Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/30961

How to cite:

Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/30961
mailto:wrap@warwick.ac.uk

Predictive Performance Analysis of a Parallel Pipelined Synchronous Wavefront
Application for Commodity Processor Cluster Systems

Gihan R. Mudalige, Stephan A. Jarvis, Daniel P. Spooner, Graham R. Nudd
High Performance Systems Group, Department of Computer Science
University of Warwick
Coventry, CV4 7AL, U.K.
{G.R.Mudalige,Stephen.Jarvis } @ warwick.ac.uk

Abstract

This paper details the development and application of
a model for predictive performance analysis of a pipelined
synchronous wavefront application running on commodity
processor cluster systems. The performance model builds
on existing work [1] by including extensions for modern
commodity processor architectures. These extensions, in-
cluding coarser hardware benchmarking, prove to be es-
sential in countering the effects of modern superscalar pro-
cessors (e.g. multiple operation pipelines and on-the-fly
optimisations), complex memory hierarchies, and the im-
pact of applying modern optimising compilers. The process
of application modelling is also extended, combining static
source code analysis with run-time profiling results for in-
creased accuracy. The model is validated on several high
performance SMP systems and the results show a high pre-
dictive accuracy (< 10% error). Additionally, the use of the
performance model to speculate on the performance and
scalability of this application on a hypothetical cluster with
two different problem sizes is demonstrated. It is shown that
such speculative techniques can be used to support system
procurement, run-time verification and system maintenance
and upgrading.

1 Introduction

Predictive performance analysis of High Performance
Computing (HPC) applications on large-scale parallel plat-
forms provides a valuable insight into the achievable per-
formance of these systems [2, 3, 4]. Such techniques are
particularly useful in high performance computing scenar-
ios as these systems often require a large investment not
only from the end user but also from the designers, develop-
ers and vendors. The advantages of performance modelling
also extend beyond this, allowing efficient scheduling by

anticipating a workloads behaviour prior to execution [5],
which in turn allows efficient utilisation of resources and
sustainable levels of Quality of Service (QoS) [6]. It has
been recognised that performance analysis techniques can
be used throughout the life-cycle of a system [5, 7]. At
the design stage they can serve to quantify the advantages
and disadvantages of different architectural options. When
procuring systems users can use performance predictions to
compare alternative vendor systems and at the implementa-
tion stage predictions based on an implemented prototype
can serve as a forecast for the final system [8]. After instal-
lation, predicted results can then be used to validate whether
the installation was successful, and whether the configura-
tions were made accurately to obtain optimal system perfor-
mance. Additionally, during maintenance such approaches
can indicate any faults that affect the system performance
and also the possible benefits that can be gained by upgrad-
ing. Developing methods and tools to aid application per-
formance analysis in a High Performance Computing set-
ting continues to be an important research area. It can be
argued that the demand for better and more robust meth-
ods and tools will always remain due to the rapid change
in hardware technologies, algorithm design and increased
application complexity.

This paper details recent developments to the modelling
tool PACE [7, 9] demonstrated by an enhanced model of
the ASCI parallel pipelined synchronous wavefront appli-
cation SWEEP3D, a recognised HPC benchmark solving
a 1-group time independent discrete ordinates (Sy) three-
dimensional Cartesian geometry neutron transport problem.
The performance model developed here extends a previous
model developed for the same application [1], extending
the modelling procedure and benchmarking process so that
they are better suited to recent commodity processor clus-
ter systems. These extensions, including coarser hardware
benchmarking, prove to be essential in countering the ef-
fects of modern superscalar processors (e.g. multiple opera-

tion pipelines and on-the-fly optimisations), complex mem-
ory hierarchies, and the impact of applying modern optimis-
ing compilers. The process of application modelling is also
extended, combining static source code analysis with run-
time profiling results for increased accuracy. Additionally
this work provides detailed experimentation and validation
results for the developed model on several HPC cluster sys-
tems, as well as a speculative study that illustrates a typical
scenario of using a model such as this to predict the perfor-
mance of a hypothetical system. In Section 2 a description
of the wavefront application SWEEP3D is detailed. This
application has been modelled by other researchers using a
variety of techniques, attesting to the importance of both the
application and also the need to understand its performance
characteristics at a detailed level. This related work is dis-
cussed in Section 3. The development of a performance
model based on the PACE tool set is detailed in Section 4.
Model validation on several high performance cluster sys-
tems is detailed in Section 5, and Section 6 illustrates the
use of the model for scalability predictions of SWEEP3D
running on a hypothetical system. Finally, conclusions and

future work are presented in Section 7.
Nx = 2

-

«
Ny = 2’/

Nz = 8

Figure 1. A Sweep originating from vertex A travels
across the spatial grid to the opposite unseen vertex. The
most recently processed cells are shaded darker. Here the
processor count in the z and y directionis P, X P, = 4 x 4
and Ny X Ny X N, =2 X 2x8.

2 ASCI SWEEP3D

SWEEP3D is a benchmark code representing a real
ASCI! workload application [10]. A complete discourse of
the problem solved by SWEEP3D is given in [11, 12, 13,

'ASCI is a collaboration among the national labs in the U.S. for ad-
vance defence oriented computer modelling and simulation.

14]. A brief description of the problem serves to highlight
the main parameters, variables and the operation of the al-
gorithm.

SWEEP3D solves a 1-group time independent discrete
ordinates (S) three-dimensional Cartesian geometry neu-
tron transport problem. The discrete ordinates method is a
common approach to calculating solutions to neutron trans-
port problems [11]. This involves an iterative procedure
whereby the 1st order form of the transport equation (1) [3]
discretizes the energy variable F/, angular directions {2 and
the spatial domain R [3, 15].

vVQU(r,E,Q) + [[o(r, E)¥(r, E,Q) =
[[dE'd (r, E' — B, Q.)U(r, E',) + (1/4n)
[] dE"dY x(r, " — E)vo(r, E')¥(r, E', Q')
+Q(r, E,Q) (H

The unknown quantity is ¥ which represents the flux of
particles at the spatial point » € R with energy g € E trav-
elling in direction d € €.

The SWEEP3D code solves for only one energy group
and the angular direction 2 is discretized into a set of
quadrature points. This gives rise to the notation S where
N represents the number of angular ordinates used. The
solution involves a transport sweep through the entire grid
space R and angle space (2 in the direction of particle travel.
For a given discrete angle, each grid cell (i.e. spatial point
r € R) has seven unknowns. These are particle fluxes on
the six cell faces and the flux within the cell centre. Bound-
ary conditions (vacuum or reflective) allow the sweep to be
initiated at the object’s exterior. Thereafter, for a given cell,
three incoming fluxes from three cell faces for a given dis-
crete angle provide the solution of the cell centre flux and
the solution to the three outgoing cell faces through which
the particle fluxes leave the cell. A cell cannot compute its
outflows before its inflows become available. Therefore a
computation travels across the spatial domain as a recursion
in all the three dimensions.

The only inherent parallelism is over the discrete angles
where each angle is independent. However, due to the re-
flective boundary conditions, this is restricted to a single oc-
tant of angles. The transport sweeps are implemented as a
series of pipelined sweeps through a three dimensional cube
of cells or grid points. This grid of cells is mapped on to a
two dimensional array of processors of size P, x P, where
these dimensions represent the number of processors in the
1 and j direction respectively. Each processor is mapped to
perform calculations for N, x N, x N, number of cells as
in Figure 1.

To improve the parallel efficiency, blocks of work are
pipelined through the processor array. SWEEP3D is coded
with blockings for angles and in one direction (k-in the cur-
rent implementation). The k-plane blocking parameter MK
and angle blocking parameter MMI specify the size of the

number of k-dimension cells and number of angles that are
solved before boundary data is forwarded to the next pro-
cessor in the pipeline. Thus, a sweep can be conceptualised
as originating from one vertex in the 3D cube to its oppo-
site vertex (Figure 1). There are eight octants of angles;
each octant corresponding to one of the eight corners (ver-
tices) of the spatial domain. Therefore eight distinct sweep
directions can be seen in three-dimensions.

SWEEP3D uses message passing to communicate the
boundary fluxes from one processor to the next down-
stream processors. In addition, through a specific ordering
of octants an upper and lower octant pair also gets pipelined.
Finally the sweeps of the next octant pair starts before the
previous wavefront is completed but this is limited to two
octant pairs at a time due to reflective boundary condi-
tions [10, 15]. One iteration of the code consists of sweeps
in all 8 octants. Twelve such iterations are performed in
the implemented SWEEP3D code and the time to complete
this process is recorded. The current SWEEP3D code has
implementations for both MPI and PVM message passing
interfaces.

3 Related Work

The ASCI SWEEP3D application has been modelled
using a range of HPC application prediction methodolo-
gies. This includes use of the LogGP methods, documented
in [16], and also by researchers at the Los Alamos Na-
tional Laboratory, see [2, 3]. Additional modelling of this
application has been done using the POEMS system [17].
Both the LogGP model and the Los Alamos models can be
loosely described as non-automated analytical models, due
to the largely manual model development procedure. PO-
EMS however provides tools to automate model develop-
ment, and thus can be described as a semi-automated ap-
proach. The PACE model described in this paper is also
generated semi-automatically. Automated approaches have
numerous advantages, they are time-saving and also require
less knowledge of the application. However they normally
require manual tuning if they are to achieve comparable re-
sults to the hand-crafted approaches.

Both the LogGP model and the Los Alamos model for
SWEEP3D represent analytical methods. In fact the Los
Alamos model uses a specialised approach based on the
same LogGP parameters. Both models require an applica-
tion expert to manually extract the operation of the applica-
tion and describe these operations using a set of parameters
to form a mathematical formulae capturing the run-time of
the application. The parameters in LogGP abstractly define
the computing bandwidth, communication bandwidth, com-
munication delay and the overlap of communication and
computation. The focus of the LogGP model [16] is to cap-
ture the communication pattern of the application by both

a detailed parallel operation model as well as a system spe-
cific communication resource usage model. For instance the
model developed in [16] specifically characterises the MPI
communication implementation on an IBM SP/2.

The Los Alamos model [2, 3] uses a similar set of pa-
rameters to describe the execution time of the application.
However, in this case it is expressed in terms of the total
computation time, total communication time and the over-
lap of computation and communication times (2).

Ttotal = Tcomputation + Tcommunication overlap (2)

The total time is modelled for each term independently.
This is somewhat different from the LogGP model where
the latter extracts the model by modelling and interleaving
the computation time and the communication time at each
step of the application.

By contrast the semi-automated Performance Oriented
End-to-end Modelling System (POEMS) [17] is an en-
vironment for the performance modelling of parallel and
distributed systems in which all levels of the system are
considered, including application software, run-time and
operating system software and underlying hardware sys-
tems and architectures. In addition to this complete cov-
erage of multi-domains, POEMS also consists of multi-
paradigm modelling which allows the use of multiple eval-
uation paradigms — analysis (by incorporating analytical
models such as LogP and LoPC), simulation (by means of
supporting simulators) or by the direct measurement of soft-
ware or hardware systems — in a single system model. The
POEMS environment also consists of a repository of per-
formance data gathered during previous evaluation, mod-
elling and measurement processes. These are used as his-
torical data to estimate the performance of widely used al-
gorithms as functions of system/architectural characteristics
and configurations. The SWEEP3D model developed us-
ing POEMS [17] is analysed using these multi-paradigms.
This includes static and dynamic task graphs, the use of the
LogGP model developed in [16] and simulation using MPI-
Sim [18] and SimpleScalar [19]. Each of these models are
then integrated to generate a total system model. The main
benefit of this multi-paradigm approach is the ability to val-
idate each model against each other for high levels of pre-
dictive accuracy.

The POEMS system is a complementary approach to the
PACE tool set. However, in reality the multi-paradigm ap-
proach of POEMS means that performance experts who are
proficient in a multitude of analysis techniques are required
to make best use of it. For instance, the developer will need
to be familiar with the LogGP analytical methods, as well
as having experience in using the simulator tools. PACE on
the other hand can be seen as more intuitive for model de-
velopment by non-performance experts, which at the same

C Application Code >

/\
Use PSL to abstract Use capp to extract MPI

T

/

C Hardware Resources >

Achieved single

Benchmark processor

Parallelisation Strategy
clc

Parallel I
Templates | -] - call ..

Serial Kernels described as l

operation rates

'

Serial

Hardware performance
Kernels

described as
HMCL Scripts

(CHIP3S Compiler

2~ C

Evaluation Engine >

Performance Predictions

Figure 2. Outline of the PACE tool set used for modelling and performance prediction. Application code characterisation is
supported by the PSL to form parallel templates and capp is used to extract C language characterisations. The application model
can then be combined with the desired hardware resource model to obtain performance predictions.

Application Layer

Subtask ObJECtS

source < sweep > < flxed > flux err

| Templat
‘.‘ Layer (async (pipeline

Figure 3. SWEEP3D PACE model Object Hierarchy.

time enables the rapid generation of results with acceptable
levels of predictive accuracy.

4 PACE Performance Model

PACE (Performance Analysis and Characterisation En-
vironment) [7] is a layered performance characterisation
method encompassing all aspects of a system including a
software execution graph, the parallelisation strategy and
the system’s resources and architecture. PACE is largely
based on independent application and resource modelling,
an overview of which can be found in Figure 2. PACE con-
sists of a static source code analyser called ‘capp’, which
extracts the control flow of the application and the fre-
quency of performance-critical operations (opcodes). Capp
is used to extract the operation of a serial kernel in terms
of C language micro-characterisations (clcs). The core of
the PACE system is a Performance Specification Language
(PSL) named CHIP3S (Characterisation Instrumentation for
Performance Prediction of Parallel Systems) and a related
compiler. The PSL provides a description of the application

and its parallelisation in an intuitive language syntax. The
resource modelling is supported by a Hardware Modelling
and Configuration Language (HMCL), which provides a de-
scription of the computation and communication resource
performance of a system. HMCL scripts consist of hard-
ware resource performance values obtained by processor
and MPI benchmarks. Once both the application and re-
source models are created, they can be combined as inputs
to the PACE evaluation engine to obtain predictions of ex-
ecution time within seconds. An important aspect of this
process is the ability to reuse the models with different re-
source or application models.

The PACE model of SWEEP3D developed here builds
on an original model detailed in [1]. The extended model
accounts for a number of architectural modifications found
in modern SMP systems. It was identified that static source
code analysis combined with the original PACE hardware
benchmarks under estimated the effect of several important
optimisations performed on modern hardware and in mod-
ern optimising compilers. These optimisations include the

myriad array of superscalar features (such as multiple oper-
ation pipelines, on-the-fly optimisations), compiler optimi-
sations (such as instruction scheduling, branch prediction)
and memory hierarchy affects. The work in [1] relies on a
set of opcode benchmarks, which when combined with the
tally of opcodes produced by the capp source code analyser,
allow summative results to be calculated; these results then
form the basis for performance predictions. This method
was acceptable for processors available at the time. Pro-
ducing accurate predictions based on this very fine-grained
benchmarking relied on the processor executing the code
exactly as it was (or with very little modification) when the
capp tool did the static source code analysis. This assump-
tion does not hold for modern processor systems and com-
pilers where it under estimates run-time hardware/compiler
performance optimisations when the application is actually
executed. Predictions based on this approach in some cases
(such as on the AMD Opteron 2-way SMP cluster) gave a
prediction error as large as 50%. An alternative approach,
and the one that is adopted in this research, is to use pro-
filing to obtain a coarser level measurement of the achieved
performance of the the serial source code of the application.
The version of the SWEEP3D code used for model develop-
ment, and later for validation, is a C language version of the
application from the Los Alamos National Laboratory. The
object hierarchy diagram for the SWEEP3D model is shown
in Figure 3. The starting point of model development is the
application object sweep3d which is modularised into four
subtask objects. The application object calls each subtask
object in turn for 12 iterations. Of the four subtask objects
sweep implements the core sweeping functionality and is re-
sponsible for 97% of the computation. The other three sub-
tasks are less significant, but contribute to the control flow
of the execution. Each subtask object (of the performance
model) is evaluated using a separate parallelisation strategy
in the parallel template layer. The most important parallel
template object is pipeline which describes the computa-
tion/communication structure of the sweep function.

4.1 Application-Layer Model

The application-layer model consists of one application
object and the four subtask objects. Part of the sweep3d
application object’s PSL description is detailed in Figure 4.
The initial declarations consist of include statements, var
external variable declarations, link statements and options
statements. A complete description of the meaning and ap-
plication of these statements are given in [7, 9]. The in-
clude statements declare other objects that are referenced
by this object, the var declares externally (by user at eval-
uation time) modifiable variables, the /ink statements en-
able variables in other referenced objects to be modified by
this object and the options statements define a set of default

application sweep3d {

include hardware;
include source;
include sweep;
include fixed;
include flux err;

W oo ~J0 Ul idWN R

50 1link {
51 hardware: Nproc = npe_1i * npe_j;
52 sweep: it = it,

86 1}

87 option {hrduse = "IntelP31266"; }
88 proc exec min

89 var x, Vi

90 { if (x > y) return y;
92 else return x;

93 }

112 proc exec init {

113 var numeric: i, tmp;

114 if (isct == 0) nm=1;

115 else if (isct == 1) nm=4;

116

117 it = it_g / npe_1i ;

118 jt = jt_g / npe_j + 1 ;

119 if(mk > kt) mk = kt;

189 for (i=1;i<=tmp;i=i+1) {

190 for (mi=1;mi<=mmi;mi=mi+1) {

191 ndiag = ndiag+max
(min(i,min(jt,
min(nk, jt+nk-1i))).,0);

192 }

193 }

194 (*get average of ndiag*)

195 ndiag = ndiag/tmp;

196 for(i=1;i<=-epsi;i=i+1) {

197 call source;

198 call sweep;

199 call fixed;

200 call flux err;

201 }

202 }

203 }

Figure 4. Application Object - sweep3d: The entry to the
performance model. This initialises the default values of
the model and then in turn calls each subtask object.

values. The proc exec statements declare a subroutine or a
function. The evaluation of the model starts from the pro-
cedure init which calls the evaluation of the four subtask
objects one after the other for 12 iterations (lines 196 - 200)
(depending on the epsi convergence variable defined in the
input file that details the problem size). It can be seen that
procedures directly implement the control flow of the ap-
plication. Thus, evaluation of the model means that these
statements are directly executed (in a similar fashion to a
set of C code statements). By coding the control flow of the

1 subtask sweep {

2 include hardware;

3 include pipeline;

4

5 var numeric:

30 1link {

31 pipeline:

32 TX_sweep_init = sweep_init (),
33 Tx_octant = octant (),
40 Tx_work = work(),

52 1}

54 proc exec init {

67 }

168 proc cflow work {

169 loop(<is clc,LFOR>,jt+nk-1+mmi-1) {
172 loop (<is clc, LFOR>, ndiag) {

174 compute <is clc,2*MFDG>;
176 loop (<is clc,LFOR>,nm-1) {
178 loop (<is clc,LFOR>,it) {
179 compute <is clc, 2*MFDG>;
180 }
182 }
183 case (<is clc,IFBR>) {
184 (-ifixups)/ (-epsi):
185 loop (<is clc,LFOR>,it{
186 compute <is clc,19*MFDG>;
187 }
188 1-((-ifixups)/(-epsi)):
190 loop (<is clc,LFOR>,it) {
191 compute <is clc,19*MFDG>;
193 }
205 case (<is clc,IFBR>) {
206 do_dsa:
loop (<is clc,LFOR>,it) {
208 compute <is clc, 6*MFDG>;
209 }
210 }
212 }
213 }
214 } (* End of work ¥*)
314 }

Figure 5. Subtask Object - sweep: This characterises the
core serial operations of the sweep function. The pipeline
parallel template, noted by the /ink statement, calls these
serial functions during evaluation.

application, run-time values that decide loop iterations that
cannot be determined before run-time are automatically cal-
culated. Such variables include the ndiag value (calculated
dynamically in lines 189 - 193), which directly determines
the per cell work modelled in the sweep subtask object. In
order to establish the complex relationship that determine
the value of ndiag, we have used the average value resulting
from the actual C code implementation of the application.

The structure of the models subtask objects are simi-
lar to the application objects, but can additionally contain
C language characterisation (clc) descriptions. Part of the
sweep subtask object can be found in Figure 5. The clc
descriptions represent the core computation units of the ap-
plication. The source code analysis parser capp provides
an automated procedure to obtain these descriptions. For
reasons described in subsection 3.3 the clc descriptions are
described solely in floating-point operations. The abbrevi-
ations LFOR and IFBR represent the time cost for a loop
start-up and conditional branch check respectively. As ex-
plained in subsection 4.3, these costs are considered neg-
ligible when calculating the total time of the application.
The mnemonic MFDG represents a floating point operation.
Unlike control flow statements, the clc instructions are not
executed, but are accumulated depending on the number of
loop counts and branch probabilities to give a time for each
serial computation described by the clc. In the sweep func-
tion, work within a cell contains some non-structural goto
statements. In this case a reasonable estimate of the aver-
age work related to these statements is manually coded into
the clc. A subtask object includes the parallel template used
when it is evaluated. In the case of sweep in Figure 5 the
related parallel template is pipeline (line 3). The branches
are assigned a probability score and loops are given an av-
erage iteration count that can be calculated from profiles of
the execution of the application and data analysis. The pro-
cedure work outlined in Figure 5 represents the bulk of the
computation. The point at which it is evaluated from within
the pipeline parallel template object can be seen at line 260
in Figure 6.

4.2 Parallelisation Strategy Model

The pipelined wavefront structure of SWEEP3D is mod-
elled in the parallel template layer. The core template im-
plementing this is the pipeline parallel template object. Part
of the pipeline parallel template object is illustrated in Fig-
ure 6. The structure of this template has been derived di-
rectly from the sweep function found in the application; it
should be noted therefore, that a level of understanding of
the application is required to extract the parallel decompo-
sition. Nevertheless, due to the intuitive syntax of the PSL
scripts, this process is straightforward for an engineer with
some understanding of the application. The communication
resource usage and the communication pattern is also de-
scribed in this layer. The init procedure describes the start
of the per octant, per angle block, per k-plane block loop
in lines 194 to 211. For each iteration of this loop, MPI
receives are posted (line 222) followed by the per proces-
sor work (line 260). Next the MPI sends are executed by
sending outbound cell face values (line 269). In addition to
the init procedure, pipeline defines and makes use of sev-

168
169

194
195
203
204
210
211
216
217
218
220
221
222
223
224

238
239
240
243

257
258
259
260
261
262
263
264
265
267
268
269
270
271
272
273
274
275
2717

300
301

308
309
310
311}

#include <mpidefs.h>

partmp pipeline {
proc exec init {
var numeric: phase,

phase <= §;

phase = phase + 1)

i=1+1)
kb; j =

j+ 1)

X <= npe_i; x = x +
y <=npe_j; y =y +

_rcv = Get_ew_rcv(phase, X,
if(ew_rcv !'= 0)

{ step mpirecv { confdev ew rcv, myid, nib*8; } 1}
else { step cpu on myid { confdev Tx else ew rcv;

npe_i; x = x +
npe_j; y =y +

_ns_rcv(phase, x,

step cpu {
confdev Tx_work;

= npe_i; x = x +
v o+

B
[}
D
L
<

Il

ew_ Get_ew_snd(phase, x, vy);

if(ew_snd != 0)

{ step mpisend { confdev myid, ew_snd, nib*8; } 1}
else { step cpu on myid { confdev Tx_else_ew_snd;

)
)

npe_1i; x =

X +
npe_j; y =y +

1
1
Yy)i

Get_ns_snd(phase, x,

bl

1}

Figure 6. Parallel Template Object - pipeline: Characterises the parallel synchronous sweeper operation.

eral procedures such as Get_ew_rcv (line 220). The serial
kernel code characterised in the related subtask object are
called from the parallel template (e.g. Tx_work at line 260,
Tx_else_ew_rcv at line 223). The remaining parallel tem-
plate objects describe different parallel communication pat-

terns. globalsum and globalmax implement collective com-
munications for reduction operations. The async object im-
plements a sequential template and the subtask object that
uses this has no communications.

config IntelP31266
{

hardware {
Tclk = 1 / 1266,

Desc = "Intel P3 1266MHz, 2GB",
Desc = "PC, Intel P3 1266Mhz,
2GB RAM,
Linux 2.4.21-37.0.1.ELsmp",
Source = "SCS IBM cluster";
}
clc {

(* 50x50x50 problem
1 / achieved flop ratex*)
(*Floating-point addition¥)

AFDG = 0.009090,
(*Floating-point multiplication¥)
MFDG = 0.009090;
}
mpi {
DD_COMM_A = 1024,
DD_COMM B = 10.7866,
DD_COMM C = 0.0158239,
DD_COMM D = 41.7131,

DD_COMM_E = 0.00616761,
DD_TSEND_A = 1024,
DD_TSEND_B = 0.665026,
DD_TSEND_C = 0.000726049,
DD_TSEND_D = -49.4555,
DD_TSEND_E = 0.0087964,
DD_TRECV_A = 1024,
DD_TRECV_B = 3.00234,
DD_TRECV_C = 0.0014768,
DD_TRECV_D = -43.1711,
DD_TRECV_E = 0.0088473;

Figure 7. Hardware Resource model for Pentium 3 2-Way
SMP cluster with Myrinet Interconnect.

4.3 Hardware Layer -
Serial Kernel Benchmarking

SWEEP3D is a compute-intensive application and as
such the main contributing operation type to the computa-
tion time comes from double precision floating-point oper-
ations. The processor resource usage was therefore char-
acterised by describing each subtask layer object in terms
of a flow description of floating-point operations. As de-
scribed in section 4, the source code analyser capp was
used to obtain these flow descriptions. The benchmarking
process then entailed profiling the application to obtain the
achieved floating-point operation rate for a particular prob-
lem size on a small number of processors (single proces-
sor -1x1 decomposition and 2 processors - 1x2 decompo-
sition). The single processor achieved floating-point opera-
tion rate is noted for a particular number of cells per proces-
sor workload. This coarse benchmarking was sufficient to

obtain the required accuracy for the computation portion of
the model. Additionally it was seen that any performance
improvement achieved by compiler optimisation could also
be captured with this method. Complex investigations into
how the original source is modified by the optimising com-
piler was not required to get a good level of predictive accu-
racy. Effectively, this approach simplifies model develop-
ment and benchmarking and at the same time gives a high
level of accuracy in the predictions, as can be seen from
the results in Section 4. The profiling tool used in this case
was PAPI [20], which using hardware counters directly al-
lows the measuring and observation of the actual execution
rates and operation counts on the processors. The profil-
ing also allows the results from the source code analysis to
be verified, where any unforeseen operation counts can be
included into the floating-point operation flow manually if
their significance becomes apparent.

Figure 7 details the hardware model for a Pentium 3,
2-way SMP cluster. It includes the SWEEP3D achieved
floating-point operation rates as a time for one floating
point operation in micro-seconds (in the clc section). The
parameters MFDG and AFDG are variables used to store
global floating-point multiplications and additions respec-
tively. The time for conditional branch opcodes (IFBR) and
loop opcodes (LFOR) are taken to be negligible. This was
due to the assumption that the achieved floating-point oper-
ation rate is an overall estimate of the processor hardware
(from processor through the memory hierarchy) and thus
it would capture the time cost of all operations including
branches and loop start-up costs. As can be seen from the
validation of the model, this assumption is acceptable for
a compute-intensive application such as SWEEP3D. The
naming convention for these opcode variables follows the
older PACE benchmark. In this case the achieved flop-rate
is for the 503 cells per processor problem size. This rate
changes according to the problem size per processor and re-
quires updating according to the problem size that will be
modelled to obtain accurate results for each case.

This hardware layer model is very good at character-
ising compute intensive applications such as SWEEP3D
where single node/processor efficiency determines the run-
time. But it is in general applicable to characterising serial
kernels of any application. For applications whose perfor-
mance is not significantly determined by single node per-
formance, such as applications bound by communication
performance, the model itself should take into account the
significance of the communication performance. For in-
stance in an application dominated by sparse matrix vec-
tor products, serial kernel characterisation will be as simple
as taking into account the time for a number of multiplica-
tions and additions. This time will be overshadowed by the
collective communications performance. Thus the model
development will be mainly concerned with characterising

these communication patterns.

4.4 Hardware Layer - Message passing
Communication Benchmarking

In Figure 7 the mpi section denotes the parameters rep-
resenting the message passing performance of the system’s
interconnect. The parameters A to E describe an equation
of the form:

Transfer time of x bytes

B+ Cz,

{ D+ Ez,

where z is the size of a message in bytes. This is simply a
curve fit for a set of data points. There are three sets of A to
E parameters as in Figure 7, representing the gradient and
intercept for the above equation for MPI send times, MPI
receive times and ping-pong times respectively. Parameter
A represents a message size where communication charac-
teristics of the interconnect display different gradients. The
data points for this regression are obtained using an MPI
benchmark program that carries out timed MPI sends, re-
ceives and ping-pongs for increasing message sizes. This
simple communication resource model has proved to be suf-
ficient for the communication behaviour exhibited by an ap-
plication such as SWEEP3D. This could be attributed to the
one way blocking sends and receives that dominate the ap-
plication. If, on the other hand, a large number of collective
communications are to be modelled, then a more detailed
communication resource model and benchmark procedure
will be required — this is on going research.

forx < A
forx > A 3)

5 Model Validation

In this section results from the SWEEP3D model writ-
ten using PACE are presented for three SMP systems. The
model results are compared with actual run-time results
from these systems. The results are for one energy group
with 12 iterations, which is the normal setup for SWEEP3D.
The three clusters used here are chosen so as to vali-
date the model for a variety of representative architectures.
This includes an Intel Pentium 3 cluster validation of the
SWEEP3D model (Table 1) running on a cluster of com-
modity processors comprising of a traditional x86 Intel ar-
chitecture. The AMD Opteron cluster validation (Table 2)
investigates the performance on the x86_64 AMD architec-
ture. Both of these systems are SMP clusters consisting of 2
processors per SMP node. Finally the SGI Altix system al-
lows the exploration of performance on a genuinely shared
memory system with up to 56 processors comprising of In-
tel Itanium?2 (IA-64) processors (Table 3). For each case the
problem size consists of 50% cells per processor with weak
scalability. The k-blocking factor (mk) is kept constant at a
value of 10. The linear increase in runtime (as well as the

corresponding prediction) is due to the increase in the num-
ber of pipeline stages which in turn is due to the increase in
the number of processors in the 2-D processor array. The
variance in predictions are attributed largely to background
processes, network load and minor fluctuations in the actual
run time of the application.

6 Applications of the Performance Model

An additional advantage of a performance model is its
ability to be used for speculative studies in situations such
as procurement, installation, maintenance and upgrading.
In this section, the developed model is used to speculate
on the scaling behaviour of a hypothetical system based on
the 2-Way Opteron SMP cluster architecture. As the inter-
connect of this system (Gigabit Ethernet) is not one that is
generally found in HPC systems that are specifically used
for extreme scaling, in order to make a realistic speculation,
the communication model for the Myrinet 2000 intercon-
nect is used instead of the Gigabit Ethernet communication
model. Such model re-usability is a typical advantage of
performance modelling and in this case demonstrates the
ease of reusing models in the PACE layered approach.

Two problem sizes of interest to the ASCI targets [3]
are investigated. These are the 20 million (20x10%) and 1
billion (10%) cell problems. Realistic applications of Sy
particle transport multi-group problems would expect to in-
clude around 30 groups (as opposed to the one group that
SWEEP3D implements) and a number of dependent time
steps (around 1000 for the ASCI target) [10]. The authors
of SWEEP3D suggest scaling results such as these to under-
stand the resource usage and behaviour of particle transport
problems in realistic settings. Modern large-scale HPC sys-
tems consist of thousands of processors. We use a fixed per
processor size of 5x5x100 and 25x25x200 for the 20 million
and 1 billion problem sizes respectively, this in turn requires
8000 processors for both the 20 million cell problem and the
1 billion cell problem.

Using an achieved floating-point operation rate of 340
MFLOPS for both the 5x5x100 and 25x25x200 cells per
processor problems, combined with the communication
model for the Myrinet 2000 interconnect, scalability pre-
dictions for up to 8000 processors are shown in Figure 8
and Figure 9. In both cases the model predicts good scaling
behaviour. These results concur with those gained through
other related analytical models such as [2, 3] and [16]. It can
also be seen that this problem configuration when scaled up
to 30 energy groups and 10000 time steps will grossly over-
run ASCI execution time goals [3] for this type of applica-
tion. In addition to the speculations based on the achieved
floating-point operation rate, Figure 8 and Figure 9 de-
tails speculations for this configuration when the achieved
floating-point operation rate is increased by 25% and 50%.

Data Size Num. of PEs | 2D Proc. Array | Measurement(sec) | Prediction(sec) | Error(%)
100x100x50 4 2x2 26.54 28.59 -7.72
100x150x50 6 2x3 30.25 30.03 0.74
150x200x50 12 3x4 31.18 32.12 -3.01
200x200x50 16 4x4 32.28 32.78 -1.55
150x300x50 18 3x6 33.72 34.77 -3.11
200x250x50 20 4x5 32.72 34.11 -4.25
200x300x50 24 4x6 33.94 35.44 -4.42
250x300x50 30 5x6 34.73 36.1 -3.94
200x400x50 32 4x8 35.89 38.09 -6.13
200x450x50 36 4x9 37.33 39.42 -5.6
250x400x50 40 5x8 36.8 38.75 -5.3
300x400x50 48 6x8 37.53 39.42 -5.04
250x500x50 50 5x10 39.35 41.41 -5.24
300x500x50 60 6x10 40.24 42.08 -4.57
400x400x50 64 8x8 40.03 40.75 -1.8
300x550x50 66 6x11 41.67 434 -4.15
350x500x50 70 7x10 41.19 42.74 -3.76
400x450x50 72 8x9 41.22 42.08 -2.09
400x500x50 80 8x10 43.09 434 -0.73
400x550x50 88 8x11 44.22 44.75 -1.2
450x500x50 90 9x10 43.7 44.07 -0.85
500x500x50 100 10x10 44.37 44,73 -0.81
500x550x50 110 10x11 45.09 46.06 -2.16
400x700x50 112 8x14 46.32 48.71 -5.16

Table 1. SWEEP3D performance prediction and validation results on an Intel Pentium-3 2-way SMP cluster. The system consists
of 64 nodes interconnected with a Myrinet 2000 interconnect. Each processor is a 1.4GHz Intel Pentium 3 processor with 2GB
memory per node. The compiler used is the GNU C compiler version 2.96 on Red Hat Linux 7.2. Compiler flags include -O1 for
optimisation. The x87 floating-point instruction set is used by default. The calculated achieved Flop-rate was 110 MFLOPS per
processor. The maximum prediction error is less than 10% while the average error is 3.41%; the variance is 4.33%

Data Size Num. of PEs | 2D Proc. Array | Measurement(sec) | Prediction(sec) | Error(%)
100x100x50 4 2x2 8.98 9.69 -71.9
100x150x50 6 2x3 9.59 10.25 -6.83
150x150x50 9 3x3 9.94 10.54 -6
150x200x50 12 3x4 10.57 11.07 -4.7
200x200x50 16 4x4 10.77 11.33 -5.22
200x250x50 20 4x5 11.18 11.85 -5.97
200x300x50 24 4x6 11.95 12.38 -3.59
250x250%x50 25 5x5 11.73 12.11 -3.24
250x300x50 30 5x6 12.07 12.64 -4.68

Table 2. SWEEP3D performance prediction and validation results on an AMD Opteron 2-way SMP cluster. The system consists
of 16 nodes interconnected with a Gigabit Ethernet. Each processor is a 2GHz AMD x86_64 processor with 2GB memory per node.
The compiler used is the GNU C compiler version 3.4.4 on Red Hat Linux (Kernel 2.6). Compiler flags include -O1 for optimisation
and -mfpmath=387 for the x87 floating-point instruction set. PAPI profiling and benchmarking demonstrates an achieved Flop-rate
of 350 MFLOPS per processor. The maximum prediction error is less than 10%; the average error is 5.35%; the variance is 2.24%.

7 Conclusions and Further Work ing commodity processor cluster systems. The modelling
methodology is based on the PACE layered characterisa-
A predictive analytical model for the pipelined wave-

front application SWEEP3D has been developed, target-
10

Data Size Num. of PEs | 2D Proc. Array | Measurement(sec) | Prediction(sec) | Error(%)
100x100x50 4 2x2 14.66 13.95 4.81
100x150x50 6 2x3 15.38 14.6 5.07
150x200x50 12 3x4 16.46 15.58 5.35
200x200x50 16 4x4 17.31 15.91 8.09
150x300x50 18 3x6 18.08 16.87 6.69
200x250x50 20 4x5 17.57 16.55 5.82
200x300x50 24 4x6 18.29 17.2 5.98
250x300x50 30 5x6 18.71 17.52 6.33
200x400x50 32 4x8 19.83 18.48 6.79
200x450x50 36 4x9 20.22 19.13 5.39
250x400x50 40 5x8 20.02 18.81 6.04
300x400x50 48 6x8 20.54 19.19 6.57
350x350x50 49 7x7 19.95 18.81 5.71
250x500x50 50 5x10 21.56 20.1 6.76
450x300x50 54 9x6 21.21 19.78 6.74
350x400x50 56 7x8 21.04 19.46 7.51

Table 3. SWEEP3D performance prediction and validation results on an SGI Altix Intel Itanium-2 56-way SMP. The system
consists of a single node 56-way SMP (56 processors in total). This is a shared memory system interconnected with a SGI NUMA
link4 interconnect. Each processor is a 1.6GHz Intel Itanium 2 processor sharing 112GB memory in total. The compiler used is the
Intel C compiler version 8.1 on Red Hat Enterprise Linux AS 3.0. Compiler flags include -O1 for optimisation. The x87 floating-
point instruction set is used by default. The calculated achieved Flop-rate was 225 MFLOPS per processor. The prediction error is
less than 10%. The average error is 6.23%, while the variance is 0.78%.

actual
- — -25% !
- - s0% 5

Time (seconds)

Number of Processors

Figure 8. Speculated SWEEP3D Execution Time (with
actual achieved floating-point operation rate and with 25%
and 50% increase to the achieved rate) - Twenty Million
Cell Problem (mk=10, mmi=3, 5x5x100 cells per proces-
sor).

tion approach. A coarser benchmarking and serial kernel
characterisation has been introduced to counter discrepan-
cies that resulted from the older PACE opcode benchmarks.
The new modelling approach is applicable to modern su-
perscalar features of processors, compiler optimisations and
memory hierarchy affects. Using this approach a predictive
accuracy is achieved with an error of less than 10%.

The model has been used to speculate on the perfor-
mance and scaling behaviour of the SWEEP3D application
running on a hypothetical system. Two problem sizes of

11

Time(seconds)

10° 10 10
Number of Processors

Figure 9. Speculated SWEEP3D Execution Time (with
actual achieved floating-point operation rate and with 25%
and 50% increase to the achieved rate) - One Billion Cell
Problem (mk=10, mmi=3, 25x25x200 cells per processor).

interest to the ASCI targets were modelled in this specula-
tive study. The results were seen to be in good agreement
with other related analytical models, while at the same time
providing a methodology with reduced model development
time and effort.

The SWEEP3D application has a very structured com-
munication pattern. Future work will investigate methods
for providing tools to support the modelling of applica-
tions with other types of complex communication patterns
such as large volumes of collective communications, over-
lapped computation and communication and communica-

tion in dynamic mesh structures. These types of communi-
cation require additional characterisation methods to model
their scaling behaviour, network resource usage, and net-
work and message processing contention.

Acknowledgments

The computing facilities: Pentium-3 SMP and SGI Altix
systems were provided by the Centre for Scientific Com-
puting at the University of Warwick with support from
Joint Research Equipment Initiative grant JROOWASTEQ
and Science Research Investment Fund grant.

References

(1]

(2]

(3]

(4]

5]

(6]

(7]

8]

(9]

J. Cao, DJ. Kerbyson, E. Papaefstathiou, and G.R. Nudd.
Performance Modeling of Parallel and Distributed Comput-
ing Using PACE. In Proc. 19th IEEE Int. Performance, Com-
puting and Communications Conf., pages 485-492, Phoenix,
AZ, USA.

D.J. Kerbyson, A. Hoisie, and H.J.Wasserman. A Compari-
son Between the Earth simulator and Alphaserver Systems
using Predictive Application Performance Models.
puter Architecture News (ACM), December 2002.

A. Hoisie, H. Lubeck, and H.J. Wasserman. Performance and
Scalability Analysis of Teraflop-Scale Parellel Architectures
using Multidimensional Wavefront Applications. Int. J of
High Performance Computing Applications, 14(4):330-346,
Winter,2000.

A. Hoisie, O. Lubeck, H.J Wasserman, F. Petrini, and
H. Alme. A General Predictive Performance Model for
Wavefront Algorithms on Clusters of SMPs. In ICPP ’00:
Proceedings of the Proceedings of the 2000 International
Conference on Parallel Processing, page 219. IEEE Com-
puter Society, 2000.

Com-

D.J. Kerbyson, A. Hoisie, and H. J. Wasserman. Modeling
the performance of large-scale systems. [EE Proceedings:
Software, 150(4), July 2003.

G. R. Nudd and S. A. Jarvis. Performance-based middleware
for grid computing. Concurrency and Computation: Prac-
tice and Experience, 17:215-235, 2005.

G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou, S.C. Perry,
J.S. Harper, and D.V. Wilcox. PACE: A Toolset for the
Performance Prediction of Parallel and Distributed Systems.
Int. Journal of High Performance Computing Applications,
14(3):228-251, Fall 2000.

D.J. Kerbyson, A. Hoisie, and H.J. Wasserman. Use of Pre-
dictive Performance Modeling During Large-Scale Systems
Installation. In st Int. Workshop on Hardware/Software Sup-
port for Parallel and Distributed Scientific and Engineering
Computing(SPDEC-02), Charlottesville, September 2002.

E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd, T.J. Atherton,
and J.S. Harper. An Introduction to the Layered Character-
isation for High Performance Systems, December 5, 1997.

12

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

Research Report CS-RR-335, University of Warwick, Dept.
of Computer Science.

Sweep3d. The ASCI Sweep3d Benchmark.
http://www.llnl.gov/asci_benchmarks/
asci/limited/sweep3d/.

K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of the
First-Order form of the 3D Discrete Ordinates Equation on
a Massively Parallel Processor. Transactions of the Ameri-
can Nuclear Society, 65:198-199, 1992. Annual Meeting,
Boston, MA.

M.R. Dorr and C.H. Still. Concurrent Source Iteration in the
Solution of Three-Dimensional Multigroup Discrete Ordi-
nates Nutron Transport Equations. Technical Report UCRL-
JC-116694 Rev 1, Lawrence Livermore National Laboatory,
Livermore, CA, May 1995.

E.E. Lewis and W.EMiller. Computational Methods of Nu-
tron Transport. American Nuclear Society, Inc., LaGrange
Park, IL, 1993.

R.E. Alcouffe, R.Baker, F. W. Brinkley, D. Marr, R.D.
O’Dell, and W. Walters. DANTSYS: A Diffusion Acceler-
ated Neutral Particle Transport Code. Technical Report LA-
12969-M, Los Alamos National Laboratory, Los Alamos,
NM, 1995.

M.M. Mathis, N.M. Amato, and M.L. Adams. A General
Performance Model for Parallel Sweeps on Orthogonal Grids
for Particle Transport Calculations. Technical report, Texas
A &M University, 2000.

D. Sundaram-Stukel and M.K. Vernon. Predictive Analysis
of a Wavefront Application Using LogGP. In PPoPP ’99:
Proceedings of the seventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 141—
150. ACM Press, 1999.

V.S. Adve, R. Bagrodia, J.C. Browne, E. Deelman, A. Dube,
E.N. Houstis, J.R. Rice, R. Sakellariou, D.J. Sundaram-
Stukel, P.J. Teller, and M.K. Vernon. POEMS: End-to-End
Performance Design of Large Parallel Adaptive Computa-
tional Systems. IEEE Trans. Softw. Eng., 26(11):1027-1048,
2000.

R. Bagrodia, E. Deelman, , and T. Phan. Parallel Simulation
of Large Scale Parallel Applications. International Journal
of High-Performance Computing Applications, 15, Spring
2001.

D. Burger and T. M. Austin. The simplescalar tool set, ver-

sion 2.0. Technical report, University of Wisconsin Madison
Computer Sciences Department, 1997.

Performance Application Programming Interface.
http://icl.cs.utk.edu/papi/.

