : Xt = a},

that is, τa is the first hitting time of the process {Xt}t≥0 at a . Under the law
P B M

x , it is known that

P B M
x (τa ∈ dt) = a − x√

2π t3
exp

(
− (a − x)2

2t

)
dt, f or a ≥ x. (A.8)

Our purpose is to seek the distribution of τa under law P OU(α)
x . According

to equation A.2, we know that

d P OU(α)
x (τa ∈ dt)

=
∫

{τa ∈dt}
exp

[
−α

2
(a2 − x2 − t) − α2

2

∫ t

0
B2

s ds
]

d P B M
x

= exp
[
− α

2
(a2 − x2 − t)

]
· E B M

x

[
exp
(
−α2

2

∫ t

0
B2

s ds)
)

I{τa ∈dt}

]

= exp
[
− α

2
(a2 − x2 − t)

]
· E B M

x

[
exp

(
−α2

2

∫ t

0
B2

s ds
)∣∣∣∣τa = t

]

·P B M
x (τa ∈ dt), (A.9)

where E B M
x [·|τa = t] is the expectation over Brownian motion {Bs}s≥0 start-

ing at x, given τa = t. However, such a conditional expectation is not easy
to find since the conditional event is a stopping time. We thus hope to find
a new process, which can simplify the calculation along the path of this
process.
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A Brownian motion starting at x, given τa = t, is a Brownian bridge from
x to a of length t, given τa = t. We write such a conditional Brownian bridge
as

(
Bx,a

s , 0 ≤ s ≤ τa |τa = t
)
. (A.10)

Let Yx,a
s = a + x − Bx,a

t−s, 0 ≤ s ≤ t, also a bridge from x to a of length t.
Since a Brownian bridge is gaussian, it is known that

(
Bx,a

s , 0 ≤ s ≤ t
) d= (Yx,a

s , 0 ≤ s ≤ t
)

(A.11)

by checking the first and the second moments; here · · · d= · · · means “equal
in a distribution sense.”

Furthermore, given τa = t, it is easily seen that

σa = sup{s : Yx,a
s = a , 0 ≤ s ≤ t} = sup{s : Bx,a

τa −s = x, 0 ≤ s ≤ τa } = τa .

(A.12)

This implies that if t is the first hitting time of the bridge {Bx,a
s }0≤s≤t at a ,

then t is the last visiting time of the bridge {Yx,a
s }0≤s≤t at a . Equations A.11

and A.12 tell us that we can replace the Brownian bridge (Bx,a
s , 0 ≤ s ≤ t),

given τa = t, by a new bridge (Yx,a
s , 0 ≤ s ≤ t) without conditions.

Then what is the law for this new bridge? Thanks to the Williams time-
reversal theorem, the process (Yx,a

s , 0 ≤ s ≤ t) has the same distribution as
a three-dimensional Bessel bridge Rx,a

s from x to a of length t, which is the
solution to equation A.7. As a rigorous proof for this result requires deep
mathematical techniques related to stochastic processes, we will not repeat
here but refer readers to corollary 4.4 in Revuz and Yor (1999).

We can now calculate E B M
x [·|τa = t]. First, from an important fact that the

process (Bx,a
s , 0 ≤ s ≤ t) under the law P B M

x is identical to (a − Bx,a
s , s ≥ 0)

under the law P B M
a−x , we conclude that for a ≥ x,

E B M
x

[
exp

(
−α2

2

∫ t

0
B2

s ds
)∣∣∣∣τa = t

]

= E B M
a−x

[
exp

(
−α2

2

∫ t

0
(a − Bs)2ds

)∣∣∣∣τ0 = t
]

. (A.13)

Second, based on the fact we discussed above that (Ba−x,0
s , 0 ≤ s ≤

τ0|τ0 = t) is actually a three-dimensional Bessel bridge from a − x to 0 of
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length t, we have

E B M
a−x

[
exp

(
−α2

2

∫ t

0
(a − Bs)2ds

)∣∣∣∣τ0 = t
]

= E Bes
a−x

[
exp

(
−α2

2

∫ t

0
(Rs − a )2ds

)∣∣∣∣Rt = 0
]

. (A.14)

Third, based on

E Bes
0 [ f (Rs)|Rt = a − x] = E[ f (Rs)|R0 = a − x, Rt = 0]

= E[ f (Rt−s)|R0 = 0, Rt = a − x],

we know that

E Bes
a−x

[
exp

(
−α2

2

∫ t

0
(Rs − a )2ds

)∣∣∣∣Rt = 0
]

= E Bes
0

[
exp

(
−α2

2

∫ t

0
(Rt−s − a )2ds

)∣∣∣∣Rt = a − x
]

= E Bes
0

[
exp

(
−α2

2

∫ t

0
(Rs − a )2ds

)∣∣∣∣Rt = a − x
]

= E0→a−x

[
exp

(
−α2

2

∫ t

0
(rs − a )2ds

)]
, (A.15)

where E0→a−x[·] stands for the expectation of three-dimensional Bessel
bridge {rs}s≤t from 0 to a − x over the interval [0, t], which is the solution
to equation A.7.

Therefore,

d P OU(α)
x (τa ∈ dt) = exp

[
−α

2
(a2 − x2 − t)

]

·E0→a−x

[
exp
(
−α2

2

∫ t

0
(rs − a )2ds

)]
· P B M

x (τa ∈ dt),

(A.16)

Set P OU(α)
x (τx ∈ dt) = p(α)

x→a (t)dt, and together with equation A.8, we have

p(α)
x→a (t) = exp

[
−α

2
(a2 − x2 − t)

]
p(0)

0→a−x(t)

·E0→a−x

[
exp

(
−α2

2

∫ t

0
(rs − a )2ds

)]
. (A.17)
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By replacing x = − μγ√
σ

, a = Vth−μγ√
σ

, α = 1
γ

and letting vs = √
σrs , we ob-

tain the density equation 2.9 of ISIs of an LIF model, equation 2.2, and
the corresponding three-dimensional Bessel bridge {vs}0≤s≤t from 0 to Vth ,
which satisfies equation 2.11.
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