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Abstract

The central result of this thesis is an enlargement of filtrations result for the

filtration (Fx;x ≥ 0), where

Fx = σ{Bys : y ≤ x, s ∈ [0,∞)}

and (Bxt;x ∈ R, t ∈ [0,∞)) is a Brownian sheet on a complete probability

space. Although this is a fairly straightforward extension of a result presented

in [Yor97] for Brownian filtrations, it is of use to us in a couple of applications.

The first is a discussion of ‘bridged’ Brownian sheets, in which we try to describe

the law of a Brownian sheet which is fixed along some curve in the parameter

space. The second application is a study of the spatial evolution of solutions to

the stochastic heat equation. We fix a starting point in space, and describe the

spatial evolution as driven by an (Fx;x ≥ 0)-adapted noise. Unfortunately, we

find that the initial condition is not in F0. If we add this initial information to

(Fx;x ≥ 0), the driving noise is no longer a martingale, but our enlargement

result allows us to write a semimartingale decomposition, in some sense. We

are in fact able to write a system of stochastic differential equations which

describe the spatial evolution of solutions, such that each equation is driven by

a martingale with respect to this larger filtration.
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0.1 Introduction

0.1.1 An outline of the thesis.

The principle motivation for this thesis is the study of the stochastic heat equa-

tion

∂

∂t
u(x, t) =∆u(x, t) +

∂2

∂x∂t
Bxt, x ∈ R, t ∈ [0,∞)

u(x, 0) =u0(x) ∀x ∈ R (0.1.1)

where (Bxt; (x, t) ∈ R × [0,∞)) is a Brownian sheet on a complete probability

space (Ω,F ,P). There is much in the literature written about the Markov

property of solutions for (0.1.1). Much of this is related to the study of Gaussian

random fields, of which [Pit71] and [Roz82] provide a good overview. Recall that

a random field (X(t); t ∈ Rn) on (Ω,F ,P) is Gaussian if for each finite subset

{t1, . . . , tk} of Rn and all α ∈ Rn,
∑k

i=1 αiX(ti) is a Gaussian random variable.

We make the following definitions:

Definition 0.1. Let T and U be two sub-σ-algebras of F . A σ-algebra

S ⊂ T is a splitting field for T and U if for all bounded T -measurable ran-

dom variables f and all bounded U -measurable random variables g, E(fg|S ) =

E(f |S )E(g|S ).

We remark that this is equivalent to having E(g|T ) = E(g|S ) for all

bounded U -measurable g. Indeed, taking A ∈ T and f = 1A, the condi-

tion in the defintion becomes E[1Ag|S ] = E[1AE[g|S ]|S ], from which it fol-

lows that E(g|T ) = E(g|S ). For the equivalence, note that if we multiply

E(g|T ) = E(g|S ) through by 1A and take conditional expectations with re-

spect to S we obtain E(fg|S ) = E(f |S )E(g|S ) for every f = 1A with A ∈ T ,

and the same expression follows by approximation for every bounded, T mea-

surable f .
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For a random variable X on (Ω,F ,P), we use the notation σ(X) to donate the

smallest sub-σ-algebra of F with respect to which makes X measurable, whilst

σ(X(t); t ∈ T ) denotes the smallest σ-algebra making each X(t) measurable for

every t in some indexing set T .

Definition 0.2. Let {X(t) : t ∈ Rn} be a stochastic process. If O ⊂ Rn is an

open set, define

B
X(O) = σ(X(t); t ∈ O).

If D ⊂ Rn is a closed subset, we set Dǫ = {t ∈ Rn : infs∈D |t − s| < ǫ} and

define BX(D) = ∩ǫ>0B
X(Dǫ). We now say that the random field X is Markov

with respect to an open set O if BX(∂O) is a splitting field for BX(O) and

BX(Oc). (∂O is of course O\O.)

The Markov property for a random field as we have defined it above is

known as Lévy’s Markov property. It may seem more natural in definition 0.2

to replace BX(∂O), BX(O) and BX(Oc) with σ(X(t) : t ∈ ∂O), σ(X(t); t ∈ O)

and σ(X(t); t ∈ Oc) respectively. This is known as the sharp Markov property,

and is naturally a stronger condition.

The benefit of studying Gaussian random fields is that once we understand

the covariance structure of the process we can deduce distributional properties

such as the Markov property. Indeed the covariance structure is characterised

by inner product on the subspace H = Sp{Xt; t ∈ Rn} of L2(Ω,F ,P). (Here,

Sp{Xt; t ∈ Rn} denotes the set of linear combinations of elements in {Xt; t ∈

Rn}.) Theorem 5.1 of [Kün79] equates Lévy’s Markov property of (X(t); t ∈

Rn) for all precompact, open subsets of Rn to certain properties of the space

H := {t 7→ E[ZX(t)] : Z ∈ H}, which we couple with the norm ‖f‖2
H =

E[Z2]. In [NP94], Nualart and Pardoux use this result to demonstrate that the

random field (u(x, t);x ∈ R, t ∈ [0,∞)) satisfies Lévy’s Markov property for all

8



precompact, open sets. Suppose we now take as our noise f(u(x, t)) ∂2

∂x∂t
Bxt in

place of ∂2

∂x∂t
Bxt. Unless f is constant the approach of [NP94] will no longer

work because the solution u is no longer a Gaussian process. The subject of the

Markovity of u for general f is a long open problem (see [Par93]). Although we

do not approach this problem here, one motivation is to approach some aspects

of the Markovity of u when f is constant without relying on the Gaussian

structure. We will, in fact, study the process (u(x, ·);x ≥ 0), that is we allow

the process to evolve in the x direction. If we fix t and we define a filtration

by Fx = Bu((−∞, x] × [0,∞)), we may deduce from Nualart and Pardoux’s

result that (u(x, ·);x ≥ 0) is Markov with respect to (Fx;x ≥ 0) in the sense of

definition 1.1. Naturally, by focusing on a more specific aspect of u we can make

a more detailed analysis. For example, can we in fact obtain the sharp Markov

property in this case? Is the evolution in the x direction strongly Markovian?

Given that the evolution is Markovian, perhaps there may even be a semigroup

to describe it.

There is a unique solution to (0.1.1) given by

u(x, t) =

∫

R

u0(y)g(t, x, y)dy +

∫ t

0

∫

R

g(t− s, x, y)
∂2

∂s∂y
Bsydyds, (0.1.2)

where g(t, x, y) is the Green’s kernel for the operator ∆, given by

g(t, x, y) =
1

2
√
πt

exp

(−(x− y)2

4t

)

.

We will define
∫ t

0

∫

R
g(t− s, x, y) ∂2

∂s∂y
Bsydyds rigorously as an Itô integral later.

Now fix t and define a process (u(x, t);x ≥ 0). To describe its Markovian

evolution, we might try to describe it through a stochastic differential equation

driven by a noise which is adapted to the filtration (Fx;x ≥ 0) where
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Fx = σ{Bys : s ∈ [0,∞), y ≤ x}.

We immediately observe from (0.1.2) that u(0, t) is not F0 measurable. To

overcome this difficulty, we shall add some extra initial information into our

filtration. In fact, we will define a process ((ux, vx);x ≥ 0) which we think of

as taking values in a separable Banach space E of the form X∗
1 ×X∗

2 where X1

and X2 can be thought of as test function spaces. Loosely, we take ux(h) =
∫∞
0 h(t)u(x, t)dt for h ∈ X1 and we think of vx as being the derivative in x

of ux. In chapter 3, we will show that for any X > 0, ((ux, vx);x ∈ [0, X ])

satisfies an infinite system of stochastic differential equations driven by a noise

(Wx;x ≥ 0), where

Wx(h) =

∫ x

0

∫ ∞

0

h(s)dBys.

It is the initial information (u0, v0) that we will add to (Fx;x ≥ 0) to obtain a

new filtration (F̃x;x ≥ 0).

The problem now is that, whilst (Wx(h);x ≥ 0) is an (Fx;x ≥ 0) martingale

for any h ∈ L2([0,∞)), it is not an (F̃x;x ≥ 0) martingale. Our hope instead

is that it is an (F̃x;x ≥ 0) semimartingale. For this we look to the theory of

enlargements of filtrations. For an overview of this subject, see for example

[JY85], [Yor97] and [Pro04]. In section 1.2, we will present an enlargement

result for (Fx;x ≥ 0) of a similar nature to well a known result for initial

enlargements of Brownian filtrations. In particular, we obtain a condition that

determines whether or not (Wx(h);x ≥ 0) has a semimartingale decomposition

for a given h. We use this in the first three sections of chapter 3 to determine

an infinite system of stochastic differential equations satisfied by ((ux, vx);x ∈

[0, X ]). The last section in chapter 3 contains for the most part discussion on

unresolved issues. In particular, the equations for ((ux, vx);x ≥ 0) give rise
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naturally to a martingale problem which one might hope would lead to a strong

Markov property. However, there are difficulties defining a suitable space E on

which to define this martingale problem, and there is some discussion of this.

Furthermore, to obtain a strong Markov property, one requires the uniqueness

of one dimensional distributions for solutions to the martingale problem, and

unfortunately it has not been possible to answer whether or not this holds for

this thesis.

Chapter 2 discusses the outcome of adding initially to (Fx;x ≥ 0) information

about the Brownian sheet along some curve. The hope is that the results of

section 1.2 allow us to write an equation for Wx driven by a noise which sees this

initial information, and that one might read from this a description of Brownian

sheet conditioned in some sense along this curve. We provide a general approach

using these methods, and although in many cases it quickly becomes too difficult

to produce a description of a bridged sheet, we do provide a description of

Brownian sheet which is fixed along the minor diagonal.

Let us remark that in order to make use of the results from section 1.2, we require

some tools from Malliavin calculus and Gaussian measure theory, which we

present in section 1.3 and for which our main references are [Nua06] and [Bog98]

respectively. Our use of the Malliavin calculus is similar to that in [Bau02] and

[BC07], although these papers deal with finite dimensional processes. [BL06],

[FPY93], [GM08], [GM06] and [Sim05] all deal with infinite dimensional bridge

processes, albeit using different methods to those presented here, and the author

would like to thank the examiners for drawing his attention to them for this final

draft.
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0.1.2 Notation

In the following, we shall assume that we have an underlying probability space

(Ω,F ,P) which is rich enough for all stochastic processes that we define. We

shall assume that probability space is complete, that is if A ⊂ Ω such that

there exists B ∈ F with P(B) = 0 and A ⊂ B, then A ∈ F . We will write

NP(F ) = {A ∈ F : P(A) = 0}. For an F measurable random variable f on Ω,

E[f ] will denote the expectation of f ,
∫

Ω
f(ω)P(dω). For a general probability

space (E, E , µ), we will often write Eµ to denote the integral with respect to µ

of E measurable functions from E to R.

If E is a topological vector space and F is some subset of E, we will denote

by Sp(F ) the linear combinations of elements of F . We denote by B(E) the

Borel σ-algebra on E, that is the σ-algebra generated by the open subsets of E.

We will denote by m(E) the space of Borel measurable real valued functions.

We define B(E) to be the space of bounded functions from E to R, which we

may equip with the supremum norm ‖f‖∞ = sup{x∈E} |f(x)| for f ∈ B(E).

We will denote by C(E) the space of continuous functions from E to R, and

Cb(E) = C(E) ∩ B(E). For f : E → R, we will denote by suppf the closure

of {x ∈ E : f(x) 6= 0}, and we set C0(E) = {f ∈ C(E) : suppf is compact}.

If E is a subset of Rn, n ∈ N, we will denote by Ck(E) the set of f ∈ C(E)

such that ∂α1
1 . . . ∂αnf is in C(E) for any multi-index α with

∑n
i=1 αi ≤ k.

Here and in the future, ∂i refers to the derivative in the ith variable. We take

C∞(E) = ∩k∈NC
k(E) and Ck0 (E) = C0(E) ∩ Ck(E) for k ∈ N ∪ {∞}.

We shall use parentheses 〈, 〉 to denote the cross variation of two stochastic

process (X(t); t ≥ 0) and (Y (t); t ≥ 0), 〈X,Y 〉t, with the parameter as a right

sub-index. We will also, where it is not confusing, use parentheses to denote

the inner product in L2(Rn), whilst the norm will be denoted ‖ · ‖2. Otherwise,

12



we will use (·, ·)H to denote an inner product on a vector space. For a normed

vector space V we will denote the topological dual by V ∗. For φ ∈ V and l ∈ V ∗

we will generally write l(φ) to represent the action of l on φ. However, if V is a

test function space and l has a representation as a continuous function through

l(φ) =

∫

l(t)φ(t)dt

then we may write l(φ) = 〈l, φ〉.
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1 Enlargements of Filtrations

1.1 Some preliminary definitions

1.1.1 The Markov property

Suppose that (X(t); t ∈ Rn) is a random field on a complete probability space

(Ω,F ,P), taking values in a state space E, which we shall assume for conve-

nience to be a separable Banach space. We have already discussed a couple

of possible interpretations of what it means for (X(t); t ∈ Rn) to be Markov.

When n = 1, we have a slightly different intuition: a Markov process X is one

such that if we know what the process is doing at time t, we gain no additional

information of what the process does after time t from knowing what it did be-

fore time t. To turn this into a definition, we need a mathematical description

of the our information about the process at any one time, and this is the natural

filtration (FX
t ; t ≥ 0) given by

F
X
t = σ{X(s); 0 ≤ s ≤ t}.

FX
t represents the observed information about X up to time t. Our intuition is

that for any t, s ≥ 0, X(t+ s) should be independent of FX
t conditional upon

knowing X(t). We can be slightly more general than this, and allow situations

where we have more information at time t than the observed information about

X up to time t. If (Ft; t ≥ 0) is a filtration (that is, Ft is a sub-σ-algebra of

F for all t ≥ 0 and Fs ⊂ Ft whenever s < t), then we say that (X(t); t ≥ 0)

is adapted to (Ft; t ≥ 0) if X(t) is Ft measurable for all t ≥ 0. We say it is

(Ft; t ≥ 0) progressively measurable if, for each t ≥ 0, the mapX : [0, t]×Ω → R

is measurable with respect to B([0, t])⊗Ft. This is stronger than adaptedness,

however if, for example, t 7→ X(t)(ω) is left or right continuous for every ω and

(X(t); t ≥ 0) is adapted to (Ft; t ≥ 0), then it is progressively measurable with

14



respect to (Ft; t ≥ 0) (see proposition 1.1.3, [KS98]). Note that if (X(t); t ≥ 0)

is adapted to (Ft; t ≥ 0), then FX
t ⊂ Ft for all t ≥ 0. Here is our definition.

Definition 1.1. Let (X(t); t ≥ 0) be a stochastic process on (Ω,F ,P) which

is adapted to the filtration (Ft; t ≥ 0). (X(t); t ≥ 0) is Markov with respect to

(Ft; t ≥ 0) if

P(X(t+ s) ∈ Γ|Ft) = P(X(t+ s) ∈ Γ|X(t)) a.s. (1.1.1)

for all s, t ≥ 0 and Γ ∈ B(E).

Let A denote {[0, t); t ≥ 0}, a collection of open subsets of [0,∞). With

regards to the remarks following definition 0.2, we can rephrase definition 1.1 as

saying that (X(t); t ≥ 0) satisfies the sharp Markov property for every O ∈ A

(where the parameter space is [0,∞) instead of Rn).

The Markov property is equivalent to

E[f(X(t+ s))|Ft] = E[f(X(t+ s))|X(t)] a.s.

for all f ∈ B(R). Also, note that if (X(t); t ≥ 0) is Markov with respect to

(Ft; t ≥ 0) then

E[X(t+ s)|FX
t ] = E[E[X(t+ s)|Ft]|FX

t ] = E[X(t)|FX
t ] = X(t).

Hence X is also Markov with respect to (FX
t ; t ≥ 0). Suppose instead that we

know X(τ) for a random time τ . Can we still say that the process after time

τ is independent of all that went on before τ? We take τ to be an optional

time, that is a mapping τ : Ω 7→ [0,∞] such that {τ < t} ∈ Ft for all t ≥ 0.
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Furthermore, if Ft+ = ∩ε>0Ft+ε for all t ≥ 0, we define Fτ+ by

Fτ+ = σ{A ∈ F : A ∩ {τ ≤ t} ∈ Ft+ ∀t > 0}.

We make the following definition:

Definition 1.2. An (Ft; t ≥ 0) progressively measurable stochastic process

(X(t); t ≥ 0) exhibits the strong Markov property if for every almost surely

finite optional time τ and every s > 0,

E[f(X(τ + s)|Fτ+] = E[f(X(τ + s))|X(τ)] a.s.

We also have the notion of an (Ft; t ≥ 0) stopping time, that is a random

time τ : Ω → [0,∞] such that {τ ≤ t} ∈ Ft for all t ≥ 0. Remark that τ

is an (Ft; t ≥ 0) optional time if and only if it is an (Ft+; t ≥ 0) stopping

time (lemma 2.1.1 of [EK86]). Thus if we can show that E[f(X(τ + s))|Fτ ] =

E[f(X(τ + s))|X(τ)] almost surely for all almost surely finite stopping times τ ,

then (X(t); t ≥ 0) is a strong Markov process in the above sense.

1.1.2 Markov Semigroups

In chapter 4 of [EK86], the connection between the theory of semigroups and the

theory of Markov processes is discussed. Define T (t)f(x) = E[f(X(t))|X(0) =

x] =: Ex[f(X(t))] for a stochastic process (X(t); t ≥ 0) taking values in E

and f ∈ B(E). If (X(t); t ≥ 0) is Markov, and furthermore we assume that

E[f(X(t))|X(0) = x] = E[f(X(t + s))|X(s) = x] (that is, it is time homoge-

neous) then formally

T (t+ s)f(x) = Ex[f(X(t+ s))] = Ex[Ex[f(X(t+ s)|X(s)]] = Ex[T (t)f(X(s))]
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for x ∈ E and s, t ≥ 0. (We have used the Markov property here to deduce

that Ex[f(X(t+ s))|X(s)] = E[f(X(t+ s))|X(s)] = T (t)f(X(s)).) Thus, under

certain conditions on X , (T (t); t ≥ 0) is a semigroup on B(E), that is T (t) :

B(E) → B(E) is a bounded linear operator for each t ≥ 0, such that T (0) is the

identity and T (t+ s) = T (t)T (s) for each s, t ≥ 0. In general, given a Markov

process (X(t); t ≥ 0) with respect to (Ft; t ≥ 0) and a semigroup (T (t); t ≥ 0),

we say that (X(t); t ≥ 0) corresponds to (T (t); t ≥ 0) if

E[f(X(t+ s))|Ft] = T (s)f(X(t)).

For example, if (X(t); t ≥ 0) is a Brownian motion, it is a Markov process

corresponding to the semigroup (T (t); t ≥ 0) given by

T (t)f(x) =
1√
2πt

∫

R

f(y) exp

(

− (y − x)2

2t

)

dy.

Proposition 4.1.6 of [EK86] demonstrates that the finite dimensional distribu-

tions of a Markov process are completely determined by this semigroup and the

initial distribution.

Given a semigroup we define an operator G : D(G) → B(E) by

Gf = lim
t→0

1

t
(T (t)f − f),

where D(G) is the subspace of f ∈ B(E) for which this limit exists. G is

known as the infinitesimal generator of (T (t); t ≥ 0). As an example, take

a real valued process (X(t); t ≥ 0) satisfy an equation of the form dX(t) =

b(X(t))dt + σ(X(t))dB(t), where B is a Brownian motion. One may deduce

from Itô’s formula that
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df(X(t)) = (b(X(t))f ′(X(t)) +
1

2
σ2(X(t))f ′′(X(t)))dt+ σ(X(t))f ′(X(t))dB(t)

for any bounded C2(R) function. Setting Gf(x) = limt→0
1
t
(E[f(X(t))|X(0) =

x] − f(x)), we see that Gf(x) = b(x)f ′(x) + 1
2σ

2(x)f ′′(x). One may put con-

ditions on b and σ such that the classical Hille-Yosida implies that there is a

(strongly continuous contraction) semigroup with generator G (see theorem 1.2.6

of [EK86]), and one might hope to show that (X(t); t ≥ 0) is a Markov process

corresponding to this semigroup. If b or σ are not bounded functions however,

Gf will not in general lie in B(R). Our main example will be a situation similar

to this. Nevertheless, we may still construct the generator above as a map from

D(G) to m(E). Although we do not construct a semigroup, the above operator

is still of use in constructing a martingale problem, as we see in the next section.

1.1.3 The martingale problem.

The idea of a martingale problem is based on the observation that given a

Markov process (X(t); t ≥ 0) corresponding to a semigroup (T (t); t ≥ 0) with

generator G, the process (f(X(t)) −
∫ t

0 Gf(X(s))ds; t ≥ 0) is a martingale for

f ∈ D(G) ⊂ B(E) (see proposition 4.1.7 of [EK86]). We look for some sort

of converse: supposing that f(X(t)) −
∫ t

0 Gf(X(s))ds is a martingale for all

f ∈ B(E) and some operator G, can we deduce that (X(t); t ≥ 0) is Markov?

We have to be a little careful here. Suppose that (X(t); t ≥ 0) is adapted to the

filtration (Ft; t ≥ 0). We ask if the same can be said of
(∫ t

0
Gf(X(s))ds; t ≥ 0

)

.

Following the remarks of section 4.3 (and also problem 2.2) in [EK86], we

can say that given g ∈ B(E), there is a modification (say (Y (t); t ≥ 0)) of
(∫ t

0
g(X(s))ds; t ≥ 0

)

which is adapted to (Ft; t ≥ 0). In other words, for any

t ≥ 0, P(Y (t) =
∫ t

0
g(X(s))ds) = 1 and Y (t) is Ft measurable. If the fil-
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tration is complete, that is, if NP(F ) ⊂ Ft for all t ≥ 0, we can deduce that
(∫ t

0
g(X(s))ds; t ≥ 0

)

is (Ft; t ≥ 0) for all g ∈ B(E). Let us define the complete

natural filtration (F
X

t ; t ≥ 0), given by

F
X

t = σ{X(s) : 0 ≤ s ≤ t} ∨ NP(F ).

The value of this is that we can always say that (f(X(t))−
∫ t

0
Gf(X(s))ds; t ≥ 0)

is (F
X

t ; t ≥ 0) adapted.

We still need to be a little bit careful because we want to consider cases where

Gf may not be bounded. If we take f to be continuous, but possibly not

bounded, we may consider the truncated functions fn ∈ B(E) for n ∈ N, where

fn(x) = f(x) if ‖x‖E ≤ n and fn(x) = 0 otherwise. If we also define an

increasing sequence of stopping times τn = inf{t ≥ 0 : ‖X(t)‖E > n}, then

fn(X(τn ∧ t)) = f(X(τn ∧ t). Note that for B ∈ B(R),

{∫ t

0

f(X(s))ds ∈ B

}

=

∞⋃

n=1

({∫ t

0

fn(X(τn ∧ s))ds ∈ B

}

∩ {τn > t}
)

∪A

where A ⊂ {limn→∞ τn = ∞}. From this it follows that if (X(t); t ≥ 0) is

adapted to a complete filtration (Ft; t ≥ 0), then {
∫ t

0
f(X(s))ds ∈ B} is the

union of countably many elements in Fτn∧t and a null set, and is thus in Ft.

In the following, we take A to be some subset of B(E) ×B(E), and let µ be a

probability measure on (E,B(E)).

Definition 1.3. (X(t); t ≥ 0) is said to be a solution of the martingale problem

for (A, µ) with respect to a complete filtration (Ft; t ≥ 0) if X(0) is distributed

according to µ and for every (f, g) ∈ A, f(X(t))−
∫ t

0 g(X(s))ds is an (Ft; t ≥ 0)

martingale. We say it is a solution of the martingale problem for (A, µ) if it

is a solution to the martingale problem for (A, µ) with respect to the filtration
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(F
X

t ; t ≥ 0).

Theorem 1.1. Suppose that any two solutions X and Y of the martingale

problem (A, µ) have the same one-dimensional distributions, so that for any

t ≥ 0,

P(X(t) ∈ Γ) = P(Y (t) ∈ Γ)

for all Γ ∈ B(E). Then

(a) any solution of the martingale problem for (A, µ) with respect to (Ft; t ≥ 0)

is a Markov with respect to this filtration;

(b) if in addition A ⊂ Cb(E) × B(E) and X is a solution of the martingale

problem for (A, µ) with respect to (Ft; t ≥ 0) whose sample paths are right-

continuous with left limits, then X exhibits the strong Markov property

with respect to this filtration.

The proof of this theorem contained in [EK86]. It is not quite sufficient

however for our purposes, since we shall wish to choose A so that in general, for

(f, g) ∈ A, g is not bounded. Ethier and Kurtz’s approach is to take a solution

(X(t); t ≥ 0) of the martingale problem for (A, µ) with respect to (Ft; t ≥ 0)

and study the process (Y (t); t ≥ 0) given by Y (t) = X(t+ r) for a fixed r > 0.

They then define the object

η(Y ) =

[

f(Y (tn+1)) − f(Y (tn)) −
∫ tn+1

tn

g(Y (s))ds

] n∏

k=1

hk(Y (tk)) (1.1.2)

for (f, g) ∈ A, hk ∈ B(E) and arbitrarily chosen 0 ≤ t1 < . . . < tn < tn+1. They

define two probability measures P1 and P2 such that EP1 [η(Y )] = EP2 [η(Y )] = 0.

It follows from this that (f(Y (t)) −
∫ t

0 g(Y (s))ds; t ≥ 0) is both an (F
Y

t ; t ≥ 0)

martingale in (Ω,F ,P1) and an (F
Y

t ; t ≥ 0) martingale in (Ω,F ,P2). The

Markov property then follows from the hypothesis regarding the uniqueness of
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one dimensional distributions of solutions and the definitions of P1 and P2.

In order to demonstrate that EP1 [η(Y )] = EP2 [η(Y )] = 0, it is sufficient to show

that E[η(Y )|Fr] = 0, which is immediately clear observing that E[η(Y )|Fr+tn ] =

0. That EPi
[η(Y )] = 0 implies that f(Y (t)) −

∫ t

0 g(Y (s))ds is a Pi martingale

requires the hk to be bounded, but f(Y (tn+1)) − f(Y (tn)) −
∫ tn+1

tn
g(Y (s))ds

merely needs to be P1 and P2 integrable. This follows from the hypothesis

since f(Y (t)) −
∫ t

0
g(Y (s))ds must be P integrable for any solution (f, g) of the

martingale problem. Thus the condition that f and g are not bounded is not

required for part (a).

Part (b) is a little more troublesome. Ethier and Kurtz’ approach for part (a)

can also be applied for part (b) provided that we can show that for any almost

surely finite stopping time τ ,

E[η(X(τ + ·))|Fτ+tn ] = 0.

To see this, set

Z(t) = f(X(t)) −
∫ t

0

g(X(s))ds. (1.1.3)

We require

E[Z(τ + t+ s) − Z(τ + t)|Fτ+t] = 0

for all t, s > 0. If we take some T > 0, the optional sampling theorem tells us

that

E[Z((τ + t+ s) ∧ T )|Fτ+t] = Z((t+ τ) ∧ T )

or equivalently E[Z((τ + t+ s) ∧ T ) − Z((τ + t) ∧ T )|Fτ+t] = 0. This requires

that (Z(t); t ≥ 0) has a right-continuous modification, hence the requirement

that f is continuous. It is then sufficient to show that
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E[Z((τ + t+ s) ∧ T ) − Z((τ + t) ∧ T )|Fτ+t]

→ E[Z(τ + t+ s) − Z(τ + t)|Fτ+t] (1.1.4)

almost surely as T → ∞. This is straightforward when g is bounded by use of

the dominated convergence theorem. When g is not bounded however we need

to find some other way of showing the above.

Let us make one further remark regarding part (b). In practise we will be

dealing with solutions (X(t); t ≥ 0) to a martingale problem where (X(t); t ≥

0) is almost surely continuous. In such cases the progressive measurability of

(X(t); t ≥ 0) is not obvious. Thus we have a set A ⊂ Ω with P(A) = 1 on which

t 7→ X(t) is continuous. If we define a process (Y (t); t ≥ 0) such that Xω = Yω

for ω ∈ A, and Yω = 0 otherwise, then assuming that we are working with

complete filtrations, (Y (t); t ≥ 0) is progressively measurable. Furthermore it

is obvious that it satisfies the same martingale problem as (X(t); t ≥ 0), so if

we may apply theorem 1.1, it follows that (Y (t); t ≥ 0) has the strong Markov

property, from which it follows that so to does (X(t); t ≥ 0).

1.1.4 The Brownian Sheet

In this section we shall define a Brownian sheet and introduce an associated

stochastic calculus. In particular, we highlight how the construction of an Itô

integral in this specific setting is an application of a more general construction

which will be of use later on. The general construction is presented in detail in

[Wal86].

We will construct the Brownian sheet, as with Brownian motion, as a centred
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Gaussian process with a certain covariance structure. Specifically, we work on

[0,∞)2 and define C : B([0,∞)2) × B([0,∞)2) → R by

C(A,B) = |A ∩B|

for A,B ∈ B([0,∞)2), where |A ∩ B| is the Lebesgue measure of A ∩ B. Note

that for A1, . . . , An ∈ B([0,∞)2) and a1, . . . , an ∈ R,

n∑

i,j=1

aiajC(Ai, Aj) =

∫ ∞

0

(
n∑

i=1

ai1Ai
(t)

)2

dt ≥ 0.

In other words, C is positive definite, and the theory of Gaussian processes im-

plies that there is a complete probability space (Ω,F ,P) and a centred Gaussian

process W : B([0,∞)2) × Ω → R such that E[W (A)W (B)] = C(A,B) for all

A,B ∈ B([0,∞)2). In particular, for any |A|, |B| <∞,

• W (A) ∼ N (0, |A|), and

• for A ∩B = ∅, W (A ∪B) = W (A) +W (B) a.s.

which is easily verified by checking that E[(W (A ∪B) −W (A) −W (B))2] = 0.

A centred Gaussian process W with these properties is called a white noise on

[0,∞)2. We now define a Brownian sheet (Bxt; (x, t) ∈ [0,∞)2) on (Ω,F ,P) by

Bxt = W ([0, x] × [0, t]).

The Kolmogorov-C̆entsov continuity criterion implies that there is a version

of (Bxt; (x, t) ∈ [0,∞)2) which is almost surely continuous on [0,∞)2 (see

proposition 1.4 of [Wal86]). Interestingly, the Brownian sheet itself provides

a good example of how easily the sharp Markov property can fail. It is read-

ily seen the Brownian sheet satisfies Lévy’s Markov property for all bounded

open sets (see [Roz82], for example). However, taking D to be the triangle
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{(x, t) ∈ [0,∞)2 : 0 < t < 1 − x < 1} (which we note is open and bounded),

[Wal86] shows that the Brownian sheet fails to be sharp Markov for D. On

the other hand, it is sharp Markov for all rectangles. In fact, we may define

the sharp Markov property for all Jordan domains, and [DW92] shows that a

Brownian sheet exhibits the sharp Markov property with respect to ‘almost ev-

ery’ Jordan domain. (Here, ‘almost every’ is defined using the measure on the

Jordan curves induced by a planar Brownian motion forced to reach its starting

point at time 1.)

Throughout the thesis we will make use of both this Brownian sheet restricted

to [0, 1]2 and also a Brownian sheet on R× [0,∞). The latter is simply obtained

by taking two independent Brownian sheets B1 and B2 and setting Bxt = B1
xt

for x ≥ 0 and Bxt = B2
−x,t for x ≤ 0. For now we continue to work with

the Brownian sheet on [0,∞)2. Let us also define a filtration (Fx;x ≥ 0) by

Fx = σ{Bys; y ∈ [0, x], s ≥ 0} ∨ NP(F ).

Our goal now is to define a stochastic integral
∫ x

0

∫∞
0
f(y, s)dBys for some class

of functions f . We define f : [0,∞)2 × Ω → R by f(y, s) = ξ1(x1,x2](y)1A(s)

where A ∈ B([0,∞)), 0 ≤ x1 < x2 and ξ is a bounded Fx1 measurable random

variable. It is then natural to write

∫ x

0

∫ ∞

0

f(y, s)dBys = ξ(W (([0, x] ∩ (x1, x2]) ×A)).

In this way we can define
∫ x

0

∫∞
0 f(y, s)dBys in the space E of linear combina-

tions of such f . For all x ≥ 0 and A ∈ B([0,∞)) we define Mx(A) = W ([0, x]×

A). Although Mx(·) is merely an additive set function (and not a measure),

we can define a σ-finite signed measure Q on B([0,∞)3) by Q(A,B, [0, x]) =
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〈M·(A),M·(B)〉x = x|A ∩B|. Define a norm ‖ · ‖M on E by

‖f‖2
M =E

[∫ ∞

0

∫ ∞

0

∫ ∞

0

|f(x, s)||f(x, r)||Q|(ds, dr, dx)

]

=

∫ ∞

0

∫ ∞

0

E[|f(x, s)|2]dsdx.

and let PM be the completion of E in this norm. By proposition 2.3 of [Wal86]

this is the set of functions f : [0,∞)2×Ω → R which are measurable with respect

to the σ-algebra on [0,∞)2 × Ω generated by E and such that ‖f‖M <∞. For

f ∈ PM , (f(x, ·);x ≥ 0) defines a process in L2([0,∞)×Ω) which is adapted to

the filtration (Fx;x ≥ 0). It is not generally true that (f(·, t); t ≥ 0) is adapted

to (σ{Bys; y ∈ [0,∞), 0 ≤ s ≤ t}; t ≥ 0).

We will now define
∫ x

0

∫∞
0 f(y, s)dBys for f ∈ PM . For this we require that

(Mx(A);x ≥ 0, A ∈ B([0,∞))) is a martingale measure. In other words,

M0(A) = 0 for all A ∈ B([0,∞)), E[Mx(·)2] is a σ-finite measure on B([0,∞))

for each x > 0, and (Mx(A);x ≥ 0) is an (Fx;x ≥ 0) martingale for all

A ∈ B([0,∞)). Furthermore it is a worthy martingale measure. Walsh provides

a precise definition of a worthy martingale measure in [Wal86], although essen-

tially it requires that there is a random σ-finite measure K : B([0,∞))3 × Ω

which is positive definite in the first two arguments and such that for any

A,B ∈ B([0,∞)), |〈M·(A),M·(B)〉x| ≤ K(A,B, [0, x]). In our case we take

K = |Q|.

By theorem 2.5 of [Wal86], we may now define an (Fx;x ≥ 0) martingale mea-

sure (f.Mx;x ≥ 0) for any f ∈ PM where f.Mx([0,∞)) =
∫ x

0

∫∞
0
f(y, s)dBys

for f ∈ E, and furthermore

E[(f.Mx([0,∞)))2] = ‖f‖2
M ∀f ∈ PM
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We write
∫ x

0

∫ ∞

0

f(y, s)dBys := f.Mx([0,∞)).

Note that if {fn;n ∈ N} is a sequence in E then

E

[(∫ x

0

∫ ∞

0

(fn(y, s) − fm(y, s))dBys

)2
]

= ‖fn − fm‖2
M .

Thus, if f ∈ PM and fn → f in the ‖·‖M norm, then
{∫ x

0

∫∞
0 fn(y, s)dBys;n ∈ N

}

is a Cauchy sequence in L2(Ω), and in fact its limit is what we define to be
∫ x

0

∫∞
0 f(y, s)dBys. We also note that

∫ ∞

0

∫ ∞

0

f(y, s)dBys = lim
x→∞

∫ x

0

∫ ∞

0

f(y, s)dBys.

where the limit is taken in L2(Ω), and that the isometry property implies that

this limit exists if and only if E[f2] is in L([0,∞)2). We make a few remarks

regarding the order of integration. It is clear that there is nothing preventing us

from going through the same procedure to define an integral in which the roles

of the x and t variables are swapped, which we might denote

∫ t

0

∫ ∞

0

f(y, s)dBsy

for some class of f . This is not defined for all f ∈ PM , so we have to be careful

about the order of integration. However, if f(x, t) is σ{Bys : 0 ≤ y ≤ x, 0 ≤ s ≤

t} measurable for all (x, t) and furthermore f can be integrated with respect to

both dBxt and dBtx then it is not difficult to see that

∫ ∞

0

∫ ∞

0

f(y, s)dBys =

∫ ∞

0

∫ ∞

0

f(y, s)dBsy
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In particular, this is true whenever f is deterministic and belongs to L2([0,∞)2).

We will deal often with integrals of deterministic functions, and whilst we shall

try to keep notation consistent, the above remarks mean that we can freely

interchange the ‘order’ of integration.

Finally we require a version of Fubini’s theorem, which is given as theorem 2.6

in [Wal86].

Theorem 1.2. Let h ∈ L1([0,∞)) and f : [0,∞)3 × Ω → R such that f

is measurable with respect to the σ-algebra B([0,∞)) × σ(E) on [0,∞)3 × Ω.

Suppose further that

E

[∫ ∞

0

(∫ ∞

0

∫ ∞

0

|f(y, s, t)|2dyds

)

|h(t)|dt
]

<∞

Then almost surely we have

∫ ∞

0

(∫ ∞

0

∫ ∞

0

f(y, s, t)dBys

)

h(t)dt =

∫ ∞

0

∫ ∞

0

(∫ ∞

0

f(y, s, t)h(t)dt

)

dBys.

1.1.5 Reformulating equation (0.1.1) as a spatial evolution.

We are now in a position to interpret (0.1.1). The process (u(x, t);x ∈ R, t ∈

[0,∞)) is said to be a solution of (0.1.1) if, for any h ∈ C∞
0 (R × [0,∞)),

∫ ∞

0

∫

R

∂

∂t
h(x, t)u(x, t)dxdt +

∫

R

h(x, 0)u0(x)dx

+

∫ ∞

0

∫

R

∆h(x, t)u(x, t)dxdt +

∫ ∞

0

∫

R

h(x, t)dBtx = 0.

This equation is treated in [Wal86], where it is shown that the unique solution

is given by (0.1.2) under certain conditions on u0, for example u0 ∈ L1(R).
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Suppose we try to rewrite equation (0.1.1) as the first order system

∂

∂x
u(x, t) =v(x, t)

∂

∂x
v(x, t) =

∂

∂t
u(x, t) − ∂2

∂x∂t
B(x, t).

At the moment, this is not well defined since we have no reason to believe that

(v(x, t);x ∈ R, t ∈ [0,∞)) is differentiable. One might think instead to test

these equations against some functions h1, h2 : [0,∞) → R, so that we obtain

∫ ∞

0

u(x, t)h1(t)dt =

∫ ∞

0

u(0, t)h1(t)dt+

∫ x

0

∫ ∞

0

h1(t)v(y, t)dtdy

and

∫ ∞

0

v(x, t)h2(t)dt =

∫ ∞

0

v(0, t)h2(t)dt−
∫ x

0

∫ ∞

0

h′2(t)u(y, t)dtdy

−
∫ x

0

∫ ∞

0

h2(t)dByt.

This looks like a more well defined system, but of course we still do not have a

definition for v(x, t). Formally, if
∫∞
0
h2(t)v(x, t)dt did exist we might attempt

to use Theorem 1.2 and write

∫ ∞

0

h2(t)v(x, t)dt =

∫

R

∫ ∞

0

(∫ ∞

s

∂

∂x
g(t− s, x, y)h2(t)dt

)

dBys.

As it happens, the term on the right hand side is almost surely finite whenever

h2 is continuous and supt≥0 |(1+ t)
3
4 +εh2(t)| <∞ for some ε > 0. Furthermore,

the integral
∫

R

∫ ∞

0

(∫ ∞

s

h1(t)g(t− s, x, y)dt

)

dBys

is almost surely finite whenever h1 is continuous and satisfies supt≥0 |(1 +

t)
5
4+εh1(t)| < ∞ for some ε > 0. In chapter 3, we will try to use these tail
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properties to define Banach spaces of test functions X1 and X2 and processes

(ux;x ≥ 0) and (vx;x ≥ 0) taking values in X∗
1 and X∗

2 respectively such that

〈h1, ux〉 =

∫

R

∫ ∞

0

(∫ ∞

s

h1(t)g(t− s, x, y)dt

)

dBys

and

〈h2, vx〉 =

∫

R

∫ ∞

0

(∫ ∞

s

h2(t)
∂

∂x
g(t− s, x, y)dt

)

dBys

for all h1 ∈ X1, h2 ∈ X2 and x ≥ 0. We will further demonstrate that for any

X > 0, the process ((〈h1, ux〉, 〈h2, vx〉);x ∈ [0, X ]) satisfies

〈h1, ux〉 =〈h1, u0〉 +

∫ x

0

〈h1, vy〉dy

〈h2, vx〉 =〈h2, v0〉 −
∫ x

0

〈h′2, uy〉dy −
∫ x

0

∫ ∞

0

h2(s)dBys (1.1.5)

for any x ≥ 0, where the equalities hold almost surely, provided that 〈h′2, uy〉 is

defined.

Let us make the following remark about u(x, t). Our goal is to show that

(u(x, t);x ≥ 0) is Markov with respect to some filtration. We are no longer

considering u(x, t), but rather ux and vx. Suppose we manage to demonstrate

some Markov property for ux and vx. What does this say about u(x, t)? We

should not necessarily think that (u(x, t);x ≥ 0) and (ux;x ≥ 0) are the same.

Recall theorem 1.2: in order to show that

∫ ∞

0

h(t)

∫ t

0

∫

R

g(t− s, x, y)dBysdt =

∫ ∞

0

∫

R

(∫ ∞

s

h(t)g(t− s, x, y)dt

)

dBys

we require
∫ ∞

0

|h(t)|
(∫ t

0

∫

R

|g(t− s, x, y)|2dyds

)

dt <∞.
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Now,

∫

R

g(t− s, x, y)2dy =
c

t− s

∫

R

exp

(

− (x− y)2

t− s

)

dy =
c√
t− s

and hence

∫ ∞

0

|h(t)|
(∫ t

0

∫

R

|g(t− s, x, y)|2dyds

)

dt = c

∫ ∞

0

|h(t)|
√
tdt.

This integral is not finite for all continuous h such that supt≥0 |h(t)(1+ t)
5
4+ε| <

∞ unless ε > 1
2 . Nevertheless, it is finite for all h ∈ C∞

0 ([0,∞)), so on this class

of test functions u(x, ·) = ux in some sense. Our hope is that this is a big enough

test function space to carry over properties of ux to u(x, t). Note that even for

h ∈ C∞
0 ([0,∞)),

∫ ∞

0

|h(t)|
(∫ t

0

∫

R

|∂xg(t− s, x, y)|2dyds

)

dt = ∞,

so that theorem 1.2 does not allow us define a process (v(x, t);x ≥ 0).

We now try to set up a martingale problem which is solved by ((ux, vx);x ≥ 0).

Define a filtration (Fx;x ≥ 0) by

Fx = σ{Bys;−∞ ≤ y ≤ x, s ∈ [0,∞)]} ∨ NP(F ) (1.1.6)

and F ∈ B(E) by

F (u, v) = f(〈h1, u〉, . . . , 〈hn, u〉, 〈hn+1, v〉, . . . , 〈h2n, v〉)

for f ∈ C∞
0 (Rn+m) and hi ∈ X1, hn+i ∈ X2 for i = 1, . . . , n. The standard

approach now is to apply Itô’s formula to F (ux, vx) to obtain a generator G

such that ((ux, vx);x ≥ 0) solves the martingale problem for some subset of the
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graph of G. It is here that our difficulties with the initial conditions begin. Our

initial conditions are, we recall,

〈h, u0〉 =

∫

R

∫ ∞

0

(∫ ∞

s

h(t)g(t− s, 0, y)dt

)

dBys

〈l, v0〉 =

∫

R

∫ ∞

0

(∫ ∞

s

l(t)∂2g(t− s, 0, y)dt

)

dBys

In order to determine these we need to know B on the entire parameter space.

Thus u0 and v0 are not F0 measurable, and it is meaningless to apply Ito’s

formula. How might we overcome this problem? One immediate suggestion

is to simply take a finer filtration. This brings its own problem, namely that

the martingale part in Itô’s formula is no longer a martingale with the respect

to the larger filtration. However there is hope that it has a semimartingale

decomposition, as is discussed in the next section.

1.2 Enlargements of filtrations

1.2.1 Enlargements of Brownian filtrations.

Our hope of obtaining a semimartingale decomposition stems from the following

theorem:

Theorem 1.3. Let Bt, t ∈ [0, 1], be a one-dimensional standard Brownian mo-

tion. Fix L : Ω → R, which we assume to be F
B

1 -measurable, and define the

stochastic kernel λ̇s(f) by the martingale representation property of the Brown-

ian motion, that is f(L) = Ef(L) +
∫ 1

0
λ̇s(f) dBs a.s. for f : R → R which

are bounded and measurable. Suppose, for all such f , the stochastic kernel λ̇s(f)

admits the factorisation

λ̇s(f) = E[f(L)̺(L, s)|FB

s ] a.s.
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for s ∈ [0, 1]. Then the process (B̃t; t ∈ [0, 1]) given by B̃t := Bt −
∫ t

0
̺(L, s) ds

is an (F
B

t ∨ σ(L); t ∈ [0, 1]) standard Brownian motion.

A more precise statement of this theorem, including integrability and mea-

surability conditions on ̺, is presented in [Yor97]. The proof is essentially to

use the martingale representation theorem and the condition placed on λ̇ to

demonstrate that

E

[

f(L)ξ

(

Bt+r −
∫ t+r

0

̺(L, s)ds

)]

= E

[

f(L)ξ

(

Bt −
∫ t

0

̺(L, s)ds

)]

for any t, r > 0, f ∈ B(R) and bounded, FB
t -measurable ξ, from which one

may deduce the desired martingale property. We use a similar approach in the

proof of the forthcoming theorem 1.5, and hence do not reproduce the proof of

theorem 1.3 above, but rather refer to [Yor97], or [MY06] for a more detailed

proof.

Suppose L = B1 and f is differentiable. In this case, λ̇s(f) = E[f ′(B1)|FB

s ], as

we shall demonstrate later. We can rewrite this as E[f ′((B1 − Bs) +Bs)|F
B

s ].

Observing that (B1 − Bs) + Bs is equal in law to N1−s + Bs, where N1−s is a

centred Gaussian random variable with variance 1 − s which is independent of

F
B

s , we note that λ̇s(f) is given by

E[f ′(N1−s +Bs)|F
B

s ] =

∫

R

f ′(x+Bs)
√

2π(1 − s)
exp

(

− x2

2(1 − s)

)

dx

=

∫

R

xf(x+Bs)
√

2π(1 − s)3
exp

(

− x2

2(1 − s)

)

dx

=E

[

f(N1−s +Bs)
N1−s
1 − s

∣
∣
∣
∣
F
B
s

]

=E

[

f(B1)
Bs

1 − s

∣
∣
∣
∣
F
B

s

]

.

Thus ̺(L, s) = B1−Bs

1−s . In this case, finding a factorisation for the stochastic
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kernel is a straightforward result of integration by parts. This is something

we will wish to bear in mind in infinite dimensions, although the integration

by parts is less straightforward and cannot be done in all cases. We would

now like to take a Brownian sheet (Bxt;x ∈ R, t ∈ [0,∞)), define a filtration

(Fx;x ≥ 0) by (1.1.6), and give a semimartingale decomposition for the term
∫ x

0

∫∞
0
l(s)dBys upon making some initial enlargement to this filtration. We

will write Wx(l) =
∫ x

0

∫∞
0 l(s)dBys. Wx(l) is an (Fx;x ≥ 0) martingale for any

l ∈ L2([0,∞)), with quadratic variation 〈W (l)〉x =
∫ x

0

∫∞
0 l(s)2dsdy.

1.2.2 The Martingale Representation Theorem

The key to theorem 1.3 is being able to write any F
B

∞ measurable random

variable as the stochastic integral of a kernel which can by factorised in a certain

way. The martingale representation theorem is central to this idea, and we need

a similar result for the filtration (Fx;x ≥ 0), as presented below. In the sequel

we define F∞ by

F∞ := σ (∪x≥0Fx) .

In particular,
∫∞
0

∫∞
0
h(y, s)dBys is F∞ measurable for any h ∈ L2([0,∞)2).

We state the theorem for F∞ measurable F in L2(Ω), although naturally if F is

not F∞ measurable, the theorem can be restated for E[F |F∞]. We also remark

that analogous versions hold for Brownian sheets on restricted parameter spaces,

such as [0, 1]2.

Theorem 1.4. For every F∞-measurable random variable in L2(Ω) there exists

an (Fx;x ≥ 0)-adapted measurable process (λ̇x·;x ∈ [0,∞)) in L2([0,∞) ×

Ω;L2([0,∞))) such that

F = EF +

∫ ∞

0

∫ ∞

0

λ̇ys dBys a.s.
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For our purposes we shall use the Clark-Ocone formula, which provides an

expression for λ̇ for a certain class of F . The proof of theorem 1.4 is in [Nua06],

except that a small adjustment is needed to translate it into our setting, which

we omit in this thesis.

If we return to our definition of the Itô integral, it is straightforward to show

for any elementary f ∈ PM that

E

[∫ ∞

0

∫ ∞

0

f(y, s)dBys

∣
∣
∣
∣
Fx

]

=

∫ x

0

∫ ∞

0

f(y, s)dBys

and it thus follows for any f ∈ PM . We thus obtain the form of the martingale

representation theorem that we shall make use of: for any F ∈ L2(Ω) there exist

an (Fx;x ≥ 0) adapted process (λ̇x·;x ∈ [0,∞)) in L2([0,∞) × Ω;L2([0,∞)))

such that

E[F |Fx] = E[F ] +

∫ x

0

∫ ∞

0

λ̇ysdBys a.s. ∀x.

1.2.3 Enlargements of (Fx;x ≥ 0).

We now come to the enlargement theorem for (Fx;x ≥ 0). Our aim is to add

some initial information to our filtration. The initial information is given by a

random variable L. Specifically, we take (V, E(V )) to be a measurable space, and

L : Ω → V a measurable map. Suppose F : V → R is such that F (L) ∈ L2(Ω).

With reference to theorem 1.4, there exists some λ̇ys(F ) such that

E[F (L)|Fx] = E[F (L)] +

∫ x

0

∫ ∞

0

λ̇ys(F )dBys.

For our enlargement theorem to work, we need a stochastic factorisation of

λ̇ys(F ) for a large set of F . Let us discuss what we mean by ‘large’. Our aim

is to demonstrate that for any l ∈ L2([0, 1]), under suitable conditions we may
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adjust (Wx(l);x ≥ 0) by a drift to obtain a (F̃x;x ≥ 0) martingale, where

F̃x := Fx ∨ σ(L)

for all x ≥ 0. In order to show that a process (φx;x ≥ 0) is an (F̃x;x ≥ 0)

martingale, we must show that E[1Aφx] = E[1Aφx′ ] whenever x′ < x and

A ∈ F̃x′ . It is equivalent to show that E[1Aξφx] = E[1Aξφx′ ] whenever x′ < x,

ξ is a bounded, Fx′ measurable random variable and A ∈ σ(L). If instead we

are able to show that for any A ∈ σ(L) there is a sequence of bounded σ(L)

measurable random variables Fn which converge almost surely to 1A and such

that E[Fnξφx] = E[Fnξφx′ ] then we may deduce the martingale property by

taking limits and using, for example, the dominated convergence theorem.

Suppose that V is a normed vector space with topological dual V ∗. In such

cases we take E(V ) to be the coarsest toplogy on V such that each h ∈ V ∗ is

measurable. For any subspace E of V ∗ we define a space of bounded functions

on V by

FC∞
b (E ) := {F : V →R : F (φ) = f(h1(φ), . . . , hn(φ)),

h1, . . . , hn ∈ E , f ∈ Cb∞(Rn), n ∈ N} (1.2.1)

where C∞
b (Rn) are the smooth, bounded R valued functions on Rn. Our ap-

proach is to show that E[F (L)ξφx] = E[F (L)ξφx′ ] whenever F ∈ FC∞
b (E ),

x′ < x and ξ as above. We now ask when is E sufficiently big that it is pos-

sible, for any A ∈ σ(L), to find a sequence of random variables of the form

F (L) approximating 1A a.s. with F ∈ FC∞
b (E )? We begin by noting that

σ(L) = σ{h(L) : h ∈ V ∗}. We now have the following

Lemma 1.1. If E is dense in V ∗, then for any A ∈ σ(L) there exists a sequence
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(Fn;n ∈ N) ⊂ FC∞
b (E ) such that Fn(L) → 1A a.s.

Proof First of all, take h ∈ E , B ∈ B(R) and set A = {ω ∈ Ω : h(L)(ω) ∈

B} = h(L)−1(B). In this case, 1A(ω) = 1B(h(L)). We may now approximate1B pointwise by fn ∈ C∞
0 (R), so that putting Fn(φ) = fn(h(φ)), Fn(L) con-

verges almost surely to 1A. If we now take h ∈ V ∗, we can find a sequence

of hn ∈ E such that for each ω ∈ Ω, hn(L)(ω) → h(L)(ω). Thus we may

approximate 1h(L)−1(B) almost surely by 1hn(L)−1(B). It now follows that for

any B ∈ B(R) and h ∈ V ∗, 1h(L)−1(B) can be approximated almost surely by

random variables of the form F (L) where F ∈ FC∞
b (E ).

In what follows we shall take V as above and E a dense subset of V ∗. Recall

that for l ∈ L2([0,∞)) we define

Wx(l) =

∫ x

0

∫ ∞

0

l(s)dBys.

Theorem 1.5. Suppose L is F∞ measurable and that l ∈ L2([0,∞)). Suppose

further that for any F ∈ FC∞
b (E ), λ̇ys(F ) admits the factorisation

∫ ∞

0

λ̇ys(F ) l(s) ds = E[F (L)̺l(L, y)|Fy] a.s. (1.2.2)

for this l and all y ∈ [0,∞), and that ̺l : Ω×V × [0,∞) → R is measurable and

satisfies

• ̺l(φ, y) is Fy-measurable for all φ ∈ V and y ∈ [0,∞)

• ̺l(L, y) ∈ L1(Ω) for all y ∈ [0,∞)

• for any x > 0, y 7→ ̺l(L, y) ∈ L1([0, x]) a.s.
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Define W̃x(l) for x ∈ [0,∞) by

W̃x(l) = Wx(l) −
∫ x

0

̺l(L, y) dy.

Under the above assumptions the following holds:

(a) (W̃x(l);x ≥ 0) is an (F̃x;x ≥ 0) martingale;

(b) If for any two l1, l2 ∈ L2([0,∞)) there exist ̺l1 and ̺l2 satisfying (1.2.2)

and the above conditions, then

〈W̃·(l1), W̃·(l2)〉x = x〈l1, l2〉 a.s.

for all x ≥ 0.

(c) ̺l is unique in the sense that if ˜̺l : Ω × V × [0,∞) → R also satisfies

(1.2.2) and the above conditions then for all ω ∈ Ω except on a set of

measure 0, ˜̺l(L, x)(ω) = ̺l(L, x) for all x ≥ 0.

Proof (a) Using lemma 1.1 and the preceding remarks, we need to show that

if F ∈ FC∞
b (E ), x′ < x and ξ is a bounded Fx′ measurable random variable

then

E[F (L)ξW̃x(l)] = E[F (L)ξW̃x′ (l)].

Now,

E

[

F (L)ξW̃x(l)
]

=E

[

E[F (L)ξW̃x(l)|Fx]
]

=E

[

E

[

F (L)ξ

{

Wx(l) −
∫ x

0

̺l(L, y)dy

}∣
∣
∣
∣
Fx

]]

=E [ξWx(l)E [F (L)|Fx]] − E

[

ξE

[∫ x

0

F (L)̺l(L, y)dy

∣
∣
∣
∣
Fx

]]

.
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For ease of notation, write Φy for F (L)̺l(L, y). Define an (Fx;x ≥ 0) adapted

process (Nx;x ≥ 0) by

Nx = E

[∫ x

0

Φydy

∣
∣
∣
∣
Fx

]

−
∫ x

0

E
[
Φy
∣
∣Fy

]
dy

so that

E[F (L)ξW̃x(l)] = E

[

ξWx(l)E

[

F (L)

∣
∣
∣
∣
Fx

]]

− E

[

ξ

[

Nx +

∫ x

0

E
[
Φy
∣
∣Fy

]
dy

]]

.

We now demonstrate that (Nx;x ≥ 0) is an (Fx;x ≥ 0) martingale. If z < x

then

E[Nx|Fz ] =E

[

E

[∫ x

0

Φydy

∣
∣
∣
∣
Fx

]∣
∣
∣
∣
Fz

]

− E

[∫ x

0

E [Φy|Fy] dy

∣
∣
∣
∣
Fz

]

=E

[∫ x

0

Φydy

∣
∣
∣
∣
Fz

]

−
∫ z

0

E [Φy|Fy] dy

− E

[∫ x

z

E [Φy|Fy ] dy

∣
∣
∣
∣
Fz

]

=E

[∫ z

0

Φydy

∣
∣
∣
∣
Fz

]

+ E

[∫ x

z

Φydy

∣
∣
∣
∣
Fz

]

−
∫ z

0

E [Φy|Fy] dy − E

[∫ x

z

E [Φy|Fy] dy

∣
∣
∣
∣
Fz

]

=Nz + E

[∫ x

z

Φydy

∣
∣
∣
∣
Fz

]

− E

[∫ x

z

E [Φy|Fy] dy

∣
∣
∣
∣
Fz

]

To show the last two terms cancel, let A ∈ Fz.

E

[1AE

[∫ x

z

E [Φy|Fy] dy

∣
∣
∣
∣
Fz

]]

=E

[∫ x

z

E [1AΦy|Fy] dy

]

=

∫ x

z

E[E[1AΦy|Fy ]]dy

=E

[1A ∫ x

z

Φydy

]
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where the final two inequalities require a use of Fubini’s theorem. This means

that

E

[∫ x

z

Φydy

∣
∣
∣
∣
Fz

]

= E

[∫ x

z

E [Φy|Fy] dy

∣
∣
∣
∣
Fz

]

and hence (Nx;x ≥ 0) is an (Fx;x ≥ 0) martingale.

We rewrite the term
∫ x

0
E [Φy|Fy] dy using the factorisation of the stochastic

kernel in the following way:

∫ x

0

E [Φy|Fy] dy =

∫ x

0

E [F (L)̺l(L, y)|Fy ] dy

=

∫ x

0

∫ 1

0

l(s)λ̇sy(F (L))dsdy

=

〈

W·(l),E[F (L)] +

∫ ·

0

∫ 1

0

λ̇sy(F (L))dBys

〉

x

=〈W·(l),E[F (L)|F·]〉x

where 〈·, ·〉x denotes the quadratic co-variation. Thus

E[F (L)ξW̃x(l)]

=E[ξ{Wx(l)E[F (L)|Fx] − 〈W·(l),E[F (L)|F·]〉x
︸ ︷︷ ︸

(Fx;x≥0) martingale

}] − E [ξNx]

=E [ξ{Wx′(l)E[F (L)|Fx′ ] − 〈W·(l),E[F (L)|F·]〉x′}] − E [ξNx′ ]

and by reversing the argument this is E[F (L)ξW̃x′(l)].

Given the conditions in part (b), note that W̃x(l1) and W̃x(l2) differ from Wx(l1)

and Wx(l2) respectively by processes with bounded variation, so

〈W̃·(l1), W̃·(l2)〉x = 〈W·(l1),W·(l2)〉x = x〈l1, l2〉 a.s.

39



for all x ≥ 0. Finally, for (c) we remark that if both (Wx(l)−
∫ x

0
̺l(L, y)dy;x ≥

0) and (Wx(l)−
∫ x

0
˜̺l(L, y)dy;x ≥ 0) are (F̃x;x ≥ 0) martingales then (

∫ x

0
(̺l(L, y)−

˜̺l(L, y))dy;x ≥ 0) is an (F̃x;x ≥ 0) martingale. Thus for all ω ∈ Ω except in

some null set,
∫ x

0
(̺l(L, y)(ω) − ˜̺l(L, y)(ω))dy = 0 for all x ≥ 0, and hence

̺l(L, x)(ω) = ˜̺l(L, x)(ω) for all x ≥ 0. Finally, if we have the above expression

for W̃x(l1) and W̃x(l2), then

Provided that W̃x is defined on a large enough space of test functions, it does

in fact have a representation as a stochastic integral. Indeed, suppose we can

define W̃x(l) as above for all l in a dense subset D of L2([0,∞)), and suppose

that (ln;n ∈ N) is a sequence of functions in D which converge in L2([0,∞)) to1[0,t]. Note that

E[(W̃x(ln) − W̃x(lm))2] = x‖ln − lm‖2
2.

Thus, (W̃x(ln);n ∈ N) is Cauchy in L2(Ω), and we can (uniquely) define

W̃x(1[0,t]) ∈ L2(Ω) such that E[(W̃x(ln) − W̃x(1[0,t])
2] → 0 as n → ∞. De-

fine B̃xt := W̃x(1[0,t]), and for a rectangle R with corners (x1, t1) and (x2, t2)

(where x1 < x2 and t1 < t2) define

W̃ (R) = B̃x2,t2 − B̃x2,t1 − B̃x1,t2 + B̃x1,t1 .

It is straightforward to show that W̃ (R) is a centred Gaussian random variable

with variance |R|, and furthermore that if R1 and R2 are disjoint rectangles

then W̃ (R1) and W̃ (R2) are independent. This is sufficient to show that B̃ is a

Brownian sheet. Furthermore, if l is a linear combination of indicator functions,

then clearly

W̃x(l) =

∫ x

0

∫ ∞

0

l(s)dB̃ys
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and this now extends for all l ∈ L2([0,∞)).

If (W̃x(l);x ≥ 0) is defined on L2([0,∞)) (or indeed densely defined on L2([0,∞))),

it will in particular be defined for all l ∈ C∞
0 ([0,∞)). We can say more than

this: it is in fact a cylindrical Wiener process in the following sense.

Definition 1.4. Let D′([0,∞)) denote Schwartz’s space of distributions on

[0,∞) (see, for example, chapter 2 of [Hör90]). A D′([0,∞)) valued process

(Wx;x ≥ 0) is called a cylindrical Wiener process if

• W0 = 0 a.s. and for every h ∈ C∞
0 ([0,∞)), Wx(h) is a local martingale;

• P(〈W·(h),W·(h)〉x = x‖h‖2
2 ∀x ≥ 0) = 1 for all h ∈ C∞

0 ([0,∞)).

Our original process (Wx;x ≥ 0) is a cylindrical Wiener process. Further-

more, for all l1, l2 ∈ C∞
0 ([0,∞)), 〈W̃·(l1), W̃·(l2)〉x = x〈l1, l2〉 since (Wx(l); l ∈

C∞
0 ([0,∞)), x ≥ 0) and (W̃x(l); l ∈ C∞

0 ([0,∞)), x ≥ 0) share the same co-

variation structure. That (W̃x;x ≥ 0) is a D′([0,∞)) valued process follows

from, for example, lemma 2.2 of [Iwa87].

1.2.4 A brief look forwards.

The challenge is now to find (if possible) a ̺l such that

∫ 1

0

λ̇ys(F ) l(s) ds = E[F (L)̺l(L, y)|Fy] a.s.

for a given L and l ∈ L2([0,∞)). In our stochastic heat equation example, we

have L = (u0, v0) : Ω → E. This is only one possible L that we might take.

Another possibility is to describe a curve

{γ(r); r ∈ [0, 1]} = {(x(r), t(r)) ∈ [0,∞)2; r ∈ [0, 1]}
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where we suppose perhaps that x and t are smooth functions. We could then

define L : Ω → C([0, 1]) by

L(r) = Bx(r)t(r)

for r ∈ [0, 1]. Thus we add information about the Brownian sheet along some

curve into our initial filtration. We shall investigate this further in the second

chapter in the hope of producing a stochastic partial differential equation which

describes this bridged process.

Before we treat either problem we require a few tools which will help us deter-

mine whether or not we can show that

∫ 1

0

λ̇ys(F ) l(s) ds = E[F (L)̺l(L, y)|Fy] a.s.

It turns out that for certain F∞ measurable F ∈ L2(Ω) (and in particular for

all F = F (L)) there is a closed operator D : L2(Ω) → L2(Ω;L2([0,∞))) such

that

λ̇ys(F ) = E[DysF |Fy] a.s. (1.2.3)

DF is known as the Malliavin derivative of F , which is a directional derivative

in some sense. We will see that

E

[∫ ∞

0

l(s)DysF (L)

∣
∣
∣
∣
Fy

]

= E[F (L)̺l(L, y)|Fy] a.s. (1.2.4)

follows through integration by parts with respect to some Gaussian measure

(specifically the law of L given Fy).
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1.3 A brief review of the Malliavin calculus and Gaussian

measures

1.3.1 The derivative and divergence operators

Our interest in Malliavin calculus is solely to find the explicit form of the stochas-

tic kernel λ̇ys(F (L)) given by the Clark-Ocone formula. In the sequel we work

with a Brownian sheet (Bxt; (x, t) ∈ [0,∞)2), although the same arguments hold

if we restrict the Brownian sheet to [0, 1]2. We define a class of smooth random

variables S by saying that F ∈ S if

F = f

(∫ ∞

0

∫ ∞

0

h1(y, s)dBys, . . . ,

∫ ∞

0

∫ ∞

0

hn(y, s)dBys

)

(1.3.1)

where f ∈ C∞(R) with each derivative having polynomial growth, and h1, . . . , hn

∈ L2([0,∞)2). In Nualart’s notation, we are taking H = L2([0,∞)2) and

W (h) =
∫∞
0

∫∞
0 h(y, s)dBys. For A ∈ B([0,∞)2) such that 1A ∈ L2([0,∞)2)

we will write W (A) = W (1A), and in general we write

FA = σ{Bys; (y, s) ∈ A}.

Definition 1.5. The derivative operator D : S → L2(Ω;L2([0,∞)2)) is defined

for F ∈ S by

DF =

n∑

i=1

∂if

(∫ ∞

0

∫ ∞

0

h1(y, s)dBys, . . . ,

∫ ∞

0

∫ ∞

0

hn(y, s)dBys

)

hi. (1.3.2)

Denote by D1,2 the closure of S under the norm

‖F‖2
1,2 = E[F 2] + E[‖DF‖2

2].

The following is proposition 1.2.1 in [Nua06].
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Proposition 1.1. D : D1,2 → L2(Ω;L2([0,∞)2)) is a closed operator.

Remark that sinceDF is a random variable with values in L2(Ω;L2([0,∞)2)),

we will adopt the notation

DysF = (DF )(y, s).

We shall also require the adjoint of D, known as the divergence operator, which

we denote by δ. Thus δ is an unbounded operator on L2(Ω;L2([0,∞)2)) such

that for all u in the domain of δ, δ(u) ∈ L2(Ω) and for any F ∈ D1,2,

E[Fδ(u)] = E[〈DF, u〉].

It is the adjoint of a densely defined unbounded operator, and is therefore closed.

We will need the following result:

Lemma 1.2. Let A be a bounded element of B([0,∞)2) and let F ∈ L2(Ω) be

FAc measurable. Then F1A ∈ L2(Ω;L2([0,∞)2)) is in the domain of δ, and

furthermore

δ(F1A) = FW (A).

This is lemma 1.3.2 in [Nua06]

1.3.2 The Clark-Ocone formula

In this section, we introduce the idea of a Wiener chaos expansion and use it

to characterise the derivative and divergence operators. We first introduce the

multiple stochastic integral for f ∈ L2(([0,∞)2)m). In particular, if A1, . . . , Am

are pairwise disjoint, bounded elements of B([0,∞)2) and

f(t1, . . . , tm) = 1A1×...×Am
(t1, . . . , tm)
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we define

Im(f) = W (A1) . . .W (Am)

and extend it first to all linear combinations of such f (in a linear way, naturally),

and then to L2(([0,∞)2)m). This is covered in section 1.1.2 of [Nua06], and we

also remark that if f̃ represents the symmetrisation of f then Im(f) = Im(f̃).

We now cite theorem 1.1.2 of [Nua06].

Theorem 1.6. For any F ∈ L2(Ω) there exist fn ∈ L2(([0,∞)2)n) such that

F =
∞∑

n=0

In(fn)

where the limit is in L2(Ω). Here, we define I0(f0) = E[F ]. Furthermore we

may take the fn to be symmetric, and with this assumption they are unique.

Suppose F ∈ D1,2 has the above expansion. It now follows that

DysF =

∞∑

n=1

nIn−1(fn(·, (y, s)))

(see proposition 1.2.7 of [Nua06] for a proof). The above expansion also leads to

a useful description of the divergence operator. Note that if u ∈ L2(Ω×[0,∞)2),

since each u(x, t) ∈ L2(Ω) we can write

u(x, t) =

∞∑

n=0

In(fn(·, (x, t)))

for some fn ∈ L2(([0,∞)2)n+1) which are symmetric in the first n variables.

Proposition 1.3.7. of [Nua06] tells us that

δ(u) =

∞∑

n=0

In+1(f̃n)

provided that this sum converges in L2(Ω), and that this convergence is a suf-
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ficient and necessary condition for u to be in the domain of δ.

The Clark-Ocone formula is presented in [Nua06] as proposition 1.3.14 for a

one dimensional Brownian motion. Although we are dealing with parameter

Brownian sheet, the proof for the equivalent statement is so similar to Nualart’s

that it is not worth reproducing here.

Proposition 1.2. Let F ∈ D1,2 and let Fx = F[0,x]×[0,∞). Then

F = E[F ] + δ(u)

where we define u(y, s) = E[DysF |Fy].

Where we do need to work a little to adapt the discussion in [Nua06] to our

setting is in showing that δ(u) coincides with the Itô integral
∫∞
0

∫∞
0
u(y, s)dBys.

For this we need lemma 1.2, which essentially shows that this is true for ele-

mentary functions. Specifically, if we take

u(x, t) =

n∑

i=1

Fi1(xi−1,xi]×A(x, t)

for 0 ≤ x0 < . . . < xn <∞, A ∈ B([0,∞)) bounded and the Fi bounded, Fxi−1

measurable random variables for i = 1, · · · , n, then lemma 1.2 gives us

δ(u) =
n∑

i=1

Fi

∫ xi

xi−1

∫

A

dBys =

∫ ∞

0

∫ ∞

0

u(y, s)dBys.

Recall the space PM in section 1.1.4 containing limits of such u in the norm

‖u‖2
M =

∫∞
0

∫∞
0 E[(u(y, s))2]dsdy, which is of course the norm on L2(Ω;L2([0,∞)2)).

Thus for any u ∈ PM there is a sequence of un of the above elementary form

such that ‖un − u‖M → 0 as n → ∞, and we see immediately that δ(un)

converges in L2(Ω) to the Itô integral of u. Since δ is a closed operator, the
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limit of δ(un) is δ(u), so that for all u ∈ PM , δ(u) and the Itô integral of

u coincide almost surely. PM consists of u ∈ L2(Ω;L2([0,∞)2)) such that

the process (u(x, ·);x ≥ 0) is (Fx;x ≥ 0) adapted, and in particular contains

(E[DysF |Fy ]; (y, s) ∈ [0,∞)2) for any F ∈ D1,2. Thus for all such F we have

F = E[F ] +

∫ ∞

0

∫ ∞

0

E[DysF |Fy]dBys.

1.3.3 Radon Gaussian measures

In section 1.2.4 we made a remark that (1.2.4) can be understood as an inte-

gration by parts formula with respect to a Gaussian measure. To understand

this we require some tools of Gaussian measure theory. Our setting is a lo-

cally convex space X with (topological) dual X∗, and we set E(X) to be the

sigma algebra on X which makes each l ∈ X∗ measurable. Given a mea-

sure µ on (X, E(X)) and l ∈ X∗, we may define a measure on (R,B(R)) by

µ ◦ l−1(B) = µ({x ∈ X : l(x) ∈ B}).

Definition 1.6. A probability measure µ on (X, E(X)) is said to be a centred

Gaussian measure if µ◦l−1 is a centred Gaussian measure on R for every l ∈ X∗,

that is there exists some σ2
l such that

µ ◦ l−1(B) =

∫

B

1
√

2πσ2
l

exp

(

− z2

2σ2
l

)

dz

for any B ∈ B(R).

Definition 1.7. A measure µ on (X,B(X)) is Radon if for every B ∈ B(X)

and ε > 0, there exists a compact Kε such that µ(B\Kε) < ε.

Definition 1.8. A Radon measure µ on (X,B(X)) is a centred Radon Gaussian

measure if its restriction to E(X) is a centred Gaussian measure.

Let us remark that E(X) ⊂ B(X) is always true, but not necessarily the
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converse. However, if X is, for example, complete, metrisable and separable,

then E(X) = B(X). Furthermore, all finite measures on (X,B(X)) are Radon

(see page 122 of [Sch73] and the appendix of [Bog98]). The examples we shall

consider fit into this setting, and therefore to show that they are centred Radon

Gaussian measures, we need only check the distributions of µ ◦ l−1.

Suppose that L in section 1.2.4 takes values in X and is measurable with respect

to B(X), and define its law on (X,B(X)) by µ(A) = P(L ∈ A). In the examples

we shall consider this is a centred Radon Gaussian measure. If F : X → R is

measurable with respect to B(X) and F (L) ∈ L1(Ω) then F ∈ L1(X,µ) and

E[F (L)] =

∫

X

F (x)µ(dx).

The following lemma is rather weak, but is intended for a specific purpose for

which it is strong enough.

Lemma 1.3. Let G be a sub σ-algebra of F , and suppose that L1, . . . , Ln are

real-valued random variables which are independent of G , whilst Ln+1, . . . , L2n

are real-valued G -measurable random variables. If F ∈ Cb(R
2n), then

E[F (L1, . . . L2n)|G ] =

∫

Rn

F (x1, . . . , xn, Ln+1, . . . , L2n)µ(dx) a.s. (1.3.3)

where µ is the law of (L1, . . . , Ln) on Rn.

Proof If F ∈ B(R2n) has the form F (x) = F1(x1) . . . F2n(x2n) for bounded

Fi, then for any A ∈ G we have

E[1AF1(L1) . . . F2n(L2n)] =E[1AFn+1(Ln+1) . . . F2n(L2n)E[F1(L1) . . . Fn(Ln)]]

=E

[1A ∫
Rn

F1(x1) . . . Fn(xn)Fn+1(Ln+1) . . . F2n(L2n)µ(dx)

]
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and thus

E[F (L1, . . . , L2n)|G ] =E

[∫

Rn

F (x1, . . . , xn, Ln+1, . . . , L2n)µ(dx)

∣
∣
∣
∣
G

]

=

∫

Rn

F (x1, . . . , xn, Ln+1, . . . L2n)µ1(dx).

If F ∈ Cb(R
2n) it can be approximated pointwise by a sequence (Fk; k ∈ N) of

linear combinations of such functions, so that Fk(L1, . . . , L2n) → F (L1, . . . , L2n)

almost surely. By choosing Fk such that Fk ≤ F for all k ∈ N, it follows that

E[Fk(L1, . . . , F2n|G ] → E[F (L1, . . . , L2n|G ] almost surely as k → ∞. Further-

more, for any ω ∈ Ω,

∫

R2n

Fk(x1, . . . , xn, Ln+1(ω), . . . , L2n(ω))µ(dx)

→
∫

R2n

F (x1, . . . , xn, Ln+1(ω), . . . , L2n(ω))µ(dx)

as k → ∞, from which (1.3.3) follows.

We will also require the notion of a directional derivative:

Definition 1.9. We say that F : X → R is differentiable in the direction of

h ∈ X at x ∈ X if

lim
t→0

F (x+ th) − F (x)

t

exists, and in such cases we write ∂
∂h
F (x) to denote the limit.

Taking FC∞
b (X∗) as in (1.2.1) but with X and X∗ replacing V and V ∗,

we note that for any h, x ∈ X and F ∈ FC∞
b (X∗), F is differentiable in the

direction of h at x. In the examples that we shall consider, we will be able

to write the left hand side of (1.2.4) as the integral of a directional derivative

against a centred Radon Gaussian measure. With this in mind, the following
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definition is of use, where we adopt the terminology of [MR92]:

Definition 1.10. For any Radon measure µ, we say that h ∈ X is well-µ-

admissible if there exists some βh ∈ L1(X,µ) such that

∫

X

∂

∂h
F (x)µ(dx) = −

∫

X

F (x)βh(x)µ(dx) (1.3.4)

for all F ∈ FC∞
b (X∗).

In the following section we ask which h ∈ X are well-µ-admissible for a

Gaussian measure µ.

1.3.4 Some characterisations of the Cameron-Martin space

Let µ be a centred Radon Gaussian measure on X . For each l ∈ X∗ we have

∫

X

l(x)µ(dx) =

∫

R

(µ ◦ l−1)2(x)dx <∞

since µ ◦ l−1 is an R valued Gaussian random variable. We define a norm on X

by

‖h‖µ = sup{l(h) : l ∈ X∗, ‖l‖L2(µ) ≤ 1}

for h ∈ X , and we set Hµ = {h ∈ X : ‖h‖µ <∞}. This is the Cameron-Martin

space of µ. We now define a map Cµ : X∗ → (X∗)′ (where (X∗)′ is the algebraic

dual of X∗) called the covariance operator by

Cµ(m)(l) =

∫

X

m(x)l(x)µ(dx)

for m, l ∈ X∗. In fact, we may define Cµ : X∗
µ → (X∗)′ in this way, where X∗

µ is

the closure of X∗ in L2(X,µ) under the norm ‖ · ‖L2(µ).

Any h ∈ X can be thought of as an element in the algebraic dual of X∗ by
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defining

h(l) := l(h) ∀l ∈ X∗.

We can say more when h ∈ Hµ. In this case, for l ∈ X∗ we have

|h(l)| = |l(h)| =‖l‖L2(µ)

∣
∣
∣
∣

(
l

‖l‖L2(µ)

)

(h)

∣
∣
∣
∣

≤‖l‖L2(µ)‖h‖µ.

We can thus think of h as bounded linear functional on (X∗, ‖·‖L2(µ)), or indeed

a bounded linear functional on (X∗
µ, ‖·‖L2(µ)) by extension. Since X∗

µ is a Hilbert

space, the Riesz representation theorem means that there is an m ∈ X∗
µ such

that, in particular, for any l ∈ X∗,

l(h) = h(l) = 〈m, l〉L2(µ) = Cµ(m)(l).

We can now identify h with Cµ(m). Let us be slightly clearer about what we

mean here. For each m ∈ X∗
µ, Cµ(m) is a linear functional on X∗. In our setting,

where X is a locally convex space and µ is a Radon measure, it follows from

lemma 3.2.1 and theorem A.1.1 of [Bog98] that there is a (unique) element of

X (which we shall also denote by Cµ(m)) such that

Cµ(m)(l) = l(Cµ(m))

for all l ∈ X∗. We have shown that if h ∈ Hµ then there exists m ∈ X∗
µ such

that h = Cµ(m) in this sense. Furthermore, for any l ∈ X∗ with ‖l‖L2(µ) ≤ 1

we see immediately that

|l(h)| = |Cµ(m)(l)| = |〈m, l〉L2(µ)| ≤ ‖m‖L2(µ)
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and by choosing ln ∈ X∗ such that ‖ln−m‖L2(µ) → 0, we see that
∥
∥
∥

(
ln

‖ln‖
L2(µ)

)

(h)
∥
∥
∥

→ ‖m‖L2(µ). We therefore have ‖h‖µ = ‖m‖L2(µ). Conversely, if m ∈ X∗
µ and

we define Cµ(m) ∈ X , the above argument shows that ‖Cµ(m)‖µ = ‖m‖L2(µ) <

∞. We have now shown the following:

Lemma 1.4. Hµ = Cµ(X∗
µ), and if h = Cµ(m), then ‖h‖µ = ‖m‖L2(µ). Thus

Cµ defines an isometry from X∗
µ onto Hµ, through which Hµ inherits the Hilbert

space structure of X∗
µ.

X∗
µ is known as the reproducing kernel Hilbert space (RKHS for short) of µ.

Note that µ must be Radon for the proof of lemma 3.2.1 [Bog98]. Without this

condition, we cannot define Cµ as an isometry from X∗
µ to Hµ. However, if we

denote by Yµ the closed subspace of X∗
µ which maps into X under Cµ, then Cµ

does define an isometry from Yµ to Hµ.

For any h ∈ X we define a shift measure µh by µh(A) = µ({x ∈ X : x+h ∈ A}).

One way to understand the Cameron-Martin space is as the space of shifts h

such that µh and µ are equivalent measures. Furthermore, if h does not belong

to Hµ, then µ and µh are mutually singular, that is there exist disjoint subsets

A and B of X such that A∪B = X with µ(A) = 1 and µh(B) = 1 (see theorem

2.4.5 of [Bog98]). For h ∈ Hµ, the Radon-Nikodym density fh of µh with respect

to µ is given by the Cameron-Martin formula

fh(x) = exp

(

C−1
µ h(x) − 1

2
‖h‖2

µ

)

. (1.3.5)

We are now in a position to prove the following, which is proposition 5.1.6 in

[Bog98].

Proposition 1.3. h ∈ X is well-µ-admissible if and only if h ∈ Hµ.
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Proof This follows from (1.3.5), noting that

∫

X

F (x+ th) − F (x)

t
µ(dx) =

∫

X




exp

(

tC−1
µ h(x) − t2

2 ‖h‖2
µ

)

− 1

t



F (x)µ(dx)

for F ∈ FC∞
b (X∗). The left hand side converges to

∫

X
∂
∂h
F (x)µ(dx) whilst the

right hand side converges to
∫

X
C−1
µ h(x)F (x)µ(dx). With reference to (1.3.4),

we see that βh = −C−1
µ h for h ∈ Hµ.

Suppose that h is not in Hµ and yet is well-µ-admissible. One may show that

well-µ-admissibility implies that

‖µth − µ‖TV ≤ t‖βh · µ‖TV

where ‖ · ‖TV is the total variation norm on signed measures. This is a con-

tradiction since µ and µth are mutually singular for all t ∈ R and hence

‖µ− µth‖TV = 2 for all t.
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2 Bridging the Brownian sheet

2.1 Describing a bridged Brownian sheet

2.1.1 The one dimensional Brownian bridge

In this chapter we will investigate what our enlargement theorem allows us to

say about the bridged sheet, that is a sheet which is forced to take some values

along a specified curve. To begin with let us consider the one dimensional

Brownian bridge. Intuitively this a Brownian motion which we force to be 0,

say, at time 1. If B is a Brownian motion, then Bt − tB1 is a Brownian bridge.

This is a simple process to understand- we add a drift which pushes B back to

0 when t = 1. This ties neatly with the idea that we need some information

about the future (in this case, B1) to describe the bridge. Unfortunately, if we

wish to fix a Brownian sheet to be 0 on a curve, it is rather optimistic to think

that we might be able to get such a simple expression (except in special cases-

see [DPY06] for example). Besides, we still need some reason why the above is

the correct way to push the Brownian motion towards 0 at 1.

The standard way to define a Brownian bridge By forced to hit y ∈ R at time

1 is through its finite dimensional distributions:

P(Byt1 ∈ dx1, . . . , B
y
tn

∈ dxn) = P(Bt1 ∈ dx1, . . . , Btn ∈ dxn|B1 = y).

This we may define using the probability density functions of the Bt, and fur-

thermore, since the distributions are Gaussian, this may be equivalently char-

acterised by the mean E[Byt ] = ty and the covariance structure

E[(Bys − sy)(Byt − ty)] = (s ∧ t)(1 − s ∨ t).
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This equivalence is discussed in [RW87], where it is also demonstrated X is a

Brownian bridge from 0 to y if and only if

Xt −
∫ t

0

y −Xs

1 − s
ds

is a martingale with quadratic variation t. This ties in with our enlargement

result. We have already seen that

Bt −
∫ t

0

B1 −Bs
1 − s

ds

is a martingale with respect to (Ft∨σ(B1); t ∈ [0, 1]), from which we may easily

calculate the finite dimensional distributions of B conditional on B1. Suppose

now that By solves

Byt −
∫ t

0

y −Bys
1 − s

ds = B̃t,

where {B̃t; t ∈ [0, 1]} is an (Ft∨σ(B1); t ∈ [0, 1]) martingale (in fact a Brownian

motion, as one soon sees from its quadratic variation). We may define a law

µy on C([0, 1]) by defining it on sets of the form A = {φ ∈ C([0, 1]) : φt1 ∈

θ1, . . . , φtn ∈ θn} to be

µy(A) = P(Byt1 ∈ θ1, . . . , B
y
tn

∈ θn).

One may show that

P({B ∈ A} ∩ {B1 ∈ D}) =

∫

D

µy(A)dPB1(y) (2.1.1)

for allD ∈ B(R). In this setting we know of the existence of a regular conditional

probability with respect to B1, which we denote by P(B ∈ A|B1 = y), and

which satisfies (2.1.1). (The regularity here refers to the measurability of P(B ∈
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A|B1 = y) in y.) We can deduce therefore that µy(A) = P(B ∈ A|B1 = y)

for PB1 -almost every y ∈ R. Of course, for PB1 -almost every y in R, we can

read Lebesgue-almost every y ∈ R, which is thus a dense subset of y in R.

We do not automatically obtain the above equality for every y ∈ R however.

This means we cannot say, for example, that P(B ∈ A|B1 = 0) = µ0(A). To

overcome this, we require some further regularity in y for µy(A)- we need that

µy(A) is continuous in y. Remark that [RW87] uses the method of Doob’s h-

transforms to obtain this additional regularity, however this may not be possible

for a bridged Brownian sheet.

2.1.2 Enlarging the filtration of a Brownian sheet by the information

obtained along a curve

We turn our attention to a Brownian sheet (Bxt; (x, t) ∈ [0, 1]2) on (Ω,F ,P),

noting that all previous results carry through to the reduced parameter setting.

We define a filtration (Fx;x ≥ 0)

Fx = σ{Bys; 0 ≤ y ≤ x, s ∈ [0, 1]} ∨ NP(F ).

We would like to take a curve (x(r), t(r))r∈[0,1] with values in [0, 1]2 and define

our initial information to be a process L = (L(r); r ∈ [0, 1]) where L(r) =

Bx(r)t(r) for each r ∈ [0, 1]. Once again we take F̃x = Fx ∨ σ(L). Let us make

a few remarks about the space in which L takes values. For h ∈ L2([0, 1]),
∫ 1

0

∫ 1

0

∫ 1

0
|h(r)|1[0,x(r)](y)1[0,t(r)](s)dydsdr <∞ so by theorem 1.2

∫ 1

0

h(r)Bx(r)t(r)dr =

∫ 1

0

∫ 1

0

(∫ 1

0

h(r)1{r: y≤x(r), s≤t(r)}dr

)

dBys a.s.

We will make use of this later, but for now we note that taking h(t) = 1 for all

t ∈ [0, 1] gives Bx(·)t(·) ∈ L1([0, 1]) a.s. We thus define a map L : Ω → L1([0, 1]).
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In fact, we choose (x(r); r ∈ [0, 1]) and (t(r); r ∈ [0, 1]) to be continuous so that

by choosing a continuous version of B, we see that (L(r); r ∈ [0, 1]) is almost

surely continuous.

Let F : L1([0, 1]) → R be bounded with stochastic kernel λ̇ys(F ). We would

like to use the Clark-Ocone formula λ̇ys(F ) = E[DysF (L)|Fy] (recall section

1.3.2) so we intend that F (L) ∈ D1,2. This is of course the case if we take

F ∈ FC∞
b (E ), in the notation of lemma 1.1, taking E to be C∞

0 ([0, 1]). That is

to say, we identify h ∈ C∞
0 ([0, 1]) with an element of the dual of L1([0, 1]), and

we use the notation 〈h, ·〉 to represent the bounded linear functional which maps

φ ∈ L1([0, 1]) to
∫ 1

0
h(t)φ(t)dt. Note that E is dense in the dual of L1([0, 1]), so

FC∞
b (E ) is sufficiently large to apply theorem 1.5.

For simplicity take F (φ) = f(〈h, φ〉), so that F (L) = f(〈h,Bx(·),t(·)〉). Theorem

1.2 allows us to write 〈h,Bx(·),t(·)〉 =
∫ 1

0

∫ 1

0

(∫ 1

0
1{z≤x(r)}1{s≤t(r)}h(r)dr

)

dBzs,

so that

F (L) = F

(∫ 1

0

∫ 1

0

〈h , 1{z≤x(·)}1s≤t(·)}(z, s)〉dBzs

)

.

Recall that 1.2.3 gives us λ̇ys(F (L)) = E[DysF (L)|Fy], and we immediately

read DysF (L) in this case to be 〈h,1{y≤x(·)}1{s≤t(·)}〉f ′(〈h,Bx(·),t(·)〉), from

which we deduce that for any l ∈ L2([0, 1])

∫ 1

0

λ̇ys(F ) l(s) ds = E

[

f ′(〈h , L〉)
〈

h , 1{y≤x(·)}

∫ t(·)

0

l(s) ds

〉∣
∣
∣
∣
∣
Fy

]

a.s.

Let us play a bit with the above conditional expectation. For a fixed y ∈ (0, 1) we

define processes (Ly(r); r ∈ [0, 1]) and (Ly(r); r ∈ [0, 1]) by Ly(r) = By∧x(r),t(r)

and Ly(r) = Bx(r),t(r) − By∧x(r),t(r) for r ∈ [0, 1]. Note that L = Ly + Ly,

that Ly is Fy measurable, and furthermore that Ly is independent of Fy,

which follows from previously discussed properties of the Brownian sheet. Let
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Fy(φ) = F (Ly + φ) for φ ∈ L1([0, 1]), and also define a linear operator κy :

L2([0, 1]) → L1([0, 1]) by

κyl(r) = 1{xr≥y}

∫ tr

0

l(s) ds, r ∈ [0, 1].

Note that

∂

∂κyl
Fy(φ) := lim

ε→0

1

ε
(Fy(φ+ εκyl) − Fy(φ))

= lim
ε→0

1

ε
(f(〈h, Ly〉 + 〈h, φ〉 + ε〈h, κyl〉) − f(〈h, Ly〉 + 〈h, φ〉))

=〈h, κyl〉f ′(〈h, Ly + φ〉)

and so

f ′(〈h , L〉)
〈

h , 1{x(·)≥y}

∫ t(·)

0

l(s) ds

〉

=
∂

∂κyl
Fy(φ)

∣
∣
∣
∣
φ=Ly

Denoting the law of Ly on L1([0, 1]) by µy, we may use lemma 1.3 to write

E

[

f ′(〈h , L〉)
〈

h , 1{x(·)≥y}

∫ t(·)

0

l(s) ds

〉∣
∣
∣
∣
∣
Fy

]

=

∫
∂

∂κyl
Fy(φ)µy(dφ) a.s.

since L = Ly+Ly, Ly is independent of Fy and Ly is Fy measurable. Our goal

is now to find ̺l(φ, y) such that

∫
∂

∂κyl
Fy(φ)µy(dφ) =

∫

Fy(φ)̺l(φ+ Ly, y)µy(dφ)

=E[F (L)̺l(L, y)|Fy] (2.1.2)

in order to be able to apply theorem 1.5.
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2.1.3 An equation for C−1
y κyl

The above integration by parts is rather similar to (1.3.4). So far we have

described µy as a measure on L1([0, 1]), but in fact its support is a smaller

space than this. To begin with, Ly(r) is almost surely a continuous function.

Furthermore, if x(r) < y, or if t(r) = 0, then Ly(r) = 0. If we set Ky to be

the closure of {r : x(r) > y} ∩ {r : t(r) > 0} and C00(Ky) to be the space of

continuous functions on Ky which are 0 whenever x(r) = y or t(r) = y, then µy

has its full support on this space. We also define V(Ky) to be the topological dual

of C00(Ky) consisting of signed measures on Ky. We will make the assumption

that Ky is the disjoint union of a finite number of closed intervals, ∪ni=1Ii. The

space of continuous functions on Ii which are zero at the end points is separable

under the supremum norm (see for example pages 111-112 of [Sch73]). If we

lift this restriction at one or both of the end points, the space is still separable

since one may show that polynomials with rational coefficients are dense. Since

C00(Ky) can now be viewed as a finite product of such spaces, it is a separable

Banach space. Thus µy is a Radon measure on C00(Ky), and furthermore for

any signed measure ν ∈ V(Ky),
∫

Ky
Ly(r)ν(dr) is a Gaussian random variable

in R with mean zero. µy is therefore a Radon Gaussian measure. We denote by

Hy and Cy the Cameron-Martin space and covariance operator respectively for

µy.

Proposition 1.3 tells us that if κyl ∈ Hy, then

∫

C00(Ky)

∂

∂κyl
Fy(φ)µy(dφ) =

∫

C00(Ky)

Fy(φ)C−1
y κyl(φ)µy(dφ).

If we rewrite this back as an expectation we have

∫ 1

0

λ̇ys(F )ds = E[F (L)C−1
y κyl(L

y)|Fy]
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for all FC∞
b (E ). Thus the main obstacle is to show that κyl ∈ Hy, which we

will generally attempt to do by finding C−1
y κyl in V(Ky) which maps under Cy

to κyl. (Naturally if this fails, it may still be possible to find C−1
y κyl ∈ H ′

y, but

we need not worry about this in our examples.)

Suppose for now that we have C−1
y κyl ∈ V(Ky). In this case, we define ̺l(φ, y)

explicitly by

̺l(φ, y) =

∫

Ky

(φ(r) − Ly(r))dC
−1
y κyl(r) =

∫

Ky

(φ(r) −By,t(r))dC
−1
y κyl(r).

In this case it is clear that ̺l(φ, y) is Fy measurable for any continuous φ and

y ∈ [0, 1]. We may use a version of the stochastic Fubini theorem and properties

of the Brownian sheet to see that ̺l(L, y) is, in fact, in L2(Ω), and hence in

L1(Ω). In order to apply theorem 1.5, it remains to be shown that y 7→ ̺l(L, y)

is integrable on [0, x] for any x ∈ [0, 1]. We leave this to be checked in individual

cases, however it is clearly the case whenever y 7→ ̺l(φ, y) is continuous for any

φ ∈ C00(Ky). This being so, we now have that

Wx(l) −
∫ x

0

̺l(L, y)dy

is an (F̃x;x ≥ 0) martingale.

Given l ∈ L2([0, 1]), our goal is to find some m ∈ V(Ky) such that κyl = Cym,

or rather m = C−1
y κyl. For this it is sufficient to check that ν(κyl) = ν(Cym)

for every ν ∈ V(Ky), since V(Ky) separates the points of C00(Ky). ν(Cym) is,

by definition, 〈ν,m〉H′
y
. Thus we search for an m satisfying

ν(κyl) = 〈ν,m〉H′
y
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for every ν ∈ V(Ky). The right hand side is given by

E

[
∫

Ky

Ly(r)ν(dr)

∫

Ky

Ly(r′)m(dr′)

]

=

∫

Ky

∫

Ky

E[Ly(r)Ly(r′)]m(dr′)ν(dr)

=

∫

Ky

∫

Ky

(x(r) ∧ x(r′) − y)(t(r) ∧ t(r′)m(dr′)ν(dr)

and this must equal
∫

Ky
κyl(r)ν(dr) for all signed measures ν. We will therefore

attempt to find a signed measure m such that

κyl(r) =

∫

Ky

(x(r) ∧ x(r′) − y)(t(r) ∧ t(r′)m(dr′). (2.1.3)

In fact, our hope is that we can show that κy1[0,t] ∈ Hy, so that

Bxt −
∫ x

0

∫ 1

0

(L(r) −Byr)C−1
y κy1[0,t](dr)dy

is an (F̃x;x ∈ [0, 1]) martingale. If this is the case, we define the process Bφxt

by

Bφxt −
∫ x

0

∫ 1

0

(φ(r) −Bφyr)C−1
y κy1[0,t](dr)dy = Mxt

where (Mxt;x ∈ [0, 1]) is the martingale in question. We will usually take φ to

be either L or some deterministic continuous function. Broadly, we would like

to think of it as some continuous function satisfying the boundary conditions

of L which is seen by the information σ(L). We would like to solve for Bφ and

determine a law µφ on C([0, 1]2). Our hope is to be able to treat this in the

same way as the law of the Brownian bridge, so that by showing some regularity

we might deduce that this law describes a Brownian sheet conditioned to be φ
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along (x(r), t(r))r∈[0,1] . This would also provide a straightforward approach to

determining the covariance structure of the conditioned process. We shall now

illustrate this approach with a simple example.

2.1.4 An introductory example

Let L(r) = B1r. Our aim is to describe a process which is conditioned to be

some continuous function, say, along the line x = 1, and our intuition is that

we should obtain something which at any time t looks like a bridged Brownian

motion. Let us see if this is the case. Our goal is to show that κyl is in Hy

for l = 1[0,t] for any t ∈ [0, 1]. It is more convenient however to assume that

l is smooth, and then use our results to inform a guess on what C−1
y κy1[0,t]

should be. Note that for any y ∈ (0, 1), Ky = [0, 1]. Thus for a test function

l ∈ L2([0, 1]), κyl(r) =
∫ r

0 l(s)ds for all r ∈ [0, 1]. We fix y ∈ (0, 1) and we begin

by searching for a function ṁ such that

∫ r

0

l(s)ds =

∫ 1

0

(1 − y)(r ∧ r′)ṁ(r′)dr′ (2.1.4)

for all r ∈ [0, 1]. Note that we are searching for m ∈ V([0, 1]) with the additional

simplification that m(dr) = ṁ(r)dr. Two differentiations of the above equation

2.1.4 lead to

ṁ(r) = − l̇(r)

1 − y
.

Note that

−
∫ 1

0

(r ∧ r′)l̇(r′)dr′ =

∫ r

0

l(s)ds− l(1)

so the above ṁ is only a solution if l(1) = 0. Now take l = 1[0,t] for t < 1. We

do indeed have l(1) = 0, and it is not difficult to show that

C−1
y κy1[0,t](dr) = −δ0(dr) − δt(dr)

1 − y
.
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Thus C−1
y κy1[0,t](L

y) =
∫ x

0
B1t−Byt

1−y dy and so

Bxt −
∫ x

0

B1t −Byt
1 − y

dy

is an (Fx∨σ(L);x ∈ [0, 1]) martingale. We denote this martingale by (Mxt;x ∈

[0, 1]) and remark that its quadratic variation is xt. Referring back to section

1.2.3, there is a modification of M which is a Brownian sheet. We now want to

consider putting L = φ for some continuous function φ such that φ(0) = 0. We

now define a process Bφ on [0, 1] × [0, 1] by

Bφxt = Mxt +

∫ x

0

φ(t) −Bφyt
1 − y

dy.

We may solve for Bφ to get

Bφxt = xφ(t) + (1 − x)

∫ x

0

∫ t

0

1

1 − y
dMys.

For any t ∈ [0, 1], (Mxt;x ∈ [0, 1]) is a martingale with respect to the enlarged

filtration with quadratic variation

∫ x

0

∫ 1

0

1[0,t]drdy = xt

so we find the covariance function of Bφxt, denoted c((x, t), (x′, t′)), to be

c((x, t), (x′, t′)) =(1 − x)(1 − x′)t ∧ t′
∫ x∧x′

0

1

(1 − y)2
dy

=(1 − x)(1 − x′)t ∧ t′
(

1

1 − x ∧ x′ − 1

)

=







(1 − x)x′t ∧ t′ x > x′

(1 − x′)xt ∧ t′ x < x′
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If we take t = t′, this does indeed look like the covariance structure of a scaled

one dimensional Brownian bridge.

Let us briefly discuss what happens when t = 1. Of course, 1[0,1](1) 6= 0, so we

cannot use the same argument as above. On the other hand, if we take tn < 1

such that tn → 1, then Bxtn and B1tn − Bytn converge in L2(Ω) to Bx1 and

B11 − By1 respectively. Thus if x′ < x and A ∈ F̃x′ we may deduce that

E

[1A(Bx1 − ∫ x

0

B11 −By1
1 − y

dy

)]

= E

[1A(Bx′1 −
∫ x′

0

B11 −By1
1 − y

dy

)]

,

in other words
(

Bx1 −
∫ x

0
B11−By1

1−y dy;x ∈ [0, 1]
)

is an (F̃x;x ∈ [0, 1]) martin-

gale.

Actually we do not need this argument to deal with 1[0,1], or any other test

function l with l(1) 6= 0. We could instead simply take

m(dr) = − l̇(r)

1 − y
dr +

l(1)

1 − y
δ1(dr).

The point is we are looking for a semimartingale decomposition for Wx(l) =
∫ x

0

∫ 1

0 l(s)dBys. If l(1) 6= 0, we could simply define l̃ by l̃(1) = 0 and l̃(s) = l(s)

if s 6= 1. Now Wx(l) and Wx(l̃) are almost surely the same, and since our

original method produces a semimartingale decomposition for Wx(l̃), this is also

a semimartingale decomposition for Wx(l) also. In other examples, however, we

will see that there really are conditions which we must impose on l so that

κyl ∈ Hy and which cannot be dealt with in this way, and we discuss this in the

next section.
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2.2 An expression for Bφ for general curves.

2.2.1 A corollary to theorem 1.5.

Recall that our object is to demonstrate for l ∈ L2([0, 1]) that κyl ∈ Hy, and

for this we aim to find some m ∈ V(Ky) satisfying equation (2.1.3). If we can

do this, we note that whenever x(r) = y or t(r) = 0 then the right hand side of

(2.1.3) is 0. Thus we have no hope of finding a solution unless κyl ∈ C00(Ky).

Of course, if t(r) = 0 then κyl(r) = 0. However, if x(r) = y we also require

κyl(r) =

∫ t(r)

0

l(s)ds = 0.

In most cases, there is little hope of finding a large class of l which satisfy this

condition for every r that satisfies x(r) = y for some y ∈ (0, 1). Unless x(r)

is constant, by varying y we usually obtain at least some interval of values of

r on which x(r) = y for some r. The above condition will then imply that l

is 0 at least on some interval, unless perhaps t(r) is constant. For example, if

x(r) = t(r) = r the only l which satisfies the right conditions for all y is l = 0.

In many cases it is simply not possible to apply theorem 1.5 for any l except

l = 0. To get around this, we can rephrase theorem 1.5 as demonstrating that

if κyl ∈ Hy then
∫ x

0

∫ 1

0

l(s)dBys −
∫ x

0

C−1
y κyl(L

y)dy

is an (F̃x;x ∈ [0, 1]) martingale. In cases where this is possible, we have

̺l(L, y) = C−1
y κyl(L

y). Our hope is that if we can find some correction σyl such

that κy(l − σyl) ∈ Hy, then we might deduce that
∫ x

0

∫ 1

0 (l(s) − σyl(s))dBys −
∫ x

0 C−1
y κy(l − σyl)(L

y)dy is an (F̃x;x ∈ [0, 1]) martingale. We note that for

those l for which κyl ∈ Hy, l 7→ ̺l(L, y) defines a linear functional. We will

often write 〈l, ̺l(L, y)〉 instead of ̺l(L, y) to emphasise this linearity.
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Proposition 2.1. If for every l ∈ L2([0, 1]), y ∈ [0, 1] and F ∈ FC∞
b (C∞

0 ([0,∞)))

there is a decomposition of the form

∫ 1

0

λ̇ys(F ) l(s) ds = E[F (L)〈l − σyl, ̺(L, y)〉|Fy] +

∫ 1

0

λ̇ys(F )σyl(s) ds a.s.

where ̺ satisfies the conditions in theorem 1.5 and σy : L2([0, 1]) → C∞[0, 1], y ∈

[0, 1] is a family of linear operators such that for every l ∈ L2([0, 1]), y 7→ σy l

is measurable and
∫ 1

0

∫ 1

0
(σyl(s))

2dsdy <∞, then for each l ∈ L2([0, 1]),

Mx(l) := Wx(l) −
∫ x

0

〈l − σyl, ̺(L, y)〉dy −
∫ x

0

∫ 1

0

σyl(s) dBys

is an (F̃x;x ∈ [0, 1]) martingale.

Proof We refer to the proof of theorem 1.5. Replace W̃x(l) in that case by

Wx(l)−
∫ x

0 〈l−σyl, ̺(L, ·, y)〉dy and set Φy = F (L)〈l−σyl, ̺(L, ·, y)〉. Following

the same steps we have

∫ x

0

E[Φy|Fy]dy = 〈E[F (L)|F·],W·(l)〉x −
〈∫ ·

0

∫ 1

0

σyl(s)dBys,E[F (L)|F·]

〉

x

.

Thus

E[F (L)ξMx(l)]

=E[ξ(Wx(l)E[F (L)|Fx] − 〈W·(l),E[F (L)|F·]〉x)]

− E

[

ξ

(

E[F (L)|Fx]

∫ x

0

∫ 1

0

σy(s)dBys −
〈

E[F (L)|F·],

∫ ·

0

∫ 1

0

σyl(s)dBys

〉

x

)]

− E[ξNx]

and the result follows as before.
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We make a couple of points regarding σy. We could simply choose σyl ∈

L2([0, 1]) for each l in an unrelated manner. Once again, the above proposition

is on one level a statement about Wx(l) for some individual l. We previously

related the different equations through the correlations of the different Wx(l).

In this case, we also have the concern that the equations may not be linear.

For the purpose of solving these equations later, we will require linearity, and

we thus choose σy in a linear way. Our decision to take σyl ∈ C∞([0, 1]) for all

l ∈ L2([0, 1]) is purely for convenience, and as we shall see later, we will never

have a problem finding such a σy.

2.2.2 Applying our enlargement result for a general curve.

Let us outline a general approach for conditioning the Brownian sheet along a

curve ((x(r), t(r)); r ∈ [0, 1]). We wish to apply proposition 2.1, which we may

do if we can find a family of linear operators σy : L2([0, 1]) → C∞([0, 1]) for

y ∈ [0, 1] and ̺ : L2([0, 1]) × C00(Ky) × [0, 1] × Ω → R such that

∫ 1

0

E[DysF (L)|Fy](l(s) − σyl(s))ds = E[F (L)〈l − σyl, ̺(L, y)〉|Fy] a.s.

for all y ∈ [0, 1] and F ∈ FC∞
b (C∞

0 ([0,∞))) (as well as certain other conditions).

We may do this if and only if κy(l − σyl) ∈ Hy, and in this case

〈l − σyl, ̺(L, y)〉 =C−1
y κy(l − σyl)(L

y)

=

∫

Ky

(Bx(r),t(r) −By,t(r))C−1
y κy(l − σyl)(dr)

As we saw with equation (2.1.3), this will be true if we can find a signed measure

m such that κy(l − σyl)(r) =
∫

Ky
(x(r) ∧ x(r′) − y)(t(r) ∧ t(r′))m(dr′) for all

r ∈ Ky. If we can find such a solution, then C−1
y κy(l − σyl) = m and it follows
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that

Wx(l) = Mx(l)+

∫ x

0

∫

Ky

(Bx(r),t(r)−By,t(r))C−1
y κy(l−σyl)(dr)dy+

∫ x

0

∫ 1

0

σyl(s)dBys

(2.2.1)

for all l ∈ L2([0, 1]). Here, (Mx(l);x ∈ [0, 1]) is an (F̃x;x ∈ [0, 1]) martingale

with quadratic variation
∫ x

0

∫ 1

0 (l(s) − σyl(s))
2dsdy. Suppose we take l = 1[0,t]

for some t ∈ (0, 1). We introduce the notation Mxt = Mx(1[0,t]) and σx(1[0,t]) =

σxt. We then have

Bxt = Mxt+

∫ x

0

∫

Ky

(Bx(r),t(r)−By,t(r))C−1
y κy(l−σyt)(dr)dy+

∫ x

0

∫ 1

0

σyt(s)dBys.

(2.2.2)

Our intention in fact is to solve the expression

Bφxt = Mxt+

∫ x

0

∫

Ky

(φ(r)−Bφ
y,t(r))C−1

y κy(1[0,t]−σyt)(dr)dy+

∫ x

0

∫ 1

0

σyt(s)dB
φ
ys

(2.2.3)

where φ ∈ C([0, 1]). Intuitively, Bφ describes the Brownian sheet conditioned

to be φ along the curve ((x(r), t(r)); r ∈ [0, 1]).

We cannot deduce by the same reasoning as the end of section 1.2.3 that there

exists a Brownian sheet B̃ such that Mxt =
∫ x

0

∫ 1

0
(1[0,t](s)−σyt(s))dB̃ys. Never-

theless, we shall define a stochastic calculus for M using the approach of section

1.1.4. We first define a martingale measure Mx(A) := Mx(1A). In this case the

co-variation measure is

Q(A,B, x) =

∫ x

0

∫ 1

0

(1A(s) − σy1A(s))(1B − σy1B(s))dsdy

which again is positive and positive definite. The stochastic integral is defined

once again by constructing a martingale measure f ·M for a certain class of f

and then setting
∫ x

0

∫ 1

0
f(y, s)dMys := f ·Mx([0, 1]). For f defined by f(y, s) =
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ξ1(x1,x2](y)1A(s), where A ∈ B([0, 1]2), x1 < x2 and ξ is a bounded, F̃x1

measurable random variable, then we define f ·M by f ·Mx(B) = ξ(Mx2∧x(A∩

B)−Mx1∧x(A∩B)). In this case the variance of
∫ x

0

∫ 1

0
f(y, s)dMys is given by

E

[

ξ2 (Mx2∧x(A) −Mx1∧x(A))
2
]

=E[ξ2]

∫ x2∧x

x1∧x

∫ 1

0

(1A(s) − σy1A(s))2dsdy

=

∫ x

0

∫ 1

0

E

[(
ξ1(x1,x2](y)1A(s) − ξ1(x1,x2](y)σy1A(s)

)2
]

where we have used the martingale property of Mx(A) to deduce that ξ and

Mx2∧x(A) −Mx1∧x(A) are independent. We may define σyf(y, ·) naturally by

fixing y, and the linearity of σy now implies that the above variance is

∫ x

0

∫ 1

0

E[(f(y, s) − σyf(y, ·)(s))2]dsdy.

We take ‖f‖2
M to be the above integral with x = 1. It now follows that the

natural extension of
∫ 1

0

∫ 1

0 f(y, s)dMys for all linear combinations of such f

has variance ‖f‖2
M , and we may proceed as before to define the integral on

the completion of this linear hull under ‖f‖M , with the resulting integral an

(F̃x;x ∈ [0, 1]) martingale satisfying

E

[(∫ 1

0

∫ 1

0

f(y, s)dMys

)2
]

= ‖f‖2
M .

It is easy to see that, for elementary f as above, that
∫ 1

0

∫ 1

0
f(y, s)dMys and L

are independent since L is F̃0 measurable, and this soon extends to every f for

which the integral is defined.

69



2.2.3 The law of Bφ viewed as a regular conditional probability.

For the moment let us think of our original Brownian sheet B = (Bxt; (x, t) ∈

[0, 1]2), which is almost surely continuous on [0, 1]2, as a canonical process.

We take (C([0, 1]2),B(C([0, 1]2))) to be our underlying measurable space, on

which we define a probability measure µ by µ(A) = P(B ∈ A) for all A ∈

B(C([0, 1]2)). We now define a measurable map L : C([0, 1]2) → C([0, 1]) by

Lf(r) = f(x(r), t(r)) for f ∈ C([0, 1]2) and r ∈ [0, 1]. L corresponds to L in the

sense that µ(L ∈ A) = P(L ∈ A) for A ∈ B(C([0, 1])).

Definition 2.1. Let (Ω,F ,P) be a probability space, (E, E) a measurable space

and X : Ω → E a measurable function. We say that ν : E × F → [0, 1] is a

regular conditional probability with respect to X if

• ν(x, ·) is a probability measure on F for all x ∈ E;

• x 7→ ν(x,A) is E measurable function for all A ∈ F ;

• for all A ∈ F and D ∈ E, P(A ∩X−1(D)) =
∫

D
ν(x,A)PX(dx),

where PX is the law of X on (E, E), that is PX(D) = P(X ∈ D) = P(X−1(D)).

Our setting then is the probability space (C([0, 1]2),B(C([0, 1]2)), µ), whilst

(E, E) = (C([0, 1]),B(C([0, 1]))) and X = L. In this case we know there exists

a regular conditional probability with respect to L (see for example [RW87]),

which we denote by P(B ∈ ·|L = φ) for all φ ∈ C([0, 1]). Note that µL−1 = PL.

Suppose now that φ ∈ C([0, 1]) is in supp(PL), the topological support of PL.

By this we mean that for any N ∈ B(C([0, 1])) such that φ ∈ N , PL(N) >

0. One soon sees in examples that we require this condition on φ if we are

to solve (2.2.3) for Bφ. We further suppose that for all such φ, the equa-

tion (2.2.3) has a solution Bφ in C([0, 1]2), and we define a measure µφ on

(C([0, 1]2),B(C([0, 1]2))) by µφ(A) = P(Bφ ∈ A) for A ∈ B(C[0, 1]2). We would

70



like to show that (µφ;φ ∈ C([0, 1])) is a regular conditional probability with

respect to L. Of course, we have not defined µφ yet for φ /∈ supp(PL). How-

ever, if D ∈ B(C([0, 1])), then there exists an open set D1 such that D1 ⊃

D ∩ supp(PL)c and µ(L−1(D1)) = 0. It follows that for all A ∈ B(C([0, 1]2)),
∫

D
µφ(A)PL(dφ)) =

∫

D∩supp(PL)
µφ(A)PL(dφ)). Thus we may choose µφ how-

ever we wish for φ /∈ supp(PL) and not affect the third property of the regular

conditional probability. We shall set µφ = 0 for such φ. It is now clear that

the first property of the regular conditional probability holds. Furthermore,

assuming that supp(PL)c is in B(C([0, 1])), the second property follows if we

can show that the map φ 7→ µφ(A) restricted to supp(PL) is measurable for any

A ∈ B(C([0, 1]2)), for example if we can show this restricted map is continuous.

Note that since the underlying probability space is assumed to be complete,

µ, µφ and PL have natural extensions to the completions of B(C([0, 1]2)) and

B(C([0, 1])). Therefore, since supp(PL)c is contained in a set of PL measure

zero, we can drop the above assumption by working with the completions of

B(C([0, 1]2)) and B(C([0, 1])) under the measures µ and PL respectively. This

adjustment does not affect the first and third properties at all.

For the third condition we need to demonstrate for all D ∈ B(C([0, 1])) ∩

supp(PL) and A ∈ B(C([0, 1]2)) that µ(A ∩ L−1(D)) =
∫

D
µφ(A)PL(dφ)). Not-

ing that µ(A ∩L−1(D)) = P({B ∈ A} ∩ {L ∈ D}), the third condition becomes

P({B ∈ A} ∩ {L ∈ D}) =

∫

D

µφ(A)PL(dφ).

Suppose that the third property holds for some countable set {An;n ∈ N} ⊂

B(C([0, 1]2)), and we may as well assume that {An;n ∈ N} is increasing. It is

clear that the third property holds for Ac1, and it also holds for
⋃

n∈N
An by

the monotone convergence theorem. We now deduce that the third property
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holds if we can show it holds for a collection of sets A which is large enough to

generate B(C([0, 1]2)).

If we can show that the third property holds for some A ∈ B(C([0, 1])), it follows

that
∫ 1D(φ) (P({B ∈ A}|L = φ) − µφ(A)) PL(dφ) = 0

for all D ∈ B(C[0, 1]). This means that µφ(A) = P({B ∈ A}|L = φ) for

every φ except those belong to some N ∈ B(C([0, 1])) with PL(N ) = 0. If we

now wish to pick some φ and condition on L = φ, we have a problem since

we do not know if φ ∈ N . To overcome this, we instead look to show that

φ 7→ µφ(A) is continuous (where convergence in C([0, 1]) is in the supremum

norm). Recall that this would also confirm the second property, and thus that

(µφ(A) : A ∈ B(C([0, 1]2)), φ ∈ C([0, 1])) is a regular conditional probability.

Our aim will be to demonstrate that N c is dense in supp(PL). In this case we can

deduce that µφ(A) = P(B ∈ A|L = φ) for all φ ∈ supp(PL). If we can show this

for enoughA to generate B(C([0, 1]2)), we may deduce that µφ = P(B ∈ ·|L = φ)

for all such φ.

2.2.4 Returning to our introductory example.

Let us return to the example of section (2.1.4). We can read from our previous

calculations that the Brownian sheet B is given by

Bxt = xL(t) + (1 − x)

∫ x

0

∫ t

0

1

1 − y
dMys.

In particular, if we take A ∈ B(C([0, 1]2)) of the form

A := {u ∈ C([0, 1]2) : u(x1, t1) ∈ θ1, . . . , u(xn, tn) ∈ θn, xi, ti ∈ [0, 1]}. (2.2.4)
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then we may express P(B ∈ A|L) as some function

ψ(x1, . . . , xn, t1, . . . , tn, L(t1), . . . , L(tn)).

At the same time, µφ, the law on C([0, 1]2) of Bφ, is given by

µφ(A) = ψ(x1, . . . , xn, t1, . . . , tn, φ(t1), . . . , φ(tn)).

by clear analogy for any φ ∈ supp(PL). We may now deduce that

P({B ∈ A} ∩ {L ∈ D}) =E[1{L∈D}ψ(x1, . . . , xn, t1, . . . , tn, L(t1), . . . , L(tn))]

=

∫

D

µφ(A)PL(dφ). (2.2.5)

This shows that for PL almost every φ ∈ supp(PL), P(B ∈ A|L = φ) = µφ. (It

is not hard to see that φ ∈ supp(PL) if and only if φ ∈ C([0, 1]) and φ(0) = 0.)

It is also straightforward to see that φ 7→ µφ(A) is continuous in φ. Thus

(µφ;φ ∈ C([0, 1]), φ(0) = 0) defines a regular conditional probability with

respect to L. We would also like to say that P(B ∈ A|L = φ) = µφ(A) for all

φ ∈ supp(PL). This follows if we can show that any set of PL measure 1 is dense

under the supremum norm in supp(PL). This is indeed the case, and the proof

is very similar to that of the example in the next section.

It is not obvious whether we can find a general method for solving equation

(2.2.3). We first need to calculate C−1
y κy(1[0,t] − σyt), if indeed we can actually

do this in non-trivial cases. Our best bet is to solve equation (2.1.3), but it is

not difficult to find examples for which finding an explicit solution is difficult.

One would hope to find explicit solutions in order to write an explicit form of

(2.2.3), but even when we can do this, it is another matter altogether to solve

this expression. In the absence of a general method, we present one example
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which is tractable and does not appear to be discussed in the literature.

2.3 Bridging on the minor diagonal

Let us apply the approach of section 2.2.2 when L(r) = B1−r,r for r ∈ [0, 1]. We

shall suppose that l is a smooth test function on [0, 1], and for a given y > 0 we

attempt to find m ∈ V(Ky) such that m = C−1
y κyl. Note that Ky = [0, 1 − y],

so that for κyl to be in C00(Ky) we need
∫ 1−y
0 l(r)dr = 0. We assume this for

now, and attempt to find a function ṁ such that1{r:1−r≥y}

∫ r

0

l(s)ds =

∫ 1−y

0

((1 − r) ∧ (1 − r′) − y)(r ∧ r′)ṁ(r′)dr′

=

∫ r

0

(1 − r − y)r′ṁ(r′)dr′ +

∫ 1−y

r

(1 − r′ − y)rṁ(r′)dr′

Differentiating once on the region {1 − r > y} gives

l(r) = −
∫ r

0

r′ṁ(r′)dr′ +

∫ 1−y

r

(1 − r′ − y)ṁ(r′)dr′

and a second time gives

l̇(r) = −(1 − y)ṁ(r).

To verify that this ṁ is a solution note that

−
∫ r

0

(
1 − r − y

1 − y

)

r′ l̇(r′)dr′ −
∫ 1−y

r

(
1 − r′ − y

1 − y

)

rl̇(r′)dr′

=

(∫ r

0

l(r′)dr′ −
∫ r

0

(
r

1 − y

)

l(r′)dr′
)

−
∫ 1−y

r

(
r

1 − y

)

l(r′)dr′

=

∫ r

0

l(r′)dr′

since we have already assumed that
∫ 1−y
0

l(r)dr = 0. Thus

C−1
y κyl(dr) = − l̇(r)

1 − y
dr.
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Assuming we may apply proposition 2.1, for every l ∈ L2([0, 1]) we have (for-

mally)

Wx(l) =Mx(l) −
∫ x

0

∫ 1−y

0

1

1 − y

d

dr
(l(r) − σyl(r))(B1−r,r −Byr)drdy

+

∫ x

0

∫ 1

0

σyl(s)dBys (2.3.1)

where (Mx(l);x ∈ [0, 1]) is an (F̃x;x ∈ [0, 1]) martingale.

2.3.1 A (non-unique) equation for the Brownian sheet fixed along

the diagonal.

We would like to take l = 1[0,t] for some t ∈ [0, 1] to obtain an expression like

(2.2.3). Of course 1[0,t] is not smooth, but intuitively we should have l̇(r) =

δ0(r) − δt(r). Our goal is to find a signed measure m such that

κy(1[0,t] − σyt)(r) =

∫ 1−y

0

((1 − r) ∧ (1 − r′) − y)(r ∧ r′)m(dr′),

to which end we guess that C−1
y κy(1[0,t] − σyt) is given by

C−1
y κy(1[0,t] − σyt)(dr

′) =
δt(dr

′)

1 − y
+
σ̇yt(r

′)

1 − y
dr′. (2.3.2)

We check that this is what we want: observe that if t < 1 − y

∫ 1−y

0

((1 − r) ∧ (1 − r′) − y)(r ∧ r′)m(dr′)

=
1

1 − y
((1 − r) ∧ (1 − t) − y)(r ∧ t) +

1

1 − y

∫ r

0

(1 − r − y)r′σ̇yt(r
′)dr′

+
1

1 − y

∫ 1−y

r

(1 − r′ − y)rσ̇yt(r
′)dr′
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=r ∧ t− rt

1 − y
+

1

1 − y

∫ r

0

rσyt(r
′)dr′ −

∫ r

0

σyt(r
′)dr′

=r ∧ t−
∫ r

0

σyt(r
′)dr′ = κy(1[0,t] − σyt)(r)

where we have used ((1− r)∧ (1− t)−y)(r∧ t) = (1−y)(r∧ t)− rt. If t > 1−y,

δt(dr
′) is 0 for r′ ∈ [0, 1 − y]. In this case, the right hand side of (2.3.2) only

involves the σ̇yt part, which by adjusting the argument above is r−
∫ r

0 σyt(r
′)dr′

as required.

Take φ ∈ supp(PL), which one soon sees is C0([0, 1]), the space of φ ∈ C([0, 1])

with φ(0) = φ(1) = 0. For such φ we define (Bφxt; (x, t) ∈ [0, 1]2) as a process

satisfying

Bφxt =Mxt +

∫ x

0

∫ 1−y

0

φ(r) −Bφyr
1 − y

δt(dr) +

∫ x

0

∫ 1−y

0

φ(r) −Bφyr
1 − y

d

dr
(σyt(r))

+

∫ x

0

∫ 1

0

σyt(s)dB
φ
ys

=Mxt +

∫ x

0

1{t≤1−y}
φ(t) − Bφyt

1 − y
dy +

∫ x

0

∫ 1−y

0

φ(r) −Bφyr
1 − y

d

dr
(σyt(r))drdy

+

∫ x

0

∫ 1

0

σyt(s)dB
φ
ys (2.3.3)

For any y > 0, l − σyl has only one condition to satisfy, so we may take σyl to

be constant. Indeed, if we set σyl = cy, we see that
∫ 1−y
0

l(s)ds = (1− y)cy and

so

σyl(s) =
1

1 − y

∫ 1−y

0

l(r)dr ∀s ∈ [0, 1]. (2.3.4)

In particular, σyt(r) = t∧(1−y)
1−y . This simplifies the expression for Bφ consider-

ably, since d
drσyt(r) = 0.

If t = 1 then (2.3.3) reduces to Bφx1 = Mx1 + Bφx1 for all x ∈ [0, 1]. There is no

contradiction here, since (Mx1;x ∈ [0, 1]) is an (F̃x;x ∈ [0, 1]) martingale with
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quadratic variation

∫ x

0

∫ 1

0

(1[0,1](s) − σy1(s))2dsdy.

If σy1 is constant, then the constant is in fact 1, so that the above quadratic

variation is 0. Thus (Mx1;x ∈ [0, 1]) is almost surely zero, and (2.3.3) becomes

Bφx1 = Bφx1 for all x ∈ [0, 1], or rather (Bφx1;x ∈ [0, 1]) is left undetermined by

(2.3.3).

2.3.2 Solving for t < 1 − x.

We consider Bφ separately on the regions t < 1 − x and when t > 1 − x. For

the time being we shall consider t < 1 − x, in which case (2.3.3) becomes

Bφxt = Mxt +

∫ x

0

1

1 − y
(φ(t) −Bφyt)dy +

∫ x

0

∫ 1

0

t

1 − y
dBφys

where
∫ x

0

∫ 1

0
t

1−ydBφys = t
∫ x

0
1

1−ydBφy1 comes from the equations on t > 1 − x.

Our aim is to find a solution for (2.3.3) in C([0, 1]2), so we require that the

above equation also holds in the limit where x = 1 − t.

When dealing with multi-parameter processes, we shall use dy to refer to the

differential in the parameter y only, and d to refer to the differential in both

parameters. In differential form we have (after dividing by 1 − x)

1

1 − x
dxB

φ
xt +

1

(1 − x)2
Bφxtdx =

1

1 − x
dxMxt +

φ(t)

(1 − x)2
dx+

t

(1 − x)2
dxB

φ
x1.

The left hand side equals dx

(
B

φ
xt

(1−x)

)

so we obtain

Bφxt
1 − x

=

∫ x

0

1

1 − y
dyMyt +

∫ x

0

t

(1 − y)2
dyB

φ
y1 +

x

1 − x
φ(t).
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In order to satisfy the boundary condition Bφx,1−x = φ(1 − x), we require

φ1−x =

∫ x

0

1

1 − y
dyMy,1−x +

∫ x

0

1 − x

(1 − y)2
dyB

φ
y1

To ensure this is the case, we use the fact that (Bφx1;x ∈ [0, 1]) is not determined

by (2.3.3). We define a process (Ux, x ∈ [0, 1]) by Ux = 1
1−x

∫ x

0
1

1−ydyMy,1−x.

We now ensure the boundary condition is satisfied without contradicting (2.3.3)

by choosing (Bφx1;x ∈ [0, 1]) to be

Bφx1 =

∫ x

0

(1 − y)2
d

dy

(
φ(1 − y)

1 − y

)

dy −
∫ x

0

(1 − y)2dUy (2.3.5)

which we can tidy up slightly after observing that

∫ x

0

(1 − y)2
d

dy

(
φ(1 − y)

1 − y

)

dy = (1 − x)φ(1 − x) + 2

∫ x

0

φ(1 − y)dy

(using φ(1) = 0).

We can now insert this back into our expression for Bφxt for t ≥ 1 − x to obtain

Bφxt =(1 − x)

∫ x

0

1

1 − y
dyMyt − t

∫ x

0

1

1 − y
dyMy,1−x

+ xφ(t) + tφ(1 − x)

=(1 − x)

∫ x

0

∫ t

0

1

1 − y
dMys − t

∫ x

0

∫ 1−x

0

1

1 − y
dMys

+ xφ(t) + tφ(1 − x). (2.3.6)

Remark that if we put φ(t) = B1−t,t and go through the same calculations, we

see that our original Brownian sheet B satisfies

78



Bxt =

∫ x

0

∫ t

0

1 − x

1 − y
dMys −

∫ x

0

∫ 1−x

0

t

1 − y
dMys

+ xB1−t,t + tBx,1−x

2.3.3 Covariance structure of the bridged sheet on t < 1 − x.

We now calculate the conditional covariance of Bφ on the region t < 1−x when

σy is constant, as given by (2.3.4). In this case

E

[(∫ 1

0

∫ 1

0

f(y, s)dMys

)2
]

=

∫ 1

0

∫ 1

0

(

f(y, s) −
∫ 1−y

0

f(y, t)

1 − y
dt

)2

dsdy.

Define

c((x, t), (x′, t′)) := E[(Bφxt − E[Bφxt])(B
φ
x′t′ − E[Bφx′t′ ])].

Since
∫ x

0

∫ t

0
1

1−ydMys and
∫ x

0

∫ 1−x
0

1
1−ydMys are both centred Gaussian random

variables, (2.3.6) implies that E[Bφxt] = xφ(t) + tφ(1 − x) and hence

c((x, t), (x′, t′)) = E

[(∫ x

0

∫ t

0

1 − x

1 − y
dMys −

∫ x

0

∫ 1−x

0

t

1 − y
dMys

)

.

(
∫ x′

0

∫ t′

0

1 − x′

1 − y
dMys −

∫ x′

0

∫ 1−x′

0

t′

1 − y
dMys

)]

Writing fxt(y, s) = 1−x
1−y1[0,x](y)1[0,t](s) − t

1−y1[0,x](y)1[0,1−x](s), we have

c((x, t), (x′, t′)) =

∫ 1

0

∫ 1

0

(

fxt(y, s) −
∫ 1−y

0

fxt(y, r)

1 − y
dr

)

(

fx′t′(y, s) −
∫ 1−y

0

fx′t′(y, r)

1 − y
dr

)

dsdy.

This is made considerably more simple by noting that for t < 1−x,
∫ 1−y
0

fxt(y,r)
1−y dr =

0. What remains is the following:

79



c((x, t), (x′, t′)) =

∫ x∧x′

0

∫ t∧t′

0

(1 − x)(1 − x′)

(1 − y)2
dsdy −

∫ x∧x′

0

∫ t∧(1−x′)

0

(1 − x)t′

(1 − y)2
dsdy

−
∫ x∧x′

0

∫ t′∧(1−x)

0

(1 − x′)t

(1 − y)2
dsdy +

∫ x∧x′

0

∫ (1−x)∧(1−x′)

0

tt′

(1 − y)2
dsdy

=

[
1

1 − x ∧ x′ − 1

]

{(1 − x)(1 − x′)(t ∧ t′) − (1 − x)t′(t ∧ (1 − x′))

− (1 − x′)t(t′ ∧ (1 − x)) + tt′((1 − x) ∧ (1 − x′))}

Taking x′ < x, this reduces to

c((x, t), (x′, t′)) = x′{(1 − x)(t ∧ t′) − t(t′ ∧ (1 − x))}.

2.3.4 Regularity of solutions

In this section we define T = {(x, t) ∈ [0, 1]2 : t ≤ 1 − x}. For φ ∈ C0([0, 1]), we

suppose that there is a modification of (Bφxt; (x, t) ∈ T ) taking values in C(T ),

and we let µφ denote the law of Bφ (with µφ = 0 whenever φ ∈ C([0, 1]) is not

in C0([0, 1])). Let A be as in (2.2.4), except that A ⊂ C(T ) and each (xi, ti)

must satisfy ti ≤ 1 − xi. We now have

µφ(A) =P(Bφx1t1
∈ dθ1, . . . , B

φ
xntn

∈ dθn)

=P

(

xiφ(ti) + tiφ(1 − xi) +

∫ xi

0

∫ ti

0

1 − xi
1 − y

dMys

−
∫ xi

0

∫ 1−xi

0

ti
1 − y

dMys ∈ dθi, i = 1, . . . , n

)

If we denote
∫ xi

0

∫ ti
0

1−xi

1−y dMys −
∫ xi

0

∫ 1−xi

0
ti

1−ydMys by Yi, (Y1, . . . , Yn) is a

centred n dimensional Gaussian random variable with covariance matrix Q,

say. If we denote by ψφ(1−x1),φ(t1),...,φ(1−xn),φ(tn) the density function of an n

dimensional N ((xiφ(ti) + tiφ(1 − xi))
n
i=1, Q) normal random variable, then we
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have

µφ(A) = ψφ(1−x1),φ(t1),...,φ(1−xn),φ(tn)(θ1, . . . , θn)dθ1 . . .dθn =: q(A, φ).

The original Brownian sheet satisfies

Bxt = xB1−t,t + tBx,1−x +

∫ x

0

∫ 1

0

1 − x

1 − y
dB̃ys −

∫ x

0

∫ 1

0

t

1 − y
dB̃ys

so it is clear that P(B ∈ A|L) = q(A,L), and thus

P({B ∈ A} ∩ {L ∈ D}) =E[1{L∈D}q(A,L)]

=

∫

D

q(A, φ)dPL(φ) (2.3.7)

for any D ∈ B(C0([0, 1])).

We now know that µφ(A) = P(B ∈ A|L = φ) for PL-almost every φ, and

we also remark that for any φ ∈ C0([0, 1]), µφ({u ∈ C(T ) : u(1 − t1, t1) =

φ(t1), . . . , u(1 − tn, tn) = φ(tn)}) = 1 since the solution (2.3.6) implies that

Bφ1−t,t = φ(t). We would like to deduce that µφ(A) = P(B ∈ A|L = φ) for all

φ ∈ C0([0, 1]). We have some subset D ⊂ C0([0, 1]) such that PL(D) = 1 and

for all φ ∈ D, µφ(A) = P(B ∈ A|L = φ). The first step in extending this for all

φ ∈ C0([0, 1]) is to show that D is dense in C0([0, 1]).

Proposition 2.2. If D ∈ B(C0([0, 1])) and PL(D) = 1 then D is dense in

C0([0, 1]).

Proof First suppose that 0 /∈ D. In this case it is possible to find some

ε > 0 such that {g ∈ C0([0, 1]) : ‖g‖∞ < ε} ∩ D = ∅. This would imply that

PL({g ∈ C0([0, 1]) : ‖g‖∞ < ε}) = 0, or rather P(supr∈[0,1] |Lr| < ε) = 0. Thus

0 ∈ D.
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Suppose now that f is any element of C0([0, 1]) which is not in D. There must be

an ε > 0 such that PL({g ∈ C0([0, 1]) : ‖g−f‖∞} < ε) = 0. It is not possible for

such an h to be in the Cameron-Martin space of PL (which we denote by HL).

Indeed, if f ∈ HL, then the shift measure (PL)h is equivalent to PL, however the

above statement can be rewritten as (PL)f ({g ∈ C0([0, 1]) : ‖g‖∞ < ε}) = 0,

which is not true for any measure which is equivalent to PL. It now follows that

HL ⊂ D.

The proof is complete once we observe that HL is dense in C0([0, 1]) under the

infinity norm. For this we note that if h ∈ C1([0, 1]) such that
∫ 1

0
h(s)ds = 0,

then r 7→
∫ r

0
h(s)ds is in HL. Indeed, we can show this by finding a signed

measure C−1
∫ ·
0
h(s)ds such that

∫ 1

0

∫ r

0

h(s)dsν(dr) = E

[∫ 1

0

Lrν(dr)

∫ 1

0

Ls

(

C−1

∫ ·

0

h(r′)dr′
)

(ds)

]

for all signed measures ν. Putting
(
C−1

∫ ·
0
h(r′)dr′

)
(ds) = −h′(s)ds, we see

that

−
∫ 1

0

E[LrLs]h
′(s)ds = −

∫ r

0

(1 − r)sh′(s)ds−
∫ 1

r

(1 − s)rh′(s)ds

=(1 − r)

∫ r

0

h(s)ds− r

∫ 1

r

h(s)ds

=

∫ r

0

h(s)ds− r

∫ 1

0

h(s)ds =

∫ r

0

h(s)ds.

It is clear that such functions are dense in C0([0, 1]) (for example if φ ∈ C0([0, 1])

is smooth then φ(r) =
∫ r

0
φ′(s)ds and

∫ 1

0
φ′(s)ds = 0) and the result follows.

For the sake of simplicity take A = {u ∈ C(T ) : u(x0, t0) ∈ θ} where θ is

a bounded open interval in R and (x0, t0) ∈ T . For any φ ∈ C0([0, 1]) there
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exists a sequence of φk ∈ C0([0, 1]) such that µφk
(A) = P(B ∈ A|L = φk) and

‖µφk
− µφ‖∞ → 0 using the above proposition. Since µφk

(A) is a bounded

sequence, it has a convergent subsequence, so we may assume without loss of

generality that µφk
(A) converges to some limit, c, say. We aim to show that

µφ(A) = c. Observe that µφk
(A) = P(Bφk

x0,t0
∈ θ) and µφ(A) = P(Bφx0,t0

∈ θ).

Our key observation is that

Bφk

x0,t0
−Bφx0,t0

= x0(φk(t0) − φ(t0)) + t0(φk(1 − x0) − φ(1 − x0)).

In particular, |Bφk

x0,t0
− Bφx0,t0

| ≤ 2‖φk − φ‖∞. Thus there exists an increasing

sequence (Kn;n ∈ N) such that

Bφx0,t0
(ω) ∈ θ ⇒ B

φKn

x0,t0
(ω) ∈ θ 1

n
(2.3.8)

and

B
φKn

x0,t0
(ω) ∈ θ ⇒ Bφx0,t0

(ω) ∈ θ 1
n
. (2.3.9)

Here, θ 1
n

= {x ∈ R : |x− y| < 1
n

for some y ∈ θ}. (2.3.9) implies that

P(B
φKn

x0,t0
∈ θ) ≤ P(Bφx0,t0

∈ θ 1
n

)

so that if n→ ∞, we see that c ≤ P(Bφx0,t0
∈ θ). (Actually, we require here that

P(Bφx0,t0
∈ θ) = P(Bφx0,t0

∈ θ), which follows from the observation that the law

of Bφx0,t0
is absolutely continuous with respect to Lebesgue measure.) On the

other hand, (2.3.8) implies that

P(Bφx0,t0
∈ θ) ≤ P(B

φKn

x0,t0
∈ θ 1

n
).

If we write d(x0, t0) = x0(φk(t0) − φ(t0)) + t0(φk(1 − x0) − φ(1 − x0)) then
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|P(B
φKn

x0,t0
∈ θ 1

n
) − c| ≤|P(B

φKn

x0,t0
∈ θ 1

n
) − P(B

φKn

x0,t0
∈ θ)| + |P(B

φKn

x0,t0
∈ θ) − c|

=|P(Bφx0,t0
∈ θ 1

n
− d(x0, t0)) − P(Bφx0,t0

∈ θ − d(x0, t0))|

+ |P(B
φKn

x0,t0
∈ θ) − c|

which converges to zero as n → ∞. It follows that P(Bφx0,t0
∈ θ) ≤ c. Thus

µφk
(A) → µφ(A) as k → ∞. We have shown that for all such A, and for

all φ ∈ C0([0, 1]), µφ(A) = P(B ∈ A|L = φ). Since these A are sufficient to

generate B(C(T )), it follows that µφ = P(B ∈ ·|L = φ) for all φ ∈ C0([0, 1]),

and in particular (µφ;φ ∈ C([0, 1]), A ∈ B(C([0, 1]))) is a regular conditional

probability.

2.3.5 Alternative choices of σy.

We might expect some changes in our solution if we make a different choice of

σy. After all, the driving process M changes as we vary σy. We continue to

focus on the region t < 1 − x. In this case equation (2.3.3) for Bφxt becomes

Bφxt =Mxt + φt

∫ x

0

1

1 − y
dy −

∫ x

0

Bφyt
1 − y

dy

+

∫ x

0

∫ 1−y

0

1

1 − y
(σyt)

′(r)(φ(r) −Bφyr)drdy +

∫ x

0

∫ 1

0

σyt(s)dB
φ
ys

We are going to assume some form on σy , namely that we can write σyt(s) =

ψ(y)ξ′(s), where ψ is continuous and ξ is continuously differentiable. As ever

this must satisfy

∫ 1−y

0

ψ(y)ξ′(s)ds =

∫ 1−y

0

1[0,t](s)ds = t ∧ (1 − y)
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and so

ψ(y) =
t

ξ(1 − y)

for y < x, where ξ is chosen so that ξ(0) = 0. For this to be well defined and

continuous on any interval [0, x] with x < 1 we insist that ξ(y) 6= 0 for y < 1.

(For example, we may take ξ(y) = yα for any α ≥ 1.) We therefore wish to

solve

Bφxt =Mxt + φ(t)

∫ x

0

1

1 − y
dy −

∫ x

0

Bφyt
1 − y

dy

+ t

∫ x

0

∫ 1−y

0

ξ′′(r)

(1 − y)ξ(1 − y)
(φ(r) −Bφyr)drdy

+ t

∫ x

0

∫ 1

0

ξ′(s)

(1 − y)ξ(1 − y)
dBφys. (2.3.10)

The last two terms are just polynomials in t, which suggests looking for a solu-

tion ux(t) of the form

ux(t) = tβx + vx(t).

We then obtain

tβx + vx(t) =Mxt + φ(t)

∫ x

0

1

1 − y
dy −

∫ x

0

vy(t)

1 − y
dy

+ t

{∫ x

0

∫ 1−y

0

ξ′′(r)

(1 − y)ξ(1 − y)
(φ(r) − uy(r))drdy

+

∫ x

0

∫ 1

0

ξ′(s)

(1 − y)ξ(1 − y)
duy(s) −

∫ x

0

βy
1 − y

dy

}

We now look to solve

vx(t) = Mxt + φ(t)

∫ x

0

1

1 − y
dy −

∫ x

0

vy(t)

1 − y
dy
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and then with this solution we aim to solve

βx =

∫ x

0

∫ 1−y

0

ξ′′(r)

(1 − y)ξ(1 − y)
(φ(r) − uy(r))drdy

+

∫ x

0

∫ 1

0

ξ′(s)

(1 − y)ξ(1 − y)
duy(s) −

∫ x

0

βy
1 − y

dy

for β. We already have the solution for vx(t):

vx(t) = xφ(t) +

∫ x

0

∫ t

0

1 − x

1 − y
dMyt.

One might initially think that it is now simply a case of solving for βx. However,

we have once again a consistency condition that needs to be satisfied, namely

that

ux(1 − x) = φ(1 − x).

We now have two conditions on β which need to be satisfied. This is not a

hopeless situation: recall that in the case of σy(r) ∝ 1 there was no defining

equation for Bx1, giving a degree of freedom which we then lost for the sake

of consistency. Bx1 was the control which forced the Brownian sheet to take

the values φ along the diagonal. We hope for something similar here. In the

meantime, we obtain an expression for β from the above condition on ux, that

is

(1 − x)βx + xφ(1 − x) +

∫ x

0

∫ 1−x

0

1 − x

1 − y
dMys = φ(1 − x)

and thus

ux(t) = tφ(1 − x) + xφ(t) + (1− x)

∫ x

0

∫ t

0

1

1 − y
dMys − t

∫ x

0

∫ 1−x

0

1

1 − y
dMys.

Is this the same as our original expression for Bφxt? We will show that, whether

or not M changes in some sense through a different choice of σy, the solution
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we obtain for (Bφxt; (x, t) ∈ T ) retains the same covariance structure. Thus all

the solutions for (Bφxt : (x, t) ∈ T ) for different σy are versions of each other.

To begin with we show that any two solutions of 2.3.10 for a given choice of σy

must be the same. Indeed, suppose we have two solutions to this expression,

and we denote the difference by Φ. Φ must satisfy

Φxt =

∫ x

0

Φyt
1 − y

dy + Ψxt

where Ψxt has the form tΨ(x). Thus, Φ is

1

1 − x
Φxt = t

∫ x

0

1

1 − y
dΨ(y).

Since both our solutions must be φ along the diagonal, we must have Φx,1−x = 0.

It follows that Φxt = 0 for all x, t with t < 1 − x.

We now remark that our solution ux above has the same covariance structure

on {(x, t); t < 1 − x} as our original solution for Bφ. We can essentially make

the same calculation, and we refer to section 2.3.3. Indeed, in this case the

covariance c((x, t), (x′, t′)) is

∫ 1

0

∫ 1

0

(fxt(y, s) − σyf(y, ·)(s)) (fx′t′(y, s) − σyf(y, ·)(s)) dsdy

where again, fxt(y, s) = 1−x
1−y1[0,x](y)1[0,t](s)− t

1−y1[0,x](y)1[0,1−x](s). The same

calculation can be performed upon observing that σyfxt(y, ·)(s) = 0 when t <

1 − x. This is clear since

σyfxt(y, ·)(s) =
1 − x

1 − y
1[0,x](y)σyt(s) −

t

1 − y
1[0,x](y)σyt(s)

=
1 − x

1 − y
1[0,x](y)

t

ξ(1 − y)
ξ′(s) − t

1 − y
1[0,x](y)

1 − x

ξ(1 − y)
ξ′(s) = 0
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for 0 < y < x.

2.3.6 Consistency condition.

We have now defined processes (βx; x ∈ [0, 1]) and (ux(t);x, t ∈ [0, 1]) such

that u1−t(t) = φ(t) ∀t ∈ [0, 1], however we do not yet know that ux(t) satisfies

(2.3.10). For this we require that

βx =

∫ x

0

∫ 1−y

0

ξ′′(r)

(1 − y)ξ(1 − y)
(φ(r) −Bφyr)drdy

+

∫ x

0

∫ 1

0

ξ′(s)

(1 − y)ξ(1 − y)
dBφys −

∫ x

0

βy
1 − y

dy.

This should be satisfied for any appropriate choice of ξ, which at first glance is

a cause for concern. However, suppose we consider σyξ
′. We require

∫ 1−y

0

ψ(y)ξ′(s)ds =

∫ 1−y

0

ξ′(s)ds

or rather

(ψ(y) − 1)ξ(1 − y) = 0.

Thus σyξ
′ = ξ′ for all y < 1. If we now put l = ξ′ in (2.3.1) we obtain a trivial

expression.

Lemma 2.1. σy : L2([0, 1]) → L2([0, 1]) defined by

σyl(s) =
ξ′(s)

ξ(1 − y)

∫ 1−y

0

l(r)dr

is a bounded linear transformation with σyξ
′ = ξ′. Define (Bφxt;x, t ∈ [0, 1]) by

(2.3.10) for t ≤ 1 − x and
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Bφxt =Mxt +

∫ x

0

∫ 1−y

0

1

1 − y
σ′
yt(s)(φ(s) −Bφys)dsdy

+

∫ x

0

∫ 1

0

σyt(s)dB
φ
ys (2.3.11)

for t ≥ 1− x. This system leaves the term
∫ x

0

∫ 1

0 ξ
′(s)dBφys undetermined. Thus

any choice for this term is consistent with the system for Bφ.

Proof The claims on σy follow since

‖σyl‖2
2 ≤ (1 − y)‖ξ‖2

2

ξ2(1 − y)

∫ 1−y

0

l2(r)dr.

Let us now approximate ξ′ by linear combinations of characteristic functions,

say ln. Thus ln − σyln → ξ′ − σyξ
′ = 0 in L2([0, 1]). Formally, it follows that

∫ x

0

∫ 1

0

ln(s)dBφyr =

∫ t

0

∫ 1

0

ln(s)dMys +

∫ x

0

∫ 1

0

σyln(s)dBφys

−
∫ x

0

∫ 1−y

0

1

1 − y

d

ds
(ln − σyln) (s)(φ(s) −Bφys)dsdy.

Both
∫ x

0

∫ 1

0
(ln(s) − σyln(s))dBφys and

∫ x

0

∫ 1

0
ln(s)dMys converge to 0 in L2(Ω),

the latter owing to the fact that

E

[(∫ x

0

∫ 1

0

ln(s)dMys

)2
]

=

∫ x

0

∫ 1

0

(ln(s) − σyl(s))
2

dsdy.

With a little more work one can show using stochastic integration by parts and

Fubini theorems that the last term also converges to 0 in L2(Ω).

We have now defined a process Bφ according to a system of equations which

do not determine
∫ x

0

∫ 1

0
ξ′(s)dBφys, which we shall denote by Ξx. (Ξx;x ≥ 0) is
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an (Fx;x ≥ 0) martingale, and we remark that for x ≥ 0 and any continuously

differentiable f ∈ C([0, x]), we may define
∫ x

0
f(y)dΞy and furthermore it equals

∫ x

0

∫ 1

0
f(y)ξ′(s)dBφys. since by stochastic integration by parts and (1.2) we have

∫ x

0

f(y)dΞy =f(x)Ξx −
∫ x

0

f ′(y)Ξydy

=f(x)Ξx −
∫ x

0

f ′(z)

∫ z

0

∫ 1

0

ξ′(s)dBφysdz

=f(x)Ξx −
∫ x

0

∫ 1

0

(∫ x

y

f ′(z)dz

)

ξ′(s)dBφys

=

∫ x

0

∫ 1

0

f(y)ξ′(s)dBφys

We may now define Ξx by

1

(1 − x)ξ(1 − x)
dΞx =dβx +

βx
1 − x

dx

−
∫ 1

0

ξ′′(r)

(1 − x)ξ(1 − x)
(φ(r) −Bφxr)drdx

and not contradict the underlying system. This ensures that Bφxt really is the

solution we are after. Ξx is a control which we must choose carefully in order

to ensure that Bφxt is φ on the diagonal.

2.3.7 Solving for t > 1 − x.

So far we have not discussed the solution on the region t > 1 − x. (2.3.11) now

becomes

Bφxt =Mxt −M1−t,t + φ(t) +

∫ x

1−t

∫ 1−y

0

1

1 − y
σ′
yt(s)(φ(s) −Bφys)dsdy

+

∫ x

1−t

∫ 1

0

σyt(s)dB
φ
ys. (2.3.12)
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From this it is also clear that

Bφx1 −Bφ1−t,1 =Mx1 −M1−t,1 +

∫ x

1−t

∫ 1−y

0

1

1 − y
σ′
y1(s)(φ(s) −Bφys)dsdy

+

∫ x

1−t

∫ 1

0

σy1(s)dBφys.

We now note that if t > 1 − y, σyt is given by

∫ 1−y

0

σyt(s)ds = 1 − y.

Thus for t > 1 − y, σyt = σy1. We now deduce that

Bφxt = φ(t) +Mxt −M1−t,1 −M1−t,t +Mx1 +Bφx1 −Bφ1−t,1.

We group the M terms together as M(R↑
xt). (R↑

xt is intended to represent

the rectangle with bottom left corner (x, t), so that M gives rise to a random

function on such sets.) If we now put φ(t) = B1−t,t we obtain M(R↑
xt) = B(R↑

xt),

from which it follows that M(R) = B(R) for any rectangles in the region t > 1−

x. This is not dependent on the choice of σy. However, Bφx1 andBφ1−t,1 do change

for different σy, and consequently so does Bφxt = φ(t) +M(R↑
xt) +Bφx1 −Bφ1−t,1.

For example, if we take σy to be constant, then Bφx1 and Bφ1−t,1 are chosen by

the consistency condition (2.3.5), from which it follows that

Bφxt = M(R↑
xt)+f(t)+(1−x)φ(1−x)−tφ(t)+

∫ x

1−t
φ(1−y)dy−

∫ x

1−t
(1−y)2dUy.

Recall that U is given by

Ux =
1

1 − x

∫ x

0

∫ 1−x

0

1

1 − y
dMys.
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An integration by parts gives us

∫ x

1−t
(1 − y)2dUy = (1 − x)2Ux − t2U1−t + 2

∫ x

1−t
(1 − y)Uydy

from which we may deduce that

Bφxt =M(R↑
xt) + (1 − t)φ(t) + (1 − x)φ(1 − x)

∫ x

1−t
φ(1 − y)dy

−
∫ x

0

∫ 1−x

0

1 − x

1 − y
dMys +

∫ 1−t

0

∫ t

0

t

1 − y
dMys

− 2

∫ x

1−t

∫ (1−y)∧t

0

x ∧ (1 − s) − y ∨ (1 − t)

1 − y
dMys

where we have used theorem 1.2. From this it is possible to write down explicit

expressions for the covariance function.

If we take σyt(s) = (t∧(1−y))ξ′(s)
ξ(1−y) we cannot do the same as above since we do

not have expressions for Bx1 and B1−t,1. We do however have a different control

for which we do have an expression. In order to use this we go back to equation

(2.3.11). The last term is of course related to our control, and in the notation

of the previous section we have

Bφxt =Mxt −M1−t,t + φ(t) +

∫ x

1−t

(1 − y)

ξ(1 − y)
dΞy

=Mxt −M1−t,t + φ(t) +

∫ x

1−t
(1 − y)dβy

+

∫ x

1−t
βydy −

∫ x

1−t

∫ 1

0

ξ′′(r)

ξ(1 − y)
(φ(r) −Bφyr)drdy

with β as given before. Thus it appears as though a different choice of σy cor-

responds to a different control which forces Bφ to behave in the way previously

described on the region {(x, t) ∈ [0, 1]2 : 0 ≤ t ≤ 1 − x ≤ 1}, but which induces

a non-unique behaviour outside this region.
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3 Spatial evolution of solutions of the heat equa-

tion with noise.

3.1 Defining a process ((ux, vx); x ≥ 0).

3.1.1 Tail behaviours for ux and vx.

In this section we return to our study of the stochastic heat equation, specifically

its Markovian evolution in the spatial direction. Let us recall a little notation.

(Bxt; x ∈ R, t ≥ 0) once again represents a Brownian sheet on a complete

probability space (Ω,F ,P). We define the filtration (Fx;x ≥ 0) by

Fx = σ{Bys; −∞ ≤ y ≤ x, s ∈ [0,∞)} ∨ NP(F )

and we would like to define processes (ux;x ≥ 0) and (vx;x ≥ 0) by

〈h1, ux〉 =

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

h1(t)g(t− s, x, y)dt

)

dBys

and

〈h2, vx〉 =

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

h2(t)∂2g(t− s, x, y)dt

)

dBys

respectively for some test functions h1 and h2. The first thing we will do is

identify a class of continuous test functions h1 and h2 for which these are defined.

To get an idea of what is needed, let us first take h1 and h2 to be of the form

(1 + t)α and determine values of α for which E[〈h1, ux〉2] and E[〈h2, vx〉2] are

defined. We first take h1(t) = (1 + t)α for all t ≥ 0. In this case

E[〈h1, ux〉2] =

∫ ∞

0

∫ ∞

−∞

(∫ ∞

s

(1 + t)αg(t− s, x, y)dt

)2

dyds.
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This is equal to

c

∫ ∞

0

∫ ∞

−∞

∫ ∞

s

∫ ∞

s

(1 + t)α(1 + t′)α
√

(t− s)(t′ − s)
exp

(

− (x− y)2

4

(
1

t− s
+

1

t′ − s

))

dt′dtdyds

Since

∫ ∞

−∞
exp

(

− (x− y)2

4

(
1

t− s
+

1

t′ − s

))

dy = c

√

(t− s)(t′ − s)

(t+ t′ − 2s)

we obtain

E[〈h1, ux〉2] =c

∫ ∞

0

∫ ∞

0

∫ t∧t′

0

(1 + t)α(1 + t′)α√
t+ t′ − 2s

dsdt′dt

=c

∫ ∞

0

∫ ∞

0

(1 + t)α(1 + t′)α(
√
t+ t′ −

√

|t− t′|)dt′dt (3.1.1)

=c

∫ ∞

0

(1 + t)αt
3
2

∫ ∞

0

(1 + ut)α(
√

1 + u−
√

|1 − u|)dudt

We need to take α < 0, and in this case (1 + ut)α ≤ (ut)α. It then follows that

E[〈h1, ux〉2] ≤ c

∫ ∞

0

(1 + t)αtα+ 3
2 dt ·

∫ ∞

0

uα(
√

1 + u−
√

|1 − u|)du.

The t integral is finite provided that α > − 5
2 and 2α + 3

2 < −1, whilst the u

integral is finite provided that α > −2 and α < − 1
2 (since

√
1 + u −

√

|1 − u|

looks like u for small u and u−
1
2 for large u). Thus E[〈h1, ux〉2] < ∞ for

−2 < α < − 5
4 (and in fact clearly holds for all α ≤ −2).

We now do the same for vx, taking h2(t) = (1+ t)α for some α ∈ R. In this case

E[〈h2, vx〉2] =

∫ ∞

0

∫ ∞

−∞

(∫ ∞

s

(1 + t)α
∂

∂x
g(t− s, x, y)dt

)2

dyds

This is equal to
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∫ ∞

0

∫ ∞

0

∫ t∧t′

0

(1+t)α(1+t′)α
(∫ ∞

−∞

∂

∂x
g(t− s, x, y)

∂

∂x
g(t′ − s, x, y)dy

)

dsdt′dt.

The integrand in the y integral is proportional to

(x− y)2
√

(t− s)3(t′ − s)3
exp

(−(x− y)2

4(t− s)

)

exp

(−(x− y)2

4(t′ − s)

)

=
(x− y)2

√

(t− s)3(t′ − s)3
exp

(

−(x− y)2
(

t+ t′ − 2s

4(t− s)(t′ − s)

))

.

Now,

∫ ∞

−∞

(x− y)2
√

(t−s)(t′−s)
t+t′−2s

exp

(

− (x− y)2

4

/

(t− s)(t′ − s)

t+ t′ − 2s

)

dy = c
(t− s)(t′ − s)

t+ t′ − 2s

Thus the y integral is proportional to 1

(t+t′−2s)
3
2

using properties of Gaussian

densities, and hence we require that the integral

∫ ∞

0

∫ ∞

0

∫ t∧t′

0

(1 + t)α(1 + t′)α

(t+ t′ − 2s)
3
2

dsdt′dt

=c

∫ ∞

0

∫ ∞

0

(1 + t)α(1 + t′)α
(

1
√

|t− t′|
− 1√

t+ t′

)

dt′dt

=c

∫ ∞

0

(1 + t)αt
1
2

∫ ∞

0

(1 + tu)α

(

1
√

|1 − u|
− 1√

1 + u

)

dudt

is finite. Again, we require that α < 0, and then the above integral is bounded

by

c

∫ ∞

0

(1 + t)αtα+ 1
2 dt ·

∫ ∞

0

uα

(

1
√

|1 − u|
− 1√

1 + u

)

du.

The t integral is finite so long as α > − 3
2 and 2α+ 1

2 < −1, whilst the u integral

is finite provided that u > −2 (noting that 1√
|1−u|

− 1√
1+u

behaves again like u

for small u, and like u−
3
2 for large u). Thus for α < − 3

4 , E[〈h2, vx〉2] is finite.
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The above considerations provide conditions on the tails of h1 and h2 such that

〈h1, ux〉 and 〈h2, vx〉 are in L2(Ω), which we hope might characterise a space

E in which ((ux, vx);x ≥ 0) takes values. Ultimately, assuming that E is some

separable metric space fitting in the framework of section 1.1.3, we would like to

define a martingale problem that is satisfied by ((ux, vx);x ≥ 0). At this point

it is not the case that any space will do, but rather the choice of E has a large

say in whether we can reap anything of value from the martingale problem. On

the other hand, to define a martingale we look to write stochastic differential

equations for 〈h1, ux〉 and 〈h2, vx〉, where on the face of it we are dealing with a

system of equations for real valued processes, and in fact do not need to define

a space for ux and vx. However, we have already hinted that we shall require

the enlargement theorem 1.5, which requires that the information (u0, v0) takes

values in a normed vector space.

For α > 0 let C0,α([0,∞)) be the space of continuous functions h on [0,∞) such

that h(t)(1 + t)α → 0 as t → ∞, and let ‖h‖α = supt≥0 |(1 + t)αh(t)| < ∞}.

We observe that C0,α′ ⊂ C0,α ⊂ L2([0,∞)) for any α′ > α > 1
2 . It now

follows that for any h1 ∈ C0, 54+β and h2 ∈ C0, 34+β (where β > 0 can be made

arbitrarily small), 〈h1, ux〉 and 〈h2, vx〉 are in L2(Ω). Our aim eventually is to

define a martingale problem on a separable Banach space E which is solved by

the processes (ux;x ≥ 0) and (vx;x ≥ 0). The above calculations suggest a

certain tail behaviour for ux and vx, for each x ≥ 0. Consequently, we make

an assumption that there exist subspaces X1 and X2 of C0, 54 +β and C0, 34+β

respectively such that for all x ≥ 0, there are modifications of (ux;x ≥ 0) and

(vx;x ≥ 0) which belong to X∗
1 and X∗

2 respectively. We further assume that X1

and X2 are complete under norms ‖·‖X1 and ‖·‖X2 such that ‖·‖ 5
4+β ≤ c1‖·‖X1

and ‖ · ‖ 3
4+β ≤ c2‖ · ‖X2 . We may immediately take X1 = C0, 32 +β. To justify

this, we remark that by theorem 1.2, there is a modification of (ux;x ≥ 0) such
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that for all h ∈ C0, 32 +β, 〈h, ux〉 =
∫∞
0
h(t)u(x, t)dt almost surely, where u(x, t)

is almost surely continuous in t and x. We note that for positive h ∈ C0, 32+β ,

∫ ∞

0

h(t)|u(x, t)|dt =

∫ ∞

0

h(t)1{t:u(x,t)≥0}u(x, t)dt−
∫ ∞

0

h(t)1{t:u(x,t)≤0}u(x, t)dt

which is almost surely finite. Thus
∣
∣
∣

∫∞
0
h(t)(1 + t)

3
2+β(1 + t)−

3
2−βu(x, t)dt

∣
∣
∣ ≤

supt≥0 |h(t)(1+t)
3
2+β |

∫∞
0

(1+t)−
3
2−β|u(x, t)|dt, which means ux is almost surely

in (C0, 32+β)∗. We have relied here on the representation of (ux(·);x ≥ 0) as a

continuous function, and the fact that this function is continuous is an applica-

tion of the Kolmogorov-C̆entsov continuity criterion. In general, we think of u

and v as processes with parameter spaces [0,∞)×X1 and [0,∞)×X2, and what

we require is a version of the Kolmogorov-C̆entsov continuity criterion. We will

discuss this in greater detail later on. As a final remark in this section, we ob-

serve that the laws of ux and vx on X∗
1 and X∗

2 respectively are Gaussian, and

in fact are Radon since X∗
1 and X∗

2 are separable Banach spaces (see [Bog98]).

3.1.2 A system of SDEs for ux and vx.

Proposition 3.1. If h1 ∈ C0, 54+β, h2 ∈ C0, 34+β and x ≥ 0 we have

〈h1, ux〉 = 〈h1, u0〉 +

∫ x

0

〈h1, vy〉dy

almost surely, and provided that

∣
∣
∣
∣

∫ ∞

0

∫ ∞

0

h′2(t)h′2(t′)(
√
t+ t′ −

√

|t− t′|)dt′dt
∣
∣
∣
∣
<∞,

then

〈h2, vx〉 = 〈h2, v0〉 −
∫ x

0

〈h′2, uy〉dy −Wx(h2)

also holds almost surely, where once again, Wx(h2) =
∫ x

0

∫∞
0
h2(s)dBys.
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Proof We would first like to show that for h1 ∈ C0, 54+β ,

〈h, ux〉 = 〈h1, u0〉 +

∫ x

0

〈h1, vy〉dy.

The integral, by definition of v, is given by

∫ ∞

−∞
1[0,x](y)

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

h1(t)
∂

∂y
g(t− s, y, z)dt

)

dBzsdy.

This equals

∫ ∞

−∞

∫ ∞

0

(∫ ∞

−∞

∫ ∞

s

1[0,x](y)h1(t)
∂

∂y
g(t− s, y, z)dtdy

)

dBzs

provided we may apply theorem 1.2. This we may do since
∫∞
s
h1(t) ∂

∂y
g(t −

s, y, z)dt is square integrable in z and s (since h1 ∈ C0, 34+β) and the integral

of its square is a continuous function in y (in fact a constant), so in turn is

integrable on [0, x]. The first equation now follows easily.

In order to write an expression for vx, we are guided by our intuition that

〈h2, vx〉 =
∫∞
0 h2(t) ∂

∂x
u(x, t)dt for h2 ∈ C0, 34+β . Formally

〈h2, vx〉 − 〈h2, v0〉 = −
∫ ∞

−∞
(δ0(y) − δx(y))〈h2, vy〉dy

= −
∫ ∞

−∞

d

dy
1[0,x](y)

∂

∂y

∫ ∞

0

h2(t)u(y, t)dtdy

=

∫ ∞

−∞

∫ ∞

0

h2(t)∆1[0,x](y)u(y, t)dtdy

=

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

∫ ∞

−∞
h2(t)∆1[0,x](y)g(t− s, y, z)dydt

)

dBzs

Taking this as our lead, let φxn be some sequence in C∞
0 ([0,∞)) which converges

to 1[0,x] in L2(R), and consider the integral
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∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

∫ ∞

−∞
h2(t)∆φxn(y)g(t− s, y, z)dydt

)

dBzs.

Thanks to well known properties of g we can rewrite the integrand as

∫ ∞

s

∫ ∞

−∞
h2(t)φxn(y)∆g(t− s, y, z)dydt

=

∫ ∞

s

∫ ∞

−∞
h2(t)φxn(y)

∂

∂t
g(t− s, y, z)dydt

= − h2(s)φxn(z) −
∫ ∞

s

∫ ∞

−∞
h′2(t)φxn(y)g(t− s, y, z)dydt

Thus

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

∫ ∞

−∞
h2(t)∆φxn(y)g(t− s, y, z)dydt

)

dBzs

= −
∫ ∞

−∞

∫ ∞

0

h2(s)φxn(z)dBzs

−
∫ ∞

−∞

∫ ∞

0

∫ ∞

s

∫ ∞

−∞
h′2(t)φxn(y)g(t− s, y, z)dydtdBzs.

One suspects that this should converge to

−
∫ x

0

∫ ∞

0

h2(s)dBzt −
∫ ∞

−∞

∫ ∞

0

∫ ∞

s

∫ x

0

h′2(t)g(t− s, y, z)dydtdBzt

as n → ∞. More precisely, since h2φ
x
n converges to h21[0,x] in L2([0,∞)2) it is

clear that
∫ ∞

−∞

∫ ∞

0

h2(s)φxn(z)dBzs →
∫ x

0

∫ ∞

0

h2(s)dBzs,

where the convergence is in L2(Ω). We would now like to show that

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

∫ ∞

−∞
h′2(t)[φxn(y) − 1[0,x](y)]g(t− s, y, z)dydt

)

dBzs
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converges to 0 in L2(Ω) as n→ ∞. This is true if and only if

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

∫ ∞

−∞
h′2(t)[φxn(y) − 1[0,x](y)]g(t− s, y, z)dydt

)2

dzds

converges to 0. We write ξn(y) = φxn(y)− 1[0,x](y), and we may assume that ξn

is 0 outside [0, x] for all n. The above integral is then

∫ ∞

−∞

∫ ∞

0

(∫ x

0

ξn(y)

∫ ∞

s

h′2(s)g(t− s, y, z)dtdy

)2

dsdz

≤
(∫ x

0

ξ2n(y)dy

)

.

(
∫ x

0

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

h′2(s)g(t− s, y, z)dt

)2

dsdzdy

)

≤cx‖ξn‖2
2 → 0 as n→ ∞.

Here we have used the Cauchy-Schwartz inequality, and have observed that
∫∞
−∞

∫∞
0

(∫∞
s
h′2(s)g(t− s, y, z)dt

)2
dsdz is finite and is constant in y.

On the other hand

〈h2, vx〉 − 〈h2, v0〉 =

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

h2(t)∂2g(t− s, x, y)dt

)

dBys

−
∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

h2(t)∂2g(t− s, 0, y)dt

)

dBys

=

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

h2(t)

∫ x

0

∆zg(t− s, z, y)dzdt

)

dBys

=

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

∫ ∞

−∞
h2(t)1[0,x](z)∆zg(t− s, z, y)dzdt

)

dBys.

Furthermore,
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∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

∫ ∞

−∞
h2(t)∆φxn(y)g(t− s, y, z)dydt

)

dBzs

−
∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

∫ ∞

−∞
h2(t)1[0,x](y)∆yg(t− s, y, z)dydt

)

dBzs

=

∫ ∞

−∞

∫ ∞

0

(∫ ∞

s

∫ ∞

−∞
h2(t)ξn(y)∆yg(t− s, y, z)dydt

)

dBzs.

This converges to 0 in L2(Ω) if and only if
∫∞
s

∫∞
−∞ h2(s)ξn(y)∆yg(t−s, y, z)dydt

converges to 0 in L2([0,∞)2). This integral is equal to

−h2(s)ξn(z) −
∫ ∞

s

∫ ∞

−∞
h′2(t)ξn(y)g(t− s, y, z)dzdt

which converges to 0 in L2([0,∞)2) by previous reasoning. Equating our two

limits gives the almost sure identity

〈h2, vx〉−〈h2, v0〉 = −
∫ x

0

∫ ∞

0

h′2(s)dBzt−
∫ ∞

−∞

∫ ∞

0

∫ ∞

s

∫ x

0

h′2(t)g(t−s, y, z)dydtdBzt.

The second integral is

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
1[0,x](y)

(∫ ∞

s

h′2(t)g(t− s, y, z)dt

)

dydBzs

=

∫ x

0

∫ ∞

−∞

∫ ∞

0

∫ ∞

s

h′2(s)g(t− s, y, z)dtdBzsdy

using theorem 1.2 once again. We therefore have

〈h2, vx〉 = 〈h2, v0〉 −
∫ x

0

〈h′2, uy〉dy −Wx(h2) a.s.

3.1.3 Some remarks on the continuity of (ux;x ≥ 0) and (vx;x ≥ 0).

For each x ≥ 0, the equations for 〈h1, ux〉 and 〈h2, vx〉 in the system (1.1.5) hold

on a set of full measure in (Ω,F ,P), which we might denote by Ax, say. What
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we would really like to say, however, is that for any X > 0, there is a set A of full

measure in (Ω,F ,P) such that (1.1.5) holds on A for all x ∈ [0, X ]. For this we

look to the Kolmogorov-C̆entsov continuity criterion. This has the additional

benefit showing that (〈h1, ux〉;x ∈ [0, X ]) and (〈h2, vx〉;x ∈ [0, X ]) are almost

surely continuous for h1 ∈ C0, 54+β and h2 ∈ C0, 34+β , which is required if we are

to demonstrate that they satisfy a strong Markov property.

Consider first (〈h1, ux〉;x ∈ [0, X ]) for h1 ∈ C0, 54+β . For x, z ∈ [0, X ] with

x < z, 〈h1, ux〉 − 〈h1, uz〉 is a centred Gaussian random variable. We now try

to calculate its variance. This is

∫

R

∫ ∞

0

(∫ ∞

s

h1(t)(g(t− s, x, y) − g(t− s, z, y))dt

)2

dsdy.

Let us look at g(t− s, x, y)g(t′ − s, z, y). This is equal to

c
√

(t− s)(t′ − s)
exp

(−(x2 − 2xy + y2)

4(t− s)

)

exp

(−(z2 − 2zy + y2)

4(t′ − s)

)

=
c

√

(t− s)(t′ − s)
exp

(

−(t′ + t− 2s)

4(t− s)(t′ − s)

(

y − x(t′ − s) + z(t− s)

t′ + t− 2s

)2
)

· exp

(
(t′ + t− 2s)

4(t− s)(t′ − s)

(
x2(t′ − s)2 + 2xz(t− s)(t′ − s) + z2(t− s)2

(t′ + t− 2s)2

)

− x2

4(t− s)
− z2

4(t′ − s)

)

=
c

√

(t− s)(t′ − s)
exp

(

−(t′ + t− 2s)

4(t− s)(t′ − s)

(

y − x(t′ − s) + z(t− s)

t′ + t− 2s

)2
)

· exp

( −(x− z)2

4(t′ + t− 2s)

)

If we now perform the y integral, we can deduce that
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∫

R

∫ ∞

0

(∫ ∞

s

h1(t)g(t− s, x, y)dt

)(∫ ∞

s

h1(t′)(g(t′ − s, x, y) − g(t′ − s, z, y))dt′
)

dsdy

= c

∫ ∞

0

∫ ∞

s

∫ ∞

s

h1(t)h1(t′)√
t′ + t− 2s

(

1 − exp

( −(x− z)2

4(t′ + t− 2s)

))

dt′dtds

For any t′, t, s ∈ [0,∞) with t′ + t−2s > 0, we may use the mean value theorem

to see that there is some θ ∈ (0, (x− z)2) such that

1−exp

(

− (x− z)2

4(t′ + t− 2s)

)

=
(x − z)2

4(t′ + t− 2s)
exp

(

− θ

4(t′ + t− 2s)

)

≤ (x− z)2

4(t′ + t− 2s)
.

We now see that

E[(〈h1, ux〉 − 〈h1, uz〉)2]

=c

∫ ∞

0

∫ ∞

s

∫ ∞

s

h1(t)h1(t′)√
t′ + t− 2s

(

1 − exp

( −(x− z)2

4(t′ + t− 2s)

))

dt′dtds

≤c(x− z)2
∫ ∞

0

∫ ∞

s

∫ ∞

s

h1(t)h1(t′)

(t′ + t− 2s)
3
2

dt′dtds (3.1.2)

Since h1 ∈ C0, 54+β , it is also in C0, 34+β , so the above integral is finite. Thus we

have a constant C1 such that for all 0 ≤ x < z ≤ X ,

E[(〈h1, ux〉 − 〈h1, uz〉)2] ≤ C1|x− z|2

and more generally, for each n ∈ N there is some Cn such that

E[(〈h1, ux〉 − 〈h1, uz〉)2n] ≤ Cn|x− z|2n.

The Kolmogorov-C̆entsov continuity criterion now implies that there is a version

of (〈h1, ux〉;x ∈ [0, X ]) which is almost surely continuous. We can also produce

a similar argument for (〈h2, vx〉;x ∈ [0, X ]) for h2 ∈ C0, 34+β . In this case, for
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0 ≤ x < z ≤ X , we have

(〈h2, vz〉 − 〈h2, vx〉)2n ≤c
(∫ z

x

〈h′2, uy〉dy
)2n

+ c(Wz(h2) −Wx(h2))2n

≤c(z − x)2n
∫ z

x

〈h′2, uy〉2ndy + c(Wz(h2) −Wx(h2))2n

≤c(z − x)2n
∫ z

x

(〈h′2, uy〉 − 〈h′2, ux〉)2ndy

+ c(z − x)2n+1〈h′2, ux〉2n + c(Wz(h2) −Wx(h2))2n

(3.1.3)

almost surely. We remark that the law of 〈h′2, ux〉 does not depend on x, whilst

Wz(h2) − Wx(h2) is a centred Gaussian random variable with variance (z −

x)‖h2‖2. It now follows that

E[(〈h2, vz〉 − 〈h2, vx〉)2n] ≤c(z − x)2n
∫ z

x

Cn(y − x)2ndy + c(z − x)2n+1E[〈h′2, ux〉2n]

+ cE[(Wx(h2) −Wx′(h2))2
n

]

≤c1,n(z − x)4n+1 + c2,n(z − x)2n+1 + c3,n(z − x)n.

Once again, we invoke the Kolmogorov-C̆entsov continuity criterion to deduce

that (〈h2, vx〉;x ∈ [0, X ]) has a version which is almost surely continuous.

3.2 A solution to (1.2.2) for certain test functions

3.2.1 The stochastic factorisation as a result of integration by parts.

For any h1 ∈ C0, 54+β and h2 ∈ C0, 34+β , we have equations for 〈h1, ux〉 and

〈h2, vx〉 which are driven by an (Fx;x ≥ 0) martingale, but for which the

initial conditions 〈h1, u0〉 and 〈h2, v0〉 are not in F0. We confront this using

the enlargement theorem 1.5, taking L = (u0, v0) ∈ E and defining the enlarged

filtration (F̃x;x ≥ 0) by F̃x = Fx ∨ σ(L). Ultimately our goal is to find a drift
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̺h2(L, y) such that 〈h2, vx〉 = 〈h2, v0〉−
∫ x

0
〈h′2, uy〉dy−

∫ x

0
̺h2(L, y)dy− W̃x(h2)

almost surely for all x ≥ 0 and any h2 ∈ C∞
0 ([0,∞)), where (W̃x(h2);x ≥ 0) is

an (F̃x;x ≥ 0) martingale. In fact we will show the above for a certain class

of h2 ∈ C0, 34 +β, and deduce it for h2 ∈ C∞
0 . We therefore need to discuss

first whether (Wx(l);x ≥ 0) is an (F̃x;x ≥ 0) semimartingale for a given l ∈

L2([0,∞)). To this end we aim to show that the stochastic factorisation (1.2.2)

on page 30 holds for any F ∈ FC∞
b (X1 ×X2) ⊂ B(E). Since X1 ×X2 is dense

in E∗, this is a large enough set of F for theorem 1.5 by lemma 1.1.

For the sake of simplicity, we define F by

F (u, v) = f(〈h1, u〉, 〈h2, v〉)

with f ∈ C∞
0 (R2) and hi ∈ Xi. (The following argument be easily seen to work

for all F ∈ FC∞
b (X1 ×X2).) For F as above,

DysF (L) =

(∫ ∞

s

h1(t)g(t− s, 0, y)dt

)

∂1f(〈h1, u0〉, 〈h2, v0〉)

+

(∫ ∞

s

h2(t)∂2g(t− s, 0, y)dt

)

∂2f(〈h1, u0〉, 〈h2, v0〉)

and so

E

[∫ ∞

0

l(s)DysF (L)ds

∣
∣
∣
∣
Fy

]

=

(∫ ∞

0

h1(t)

∫ t

0

l(s)g(t− s, 0, y)dsdt

)

E[∂1f(〈h1, u0〉, 〈h2, v0〉)|Fy]

+

(∫ ∞

0

h2(t)

∫ t

0

l(s)∂2g(t− s, 0, y)dsdt

)

E[∂2f(〈h1, u0〉, 〈h2, v0〉)|Fy].

We now fix some y > 0 and define

κyl = (l ∗ g(·, 0, y), l ∗ ∂2g(·, 0, y))
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where l ∗ h denotes the convolution

l ∗ h(t) =

∫ t

0

l(s)h(t− s)ds.

For h1 ∈ C0, 54+β and h2 ∈ C0, 34+β , |〈h1, (κyl)1〉| < ∞ and |〈h2, (κyl)2〉| < ∞.

For the moment, we shall assume that κyl ∈ E. We can now write

E

[∫ ∞

0

l(s)Dys(F (L))ds

∣
∣
∣
∣
Fy

]

=E[〈h1, (κyl)1〉∂1f(〈h1, u0〉, 〈h2, v0〉)

+ 〈h2, (κyl)2〉∂2f(〈h1, u0〉, 〈h2, v0〉)|Fy ].

We introduce some further notation. For any h1 ∈ X1 we write

〈h1, (u0)y〉 =

∫ y

−∞

∫ ∞

0

∫ ∞

s

h1(t)g(t− s, 0, z)dtdBzs

and set

〈h1, (u0)y〉 = 〈h1, u0〉 − 〈h1, (u0)y〉.

We define 〈h2, (v0)y〉 and 〈h2, (v0)y〉 for h2 ∈ X2 in a similar way and we assume

that we may show that ((u0)y, (v0)y) ∈ E. (u0)y and (v0)y are Fy measurable,

whilst (u0)y and (v0)y are independent of Fy. As in section 2.1.2 we define an

Fy measurable function fy : Ω × R2 → R (which is smooth and has compact

support in R2) by

fy(x1, x2) := f(〈h1, (u0)y〉 + x1, 〈h2, (v0)y〉 + x2), x1, x2 ∈ R

(so that fy(〈h1, (u0)y〉, 〈h2, (v0)y〉) = f(〈h1, u0〉, 〈h2, v0〉)) and Fy : E → R by

Fy(u, v) := fy(〈h1, u〉, 〈h2, v〉).
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It now follows from lemma 1.3 that

E[〈h1, (κyl)1〉∂1f(〈h1, u0〉, 〈h2, v0〉) + 〈h2, (κyl)2〉∂2f(〈h1, u0〉, 〈h2, v0〉)|Fy]

=

∫

E

(〈h1, (κyl)1〉∂1fy(〈h1, u〉, 〈h2, v〉)

+ 〈h2, (κyl)2〉∂2fy(〈h1, u〉, 〈h2, v〉))dµy(u, v)

=

∫

E

∂

∂κyl
Fy(u, v)dµy(u, v)

where µy denotes the law of ((u0)y, (v0)y) on E, which is once again a Radon

Gaussian measure.

3.2.2 An equation for C−1
y κyl II.

As in section (2.1.3), the next step is to determine whether κyl is in the Cameron-

Martin space of µy, which we denote as ever by Hy, and as ever we denote

the covariance operator of µy by Cy. Remark that since ‖ · ‖E ≤ c‖ · ‖Hy
,

if we can show that κyl ∈ Hy then κyl ∈ E and the above arguments are

justified. In order to show that κyl ∈ Hy, we intend to show the existence

of some φ in the reproducing kernel Hilbert space H ′
y satisfying κyl = Cyφ.

In fact, we will restrict ourselves to searching for my(l) ∈ X1 × X2 such that

κyl = Cy(my(l)). The existence of such an my(l) ∈ X1 ×X2 is equivalent to the

existence of such my(l) with κyl(h) = Cy((my(l)))(h) for every h ∈ X1 ×X2. In

other words, we wish to find my(l) ∈ X1 ×X2 such that for all h ∈ X1 ×X2,

κyl(h) = E[〈h, ((u0)y, (v0)y)〉〈my(l), ((u0)y, (v0)y)〉] is equal to
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∫ ∞

y

∫ ∞

0

(∫ ∞

s

h1(t)g(t− s, 0, z)dt

)(∫ ∞

s

(my(l))1(t)g(t− s, 0, z)dt

)

dsdz

+

∫ ∞

y

∫ ∞

0

(∫ ∞

s

h2(t)∂2g(t− s, 0, z)dt

)(∫ ∞

s

(my(l))1(t)g(t− s, 0, z)dt

)

dsdz

+

∫ ∞

y

∫ ∞

0

(∫ ∞

s

h1(t)g(t− s, 0, z)dt

)(∫ ∞

s

(my(l))2(t)∂2g(t− s, 0, z)dt

)

dsdz

+

∫ ∞

y

∫ ∞

0

(∫ ∞

s

h2(t)∂2g(t− s, 0, z)dt

)(∫ ∞

s

(my(l))2(t)∂2g(t− s, 0, z)dt

)

dsdz.

For this to hold for all h ∈ X1 ×X2, we require ∀t ∈ [0,∞) that

(l ∗ g(·, 0, y))(t) =

∫ t

0

∫ ∞

y

g(t− s, 0, z)

{∫ ∞

s

(

(my(l))1(r)g(r − s, 0, z)

+ (my(l))2(r)∂2g(r − s, 0, z)
)

dr
}

dzds (3.2.1)

and

(l ∗ ∂2g(·, 0, y))(t) =

∫ t

0

∫ ∞

y

∂2g(t− s, 0, z)

{∫ ∞

s

(
(my(l))1(r)g(r − s, 0, z)

+ (my(l))2(r)∂2g(r − s, 0, z)
)
dr

}

dzds. (3.2.2)

3.2.3 Solving for C−1
y κyl for certain l.

We consider equation (3.2.1). The natural way to deal with the convolution is

to take Laplace transforms. We will denote the Laplace transform by L , and

we refer to [Gue91] for a treatment of the subject of Laplace transforms. We

refer to the Laplace transform of a locally integrable f : R → R (that is, f such

that
∫ b

a
|f(t)|dt < ∞ for every closed bounded interval [a, b] in R), and we say

that f is Laplace transformable whenever D(L f) is non-empty. We do not give

the general definition of L f for locally integrable f , but simply observe that

whenever t 7→ e−λtf(t) is an L1(R) mapping for λ ∈ D(L f) and f(t) = 0 for
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t < 0, the definition in [Gue91] becomes L f(λ) =
∫

R
e−λtf(t)dt. Remark that

if f : [0,∞) → R is locally integrable we will simply write L f for L (f1[0,∞)).

We use the following properties, taking f and g to be locally integrable:

(a) if f is differentiable on (0,∞) with f(t) = 0 for t < 0, and f ′ is locally

integrable, then D(L f) ⊂ D(L f ′) and

L f ′(λ) = λL f(λ) − f(0)

for λ ∈ D(L f);

(b) if f and g are Laplace transformable then so is f ∗ g and

L (f ∗ g)(λ) = L f(λ)L g(λ)

for λ ∈ D(L f) ∩D(L g);

(c) if f, g : [0,∞) → R are such that there exists a non-empty open interval

with I ⊂ D(L f) ∩ D(L g) with L f(λ) = L g(λ) for all λ ∈ I, then

f(t) = g(t) for all t at which both f and g are continuous, and furthermore

f(t) = g(t) for Lebesgue-almost every t ∈ [0,∞).

In particular set L gy to be the Laplace transform of gy := g(·, 0, y). We recall

that

g(t, x, y) =
1

2
√
πt

exp

(

− (x− y)2

4t

)

and observe that t 7→ e−λtgy(t) is integrable for all ν > 0. Note that from

exercise 5A.9 of [Gue91],

L gy(λ) =
e−|y|

√
λ

2
√
λ

.
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If we assume that l is Laplace transformable, one would now like to rewrite

(3.2.1) as

L l(λ)L gy(λ) =

∫ ∞

y

L gz(λ)

∫ ∞

0

e−λs
∫ ∞

s

(
g(r − s, 0, z)my(l)1(r)

+ ∂2g(r − s, 0, z)my(l)2(r)
)
drdsdz. (3.2.3)

Let us assume we can do this, and furthermore, to simplify things we assume that

my(l)2 = 0. We also observe that much simplification can be made if we suppose

that my(l)1(r) = my(l)1(r− s)my(l)1(s). We therefore set my(l)1(r) = e−νr for

some ν > 0. The above equation now becomes

L l(λ)L gy(λ) =

∫ ∞

y

L gz(λ)L gz(ν)

λ+ ν
dz.

Thus

L l(λ)L gy(λ) =
1

(λ+ ν)(
√
λ+

√
ν)

L gy(λ)L gy(ν).

Let us now assume that there is function ψν : [0,∞) → R such that t 7→

e−λtψν(t) is integrable for each λ > 0 and whose Laplace transform is

Lψν(λ) =
1

(λ+ ν)(
√
λ+

√
ν)
.

What we may now show is that if

my(ψν)(r) :=

(
e−νr

L gy(ν)
, 0

)

then for all λ > 0,
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L (ψν ∗ gy)(λ) =L

(
∫ ·

0

∫ ∞

y

g(· − s, 0, z)

{∫ ∞

s

(

(my(ψν))1(r)g(r − s, 0, z)

+ (my(ψν))2(r)∂2g(r − s, 0, z)
)

dr
}

dzds

)

(λ) (3.2.4)

We remark that in order to justify this we require that

L

(∫ ·

0

∫ ∞

y

gz(· − s)

∫ ∞

s

e−νr

L gy(ν)
gz(r − s)drdzds

)

(λ)

=

∫ ∞

y

L

(∫ ·

0

gz(· − s)

∫ ∞

s

e−νr

L gy(ν)
gz(r − s)drds

)

(λ)dz (3.2.5)

which is a straightforward change in the order of integration, observing that

we have already seen that the right hand integral is defined. Equation (3.2.4)

follows from this for all λ > 0. We now use the inverse theorem for the Laplace

transforms and the continuity of the functions in question (which in the case of

ψν is assumed for now) to deduce equation (3.2.1).

This is all very well, however the form we chose for my(l) was by no way unique.

For example, suppose we now look for an l such that

my(l)(r) = (0, e−νr)

is a solution to the two equations 3.2.1 and 3.2.2. Denote by L ∂2gy(λ) the

Laplace transform of ∂2g(·, 0, y). We remark that

L ∂2gy(λ) = −sgn(y)
√
λL gy(λ).

We obtain from the first equation the expression
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L l(λ)L gy(λ) =
1

(λ+ ν)(
√
λ+

√
ν)

L gy(λ)L ∂2gy(ν)

and so clearly my(ψν) =
(

0, e−νr

L ∂2gy(ν)

)

is also a solution for l = ψν . This

lack of uniqueness is disturbing- of course Cy is an isometry between H ′
y and

Hy, so for any particular l there should be no more than one my(l) such that

κyl = Cymy(l). It is also disturbing since the drift is given by

̺ψν
(L, y) =

∫ ∞

y

∫ ∞

0

( ∫ ∞

s

my(ψν)1(t)g(t− s, 0, z)

+my(ψν)2(t)∂2g(t− s, 0, z)dt
)

dBzs (3.2.6)

and one would hope it is unique. We shall address both issues in one blow.

Suppose for now that my(ψν)(r) =
(

e−νr

L gy(ν) , 0
)

. Then

̺ψν
(L, y) =

∫ ∞

y

∫ ∞

0

1

L gy(ν)

(∫ ∞

s

g(t− s, 0, z)e−νtdt

)

dBzs.

Using
∫∞
s
g(t− s, 0, z)e−νtdt = e−νse−

√
νz

2
√
ν

we have

̺ψν
(L, y) =

∫ ∞

y

∫ ∞

0

e−νse−
√
νz

2
√
νL gy(ν)

dBzs

=

∫ ∞

y

∫ ∞

0

e−
√
νse−

√
νzeνydBzs

We now remark that
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√
ν〈e−ν·, uy〉 + 〈e−ν·, vy〉

=
√
ν

∫ ∞

−∞

∫ ∞

0

e−νse−
√
ν|z−y|

2
√
ν

dBzs

+

∫ ∞

−∞

∫ ∞

0

sgn(z − y)
√
ν
e−νse−

√
ν|z−y|

2
√
ν

dBzs

=

∫ ∞

0

∫ ∞

y

e−νse−
√
ν(z−y)dBzs = ̺ψν

(L, y)

On the other hand, if we take my(ψν)(t) =
(

0, e−νt

L gy(ν)

)

then

∫ ∞

y

∫ ∞

0

(∫ ∞

s

∂2g(t− s, 0, z)my(ψν)2(t)dt

)

dBzs

is soon seen to be the same, since we get a L ∂2gy(ν) term from ∂2g(t− s, 0, z),

which cancels with the L ∂2gy(ν) in my(ψν)2. This gives us some hope that

̺ψν
(L, y) is uniquely defined.

There is of course no problem here. If both my(ψν) and m′
y(ψν) are elements of

X1 ×X2 with κyψν = Cymy(ψν) and κyψν = Cym′
y(ψν) then what is important

is that ‖my(ψν)−m′
y(ψν)‖H′

y
= 0 by the isometry property of Cy. Furthermore

̺ψν
(L, y) = 〈my(ψν), ((u0)y, (v0)y)〉 = 〈m′

y(ψν), ((u0)y, (v0)y)〉 a.s.

since

E[(〈my(ψν), ((u0)y, (v0)y)〉 − 〈m′
y(ψν), ((u0)y, (v0)y)〉)2]

=‖my(ψν) −m′
y(ψν)‖2

H′
y

= 0.

113



We have yet to establish whether either of our solutions is in H ′
y. Actually, if

my(ψν) ∈ X1 ×X2 this is immediately obvious since 〈my(ψν), ((u0)y, (v0)y)〉 is

an L2(Ω) random variable from our definition of X1 and X2. What we really

need to check is that we do have a solution in X1 × X2. Suppose we take

my(ψν) =
(

e−νr

L gy(ν) , 0
)

. We need to show that e−ν·

L gy(ν) is in X1, which is obvious

since its decays faster than (1 + t)
3
2+β . This gives us one form of the solution,

although ultimately what is important to us is that we have a solution and an

expression for 〈my(ψν), ((u0)y, (v0)y)〉.

3.3 Equations for (〈h1, ux〉; x ≥ 0) and (〈h2, vx〉; x ≥ 0) for

certain test functions h1 and h2.

3.3.1 An analysis of the properties ψν .

In the previous section we assumed the existence of a function ψν in L2([0,∞))

whose Laplace transform is 1
(λ+ν)(

√
λ+

√
ν)

. In this section we define ψν by

ψν(t) =
1

2
√
π

∫ ∞

0

(

e−νs
√

|t− s|
− e−νs√

t+ s

)

ds. (3.3.1)

We have the following

Lemma 3.1. ψν is a continuous function on [0,∞) which belongs to L2([0,∞)).

Proof By a change of variable (s = tu), (3.3.1) becomes

ψν(t) = c
√
t

∫ ∞

0

e−νut
(

1
√

|1 − u|
− 1√

1 + u

)

du.

Note that

1
√

|1 − u|
− 1√

1 + u
=

2(1 ∧ u)
√

|1 − u2|(
√

|1 − u| +
√

1 + u)
. (3.3.2)
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This blows up like |1 − u|− 1
2 when u is near 1, and converges like u−

3
2 to 0

as u → ∞. It follows that u 7→ 1√
|1−u|

− 1√
1+u

is a positive, integrable map

on [0,∞), and since it is an upper bound for e−νut
(

1√
|1−u|

− 1√
1+u

)

, ψν(t) is

well defined for each t. Furthermore if tn → t then 1√
|1−u|

− 1√
1+u

dominates

the sequence

(

e−νutn
(

1√
|1−u|

− 1√
1+u

)

;n ≥ 0

)

, from which it follows by the

dominated convergence theorem that

∫ ∞

0

e−νutn

(

1
√

|1 − u|
− 1√

1 + u

)

du→
∫ ∞

0

e−νut
(

1
√

|1 − u|
− 1√

1 + u

)

du

as n → ∞. ψν is thus continuous. To demonstrate that ψν ∈ L2([0,∞)), note

that

∫ ∞

0

ψ2
ν(t)dt

=c

∫ ∞

0

t

(
∫ ∞

0

e−νut
(

1
√

|1 − u|
− 1√

1 + u

)

du

)2

dt

=

∫ ∞

0

∫ ∞

0

(

1
√

|1 − u|
− 1√

1 + u

)(

1
√

|1 − s|
− 1√

1 + s

)
∫ ∞

0

te−ν(u+s)tdtdsdu

=c

∫ ∞

0

∫ ∞

0

1

ν2(s+ u)2

(

1
√

|1 − u|
− 1√

1 + u

)(

1
√

|1 − s|
− 1√

1 + s

)

dsdu

≤c
(
∫ ∞

0

1

u

(

1
√

|1 − u|
− 1√

1 + u

)

du

)2

using (s + u)2 ≥ 2su. A glance at (3.3.2) shows that the above integrand

converges to 1 as u → 0, hence by the previous comments the above integral is

finite.
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Lemma 3.2. The Laplace transform of ψν is

Lψν(λ) =
1

(ν + λ)(
√
ν +

√
λ)
, λ > 0.

Proof We split the Laplace transform into two parts. The first is

1

2
√
π

∫ ∞

0

e−λt
∫ ∞

0

e−νs
√

|t− s|
dsdt

=
1

2
√
π

∫ ∞

0

e−λt
(∫ t

0

e−ν(t−s)√
s

ds+

∫ ∞

t

e−νs√
s− t

)

dt

=
1

2
√
π

∫ ∞

0

eνs√
s

∫ ∞

s

e−(ν+λ)tdtds+
1

2
√
π

∫ ∞

0

e−(ν+λ)t

∫ ∞

0

e−νs√
s

dsdt

=
1

2

(
1√
ν

+
1√
λ

)
1

ν + λ

where we have used
∫ ∞

0

e−νs√
πs

ds =
1√
ν
.

The second part is

1

2
√
π

∫ ∞

0

e−λt
∫ ∞

0

e−νs√
t+ s

dsdt

=
1

2
√
π

∫ ∞

0

e−λt
∫ ∞

t

e−ν(s−t)√
s

dsdt

=
1

2
√
π

∫ ∞

0

e−νs√
s

∫ s

0

e−λt+νtdtds

=
1

2

(
1√
λ
− 1√

ν

)
1

ν − λ
.

Combining these gives

Lψν(λ) =

√
λν − λ

√
ν√

λ
√
ν(ν2 − λ2)

=
1

(
√
λ+

√
ν)(λ+ ν)
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Our goal is now to show that for any ν > 0 and X > 0, ((〈ψν , ux〉, 〈ψν , vx〉);x ∈

[0, X ]) satisfies the original system (1.1.5). Recall that this follows from proposi-

tion 3.1 if we can show that ψν ∈ C0, 54+β , and further has a continuous derivative

such that
∫ ∞

0

∫ ∞

0

ψ′
ν(t)ψ′

ν(t′)(
√
t+ t′ −

√

|t− t′|)dt′dt (3.3.3)

is defined.

Lemma 3.3. For any g ∈ C1([0,∞)) such that g(t) and g′(t) decay faster than

t−
1
2 as t→ ∞, define

Γg(t) =

∫ ∞

0

g(s)

(

1
√

|t− s|
− 1√

t+ s

)

ds.

(This is well defined if we only ask that g is bounded, and indeed the following

holds for such g. The above condition is purely for convenience and is sufficient

for our application.) Γg is differentiable on (0,∞) with

d

dt
Γg(t) =

1

2
PV

∫ ∞

0

g(s)

(

sgn(s− t)
√

|t− s|3
− 1
√

(t+ s)3

)

ds (3.3.4)

:= lim
ε→0

1

2

∫ ∞

0

1[0,t−ε)∪(t+ε,∞)(s)g(s)

(

sgn(s− t)
√

|t− s|3
− 1
√

(t+ s)3

)

ds

In particular, ψν is continuously differentiable on (0,∞), with a derivative which

grows like t−
1
2 as t→ 0. Furthermore, ψν is in C0, 54+β and ψ′

ν satisfies condition

(3.3.3) above.

Proof We show directly that limh→0
1
h

(Γg(t + h) − Γg(t)) exists. First note

that
∫∞
0

g(s)√
t+s

ds is differentiable with derivative − 1
2

∫∞
0

g(s)√
(t+s)3

ds by a standard

argument. We now split
∫∞
0

g(s)√
|t−s|

ds into

∫ t−ε

0

g(s)
√

|t− s|
ds+

∫ t+ε

t−ε

g(s)
√

|t− s|
ds+

∫ ∞

t+ε

g(s)
√

|t− s|
ds (3.3.5)
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for some ε > 0. The first and third integrals are differentiable with combined

derivative

g(t− ε)√
ε

− 1

2

∫ t−ε

0

g(s)
√

(t− s)3
ds− g(t+ ε)√

ε
+

1

2

∫ ∞

t+ε

g(s)
√

(s− t)3
ds.

Note that g(t−ε)−g(t+ε)
ε

· √ε→ 0 as ε→ 0. We also remark that

− 1

2

∫ t−ε

0

g(s)
√

(t− s)3
ds+

1

2

∫ ∞

t+ε

g(s)
√

(s− t)3
ds

= −
[
g(s)√
t− s

]t−ε

s=0

+

∫ t−ε

0

g′(s)√
t− s

ds−
[
g(s)√
s− t

]∞

s=t+ε

+

∫ ∞

t+ε

g′(s)√
s− t

ds

→ g(0)√
t

+

∫ ∞

0

g′(s)
√

|t− s|
ds

as ε → 0. Thus − 1
2

∫ t−ε
0

g(s)√
(t−s)3

ds + 1
2

∫∞
t+ε

g(s)√
(s−t)3

ds has a limit as ε → 0,

which we define to be 1
2PV

∫∞
0

g(s)sgn(s−t)√
|t−s|3

ds.

The derivative of the middle term in (3.3.5) is the limit as h→ 0 of

1

h

(
∫ t+h+ε

t+h−ε

g(s)
√

|t+ h− s|
ds−

∫ t+ε

t−ε

g(s)
√

|t− s|
ds

)

=
1

h

∫ t+ε

t−ε

g(s+ h) − g(s)
√

|t− s|
ds

which is
∫ t+ε

t−ε
g′(s)√
|t−s|

ds. The absolute value of this is bounded by ‖g′‖∞
∫ t+ε

t−ε
1√
|t−s|

ds,

which we soon see is 2‖g‖∞
√
ε and converges to 0 as ε→ 0. Therefore, if we cal-

culate d
dt

∫∞
0

g(s)√
|t−s|

ds using (3.3.5) and letting ε→ 0 we obtain d
dt

∫∞
0

g(s)√
|t−s|

ds =

1
2PV

∫∞
0

g(s)sgn(s−t)√
|t−s|3

ds.

The benefit of this is that ψν = cΓe−ν·, which implies that ψν is continuously

differentiable, and which we may use to check property (3.3.3). However, we

first check that ψν ∈ C0, 54+β by looking at the behaviour of ψν(t) for large t,
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and we assume that t > 1 and 0 < ε < 1. Thus t > tε and we have

cψν(t) =

∫ tε

0

e−νs
(

1√
t− s

− 1√
t+ s

)

ds+

∫ ∞

tε
e−νs

(

1
√

|t− s|
− 1√

t+ s

)

ds.

The first integral is bounded by

∫ tε

0

(
1√
t− s

− 1√
t+ s

)

ds

=2(2
√
t−

√
t− tε −

√
t+ tε)

=2

(
tε√

t+
√
t− tε

− tε√
t+

√
t+ tε

)

=
4t2ε

(
√
t+

√
t− tε)(

√
t+

√
t+ tε)(

√
t− tε +

√
t+ tε)

which looks like t−
3
2+2ε for large t. The second integral is bounded by

e−νt
ε

∫ ∞

0

(

1
√

|t− s|
+

1√
t+ s

)

ds

which decays exponentially. Thus for large t, ψν(t) is bounded by ct−
3
2+2ε.

Choosing ε sufficiently small implies that ψν is in C0, 54 +β. We now check that

property (3.3.3). We first look at the behaviour of ψ′
ν(t) when t→ 0. Note that

−1

2

∫ ∞

0

e−νs
√

(t+ s)3
ds = − 1√

t
+ ν

∫ ∞

0

e−νs√
t+ s

ds.

Combining this with our expression for 1
2PV

∫∞
0

sgn(s−t)e−νs√
|t−s|3

ds gives ψ′
ν(0) = 0.

This leaves us needing to check the behaviour of ψ′
ν at ∞, and again, taking

0 < ε < 1 and t > 1, we note that

1

2

∫ tε

0

e−νs
(

1
√

(t− s)3
+

1
√

(t+ s)3

)

ds
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is bounded by

c

(
1√
t− tε

+
1√
t+ tε

− 2√
t

)

=
ct2ε√

t(
√
t− tε +

√
t+ tε)

√
t− tε

√
t+ tε

after a manipulation similar to above. This decays like t−2+2ε. We also note

that PV 1
2

∫∞
tε
e−νs

(

sgn(s−t)√
|t−s|3

− 1√
(t+s)3

)

ds decays exponentially, and so ψ′
ν(t)

decays as fast as t−2+2ε for small ε > 0.

It will be useful later on to define (ψν)anti, the anti-symmetric extension of ψν ,

by

(ψν)anti(t) =
1

2
√
π

∫ ∞

−∞

ξν(s)
√

π|t− s|
(3.3.6)

for all t ∈ R, where

ξν(s) =







e−νs s > 0

−e−νs s < 0

3.3.2 A system of equations for (〈ψν , ux〉;x ≥ 0) and (〈ψν , vx〉;x ≥ 0).

Let us summarise what we have shown so far. For any y > 0 and ν > 0, we

have defined ψν ∈ L2([0,∞)) and shown that there exists myψν ∈ X1×X2 such

that Cymyψν = κyψν . Taking ̺ψν
(φ, y) = 〈myψν , φ − ((u0)y , (v0)y)〉, we know

that ̺ψν
(φ, y) is Fy measurable, ̺ψν

(L, y) is in L1(Ω) for each y and, when

considered as a function in y, is in L1([0, x]) for any given X > 0. It now follows

from theorem (1.5) that

W̃x(ψν) = Wx(ψν) −
∫ x

0

̺ψν
(L, y)dy

is an (F̃x;x ≥ 0) martingale. Furthermore, we have shown almost surely that

̺ψν
(L, y) =

√
ν〈e−ν·, uy〉+ 〈e−ν·, vy〉. One may deduce from the continuity in y

of 〈e−ν·, uy〉 and 〈e−ν·, vy〉 that this holds almost surely for all y ∈ [0, X ]. Since
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we have also shown that ψν ∈ C0, 54+β and that 〈ψ′
ν , ux〉 is defined, we have thus

shown that for all ν > 0, 〈ψν , ux〉 and 〈ψν , vx〉 almost surely satisfy

〈ψν , ux〉 =〈ψν , u0〉 +

∫ x

0

〈ψν , vy〉dy

〈ψν , vx〉 =〈ψν , v0〉 −
∫ x

0

(
〈ψ′
ν , uy〉 +

√
ν〈e−ν·, uy〉 + 〈e−ν·, vy〉

)
dy

− W̃x(ψν) (3.3.7)

for all x ∈ [0, X ].

Let Y = Sp〈{ψν; ν > 0}〉. We can naturally define equations for ux and vx tested

against anything in Y . This is easier to write if we can find linear operators A1

and A2 such that A1(ψν) =
√
νe−ν· and A2(ψν) = e−ν·. This form allows us to

guess equations for 〈h1, ux〉 and 〈h2, vx〉 for a more general class of h1 and h2.

A1 is straightforward to deal with. Define

A1h2(t) = −
∫ ∞

t

h′2(s)
√

π(s− t)
ds.

If h2(s) = e−νs then

A1h2(t) =ν

∫ ∞

t

e−νs
√

π(s− t)
ds

=ν

∫ ∞

0

e−ν(t+s)√
πs

ds

=
√
νe−νt

In order to determine A2, we apply Fourier transforms, which we will denote by

F (taking Fψ(z) =
∫

R
ψ(t)e−itzdt), to (3.3.6).
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Thus

F ((ψν)anti)(z) =
1

2
F

(

1
√

π| · |

)

(z)F (ξν)(z).

Note that

√

2

π

∫ ∞

0

1√
t

cos(zt)dt =
1√
z

=

√

2

π

∫ ∞

0

1√
t

sin(zt)dt

for z > 0. We therefore get

∫ ∞

0

1√
πt
e−iztdt =

1 − i√
2z

and
∫ 0

−∞

1
√

π|t|
e−iztdt =

∫ ∞

0

1√
πt
eiztdt =

1 + i√
2z
.

So for z > 0 we get F

(

1√
π|·|

)

(z) =
√

2
z
. Furthermore, since 1√

π|·|
is symmet-

ric, so its Fourier transform is also, and hence

F

(

1
√

π| · |

)

(z) =

√

2

|z| .

This implies that

F (ξν)(z) =
√

2|z|F ((ψν)anti)(z)

=

√

2|z|
iz

izF ((ψν)anti)(z)

=
√

2
sgn(z)

i
√

|z|
F ((ψν)′anti)(z)

where (ψν)′anti refers to the derivative of (ψν)anti. Our previous observations

regarding the Fourier sine and cosine transformations of 1/
√

|t| show that for
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z > 0, F

(

sgn(·)√
|·|

)

(z) =
√

π
2 .

−2i√
z

=
√

2π
i
√
z

. The antisymmetry of sgn(t)√
|t|

gives

F

(

sgn(·)
√

| · |

)

(z) =
√

2π
sgn(z)

i
√

|z|

for all z ∈ R. This implies that

F (ξν)(z) = F

(

(ψν)′anti ∗
sgn(·)
√

π| · |

)

(z)

for all z ∈ R and hence

e−νt =

∫ ∞

−∞

sgn(t− s)
√

π|t− s|
(ψν)′anti(s)ds =: A2ψν(t)

for all t > 0. Note that (ψν)′anti is well defined since ψν(0) = 0.

3.3.3 Extending these equations for test functions h1, h2 ∈ C∞
0 ([0,∞)).

We can now write that for any h1, h2 ∈ Y and X ≥ 0, 〈h1, ux〉 and 〈h2, vx〉

almost surely satisfy

〈h1, ux〉 =〈h1, u0〉 +

∫ x

0

〈h1, vy〉dy

〈h2, vx〉 =〈h2, v0〉 −
∫ x

0

(〈h′2, uy〉 + 〈A1A2h2, uy〉 + 〈A2h2, vy〉)dy − W̃x(h2)

(3.3.8)

for all x ∈ [0, X ]. As a shorthand, we shall say that (〈h1, ux〉, 〈h2, vx〉) satisfies

system (3.3.8) when the above is satisfied almost surely for a given x, even

though we should also include the terms 〈h′2, ux〉, 〈A1A2h2, ux〉 and 〈A2h2, vx〉.

To what extent can we extend this for h1 ∈ C0, 54+β and h2 ∈ C0, 34+β? It seems

unlikely to extend for all h1 ∈ C0, 54+β and h2 ∈ C0, 34+β since for this we would

require for all such h2 that A1A2h2 ∈ C0, 54+β and A2h2 ∈ C0, 34+β . This seems
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implausible, however we do have the following:

Proposition 3.2. For all h2 ∈ C∞
0 ([0,∞)), A1A2h2 ∈ C0, 54+β and A2h2 ∈

C0, 34+β.

Proof Suppose that the support of h2 lies within [0, T ] and take t≫ T . Then

A2h2(t) =c

∫ T

0

(
1√
t− s

+
1√
t+ s

)

h′2(s)ds

=c

∫ T

0

(
1

(t− s)
3
2

− 1

(t+ s)
3
2

)

h2(s)ds

Thus

|A2h2(t)| ≤c
∣
∣
∣
∣
∣

∫ T

0

(
1

(t− s)
3
2

− 1

(t+ s)
3
2

)

ds

∣
∣
∣
∣
∣

=c
∣
∣
∣

[

(t− s)−
1
2 + (t+ s)−

1
2

]∣
∣
∣

T

s=0

≤c
(

1√
t− T

− 1√
t

)

−
(

1√
t
− 1√

t+ T

)

.

Now

1√
t− T

− 1√
t

=

√
t−

√
t− T√

t
√
t− T

=
T√

t
√
t− T (

√
t+

√
t− T )

which for large t looks like t−
3
2 . A similar expression for 1√

t
− 1√

t+T
allows us

to at least deduce that A2h2(t) ≤ ct−
3
2 provided that t ≥ T , and hence A2h2 is

in C0, 34+β , in fact in C0, 54+β even.

For t > T , the kernel in the expression for A2h2(t) has no singularities, so

we may differentiate with respect to t, taking derivatives inside the integral to

obtain
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(A2h2)′(t) =c

∫ T

0

(
1

(t− s)
3
2

+
1

(t+ s)
3
2

)

h′2(s)ds

=c

∫ T

0

(
1

(t− s)
5
2

− 1

(t+ s)
5
2

)

h2(s)ds.

This is bounded by

c
(

((t− T )−
3
2 − t−

3
2 ) − (t−

3
2 − (t+ T )−

3
2 )
)

.

The first term here is

t3 − (t− T )3

(t− T )
3
2 t

3
2 (t

3
2 + (t− T )

3
2 )
.

For large t this looks like t−
5
2 . Therefore, provided that s > T , |(A2h2)′(t+s)| ≤

c(t+ s)−
5
2 , so that

|A1A2h2(s)| ≤c
∫ ∞

0

(t+ s)−
5
2

t
1
2

dt

=c

∫ ∞

0

(su+ s)−
5
2

s
1
2u

1
2

sdu

=cs−2

∫ ∞

0

(u+ 1)−
5
2

u
1
2

du.

This is finite, and so A1A2h2(s) goes to 0 at least as fast as s−2. Thus A1A2h2 ∈

C0, 54+β .

We now know that the system (3.3.8) is well defined for h1, h2 in C∞
0 ([0,∞)).

What we do not know is whether 〈h1, ux〉 and 〈h2, vx〉 satisfy such a system for

any x ≥ 0. We have already shown that 〈h1, ux〉 and 〈h1, vx〉 satisfy the first

equation in (3.3.8) for any h1 ∈ C0, 54+β . It is the second equation which is more
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problematic. Given fn ∈ Y we know that

〈fn, vx〉 = 〈fn, v0〉 −
∫ x

0

(〈f ′
n, uy〉 + 〈A1A2fn, uy〉 + 〈A2fn, vy〉)dy − W̃x(fn).

(3.3.9)

Our aim, given h2 ∈ C∞
0 ([0,∞)), is to choose fn in such a way that each term

in (3.3.9) converges in L2(Ω) to the equivalent term with h2 replacing fn. It is

not immediately obvious that we may choose fn to even converge pointwise to

h2. However we deduce from the form of ψν given by (3.3.1) that

(fn − h2)(t) = c

∫ ∞

0

(

1
√

|t− s|
− 1√

t+ s

)

A2(fn − h2)(s)ds. (3.3.10)

The reason this is of use is because for each n, A2fn is a linear combination

of exponential functions. We may therefore look to approximate A2h2 by such

functions and look to deduce some information regarding the convergence of

the fn from (3.3.10). The following is an application of corollary 3.7 of [dP71],

which is an extension of the Stone-Weierstrass theorem for weighted topologies.

Proposition 3.3. Let A be the subspace of linear combinations of exponential

functions. Then A is dense in C0,α([0,∞)) for all α > 0.

We have previously seen that for any h2 ∈ C∞
0 ([0,∞)) and 0 < α < 3

2 ,

A2h2 ∈ C0,α([0,∞)). We may thus choose fn ∈ Y such that ‖A2(fn−h2)‖α → 0

as n → ∞. As an aside, we remark that if α′ < α then ‖A2(fn − l)‖α′ → 0.

Thus in the following arguments, we may allow α to represent different values as

required, so long as we may eventually choose an α ∈ (0, 3
2 ) that is big enough

for all of our arguments to work.
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In particular, we observe that |fn(t) − h2(t)| is bounded by

∫ ∞

0

∣
∣
∣
∣
∣

1
√

|t− s|
− 1√

t+ s

∣
∣
∣
∣
∣
|A2(fn − h2)(s)|ds

≤‖A2(fn − h2)‖α
∫ ∞

0

(

1
√

|t− s|
− 1√

t+ s

)

(1 + s)−αds

=‖A2(fn − h2)‖α
∫ ∞

0

(

1
√

|t+ 1 − (s+ 1)|
− 1
√

(t+ 1) + (s+ 1) − 2

)

(s+ 1)−αds

=‖A2(fn − h2)‖α(1 + t)−α+ 1
2

∫ ∞

1
1+t




1

√

|1 − u|
− 1
√

1 + u− 2
1+t



u−αdu

≤‖A2(fn − h2)‖α(1 + t)−α+ 1
2

∫ ∞

0




1

√

|1 − u|
− 1
√

1 + u− 2
1+t



u−αdu

where we have used the substitution (1+s) = u(1+t). Since −1/
√

1 + u− 2
1+t <

−1/
√

1 + u for all t > 0, it follows that

|fn(t)−h2(t)| ≤ ‖A2(fn−h2)‖α(1 + t)−α+ 1
2

∫ ∞

0

(

1
√

|1 − u|
− 1√

1 + u

)

u−αdy

and we have already noted that the integral is finite for any α < 2. Thus,

‖fn− h2‖β ≤ c‖A2(fn − h2)‖α supt≥0(1 + t)β−α+ 1
2 and thus ‖fn− h2‖α− 1

2
→ 0

as n→ ∞.

We now investigate the convergence of each of the terms in (3.3.9). To begin

with, note that

∫ ∞

0

(fn(t) − h2(t))2dt ≤ ‖fn − h2‖2
α− 1

2

∫ ∞

0

(1 + t)−2α+1dt

which converges to 0 for any α > 1. For such α, it follows that W̃x(fn) converges

to W̃x(h2) in L2(Ω). We now look at 〈fn − h2, vx〉. The norm of this in L2(Ω)
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is

c

∫ ∞

0

∫ t

0

(fn − h2)(t)(fn − h2)(t′)

(
1√
t− t′

− 1√
t+ t′

)

dt′dt.

This is bounded by

c‖fn − h2‖2
α− 1

2

∫ ∞

0

∫ t

0

(1 + t)−α+ 1
2 (1 + t′)−α+ 1

2

(
1√
t− t′

− 1√
t+ t′

)

dt′dt

which converges to 0 provided that the integral is finite. We have already seen

that this is the case provided that α − 1
2 >

3
4 , which is an acceptable choice of

α. This naturally deals with 〈fn, v0〉 as well.

We may follow the above argument to show that 〈A2(fn− h2), vy〉 converges to

0 in L2(Ω) provided that 3
4 < α < 3

2 . For the 〈A1A2(fn − h2), ux〉 term, we

recall that

A1A2(fn − h2)(t) = −
∫ ∞

t

(A2(fn − h2))′(s)
√

π(s− t)
ds

(provided of course that this is well defined, which we have seen is certainly the

case for fn − h2 above). We thus have

E[〈A1A2h, ux〉2]

=c

∫ ∞

0

∫ ∞

0

(∫ ∞

t

(A2h)′(s)√
s− t

ds

)(∫ ∞

t′

(A2h)′(s′)√
s′ − t′

ds′
)

(
√
t+ t′ −

√

|t− t′|)dt′dt

=c

∫ ∞

0

∫ ∞

0

(A2h)′(s)(A2h)′(s′)

∫ s

0

∫ s′

0

√
t+ t′ −

√

|t− t′|√
s− t

√
s′ − t′

dt′dtds′ds.

We deal with the t, t′ part of the integral first, noting that t + t′ ≥ 2
√
tt′ and

thus
√
t+ t′ −

√

|t− t′| =
t′ ∧ t√

t+ t′ +
√

|t− t′|
≤ t′ ∧ t√

2(tt′)
1
4

. (3.3.11)

This now implies, along with the change of variables t = su and t′ = s′u′, that
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∫ s

0

∫ s′

0

√
t+ t′ −

√

|t− t′|√
s− t

√
s′ − t′

dt′dt

≤c
∫ s

0

∫ s′

0

t′ ∧ t√
s− t

√
s′ − t′(tt′)

1
4

dt′dt

≤c(s′ ∧ s)(ss′) 1
4

∫ 1

0

∫ 1

0

u′ ∨ u√
1 − u

√
1 − u′(uu′)

1
4

du′du

where we have also used (s′u′) ∧ (su) ≤ (s′ ∧ s)(u′ ∨ u). It now follows that

E[〈A1A2h, ux〉2] ≤c
∫ ∞

0

∫ ∞

0

(A2h)′(s)(A2h)′(s′)(s′ ∧ s)(ss′) 1
4 ds′ds

=c

∫ ∞

0

∫ s

0

(A2h)′(s)(A2h)′(s′)(s′)
5
4 s

1
4 ds′ds

=c

∫ ∞

0

d

ds
((A2h(s))2)s

3
2 ds+ c

∫ ∞

0

∫ ∞

s′
(A2h)′(s)s

1
4A2h(s′)(s′)

1
4 dsds′

=c

∫ ∞

0

(A2h(s))2s
1
2 ds+ c

∫ ∞

0

A2h(s′)(s′)
1
4 [A2h(s)s

1
4 ]∞s=s′ds

′

+ c

∫ ∞

0

∫ ∞

s′
A2h(s)s−

3
4A2h(s′)(s′)

1
4 dsds′

≤c‖A2h‖2
α

∫ ∞

0

(1 + s)−2αs
1
2 ds

+ c‖A2h‖2
α

∫ ∞

0

∫ s

0

s−
3
4 (s′)

1
4 (1 + s)−α(1 + s′)−αds′ds.

Of course, for this argument to work and for the final integrals to be finite,

there are restrictions on α, and one soon sees that it is sufficient that α > 5
4 .

Replacing h by fn−h2, we have E[〈A1A2(fn−h2), ux〉2] ≤ c‖A2(fn−h2)‖α → 0

as n→ ∞.

The remaining term is 〈(fn − h2)′, uy〉. This is a little tricky since we do not

have a grip on the convergence of (fn − h2)′. However, (3.3.4) allows us to

129



deduce that

(fn − h2)′(t) = cPV

∫ ∞

0

A2(fn − h2)(s)

(

sgn(s− t)
√

|t− s|3
− 1
√

(t+ s)3

)

ds.

From this it follows that

E[〈(fn − h2)′, ux〉2]

=c

∫ ∞

0

∫ t

0

(

PV

∫ ∞

0

(

sgn(t− s)
√

|t− s|3
− 1
√

(t+ s)3

)

A2(fn − h2)(s)ds

)

.

(

PV

∫ ∞

0

(

sgn(t′ − s′)
√

|t′ − s′|3
− 1
√

(t′ + s′)3

)

A2(fn − h2)(s′)ds′
)

(
√
t+ t′ −

√
t− t′)dt′dt

=cPV

∫ ∞

0

PV

∫ ∞

0

(

sgn(1 − s)
√

|1 − s|3
− 1
√

(1 + s)3

)(

sgn(1 − s′)
√

|1 − s′|3
− 1
√

(1 + s′)3

)

.

∫ ∞

0

∫ t

0

A2(fn − h2)(st)A2(fn − h2)(s′t′)√
tt′

(
√
t+ t′ −

√
t− t′)dt′dtds′ds

The change of order of integration is justified by first defining the s and s′

integrals on [0, t − ε) ∪ (t + ε,∞) and [0, t′ − ε) ∪ (t′ + ε,∞) respectively (for

ε > 0) and applying Fubini’s theorem in this case. We may then allow ε→ 0 to

obtain the above equality, provided of course that the final integral is finite. If

we now use (3.3.11) we see that the t, t′ integral is bounded above by

c‖A2(fn − h2)‖2
α

∫ ∞

0

∫ t

0

(1 + st)−α(1 + s′t′)−α
t′

(tt′)
3
4

dt′dt

=c

∫ ∞

0

∫ s′

s

0

(1 + r)−α(1 + vr)−α
r

1
2 v

1
4

s
1
4 (s′)

5
4

dvdr

following a change of variables (t′ = tu followed by r = st and v = s′u
s

). Now

∫ ∞

0

∫ ∞

0

(1+r)−α(1+vr)−αr
1
2 v

1
4 dvdr =

∫ ∞

0

(1+r)−αr
1
2

∫ ∞

0

(1+u)−α
u

1
4

r
5
4

dudr <∞
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provided α > 5
4 . In this case we have

E[〈(fn − h2)′, uy〉2] ≤ c‖A2(fn − h2)‖2
αPV

∫ ∞

0

PV

∫ ∞

0

(

sgn(1 − s)
√

|1 − s|3
− 1
√

(1 + s)3

)

(

sgn(1 − s′)
√

|1 − s′|3
− 1
√

(1 + s′)3

)

1

s
1
4 (s′)

5
4

ds′ds.

Any fears that the s′ integrand might have too great a singularity at s′ = 0 are

allayed by the fact that 1√
(1−s′)3

− 1√
(1+s′)3

looks like s′ for small s′. We may

now fix α ∈ (5
4 ,

3
2 ), and given h2 ∈ C∞

0 ([0,∞)) we may choose fn ∈ Y such

that ‖A2(fn − h2)‖α → 0 as n→ ∞. What we have shown is that we may take

L2(Ω) limits in (3.3.9) to obtain

Proposition 3.4. For any h1, h2 ∈ C∞
0 ([0,∞)) and x ≥ 0, (〈h1, ux〉, 〈h2, vx〉)

satisfies system (3.3.8).

Suppose we now take X > 0. We are now able to find a set A1 ∈ F

such that P(A1) = 1 on which (〈h1, ux〉, 〈h2, vx〉) satisfies (3.3.8) for all x ∈

[0, X ] ∩ Q. We can also find A2 ∈ F with P(A2) = 1 on which all the terms in

(3.3.8) are continuous on [0, X ]. Thus, A1 ∩ A2 is a set of measure 1 on which

(〈h, ux〉, 〈h, vx〉) satisfies (3.3.8) for all x ∈ [0, X ].

3.4 The Martingale Problem and other unresolved issues.

3.4.1 Defining a generator.

Let f ∈ C∞
0 (Rn+m) and suppose that h1, · · · , hn+m ∈ C∞

0 (R). We define a

process (F (ux, vx);x ∈ [0, X ]) by

F (ux, vx) = f(〈h1, ux〉, . . . , 〈hn, ux〉, 〈hn+1, vx〉, . . . , 〈hn+m, vx〉).

Itô’s formula now implies that
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F (ux, vx) − F (u0, v0) −
n∑

i=1

∫ x

0

∂if(〈h1, uy〉, . . . , 〈hn+m, vy〉)〈hi, vy〉dy

−
m∑

j=1

∫ x

0

∂n+jf(〈h1, uy〉, . . . , 〈hn+m, vy〉)(〈h′n+j , uy〉 + 〈A1A2hn+j, uy〉 + 〈A2hn+j , vy〉)dy

−
m∑

j=1

m∑

k=1

∫ x

0

〈hn+j , hn+k〉∂j+n∂k+nf(〈h1, uy〉, . . . , 〈hn+m, vy〉)dy

is an (F̃x;x ∈ [0, X ]) martingale. Of course, we may view F as an element of

FC∞
b (C∞

0 ([0,∞)) × C∞
0 ([0,∞))) ⊂ B(E), and it is now tempting to define a

generator G on this subset of B(E) by

GF (u, v) =

n∑

i=1

〈hi, v〉∂if(〈h1, u〉, . . . , 〈hn+m, v〉)

−
m∑

j=1

(〈h′n+j , u〉 + 〈A1A2hn+j , u〉 + 〈A2hn+j , v〉)∂j+nf(〈h1, u〉, . . . , 〈hn+j , v〉)

−
m∑

j=1

m∑

k=1

〈hn+j , hn+k〉∂j+n∂k+nf(〈h1, u〉, . . . , 〈hn+m, v〉). (3.4.1)

There is no hope that GF ∈ B(E), but more pressingly, at the moment we

do not even know if it defines a function on E. We have demonstrated that

GF (ux, vx) is defined for all x ≥ 0, but for GF (u, v) to be well defined for all

(u, v) ∈ E, we need to know that for all h ∈ C∞
0 ([0,∞)), that h, h′, A1A2h ∈ X1

and that h,A2h ∈ X2. If this is the case, then we have some hope of setting up a

martingale problem to which ((ux, vx);x ∈ [0, X ]) is a solution. As a result, the

next section discusses in greater detail our assumption that we have a suitable

space E in which ((ux, vx);x ≥ 0) takes values.
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3.4.2 A separable Banach space setting for (vx;x ≥ 0).

Let C : D(C) → L2([0,∞)) be a positive, densely defined closed operator on

L2([0,∞)) defined by

Ch(t) =

∫ ∞

0

C(t, s)h(s)ds

for some positive kernel C. If C is symmetric, then C is a symmetric operator.

We can extend this as a symmetric operator on L2([0,∞); C) by defining C(h1 +

ih2) = Ch1 + iCh2 for h1, h2 ∈ D(C), and we remark that

〈C(h1 + ih2), h1 + ih2〉 = 〈Ch1, h1〉 + 〈Ch2, h2〉 + i〈Ch2, h1〉 − i〈Ch1, h2〉

from which it follows that the extended C is also positive. We now look at

R(C−iI)⊥ and R(C+iI)⊥, where R denotes the range. For h1, h2, g1, g2 ∈ D(C),

one soon sees that 〈(C − iI)(h1 + ih2), g1 + ig2〉 = 0 for all h1, h2 ∈ D(C) if and

only if Cg1 = g2 and Cg2 = −g1, and that 〈(C − iI)(h1 + ih2), g1 + ig2〉 = 0 for

all h1, h2 ∈ D(C) if and only if Cg1 = −g2 and Cg2 = g1. Clearly then

R(C − iI)⊥ ∩ (D(C) + iD(C)) = R(C + iI)⊥ ∩ (D(C) + iD(C)).

Thus the dimensions of R(C + iI)⊥ and R(C − iI)⊥ are the same. Referring

to section 13.20 of [Rud91], C thus has a self-adjoint extension, which we also

denote by C, and which furthermore has a self adjoint square root, that is

C 1
2 : D(C 1

2 ) → L2([0,∞)) such that C 1
2 C 1

2 = C (see theorem 13.31 of [Rud91]).

Suppose now that L2([0,∞)) is embedded in a Hilbert space H and that C 1
2 :

L2([0,∞)) → H . If C 1
2 is Hilbert-Schmidt, then for a cylindrical Wiener measure

µ0 on L2([0,∞)), C 1
2µ0 is a Radon Gaussian measure onH by Sazonov’s theorem

(see [Sch73]). Define an operator K : D(K) → L2([0,∞)) on L2([0,∞)) by

Kh(t) =
∫∞
0 k(t, s)h(s)ds for some kernel k, and take H to be the closure
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of D(K) under the norm ‖Kh‖2. We require that K is injective so that ‖ ·

‖H really is a norm. We shall assume that k(t, s) is of the form k(t, s) =

k(t − s), where k : R → R is symmetric. The covariance of C 1
2 is given by

∫

H
(h, φ)H(g, φ)HC 1

2µ0(dφ). Assume that we may find a basis {ek} ⊂ D(C 1
2 ) for

L2([0,∞)). We look to approximate the covariance by

∫

L2

(

h, C 1
2

(
n∑

k=0

〈φ, ek〉ek
))

H

(

g, C 1
2

(
n∑

k=0

〈φ, ek〉ek
))

H

µ0(dφ)

=
n∑

i=0

n∑

j=0

(h, C 1
2 ei)H(g, C 1

2 ej)H

∫

L2

〈φ, ei〉〈φ, ej〉µ0(dφ)

=
n∑

i=0

(h, C 1
2 ei)H(g, C 1

2 ei)H

Suppose that h, g are such that that Kh,Kg ∈ D(K), and furthermore that

K2h,K2g ∈ D(C 1
2 ). It then follows by the symmetry of both K and C 1

2 that

the above expression is

n∑

i=0

〈C 1
2K2h, ei〉〈C

1
2K2g, ei〉.

This converges as n → ∞ to 〈C 1
2K2h, C 1

2K2g〉 = 〈CK2h,K2g〉. Provided that

C 1
2 : L2([0,∞)) → H is continuous, this is the covariance of C 1

2µ0 for h and g in

the domain of K2. In fact, as mentioned above, our aim is to choose K so that

C 1
2 is Hilbert-Schmidt. Suppose that we choose k so that k(t, ·) ∈ D(C 1

2 ) for all

t ∈ [0,∞). Note that if k(t, ·) ∈ D(C), then ‖C 1
2 k(t, ·)‖2

2 = 〈Ck(t, ·), k(t, ·)〉, so

we may deduce that k(t, ·) ∈ D(C 1
2 ). We then note that

∞∑

i=0

‖C 1
2 ei‖2

H =

∞∑

i=0

∫ ∞

0

(∫ ∞

0

k(t, s)C 1
2 ei(s)ds

)2

dt
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=
∞∑

i=0

∫ ∞

0

(∫ ∞

0

C 1
2 k(t, ·)(s)ei(s)ds

)2

dt

=

∫ ∞

0

∫ ∞

0

(C 1
2 k(t, ·)(s))2dsdt

=

∫ ∞

0

∫ ∞

0

Ck(t, ·)(s)k(t, s)dsdt

=

∫ ∞

0

∫ ∞

0

C(s, r)

(∫ ∞

0

k(t, r)k(t, s)dt

)

dsdr

which provides a condition which k must satisfy in order that C 1
2 is a Hilbert-

Schmidt operator.

Let us put this in the context of the process (vx;x ≥ 0). We have already seen,

for h1, h2 ∈ C0, 34 +β, that

E[〈h1, vx〉〈h2, vx〉] = c

∫ ∞

0

∫ ∞

0

h1(t)h2(s)

(

1
√

|t− s|
− 1√

t+ s

)

dsdt.

Set Cv(t, s) = 1√
|t−s|

− 1√
t+s

and Cvh(t) =
∫∞
0 Cv(t, s)h(s)ds. This fits into the

above setting. We need to find some k(t, s) such that k(t, ·) ∈ C
1
2
v and such that

∣
∣
∣
∣

∫ ∞

0

∫ ∞

0

Cv(t, s)

∫ ∞

0

k(t, r)k(r, s)drdsdt

∣
∣
∣
∣
<∞.

Suppose we take k(t, s) = (1 + |t − s|)α for some α < − 1
2 . Remark that for

r > 0,

(1 + |t− r|)α ≤ (1 + r)α
(

1 +

∣
∣
∣
∣
1 −

(
1 + t

1 + r

)∣
∣
∣
∣

)α

.

Thus a little manipulation implies that

135



∫ ∞

0

∫ ∞

0

Cv(t, s)

∫ ∞

0

k(t, r)k(r, s)drdsdt

≤
∫ ∞

0

∫ ∞

1
1+r

∫ ∞

1
1+r




1

√

|t− s|
− 1
√

t+ s− 2
1+r



 (1 + r)
3
2+2α

· (1 + |1 − t|)α(1 + |1 − s|)αdsdtdr

≤
∫ ∞

0

(1 + r)
3
2 +2αdr ·

∫ ∞

0

∫ ∞

0

Cv(t, s)(1 + |1 − t|)α(1 + |1 − s|)αdsdt.

We have already seen that the s, t integral is finite if α < − 3
4 , whilst the r integral

is finite if α < − 5
4 . Remark that Cvk(t, ·) ∈ L2([0,∞)) and |〈Cvk(t, ·), k(t, ·)〉| <

∞ for such α, so we may assume that k(t, ·) ∈ D(C
1
2
v ) for all t > 0. We also

remark that D(C
1
2
v ) includes C∞

0 ([0,∞)) so it is possible to find an orthonormal

basis for L2([0,∞)) in D(C
1
2
v ).

We thus take H to be the closure of {h ∈ L2([0,∞)) : K2h ∈ L2([0,∞))} under

the norm ‖h‖H = ‖Kh‖2. In this setting, C
1
2
v µ0 is a Radon Gaussian measure

on H . Suppose that g ∈ H , and h ∈ D(K2). We can define a linear functional

on R(K2) by g(K2h) = (h, g)H . Note that |g(K2h)| ≤ ‖h‖H‖g‖H. Suppose

further that K2h ∈ C0, 34+β . Then

‖h‖2
H =

∫ ∞

0

(1 + t)
3
4+βK2h(t) · (1 + t)−

3
4−βh(t)dt ≤ c‖K2h‖ 3

4+β‖h‖2.

Of course, ‖K2h‖ 3
4+β‖h‖H ≤ c(‖K2h‖ 3

4+β + ‖h‖2)2, so we define ‖K2h‖X2 :=

‖K2h‖ 3
4+β + ‖h‖2 and set X2 to be the closure under this norm of {K2h ∈

C0, 34+β : h ∈ D(K2)}. Thus any g ∈ H defines an element of X∗
2 , so we may

think of C
1
2
v µ0 as a Radon Gaussian measure on X∗

2 . (More precisely, we may

embed H in X∗
2 , and use lemma 2.2.2 of [Bog98] to deduce that the push-forward

of C
1
2
v µ0 is a Gaussian measure on X∗

2 . The fact that the push-forward is Radon
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follows from the continuity of the embedding.)

Intuitively now, the law of vx should be C
1
2
v . The problem with this is that all we

can say about vx is that it has a modification, which we also denote by vx, which

takes values in RX2 . To spell this out, the law of vx is defined on the cylinder

sets {φ ∈ RX2 : φ(h1) ∈ B1, . . . , φ(hn) ∈ Bn} where n ∈ N, B1, . . . , Bn ∈ B(R)

and h1, . . . , hn ∈ X2, whilst C
1
2
v µ0 is defined on the cylinder sets {φ ∈ X∗

2 :

h1(φ) ∈ B1, . . . , hn(φ) ∈ Bn}, where again n ∈ N and B1, . . . , Bn ∈ B(R), and

h1, . . . , hn ∈ (X∗
2 )∗. We denote the σ-algebras generated by these cylinder sets

E(RX2) and E(X∗
2 ) respectively. (This is consistent with Bogachev’s notation in

[Bog98], where E(X) is defined to be the smallest σ-algebra making all elements

of X∗ measurable. In our case, the topology on RX2 is the coarsest topology

which makes the maps φ 7→ φ(h) continuous for all h ∈ X2.) Define j : X∗
2 →

RX2 by j(φ) = φ. One clearly sees that the preimages under j of the cylinder

sets in RX2 are cylinder sets in X∗
2 , since each h ∈ X2 defines an element in

(X∗
2 )∗. We may thus use lemma 2.2.2 of [Bog98] once again to deduce that

C
1
2
v µ0 defines a Gaussian measure on E(RX2 ). Furthermore, if φn → φ in X∗

2

then φn(h) → φ(h) for all h ∈ X2. Thus j is continuous and it follows that C
1
2
v µ0

is Radon on E(RX2 ). We have constructed C
1
2
v µ0 to have the same covariance as

the law of vx, so it is easily seen, for example, that C
1
2
v µ0 coincides with the law

of vx on the cylinder sets of RX2 , and hence on E(RX2 ). Thus for each x ≥ 0

the law of vx has support in X∗
2 .
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3.4.3 A martingale problem associated with G.

We now take Ψ ⊂ C∞
0 ([0,∞)) × C∞

0 ([0,∞)) such that, for (h1, h2) ∈ Ψ,

h1, h
′
2, A2h1 ∈ X1, and h1, h2, A1A2h2 ∈ X2. Define

FΨ = {F ∈ B(E) : F (u, v) = f(u(h1), . . . ,u(hn), v(hn+1), . . . , v(h2n)),

f ∈ C∞
0 (Rn+m), (hi, hn+i) ∈ Ψ},

and define GF as before for F ∈ FΨ. We thus define a martingale problem for

(AΨ, µ), where AΨ ∈ B(E) ×m(E) is defined by

AΨ = {(F,G) : F ∈ FΨ, G = GF}.

and µ is the law of (u0, v0) on E. We now have a modification of ((ux, vx);x ∈

[0, X ]) which takes values in E. Suppose that this modification, which we also

denote by ((ux, vx);x ∈ [0, X ]), is a solution to the martingale problem for

(AΨ, µ), and specifically that F (ux, vx)−
∫ x

0
GF (uy, vy)dy is an (F̃x;x ∈ [0, X ])

martingale for all F ∈ FΨ. (In particular, we need to prove either directly

or using the form of (3.3.8) that ((ux, vx);x ∈ [0, X ]) really is adapted to

(F̃x;x ≥ 0).) Note that although we do not know that GF is continuous in

E for F ∈ FΨ, it may be viewed as a continuous function on a Euclidean space,

so that in reference to the remarks in section 1.1.3 which relate to the adapt-

edness of (F (ux, vx) −
∫ x

0
GF (uy, vy)dy;x ∈ [0, X ]) to (F̃x;x ≥ 0), this is easily

seen to follow from a suitable choice of τn.

If we can show that for any x the law of (ξx, ηx) is the same for any solu-

tion ((ξx, ηx);x ∈ [0, X ]) of the martingale problem for (AΨ, µ) with respect to

(F̃x;x ∈ [0, X ]) then the Markov property follows from the first part of theorem

1.1. The strong Markov property does not immediately follow however because
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it is not true that for F ∈ FΨ, GF ∈ B(E). In order to overcome this, and

also to better understand the one dimensional distributions for solutions of the

martingale problem, we shall first show that any solution of the martingale has

the same form as ((ux, vx);x ∈ [0, X ]) in some sense.

Proposition 3.5. Let ((ξx, ηx);x ∈ [0, X ]) be a solution of the martingale prob-

lem for (AΨ, µ) with respect to some complete filtration (Ux;x ∈ [0, X ]). Then

for every (h1, h2) ∈ Ψ there exists a (Ux;x ∈ [0, X ]) martingale Ŵx(h2) such

that for each x ≥ 0,

〈h1, ξx〉 =〈h1, u0〉 +

∫ x

0

〈h1, ηy〉dy

〈h2, ηx〉 =〈h2, v0〉 −
∫ x

0

(〈h′2, ξy〉 + 〈A1A2h2, ξy〉 + 〈A2h2, ηy〉)dy

− Ŵx(h2) (3.4.2)

almost surely. Furthermore, for any two (h1, h2) and (h3, h4) in Ψ, the quadratic

variation of Ŵx(h2) and Ŵx(h4) is given by

〈Ŵx(h2), Ŵx(h4)〉 = 〈h2, h4〉2.

Proof For (h1, h2) ∈ Ψ we define (Ux;x ≥ 0) local martingales (Mh1
x ;x ≥ 0)

and (Ŵx(h2);x ∈ [0, X ]) by

Mh1
x =〈h1, ξx〉 −

∫ x

0

〈h1, ηy〉dy

Ŵx(h2) =〈h2, ηx〉 −
∫ x

0

〈h2, ζy〉dy

Here we have written

〈h2, ζy〉 = −〈h′2, uy〉 − 〈A1A2h2, uy〉 − 〈A2h2, vy〉
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for convenience. The first equation in (3.4.2) is Mh1
x = Mh1

0 almost surely,

which we obtain by showing that E[(Mh1
x −Mh1

0 )2] = 0. To this end, we note

that

〈h1, ξx〉2 − 2

∫ x

0

〈h1, ξy〉〈h1, ηy〉dy

is a (Ux;x ∈ [0, X ]) local martingale. As a result

(

〈h1, ξx〉 −
∫ x

0

〈h1, ηy〉dy
)2

=2

∫ x

0

〈h1, ξy〉〈h1, ηy〉dy − 2〈h1, ξx〉
∫ x

0

〈h1, ηy〉dy +

(∫ x

0

〈h1, ηy〉dy
)2

+ loc. mart

=2

∫ x

0

(

Mh1
y +

∫ y

0

〈h1, ηz〉dz
)

〈h1, ηy〉dy − 2

(∫ x

0

〈h1, ηy〉dy
)2

− 2Mh1
x

∫ x

0

〈h1, ηy〉dy

+

(∫ x

0

〈h1, ηy〉dy
)2

+ loc. mart

Remark that since the function 〈h1, ηy〉〈h1, ηz〉 is symmetric in y and z,

2

∫ x

0

∫ y

0

〈h1, ηy〉〈h, ηz〉dzdy =

∫ x

0

∫ x

0

〈h1, ηy〉〈h1, ηz〉dzdy =

(∫ x

0

〈h1, ηy〉dy
)2

and furthermore, by stochastic integration by parts,

2

∫ x

0

Mh1
y 〈h, ηy〉d = 2Mh1

x

∫ x

0

〈h1, ηy〉dy − 2

∫ x

0

〈h1, ηy〉dMh1
y

where the last term is a (Ux;x ∈ [0, X ]) local martingale. Thus
(
〈h1, ξx〉 −

∫ x

0
〈h1, ηy〉dy

)2

is a (Ux;x ∈ [0, X ]) local martingale. Consequently

E

[(

〈h1, ξx〉 − 〈h1, u0〉 −
∫ x

0

〈h1, ηy〉dy
)2
]

= 0

and we obtain

〈h1, ξx〉 = 〈h1, u0〉 +

∫ x

0

〈h1, ηy〉dy a.s.
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We now need to calculate the quadratic variation 〈Ŵ (h2), Ŵ (h4)〉x for (h1, h2),(h3, h4) ∈

Ψ, so we look at Ŵx(h2)Ŵx(h4). This is given by

(

〈h2, ηx〉 − 〈h2, v0〉 −
∫ x

0

〈h2, ζy〉dy
)(

〈h4, ηx〉 − 〈h4, v0〉 −
∫ x

0

〈h4, ζy〉dy
)

= − Ŵx(h2)〈h4, v0〉 − Ŵx(h4)〈h2, v0〉 − 〈h2, v0〉〈h4, v0〉 + 〈h2, ηx〉〈h4, ηx〉

− 〈h2, ηx〉
∫ x

0

〈h4, ζy〉dy − 〈h4, ηx〉
∫ x

0

〈h2, ζy〉dy +

∫ x

0

〈h2, ζy〉dy
∫ x

0

〈h4, ζy〉dy

Furthermore

〈h2, ηx〉〈h4, ηx〉 − 〈h2, v0〉〈h4, v0〉 −
∫ x

0

〈h2, ζy〉〈h4, ηy〉dy

−
∫ x

0

〈h4, ζy〉〈h2, ηy〉dy −
∫ x

0

∫ ∞

0

h2(s)h4(s)dsdy

is an (F̃x;x ≥ 0) martingale, and so Ŵx(h2)Ŵx(h4) is

∫ x

0

∫ ∞

0

h2(s)h4(s)dsdy +

∫ x

0

〈h4, ζy〉〈h2, ηy〉dy − 〈h2, ηx〉
∫ x

0

〈h4, ζy〉dy

+

∫ x

0

〈h2, ζy〉〈h4, ηy〉dy − 〈h4, ηx〉
∫ x

0

〈h2, ζy〉dy

+

∫ x

0

〈h2, ζy〉dy
∫ x

0

〈h4, ζy〉dy + loc. mart .

As before, a stochastic integration by parts gives us

Ŵx(h2i)

∫ x

0

〈h2(3−i), ζy〉dy =

∫ x

0

∫ y

0

〈h2(3−i), ζz〉dzdŴy(h2i)

+

∫ x

0

Ŵy(h2i)〈h2(3−i), ζy〉dy

for i = 1, 2, from which it follows that
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∫ x

0

〈h2i, ηy〉〈h2(3−i), ζy〉dy − 〈h2i, ηx〉
∫ x

0

〈h2(3−i), ζy〉dy

= −
(∫ x

0

〈h2i, ζy〉dy
)(∫ x

0

〈h2(3−i), ζy〉dy
)

+

∫ x

0

∫ y

0

〈h2i, ζy〉〈h2(3−i), ζz〉dzdy

+ loc. mart .

Since

∫ x

0

∫ y

0

〈h2, ζy〉〈h4, ζz〉dzdy +

∫ x

0

∫ y

0

〈h4, ζy〉〈h2, ζz〉dzdy

=

(∫ x

0

〈h2, ζy〉dy
)(∫ x

0

〈h4, ζy〉dy
)

it soon follows that

Ŵx(h2)Ŵx(h4) =

∫ x

0

∫ ∞

0

h2(s)h4(s)dsdy + loc. mart .

Thus

〈W (h2),W (h4)〉x =

∫ x

0

∫ ∞

0

h2(s)h4(s)dsdy.

3.4.4 The Markov property for solutions to the martingale problem

for (AΨ, µ).

For the moment, we suppose that we have spaces X1, X2 and Ψ such that all

solutions to the martingale problem for (AΨ, µ) have the same finite dimensional

distributions, so that ((ux, vx);x ∈ [0,∞)) is Markov with repsect to (F̃x;x ≥

0). We thus have

E[F (ux+z, vx+z)|F̃x] = E[F (ux+z, vx+z)|ux, vx] a.s. (3.4.3)
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We would now like to translate this into something meaningful about (u(x, t);x ∈

R, t ∈ [0,∞)), the original solution of (0.1.1). If we let f ∈ C∞
0 (Rn) and

hi ∈ C∞
0 ([0,∞)) for i = 1, . . . , n, then one possible form of F (ux, vx) is

f

(∫ ∞

0

h1(t)u(x, t)dt, . . . ,

∫ ∞

0

hn(t)u(x, t)dt

)

.

(3.4.3) holds for such functions, and by approximating n1(ti− 1
n
,ti] by functions of

compact support and using the dominated convergence theorem, we can replace

each hi by n1(ti− 1
n
,ti]. A second use of the dominated convergence theorem as

n→ ∞ gives (3.4.3) for F (ux, vx) = f(u(x, t1), . . . , u(x, tn)) for any t1, . . . , tn ∈

(0,∞). It soon follows by approximating
⊗n

i=1 1Ai
(where Ai ∈ B(R)) in L1(R)

by functions with compact support that

P(u(x+ z, t1) ∈ A1, . . . , u(x+ z, tn) ∈ An|F̃x)

=P(u(x+ z, t1) ∈ A1, . . . , u(x+ z, tn) ∈ An|ux, vx),

or rather by a monotone class argument

P(u(x+ z, ·) ∈ A|F̃x) = P(u(x+ z, ·) ∈ A|ux, vx)

for any A ∈ B(C([0,∞))). Strictly speaking, for (u(x, ·);x ≥ 0) to be Markov

with respect to (F̃x;x ≥ 0) we require P(u(x + z, ·) ∈ A|F̃x) = P(u(x+ z, ·) ∈

A|u(x, ·)). However, we can still think of this as a Markov property in terms

of splitting fields. We can set H ([0, x] × [0,∞)) = σ(u(y, ·); 0 ≤ y ≤ x) ∨

σ(ux, vx) and H ([x,∞)× [0,∞)) = σ(u(y, ·);x ≤ y <∞)∨σ(ux, vx), and since

σ(ux, vx) ⊂ H ([0, x] × [0,∞)) ⊂ F̃x it follows that σ(ux, vx) is a splitting field

for H ([0, x] × [0,∞)) and H ([x,∞) × [0,∞)).

We cannot compare directly with the result of [NP94], which demonstrates that
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Bu({x}× [0,∞)) is a splitting field for Bu((−∞, x]) and Bu([x,∞)), and is in

fact the minimal splitting field. (Here we have recalled the notation of definition

0.2.) In our case, σ(ux, vx) ⊂ Bu({x} × [0,∞)), but also H ([0, x] × [0,∞)) ⊂

Bu([0, x] × [0,∞)) and H ([x,∞) × [0,∞)) ⊂ Bu([x,∞) × [0,∞)). In order to

compare with [NP94] we need to be able to say more about σ(ux, vx). In any

case, one may hope that further analysis of (ux;≥ 0) and (vx;x ≥ 0) may give a

clearer description of the splitting field σ(ux, vx). For example, if we can show

that σ(ux, vx) = B({x} × [0,∞)) then we obtain the result of [NP94] for these

specific sets, and in particular we see that the additional information required

at the boundary is exactly that given by vx. On the other hand, it could be the

case that σ(ux, vx) does not contain any more information than σ(u(x, ·)), and

in this case we really have the sharp Markov property.

Let us discuss briefly the strong Markov property, and in particular whether we

can apply the second part of theorem 1.1 for progressively measurable solutions

((ξx, ηx);x ∈ [0,∞)) to the martingale problem for (AΨ, µ) with respect to a

filtration (Ux;x ∈ [0,∞)). For F ∈ FΨ defined by F (u, v) = f(〈h1, u〉, 〈h2, v〉),

F (ξx, ηx) −
∫ x

0

GF (ξz, ηz)dz = F (u0, v0) +

∫ x

0

∂2f(〈h, ξy〉, 〈l, ηy〉)dŴy(h2)

almost surely, where (Ŵx(h2);x ∈ [0,∞)) is a (Ux;x ∈ [0,∞)) martingale. With

reference to (1.1.3) in the proof of theorem 1.1, we denote the left hand side by

Z(x). Note that, regardless of whether (〈h1, ξx〉;x ∈ [0,∞)) and (〈h2, ηx〉;x ∈

[0,∞)) are continuous, (Z(x);x ∈ [0,∞)) has a continuous modification using

the Kolmogorov-C̆entsov continuity criterion. In order to make the proof of

theorem 1.1 work, we need to show that for any almost surely finite (Ux;x ∈

[0,∞)) stopping time θ and x, y ≥ 0,
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E[Z(x + y + θ)|Ux+θ] = Z(x+ θ).

The optional sampling theorem tells us that for any X ≥ 0

E[Z((x + y + θ) ∧X)|Ux+θ] = Z((x+ θ) ∧X).

Take A ∈ Ux+θ. Suppose we can show that

E[(Z((x+ y + θ) ∧X)− Z((x+ θ) ∧X))1A] → E[(Z(x+ y + θ) −Z(x+ θ))1A]

as X → ∞. Since the left hand side is 0 for all X , this would give the desired

result. To show this, it is enough to show that

Z((x+ y + θ) ∧X) − Z((x+ θ) ∧X) → Z(x+ y + θ) − Z(x+ θ)

in L2(Ω) as X → ∞. For a < b, Z(b)−Z(a) =
∫ b

a
∂2f(〈h1, ξz〉, 〈h2, ηz〉)dŴz(h2)

and so

(Z((x + y + θ) ∧X) − Z((x+ θ) ∧X))) − (Z(x+ y + θ) − Z(x+ θ))

=

∫ ∞

0

∂2f(〈h1, ξz〉, 〈h2, ηz〉)
(1((x+θ)∧X,(x+y+θ)∧X](z) − 1(x+θ,x+y+θ](z)

)
dŴz(h2).

This converges to 0 in L2(Ω) if and only if

∫ ∞

0

E

[(
∂2f(〈h1, ξz〉, 〈h2, ηz〉)

(1((x+θ)∧X,(x+y+θ)∧X](z) − 1(x+θ,x+y+θ](z)
))2
]

dzds

does. This is bounded by

‖∂2f‖∞
∫ ∞

0

E

[(1((x+θ)∧X,(x+y+θ)∧X](z) − 1(x+θ,x+y+θ](z)
)2
]

dz
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which is equal to

c

∫ ∞

0

∫

Ω

1{ω:x+θ(ω)<X≤x+y+θ(ω)}1(X,x+y+θ(ω)](z)

+ 1{ω:X<x+θ(ω)}1(x+θ(ω),x+y+θ(ω)](z)P(dω)dz

=c

∫

Ω

(x + y + θ(ω) −X)1{ω:x+θ(ω)<X≤x+y+θ(ω)} + y1{ω:X<x+θ(ω)}P(dω)

≤cyP(x+ y + θ > X).

This converges to 0 as X → ∞ since θ is almost surely finite.

Assuming that all solutions of the martingale problem for (AΨ, µ) have the same

one dimensional distributions, and that ((ux, vx);x ∈ [0,∞)) is progressively

measurable with respect to (F̃x;x ≥ 0), it follows that

E[F (ux+θ, vx+θ)|F̃θ] = E[F (ux+θ, vx+θ)|ux, vx]

for all bounded F : E → R and all almost surely finite stopping times θ and

x ≥ 0. Let us comment on the progressive measurability of ((ux, vx);x ≥ 0),

assuming the process is adapted to (F̃x;x ≥ 0). For X > 0 define uX and vX

to be the processes u and v respectively restricted to [0, X ]. Define a set B =

{(u, v) ∈ E : 〈h1, u〉 ∈ B1, . . . , 〈hn, u〉 ∈ Bn, 〈hn+1, v〉 ∈ Bn+1, . . . , 〈h2n, v〉 ∈

B2n} where hi ∈ X1 for i = 1, . . . , n, hi ∈ X2 for i = n+1, . . . , 2n andBi ∈ B(R)

for i = 1, . . . , 2n. We wish to show that (uX , vX)−1(B) ∈ B([0, X ]) × F̃X . The

remarks of section 3.1.3 imply that each (〈hi, ux〉;x ∈ [0, X ]) and (〈hn+i, vx〉;x ∈

[0, X ]) has a continuous modification. Since (F̃x;x ∈ [0, X ]) is a complete

filtration, it follows that (uX , vX)−1 ∈ B([0, X ]) × F̃X provided that
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{(x, ω) : 〈hi, ux〉(ω) ∈ Bi, 〈hn+i, vx〉(ω) ∈ Bn+i, i = 1 . . . , n}

∩ ([0, X ] × {ω : 〈hi, uX〉(ω), 〈hn+i, v
X〉(ω) continuous for i = 1, . . . , n})

is, which follows from the remarks in [EK86], section 2.1.

3.4.5 Uniqueness of solutions to the martingale problem.

There are clearly a number of issues here yet to be resolved. Perhaps the

biggest open question is whether it is possible to show that the solutions of

the martingale problem for (AΨ, µ) have unique one-dimensional distributions.

Unfortunately we are as yet unable to answer this, although we make the fol-

lowing remarks about it. If ((ξx, ηx);x ∈ [0, X ]) is a solution of the martingale

problem for (AΨ, µ), then there is a specific noise (Ŵx;x ∈ [0, X ]) such that

((ξx, ηx);x ∈ [0, X ]) satisfies the system (3.4.2). We would like to think of

((ξx, ηx);x ∈ [0, X ]) as being a strong solution for the noise Ŵ and the initial

condition (ξ0, η0) = (u0, v0). One way we might make this more precise is by

thinking of ((〈h1, ux〉, 〈h2, vx〉);x ∈ [0, X ]) as a strong solution to (3.4.2) for

(h1, h2) ∈ Ψ. The problem with this is that our system is not closed- it depends

also on the term 〈h′2, ξx〉+〈A1A2h2, ξx〉+〈A2h2, ηx〉. In any case, our hope is that

for the given initial condition (u0, v0) and a noise Ŵ there is one, and only one,

solution to (3.4.2). We denote this by (ξx, ηx) = Φ(x, (u0, v0), Ŵ ). We would

thus like to show that any solution of the martingale problem for (AΨ, µ) has the

form (Φ(x, (u0, v0), Ŵ ) for some noise Ŵ such that 〈Ŵ (h2), Ŵ (h4)〉 = 〈h2, h4〉

for all (h1, h2), (h3, h4) ∈ Ψ, and hence all solutions of the martingale (AΨ, µ)

have the same one-dimensional distributions (in fact, the same law, so this is

clearly more than sufficient).
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The success of this approach depends largely on whether we can show that the

solutions to (3.4.2) are unique given a noise Ŵ . Although we are attempting

to show more than we need here, this approach has the benefit that uniqueness

reduces to the uniqueness of a deterministic system of equations. Indeed, if we

denote the difference between two solutions of (3.4.2) by (Ξx,Θx), then for all

(h1, h2) ∈ Ψ we have

〈h1,Ξx〉 =

∫ x

0

〈h1,Θy〉dy

〈h2,Θx〉 = −
∫ x

0

(〈h′2,Ξy〉 + 〈A1A2h2,Ξy〉 + 〈A2h2,Θy〉)dy (3.4.4)

for all x ∈ [0, X ], and Ξ0 = Θ0 = 0. For any h ∈ C∞
0 ([0,∞)) such that

(h, h) ∈ Ψ we can write this as

d2

dx2
〈h,Ξx〉 + 〈h′,Ξx〉 + 〈A1A2h,Ξx〉 +

d

dx
〈A2h,Ξx〉 = 0.

Intuitively then we would like to be able to show that the equation

∂2

∂x2
φ(x, t) − ∂

∂t
φ(x, t) +A∗

2A
∗
1φ(x, t) +A∗

2

∂φ

∂x
(x, t) = 0

has only the zero solution when supplied with boundary conditions φ(0, t) =

∂
∂x
φ(x, t)|x=0 = 0 for all t > 0. In fact, there is very little hope for this without

also knowing that φ(x, 0) = 0 for x ∈ [0, X ]. However, we have assumed this

condition for our original process u(x, t) satisfying equation (0.1.1), so we may

include this condition as some further property of the space E.

Since this uniqueness problem is unresolved, we do not attempt to discuss it here.

However, we point out that if the uniqueness of the above partial differential

equation is to be enough to provide uniqueness for solutions to the weak form

of our equation, we need to know that the weak form is defined for ‘sufficiently’

148



many test functions h, whatever is meant by that. This involves choosing Ψ

as large as possible such that ((ux, vx);x ≥ 0) solves the martingale problem

for (AΨ, µ). Naturally, the smaller the set Ψ, the less hope we have of finding

uniqueness to the above weak equation. Let us offer some heuristic why it seems

plausible that we can take Ψ = C∞
0 ([0,∞)) × C∞

0 ([0,∞)). To begin with, it is

clear that for any h ∈ C∞
0 ([0,∞)), h and h′ are in X1. In fact, we can easily see

that A2h ∈ X1 also. Indeed, when we investigated the tail of A2h we saw that

|A2h(t)| ≤ c
((

1√
t−T − 1√

t

)

−
(

1√
t
− 1√

t+T

))

for t ≫ T , where the support of

h is in [0, T ]. Our previous estimate was rather crude, and it is in fact possible

to show this bound is

cT 3

√
t− T

√
t+ T (

√
t− T +

√
t+ T )(

√
t+

√
t− T )2(

√
t+

√
t+ T )2

which looks like t−
7
2 .

For X2, we still look to use the ideas of section 3.4.2, but a more fruitful route

could be to take

H = {h : (I − ∆)−
1
2m(I − ∆)−

1
2h ∈ L2([0,∞))}

where ∆ is the Laplacian with Dirichlet boundary conditions at zero, and m

is a positive weight function. If one assumes that C
1
2
v and (I − ∆)−

1
2 have

representations as symmetric kernel operators, where the kernels have certain

favourable properties, and furthermore that they commute (and we observe that

∆ and Cv do commute), then it is possible to show that

∑

i

‖C
1
2
v ei‖2

H = c

∫ ∞

0

m(t)

∫ ∞

0

(

1
√

|t− t′|
− 1√

t+ t′

)

k(t, t′)dt′dt
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where k(t, t′) is the kernel of (I − ∆)−1, which looks like e−|t−t′|. Formally we

have

〈h, vx〉 = ((I − ∆)
1
2m−1(I − ∆)

1
2h, vx)H .

Thus we might think of vx as a bounded linear functional on a subspace of

C0, 34+β containing h satisfying m− 1
2 (I −∆)

1
2h ∈ L2([0,∞)). The benefit of this

approach then is that we reduce to checking tail properties of (I − ∆)
1
2 h. It is

tempting to compare this to the tail properties of h′. In particular, for h ∈ C∞
0 ,

h′ can be integrated against any continuous weight m, and we already have an

idea of how quickly (A2h)′ decays. However, at the time of writing more work

is needed to turn these ideas into a precise argument.
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