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Anomalous Dynamis of Unbiased PolymerTransloation through a Narrow PoreDebabrata Panja∗, Gerard T. Barkema†,‡ and Robin C. Ball∗∗
∗Institute for Theoretial Physis, Universiteit van Amsterdam,Valkenierstraat 65, 1018 XE Amsterdam, The Netherlands

†Institute for Theoretial Physis, Universiteit Utreht, Leuvenlaan 4,3584 CE Utreht The Netherlands
‡Instituut-Lorentz, Universiteit Leiden, Niels Bohrweg 2,2333 CA Leiden, The Netherlands

∗∗Department of Physis, University of Warwik, Coventry CV4 7AL, UKAbstratWe onsider a polymer of length N transloating througha narrow pore in the absene of external �elds. Chara-terization of its purportedly anomalous dynamis has sofar remained inomplete. We show that the polymer dy-namis is anomalous until the Rouse time τR ∼ N1+2ν ,with a mean square displaement through the pore on-sistent with t(1+ν)/(1+2ν), with ν ≈ 0.588 the Flory ex-ponent. This is shown to be diretly related to a deayin time of the exess monomer density near the pore as
t−(1+ν)/(1+2ν) exp(−t/τR). Beyond the Rouse time translo-ation beomes di�usive. In onsequene of this, thedwell-time τd, the time a transloating polymer typiallyspends within the pore, sales as N2+ν , in ontrast toprevious laims.PACS Numbers: 36.20.-r, 82.35.Lr, 87.15.AaTransport of moleules aross ell membranes is an essential mehanismfor life proesses. These moleules are often long and �exible, and the poresin the membranes are too narrow to allow them to pass through as a single1
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unit. In suh irumstanes, the passage of a moleule through the pore �i.e. its transloation � proeeds through a random proess in whih polymersegments sequentially move through the pore. DNA, RNA and proteins arenaturally ourring long moleules [1℄ subjet to transloation in a variety ofbiologial proesses. Transloation is used in gene therapy [2℄, in delivery ofdrug moleules to their ativation sites [3℄, and as an e�ient means of singlemoleule sequening of DNA and RNA [4℄. Understandably, the proess oftransloation has been an ative topi of urrent researh: both beause it isan essential ingredient in many biologial proesses and for its relevane inpratial appliations.Transloation is a ompliated proess in living organisms � its dynamismay be strongly in�uened by fators like the presene of haperon moleules,pH values, hemial potential gradients, assisting moleular motors et. [5℄.In studies of transloation as a biophysial proess, the polymer is simpli�edto a sequentially onneted string of N monomers. Herein, the quantitiesof interest are the typial time for the polymer to leave a on�ning ellor vesile, the �esape time� [6℄, and the typial time the polymer spendsin the pore or �dwell time� [7℄, as a funtion of hain length N and otherparameters like membrane thikness, membrane adsorption, eletrohemialpotential gradient, et. [8℄. These have been measured diretly in numerousexperiments [9℄.
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Figure 1: Pitorial representation of a transloation event, with the polymershown before, during and after transloation. We number the monomers,starting with the end-monomer on the side it moves to. The number of themonomer loated in the middle of the pore is s.Experimentally, the most studied quantity is the dwell time τd, i.e., thepore blokade time for a transloation event (see Fig. 1). For theoretialdesriptions of τd, during the last deade a number of mean-�eld type the-2



ories [6, 7, 8℄ have been proposed, in whih transloation is desribed by aFokker-Plank equation for �rst-passage over an entropi barrier in termsof a single �reation oordinate� s. Here s is the number of the monomerthreaded at the pore (s = 1, . . . , N). These theories apply under the as-sumption that transloation is slower than the equilibration time-sale ofthe entire polymer, whih is likely for high pore frition. In Ref. [10℄, thisassumption was questioned, and the authors found that for a self-avoidingpolymer performing Rouse dynamis, τd ≥ τR, the Rouse time. Using sim-ulation data in 2D, they suggested that the inequality may atually be anequality, i.e., τd ∼ τR ∼ N1+2ν , whih is N2.5 in two dimensions. Numerialdata in support of this suggestion in 2D appeared in Ref. [11℄. However, ina publiation due to two of us, τd in 3D was numerially found to sale as
∼ N2.40±0.05 [13℄, signi�antly larger than N1+2ν , whih is N2.18 in three di-mensions. Additionally, in a reent publiation [14℄ τd was numerially foundto sale as N2.52±0.04 in three dimensions (a disussion on the theory of Ref.[14℄ appears at the end of this paper). Note that these simulations do notinorporate hydrodynamial interations, whih are ertainly important inexperiments. Also, these simulations (and all theoretial studies, inludingthis one) ignore interations with other polymers, i.e., they onsider poly-mers in in�nitely dilute solutions, while in ell environments, the solution isnot in�nitely dilute. In this paper we onsider transloation in the abseneof hydrodynamial interations, and at the end we re�et on the results weexpet when the hydrodynamial interations are inluded. We also notehere that simulations with hydrodynamial interations are non-trivial andostly.Amid all the above results on τd mutually di�ering by ∼ O(N0.2), theonly onsensus that survives is that τd ≥ τR [10, 13℄. Simulation results aloneannot determine the saling of τd: di�erent groups use di�erent polymermodels with widely di�erent riteria for onvergene for saling results, andas a onsequene, settling di�erenes of ∼ O(N0.2) in O(τR), is extremelydeliate.An alternative approah that an potentially settle the issue of τd salingwith N is to analyze the dynamis of transloation at a mirosopi level.Indeed, the lower limit τR for τd implies that the dynamis of transloationis anomalous [10℄. We know of only two published studies on the anomalousdynamis of transloation, both using a frational Fokker-Plank equation(FFPE) [12, 14℄. However, whether the assumptions underlying a FFPEapply for polymer transloation are not lear. Additionally, none of the3



studies used FFPE for the purpose of determining the saling of τd. In viewof the above, suh a potential learly has not been thoroughly exploited.The purpose of this paper is to report the harateristis of the anoma-lous dynamis of transloation, derived from the mirosopi dynamis of thepolymer, and the saling of τd obtained therefrom. Transloation proeedsvia the exhange of monomers through the pore: imagine a situation when amonomer from the left of the membrane transloates to the right. This pro-ess inreases the monomer density in the right neighbourhood of the pore,and simultaneously redues the monomer density in the left neighbourhoodof the pore. The loal enhanement in the monomer density on the rightof the pore takes a �nite time to dissipate away from the membrane alongthe bakbone of the polymer (similarly for replenishing monomer density onthe left neighbourhood of the pore). The imbalane in the monomer den-sities between the two loal neighbourhoods of the pore during this timeimplies that there is an enhaned hane of the transloated monomer toreturn to the left of the membrane, thereby giving rise to memory e�ets,and onsequently, rendering the transloation dynamis subdi�usive. Morequantitatively, the exess monomer density (or the lak of it) in the viinityof the pore manifests itself in redued (or inreased) hain tension around thepore, reating an imbalane of hain tension aross the pore (we note herethat the hain tension at the pore ats as monomeri hemial potential, andfrom now on we use both terms interhangeably). We use well-known lawsof polymer physis to show that in time the imbalane in the hain tensionaross the pore relaxes as t−(1+ν)/(1+2ν) exp(−t/τR). (Stritly speaking, τR inthis expression should be replaed by the harateristi equilibration time ofa tethered polymer with length of O(N); sine both sale as N1+2ν , we use τRhere, favouring notational simpliity). This results in transloation dynamisbeing subdi�usive for t < τR, with the mean-square displaement 〈∆s2(t)〉of the reation oordinate s(t) inreasing as t(1+ν)/(1+2ν); and di�usive for
t > τR. With √

〈∆s2(τd)〉 ∼ N , this leads to τd ∼ N2+ν .We substantiate our theoretial derivations with extensive Monte Carlosimulations, in whih the polymer performs single-monomer moves. Thede�nition of time is suh that single-monomer moves along the polymer'sontour are attempted at a �xed rate of unity, while moves that hange thepolymer's ontour are attempted ten times less often. Details of our self-avoiding polymer model in 3D an be found in Refs. [15, 16℄.The key step in quantitatively formulating the anomalous dynamis oftransloation is the following observation: a transloating polymer om-4



prises of two polymer segments tethered at opposite ends of the pore thatare able to exhange monomers between them through the pore; so eahats as a reservoir of monomers for the other. The veloity of transloation
v(t) = ṡ(t), representing monomer urrent, responds to φ(t), the imbalanein the monomeri hemial potential aross the pore ating as �voltage�. Si-multaneously, φ(t) also adjusts in response to v(t). In the presene of mem-ory e�ets, they are related to eah other by φ(t) =

∫ t

0
dt′µ(t − t′)v(t′) viathe memory kernel µ(t), whih an be thought of as the (time-dependent)`impedane' of the system. Supposing a zero-urrent equilibrium onditionat time 0, this relation an be inverted to obtain v(t) =
∫ t

0
dt′a(t − t′)φ(t′),where a(t) an be thought of as the `admittane'. In the Laplae trans-form language, µ̃(k) = ã−1(k), where k is the Laplae variable representinginverse time. Via the �utuation-dissipation theorem, they are related tothe respetive autoorrelation funtions as µ(t − t′) = 〈φ(t)φ(t′)〉v=0 and

a(t − t′) = 〈v(t)v(t′)〉φ=0.The behaviour of µ(t) may be obtained by onsidering the polymer seg-ment on one side of the membrane only, say the right, with a sudden introdu-tion of p extra monomers at the pore, orresponding to impulse urrent v(t) =
pδ(t). We then ask for the time-evolution of the mean response 〈δΦ(r)(t)〉,where δΦ(r)(t) is the shift in hemial potential for the right segment of thepolymer at the pore. This means that for the transloation problem (withboth right and left segments), we would have φ(t) = δΦ(r)(t)−δΦ(l)(t), where
δΦ(l)(t) is the shift in hemial potential for the left segment at the pore dueto an opposite input urrent to it.We now argue that this mean response, and hene µ(t), takes the form
µ(t) ∼ t−α exp(−t/τR). The terminal exponential deay exp(−t/τR) is ex-peted from the relaxation dynamis of the entire right segment of the poly-mer with one end tethered at the pore [16℄. To understand the physisbehind the exponent α, we use the well-established result for the relaxationtime tn for n self-avoiding Rouse monomers saling as tn ∼ n1+2ν . Basedon the expression of tn, we antiipate that by time t the extra monomerswill be well equilibrated aross the inner part of the hain up to nt ∼
t1/(1+2ν) monomers from the pore, but not signi�antly further. This in-ternally equilibrated setion of nt + p monomers extends only r(nt) ∼ nν

t ,less than its equilibrated value (nt + p)ν , beause the larger sale onfor-mation has yet to adjust: the orresponding ompressive fore from these
nt + p monomers is expeted by standard polymer saling [18℄ to follow
f/(kBT ) ∼ δr(nt)/r

2(nt) ∼ νp/ [ntr(nt)] ∼ t−(1+ν)/(1+2ν), for p ≪ nt. This5
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Figure 2: Simulation results for the average hain tension omponent perpen-diular to the membrane proxied by 〈z(5)(∞) − z(5)(t)〉 following monomerinjetion at the pore orresponding to v(t) = pδ(t), with p = 10. See textfor details. Red irles: N/2 = 50, green irles: N/2 = 100, blue irles:
N/2 = 150, solid blak line: t−(1+ν)/(1+2ν) with ν = 0.588 for self-avoidingpolymers. To obtain a data ollapse, the horizontal and vertial axes aresaled by (N/2)1+2ν and (N/2)1+ν , respetively. The steeper drop at largetimes orrespond to the exponential deay exp(−t/τR).fore f must be transmitted to the membrane, through a ombination ofdereased tension at the pore and inreased inidene of other membraneontats. The fration borne by reduing hain tension at the pore leads usto the inequality α ≥ (1 + ν)/(1 + 2ν), whih is signi�antly di�erent from(but ompatible with) the value α1 = 2/(1 + 2ν) required to obtain τd ∼ τR.It seems unlikely that the adjustment at the membrane should be dispro-portionately distributed between the hain tension at the pore and othermembrane ontats, leading to the expetation that the inequality above isatually an equality. 6



We have on�rmed this piture by measuring the impedane responsethrough simulations. In Ref. [17℄, two of us have shown that the entre-of-mass of the �rst few monomers is an exellent proxy for hain tension at thepore and we assume here that this further serves as a proxy for δΦ. Based onthis idea, we trak 〈δΦ(r)(t)〉 by measuring the distane of the average entre-of-mass of the �rst 5 monomers from the membrane, 〈z(5)(t)〉, in responseto the injetion of extra monomers near the pore at time 0. Spei�allywe onsider the equilibrated right segment of the polymer, of length N/2 −
10 (with one end tethered at the pore), adding 10 extra monomers at thetethered end of the right segment at time 0, orresponding to p = 10, bringingits length up to N/2. Using the proxy 〈z(5)(t)〉 we then trak 〈δΦ(r)(t)〉. Thelear agreement between the exponent obtained from the simulation resultswith the theoretial predition of α = (1+ ν)/(1+2ν) an be seen in Fig. 2.Note that the sharp deviation of the data from the power law t−(1+ν)/(1+2ν)at long times is due to the asymptoti exponential deay as exp(−t/τR), asthe data ollapse shows.Having thus shown that µ(t) ∼ t−

1+ν

1+2ν exp(−t/τR), we an expet thatthe transloation dynamis is anomalous for t < τR, in the sense that themean-square displaement of the monomers through the pore, 〈∆s2(t)〉 ∼ tβfor some β < 1 and time t < τR, whilst beyond the Rouse time it beomessimply di�usive. The value β = α = 1+ν
1+2ν

follows trivially by expressing
〈∆s2(t)〉 in terms of (transloative) veloity orrelations 〈v(t)v(t′)〉, whih(by the Flutuation Dissipation theorem) are given in terms of the timedependent admittane a(t − t′), and hene inversely in terms of the orre-sponding impedane.Indeed, as shown in Fig. 3, a double-logarithmi plot of 〈∆s2(t)〉 vs. t isonsistent with 〈∆s2(t)〉 ∼ t(1+ν)/(1+2ν). The behaviour of 〈∆s2(t)〉 at shorttimes is an artifat of our model: at short times reptation moves dominate,leading to a transport mehanism for �stored lengths� [19℄ along the polymer'sontour in whih individual units of stored length annot pass eah other.As a result, the dynamis of s(t), governed by the movement of stored lengthunits aross the pore, is equivalent to a proess known as �single-�le di�usion�on a line, haraterized by the saling 〈∆s2(t)〉 ∼ t1/2 (not shown here). Atlong times the polymer tails will relax, leading to 〈∆s2(t)〉 ∼ t for t > τR. Thepresene of two rossovers, the �rst one from 〈∆s2(t)〉 ∼ t1/2 to 〈∆s2(t)〉 ∼
t(1+ν)/(1+2ν) and the seond one from 〈∆s2(t)〉 ∼ t(1+ν)/(1+2ν) to 〈∆s2(t)〉 ∼ tat t ≈ τR, ompliates the preise numerial veri�ation of the exponent7



10
2

10
3

t

10
1

10
2

<
∆s

2 (t
)>

Figure 3: Double-logarithmi plot of the mean squared displaement of thereation oordinate 〈∆s2(t)〉 as a funtion of time t, for N = 100 (orange),200 (red) and 500 (blue). The thik blak line indiates the theoretiallyexpeted slope orresponding to 〈∆s2(t)〉 ∼ t(1+ν)/(1+2ν). The dashed blakline orresponds to 〈∆s2(t)〉 ∼ t2/(1+2ν), whih would have been the slope ofthe 〈∆s2(t)〉 vs. t urve in a double-logarithmi plot, if τd were to sale as
τR ∼ N1+2ν .
(1 + ν)/(1 + 2ν). However, as shown in Fig. 3, there is an extended regimein time at whih the quantity t−(1+ν)/(1+2ν)〈∆s2(t)〉 is nearly onstant.The subdi�usive behaviour 〈∆s2(t)〉 ∼ t

1+ν

1+2ν for t < τR, ombined with thedi�usive behaviour for t ≥ τR leads to the dwell time saling as τd ∼ N2+ν ,based on the riterion that √

〈∆s2(τd)〉 ∼ N . The dwell time exponent
2 + ν ≃ 2.59 is in aeptable agreement with the two numerial results on τdin 3D as mentioned in the introdution of this paper, and in Table I belowwe present new high-preision simulation data in support of τd ∼ N2+ν , interms of the median unthreading time. The unthreading time τu is de�nedas the time for the polymer to leave the pore with s(t = 0) = N/2 and thetwo polymer segments equilibrated at t = 0. Both τu and τd sale the sameway, sine τu < τd < 2τu [16℄.

8



N τu τu/N
2+ν100 65136 0.434150 183423 0.428200 393245 0.436250 714619 0.445300 1133948 0.440400 2369379 0.437500 4160669 0.431Table I: Median unthreading time over 1,024 runs for eah N .We now re�et on the theory presented in Ref. [14℄.We have de�ned τd as the pore-blokade time in experiments; i.e., if wede�ne a state of the polymer with s(t) = 0 as `0' (polymer just detahed fromthe pore on one side), and with s(t) = N as `N', then τd is the �rst passagetime required to travel from state 0 to state N without possible reouranesof state 0. In Ref. [14℄, the authors attah a bead at the s = 0 end ofthe polymer, preventing it from leaving the pore, reating a situation wherethe polymer returns to state 0 multiple number of times before it eventuallyreahes state N. The repeated returns to state 0 implies that by onstrutionof the problem, the polymer enounters a free energy barrier on its way fromstate 0 to s = N/2, where the polymer's on�gurational entropy is the lowest.The authors then proeed to express their transloation time (τt hereafter),de�ned as the �rst passage time required to travel from state 0 to state Nwith reouranes of state 0, in terms of this free energy barrier. Below wesettle the di�erenes between τt of Ref. [14℄ and our τd.Consider the ase where we attah a bead at s = 0 and another at s = N ,preventing it from leaving the pore. We then haraterize the state of thepolymer as follows. At state x and x′ the polymer an have all values of sexept 0, N/2 and N ; and at states m and m′, s = N/2. The notationaldistintion between primed and unprimed states is that a primed state anour only between two onseutive states 0, or between two onseutivestates N, while an unprimed state ours only between state 0 and state N.Its dynamis is then given by the sequene of states, e.g.,

...Nxmx τt

︷ ︸︸ ︷0 x′0 x′m′x′m′x′0 x′ 0 xmxmxmxN
︸ ︷︷ ︸

τd

x′N...9



where the orresponding times taken (τt and τd) are indiated. Note in theabove de�nitions that τt > τd: sine, due to the presene of the entropibarrier as desribed above, τt inludes the extra time spent in between the�rst and the last ourrene of state 0 before the polymer eventually proeedsto state N. In other words, τt inludes the e�et of the entropi barrier, while
τd does not. A probability argument then leads us to

τt

τd

=
1

px + pm =
fx (1 + fm)

(pm + pm′)fm(1 + fx) , (1)where pm, pm′ and px are the probabilities of the orresponding states, fm =
pm/pm′ and fx = pm/px. The partition sum of a polymer of length n withone end tethered on a membrane is given by Zn ∼ λn nγ1−1 with λ a non-universal onstant and γ1 = 0.68 [20℄, and therefore we have pm + pm′ =

Z2
N/2/

[
∑N

s=0 ZsZN−s

]

∼ 1/N . Similarly, fx ∼ 1/N [13℄. Finally, fm ≈ 1 [21℄yields τt ∼ τd.In Ref. [14℄ the authors inlude a fator N1−γ1 in τt to aount for thee�et of the entropi barrier. However, we have shown above that τt ∼ τd,i.e., the free energy barrier does not play a role for the saling behaviour of
τt with N . This implies, sine τt inludes the e�et of the entropi barrierand τd does not, that the theoretial expression for τt in Ref. [14℄ annot beorret. The numerial result τt ∼ N2.52±0.04 in Ref. [14℄, however, on�rmsour theoretial expression τd ∼ N2+ν .To onlude, in this paper we have haraterized the anomalous dynamisof unbiased transloation and obtained the saling of the dwell time in termsof the polymer length. In future work, we will study the role of hydrodynam-is. Rouse frition may be an appropriate model for the dynamis of longbiopolymers in the environment within living ells, if it is su�iently gel-liketo support sreened hydrodynamis on the timesale of their on�gurationalrelaxation. However, we should also ask what is expeted in the other ex-treme of unsreened (Zimm) hydrodynamis. For our theoretial disussionthe key di�erene is that, instead of the Rouse time τR, in the Zimm ase theon�gurational relaxation times sale with N aording to τZimm ∼ N3ν in3D, whih upon substitution into our earlier argument would gives the lowerbound value α = (1 + ν)/(3ν) for the time exponent of the impedane, lead-ing to τd ∼ N1+2ν (whose resemblane to the Rouse time is a oinidene �note that with hydrodynamis Rouse time loses all relevane). These results,however, do need to be veri�ed by simulations inorporating hydrodynamis.10
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