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Summary

The vast increase in the number of protein structures identified since the first

high resolution protein structure was determined has shown that there are relatively

few protein folds. The study of the folding of proteins has also expanded

significantly since its inception. The contact-order of residues in the native structure

has been implicated as important in folding. This has raised the question of whether

the common folds observed in protein structures fold via common mechanisms.

The protein kinase domain is a large, pharmaceutically important and

conserved protein fold, of which many examples fail to fold correctly when over-

expressed as recombinant proteins in Escherichia coli. The kinase domain forms an

excellent area in which to study the folding of a large conserved domain with

varying sequence.

To study the refolding of the kinase fold a refolding screen was created, using

p38α as a model protein kinase. The results of this screen were compared to the 

results of refolding a further four protein kinases, AKT2, KIS, PhK and TTK to

determine commonalities in the folding of protein kinases. The refolding of the five

protein kinases was also examined using a fractional factorial screen which

examined combinations of refolding additives. In the screening of the refolding of

protein kinases no factors were identified which were common to the refolding of all

five of the tested protein kinases.

The equilibrium folding of a single protein kinase, TTK, was also studied.

The folding of TTK was determined to proceed via different pathways on folding

and unfolding, with a co-operative unfolding pathway through a molten-globule

intermediate, and a non-cooperative refolding pathway via an intermediate with

different secondary structure content to the unfolding intermediate.

The difference between the folding properties of protein kinases determined

in the screen and through the analysis of the equilibrium folding of TTK suggest that

there may not be a common protein kinase folding mechanism.
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Chapter 1. Introduction

1.1 Protein Folding

The central dogma of molecular biology describes the process of the making of

proteins, through a transcription of DNA into mRNA and the translation of this

mRNA message into the primary sequence of the protein on the ribosome. Following

the translation of the mRNA on the ribosome, the nascent polypeptide chain

dissociates from the ribosome and then must adopt its final three dimensional shape.

When the process of the folding of a new protein is considered from the

theoretical standpoint, the random search of the possible conformational space of the

polypeptide chain would take an impossibly long time. If we assume that each

residue in the protein can adopt two different conformations, then for a 100 residue

protein, the total number of conformations that the protein chain could theoretically

adopt is 2100, or 1.27 x 1030 conformations. If we assume that the protein takes 1

picosecond to sample each conformational state, then it would take, on average on

the order of 1018 seconds or approximately 3 x 1010 years for the protein to adopt the

lowest energy state, termed the native state. As it is known that proteins of this size

can fold in timescales of a millisecond or faster, it then follows that the folding of

proteins must be directed in some fashion, and that proteins probably fold through

specific pathways to the native state (Levinthal, 1968). The folding of bovine

pancreatic ribonuclease was studied by Anfinsen (Anfinsen, 1973). The folding of

the protein was studied in vitro and it was shown that the protein was capable of

refolding from a denatured, oxidised state, in 8 M urea, to an active state with the

correct disulphide bonds being formed. Given that the only component of the

refolding reaction was the protein chain itself, it follows that the folding of the

protein must be directed by the polypeptide chain itself, and not by other cellular

factors.

Studies performed since this initial, key discovery have shown that the means by

which the folding is directed by the sequence of the protein are diverse and complex.

Local interactions between close and adjacent residues are important, but non-local

interactions, between widely spaced residues are also important (Damaschun et al.,

1999; Navon et al., 2001; Klein-Seetharaman et al., 2002). The overall topology of

the native protein (Baker, 2000), the position of hydrophobic residues (Dobson et al.,
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1998) and disulphide bridges (Creighton, 2000) are also important factors in the

folding of proteins.

1.1.1 Protein Folding and Common Protein Structures

The developments in the areas of molecular biology and the biophysical

analysis of proteins have led to a vast increase in the understanding of protein

structure and in the number of protein structures known. The year of the writing of

this thesis coincides with the 50th anniversary of the first high resolution protein

structure, that of myoglobin in 1959 (Bodo et al., 1959). The number of protein

structures available in the Protein DataBank is now close to 60,000. In this vast

expansion of the available data on the structure of proteins it has been noticed that

proteins do not all adopt entirely different structures. Rather proteins are assembled

from a number of smaller protein domains which have common folds despite a lack

of conservation of the amino acid sequence. These families of folds include β-

propellers and TIM barrels (Godzik, 1997). The number of protein folds has been

estimated to be between 1000 (Wolf et al., 2000; Wang, 1998) and 2700 (Xingsheng

et al., 2003).

With the observation that protein structures are conserved, the question has arisen as

to the manner of folding of these conserved protein units. Some study has been

performed to answer this question (Bueno et al., 2006) the results of these

experiments have been mixed. Some classes of proteins, notably topologically

complex proteins such as knotted proteins (Gloss, 2007) have been observed to fold

via common pathways, although this may be expected due to the complexity of the

structure of these proteins; requiring the folding to proceed via the same pathway in

order to form the topological knots in the structure (Mallam and Jackson, 2005).

Studies on proteins with high sequence similarity have shown that the early events in

folding are key to determining the structure arrived at (Scott and Daggett, 2007).

1.1.2 Models and Mechanisms of Protein Folding

Several models have been proposed to describe how proteins can fold from

an extended structure into a compact three dimensional structure based only on the

information present in the sequence of the protein. Three major models have been

proposed based upon the nature of the initial folding event. These models have been
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suggested to explain the folding behaviour of different proteins, underlining that all

proteins do not fold via a single, universal mechanism.

The first model proposes that a folding nucleus of a few local residues forms,

and that the remaining structure of the protein forms around this nucleus. This model

is termed the nucleation-growth model (Wetlaufer, 1973). From this model, a second

model has been proposed which extends the folding nucleus to cover residues that

are distributed throughout the protein. This is termed the nucleation-condensation

model. The secondary structure then forms from the folding nucleus and is stabilized

concurrent with its formation by tertiary interactions (Fersht, 1995a; Fersht, 1997;

Fersht, 2000).

Most proteins contain a core of hydrophobic residues which are compacted

together and exclude water from the core of the protein. It has been proposed that the

formation of this hydrophobic core may be the important, initial event in the folding

of many, particularly larger proteins. In this model the protein forms an initial

collapsed state in which the hydrophobic residues are in the core (Chan et al., 1998)

and polar residues are on the surface of the protein and water is excluded from the

core of the structure (Kim and Baldwin, 1990; Cheung et al., 2002). Larger proteins

tend to have more, or larger hydrophobic areas in their structures supporting the

concept of the importance of hydrophobic collapse in their folding, although these

proteins often have complex folding pathways, with several intermediate states

which can accumulate (Dobson et al., 1998).

The third model of protein folding stems from a recognition of the

importance of protein secondary structure in the native state of proteins. This model

suggests that a framework of secondary structure forms initially in different areas of

the protein (Ptitsyn and Rashin, 1975). The individual secondary structure elements

that have been formed then associate and are stabilized by tertiary interactions. The

model is termed the framework model and has been suggested to describe the folding

of staphylococcal nuclease (Wang et al., 1995).

1.1.3 The Folding Energy Landscape

Early work in the folding of proteins conceived of the folding pathways of

proteins as narrow and defined, with folding intermediates and a few, limited, routes

that the protein populated and adhered to in order to reach the native state. The

protein folding process is now considered to be a much more stochastic process. The
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fluctuations in the conformation of the protein required for the polypeptide chain

mean that multiple polypeptide chains will not adopt the same conformations under

the same conditions, but rather an ensemble of states will be present. The folding of

the protein is then described as the polypeptide chain moving through an energy

landscape from the unfolded protein which contains high levels of free energy and

conformational diversity and freedom towards the most stable, lowest energy state,

which is the native state (Vendruscolo et al., 2003; Dobson, 2004). This concept is

illustrated in Figure 1.1.

Figure 1.1 Illustration of the process of protein folding through an energy landscape.
The unfolded state is found at the top of the funnel. The position of the native state is
indicated by “N” (Figure taken from Dill and Chan, 1997).

The topology of the energy landscape is not constant for all proteins but

varies between different proteins. Small proteins, such as are commonly studied for

folding tend not to populate folding intermediates and have a simple folding

pathway. These proteins would have a smooth folding funnel, which has a single

energy barrier between the native and the unfolded state. Proteins which have a more

complex folding process, with multi-step pathways and multiple intermediates have

a much more complex folding funnel, with local minima in multiple places which

correspond to the folding intermediates identified (Dill and Chan, 1997; Gruebele,

2002).
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This view of protein folding has been illustrated through slight variations in

experimental conditions for the in vitro folding experiments of proteins and also by

the results of single molecule folding experiments. Variations in the conditions under

which folding experiments are performed, for example variations in the pH of

folding, change the measured parameters of the in vitro folding experiments (Sato

and Raleigh, 2002). Similarly, in single molecule folding experiments, the folding

measured changes from experiment to experiment (Neinhaus, 2009).

1.1.4 Protein Folding Intermediates

Whether proteins fold through an energy landscape, or as viewed earlier in

studies of protein folding, there may exist in the folding process a number of

intermediates in the folding of the protein. Folding intermediates are structures, or

ensembles of particular types of structures that accumulate at particular stages in the

folding of a protein. They are commonly associated with the folding of larger

proteins. The formation of these intermediates is important in the folding of these

proteins as it reduces the amount of random search required to obtain the native state

(Berg et al., 2002). When proteins are folded through an equilibrium process,

compact and stable intermediates have also been shown to be formed (Hughson et

al., 1990). The formation of protein folding intermediates is also important in the

mis-folding of proteins, whether in protein folding diseases, or in the accumulation

of proteins as inclusion bodies in bacteria. This mis-folding of proteins often

involves folding intermediates which cannot subsequently fold into the native state.

Such intermediates are called non-productive or off-pathway intermediates.

The models of protein folding outlined previously (Section 1.1.2) predict

different forms of protein folding intermediates depending on the model. The

framework model, suggests a stepwise formation of the native state, where folding

units form and no rearrangement of the structure occurs before each step is

stabilized. This model suggests two types of intermediate that form on folding of the

protein. The first intermediate type forms quickly, in less than 10 ms. This

intermediate consists of a partially folded secondary structure which fluctuates

between folded and unfolded in local areas. The second intermediate forms slower,

on the order of 0.1 to 1 s and contains secondary structure which is more stable than

in the first intermediate (Ptitsyn et al., 1995).
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The hydrophobic collapse model of protein folding suggests an equilibrium

folding intermediate that is formed as the unfolded protein in a random coli

conformation collapses into a smaller restricted space. This type of intermediate is

termed a “Molten Globule” intermediate (Ptitsyn, 1987; Ptitsyn et al., 1995). The

second of the kinetic intermediates formed in the framework model has been shown

to be similar to this intermediate (Dolgikh et al., 1981). The molten globule

intermediate has a secondary structure which is equivalent to the native state of the

protein, but the tertiary structure of the protein is dynamic. The dimensions of the

intermediate state have been shown to be much lower than the random coil unfolded

state, but not much greater than the native state (Kim and Baldwin, 1990). The

formation of this intermediate is thought to be very important in the folding of

proteins, since it allows the polypeptide chain to be provided with a close to native

backbone, whilst allowing the structure to be dynamic and to adopt the native state

(Ptitsyn, 1987).

Given the importance of the molten globule state, and the fact that it is a

typical state for many proteins under slightly denaturing conditions (Ptitsyn, 1992),

the precise nature of this intermediate state has been closely studied by several

different techniques. The presence of the compact, denatured state has been inferred

for many proteins from size exclusion chromatography experiments under slightly

denaturing conditions (Dolgikh et al., 1981; Ptitsyn et al., 1995). The presence of

native like secondary structure has been inferred for many proteins using far-UV CD

as well as H/D exchange NMR. The definitional lack of native-like tertiary structure

was first demonstrated with cytochrome c (Ougushi and Wada, 1983) through the

lack of certain near-UV CD features and the chemical shift of some of the protons in

the NMR spectra.

The most studied protein that shows a molten-globule folding intermediate is

probably guinea pig α-lactalbumin. The intermediate state observed is stable under 

denaturing conditions of ~1 M GdnHCl (Ikeguchi et al., 1986), and shows the key

features of a molten globule intermediate. H/D exchange NMR has been used to

identify the residues that are involved in the formation of the native-like secondary

structure present in the intermediate state. Twenty amides in the structure were found

to be protected from exchange in the partially folded intermediate state. These

residues were found to be in the hydrophobic core of the protein and in the α-helical 

regions of the native conformation. Far-UV CD spectra do suggest that more



- 7 -

secondary structure is formed than was found to be protected from solvent exchange

by H/D exchange NMR. This suggests that some of the native like secondary

structure identified by CD analysis of the intermediate state may be transiently

formed (Baum et al., 1989; Chyan et al., 1993).

Some evidence has also been presented for the formation of molten-globule

like intermediates in the kinetic folding of certain proteins. The folding of

apomyoglobin was studied using far-UV CD and showed that a molten-globule like

intermediate was present during the folding of the protein. A similar intermediate

state to that discovered in equilibrium folding experiments was observed, containing

the A, G and H helices. This intermediate is formed rapidly, in less than 5 ms

(Jennings and Wright, 1993). Fragments of the whole protein were used to confirm

the identity of the regions thought to be formed in the intermediate (Waltho et al.,

1993; Shin et al., 1993a; Shin et al., 1993b). These studies confirmed the role of the

A, G and H helices in the early folding of apomyoglobin.

On the basis of this evidence, and the common finding of molten globule like

intermediates in protein folding experiments, it has been proposed that this

intermediate may be considered to be a general intermediate for protein folding

(Ptitsyn et al., 1990). It is also thought that the intermediate may be important in

cellular processes that require partial unfolding of proteins, such as cross membrane

transport (Pinheiro, 1994; Ren et al., 1999; Matouschek, 2003) and chaperone

interactions (Robinson et al., 1994; Radford and Dobson, 1995).

1.1.5 Techniques for Characterizing the Folding Pathway

To determine the nature of any folding intermediates it is necessary to

examine the folding of the protein using a series of techniques to access different

information on the folding pathway. Traditionally folding studies have been

performed on a large number of protein molecules, which during the folding process

adopt an ensemble of structures. More recent developments have allowed the study

of the folding of single protein molecules increasing the understanding of the

unfolding and refolding of complex proteins.

The study of the folding of an ensemble of molecules averages the folding of

large number of molecules at once and averages the folded state of the ensemble of

protein structures present under the conditions used. The folding of the ensemble of

states can be examined in two different manners depending on what information is
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required on the folding of the protein. The thermodynamics and the kinetics of the

folding of proteins require different techniques to access. The thermodynamics of the

folding of proteins is accessed using equilibrium folding experiments. In these

experiments the protein being observed is perturbed from its initial conditions by a

denaturing factor, such as temperature, pH or the presence of a chemical denaturant,

and allowed to reach equilibrium under the new conditions. The extent of

denaturation or renaturation (if starting with denatured protein) is then measured

using one or more folding probes. The process is then repeated until the protein is

fully denatured or renatured. The free energy of folding can then be determined from

the behaviour of the folding probes.

Once the thermodynamics of folding have been established, it is then possible

to establish the kinetics of folding. The speed of folding varies dramatically between

different proteins and as a result a number of different techniques are required to

follow the folding of proteins. Larger proteins, however, tend to fold more slowly

than smaller proteins. Due to the complexity of their structures, or a dependence on

slow changes such as cis-trans proline isomerisation (Wedemeyer et al., 2002) in

their folding, some proteins fold very slowly, for example collagen III (Engel and

Bächinger, 2000). With these proteins it is possible to use simple instrumentation

with a manual mixing of the protein and the buffer used to refold or unfold the

protein. Similar folding probes are used with this type of folding experiment as are

used in equilibrium folding experiments, since the time scales involved are fairly

long.

For proteins which fold faster, on a timescale of seconds to milliseconds a

more specialized technique is required. The mixing of the buffers required for the

experiments must be performed much faster than is possible with manual mixing.

This requires specialized mixers and relatively fast flow rates for the buffers used.

The technique of stopped-flow is used to achieve these. Depending on the instrument

used, the dead-time, that is the time during which data cannot be collected, may be as

low as ~0.5 ms but is more commonly in the range of 2-3 ms. Some proteins fold

faster than this dead-time. A reduction in temperature can be used to slow the folding

of the protein, so that it can be captured. If the folding of the protein is still too fast

for stopped-flow to capture, or a major phase of the folding is identified which is too

fast to be captured, then further techniques must be used which allow for lower dead

times.
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Several techniques have been developed for the study of folding events

which are too fast to be accessed by stopped-flow methods. The methods that have

been adopted depend on the method of denaturation used. When the protein being

studied has been denatured either by chemical denaturants, or by a change in the pH,

then the technique of continuous-flow is used. This technique is similar to the

stopped-flow technique, but the flow is allowed to continue through the observation

channel during the observation, and the flow channels and mixers are smaller than

those used for stopped-flow, with the dead-times being correspondingly lower. With

pressure, or temperature being used to denature the protein, the methods of P-jump

or T-jump have been adopted. These techniques have been used to study the fast

folding of several proteins including prions (Jenkins et al., 2009) and ribonuclease A

(Font et al., 2006). P-jump and T-jump measurements have a distinct advantage over

continuous-flow methods in that they require much less protein and one can perform

refolding and unfolding experiments on the same samples.

Single molecules studies are valuable in directly observing the folding of

individual molecules. This technique uses a different method of unfolding the target

protein. The protein being studied is unfolded by placing a force on the protein

molecule to pull apart the structure. This technique is of particular value in studying

the folding of large repeat proteins, such as the consensus ankyrin repeat protein

N6C (Li et al., 2006). The individual repeated domains of these proteins have often

been studied by the techniques outlined above. Single molecule studies are

particularly valuable in determining the extent of cooperatively between the

unfolding and refolding of the repeated domains. Both optical traps and atomic force

microscopy (AFM) have been used to capture and apply force to tested proteins. The

information derived on the folding of proteins is less detailed than the information

that is obtained with the techniques outlined above, although single molecule

techniques do have several distinct advantages over equilibrium and kinetic folding

measurements. Firstly the folding of a single molecule is directly being examined as

opposed to a large number of molecules adopting an ensemble of conformational

states. Secondly, the study of large repeat proteins is more easily performed than is

the case with methods of the study of folding which involve large numbers of

molecules. This is because the unfolding and refolding is directly observed through

changes in the extension of the protein relative to the force applied, as opposed to the

techniques used to observe the folding of proteins in other techniques, which may
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require the modification of the protein to introduce reporter molecules or remove

extra reporters from the protein. The technique is not sensitive to the concentration

of protein used, which is advantageous compared to other techniques which show a

concentration sensitivity for both successful folding and for their folding probes.

1.1.6 Folding Probes

The study of the folding of proteins, through the methods outlined above,

requires a probe to be used to report on the folding of the protein. This probe should

describe the structure of the protein, or be sensitive to some feature of the protein,

such as the distance between two areas of the protein. Combinations of different

folding probes can be used to expand the amount of information obtained from the

study of the folding of proteins.

Features of the native protein can be exploited to probe the folding of

proteins. Circular dichroism (CD) measures the difference between the absorption of

left and right circularly polarized light. This difference is responsive to the secondary

structure content of the protein. Different forms of secondary structure give

characteristic spectra when the CD signal in the far-UV region is observed. These

typical spectra are shown in figure 1.2.
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Figure 1.2: Typical CD spectra given by different types of secondary structure.
Solid Line α-helix, long dashed line – anti-parallel β-sheet, dotted line – type I β-
turn, cross-dashed line – extended 31-helix poly(Pro) II helix, short dashed line –
irregular structure. Figure adapted from Kelly et al. (2005).

The CD signal of proteins is dominated by the contribution to the signal from the α-

helical component at longer wavelengths of over 200 nm. The contribution of β-

sheet is more dominant at wavelengths of under 200 nm. In folding experiments

however, the high concentrations of denaturants or buffer components used to

denature the protein interfere with the CD spectra at shorter wavelengths, causing a

loss of information at these wavelengths. When temperature is used to denature the

protein this loss of CD signal does not occur. Studies of the folding of proteins,

therefore usually focus on the α-helical component of the native protein.  

The intrinsic fluorescence of proteins is also commonly used for studying

their folding. Three of the twenty amino acids found in proteins are fluorescent,

Phenylalanine, tyrosine and tryptophan. These residues fluoresce when excited with

light at a wavelength in the near-UV region. The excitation and emission spectra of

these residues are shown in Figure 1.3.
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Figure 1.3: Absorption (A) and emission (E) spectra of phenylalanine, tyrosine and
tryptophan residues. Adapted from Lakowicz (2006).

The differences in the excitation spectra of the three fluorescent residues

allows different residues to be monitored by fluorescence. The fluorescence of the

whole protein is monitored by excitation of these residues at 280 nm. This has the

advantage of having a high fluorescence signal which allows the use of low protein

concentrations in folding experiments. The fluorescence spectra obtained in this

manner are complex, however, containing the contributions of many different

fluorescent amino acids. The fluorescence of tryptophan residues, as seen in Figure

1.3, can be selectively excited by utilizing a long excitation wavelength, which

minimizes or eliminates the contribution from other fluorescent residues. The

fluorescence of tryptophan residues is responsive to their environment. When in a

solvated environment the quantum yield of tryptophan fluorescence is reduced and

the λmax of fluorescence is shifted towards a longer wavelength compared to when

the residue is found in a non-polar environment. Since tryptophan residues are

commonly found in the hydrophobic core of proteins, then tryptophan residues form

an excellent probe of protein folding. Tryptophan fluorescence is sometimes

quenched by hydrogen bonds formed between the NH group in the indole ring of the
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tryptophan side chain and the aromatic ring of phenylalanine residues (Nanda et al.,

2000). The release or re-acquisition of this quenching can also be used as a probe of

the folding of the protein, in combination with the changes in tryptophan

fluorescence on solvent exposure. The technique of tryptophan fluorescence is often

combined with circular dichroism in the study of the folding of proteins, for example

in the study of the folding of p38α (Davies, 2004).  

Modifications of proteins can be used to report directly on the folding of

particular regions of proteins, particularly those that are difficult to access with other

techniques. The technique of Fluorescence Resonance Energy Transfer (FRET). This

requires the modification of the protein being studied to include two fluorophores, a

donor and an acceptor. The donor fluorophore is excited by the incident light and

transfers the energy to the acceptor fluorophores, by a resonance transfer, which then

fluoresces. The fluorescence emission from such a protein, at the acceptor emission

wavelength, when excited at the donor wavelength is inversely proportional to the

distance between the donor and acceptor molecules raised to the sixth power (Stryer

and Haugland, 1967). This proportionality can be used to examine the distance

between the donor and acceptor molecules as a protein unfolds or refolds, assuming

that the relative orientation of the fluorophores remains the same. This technique was

used by Huang et al., (2008) to study the folding of Engrailed homeodomain to

imply the existence of an equilibrium folding intermediate that was populated at low

concentrations of denaturant. Recent developments of this technique have allowed

the deconvolution of the FRET signal into different populations of molecules with

differing distances between the donor and acceptor molecules. This has given direct

evidence for the number of states in the folding transitions, as shown by studies on

chymotrypsin inhibitor 2 (Deniz et al., 2000).

Probes that report indirectly on the folded state of the protein are used when

more specific probes cannot be used for various reasons. Techniques involving mass

spectrometry report indirectly on the folding state of the protein. Ivernizzi and

Grandori (2007) used changes in the charge state distribution to report on the folding

of β-lactoglobulin. The changes were used to identify the unfolding of the protein. 

Mass spectrometry can also be used to measure changes in the mass of a protein as a

result of hydrogen deuterium exchange. The number of exchangeable protons

changes as a protein unfolds, with more protons becoming exchangeable as the

protein unfolds, as their backbone amides become exposed to the solvent. The
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technique measures the average mass change as a result of exchange at different

times or under conditions of partial denaturation and compares this to the change in

mass of the native state and denatured state on exchange (Maier and Deinzer, 2005).

The changes in mass cannot be mapped onto the residues of the protein, unlike the

changes observed using H/D exchange NMR. Such a technique has been applied to

bovine ubiquitin and lysozyme (Katta and Chait, 1993).

Other probes of folding that have been used include light scattering from the

protein sample, both static light scattering and dynamic light scattering. Dynamic

light scattering allows the estimation of the hydrodynamic radius of the protein. This

technique is particularly applicable to equilibrium measurements of protein folding.

This technique does, however, require high protein concentrations compared to other

techniques. H/D exchange NMR is a powerful technique, capable of not only

counting the number of exchangeable protons as with H/D exchange MS, but the

exchangeable protons can be mapped onto the protein structure. This provides key

information on the nature of any folding intermediates, as noted earlier in the studies

on the folding of α-lactalbumin, where the extent of structure present in the 

intermediate was shown utilizing H/D exchange NMR.

1.2 Protein Refolding

The expression of proteins in a host cell has become the key technique which

has driven vast increases in the understanding of protein structure and enzyme

kinetics and mechanisms, through the availability of large amounts of soluble

proteins from easy to culture organisms. Although the information necessary for a

protein to fold into its native conformation is present in the primary structure of

proteins (Anfinsen, 1973), the over-expression of recombinant proteins in E. coli

often results in the accumulation of the recombinant protein in structures known as

inclusion bodies, which contain a highly concentrated, non-soluble form of the

protein. To generate soluble protein for the study of protein structure, folding and

enzyme kinetics it would be desirable to obtain soluble, correctly folded protein from

inclusion bodies, since they represent a high purity, easy to isolate and relatively

inexpensive source of recombinant protein. To do this, it is necessary to

disaggregate the inclusion bodies into separated protein chains, and then induce these

chains to adopt the correct conformation. This is a difficult problem and has been
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solved by different methods for different proteins. To understand the difficulties in

this procedure we must first understand how the inclusion bodies are formed, what is

contained in inclusion bodies as well as their nature.

1.2.1 The Formation of Bacterial Inclusion Bodies

Bacterial inclusion bodies are formed on the over-expression of some

recombinant proteins in E. coli. Inclusion bodies can also be formed naturally under

certain forms of cell stress, e.g. heat shock, but these types of inclusion bodies are

not considered here. The formation of inclusion bodies for these proteins is

dependent on the temperature of expression, or on the rate of expression, as

determined by the concentration of the inducer of expression. Inclusion bodies can

be visualized in E. coli cells by light microscopy. Inclusion bodies are refractile

under phase contrast microscopy and grow continuously during the expression of the

recombinant protein (Carrió et al., 1998). Analysis of the size of inclusion bodies,

and the amount of protein accumulating in the inclusion bodies indicates that the

density of protein in the inclusion bodies does not change through the process of the

building of inclusion bodies. That is, the conformation of the protein in the inclusion

bodies is the same regardless of the size of the individual inclusion bodies or the

length of the expression of the recombinant protein (Carrió et al., 1998).

The bacterial inclusion bodies that are formed on the over-expression of

recombinant proteins often contain more additional proteins as well as the

recombinant protein, reducing the purity of the inclusion bodies. Several host

proteins have been shown to be present in purified inclusion bodies in addition to the

recombinant protein. The building of inclusion bodies of hFGF-2 includes the

elongation factor Tu (EF-Tu). The chaperones DnaK and DnaJ were also found in

hFGF-2 inclusion bodies in addition to certain metabolic enzymes from E. coli

namely LpdA, GatY and TnaA (Rinas et al., 2007). GroEL/ES has also been found

in some bacterial inclusion bodies. The recombinant protein usually, however,

accounts for more than 80% of the total protein in the inclusion bodies (Carrió et al.,

1998), making inclusion bodies a high purity source of recombinant protein.

In early studies of bacterial inclusion bodies, it was assumed that the

inclusion bodies represented a disordered aggregate of mis-folded proteins.

However, more recent studies on inclusion bodies have revealed that this view of

bacterial inclusion bodies is misguided. Ami et al. (2006) studied the structure of the
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proteins present in bacterial inclusion bodies using Fourier Transform Infrared (FT-

IR) spectroscopy. In studying the secondary structure of human growth hormone (h-

GH) and human interferon-α 2b (IFNα-2b) inclusion bodies it was determined that a 

significant amount of secondary structure was present. This secondary structure

resembled the native secondary structure. However, intermolecular β-sheet bridges 

were also present, which are responsible for the insoluble and densely packed nature

of the inclusion bodies. The secondary structure component of the purified inclusion

bodies was also different from the secondary structure component of thermal

aggregates of the proteins studied. Other studies on bacterial inclusion bodies have

established that the inclusion bodies of fluorescent proteins can fluoresce, indicating

that these inclusion bodies contain proteins that are mostly folded (Garcia-Frutos et

al., 2005). In addition, inclusion bodies of over expressed enzymes have been shown

to retain enzymatic activity (Tokatlidis et al., 1991).

Bacterial inclusion bodies are often considered to be inert protein aggregates

that grow by accumulation of mis-folded protein and may shrink by proteolysis of

the inclusion body proteins. Carrió and Villaverde (2000) showed, however, that

bacterial inclusion bodies are dynamic. Exploiting an expression system using a

temperature sensitive phage repressor (cI857 phage repressor) to control expression

they were able to express β-galatosidase and P22-tailspike polypeptide as inclusion 

bodies and subsequently halt expression whilst continuing the culture by means of a

temperature shift. When this was performed, the amount of soluble protein increased,

despite no further expression of the protein being performed. This indicates that the

inclusion bodies formed were being disintegrated by cellular machinery and protein

refolded.

This has given rise to a different view of inclusion bodies proposed by

Ventura and Villaverde (2006) and Villaverde and Carrió (2003). This view

understands inclusion bodies to be dynamic structures with the protein contained

being conformationally diverse. They propose that inclusion bodies do not contain

only mis-folded protein which is trapped in its mis-folded state, but rather, are

transient reservoirs of protein which is under the quality control mechanisms of the

bacterial cell, namely chaperones and proteases. The accumulation of proteins in

inclusion bodies is driven by the balance between the translation of the protein from

the mRNA and the speed and chaperone requirements of the folding of the

polypeptide chain. If the rate of production of the protein exceeds the ability of the
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cell to fold the protein, the excess partially folded protein will be stored in inclusion

bodies to be folded later, when the production of the protein has lowered or ceased.

There are no defined sequence features that lead to the accumulation of protein in

inclusion bodies, as evidenced by similar mutations in different proteins resulting in

different behaviour of the proteins regarding their accumulation as inclusion bodies.

1.2.2 The Refolding Problem

The accumulation of recombinant protein as inclusion bodies presents an

easy to access source of high purity protein. To make use of this source of protein

however, the protein chains must be separated, and the protein induced to fold into

its native conformation. Many proteins have been refolded from inclusion bodies for

different purposes. Owen et al., (1995) refolded the kinase domain of phosphorylase

kinase from inclusion bodies, and crystallised the refolded protein to obtain the

structure of the phosphorylase kinase kinase domain.

Some proteins for therapeutic use are produced by refolding bacterial

inclusion bodies, for example heterodimeric platelet-derived growth factor (Müller

and Rinas, 1999). When refolding inclusion bodies on a larger scale like that used for

the production of therapeutic proteins, studies by Mannall et al. (2007) have

confirmed that the rate of dilution of the inclusion bodies from the unfolded state

into the renaturation conditions used is key for obtaining high yields of refolded

protein.

A survey of the renaturation conditions that have been reported in the

REFOLD database (Chow et al., 2006), indicates that the conditions which support

the refolding of different proteins vary widely. This has lead to the adoption of

refolding screens to rapidly identify the conditions that promote the refolding of the

protein. Commercial screens have also been produced, such as the Novagen iFold

screen. Commercial refolding additives have also been produced, with the aim of

improving the refolding of most proteins from inclusion bodies, such as the novexin

reagents. These refolding screens are, however, usually broad, including several

different reductant, and also including redox couples, such as reduced and oxidized

glutathione. Since the commercial screens include four or more different pHs, and

both reducing conditions and redox couples, the number of additives that is

examined is necessarily lower. The typical refolding volume is also low, usually 1

mL, leading to low amounts of refolded protein. Since the amount of refolded
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protein is low the manufactures of these screens usually recommend that a sensitive

activity assay is used to assess the extent of refolding. This is problematic for kinases

however, which typically require activation by an activating kinase, or other

regulatory partners for full activity. The combination of the requirement for an

activity assay which is difficult for kinases in this format, the low coverage of the

different types of additives, and the low amounts of refolded protein available for

readout from the screen make these commercial screens unsuited to the identification

of conditions for the refolding of protein kinases.

1.2.3 The Preparative Refolding of Proteins

Methods for supporting the refolding of proteins from inclusion bodies are

widely variable. Firstly the methods employed for the disaggregating of the inclusion

bodies are different depending on the nature of the protein that is being refolded.

Inclusion bodies can be disaggregated by the use of chaotropic denaturants such as

guanidine or urea or detergents such as SDS. Physical means of disaggregating

inclusion bodies such as temperature or pressure can also be used, although these

methods are usually used with small quantities of protein and are difficult to scale to

larger refolding experiments.

Once the inclusion bodies have been disaggregated, the denatured protein

produced may be purified in the denatured state if a purification tag is present which

functions in the denatured state. Typically poly-histidine tags are used. Physical

means of disaggregating inclusion bodies do not allow for the purification of the

protein of interest from the contaminant proteins found in disaggregated inclusion

bodies. The use of high purity denatured protein for refolding experiments is

expected to improve the recovery of correctly folded protein (Batas et al.,1999).

To refold the protein from the disaggregated state the conditions which

maintain the denatured, disaggregated state need to be removed to allow the protein

to refold. When physical means have been used to disaggregate the inclusion bodies,

the protein is refolded by the removal of the pressure or temperature change, in

either a single step, in a series of steps or in a slow gradient. Where chemical

denaturation has been used several strategies have been employed to allow and

support the refolding of the disaggregated inclusion body proteins. Where a poly-

histidine tag is present on the protein to be refolded, the denatured protein can be

bound to an IMAC column and the chemical means of denaturation removed by
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changing the buffer the column is equilibrated in. This method was used by Ryu et

al. (2008) to obtain refolded extracellular superoxide dismutase. A similar strategy

can be employed using size exclusion columns equilibrated with a gradient of the

denaturant used. This technique has been employed to obtain β-lactamase and B 

lymphocyte stimulator from inclusion bodies (Harrowing and Chaudhuri, 2003; Cao

et al., 2005).

The most common means of refolding the denatured protein is the rapid

dilution of denatured protein into buffer. The buffer conditions, and the presence and

concentration of a number of refolding additives, both chemical, such as arginine

(Tsumoto et al., 2005) and poly-ethylene glycol and protein based, such as molecular

chaperones (Wang et al., 1999) are used to support the refolding of the target

protein. Such additives can be used with the column approaches outlined above, but

the larger amounts required usually rule out such an approach for cost reasons.

The final approach used for the refolding of inclusion body proteins is the

removal of the disaggregating agent by dialysis. This strategy cannot be used when

the disaggregating agent is a large molecule, such as a detergent, and so is usually

used with chemical denaturants like guanidine and urea. The dialysis buffer used

may contain refolding additives like those used in rapid dilution. This approach is

typically attempted after the rapid dilution approach has failed, since the removal of

denaturant is slower and therefore refolding is slower. The disadvantage of this

approach to the refolding of proteins is that it is slower and when scaled to generate

quantities of protein suitable for biophysical analysis may require several dialysis

steps to completely remove the denaturant. This approach was used to generate

adenylate kinase from inclusion bodies by Hibino et al., (1994).

1.3Protein Kinases

1.3.1 The Human Kinome

Protein kinases are a diverse group of proteins involved in many signalling

pathways and cellular processes. Protein kinases are ATP-dependent

phosphotransferase enzymes which transfer a single phosphate group from ATP to

the side chains of serine, threonine or tyrosine residues. Other kinases transfer

phosphate groups from ATP to histidine residues, but these form a separate group of

enzymes and are outside the scope of this study. The protein kinases have been



- 20 -

thought to require a divalent metal ion to allow the binding of ATP to the enzyme

and the phosphoryltransfer activity (Adams, 2001), however this requirement has

recently been questioned by studies on pseudokinases, which show kinase activity

without a second Mg2+ ion thought to be essential (Kannan and Taylor, 2008).

Mammalian protein kinases are divided into three classes, depending on the

residue which the kinase transfers phosphate groups to. Serine/threonine protein

kinases transfer phosphate groups onto serine or threonine residues and tyrosine

kinases transfer phosphates to tyrosine residues. A small number of kinases, termed

dual-specificity kinases, is capable of transferring phosphate groups to both

serine/threonine and tyrosine residues. Protein kinases only poorly phosphorylate

free amino acids and instead use residues local to the phosphorylated residues to

increase their affinity for their target (Adams, 2001).

Sequence comparisons of protein kinases has shown that these protein

kinases shared a common region of 200-250 amino acids that conferred a kinase

activity to these proteins. From this study a number of key regions and strictly

conserved residues were identified (Adams, 2001). The protein kinase component of

the human genome has subsequently been identified using a hidden Markov model

of the eukaryotic protein kinase domain (Manning et al., 2002). This consists of 478

protein kinases and 40 atypical protein kinases. Atypical protein kinases are defined

as proteins which have kinase activity, but lack sequence similarity to the protein

kinase domain. The human kinome contains 50 inactive protein kinase domains,

termed pseudokinases, which lack one of the conserved catalytic residues of the

kinase domain. It was expected, when found that these domains would be inactive

and would function as scaffolds for other proteins (Manning et al., 2002); however

recently several pseudokinases have been shown to have catalytic activity and to

bind ATP, albeit under slightly unusual conditions (Kannan and Taylor, 2008).

Sequence analysis of the human kinome has identified seven distinct

groupings in the human kinome. These seven groups are the tyrosine kinase group;

the tyrosine kinase-like group; the STE group (homologues of yeast sterile 7, 11 and

20 kinases); the CMGC group which contains the CDK, MAPK, GSK3 and CLK

families; the CAMK group containing calcium and calmodulin dependent kinases;

the AGC group containing the PKA, PKG and PKC families; and finally the CK1

group containing Casein Kinase 1 and closely related kinases. There are other
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kinases in the kinome which do not fit into one of the defined groups (Manning et

al., 2002).

Figure 1.4: Dendrogram of 491 protein kinase domains from 478 genes identified by
Manning et al. (2002). Conserved groups described above are shown in colour. Figure
taken from Manning et al. (2002). The dendrogram was produced using a combination of
techniques. The initial branching pattern was built from a neighbor-joining tree derived
from a ClustalW protein sequence alignment of the human protein kinase domains. This
was extensively modified by reference to other alignment and tree-building methods
(hmmalign and parsimony trees) and by extensive pairwise sequence alignment of kinase
domains (Manning et al., 2002).The abbreviations of the kinase groupings are as follows:
TK is the tyrosine kinase group; TKL the tyrosine kinase-like group; RGC is the receptor
guanylate cyclise group; the STE group (homologues of yeast sterile 7, 11 and 20
kinases); the CMGC group which contains the CDK, MAPK, GSK3 and CLK families;
the CAMK group containing calcium and calmodulin dependent kinases; the AGC group
containing the PKA, PKG and PKC families; and the CK1 group containing Casein
Kinase 1 and closely related kinases.

In this study of the refolding of protein kinases, five protein kinases in

particular have been studied. These five kinases were p38α, AKT2, KIS, PhK and 

TTK A brief review of the biological role and any folding details available on these

five kinases will now be given.
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1.3.2 p38α, a Previously Studied Kinase 

p38α is a member of the CAMK group of kinases in the human kinome. It is 

a 360 residue protein of 41 kDa which comprises a single kinase domain. p38α is an 

effector kinase in the MAP signalling cascade, being activated by phosphorylation

on residues Thr180 and Tyr182 (Raingeaud et al., 1995) by upstream MAP kinase

kinases, typically MKK6, MKK4 and MKK3 (Enslen et al., 1998). p38α 

phosphorylates downstream targets such as ATF2 and MAPKAP2 (Raingeaud et al.,

1996; Rouse et al., 1994).

The equilibrium folding of p38α has been studied by Davies (2004). The 

protein was found to unfold in the presence of GdnHCl and to adopt a native-like

conformation when refolded from a high concentration of GdnHCl. The folding of

p38α was monitored using the probes of far-UV CD and tryptophan fluorescence. 

The protein contains five native tryptophans, two found in the N-terminal lobe of the

kinase domain and the remaining three tryptophan residues found in the C-terminal

lobe. To support the study of the folding of p38α via tryptophan fluorescence a series 

of tryptophan to phenylalanine substitutions were performed to create single

tryptophan mutants of p38α. During this process, it was discovered that a single 

tryptophan residue in the core of the C-terminal domain was essential for the correct

folding of the protein, and it was not possible to create a soluble, correctly folded

mutant lacking this residue, despite attempts to replace the residue with several

different residues, namely, tyrosine, histidine and lysine (Davies, 2004). A sequence

analysis of several protein kinases indicated that the residue is absolutely conserved

in kinases. The locations of the tryptophan residues of p38α are highlighted in Figure 

1.5.
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Figure 1.5: Crystal structure of p38α, with 5 native tryptophan residues highlighted and 
annotated. The essential tryptophan residue, residue 207 in the core of the C-terminal
lobe is also indicated. Structure from pdb file 1WFC, rendered using ray tracing module
of Pymol (DeLano, 2008).

The folding of the p38α was observed initially by far-UV CD. The transition 

was too broad to be a two state transition, and was observed to appear to proceed via

an intermediate, but was too broad to be well fitted to a three state folding model.

The unfolding and refolding curves of the wild type protein and all of the soluble

tryptophan to phenylalanine mutants created were super-imposable, indicating that

the tryptophan to phenylalanine substitutions had not affected the folding of the

protein. The unfolding and refolding transitions were also super-imposable,

indicating that the folding was fully reversible (Davies, 2004).

The folding of p38α was also observed by tryptophan fluorescence. The wild 

type protein unfolded via a three state transition, though the broadness of the

transition meant that the data were not well fitted to three state folding models, with

a large error in the parameters of the fit. A C-terminal tryptophan mutant was

created, which replaced the tryptophans in the N-terminal lobe with phenylalanine.

W207W187

W197

W18

W337
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This mutant also folded via a three state transition, although the parameters of the fit

were better defined than was the case with the wild type protein. The folding of the

single, core, essential tryptophan was also studied with a single tryptophan mutant

containing only W207. This also folded via a three state transition, with the

parameters of the fit being well defined (Davies, 2004). The refolding and unfolding

transitions of the various tryptophan mutants were super imposable with themselves,

indicating that the unfolding and refolding of the protein was fully reversible. The

native spectra of the single tryptophan were examined and found to be too broad for

a single tryptophan in a single conformation. This spectral broadening, which was

observed to arise late in the refolding of the protein was attributed to a mixture of

two conformational states being present under native conditions (Davies, 2004).

The folding of p38α was observed to proceed via an equilibrium intermediate 

by both far-UV CD and tryptophan fluorescence. The two probes of folding used

allows the nature of the intermediate to be speculated upon. At the denaturant

concentration where the intermediate is formed the majority of the secondary

structure is formed, as indicated by a high CD signal at 222 nm (Davies, 2004). The

fluorescence spectra of the protein at this concentration indicate that there is still

substantial exposure of the tryptophan residues to solvent, indicating that a molten

globule intermediate is formed. From the behaviour of the different tryptophan

mutants examined it can be determined that the C-terminal lobe is key to the folding

of p38α and that the intermediate forms in this region (Davies, 2004). 

1.3.3 AKT2

AKT2, also known as protein kinase B β (PKBβ), is a serine/threonine 

protein kinase which is involved in growth factor and insulin signalling. Protein

kinase B was originally discovered by homology cloning using specific probes for

protein kinase A, and as the homologue of the v-Akt oncogene. The PKB family

consists of three isoforms which are differentially expressed in human tissues. PKBα 

or AKT1 is expressed in all cell types, PKBβ or AKT2 is expressed in cells that are 

insulin targets, predominantly fat cells, liver and skeletal muscle. PKBγ or AKT3 is 

not widely expressed, but is expressed in some cell types that are responsive to

insulin. PKB isoforms are important in both cancer and in type 2 diabetes, with

activated or overexpressed PKB found in several types of cancer. In type 2 diabetes

the activation of the protein kinase activity is reduced (Sale and Sale, 2007).
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The protein kinase B family members share a high sequence identity, with

PKBβ and PKBγ sharing 81% and 83% sequence identity with PKBα. The PKB 

protein is a cytosolic protein of 57 kDa, which contains three domains. These are a

pleckstrin homology domain (PH domain) at the N-terminus of the protein, the

kinase domain, which is central to the protein, and a final C-terminal domain. The

PH domain binds two important cell signalling molecules with high affinity,

phosphatidylinositol-3, 4, 5-trisphosphate and, phosphatidylinositol-3, 4-

bisphosphate. The kinase domain consists of approximately 250 residues, and is very

similar to the kinase domain of PKC and PKA. A conserved threonine in the domain,

Thr309 in PKBβ, is required to be phosphorylated for full activity of the kinase 

domain. The C-terminal domain is ~40 residues in length and is most closely related

to the PKC family. A conserved serine in this region is also required to be

phosphorylated for full activity (Sale and Sale, 2007).

The activation of PKB occurs upon the binding of the PH domain to PIP3 in

the membrane. PIP3 is generated by PI3K as a second messenger after activation of a

receptor tyrosine kinase by ligand binding. The kinase domain of PKB is not directly

activated by the binding to PIP3. Instead the binding is believed to cause a

conformational change in the kinase domain and in the C-terminal domain which

allows the key serine and threonine residues mentioned above to be phosphorylated

by two upstream, activating kinases, PDK1 and PDK2. The phosphorylation of these

residues then activates the kinase domain of PKB, which then phosphorylates

downstream targets involved in insulin signaling (Hajduch et al., 2001; Bae et al.,

2003), cell-cycle progression (Li et al., 2002) and apoptosis (Kim et al., 2001; Park

et al., 2002; Brunet et al., 1999; Song et al., 2005). The activation pathway and key

substrates of PKB are shown in Figure 1.6.
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Figure 1.6: Activation pathway and key substrates of PKB. Phosphorylated residue
numbers shown are for the PKBα isoform. Figure adapted from Sale and Sale, 2007. 

1.3.4 KIS

KIS, or kinase interacting with stathmin, was initially discovered using a

yeast two-hybrid system as interacting with stathmin, a small (19 kDa) cytoplasmic

protein found enriched in neurons. (Maucuer et al., 1995). The phosphorlyation of

stathmin, on its four phosphorylation sites, is correlated with the regulation of many

cellular processes including neuronal differentiation, T-cell activation, stress

response and cell cycle progression. (Maucuer et al., 1997). Stathmin has been

proposed to be a relay and integrator in cellular signaling networks (Sobel, 1991).

KIS is a 419 residue protein of 46.4 kDa. The full length protein has been

predicted to contain two domains, a protein kinase domain at the N-terminus of the

protein, and a C-terminal RNA binding domain. When KIS is overexpressed in

HEK293 cells it is observed to be localized to the nucleus. This indicates that KIS

may be important in regulating nuclear RNA processing through phosphorylation

(Mauccuer et al., 1997).

KIS has also been shown to regulate a cyclin-dependent kinase inhibitor,

p27Kip1 through phosphorylation on serine 10. This phosphorylation of p27Kip1 leads

to the export of the regulator from the nucleus and its subsequent degradation.p27Kip1

is involved in the regulation of the progression of the cell through the G1/S phases of
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the cell cycle through the regulation of its inhibition of the cyclin dependent kinases

(Sherr and Roberts, 2004). KIS expression is activated during G0/G1 phases of the

cell cycle by mitogens, leading to a reduction in nuclear p27Kip1 and cell

proliferation. Inhibition of KIS activity presents a possible treatment for cell

proliferation diseases such as cancers, through the maintenance of nuclear p27Kip1

leading to cell cycle arrest.

As of the time of writing, there is no published structure of either the kinase

domain of KIS, or of the full length protein. This makes the studying of the refolding

of this protein kinase domain of particular interest.

1.3.5 PhK

Phosphorylase kinase is an enzyme which is involved in the regulation of

glycogenolysis, which is activated through a cascade. The enzyme forms, in skeletal

muscle, a hexadecameric complex, with four copies of each of four different

subunits, which perform different roles. The subunits are termed the α, β, γ and δ 

subunits. (Brushia and Walsh, 1999). The γ subunit contains the active kinase 

domain, and the α, β and δ subunits regulate its activity. The activity of the γ subunit 

is regulated by Ca2+ and this regulation is mediated by the δ subunit, which is 

identical to calmodulin. The α and β subunits inhibit the activity of the γ subunit, and 

the effect of the δ subunit binding Ca2+ is to release this inhibition of activity

(Brushia and Walsh, 1999).

The structure of the kinase domain of the γ subunit was solved in 1995 by 

Owen et al.(1995). They obtained inclusion bodies of the kinase domain of the γ 

subunit from rabbit skeletal muscle by expression in E. coli. They were able to

obtain soluble protein by performing a rapid dilution of inclusion bodies solubilised

in 8 M urea 50 mM Tris 25 mM DTT pH 8.5. The denatured and solubilised

inclusion bodies were diluted 10 fold into a refolding buffer of 50 mM phosphate,

10% glycerol 2 mM EDTA, 1 mM EGTA 4 mM DTT pH 8.2. The protein was

allowed to refold at 4 °C and the protein purified and crystallized. This marks the

only example of the refolding of a protein kinase for the purpose of obtaining soluble

protein for biophysical study that has been reported prior to the work presented here.
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1.3.6 TTK, a Dual Specificity Kinase

Mps1 was first identified in yeast, during a mutagenesis screen which tested

for mitotic spindle defective mutants. The original mutant causes a failure in the

duplication of the yeast centrosome at a restrictive temperature. The mutant did not

affect other aspects of cell division, as evidenced by the cells growing a bud and

duplicating their DNA (Winey et al., 1991). Subsequent to the identification of the

mutant, the gene was cloned and fusion proteins created. These fusion proteins were

purified from yeast extracts and shown to be phosphoproteins. The protein was also

demonstrated to be a protein kinase with activity against both exogenous substrates

and to be capable of autophosphorylation. A mutation was performed on the isolated

gene, which abolished in vitro kinase activity. This mutant acted like a null mutant in

vivo indicating that the in vivo action of the protein in the duplication of the yeast

centrosome was dependent on the kinase activity of the protein (Lauzé et al., 1995)

It was observed that the mutant cells produced continue to segregate their DNA

despite the lack of a functional spindle. This suggested that the Mps1 gene product

may be involved in more than spindle formation. The effect of several double

mutants and induced Mps1 mutants showed that the Mps1 gene product was also

involved in the checkpoint arrest of mitosis. The arrest of mitosis due to nocadazole

depolymerisation of microtubules also did not occur in Mps1 mutants. It was shown

that this failure of the checkpoint function in the mutants was independent of the

failures in the spindle formation observed (Weiss and Winey, 1996).

The human homologue of yeast Mps1 or TTK has been shown to have similar,

but divergent functions in human cell lines when compared to yeast Mps1. The

expression of TTK varies according to the position of the cell cycle. TTK was

present in the experiments performed at all stages of the cell cycle, but the

expression levels increased as the cells approached mitosis. The kinase activity of

the samples was assessed using fusion proteins, and was found to peak when the

cells entered mitosis, which occurred 8 to 10 hours after the cells were released from

a G1/S block. The expression levels increased ~3 fold whereas the kinase activity

increased ~10 fold, indicating that there is an activation event occurring in addition

to the increase in expression. Antibodies to TTK and siRNA inhibition of TTK both

were capable of inactivating the spindle assembly checkpoint, similar to the role of

Mps1 in yeast. However, similar experiments did not result in an effect on the

duplication of the centrosome as was observed in yeast (Stucke et al., 2002).
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Human TTK is an 857 residue protein of a molecular mass of 96.9 kDa. It

comprises three domains, a large N-terminal domain, followed by the kinase domain,

and finally a short C-terminal domain. The roles of the N-terminal and C-terminal

domains are not fully understood, however the N-terminal domain has been shown to

have a role in the targeting of the protein to the kinetochore, the centre of the

checkpoint signaling (Liu et al., 2003).

The biological activity of the kinase domain is better understood. Evidence for

cross-talk between the DNA damage checkpoint, and the spindle assembly

checkpoint was gathered when it was observed that ablating the expression of human

TTK reduced the phosphorylation of CHK2 and affected, therefore, downstream

events from CHK2 phosphorylation, resulting in an impairment of the arrest in

growth in response to DNA damage (Wei et al., 2005). The presence of TTK is

required for the localization of many of the other checkpoint proteins to the

kinetochore including Bub1, BubR1, Mad1 and Mad2 (Abrieu et al., 2001; Vigneron

et al., 2004). TTK is capable of auotphosphorylation on a residue in the activation

loop, T676, and a T676A mutant shows lower kinase activity in vitro but does not

cause over-duplication of the centrosome when over expressed (Mattison et al.,

2007). This appears to be contradictory to the expected role of phosporylation of

T676 in the in vivo activity of TTK. However, studies performed using a construct of

TTK fused to FK506 – binding protein allowed the dimerisation of TTK to be forced

using a small molecule. This forced dimerisation resulted in autophosphorylation of

TTK on T676. It was suggested that the localization of TTK to the kinetochore

results in a high local concentration of TTK which could promote the trans-

autophosphorylation of TTK on T676. The efficient trans-autophosphorylation of

TTK in the kinetochore results in its activation, allowing it to perform its role in the

spindle assembly checkpoint (Kang et al., 2007).

1.4 Aims

The existence of a limited number of protein folds in nature raises the question of

whether similar protein folds posses similar folding properties, or whether the

differences in the amino acid content of the proteins result in different folding

properties for these proteins. Some evidence has been presented from studies

performed on topologically complex proteins that does indicate that similar
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structures can give rise to similar folding properties(Gloss, 2007; Mallam and

Jackson, 2005).

Protein kinases are a sequence diverse family of protein domains which share a

common, well defined fold. The protein kinase family contains proteins which have

key roles in the control of cellular processes such as cell cycle progression and

regulation (Maucuer et al., 1997; Li et al., 2002), and the regulation of

glycogenolysis (Brushia and Walsh, 1999). Defects in the activation and regulation

of protein kinase activity have been implicated in chronic diseases, such as diabetes

and cancer. The development of small molecule inhibitors of protein kinases is an

active area of pharmaceutical research, and the elucidation of the structure of protein

kinases is a key part of this research, requiring the availability of milligram amounts

of soluble, correctly folded protein. This has proved to be challenging to achieve

with protein kinases, with many accumulating in inclusion bodies when the kinase

domains are over expressed in bacteria.

Given the pharmaceutical importance of protein kinases, the difficulty in

obtaining soluble, high purity recombinant protein kinase domains, and the existence

of a previous study on the folding pathway of p38α, a serine/threonine protein kinase 

(Davies, 2004), a further study into the folding of protein kinases would provide

important insights into the possibility of achieving soluble protein through a

common route, create mechanisms for testing for the refolding of protein kinases,

and examine the possibilities of common folding properties in the conserved kinase

fold, despite sequence divergence between protein kinases.

The specific aims of the work undertaken were:

 To create, and test, using a model protein kinase, a protein refolding screen,

suitable for use with protein kinases, with associated means of determining

the extent of the refolding of the protein used.

 To test this screen with additional protein kinases, to allow the comparison of

the refolding of several protein kinases, to elucidate possible commonalities

in the refolding of protein kinases.

 To develop a screen more suited to protein kinases than the initial screen

based on the results achieved.

 To mutagenise, express, purify and characterize a soluble protein kinase used

in the screen for more detailed examination of the folding of a protein kinase.
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 To characterize the folding of a protein kinase used in the screen.

 To use the results of the refolding screens performed, the existing study on

p38α folding, and the folding study performed on an additional kinase to 

draw conclusions about the existence of a common protein kinase folding

pathway.



32

Chapter 2: Design, Testing and Evaluation of a Protein

Refolding Screen using p38α as a Model Protein Kinase

2.1 Introduction

In order to study the refolding of protein kinases, it is necessary to be able to

refold the inclusion bodies produced upon expression of many protein kinases in

Escherichia coli. The refolding of proteins is a challenging procedure, the success of

which cannot be predicted accurately. To find conditions which lead to the refolding

of protein kinases in quantities which allow further study it may be necessary to

survey many conditions and chemical additives which may aid refolding. A screen is

therefore desirable to rapidly test these conditions. This chapter describes the design

and testing of such a screen for the refolding of protein kinases, with its associated

methods of following the success of refolding in each case, using the test protein,

human protein kinase p38α. 

To aid in the design of the screen, and to validate the methods chosen as part

of the screening system it is necessary to select a test protein to use with the screen.

p38α was selected as a test protein since it had several desirable features for aiding in 

the design and testing of a screen. Firstly, p38α is able to be obtained from E. coli in

both a soluble, correctly folded form and in an insoluble form, depending on the

expression conditions used. Secondly, as shown by Davies (2004), p38α is capable 

of refolding from the denatured state under equilibrium conditions. Although the

refolding technique used within the screen does not use equilibrium conditions, the

results of Davies mean that should p38α fail to refold within the screen, this should 

be due to the conditions used, and not a generic property of p38α. 

The study of the refolding of protein kinases via a refolding screen reveals

details of the folding that are not easily accessible via equilibrium methods. Firstly,

the screen allows a rapid comparison of the effects of pH upon the folding of protein

kinases and secondly commonalities in the response of proteins to refolding

additives may suggest similar folding pathways.

Refolding screens have been made available commercially recently, as the

desire to obtain more challenging proteins for structural studies has increased.

However, for application to protein kinases, these screens have several
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disadvantages. Firstly, the volumes that are used in these screens tend to be low,

limiting the techniques that can be used to quantify the refolded protein. As such,

most screens recommend some form of activity assay for assessing the extent of

refolding. Activity assays for protein kinases, are however problematic for a

refolding screen application. The high concentrations of chemical additives used in

refolding would interfere with the activity assay, either through effects on the protein

itself, e.g. partial unfolding of the kinase, or the target protein by low concentrations

of denaturant, or through effects on the assay readout. In addition, many protein

kinases require activation by another protein kinase, e.g. p38α requires activation by 

MKK6 dependent phosphorylation. The requirement for this phosphorylation by

another protein kinase, and the purification of the activated protein kinase of interest

from unactivated kinase and activating kinase makes activity assays unsuitable for a

screen.

To enable the study of the refolding of protein kinases therefore, a refolding

screen is needed, that uses more generic readout methods than commonly suggested.

It is necessary to show that this screen is able to identify conditions leading to

refolding of the target protein kinase on a scale that would yield amounts of protein

suitable for further study, and that this protein adopts the correct fold. This chapter

describes also the scaling of the refolding of p38α to multi mg scale, gives evidence 

that the correct fold is adopted by the refolded protein, and examines possible

explanations for the differences observed in the refolding of p38α at different pHs.   

2.2 Materials and methods

2.2.1 Materials

NV-10 was purchased from Novexin Ltd (Cambridge, UK). 3-(1-pyridino)-1-

propanesulfonate and β-cyclodextrin were purchased from Fluka (Buchs SG, CH). 

Tris was purchased from Acros Organics (Geel, BE); P20 surfactant was supplied by

Biacore (Chalfont St. Giles, UK) and dimethyl sulphoxide by Fisons (Ipswich, UK).

All other chemicals were supplied by Sigma-Aldrich (Poole, UK).
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2.2.2 Transformation of E. coli with Plasmid DNA

In order to transform E. coli with plasmid DNA, a 2 µl aliquot of plasmid

DNA, at a concentration of 100-150 ng/µL was added to 50 µL of competent cells of

various strains. The mixture was mixed by gently flicking, and incubated on ice for

30 minutes. The sample was heat-shocked at 42 °C for 45 s and subsequently

incubated on ice for a further 5 minutes. A 200 µL aliquot of pre-warmed SOC Broth

(2 % w/v tryptone, 0.5 % w/v yeast extract, 8.56 mM NaCl, 2.5 mM KCl, 10 mM

MgCL2, 20 mM Glucose, pH 7.0; Hanahan, 1983) was added, and the sample

incubated at 37 °C for 1 hour at 300 rpm in a heated shaking block. 150 µL of the

incubated sample was spread on LB Agar plates containing an appropriate antibiotic

for the strain and the plasmid used.

2.2.3 Preparation of Plasmid DNA

Plasmid DNA for Gateway cloning reactions, restriction digests, site directed

mutagenesis and E. coli transformations was prepared using a QIAprep Spin

Miniprep Kit (Qiagen), consisting of buffers P1, P2 N3 and PE and pre-packed silica

columns, using either the centrifuge method, or the vacuum manifold method

according to the manufacturer’s instructions.

Briefly, a 10 mL overnight culture of E.coli cells of various strains containing

the plasmid of interest was centrifuged and the supernatant discarded. The cell pellet

was gently resuspended in 250 µL buffer P1and lysed in alkaline conditions by the

addition of 250 µL buffer P2. 350 µL of buffer N3 was used to precipitate the

protein present in the sample. The sample was centrifuged and the supernatant was

applied to a QIAprep spin column. The column was washed by the addition of 750

µL of buffer PE to the column, followed by centrifugation for 1 minute at 13000

rpm, or the application of vacuum to the column. 5-10 µg of DNA was then eluted in

50 µL of 10 mM TrisHCl, pH 8.5. The concentration of the eluted DNA was

assessed by UV spectroscopy using equation 2.1.

Concentration (µg/mL) = (A260 – A320) x 50 (2.1)

2.2.4 Expression of p38α as Inclusion Bodies

p38α was prepared from insoluble aggregates using the following procedure. 

An expression construct for p38α was used to transform E. coli strain BL21* (DE3)
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cells as previously described (Section 2.2.2). The agar plates were incubated

overnight at 37 °C. For expression, a single colony was picked from the plate and a

75 mL starter culture of Terrific broth containing 100 μg/mL ampicillin was 

inoculated with this colony. The starter culture was incubated overnight at 37 °C.

Terrific broth was made as follows, 12 g tryptone, 24 g yeast extract, 4 mL glycerol

were added to 900 mL distilled water. The media was autoclaved and 100 mL of

0.17 M KH2PO4 0.72 M K2HPO4 added once cool.

5 mL of starter culture was used to inoculate expression cultures of 600 mL

terrific broth containing 100 μg/mL ampicillin and incubated in a shaking incubator 

at 37 °C and 180 rpm. When OD600 reached ~0.6 the expression of the protein kinase

was induced by the addition of IPTG to a final concentration of 0.4 mM. The

incubation was allowed to proceed for 20 hours before the biomass was harvested.

2.2.5 Isolation and Solubisation of Inclusion Bodies

Biomass was harvested from the expression cultures by centrifugation at

6000 g. Isolated cell paste was weighed and stored at -80 °C until used.

Inclusion bodies were isolated from the cell paste using a modified version of

the method found in Georgio and Valax (1999). Frozen cell paste was resuspended in

50 mM Tris 200 mM NaCl 5 mM β-mercaptoethanol pH 8.0. The volume of buffer 

used was 50 mL per gram of cell paste. The cells were resuspended using a

homogeniser and lysozyme added to a final concentration of 0.5 mg/mL. The

resuspended cells were incubated at 4 °C for 3 hours before the lysis of the cells was

completed by sonication. This was performed by 4 rounds of 30 s sonication

followed by 2 minutes relaxation time. Samples were kept on ice between periods of

sonication.

Cell debris and inclusion bodies were separated from the soluble material by

centrifugation at 35,000 g. The supernatant was retained for further analysis, and the

pellet washed with lysis buffer to remove residual lysozyme. The pellet that was

recovered after this washing was also washed with lysis buffer containing 2% Triton

X-100. Subsequent to this wash, the recovered pellet was washed with lysis buffer

containing 2 M urea.

The washed pellet was solubilsed using a chemical denaturant. The buffer 8

M urea 50 mM Tris 200 mM NaCl 10 mM β-mercaptoethanol pH 8.0 was added to 
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the washed pellet and incubated at 30 °C in a water bath for 1 hour. After the

solubisation, the inclusion body preparation was centrifuged at 35,000 g for 1 hour at

6 °C to remove insoluble cell debris still remaining in the preparation. The protein

concentration of the inclusion body preparation was estimated by measuring the A280

of the inclusion body preparation, using 280 of 48130 M-1cm-1, and the purity was

assessed by reducing SDS-PAGE (Section 2.2.7).

2.2.6 Production of Native p38α

Recombinant human p38α was produced according to Davies (2004). Native, 

soluble p38α for comparing refolding with inclusion body protein was denatured 

with 8 M urea, 10 mM DTT for 1 hr at 30 °C and stored at 4 °C until use. Protein

concentration was calculated from absorbance at 280 nm, using 280 of 48130

M-1cm-1. The molecular weight of the protein and the absence of covalent

modifications were confirmed by ESI-MS (Section 2.2.8).

2.2.7 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Protein samples were analysed by SDS-PAGE using a modification of the

method of Laemeeli (1970). 10% polyacrylamide Bis-Tris NuPAGE gels were

purchased from Invitrogen (UK). Samples for analysis were prepared by 1:1 dilution

in 2x SDS sample buffer (Invitrogen). Reducing conditions were created by the

addition of β-mercaptoethanol to a final concentration of 10%. Samples were heated 

to 95 °C for 5 minutes prior to analysis.

Samples were separated by electrophoresis in 50 mM MES 50 mM Tris 1

mM EDTA 0.1% SDS pH 7.3 running buffer using an Invitrogen mini-cell gel tank

at a separation voltage of 230 V. Proteins were visualized by staining using

InstantBlue protein stain (Expedeon) or via silver staining (Section 2.2.12),

depending on the expected amount of protein.

2.2.8 Mass Spectrometry

Mass spectrometry analysis of expressed proteins was used for quality

control and indentification of proteins. It was carried out using a LC ESI-MS. An

aliquot of protein containing ~10µg of protein was separated by reverse phase HPLC

on a Agilent 1100 series HPLC system using a Jupiter 5uC5 300Å reverse phase
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column, with a linear gradient of 6 % to 95 % Acetonitrile + 0.25 % Formic Acid

over 16 minutes. Eluate from the column was injected into a LCT ESI-TOF

(Micromass) mass spectrometer. Spectra were constantly acquired for the duration of

the elution. Data were collected using MassLynx (Micromass) and the protein

spectra deconvoluted using the built in “MaxEnt1” module. The instrument was

calibrated using CsCl and the calibration confirmed by analysis of a solution of

myoglobin.

2.2.9 Design of a Refolding Screen for Kinases

A series of additives known to be effective in facilitating the refolding of

proteins, were selected to be included in a screen for the refolding of p38α. In total 

31 additives were chosen and grouped according to their chemical features.

Arginine, glycine, L-proline, sarcosine and an arginine/glutamate mix were grouped

together into the “amino acids” group (Willis et a.l, 2005; Arakawa et al., 2007;

Baybes et al., 2005; Arakawa et al., 1985). Glucose, betaine, sorbitol and

trimethylamine N-oxide were grouped into the “osmolytes” group (Blackwell and

Horgan, 1991; Arakawa and Timasheff, 1985; Arakawa and Timasheff, 1982; Kadi

et al., 2006; Mello and Barrick, 2003). Sodium chloride, sodium sulphate and

ammonium sulphate were grouped into the “simple salts” group (Willis et al., 2005;

Nishimura et al., 2001). Guanidine (2, 1 and 0.5 M) and urea (2, 1, 0.5 M) were

grouped as “denaturants” (Willis et al., 2005; Yasuda et al., 1998). Lauryl maltoside,

CHAPS and Triton X-100 are grouped as “detergents” (Yasuda et al., 1998; Ruan et

al., 2003). Cyclohexanol, 1-pentanol, ethanol, glycerol, β-cyclodextrin, ethylene 

glycol and PEG 3440were grouped as “alcohols and polyols” (Willis et al., 2005;

Ruan et al., 2003; Machida et al., 2000; Silow and Oliveberg, 2003; Chong and

Cheng, 2000; Goldberg et al., 1996). 3-(1-pyridino)-1-propanesulphonate,

formamide and NV-10 were grouped as “other additives” (Yasuda et al., 1998;

Zardeneta and Horrowitz, 1992). These 31 additives and a control lacking a specific

refolding additive were formatted into a 96-well refolding screen, utilising three

different buffers for refolding (Table 2.1). The three buffers used were 100 mM

MES (pH 5.8), 50 mM Tris (pH 8.0) and 100 mM CAPSO (pH 9.5).



38

2.2.10 Refolding of Human p38α 

Refolding of p38α was initiated by rapid dilution of denatured protein into 

various renaturation buffers in a 96-well screen, formatted in four 24 deep well

plates. A volume of 5 mL of each renaturation buffer was aliquoted into each well.

Under rapid agitation (~120 rpm) at 4 °C, 100 µL of denatured protein solution, at 5

mg/mL in 8 M urea, was added in a single step to each renaturation buffer, for a final

protein concentration of 0.1 mg/mL, and a final urea concentration of 160 mM using

a repeater pipette with a 10 mL tip. Addition of denatured protein to an entire screen

was complete within one minute of starting the addition of protein. Refolding was

allowed to occur, under gentle agitation (~30 rpm) overnight at 4 °C. After refolding,

samples identified as containing soluble protein by SDS-PAGE were concentrated

10-fold using Centricon concentrators, and then dialysed against 10 mM HEPES,

150 mM NaCl, pH 7.4.

2.2.11 ePAGE of Refolded Protein

Refolded protein was taken directly from the screen and added to ePAGE

sample buffer (Invitrogen) and 10 % β-mercaptoethanol. Samples were heated to 70 

°C for 10 minutes in a PCR thermal cycler block, according to the manufacturers

instructions. Samples were run using 104 lane ePAGE gels (Invitrogen) and silver

stained to visualise bands. Samples for which no band was visible were not further

analysed.

2.2.12 Silver Staining of SDS-PAGE and E-PAGE Gels.

SDS-PAGE gels were stained using a modified version of the method

described in Heukeshoven and Dernick (1988) when the protein level was too low

for staining by the Coomassie based InstantBlue protein stain.

Subsequent to electrophoresis the gel was immersed in fixing solution,

consisting of 40% (v/v) methanol, 10% (v/v) glacial acetic acid for 30 minutes to

precipitate the protein present and remove SDS. Fixed gels were incubated with an

oxidizing solution consisting of 30% (v/v) ethanol, 0.5 M sodium acetate, 0.5%

(w/v) glutaraldehyde, 80 mM sodium thiosulphate for 30 minutes. Gels were washed

with MilliQ deionised water for 10 minutes. This wash was performed a total of

three times. After washing the gels were incubated with a silver solution, 0.1% (w/v)
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silver nitrate, 0.02% (v/v) formaldehyde for 40 minutes. The staining was developed

by exposing the gels, after washing, to 2.5% (w/v) sodium carbonate, 0.01% (v/v)

formaldehyde until the bands were visualized. Once bands were visible the reaction

was stopped using a solution of 40 mM EDTA, before washing with MilliQ

deionised water.

When staining ePAGE gels, the procedure was adapted by doubling the time

taken at each step in the procedure outlined above to account for the greater

thickness of the ePAGE gels.

2.2.13 Denaturing Capillary Electrophoresis

Denaturing capillary electrophoresis was performed on refolded protein

samples subsequent to concentration and dialysis using an Agilent ALP-5100

instrument. 4 μL of concentrated, dialysed refolded protein solution was added to 2 

μL of reducing sample buffer and heated to 95 °C for 5 minutes.  The heated solution 

was diluted with 24 μL of water and analysed using the protein analysis program on 

the ALP-5100 instrument on a HT-2 pre-prepared chip. Calibration of the elution

time of various molecular weight proteins was carried out automatically using the

supplied protein ladder.

2.2.14 Analytical Size Exclusion Chromatography

Analytical size exclusion chromatography was performed using an Ettan LC

system (GE Healthcare). Proteins were eluted from a pre-packed analytical scale

Superdex 75 column of 2.413 mL bed volume (GE Healthcare) in 50 mM Tris, 150

mM NaCl, pH 9.0 at a flow rate of 50 µL/min. Samples were diluted 1:1 with 0.2

mg/mL myoglobin in 10 mM HEPES before analysis and 25 µL loaded onto the

column. Absorbance was monitored at 280 nm for p38α and myoglobin and at 410 

nm to identify the haem group within myoglobin, to allow the elution time of

myoglobin to be determined. A280 peak areas were compared to a standard curve to

calculate the p38α protein concentration.  

Analysis of the multimeric state of denatured inclusion body protein and

denatured soluble protein was carried out as above, with the exception that a

Superdex 200 column was used in place of the Superdex 75 and the column was

equilibrated in 8 M urea, 50 mM Tris, 150 mM NaCl, pH 9.0 and proteins were

eluted in this buffer.
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2.2.15 Detection of Binding Activity by Surface Plasmon Resonance

The binding activity of refolded p38α samples was assessed using a Biacore 

3000 instrument (Biacore AS). An ureidoquinazoline target definition compound

(UTDC) (Figure 2.5, Sullivan et al., 2005) was immobilised in a single lane of a

CM5 chip (Biacore) using standard amine coupling kit (Biacore). The surface of the

chip was activated by a solution of EDC (1-Ethyl-3-[3-dimethylaminopropyl]

carbodiimide hydrochloride) and NHS (N-hydroxysulphosuccinimide). This resulted

in the creation of semi-stable amine reactive NHS-ester on the chip surface. UTDC

at 400 μM was then flowed over the surface, with the free amine group reacting with 

the ester, resulting in the release of NHS and the formation of a stable amide bond

between the UTDC and the chip surface. Unreacted NHS-esters were removed by

treatment of the surface with ethanolamine (1 M, pH 8.5). Control lanes were

prepared in a similar manner, except that UTDC was not added to the surface

subsequent to activation. p38α was flowed over the prepared surface in 10 mM 

HEPES, 150 mM NaCl, 0.05 % P20 surfactant, 0.5 % DMSO. Response units due to

protein binding to immobilised UTDC were compared to response units due to

binding to the control flow lane. To eliminate non-specific binding protein was

injected in the presence of 10 µM UTDC to abolish specific binding. Samples were

maintained at 8 °C until analysis. Response units due to specific p38α binding were 

compared to a standard curve prepared by measurement of binding of soluble,

correctly folded p38α. Each condition was analysed in triplicate. 

2.2.16 Large Scale Refolding

Larger scale refolding of p38 was carried out by drop wise addition of

solubilised inclusion bodies, at a protein concentration of 5 mg/mL, to renaturation

buffer until the protein concentration reached 0.1 mg/mL and the urea concentration

160 mM, at a rate of ~ 1 mL/min. A total of 20 mg of protein was refolded using 1 L

of refolding buffer in a 1 L beaker. The buffer was vigorously stirred using a

magnetic stirring bar at a speed of ~120rpm. Refolding was allowed to occur,

overnight at 4 °C under gentle stirring. The refolding solution was then concentrated

10-fold using an Amicon stirred cell with a 10 kDa cut-off ultra filtration membrane

(Millipore) and subsequently dialysed against 10 mM HEPES, 150 mM NaCl, pH

7.4. A portion of the resulting solution was used for analysis via analytical size

exclusion chromatography and assayed for binding activity by a surface plasmon
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resonance (SPR) method. The remaining protein was further concentrated to

approximately 1 mL using an Amicon cell and Millipore membrane as previously.

The sample was then applied to a Superdex 75 12/60 column equilibrated in 50 mM

Tris, 150 mM NaCl, pH 8.0 and was eluted from the column in the same buffer at a

flow rate of 1 mL/min. Fractions identified as containing monomeric p38α, by 

comparison of peak position with analytical size exclusion chromatography, were

pooled and concentrated using a Centricon spin concentrator with a 10 kDa cut-off.

2.2.17 Circular Dichroism

Natively folded p38α and refolded p38α to be analysed by circular dichroism 

were extensively dialysed against 10 mM sodium phosphate buffer, pH 7.4, before

analysis. Circular dichroism analysis of p38α samples was performed on a JASCO J-

810 spectropolarimeter, using a 1 mm path length quartz cuvette. Spectra were

measured at a temperature of 20 °C, with a resolution of 0.5 nm. Spectra were

collected between 185 and 260 nm. A scanning rate of 100 nm/min, time constant of

0.5 s and a bandwidth of 1 nm were used, and 8 scans were averaged per spectrum.

Buffer blanks were subtracted from all spectra. The concentration of samples for CD

analysis was confirmed by A280 measurement before analysis was performed.

2.2.18 iCycler Thermal Stability Measurements

Thermal stability measurements of proteins were made using a PCR based

thermal cycler (iCycler, Biorad) fitted with a iQ5 real-time PCR detection system

(Biorad). Measurements were performed in iQ real-time PCR plates sealed with

optical tape (Biorad).

Protein samples for analysis were prepared for analysis in a total volume of

25 µL in iQ real time PCR plates. 12 µL of protein solution at a concentration of 0.4

mg/mL was mixed with 12µL of a 2X buffer solution to regulate the pH in each well.

Sypro-Orange (Molecular Probes) was diluted 1:40 and 1 µL of this dilution was

added to each well for a final dilution of 1:1000. The sealed plate was centrifuged at

1000 g for 1 minute to remove air bubbles.

The temperature was raised from 12 to 90 °C in steps of 0.2 °C. The

temperature was maintained for 12 s at each step, and the fluorescence of the Sypro-

Orange dye was recorded at each step. The resulting unfolding curve was fitted to
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Equation 2.2 in order to obtain the thermodynamic parameters for the unfolding

curve.
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Where, T is the temperature in degrees Kelvin, Tm is the mid-point of the melting

transition, ΔHm is the change in enthalpy at Tm, R is the molar gas constant, an and bn

define the pre transition region of the melting curve and au and bu define the post

transition region.

2.3 Results

2.3.1 Expression of p38α as Inclusion Bodies

p38α was expressed as inclusion bodies, and those inclusion bodies purified 

as described in sections 2.2.4 and 2.2.5. The expression of wild type p38α was 

induced with 0.4 mM IPTG at a temperature of 37 °C, since lower temperatures and

IPTG concentrations are known to result in the expression of wild type p38α in a 

soluble form (Davies, 2004).

Isolated inclusion bodies were solubilised by denaturation with 8 M urea 50

mM Tris 200 mM NaCl 10 mM β-mercaptoethanol at 30 °C for 1 hour. This 

procedure produced an inclusion body preparation of p38α with high purity (Figure 

2.1). The molecular mass of the p38α inclusion body preparation was determined by 

ESI-MS (Section 2.2.8, data not shown) and was determined to be in good agreement

with the expected mass of 41,311.4 Da, calculated from the sequence of the

expressed protein. The yield of p38α achieved was 375 mg protein per litre 

expression culture.
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Figure 2.1: Purity of p38α inclusion body preparation assessed by reducing SDS-
PAGE. 10% Bis-Tris gel run with NuPAGE MES-SDS running buffer. Lane 1,
molecular weight markers (SeeBlue Plus 2, Invitrogen); lane 2, p38α inclusion body 
preparation in 8 M urea.

2.3.2 Expression of p38α in a Soluble Form 

 Wild type p38α was also expressed in a soluble form, as described in Davies 

(2004), with the exception that the final ion exchange step, using a monoQ column,

was omitted, since the expressed protein was found to be of sufficient purity

following purification by ion exchange and size exclusion chromatography.

Soluble p38α was either stored at 4 °C until use or denatured with 8 M urea as 

described in section 2.2.6. Soluble p38α was used as a control protein for the 

analytical methods that were used to test the refolding system. The yield of soluble

protein achieved was 50mg per litre, consistent with the yields achieved by Davies

(2004). The molecular mass of the purified p38α was determined by ESI-MS 

(Section 2.2.8, data not shown) and was determined to be in good agreement with the

expected mass of 41,462.20 Da, calculated from the sequence of the expressed

protein and was also in agreement with the results of Davies (2004).

2.3.3 Comparison of the Monomeric State of the Two Forms of p38α 

As a quality control, to show that the denaturation of inclusion body

preparations and soluble protein were producing fully denatured protein, and to

compare the denatured state of the two preparations, it was necessary to examine

denatured p38α by size exclusion chromatography. Both preparations produced a 
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single peak corresponding to a retention time consistent with monomeric p38α 

(Figure 2.2).

Figure 2.2: Elution profile of native folded protein and inclusion body protein
denatured with 8 M urea from analytical scale Superdex 200 column (volume 2.4
ml). Elution buffer 8 M Urea, 50 mM Tris, 150 mM NaCl pH 8.0. Column volume
calculated as fraction of manufacture’s stated column bed volume.

2.3.4 Design of a Protein Refolding Screen

The refolding screen was formatted to allow the screen to be adapted to

automation if the screen was to be adopted for use within AstraZeneca on a regular

basis. For this reason the screen was designed to utilise standard plate formats. The

refolding reaction occurred in 24 deep well plates. The refolding method of rapid

dilution was decided upon, since it was the easiest to perform in the formats selected,

as opposed to methods such as dialysis, or column based refolding which have low

throughput using standard methods, and have problems with cross contamination of

additives when adapted for higher throughput. The volume of each refolding reaction

was set at 5 mL, since this volume allowed a high shaking speed of the 24 well plates

used, giving better mixing when liquid was added to a well, whilst minimising cross

contamination. The volume would also allow for a quantity of protein to be

recovered which would allow analysis by several methods, which would improve

confidence in the results.
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Since protein kinase domains are found in the intracellular environment, and

are therefore expected to be in a reducing environment, and to fold in such an

environment, it was decided to maintain the refolding screen in a reducing

environment, as opposed to an oxidising environment, or in the presence of a redox

couple system, such as reduced/oxidised glutathione. On the basis of the work of

Willis et al. (2005), DTT was chosen as the reductant of choice, since it provided the

best balance between effectiveness and cost.

The refolding of proteins is known to be influenced by the pH at which

refolding is attempted. The ionisation of key residues in proteins, particularly

histidine residues, affects the formation of hydrogen bonds which are important for

the structure of the protein. To allow the effect of changes in pH to be examined, and

to allow any effect of the changes in ionisation to be visible, three pHs were selected

for use in the screen, pH 5.8, pH 8.0, pH 9.5. These pHs were selected since they are

spaced away from a neutral pH and so should increase the magnitude of any effect.

In addition, the calculated pI of p38α is 5.48 using the method of Bjellqvist et al.,

(1993). The lowest of the screen pHs, pH 5.8 is close to the pI and the remaining two

pHs are significantly greater. The different pHs will allow the comparison of the

effect of the relationship between the pH at which refolding occurs, and the pI to be

identified. Given the low pI of p38α, it is not necessary to include refolding 

conditions at pH 7.4, since these would be expected show little difference from pH

8.0, as these are both significantly higher than the pI. Although is it common in

refolding to use three component buffer systems that allow a wide pH range to be

used whilst keeping the chemical components of the buffer the same, it was felt that

this was not necessary and lower concentration buffers were used instead. 100 mM

MES was used at pH 5.8, 50 mM Tris at pH 8.0, and 100 mM CAPSO at pH 9.5.

The refolding screen included a large number of chemical additives that were

included to test for their ability to assist the refolding of protein kinases. These

additives were selected on the basis of a review of the literature on protein refolding.

The mechanisms of action of some of these additives are known, and varied between

the additives. For example, polyethylene glycol acts as both a crowding agent,

increasing the effective protein concentration, promoting folding, and presents a

hydrophobic surface, inhibiting the formation of hydrophobic aggregates of protein.

Several detergents were also included to exploit this effect.
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Chemical additives were included that were not expected to allow the protein

kinases tested in the screen to refold. These additives were, instead, expected to

allow an intermediate fold of the protein to remain in solution, which, as the additive

was removed by dialysis, would promote a slower, and therefore more successful,

folding to the native state to occur. The denaturants that were included were both

urea and guandine hydrochloride. These denaturants were included at three different

concentrations, 0.5 M, 1 M and 2 M, since the concentration at which such an

intermediate would accumulate is not known for all protein kinases. Both

denaturants were included since their different strengths allowed more possible

points on any unfolding / refolding transition to be covered. Protein based additives,

such as purified chaperones e.g. GroEL/GroES complexes or human HSPs e.g.

HSP90, or antibody fragments or scaffold proteins were not included in the screen,

The concentration at which refolding is performed is critical for the outcome

of refolding. Refolding at high concentrations is known to result in low yields of

refolding, since the high concentration of exposed hydrophobic sites promotes

aggregation. However, if the concentration was too low then this would not allow

enough protein to be recovered from the screen for subsequent analysis. Since p38α 

was already known to successfully refold under equilibrium conditions at a

concentration of 0.1 mg/mL, this concentration was selected for the screen.

The 31 refolding conditions and a control condition at each pH, giving a total

of 96 conditions, were formatted into a single screen, which was laid out as shown in

table 2.1.
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Table 2.1 Layout of the initial protein kinase refolding screen.

0.9M Arginine
0.5M
Glycine

1M
Proline

2M
Sarcosine

50mM
Arginine/50mM
Glutamate

1M Glucose
10%
Betaine

20%
Sorbitol

1M TMAO 0.5M NaCl
0.5M
Sodium
Sulphate

1M
Ammonium
Sulphate

2M Guanidine
1M
Guanidine

0.5M
Guanidine

2M Urea 1M Urea 0.5M Urea
0.006%
Lauryl
Maltoside

20mM
CHAPS

20mM Triton
X-100

1mM Cyclo-
hexanol

5mM
Pentanol

10%
Ethanol

50% Glycerol
60mM
Cyclodextrin

10%
Ethylene
Glycol

0.04% PEG
3440

1M NDSB
1M
Formamide

NV-10
No
Additive

0.9M Arginine
0.5M
Glycine

1M
Proline

2M
Sarcosine

50mM
Arginine/50mM
Glutamate

1M Glucose
10%
Betaine

20%
Sorbitol

1M TMAO 0.5M NaCl
0.5M
Sodium
Sulphate

1M
Ammonium
Sulphate

2M Guanidine
1M
Guanidine

0.5M
Guanidine

2M Urea

1M Urea 0.5M Urea
0.006%
Lauryl
Maltoside

20mM
CHAPS

20mM Triton
X-100

1mM Cyclo-
hexanol

5mM
Pentanol

10%
Ethanol

50% Glycerol
60mM
Cyclodextrin

10%
Ethylene
Glycol

0.04% PEG
3440

1M NDSB
1M
Formamide

NV-10
No
Additive

0.9M Arginine
0.5M
Glycine

1M
Proline

2M
Sarcosine

50mM
Arginine/50mM
Glutamate

1M Glucose
10%
Betaine

20%
Sorbitol

1M TMAO 0.5M NaCl
0.5M
Sodium
Sulphate

1M
Ammonium
Sulphate

2M Guanidine
1M
Guanidine

0.5M
Guanidine

2M Urea 1M Urea 0.5M Urea
0.006%
Lauryl
Maltoside

20mM
CHAPS

20mM Triton
X-100

1mM Cyclo-
hexanol

5mM
Pentanol

10%
Ethanol

50% Glycerol
60mM
Cyclodextrin

10%
Ethylene
Glycol

0.04% PEG
3440

1M NDSB
1M
Formamide

NV-10
No
Additive

0.1 M MES pH 5.8

50 mM Tris pH 8.0

0.1 M CAPSO pH 9.5



48

Following the addition of a solution of denatured protein to the screen, refolding

was allowed to occur, under gentle agitation overnight at 4 °C. Low temperature was

utilised, since this has been shown to lead to higher yields of refolded protein. The

extended time allowed folding reaction, possibly slowed by the low temperature, to fully

complete before further analysis was performed on the refolded protein.

The analytical methods that are available to identify the extent of refolding that

had occurred in the screen are often sensitive to the refolding additives that were used,

and would give unreliable readouts if they were present. Some potential readouts would

also require higher protein concentrations than would be present in the screen. Therefore,

subsequent to refolding, the screen conditions were concentrated and dialysed against 10

mM HEPES 150 mM NaCl pH 7.4 as described in section 2.2.10. This also increased the

stringency of the screen, by driving the equilibrium of the protein in solution towards

aggregation by removing solubilising additives and increasing protein concentration.

2.3.5 Analytical Readouts for Refolding Screens

A number of analytical methods were applied to provide an assessment of the

yield and folded state of the refolded protein. Purified folded p38α was used to identify 

the limits of detection for each method and to demonstrate the repeatability of the

methods. The analytical methods were also selected to allow the number of conditions

analysed, and therefore the time taken to be lowered at each stage, as the information

content of the readouts increased.

An analytical method was required to identify the effectiveness of the screen

additives at maintaining p38α in a soluble form after dilution of the denatured p38α into 

the various conditions. SDS-PAGE, using a 96 well ePAGE gel was chosen because of its

relative insensitivity to refolding additives, compared to other analytical methods, and the

low limit of detection which was critical for detecting soluble protein at the low

concentration present in the screen (maximum of 0.1 mg/mL). The ePAGE gels were

used to assess, in a qualitative manner, whether refolded protein was present in the

various screen conditions that were used before more time consuming analytical methods

were applied to the screen results. A series of dilutions of p38α was run in quadruplicate 

on a single gel and stained according to the methods in sections 2.2.11 and 2.2.12. Using
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this dilution series, the lowest detected band contained ~8 µg/mL protein in a 10 µL load

volume, which corresponded to a screen recovery of 1.25 % with a 20µL load volume

(Figure 2.3).

Samples for use with this analytical method were taken directly from the refolding

buffers after overnight incubation under gentle agitation at 4 °C (section 2.2.10). The

incubation allowed aggregates of misfolded protein to precipitate under 1 g. This

analytical method was used to restrict the number of conditions that were further

analysed. If a particular condition did not give a detectable band on the gel, i.e. the

recovery of soluble protein was less than 1.25 %, then the condition was not further

analysed. Control p38α was used to test the ability of this analytical method to identify 

soluble p38α in the presence of the various refolding additives (data not shown). 

Refolding conditions containing guanidine were found to precipitate the SDS in the

sample buffer, preventing the analysis of these samples. All samples containing guanidine

were therefore analysed by further analytical methods, despite the lack of a visible band.
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Figure 2.3: (A) Dilution series of native folded p38a run on 6% E-PAGE gel under
reducing conditions and stained using silver staining. Lane M, molecular weight markers;
lane 1, 520 μg/mL; lane 2, 260 μg/mL; lane 3, 130 μg/mL; lane 4, 65 μg/mL; lane 5, 32.5 
μg/mL; lane 6, 16 μg/mL; lane 7, 8 μg/mL; lane 8, 4 μg/mL. (B) Example of E-PAGE gel 
from screen; numbered lanes correspond to single conditions from screen (Table 1).Gel
images were processed using E-Editor (Invitrogen) to align lanes.

A

B
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Capillary electrophoresis was chosen as a second analytical technique to be

applied to refolded protein produced by the screen to quantify the concentration of

soluble protein after concentration and dialysis. This analytical method was chosen

because it offers a high throughput, quantitative method for analysing the total protein

remaining in solution. The earlier analytical method, SDS-PAGE, only allowed a semi-

quantitative assessment of protein concentration and was used in a qualitative manner.

The mean recovery was 237 μg/mL with a standard error of 2 %, demonstrating that the 

assay is reproducible. Sample data from this analytical method are shown in Figure 2.4.

This technique was used as a high throughput method to screen for the recovery of

soluble protein after concentration and dialysis. The recovery of soluble protein identified

was used as an additional restriction on the number of conditions analysed by further

techniques. Conditions that did not show a recovery of at least 5 % were not analysed

further.
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Figure 2.4: Capillary electrophoresis analysis of refolded p38α. . Panel A – protein 
ladder, LM – lower marker, UM – upper marker, molecular weight of markers indicated
above peaks. Panel B – example screen readout electropherogram. p38α concentration 
identified as 20 µg/mL, corresponding to a screen recovery of 2%.

In-vitro refolding of a protein may result in intermediate species which are prone

to intermolecular interactions with other p38 molecules resulting in the formation of

soluble oligomers, which are not present in correctly folded preparations of native

protein. Therefore, in order to identify if the soluble protein is in the correct monomeric

form, an analytical method, which separates and quantifies the monomeric protein

recovered from a refolding condition was required. For these purposes, analytical size
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exclusion chromatography was used, as described in section 2.2.14. To account for

injection-to-injection variability due to the auto sampler used on the system, it was

necessary to include an internal standard. Myoglobin was selected due to the haem group,

which would allow the elution peak to be identified by measurement of absorbance at

410nm, and because myoglobin has a small hydrodynamic radius, meaning it would be

well separated from the sample protein in the elution. A sample elution profile, from a

standard curve is shown in Figure 2.5A. A standard curve of p38α was analysed via this 

method in triplicate to allow the concentration of monomeric protein to be calculated, and

to demonstrate the consistency of the assay. The assay was reproducible and proved to

have a limit of detection of 50 μg/mL (Figure 2.5B). A typical chromatogram obtained 

from a screen condition is shown in Figure 2.5C.
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Figure 2.5: Analytical size exclusion chromatography analysis of native folded and
refolded p38α.  Panel A -  Elution profile of 0.5 mg/mL p38α and 0.1 mg/mL Myoglobin. 
Peak A – p38α, MW 41.3 kDa, Peak B – Myoglobin, MW 16.2 kDa. Elution time 
recorded in column volumes. Panel B – standard curve of p38α analysed by analytical 
size exclusion chromatography. Panel C – sample elution profile from screen condition.
p38α concentration identified as 165 µg/mL, corresponding to a screen recovery of 16.5 
%.
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The refolding of a protein may also result in a soluble form of the protein which is

monomeric but which is not correctly folded. To identify the recovery of correctly folded

p38α, the binding of refolded protein to a UTDC (Figure 2.6) known to bind to 

unphosphorylated correctly folded p38α was quantified using SPR as described in section 

2.2.15. The structure of the compound used is shown in figure 2.6. Conditions in the

refolding screen are likely to lead to the formation of non-native p38 species, which may

interact non-specifically with the compound at the surface of the chip. To control for this

non-specific binding, the binding of p38α to the prepared surface was analysed in the 

absence and presence of an excess of the UTDC in solution.

Figure 2.6: Structure of UTDC used to detect concentration of correctly folded
protein present in refolded protein samples. Figure adapted from supporting
information of Sullivan et al., 2005.

The excess of free UTDC at 1700-fold above the affinity in solution prevented the

specific binding of p38α to the prepared surface, and so allowed the amount of non-

specific binding to be identified. The relative response units used to quantify the binding

of p38α to the prepared surface was the difference in response units in the presence and 

absence of free UTDC in solution at 10 μM. A wide range of protein concentrations was 

tested using solubly expressed, purified p38 (Figure 2.7A), and identified the linear range

of response as 10 to 80 μg/mL protein. A standard curve of relative response units was 

calculated from a triplicate analysis of control p38α, showing that the analytical method 

is reproducible (Figure 2.7B). Typical response curves obtained when analysing a screen

condition are illustrated in Figure 2.7C. This analytical readout was performed in parallel

with analytical size exclusion chromatography.
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Figure 2.7: Surface plasmon resonance analysis of refolded and native p38α binding to 
immobilised TDC. Panel A – series of injections of p38α onto prepared chip showing 
increasing response with increasing p38α concentration. Panel B - Standard curve for 
analysis of control soluble p38α binding by surface plasmon resonance. Each point mean 
of three replicate analyses. Error bars show standard deviation. Panel C – sample analysis
of screen condition post dialysis. Curve 1 – refolded p38α sample, curve 2 – refolded 
p38α sample + 10 μM TDC in solution. p38α concentration identified as 32 µg/mL, 
corresponding to a screen recovery of 14.2% once dilution of analysed samples corrected.
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The described analytical readout methods and the screening design described in

section 2.3.4 were combined to form a screening system. This system is summarised in

the following diagram.

Figure 2.8: Overview of the process of screening for conditions that enhance the
refolding of p38α. The process was designed to rapidly identify the yield of refolding in a 
large number of conditions. Analytical methods are shown in shaded boxes. Volume per
condition at each stage and maximum protein concentration are shown for each screen
stage also.

Analyse soluble protein
recovery by SDS-PAGE

Reject conditions with
less than 1.25% recovery

Analyse monomeric
protein concentration

by analytical size
exclusion chromatography

Analyse folded protein
concentration

by surface plasmon
resonance

Analyse soluble protein concentration
by capillary electrophoresis

Reject conditions with
recovery less than 5%

Dialyse concentrated protein
solution into 10 mM

HEPES 150 mM NaCl
Volume 0.25 mL

Concentrate refolded
protein solution 10-fold
[Protein] 1 mg/mL maximum

Volume 0.4 mL

Refold overnight
at 4 °C

Intiate refolding by rapid
dilution of denatured protein

[Protein] 0.1 mg/mL
Volume 5 mL

Denature Protein in 8 M urea
[Protein] 5 mg/mL
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2.3.6 Refolding Screen for p38α 

Inclusion bodies and soluble p38α were denatured with 8 M urea and tested in the 

screen, in order that the refolding of both sources of protein could be compared. The

refolding screen was performed in triplicate to provide reliable data on the refolding of

p38α. The recovery of soluble protein measured by capillary electrophoresis was 

generally higher than the recovery of monomeric protein measured by analytical size

exclusion chromatography and the recovery of folded protein measured by SPR was

generally similar to the recovery of monomeric protein (Figure 2.9 A, B). The refolding

yields obtained for each additive in the screen proved to be reproducible across the three

replicates, as indicated by the standard error of the mean shown in Figure 2.8. The

refolding yields identified by the analytical methods used were compared for p38α 

derived from inclusion body and for denatured native p38α.  
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Figure 2.9: Recoveries of soluble, monomeric and folded protein obtained when refolding
inclusion bodies (A, C) and soluble, denatured protein (B, D). For A and B, each point
represents the mean of three experiments for a single refolding condition, ■ – soluble protein 
recovery; ○ – monomeric protein recovery; ● – folded protein recovery. For C and D, each point 
represents the mean of 3 analyses of all the additives in the given additive type, ■ – pH 8.0 
soluble protein recovery; ▲ – pH 9.5 soluble protein recovery; ▼ – pH 8.0 monomeric protein 
recovery; ♦ - pH 9.5 monomeric recovery; ○ – pH 8.0 folded protein recovery; □ – pH 9.5 
folded protein recovery. Error bars indicate range of individual additive means.

Strong differences were found in the effect of the pH on the efficiency of the

refolding. With both sources of refolded protein (inclusion body protein and denatured

soluble protein), there was a large drop in the recoveries of soluble protein, of monomeric
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protein and of correctly folded protein at pH 5.8 when compared to the same recoveries at

pH 8.0 and pH 9.5. This drop in the recovery of refolded protein was generally consistent

across the 31 refolding additives used in the screen (Figure 2.9A, B). However, there

were some exceptions. Notably the additives proline and NDSB gave recoveries of

soluble protein as high as 50 %, but did not give similarly high recoveries of monomeric

and folded protein.

Figure 2.10: Recovery of soluble (white), monomeric (light grey) and folded (dark grey) protein when
refolding inclusion body protein (A) and denatured soluble protein (B) in buffer alone. Mean of 3
replicates, bars show standard error of the mean.

High levels of recovery of refolded protein were observed in conditions that

included no chemical refolding additive (Figure 2.10). Recoveries of approximately 10 %

were observed with inclusion body protein and 20 % with native, denatured protein.

These recoveries indicate that p38α refolds fairly easily, as evidenced by the high number 

of conditions under which high recovery of refolded protein was achieved (Figure 2.9 A,

B). Although p38α was found to refold relatively easily at high pH, many of the refolding 

additives that were used enhanced the refolding of p38α. Figure 2.9 C & D illustrate the 

effectiveness of the groups of additives at high pH. From these plots, it is clear that the

detergents group is efficient in enhancing the refolding of p38α, when compared to 

conditions lacking a specific refolding additive. In addition, there are several additives
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that gave an increased recovery of refolded protein in the screen. Betaine, PEG and

ethylene glycol were particular examples of these types of additives.

A clear difference was noted in the recoveries of soluble, folded and monomeric

protein obtained when refolding inclusion body protein and native denatured p38α. The 

recovery of refolded protein obtained with denatured soluble protein was generally

approximately two fold greater than the recovery of refolded protein from inclusion body

protein at high pH (Figure 2.9 A, B). This was consistent across the full range of

additives. There was no difference in the recoveries obtained at low pH. Conditions of 50

mM Tris pH 8.0 resulted in particularly high recovery of soluble protein when refolding

protein sourced from soluble expression in E. coli. This high recovery of soluble protein

was not carried through to the recoveries of monomeric and folded protein (Figure

2.10B). The recoveries of monomeric and folded protein were similar to those achieved

with 100 mM CAPSO pH 9.5. These discrepancies between the different readouts are

probable due to misfolded soluble aggregates of protein. This high soluble recovery not

seen with monomeric and folded protein underlines the need for multiple readout

methods to support the results obtained. Despite lower yields (Figure 2.9), the recoveries

of refolded protein obtained with inclusion body derived p38α were still consistent with 

the production of significant amounts of protein for structural studies.

2.3.7 Thermal Melting Analysis of p38α at Various pHs 

As noted previously, p38α refolded to a considerably higher yield under alkaline 

conditions than in acidic conditions. However, the change in pH was not the only change

between these conditions, the buffer used had also changed. To examine whether the

effect on the refolding of p38α was due to the buffer or the pH alone, or a combination of 

both, the thermal stability of natively folded p38α was examined in a series of buffers 

(Figure 2.11) using a thermal stability measurement, according to section 2.2.18. p38α 

was tested in 100 mM MES at pH5.8 and pH 7.0; 10 mM HEPES at pH 7, pH 7.5 and

pH8.0; 50 mM TrisHCl at pH 7.0, pH 7.5, pH 8.0 and pH 9.0; and 100 mM CAPSO at

pH 9.0 and pH 9.5. This range of pH measurements and buffers would allow the effect of

both to be examined.
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The results showed that at pH 5.8 (in MES buffer) the protein has a large drop in

Tm, of ~ 15 °C, when compared to higher pH conditions (Figure 2.11 A). p38α in 100 

mM MES at pH 7.0 shows a lower Tm than other buffers at the same pH, 37.8°C ± 0.4 as

opposed to 42.8°C ± 0.1 and 43.5°C ± 0.1 (Table 2.2). This indicates that the lowering of

the pH to create acidic conditions causes a major destabilisation of the tertiary structure

of p38α, reflected in the low Tm. The pH 7.0 conditions indicate that the 100 mM MES

buffer does have a negative effect on the stability of the native state of p38α, but that this 

effect only accounts for ~1/3 of the observed effect at pH 5.8.

Figure 2.11: Thermal melting analysis of native p38α in a series of buffers and pHs. (A) Tm of
p38α in various buffers at a range of pHs. Mean of 6 replicates, error bars show standard error of 
mean. Concentrations of buffers, MES – 100mM,; HEPES – 10mM; Tris – 50mM; CAPSO –
100mM. (B) Thermal melting profiles of p38α in 100 mM MES, pH 5.8 and in 50 mM Tris, pH 
8.0.

It can readily be seen that p38α is most stable in the region of pH 7.0 to pH 8.0. 

Under more alkaline conditions, pH 9.0 and pH 9.5 there is a slight destabilisation of the

protein, with the Tm falling from a peak of 44.1°C ± 0.1 at pH8.0 to 40.4°C ± 0.1 (Table

2.2).
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Table 2.2 Tm values for p38α under various pH and buffer conditions. 

Buffer

pH

100 mM MES 10 mM HEPES 50 mM TrisHCl 100 mM

CAPSO

5.8 26.8°C ± 0.4

7.0 37.8°C ± 0.4 42.8°C ± 0.1 43.5°C ± 0.1

7.5 43.6°C ± 0.2 43.7°C ± 0.1

8.0 44.1°C ± 0.1 43.3°C ± 0.1

9.0 41.1°C ± 0.1 40.6°C ± 0.6

9.5 40.4°C ± 0.1

This indicates that the optimum pH for p38α refolding, according to the thermal 

stability measurements, is pH 7.0-8.0. This corresponds to the results of the refolding

screen, which saw that a higher yield of refolded p38α was obtained at pH 8.0 compared 

to pH 9.5 in the absence of refolding additives.

2.3.8 Larger Scale Refolding

The refolding of p38α was performed at a larger scale, and the refolded protein 

purified to allow the secondary structure content of the refolded material to be examined

and the extent of refolding to an active conformation identified. The examination of the

secondary structure content of the refolded protein provides evidence that the screen is

identifying conditions producing correctly folded p38α, and the identification of the 

fraction of protein which is active supports this. This refolding was carried out at a 20 mg

scale by drop wise addition of p38α to refolding buffer under the same conditions as in 

the refolding screen (Section 2.2.16). Six conditions were selected from the screen that

had shown the highest recoveries of soluble, monomeric and folded protein. The

conditions from the screen that were tested were 100 mM CAPSO, pH 9.5; 100 mM

CAPSO, 10 % betaine, pH 9.5; 100 mM CAPSO, 10 % ethylene glycol (v/v), pH 9.5; 100

mM CAPSO, 0.04 % PEG 3440 (w/v), pH 9.5; 50 mM TrisHCl, pH 8.0; and 50 mM

TrisHCl, 1 mM cyclohexanol, pH 8.0. The recoveries of protein from the scaled-up

refolding were found to be similar to those obtained in the refolding screen (Table 2.3),

showing that scaling up did not affect the yields obtained.
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Table 2.3: Comparison of refolding recoveries of p38α from screen runs and scaled-up 

experiments.

Refolding

experiment

Renaturation

buffer

Soluble

recoverya

Monomeric

recoveryb

Folded

recoveryc

Screen 100 mM CAPSO 9 ± 2 13.0 ± 0.1 8 ± 2

Screen 100 mM CAPSO

+ 10 % Betaine

15.3 ± 0.7 11.0 ± 0.7 15 ± 1

Scaled-up 100 mM CAPSO 13 10 9

Scaled-up 100 mM CAPSO

+ 10 % Betaine

15 13 13

aSoluble protein recovery was assessed by capillary electrophoresis; bMonomeric protein recovery was
measured by analytical size exclusion chromatography; cFolded protein was evaluated by binding activity
via a surface plasmon resonance method. Protein recoveries are expressed as a % of total initial protein.
Refolding screen recoveries are mean of 3 experiments ± SE of mean.

The refolded material was further purified after refolding by size exclusion

chromatography to remove soluble aggregates. The resultant, purified, refolded protein

was analysed to determine the secondary structure content, and binding activity. The

refolding of p38α from inclusion bodies at a 20 mg scale was also used to calculate the 

yield of soluble, correctly folded protein that could be achieved by this method. An

average yield of 13 % monomeric, folded protein was obtained from the method used.

This corresponded to a recovery of monomeric, folded protein of ~ 50 mg protein per

litre of expression culture. This final yield was comparable with the yield of expression

achieved when p38α was expressed in a soluble form. 

2.3.9 Far-UV Circular Dichroism of Native and Refolded p38α 

The far-UV CD spectra of natively folded p38α and p38α refolded from inclusion 

bodies in the presence of 100 mM CAPSO, 10 % betaine (w/v), pH 9.5 (after dialysis, see

section 2.2.16) were identical (Figure 2.12), indicating that the secondary structure

content of the natively folded and the refolded protein was similar. The other conditions

that were scaled up also showed similar far-UV CD spectra (data not shown), indicating

that the secondary structure content of these refolded protein samples was also similar to



65

the native state. This shows that the screen is able to identify conditions producing

correctly folded protein.
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Figure 2.12: Circular dichroism spectra of natively folded p38α and inclusion body 
derived p38α refolded in 100 mM CAPSO, 10 % Betaine, pH 9.5. Spectra were collected 
at 20 °C, and are the average of eight scans.

2.3.10 Binding of Refolded p38α to SB202190 

 The binding of p38α to a known p38α inhibitor, SB202190, was used to test the 

activity of the refolded protein. A modification of the surface plasmon resonance method

(section 2.2.15). Refolded p38α was applied to a CM5 chip (Biacore) which had been 

functionalised by binding the UTDC used previously to the chip via an amine coupling

reaction. P38α was injected in the presence of increasing concentrations of SB202190 

(Figure 2.13), a commercial p38α inhibitor that is known to bind to the ATP binding site 

in the unphosphorylated form of p38α  with a Kd of 38 nM (Frantz et al., 1998). The

response units at each concentration were measured and the data fitted to a standard

stoichiometric binding model (Figure 2.14). The protein concentration was 1 µM.
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Figure 2.13: Structure of SB202190 used to assess the activity of p38α refolded on a 20 
mg scale. Figure adapted from Wilson et al. (1997).
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Figure 2.14: Inhibition of the binding of refolded p38a to immobilized UTDC by
SB202190 detected with SPR. Data fitted to a stoichiometric binding model, with
response unit background at 96 and residuals shown on the right.

The results showed that a high proportion of the binding sites present were active.

92.7% ± 4 of the theoretically present active sites were found to be active. This indicates

the refolding procedure used has produced p38α in which the ATP binding site is 

correctly formed in the majority of the refolded sample. This result complements the

earlier data on the secondary structure content, indicating that the refolded p38α is 

correctly folded.



67

2.4 Discussion

The refolding of protein kinases is a challenging process with little reported

success in the production of protein suitable for structural studies. Overcoming this

challenge is likely to require the screening of a large number of conditions, in order to

identify those which allow refolding of the protein. It is also critical that the analytical

methods used to quantify refolded protein are robust and sensitive.

The refolding of proteins generally requires a low protein concentration to reduce

aggregation; this means that the analytical techniques used must be highly sensitive.

Methods were chosen which had low limits of detection, corresponding to minimum

useful yields for refolding protein for structural studies. For example, the limit of

detection for the staining of SDS-PAGE gels corresponds to a refolding yield of 1.25 %.

The refolding screen makes use of a number of refolding additives, some of which

are present at high concentrations. These additives may interfere with particular

analytical methods. For example, additives such as guanidine, which cause large changes

in the refractive index of the sample, interfere with SPR measurements. Detergents also

cause large baseline deflections for denaturing capillary electrophoresis and analytical

size exclusion chromatography. The analytical methods selected were chosen to address

these concerns. An initial SDS-PAGE screening method was selected that is relatively

insensitive to the additives used, and the refolding additives were also removed by

dialysis into a neutral buffer.

A hierarchical analysis design was used to eliminate unproductive conditions

early in the process (Figure 2.8) by examining total soluble protein content following

refolding and dialysis. Refolding conditions with a low recovery of refolded protein were

first eliminated by SDS-PAGE analysis of the refolded protein. Capillary electrophoresis

was also used to eliminate conditions with low recoveries of refolded protein subsequent

to concentration and dialysis, with conditions with recoveries of less than 5 % being

eliminated to allow manageable numbers of samples to be progressed to the final two

analytical methods.

A series of analytical methods for analysing the refolded protein obtained from

the screen were identified, and these methods were shown to have low limits of detection.



68

We showed that ePAGE analysis of the refolded protein was able to identify yields of

soluble protein in the presence of refolding additives of as least as low as 1.25 % (Figure

2.3). Analytical size exclusion chromatography was shown to be able to quantify the

recovery of monomeric protein to a limit of 50 μg/mL (Figure 2.5). Binding analysis by 

SPR of refolded p38α was shown to be able to identify the yield of folded p38α to a limit 

of 1 % (Figure 2.7). These limits of detection are expected to be compatible with

screening of kinases with lower yields of refolding than those shown by p38

Strong differences in the yields of refolding of inclusion body protein and

denatured soluble protein were identified at higher pH values (Figure 2.9 A, B). The

reasons for this difference are unclear. There is no discernible difference in the

monomeric state of inclusion body protein and native denatured protein in 8 M urea that

can be identified by analytical size exclusion chromatography (Figure 2.2). This

demonstrates that there is no difference in the aggregation states of the denatured protein

from both sources. Some amount of secondary structure is known to be transiently

present in the unfolded state of proteins in high concentrations of chaotropic denaturants,

such as guanidine and urea (Dill and Shortle, 1991). However, this is primarily sequence

dependent and would be expected to be the same in both protein preparations (Dill and

Shortle, 1991). It is noteworthy, that no additional contaminant proteins were identified

by SDS-PAGE of inclusion body protein and soluble protein (Figure 2.1).

The refolding screens carried out identified that there is a strong dependence of

the refolding ability of p38α on pH. At the low pH used in the screen, the refolding of 

p38α was inefficient, with low yields of soluble protein identified by capillary 

electrophoresis (Figure 2.9 A, B). The thermal melting results showed that the

inefficiency of refolding at lower pH values is due to a destabilisation of the protein’s

native structure in low pH buffers (Figure 2.11, Table 2.2). This destabilisation is likely

to be due to changes in the ionization of residues in the protein, since the pI of p38α is 

around pH 5.5. It is not known if this effect is common to serine/theronine protein kinases

or is a specific effect for p38α. However, a low pI is not a common feature of all protein 

kinases, with several related protein kinases having calculated pIs of at least 8.5.

Conditions identified by the screen leading to comparatively high recoveries of

refolded protein were used to refold protein at a higher scale than was performed in the
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screen to provide sufficient protein for further analysis and to identify if there were

significant differences in the refolding yields obtained at a larger scale. The refolded

protein from this higher scale refolding experiment was used for the structural analysis of

the refolded protein. It was shown that the far-UV CD spectra of control natively folded

p38α and refolded p38α were similar (Figure 2.12), with a calculated secondary structure 

content analogous to the published structure of p38α (Shortle and Ackerman, 2001). This 

indicates that the protein obtained from refolding inclusion bodies is correctly folded. The

similarity of the refolding yields obtained from the refolding screen and from the larger

scale refolding performed demonstrates that the refolding screen is capable of identifying

refolding conditions that are transferable to high scale refolding for the production of

refolded protein for structural studies. This transferability is key for the screen to be

useful for identifying refolding conditions for other, more challenging protein kinases

that are produced in an insoluble form in E. coli.

A screening system for the refolding of a model protein kinase, has been

established. This screen has identified and described a series of specific analytical

methods that quantify the yields of refolded protein, identifying the oligomeric state of

the protein and whether the refolded protein has adopted the correct fold. The yield of

refolded protein depends strongly on the pH at which the protein is refolded, and the

source of the protein to be refolded also strongly affects the yield of refolded protein. In

addition, we have shown that refolding can be performed at larger scale, resulting in

correctly folded protein without reducing the recovery yields.
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Chapter 3. Application of the Refolding Screen to

Additional Protein Kinases and Refinement of the

Screening Procedure

3.1 Introduction

The screen described in the previous chapter has been shown to be effective

in detecting and improving the yield of refolding of the model protein kinase, p38α. 

However, examining the refolding of only a single protein kinase in this fashion does

not give much insight into the refolding of protein kinases in general, nor does it

allow the screen to be properly described as being a generic screen for the refolding

of protein kinases. In order to address these shortcomings it is necessary to test the

refolding screen with several other protein kinases with varying degrees of ease of

soluble expression, and whose kinase domains have been isolated from the context

of a larger, multi domain protein.

The human kinome contains, at the current count, 527 protein kinases, which

can be split into several distinct classes based on shared sequence features. The

analysis of Manning et al. (2002) identifies seven distinct groupings of the human

kinome. These seven groups are the tyrosine kinase group; the tyrosine kinase-like

group; the STE group (homologues of yeast sterile 7, 11 and 20 kinases); the CMGC

group which contains the CDK, MAPK, GSK3, and CLK families; the CAMK group

containing calcium and calmodulin dependent kinases; the AGC group containing

the PKA, PKG and PKC families; and finally the CK1 group containing Casein

Kinase 1 and closely related kinases. There are other kinases in the kinome which do

not fit into one of the defined groups. For the purposes of the kinase panel that was

to be constructed to test the refolding screen with a wider array of proteins, the

Tyrosine Kinase and Tyrosine Kinase like group were not considered.

The initial screen developed in chapter 2 examines a large number of

refolding additives, and several pHs, but it does not examine the interaction of the

effect of multiple additives on the refolding of the protein. This was by design, since

the interaction of selected additives could be examined at a later stage. However, the

screening of p38α revealed that a number of the additives used in the screen had no 
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effect, or had a detrimental effect on the folding of the model kinase. The factors that

gave rise to no effect or a detrimental effect on the refolding of the model kinase,

and the expanded kinase panel, could be eliminated from the screen, and the

remaining additives formatted into a factorial screen to examine the interactions of

the additives selected.

A powerful feature of factorial screens is that they are readily analysed using

statistical techniques, leading to the rapid and robust identification of the key factors

that affect the result of the experiments being performed. The conditions which are

tested for their effect on the outcome are termed factors. A powerful feature of

factorial screening is that factors can have a number of discrete values in the screen,

although simple screens will adopt only two values for each factor. The number of

experiments required for a factorial screen can be very large however. If four factors

are used, each having four levels, for example four different folding additives at four

different concentrations, then the number of experiments required would be the

number of levels for each factor, to the power of the number of factors, or 44 or 256

experiments. For a more simple screen in which factors are only present or absent,

for any number of factors the number of experiments require is 2n, where n is the

number of factors, so 4 factors, 16 experiments, 5 factors, 32 experiments and 6

factors, 64 experiments.

A feature of the statistical mathematics used in interpreting the factorial

screen results is that it can be used to estimate the effects of missing combinations of

factors from other experiments performed. This approach is called a fractional

factorial screen. In such a screen the number of experiments is reduced at the

expense of the resolution of the screen, and the statistical tests performed on the

results are used to “fill-in” the missing data. This approach allows the size of the

screen to be kept reasonable with higher numbers of factors. However, care must be

taken to not reduce the number of experiments required too much, or the resolution

of the screen will suffer, and the results will be less reliable. A balance must

therefore be sought between the resolution of the screen and the numbers of

experiments required.

This chapter describes the selection of four additional kinases from the

kinome to form a kinase panel for testing the refolding screen. The kinases selected
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were AKT2, KIS, phosphorylase kinase and TTK. These kinases were refolded

through the previously described screen and the results compared between the

kinases. Effective additives were selected and combined into a fraction factorial

screen which was applied to the kinase panel and the model kinase p38α. The results 

were analysed using statistical methods and the key factors and combinations of

factors analysed to identify the commonalities between the refolding of the tested

kinases. The differences between the kinases were also elucidated.

3.2 Methods and Materials

3.2.1 Materials

NV-10 was purchased from Novexin Ltd (Cambridge, UK). 3-(1-pyridino)-1-

propanesulfonate and β-cyclodextrin were purchased from Fluka (Buchs SG, CH). 

Tris was purchased from Acros Organics (Geel, BE); P20 surfactant was supplied by

Biacore (Chalfont St. Giles, UK) and dimethyl sulphoxide by Fisons (Ipswich, UK).

All other chemicals were supplied by Sigma-Aldrich (Poole, UK). Plasmids for the

expression of AKT2, KIS(1-313) and TTK (514-804) were supplied by AstraZeneca.

The creation of a synthetic PhK construct was performed by Geneart (Regensburg,

DE).

3.2.2 Gateway Cloning

The Gateway cloning system was used to clone the synthetic PhK construct

into a plasmid vector suitable for expression in E. coli. Two separate recombination

reactions, the BP reaction and the LR reaction are used to recombine the DNA of

interest into vectors suitable for either site directed mutagenesis, or expression of the

protein. The recombination reaction depends on specific sequence elements present

in the donor and the acceptor sequences. The recognition elements are also specific

to the 5’ and 3’ end of the element to be recombined. There are four types of sites, B,

P, L and R sites. B sites are recombined specifically with P sites, and L sites are

specifically recombined with L sites. The recombination between B and P sites

generates L sites, and the recombination between L and R sites generates B sites.

The recombination between the sites is mediated by specific recombinases, termed
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Clonase enzymes. The Clonase enzymes catalyse the recombination between either

B and P sites, or between L and R sites, being termed BR Clonase or LR Clonase

depending on the reaction catalysed.

3.2.2.1 Gateway Cloning – BP Reaction

Inserts containing attB sites were recombined into vectors containing attP

sites, either for the purposes of cloning, or in order to perform site directed

mutagenesis. Two units of BP clonase (Invitrogen) were added to 75 ng of source

vector containing insert flanked by attB sites and 75 ng of circular pDONOR221.

The reaction mixture was diluted to a final volume of 5 µL with water. The reaction

was incubated for 1 hour at 25 °C at 300 rpm in a heated shaking block. 2 µL of the

incubated mixture was used to transform E. coli strain DH5α (Section 2.2.2) 

competent cells (Invitrogen) which were plated on LB Agar plates containing

Kanamycin. Overnight cultures were processed using a Spin Miniprep Kit (Qiagen),

and the isolated plasmid DNA checked for incorporation of the insert by a BSRG1

digest

3.2.2.2 Gateway Cloning – LR Reaction

To produce expression plasmids, entry vectors produced by the BP reaction,

and confirmed as containing the insert of interest by BSRG1 digestion, were

recombined with expression vectors modified to contain attR sites. Two units of LR

Clonase (Invitrogen) were added to 75 ng of entry vector and 75 ng of circular

expression vector, usually pT7#3.3. The reaction mixture was diluted to a final

volume of 5 µL with water. The reaction was incubated for 1 hour at 25 °C at 300

rpm in a heated shaking block. 2 µL of the incubated mixture was used to transform

E. coli strain DH5α (Section 2.2.2) competent cells (Invitrogen) which were plated 

on LB Agar plates containing an appropriate antibiotic. Overnight cultures were

processed using a Spin Miniprep Kit (Qiagen), and the isolated plasmid DNA

checked for incorporation of the insert by a BSRG1 digest.



- 74 -

3.2.3 Production of Kinase Panel Inclusion Bodies

Protein kinase domains were prepared from inclusion bodies using the

following procedure. Expression constructs for the protein kinase of interest were

used to transform E. coli strain BL21* (DE3) cells according to section 2.2.2. The

agar plates were incubated overnight at 37 °C. For expression, a single colony was

picked from the plate and a 75 mL starter culture of Terrific Broth (Section 2.2.4)

was inoculated with this colony. The starter culture was incubated overnight at 37 °C

in a shaking incubator at 180 rpm.

5 mL of starter culture was used to inoculate expression cultures of 600 mL

terrific broth and incubated in a shaking incubator at 37 °C and 180 rpm. The OD600

was monitored, and at OD600 ≈ 0.5 the temperature was reduced to 20 °C. When 

OD600 reached ~0.6 the expression of the protein kinase was induced by the addition

of IPTG to a final concentration of 0.1 mM. The incubation was allowed to proceed

for 20 hours before the biomass was harvested. The biomass was harvested by

centrifugation at 6,000 g for 20 minutes at 4 °C. The inclusion bodies were isolated

according to the procedure laid out in section 2.2.5.

3.2.4 Refolding of the Kinase Panel using a Refolding Screen

The refolding of the kinase panel proteins was carried out as described

previously for p38α in chapter 2. Briefly, 100 μL of concentrated, denatured 

inclusion body protein at 5 mg/mL was aliquoted into 5 mL of various renaturantion

buffers and allowed to refold overnight at 4 °C (Section 2.2.10). The solutions were

then tested for soluble protein (Section 2.2.11), concentrated 10 fold and dialysed

into a neutral buffer. The extent of refolding was then determined by three

procedures; capillary electrophoresis (Section 2.2.13), analytical size exclusion

chromatography (Section 2.2.14) and surface plasmon resonance based binding

experiments (Section 2.2.15). These procedures are fully laid out in chapter 2.
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3.2.5 Fractional Factorial Screens for the Refolding of Protein Kinases

Selected conditions from the broad refolding screen were used to construct a

fractional factorial screen for the refolding of protein kinases. The screen was

constructed using DesignExpert 7 software and was carried out as laid out above for

the initial refolding screen. The collected data were analysed using the data analysis

functions of the DesignExpert 7 software.

3.2.6 Cumulative Probability of Studentised Residuals

The cumulative probability of studentized residuals was calculated by

DesignExpert 7 according to the equation:

 
 1


N

i
residualiP th

(3.1)

Where P is the cumulative probability of a point, i is the order of the value in an

ordered list of the residuals and N is the number of residuals in the list.

3.3 Results

3.3.1 Selection of the Kinase Panel

The selection of the kinase domains to be used in the kinase panel to test the

screen is an important part of the testing of the screen and to the application of the

results to identify similarities in the refolding of protein kinases. If the protein

kinases selected were too closely related then this could lead to false positives when

considering the similarities observed in the refolding. To avoid closely related

kinases being selected, the expanded dendrogram poster of Manning et al. (2002)

was used (expanded dendrogram available online at http://kinase.com).The kinases

were chosen from different areas on the dendrogram to avoid close sequence

relationships. Four kinases were chosen, to form a total kinase panel of five kinases

with the inclusion of the previous data collected on p38α.  
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The first consideration of the kinase panel was to include a protein kinase

which is known to refold from inclusion bodies. This would provide extra support

for the results obtained with p38α showing that the refolding screen is able to 

identify refolded protein. For this purpose the kinase domain of Phosphorylase

kinase was selected. Owen et al. (1995) had refolded this protein from inclusion

bodies in order to produce soluble protein which was crystallised and the structure

solved from those crystals. Phosphorylase kinase (PhK) is a multi domain protein,

and the functional protein is composed of several subunits. The γ-subunit contains 

the catalytic kinase domain, with the other subunits being involved in substrate

recognition and control of the catalytic activity. The isolated kinase domain is

constitutively active. Phosphorylase kinase is a member of the CAMK family and is

not closely related to p38α. The expression construct for this protein was created by 

gene synthesis, and cloned into an expression vector as described in section 3.3.2.

Although tyrosine kinase and tyrosine kinase like (TK and TKL) kinase

domains had been excluded from the kinase panel, the isolated kinase domain of

TTK was included as it is a dual specificity kinase, and it was thought that changes

in the active site required to accommodate the tyrosine side chain might result in

differences in the folding of the kinase domain. The TTK kinase domain has been

isolated from the context of a much larger multi-domain protein which regulates the

activity of the kinase domain as well as performing other functions. The isolated

TTK kinase domain is constitutively active, like the kinase domain of PhK. TTK

does not fit into one of the families of protein kinases in the analysis of Manning et

al. (2002), but is found on the arm of the dendrogram which terminates in the

CMGC group, which contains p38α (Figure 1.4). An expression construct for TTK 

(514-804) was supplied by AstraZeneca (Section 3.2.1). This expression construct

consisted of a codon optimised expressed sequence contained in a pT7#3.3 vector.

The isolated kinase domain AKT2 or PKBβ was included as a representative 

of the AGC group which comprises the protein kinase A, G and C families. These

kinases have a interesting sequence feature. As described, previous work on the

equilibrium folding of p38α had identified an absolutely required, conserved core 

tryptophan, W207. In the protein kinase B family and other AGC family members

there is a double tryptophan motif in the core of these kinases. This raised the

possibility of different folding pathway driven by the double tryptophan motif in the
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core of the protein. The AGC group also contains many important kinases, so the

inclusion of a member of this group was important for representing the kinase

domain. The expression construct for AKT2 was also supplied by AstraZeneca

(Section 3.2.1).

The final kinase selected to form this kinase panel was included as a kinase

regarded to be a challenging kinase to produce in a soluble form. KIS (kinase

interacting with stathmin) is a two domain protein which has yet to have its structure

solved and limited information on the in vivo function of the kinase is available. The

two domains comprise a kinase domain at the N-termini of the protein and a second

C-terminal domain whose function is currently unknown, but based on sequence

details is suspected to be an RNA binding domain. The production of the kinase

domain in KIS is difficult and has yet to be achieved in significant amounts. Soluble

protein can be generated as a GST fusion; however upon removal of the GST

domain, the protein aggregates indicating that the protein was mis-folded, or

partially folded (AstraZeneca unpublished data). If the protein were able to be

produced in a soluble, folded form from a refolding screen this would be especially

advantageous as it could lead to the possibility of a crystal structure of the protein.

The Manning et al.,(2002) analysis indicates that KIS is closely related to TTK.

Despite this feature, and the possibility of similarities between the kinases being due

to their close relationship, the very different behaviours of the two proteins, and the

lack of structural information for KIS, it was included as an interesting target for

refolding. The KIS kinase domain expression construct, representing residues 1-313

of the full length protein, was supplied by Astrazeneca in a pT7#3.3 vector (Section

3.2.1).

The proteins which comprised the kinase panel share certain sequence

features which are common to the kinase fold. However, overall sequence identity is

low. A sequence alignment of the five members of the kinase panel identifies little

common sequence (Figure 3.1). The sequence features identified as common, such as

the DFG motif are mostly related to the catalytic function of the proteins. The

conserved tryptophan can however be seen.
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Figure 3.1: Sequence alignment of the kinase domains of the members of the kinase panel.
Consensus sequence indicates residues at least 80% conserved. Key kinase domain motifs
such as the DFG motif and the conserved core tryptophan can be noted. Alignment performed
using CLC Bio Sequence Viewer, using proprietary pairwise alignment function, utilising
default parameters. Background colour indicates degree of residue conservation between
kinases from blue to red; unique residues to completely conserved residues.

Although the members of the kinase panel show low sequence homology the

crystal structures of the kinase domains which have been solved for all of the

members of the panel apart from KIS, show a common kinase fold (Figure 3.2).
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Figure 3.2: Crystal Structures of the members of the kinase panel. (A) – crystal structure of AKT2. (B) – crystal
structure of p38α. (C) – Crystal structure of PhK. (D) – Crystal Structure of TTK. (E) – Alignment of the members 
of the kinase panel to p38α. p38α shown in red, AKT2 in green, PhK in blue and TTK in magenta. All images 
produced using ray tracing module of Pymol (Delano, 2008). Alignment performed in the same software.
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The alignment of the kinase domains indicates that the members of the kinase

panel have very similar folds. p38α shows several additional α-helices in both the N-

terminal lobe and the C-terminal lobe. There is more variability in the arrangement

of the β-sheets of the N-terminal lobe than in the α-helices of the C-terminal lobe. 

From the sequence alignment and the structural alignment of the proteins selected for

the kinase panel it is clear that the selected proteins are sequence diverse but

structurally similar. The proteins of the kinase panel have a diverse set of physical

properties. A selected set of these properties are summarised in table 3.1

Table 3.1: Selected physical properties of the members of the kinase panel
constructs. pI calculated according to Bjellqvist et al., (1993).

Kinase # of
Residues
in Kinase
Domain

# of
Residues in
Construct

Calculated
Mass of

Construct

Calculated
pI of

Construct

N-
Terminal
6His tag

AKT2 340 354 41.3 kDa 5.65 Y

KIS 313 339 37.5 kDa 6.65 Y

p38α 360 360 41.3 kDa 5.48 N 

PhK 299 326 37.5 kDa 6.06 Y

TTK 290 315 37.7 kDa 8.42 Y

3.3.2 Production of an Expression Construct for PhK Kinase Domain

Based on the studies of Owen et al. (1995) which determined the crystal

structure of the rabbit Phosphorylase Kinase kinase domain, the equivalent residues

from the human PhKγ1 subunit were identified. This sequence was made into a 

synthetic gene optimised for expression in E. coli by Geneart (Section 3.2.1). The

synthetic gene was supplied in a vector not suitable for expression and was cloned

into a suitable expression vector using the Gateway cloning system (Section 3.2.2)

The cloning of the coding unit for PhK was a two step process. First, the

insert supplied by Geneart was cloned into a subcloning vector, from which it was

cloned into the expression vector of choice. The Gateway cloning system does not

utilise restriction enzymes, but instead depends on site specific recombinases to

exchange the inserts between their recognition sites, altering the recognition site in
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the process, preventing the back reaction. The initial reaction is termed the BP

reaction and moves the insert from the supplied vector into an entry vector, in this

case pDONOR221. The reaction was carried out using the synthesized gene

according to the procedure in section 3.2.2.1. The BSRG1 digestion of the new

plasmids generated from the BP reaction (Section 3.2.2.1) which had been produced

by incubation in E. coli strain DH5α was used to determine if the insert had been 

moved into the entry vector. Due to the nature of the Gateway system it is not

possible for the insert to be inserted in the wrong orientation. The incorporation of

the insert abolishes a BSRG1 restriction site present in the unreacted vector,

resulting in a shift in the band pattern and the loss of a difficult to visualise, low

mass band. The digestion of the plasmids generated from the BP reaction is shown in

Figure 3.3.

Figure 3.3: BSRG1 digest of BP reaction produced plasmid putatively containing
the PhK coding insert. Lane 1 – High range markers; Lane 2-7 – BSRG1 digests of
BP reaction minipreps; Lane 8 – BSRG1 digest of unreacted pDONOR221, Lane 9 –
low range markers. Expected fragment sizes for unreacted pDONOR221 : 2514 bp,
1458 bp and 790 bp. Expected fragment sizes for pDONOR221 with PhK coding
region incorporated: 2514 bp and 965 bp.



- 82 -

The digestion of the minipreps products of the BP reaction do not show the

band patterns expected. However, the concentration of DNA used was low, and the

highest size band is very weak. Despite the lack of visible bands allowing the

confirmation of the success of the BP reaction, the plasmids produced were carried

forward to the LR reaction. This is because the incorporation of the insert into the

pDONOR221 plasmid changes the sequence of the recognition site, allowing its

recognition by the LR clonase and preventing its recognition by the BP clonase.

Therefore, any unreacted pDONOR221 which is carried through would not be

recognised by the LR clonase enzyme, and so recombination would not occur, and

this would be detected by a cleavage pattern which would be the same as the

unreacted vector in the LR reaction minipreps.

The LR reaction is used to recombine the insert into a final expression vector.

The system is modular, allowing the incorporation of the insert into many different

vectors for expression with different purification tags and for expression in different

expression systems, e.g. E. coli, insect cells and mammalian cell culture. The DNA

from the minipreps performed on the LR reaction product were digested with

BSRG1 to check for the incorporation of the insert into the selected pt7#3.3 N6his

vector which had been selected as the expression vector (Figure 3.4).
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Figure 3.4: BSRG1 digest of PhK minipreps following LR reaction. Lane 1 –
Markers, Lane 2 – Unreacted pT7#3.3. N6His, Lane 3-8 – BSRG1 digests of LR
reaction minipreps; Lane 9 – low weight markers. Expected fragment sizes for
unreacted pt7#3.3 : 5647 bp, 1283 bp and 402 bp. Expected fragment sizes for
pT7#3.3 with PhK coding region incorporated: 5648 bp and 965 bp.

The BSRG1 digest indicates the PhK coding region was successfully

incorporated into the expression vector, despite the incorporation of the insert into

pDONOR221 after the BP reaction not being confirmed. The expression construct

that was created contained an N-terminal 6 histidine tag, the translation of the attB

recombinase recognition site, and TEV protease cleavage site and the sequence of

the PhK kinase domain (Figure 3.5).
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Figure 3.5: Diagrammatic representation of the PhK gamma subunit kinase domain
expression construct used. Major elements are shown, namely the N-terminal 6
histidine tag, attB1 site, TEV protease recognition site, and the PhK gamma subunit
kinase domain, residues 28-326 from the full length Human PhKγ sequence. Amino 
acid sequences of the attB1 site and TEV protease recognition site are shown in
single letter code. Cleavage point by TEV protease indicated by vertical dotted red
line.

3.3.3 Expression of Kinase Panel Proteins as Inclusion Bodies

The plasmids encoding the proteins of the kinase panel were transformed in

E. coli strain BL21* (DE3) according to the procedure outlined in section 2.2.2. The

proteins were then expressed as inclusion bodies, and purified according to sections

3.2.3 and 2.2.5. In initial experiments the inclusion bodies were produced by the

indication of expression with a higher concentration of IPTG, and the expression was

performed at a temperature of 37 °C, similar to the procedure used for the production

of p38α as inclusion bodies (Section 2.2.4). This procedure, however, resulted in 

inclusion body preparations which had low purity with several contaminant proteins

present in the inclusion bodies at a high abundance. All of the kinase panel proteins

were produced with poly histidine tags, and so it would have been possible to purify

the proteins from the crude inclusion body preparations by denaturing immobilised

metal affinity chromatography; however, an alternative approach was taken which

was simpler and reduced the time taken for the expression and isolation of the

inclusion bodies. The expression of the kinase panel proteins was performed at a

lower temperature (20 °C). The kinase domains still accumulated as inclusion

bodies; however the quality and purity of the inclusion body preparations was

dramatically improved (data not shown).

The identity of the major component of the inclusion body preparations

performed was confirmed by ESI-MS analysis of the inclusion body preparations,

according to the procedure outlined in section 2.2.8. The measured masses of the

inclusion body proteins obtained were in good agreement with the expected



- 85 -

molecular masses calculated from the sequence of the proteins derived from in silico

translations of the plasmid DNA sequences (data not shown).

3.3.4 The Refolding of AKT2

The refolding conditions for AKT2 were tested using the screen developed

for p38α (Chapter 2, Cowan et al., 2008). Soluble protein was not available for

AKT2, so it was not possible to create a standard curve for the SPR binding activity

assay (folded protein recovery) as was possible for p38α. Instead the data for this 

analytical readout are presented as response units rather than as a concentration of

protein. Examples of the analytical readouts used to assay the refolding recovery of

AKT2 are shown in Figure 3.6.
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Figure 3.6: Example screen readout data for AKT2 refolding screens. (A) Capillary
electrophoresis of AKT2. LM – lower marker, UM – upper marker. (B) Analytical
size exclusion chromatography of refolded AKT2. Peak A – monomeric AKT2. Peak
B – Myoglobin. (C) Surface plasmon resonance analysis of refolded AKT2. Curve 1
– refolded AKT2 sample. Curve 2 – refolded AKT2 sample + 10 μM UTDC in 
solution.
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The refolding of AKT2 is of a much lower efficiency than p38α. The average 

soluble protein recovery at pH 5.8 was 0.30 % as opposed to an average recovery of

0.36 % at pH 8.0 and 0.70 % at pH 9.5. The highest yield of refolding achieved with

AKT2 was 6% (Figure 3.7) which was achieved with 50 mM arginine 50 mM

glutamate in 100 mM pH 9.5 CAPSO (Figure 3.8). This compares to yields of 13%

achieved with p38α in pH 9.5 100 mM CAPSO. The number of conditions which 

gave detectable monomeric and folded protein was also minimal. Only four

conditions gave measurable refolding in these analytical readouts. The conditions

which gave measurable recoveries in the analytical size exclusion assay (monomeric

protein recovery) and in the SPR based binding activity assay (folded protein

recovery) were 1 mM Cyclohexanol 50 mM MES pH 5.8; 50 mM Arginine 50 mM

Glutamate 100 mM CAPSO pH 9.5; 1 M TMAO 100 mM CAPSO pH 9.5 and 100

mM CAPSO pH 9.5 (Figure 3.8).
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Figure 3.7: Recovery of refolded protein and response units obtained for the refolding of
AKT2 in the kinase refolding screen. Results are grouped by pH of the renaturation buffer. ■ 
– Soluble Protein recovery, ○ – Monomeric protein recovery; ● – response units from SPR 
binding assay (folded protein recovery). Results are mean of 2 screens.
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Figure 3.8: Recovery of refolded protein obtained for the refolding of AKT2 for
conditions resulting in measurable recovery of monomeric protein. Soluble Protein
recovery and Monomeric protein recovery plotted as percentage recovery, SPR
binding activity assay (folded protein recovery) results plotted as response units.
Soluble protein recovery – white, monomeric protein recovery – light grey, SPR
binding activity assay – dark grey. Error bars show SE of mean.
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Figure 3.9: Correlation between monomeric protein recovery and response units from the
SPR based folded protein assay for the refolding of AKT2. Results are mean of two
experiments.

There does not appear to be a significant difference between the recoveries of

soluble protein achieved at different pHs. The significance of any difference between

the distributions of soluble protein recoveries was tested using a T-test. None of the

differences between the average recoveries of soluble protein between the different

pH groups were found to be statistically significant. This compares to the

observation of a significant difference in the average recovery of soluble protein

when refolding p38α at different pHs. The comparison of the recoveries of soluble 

protein is particularly useful for AKT2, since a low number of conditions resulted in

measureable recoveries of monomeric protein. Given the low yield of refolding

AKT2 no particular additive or additive group stands out as being effective in

assisting the refolding of AKT2. A high pH appears to be beneficial, since it appears

to result in high recoveries of refolded protein, but it does not appear to be essential

as a high recovery is recorded at pH 5.8. The repeatability of the refolding of AKT2

is good, with low variability between the experiments despite the low level of
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recovery of refolded protein. The correlation between the level of monomeric protein

recovery and the SPR based binding assay is good (Figure 3.9).

3.3.5 The Refolding of KIS

The refolding of the kinase domain of KIS, residues 1-313, was performed

using the screen described previously (Chapter 2, Cowan et al., 2008). Soluble

protein was not available for KIS, so it was not possible to create a standard curve

for the SPR binding activity assay (folded protein recovery) as was possible for

p38α. Instead, the data for this analytical readout are presented as response units 

rather than as a recovery of protein. Examples of the analytical readouts used to

assay the refolding recovery of KIS are shown in Figure 3.10. Figure 3.10B shows a

condition with a poor recovery of monomeric protein of less than 2 % recovery.
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Figure 3.10: Example screen readout data for KIS refolding screens. (A) Capillary
electrophoresis of KIS. LM – lower marker, UM – upper marker. (B) Analytical size
exclusion chromatography of refolded KIS. Peak A – monomeric KIS. Peak B –
Myoglobin. (C) Surface plasmon resonance analysis of refolded KIS. Curve 1 –
refolded KIS sample. Curve 2 – refolded KIS sample + 10 μM UTDC in solution. 
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The refolding of KIS is of similar efficiency to that of p38α. The recoveries 

of refolded protein, for the best conditions, are in the range of 10% to 15%. A much

wider number and range of conditions lead to high recoveries than do so with the

refolding of AKT2. Despite this, the number and variety of conditions leading to

high levels of recovery of refolded protein is much lower than the number seen for

p38α. Ten conditions supported the refolding of KIS to a level which was detectable 

with all three screen readouts used (Figure 3.11). The highest recoveries of

monomeric protein was found at pH 9.5, but pH 5.8 did not lead to the identified

recovery of monomeric protein (Figure 3.11)
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Figure 3.11: Recovery of refolded protein and response units obtained for the refolding of
KIS in the kinase refolding screen. Results are grouped by pH of the renaturation buffer. ■ – 
Soluble Protein recovery, ○ – Monomeric protein recovery; ● – response units from SPR 
binding assay. Results are mean of 2 screens.

The average soluble protein recovery at pH 5.8 was 0.87 % as opposed to an

average recovery of 1.37 % at pH 8.0 and 4.13 % at pH 9.5. The average recoveries

of refolded protein, as measured by the recovery of soluble protein, are significantly

different between pH 5.8 and pH 9.5, but not between pH 5.8 and pH 8.0, as

determined by the students T-test, at a significance level of 5 %. This is due to the
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higher number of high recovery results at pH 9.5 that are not present at pH 8.0.

There is also a significant difference between the average recovery of soluble protein

at pH 8.0 and pH 9.5. Furthermore, it can be seen that there are more conditions that

have resulted in high recoveries of monomeric protein from pH 9.5 conditions than

from pH 8.0 conditions. The amount of data points present does not allow for the

testing of the significance of the differences in the average monomeric recoveries

from these conditions.
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Figure 3.12: Correlation between monomeric protein recovery and response units from the
SPR based folded protein assay for the refolding of KIS. Results are mean of two
experiments.

The correlation between the monomeric protein recovery, and the response

units from the SPR based binding activity assay is good (Figure 3.12). The Pearson

correlation co-efficient for the two readout results is 0.951. This value indicates that

the correlation between the two readouts is significant. The variation between the

screens performed was low, as indicated by low standard errors of means shown in

Figure 3.13.
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Ten conditions gave identifiable recoveries from the analytical size exclusion

assay of the refolded protein and the SPR based binding activity assay. Of these 10

conditions, two were at pH 8.0 in 50 mM Tris buffer. The additives that showed

effectiveness in promoting the refolding of KIS at pH 8.0 were 0.04 % PEG3440 and

1 M formamide. The remaining eight conditions were various additives in pH 9.5

100 mM CAPSO. The additives effective in this buffer were; 0.5 M NaCl; 1 M and

0.5 M urea; 5 mM pentanol; 10 % ethanol; 0.04 % PEG3440; 1 M NDSB and 1 M

formamide. Two additives have been identified as being effective in facilitating

refolding at both pH 8.0 and pH 9.5. These additives were 0.04 % PEG3440 and 1 M

formamide. The recoveries of soluble and monomeric protein and the response units

from the SPR based binding activity assay are shown in Figure 3.13.
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Figure 3.13: Recovery and response units obtained for the refolding of KIS for successful
conditions. Soluble Protein recovery and Monomeric protein recovery plotted as percentage
recovery, SPR binding activity assay results plotted as response units. Soluble protein
recovery – white, monomeric protein recovery – light grey, SPR binding activity assay – dark
grey. Error bars show SE of mean.
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Several of the effective refolding conditions display a substantial drop in

recovery between the soluble protein recovery and the monomeric protein recovery.

It appears that for these additives approximately 50 % of the soluble protein is in the

form of soluble oligomers. This effect is most dramatic with a renaturation buffer of

1 M formamide 100 mM CAPSO pH 9.5 where the monomeric protein yield is

nearly 25 % of the soluble protein yield. Approximately 75 % of the soluble protein

is in the form of soluble oligomers. If the correlation of the soluble protein recovery

and the monomeric protein recovery is examined it can be seen that there is a poor

correlation between the two, with a correlation co-efficient of 0.267 (Figure 3.13).

This is indicative of the formation of differing proportions of monomers and soluble

oligomers with differing renaturation conditions. Some conditions, however, do not

show such a discrepancy between the soluble protein recovery and the monomeric

protein recovery. The conditions, 0.04 % PEG3440 in 50 mM Tris pH 8.0 and 1 M

urea in 100 mM CAPSO pH 9.5 display a close association between these two

analytical readouts, sugesting the absence of soluble oligomers. In addition, 0.5 M

urea in 100 mM CAPSO pH 9.5 displays a smaller difference between the soluble

protein recovery and the monomeric protein recovery. The monomeric protein

recovery is ~70% of the soluble protein recovery. Similarly 5 mM pentanol in 100

mM CAPSO pH 9.5 and 0.04 % PEG3440 in 100 mM CAPSO pH 9.5 give greater

than 60% recovery of monomeric protein compared to soluble protein recovery.

The highest recovery of monomeric KIS was achieved with a renaturation

buffer of 0.5 M urea in 100 mM CAPSO pH 9.5. A scaling up of the refolding

reaction to produce milligram amounts of refolded protein for further study was

attempted using this renaturation buffer. However, when this was attempted, and the

refolded protein purified by size-exclusion chromatography no monomeric protein

was recovered. The scaling up of the refolding reaction and the subsequent

purification probably failed due to the presence of these soluble oligomers, which

may have been increased in abundance due to the higher concentration of protein

required to perform the size-exclusion chromatography purification. A larger scale

refolding which utilised refolding conditions which gave a close match between the

level of soluble recovery and monomeric protein recovery might have resulted in the

purification of soluble KIS; however, time constraints did not allow this experiment

to be attempted.
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3.3.6 The Refolding of PhK

The refolding of the kinase domain of PhK was performed using the kinase

refolding screen laid out previously (Chapter 2, Cowan et al., 2008). The co-

expression of the PhK kinase domain with additional GroEL subunits using the

pGRO7 chaperone expression plasmid was able to produce PhK in a soluble form.

However it was not possible to purify the solubly expressed PhK to a purity

necessary for the use of the soluble protein to construct standard curves for the

analytical readout methods. Therefore the procedures adopted for AKT2 and KIS

were also used for these readout methods. Examples of the analytical readouts used

to assay the refolding recovery of PhK are shown in Figure 3.14.
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Figure 3.14: Example screen readout data for PhK refolding screens. (A) Capillary
electrophoresis of PhK. LM – lower marker, UM – upper marker. (B) Analytical size
exclusion chromatography of refolded PHK. Peak A – monomeric PhK. Peak B –
Myoglobin. (C) Surface plasmon resonance analysis of refolded PhK. Curve 1 –
refolded PhK sample. Curve 2 – refolded PhK sample + 10 μM UTDC in solution. 
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Since the PhK kinase domain had been previously refolded from inclusion

bodies (Owen et al., 1995), although no details had been given on the overall yield of

the process, it was expected that the refolding screen would show high yields of

refolding, similar to those seen for p38α. The yields observed for the refolding of 

PhK are comparable to the yields obtained when refolding p38α derived form 

inclusion bodies. The average recovery of soluble protein is higher under refolding

conditions of high pH. The average soluble protein recovery at pH 5.8 was 1.79 % as

opposed to an average recovery of 7.63 % at pH 8.0 and 6.69 % at pH 9.5. The

average recovery at pH 5.8 is significantly different from the average soluble protein

recovery at high pH, as determined by at single tailed T-test at a significance level of

5 %. The difference observed between the average soluble recovery at pH8.0 and

pH9.5 is not significant (Figure 3.15). The pI of the PhK kinase domain is 6.06

(Table 3.1), approximately 1 unit greater than the low pH conditions, and 2 units

lower than high pH conditions. The change in the ionization of the protein from pH

5.8 to pH 8.0 appears to have a significant effect on the recovery of refolding of

PhK.

A higher number of conditions gave recoveries of monomeric protein and

identifiable responses in the binding activity assay than was seen with both AKT2

and KIS. Twenty-two conditions gave these measurable responses (Figure 3.15). The

majority (20) of these conditions occurred at the higher pHs used in the screen, with

most of these results being obtained from a pH 8.0 50 mM Tris buffer (13

conditions) as opposed to pH 9.5 100 mM CAPSO (7 conditions). The average

monomeric protein recovery at pH 8.0 and pH 9.5 is not significantly different (T-

test at 5 % significance level).
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Figure 3.15: Recovery of refolded protein and response units obtained for the refolding of
PhK in the kinase refolding screen. Results are grouped by pH of the renaturation buffer. ■ – 
Soluble Protein recovery, ○ – Monomeric protein recovery; ● – response units from SPR 
binding assay. Results are mean of 2 screens. Horizontal bar in the soluble protein recovery
columns indicate the mean soluble protein recovery for all 32 conditions at each pH.

The quality of the folded protein recovery response units was tested by

examining the correlation between the monomeric protein recovery and the response

units from the SPR based binding assay. The correlation between the two analytical

readouts for PhK was poor and not significant (Figure 3.16). The correlation between

the soluble protein recovery and the monomeric protein recovery was also poor

(Figure 3.17). This indicates the presence of soluble oligomers in various amounts

under different refolding conditions. The chromatograms from the screening of the

refolding of PhK confirm this, with peaks at the exclusion limit of the column used

(data not shown). These problems indicate that the monomeric protein recovery is

the best readout to be used to assess the refolding of PhK, due to the presence of

soluble oligomers distorting the soluble protein recovery and the lack of a control

protein for the surface plasmon resonance assay allowing testing the specificity and

linear range of binding for PhK.
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Figure 3.16: Correlation between monomeric protein recovery and response units from the
SPR based folded protein assay for the refolding of PhK. Results are mean of two
experiments.

Twenty conditions were noted to give measurable recoveries of refolded

protein in the three analytical readout methods used. The recoveries obtained under

these twenty conditions are shown in Figure 3.17. The recoveries of monomeric

protein are low compared to the recoveries of soluble protein (Figure 3.15, 3.17).

The highest recovery of monomeric protein achieved was 7.7 %. This recovery was

achieved with a renaturation buffer of 0.1 % NV-10 in 50 mM Tris pH 8.0. The

second best recovery was achieved under renaturation conditions of 20 mM CHAPS

50 mM Tris pH 8.0, where a soluble recovery of 6.5 % was achieved. The rest of the

conditions tested gave soluble recoveries between 3 and 5 % (Figure 3.17). The

majority of the additives that were effective in the supporting of the refolding of PhK

were additives that suppress aggregation through various methods. Particularly

prevalent were the additives from the detergents class, with lauryl maltoside and

CHAPS supporting the refolding of PhK, both at pH 8.0 and pH 9.5. Formamide was

also found to support the refolding of PhK at multiple pHs.
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Figure 3.17: Recovery and response units obtained for the refolding of PhK for
successful conditions. Soluble Protein recovery and Monomeric protein recovery
plotted as percentage recovery, SPR binding activity assay results plotted as response
units. Soluble protein recovery – white, monomeric protein recovery – light grey,
SPR binding activity assay – dark grey. Error bars show SE of mean.
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The correlation between the monomeric protein recovery and the soluble

protein recovery was previously noted to be poor. This can be seen by an

examination of the relative recoveries obtained through the two readout methods

seen in Figure 3.17. Only in relatively few conditions, six in total, were the

recoveries similar. In the rest of the cases the monomeric recovery was much lower

than the soluble protein recovery. This difference suggests the presence of soluble

oligomers of PhK. The renaturation buffers that best supported the refolding of PhK

to a monomeric form were 2 M guanidine 100 mM MES pH 5.8; 5 mM pentanol 100

mM MES pH 5.8; 1 M proline 50 mM Tris pH 8.0; 20% sorbitol 50 mM Tris pH 8.0

and 10% ethanol 100 mM CAPSO pH 9.5.

The control condition at pH9.5, i.e. the condition lacking a specific refolding

additive was able to give a monomeric protein recovery of 3.3 % (Figure 3.17),

which is similar to the recovery of monomeric protein achieved under the same

conditions with AKT2. The control conditions were not able to support a measurable

recovery of protein with KIS.

3.3.7 The Refolding of TTK

The refolding of the TTK kinase domain, residues 514-804, was performed

using the initial kinase refolding screen laid out previously (Chapter 2, Cowan et al.,

2008). Although it would prove possible to express and purify TTK in a soluble

form, as laid out in chapter 4 of this thesis, it was decided to not use this soluble

form of TTK as a control protein for the SPR based binding assay, and the analytical

size exclusion chromatography standard curve, for reasons of data comparability

among the four kinases tested using the refolding screen. Examples of the data

obtained through the analytical readouts used to assay the refolding recovery of TTK

are shown in Figure 3.18.
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Figure 3.18: Example screen readout data for TTK refolding screens. (A) Capillary
electrophoresis of TTK. LM – lower marker, UM – upper marker. (B) Analytical
size exclusion chromatography of refolded TTK. Peak A – monomeric TTK. Peak B
– Myoglobin. (C) Surface plasmon resonance analysis of refolded TTK. Curve 1 –
refolded TTK sample. Curve 2 – refolded TTK sample + 10 μM UTDC in solution. 
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The pH of the renaturation buffer has previously been noted to affect the

recovery of soluble protein in the screen. For p38α, KIS and PhK the average 

recovery of soluble protein was significantly lower at low pH when compared to the

recovery of soluble protein at high pH. The average recovery of soluble protein upon

the refolding of TTK (Figure 3.19) was not significantly different between pH5.8

and pH 8.0 or pH9.5. The difference between pH 8.0 and pH 9.5 was also not found

to be significant. This result was in opposition to the results obtained for the majority

of the kinase panel, where the recovery of soluble protein was significantly different

between the different pHs used in the screen. The other kinases used in the screen,

however, have pIs in the range of 5.48 to 6.65. The pI of TTK is higher, at 8.42

(Table 3.1). This change in the pI may be responsible for the different pattern of

response to pH seen in the soluble protein recovery of TTK when compared to PhK

and p38α.  
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Figure 3.19: Recovery of refolded protein and response units obtained for the refolding of
TTK in the kinase refolding screen. Results are grouped by pH of the renaturation buffer. ■ – 
Soluble Protein recovery, ○ – Monomeric protein recovery; ● – response units from SPR 
binding assay. Results are mean of 2 screens.
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Figure 3.20: Correlation between monomeric protein recovery and response units from the
SPR based folded protein assay for the refolding of TTK. Results are mean of two
experiments.

The observed correlation between the monomeric protein recovery and the

SPR response units is low, not significant, and negative (Figure 3.20) as determined

by calculating the Pearson correlation coefficient and comparing the calculated value

to a table of critical values at a 5 % significance level. There is however, a good

correlation between the soluble protein recovery and the monomeric protein recovery

(Figure 3.21). The number of refolding conditions which gave rise to a monomeric

protein recovery and a measurable response in the SPR based binding activity assay

was low. Only six conditions gave a measurable response in both assays. A large

number of conditions gave low measurable responses in the SPR based activity assay

of less than 20 response units. These conditions did not give a measurable response

in the analytical size exclusion assay, probable due to the low protein concentration

in these conditions, as indicated by the low measured response units. These results

were excluded from the relevant columns on Figure 3.19. The recoveries of soluble

protein, monomeric protein and the response units from the SPR based activity assay

for the six successful conditions are summarised in Figure 3.21.
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Figure 3.21: Recovery and response units obtained for the refolding of TTK for successful
conditions. Soluble Protein recovery and Monomeric protein recovery plotted as percentage
recovery, SPR binding activity assay results plotted as response units. Soluble protein
recovery – white, monomeric protein recovery – light grey, SPR binding activity assay – dark
grey. Error bars show SE of mean.

There does not appear to be the formation of significant amounts of soluble

oligomers that were observed with other members of the kinase panel. The overall

recoveries of refolded protein were; however, low, with a maximum recovery of

~3.5 %. This is below the cut-off that was applied for further analysis in the

screening of p38α, and is the lowest recovery observed with the kinase panel. The 

control conditions, lacking a refolding additive, were not able to support the

refolding of TTK. However a commonality was observed among the additives which

were capable of supporting the refolding of TTK. NV-10 was found to be capable of

supporting the refolding of TTK at both pH 8.0 and pH 9.5. In addition, different

conditions from the denaturant groups also supported the refolding of TTK from

inclusion bodies. Interestingly guanidine was effective at pH 8.0 and urea at pH 9.5.
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The concentrations required to support refolding were fairly high (1 – 2 M),

indicating that the refolding was supported through the maintenance of a

substantially unfolded state. The most effective additive was 1 M glucose at pH 9.5,

although NV-10 at pH 8.0 was similarly effective. The nature of these two additives

is fairly similar, NV-10 being a branched polysaccharide, and it appears that, in this

case, glucose is able to perform a similar function to NV-10, though a substantially

larger amount of glucose is required to have the same effect

Due to the availability of pure, soluble protein (Chapter 4), which was not

available for the other members of the kinase panel it was possible to examine the

stability of the TTK kinase domain at various pHs and in different buffers, in the

same manner as was performed with p38α to explain the  refolding behaviour of 

p38α relative to the pH. A thermal melting analysis of TTK was performed using the 

buffers 100 mM MES, 10 mM HEPES, 50 mM Tris and 100 mM CAPSO at a range

of pHs that covered the range of the screen; from pH 5.8 to pH 9.5. The thermal

unfolding of TTK was performed according to the method laid out in section 2.2.18

and the thermal unfolding transitions were fitted to equation 2.2 to determine the

parameters of the unfolding transition. The results of this screening of the thermal

unfolding of TTK are shown in Figure 3.22 and the mid points of the thermal

melting transitions are summarised in table 3.2.
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Figure 3.22: (A) Thermal unfolding transition of TTK in 100mM MES pH 5.8. Red circles
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Table 3.2 Tm values for TTK under various pH and buffer conditions.

Tm (°C)

Buffer

pH

100 mM MES 10 mM
HEPES

50 mM
TrisHCl

100 mM
CAPSO

5.8 51.1 ± 0.45

7.0 49.7 ± 0.38 47.1 ± 0.57 49.5 ± 1.13

7.5 47.5 ± 0.97 47.6 ± 0.72

8.0 45.3 ± 0.67 470 ± 0.89

9.0 45.5 ± 0.24 47.2 ± 1.90

9.5 48.9 ± 1.90

The results of the thermal melting analysis of TTK are consistent with the

lack of a significant difference between the average recovery of soluble protein

across the pH range utilised in the refolding screen. It can be seen that, unlike p38α 

(Figure 2.11), there is not a substantial change in the mid point of the thermal

melting transition observed for TTK either with a variation in pH or with the buffer

used. The conditions, however, which result in refolded protein (Figure 3.21) occur

in the high pH conditions, which is surprising, since it might be expected from the

thermal unfolding data (Figure 3.22C, Table 3.2) and the soluble protein recovery

distribution (Figure 3.19) that low pH conditions would result in measurable

refolded protein in the analytical size exclusion experiment and the SPR based

binding activity assay. This is because there is no large change in the Tm of TTK

under conditions of low pH, and the average recovery of soluble protein is not

significantly different between low and high pH. The reason for this unexpected

result is difficult to understand from the data collected, but it can be suggested that

the unusual effect may be due to the interaction of the buffer and the refolding

additives.

3.3.8 Fractional Factorial Screen Design

The initial screen that was used to screen the refolding of the members of the

kinase panel is unable to test for the effect of a combination of refolding additives. In
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addition, the analysis of the results of the refolding screen is limited in the statistical

tests that can be applied. To improve the screen in this manner a factorial screen was

applied to the problem of screening for the refolding of protein kinases. This allows

for the examination of the effect of the combination of different refolding additives

and the use of more powerful ANOVA statistical tests to analyse the results of the

refolding screen.

Factorial screens can exploit a fractional design to reduce the number of

experiments required to cover the parameter space of a screen. The ANOVA analysis

is interpolating the missing data points and covering the whole parameter design

space in the analysis. The number of factors analysed in the screen and the extent of

the fractional nature of the screen used in the screen were chosen to balance the

number of factors analysed, the coverage of the design space by the screen and the

number of experiments required in each screen.

To balance these three requirements for the screen, a screen using six factors

was chosen. A full factorial screen with this number of factors requires 26, or 64

experiments per screen. This would not represent a substantial decrease of the

number of experiments required for the screen over the initial screen used

previously. The screen was converted to a half-fractional design from a full factorial

design. This reduces the number of experiments required for the screen to 32, which

is a substantial reduction of the size of the screen. The drawback of the use of a half-

factorial screen is the aliasing of the results. Aliasing in a fractional factorial screen

results in the ANOVA analysis of the screen being unable to distinguish between

certain combinations of factors. The model of the screen used does not consider

combinations of factors of more than three factors. It is unlikely that a combination

of more than three factors would have a positive effect on the refolding of a protein

kinase. In addition, some of the factor combinations with more than three factors can

be directly examined by an examination of the raw results. The aliasing of the screen

results in the ANOVA analysis of the screen being unable to distinguish pairs of

three factor interactions. The aliased interactions are summarised in table 3.3
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Table 3.3: Aliased model terms for the fraction factorial refolding screen. The pairs
of terms given cannot be distinguished from the term used in the model constructed
from the data and tested using ANOVA.

Model Term Aliased Terms

ABC ABC DEF

ABD ABD CEF

ABE ABE CDF

ABF ABF CDE

ACD ACD BEF

ACE ACE BDF

ACF ACF BDE

ADE ADE BCF

ADF ADF BCE

AEF AEF BCD

An analysis of the results of the initial screen was used to decide what screen

conditions would be used in the fractional factorial screen. It was decided to add a

new condition to the screen in the fractional factorial screen. The condition to be

added was the inclusion of staurosporine, a generic kinase inhibitor, at a

concentration of 5 μM. The addition of a kinase inhibitor was expected to assist the 

refolding of kinases by stabilising the native state of the protein. Staurosporine was

dissolved in DMSO at a concentration of 10 mM, leading to a final DMSO

concentration in the screen of 0.05 % (v/v).

The other five conditions for the fractional factorial screen were selected

from the conditions used in the broader refolding screen. The monomeric protein

recovery was used to judge conditions that had been effective in increasing the

recovery of monomeric protein. The recovery of monomeric protein in control

conditions and in the presence of additives was compared, and additives which

increased the recovery of monomeric protein over control conditions at the same pH

were identified as candidates for inclusion in the factorial screen. The effect of pH

on the refolding of protein kinases was different across the tested kinases. Some
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kinases gave poor recoveries at pH 5.8, whereas some kinases did not show

significant differences between the recoveries of soluble protein. AKT2 and KIS

gave higher recoveries of monomeric protein at pH 9.5 when compared to pH 8.0.

PhK, TTK and p38α did not show a significant difference in the recoveries of soluble 

protein between pH 8.0 and pH 9.5. However, with TTK, the additive NV-10 gave a

higher recovery of monomeric protein in 50 mM Tris pH 8.0 than in 100 mM

CAPSO pH 9.5. On this basis, the buffer used was included as a factor, having two

values of pH 8.0 and pH 9.5, with pH 8.0 being the base value. The remaining four

factors in the fractional factorial screen were filled by examining the monomeric

protein recovery and selecting factors that had been effective at promoting the

refolding of several protein kinases above the control conditions. The conditions

chosen on this basis were 1 M TMAO, 0.5 M urea, 0.1% NV-10 and 0.04%

PEG3440.

An additional advantage of the use of a fractional factorial screen is that the

software used to generate and to analyse the screen allows the randomisation of the

screen layout to be easily performed, and does not require the re-ordering of the

screen to allow analysis of the data. When this feature is combined with multiple

screens for refolding a single protein this aids in minimising any edge effects in the

screen. This feature was used in the fractional factorial screen for protein kinases.

The factors selected for the fractional factorial screen for the refolding of

protein kinases were combined into a screen of 32 refolding conditions containing

the six factors in the screen. A list of the combinations of factors that were used in

the screen is laid out in Table 3.4. The order of this list does not represent the order

in which the conditions were laid out in the fraction factorial refolding screen, as this

order was randomised to minimise edge effects.
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Table 3.4: Composition of the fractional factorial screen for protein kinase refolding. The composition of the 32 experiments in the half-fractional
factorial screen are indicated by the presence or absence of 5 factors, and the pH of the buffer used in each experiment. The order of experiments
in the screen was randomised when performing the screen to minimise edge effects.

Experiment
#

Screen Factors Experiment
#

Screen Factors
pH TMAO Urea NV-

10
PEG3440 Staurosporine pH TMAO Urea NV-

10
PEG3440 Staurosporine

1 8.0 N N N N N 17 8.0 N N N Y Y
2 9.5 N N N N Y 18 9.5 N N N Y N
3 8.0 Y N N N Y 19 8.0 Y N N Y N
4 9.5 Y N N N N 20 9.5 Y N N Y Y
5 8.0 N Y N N Y 21 8.0 N Y N Y N
6 9.5 N Y N N N 22 9.5 N Y N Y Y
7 8.0 Y Y N N N 23 8.0 Y Y N Y Y
8 9.5 Y Y N N Y 24 9.5 Y Y N Y N
9 8.0 N N Y N Y 25 8.0 N N Y Y N
10 9.5 N N Y N N 26 9.5 N N Y Y Y
11 8.0 Y N Y N N 27 8.0 Y N Y Y Y
12 9.5 Y N Y N Y 28 9.5 Y N Y Y N
13 8.0 N Y Y N N 29 8.0 N Y Y Y Y
14 9.5 N Y Y N Y 30 9.5 N Y Y Y N
15 8.0 Y Y Y N Y 31 8.0 Y Y Y Y N
16 9.5 Y Y Y N N 32 9.5 Y Y Y Y Y
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The screening procedure from the initial screen used previously (Figure 2.8) was used

for the fractional factorial refolding screen. All the conditions in each screen were analysed

by each analytical readout method used, since the ANOVA of the screen results required

results for each experiment in the screen. A lack of data would compromise the analysis

performed and result in less reliable results from the analysis. If the analytical method did not

return a detectable value for the recovery of refolded protein, the recovery in the screen was

assigned a value of 0 for the purposes of the analysis. To maintain similar data for all five

kinases to be used in the fractional factorial screen the same methods of calibrating the

analytical readouts were used for all five kinases. BSA was used to create a standard curve

for the analytical size exclusion chromatography assay, and the recoveries of each kinase

calculated from the relative molecular masses and calculated extinction coefficients. In

addition, no standard curve was prepared for the SPR based binding activity assay, since

three members of the kinase panel lacked available control protein and the results of the

refolding of the five members of the kinase panel would not be comparable if the analytical

readout of the screen were presented in different units.

3.3.9 Fractional Factorial Screen Results

The fraction factorial screen created was applied to the five kinases which had been

refolded using the initial refolding screen outlined previously (Chapter 2, Cowan et al.,

2008). The recoveries of monomeric protein, and the response units due to the binding of the

refolded kinases to the UTDC were analysed using DesignExpert 7 (Stat-Ease) and the

factors and combinations of factors that had a significant, positive or negative effect on the

refolding of the five protein kinases used for the initial kinase refolding screen identified.

The recoveries of refolded protein observed in the fraction factorial refolding screen

was generally higher than that seen in the initial screen design (Chapter 2). The recoveries of

refolded protein, as measured by the three analytical readout methods described in chapter 2

are shown in Figure 3.23. The maximum recovery of refolded protein for AKT2 is raised

from a recovery of 6 % with the initial screen design (Section 3.3.4) to a recovery of

monomeric protein of 26 % (Figure 3.23A). Similarly the recovery of monomeric protein on

the refolding of KIS was raised from ~12% in conditions of 0.5 M urea 100 mM CAPSO pH

9.5 to a refolding recovery of 15.5 % at maximum (Figure 3.23B). The recoveries of

monomeric protein do appear, however, to cluster at lower values. This indicates that KIS
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may be a more difficult protein to refold than other proteins tested in the screen, which

produce higher maximum recoveries and a wider spread of recoveries from the fractional

factorial screen.
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Figure 3.23: Refolding recoveries of the five kinases tested using the fractional factorial
refolding screen. (A) Refolding of AKT2, (B) refolding of KIS, (C) refolding of p38α, (D) 
refolding of PhK, (E) refolding of TTK. Refolding recovery determined by capillary
electrophoresis (■, soluble protein recovery), analytical size exclusion chromatography (○, 
monomeric protein recovery), and SPR binding activity (●, folded protein recovery). Results are 
mean of two screens. Maximum response units for each panel vary due to differing binding of
proteins to the UTDC (Figure 2.6).

The refolding of p38α has shown an increased recovery of monomeric protein in the 

fractional factorial screen as opposed to the screen described in chapter 2. The highest

E

C D

BA
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monomeric protein recovery observed with the initial screen design was ~15 % (Figure

2.9A). The maximum monomeric protein recovery rises to 38 % in the fractional factorial

screen (Figure 3.23C). The recovery of refolded protein is similar to the maximum recoveries

obtained when refolding p38α which had been sourced from protein expressed in a soluble 

form and subsequently unfolded with 8 M urea (Figure 2.9B). The range of recoveries of

monomeric protein is also high, indicating that the screen should be capable of discriminating

well between the effectiveness of different additives and combinations of additives.

The recovery of PhK, as determined through the recovery of monomeric protein, was

dramatically improved by the combination of refolding additives, with the maximum

monomeric protein recovery rising from 8 % to 35 % (Figure 3.17, 3.23D). A similar

dramatic improvement in the maximum recovery of refolded protein was observed for TTK,

with the maximum monomeric protein recovery rising from 3.59 % (Figure 3.21) to 26.4 %

(Figure 3.23E). These results indicate that the fraction factorial screen has successfully

identified conditions which lead to even higher recoveries of refolded protein when compared

to the refolding screen described in chapter 2. This basic analysis of the results of the

refolding screens does not, however, exploit the statistical tests which can be applied to the

screen, and does not indicate if all of the factors present in the conditions which result in high

recovery conditions are significant in increasing the refolding recovery. ANOVA of the

screen results is used to elucidate this information.

The ANOVA of the screen readouts generates a model which attempts to explain the

changes in the recovery of refolded protein from the base recovery, which for the refolding

screen in a renaturation buffer of 50 mM Tris pH 8.0. A limitation of the model that is

generated to explain the differences in refolding yields between the conditions tested in the

screen is that it must be hierarchical. That is, the model must include all terms that could

make up a higher term. For example if a two factor term is included in the model, i.e. the

effect of a combination of two factors is included in the model, then the model must

incorporate the effect of the two single factors that were combined in the two factor

combination. Likewise if, for example, the model incorporated the combination of factors

ABC, then the model would have to include the following factors and combinations of

factors; A, B, C, AB, AC and BC. The significance of all these factors can then be

determined. This can quickly lead to a very complicated model if multiple combinations of

three factors are included in the model.
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Several tests can be applied to examine the significance and appropriateness of the

model that is generated from the ANOVA of the results. Overall F-tests for the significance

of the model generated are performed in the ANOVA of the data generated. These tests

determine if the model results are likely to be due to random noise in the experiment as

opposed to being due to the changes in the conditions under which refolding has occurred.

These model F-values are summarised in table 3.5.

Table 3.5: Model F-values and chance that the model F-value could be due to random chance
for the ANOVA analysis of the fractional factorial refolding screen of five protein kinases.
Model F-values indicated as significant by stars. Significance level of F-test was 5 %.

Protein Refolded Model F-value Chance that Model F-value could be

Due to Random Noise

AKT2 4.30 * 0.24 %

KIS 10.69 * <0.01 %

p38α 11.65 * <0.01 % 

PhK 3.70 * 0.67 %

TTK 2.92 * 1.91 %

In addition, the residuals between the predicted results determined by the analysis of

the screen and the actual results obtained in the experiments performed using the fractional

factorial screen can be examined to determine if the model explains all the results. The

residuals from the model are studentised, that is they are dived by an estimate of the standard

deviation of the residual. The plot of the studentised residuals against the experiment number

gives an indication of the quality of the fit of the model generated. A studentised residual of

greater than 3 indicates a poor fit of the model to the data for that experiment. This may

indicate an underlying effect not accounted for in the model, or a poor experimental result

due to a mistake in the experimental procedure. These residual plots for the five kinases

screened are shown in Figure 3.24 A-E.



- 118 -

Figure 3.24: Studentised residuals for the fit of fractional factorial screen model against
actual data. Red lines indicate cut-off level for studentised residuals of 3. (A) AKT2
residuals. (B) KIS residuals. (C) p38α residuals. (D) PhK residuals. (E) TTK residuals. 
Points coloured by value of data for each run number; Blue – lowest value ; Red – highest
value.
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The plots of residuals against experiment number indicate that the models generated

for the refolding screen are well fitted to the data collected. A second measure of the quality

of the fit of the refolding screen model to the data is to examine the normality of the

residuals. It there is no systematic bias in the data, then it would be expected that the

residuals would be normally distributed. A plot of the expected cumulative probability of the

normal distribution against the residual value is generated by calculating the cumulative

probability of each residual according to equation 3.1. If the residuals were perfectly

normally distributed then all the residuals would lie on a line indicated on the normal plots.

Systematic or large deviations from this line would indicate a problem with the data,

indicating that a transform of the data should be used to improve the fit of the model, or that

the model should be changed to better fit the data. The normal plots of residuals for the

fractional factorial refolding screen for the five kinases to which the screen was applied are

shown in Figure 3.25 A-E.
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Figure 3.25: Normal probability plot of the residuals for the fit of fractional factorial screen
model against actual data. Red lines indicate theoretical normal distribution of residuals. (A)
AKT2 residuals. (B) KIS residuals. (C) p38α residuals. (D) PhK residuals. (E)  TTK 
residuals. Points coloured by value of data for each run number; Blue – lowest value ; Red –
highest value.

A B
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The normal probability plots indicate that the residuals for the fractional factorial

screen model are close to normally distributed, showing the quality of the fit. A single value

has been excluded from the fit in the refolding screens performed on KIS. This high value has

a studentized residual of greater than 3 and is not close to the theoretical normal distribution

of residuals.

The results of the ANOVA of the screen results indicate the factors and combination

of factors which produce a significant improvement in the recovery of refolded protein. The

refolding screen performed on AKT2 identified both positive and negative factors involved in

the refolding of AKT2. The significance level for factors was set at 5 %. Seven factors or

combinations of factors were identified by the modelling of the refolding data to be

significant in their effect upon the refolding of AKT2 compared to the base condition of 50

mM Tris pH 8.0. Of these seven terms, four had a positive impact on the refolding of AKT2

and three had a negative impact on the refolding of AKT2. The significant, negative terms

were AD, BE and DE, or NV-10 / CAPSO, TMAO / PEG3440 and NV-10 / PEG3440. The

significant positive factors were D, AE, BC and ADE, or NV-10, PEG / CAPSO, TMAO /

urea and CAPSO / NV-10 / PEG3440. However, since the screen is aliased, CAPSO / NV-10

/ PEG3440 cannot be distinguished from TMAO / urea / staurosporine. These results are

summarised in table 3.6.

Table 3.6: Significant positive and negative factors in the refolding of AKT2 identified by
the ANOVA of the results of a fractional factorial screen of AKT2 refolding.

Significant Negative Factors Significant Positive Factors

NV-10 / CAPSO NV-10

TMAO / PEG3440 PEG3440 / CAPSO

NV-10 / PEG3440 TMAO / Urea

CAPSO / NV-10 / PEG3440 or

TMAO / Urea / Staurosporine

The most interesting combination of positive additives was the combination of 1 M

TMAO and 0.5 M urea. It is possible that this combination of factors, which are opposite in

their effect on native protein, allow for easier conformational shuffling, which aids the

protein in refolding. NV-10 was identified as a positive factor in the refolding of AKT2, but
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was not so identified in the initial screen. It is possible that the more robust data analysis of

the screen performed has identified an effect missed in the initial screen. It is also noteworthy

that the combination of CAPSO and NV-10 had a negative effect on the recovery of refolded

protein.

The refolding of KIS was screened and four factors, or combinations of factors were

identified which were significant in altering the recovery of refolded protein from the base

refolding yield. No factors which had a significant, negative effect on the refolding of KIS

were identified through the ANOVA of the screen. The factors identified which had a

positive impact on the refolding of KIS were D, F, AE, and ADE, or NV-10, staurosporine,

PEG3440 / CAPSO and NV-10 / PEG3440 / CAPSO. The final term is aliased with TMAO /

urea / staurosporine. Several of the positive factors are found in common between AKT2 and

KIS. NV-10 PEG3440 / CAPSO and CAPSO / NV-10 /PEG3440 or TMAO / urea /

staurosporine. The common feature of these refolding additives is that they have a similar

mode of action. These additives function by inhibiting the aggregation of the refolding

protein. However, the three factor term is aliased and could, in fact, be different between the

two kinases.

 p38α was also screened through the fractional factorial screen, and was analysed in 

the same fashion as the other four kinases of the kinase panel without the benefit of soluble

p38α based standard curves for the analytical readout methods. This was to allow direct 

comparison between the five kinases used in the kinase panel. Two significant positive

factors and two significant negative factors were found. The negative significant factors were

B and ABE or TMAO and TMAO / PEG3440 / CAPSO. The significant positive factors were

E and BD or PEG3440 and TMAO / NV-10. The base recovery of monomeric protein is high

for the refolding of p38α, and the effect of the significant positive additives on the refolding 

of p38α was lower than the effect of the significant positive factors on the refolding of AKT2 

and KIS.

The refolding of PhK was also performed using a fractional factorial screen, and the

fit of the model generated on the analysis of the refolding recoveries to the actual data was

significant (Table 3.5). The ANOVA of the screen data identified eight factors or

combinations of factors which exerted a significant effect on the recovery of refolded protein

from the refolding screen. Of these factors, three factors had a negative effect on the

refolding of PhK and five factors had a positive effect on the refolding of PhK, increasing the
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recovery of refolded protein. The factors which gave a negative effect were B, BC and BF or

TMAO, TMAO / 0.5 M urea and TMAO / staurosporine. The positive factors were C, CD,

CF ABC and ABF or 0.5 M urea, 0.5M urea / NV-10, 0.5 M urea / staurosporine, 0.5 M urea

/ TMAO / CAPSO or NV-10 / PEG3440 / staurosporine and TMAO / staurosporine / CAPSO

or 0.5 M urea / NV-10 / PEG3440. These factors are summarised in table 3.7.

Table 3.7: Positive and negative factors identified as significant by ANOVA of the fractional

factorial refolding screen performed on PhK.

Significant Negative Factors Significant Positive Factors

TMAO 0.5 M Urea

TMAO / 0.5 M Urea 0.5 M Urea / NV-10

TMAO / Staurosporine 0.5 M Urea / Staurosporine

0.5 M Urea / TMAO / CAPSO or

NV-10 / PEG3440 / Staurosporine

TMAO / Staurosporine / CAPSO or

0.5 M Urea / NV-10 / PEG3440

.

Although the three factor terms are aliased and cannot be distinguished from the two

sets of three factor terms given, TMAO is common as a negative factor with both factors with

which it is included in a three factor term. It is likely therefore, that the true three factor terms

are NV-10 / PEG3440 / staurosporine and 0.5 M urea / NV-10 / PEG3440. The common

presence of the factors 0.5 M urea and NV-10 in the positive factors from the screen is

parallel to the results from the initial screen performed on PhK (Figure 3.17), which show a

positive effect on the refolding of PhK by 0.5 M urea and by NV-10.

The final protein kinase to be refolded using the fractional factorial screen was TTK.

The screen model was found to be significant, with a low chance of the model being due to

random noise (Table 3.4). The model identified seven significant factors affecting the

recovery of refolded protein. Four negative significant factors were identified. These factors

were CF, DF, ABC (DEF) and ABE (CDF) or 0.5 M urea / staurosporine, NV-10 /

staurosporine, TMAO / 0.5 M urea / CAPSO or NV-10 / PEG3440 / staurosporine and

TMAO / PEG3440 / CAPSO or 0.5 M urea / NV-10 / staurosporine (Table 3.8). In addition,
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the combination of factors AD or NV-10 / CAPSO has a small, not significant negative

effect.

Table 3.8: Positive and negative factors identified as significant by ANOVA of the fractional
factorial refolding screen performed on TTK.

Significant Negative Factors Significant Positive Factors

0.5 M Urea / Staurosporine NV-10

NV-10 / Staurosporine TMAO / CAPSO

TMAO / 0.5 M Urea / CAPSO or

NV-10 / PEG3440 / Staurosporine

0.5 M Urea / PEG3440

TMAO / PEG3440 / CAPSO or

0.5 M Urea / NV-10 / Staurosporine

The positive factors identified by the ANOVA of the screen were D, AB and CE or

NV-10, TMAO / CAPSO and 0.5 M urea / PEG3440 (Table 3.8). There is a strong similarity

between the factors that had a positive effect on the refolding of TTK identified in the

fractional factorial screen, and those identified in the initial refolding screen (Figure 3.21).

NV-10 was shown to be effective in both screens, and the lower recovery of refolded protein

at pH 9.5 compared to pH 8.0 was reflected in the results of the fractional factorial screen.

Staurosporine was a strongly negative factor in the refolding of TTK measured in the

fractional factorial screen as it appears in most of the negative factors. Its effect is such that it

counteracts positive additives such as NV-10. The selection of buffer did not have a

significant impact on the recovery of refolded protein, paralleling the effect of pH and buffer

seen with the initial refolding screen.

 The screen of the refolding of the five protein kinases, AKT2, KIS, p38α, PhK and 

TTK, through the fractional factorial screen developed has identified several positive and

negative factors in the refolding of the kinases tested. The factors which were found to be

significant in the refolding of the tested kinases are summarised in table 3.9.
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Table 3.9: Significant positive and negative factors identified in ANVOA of fractional factorial screens performed on five protein kinases.

Protein Factors Affecting Refolding Protein Factors Affecting Refolding
Significant Negative Factors Significant Positive

Factors
Significant Negative

Factors
Significant Positive Factors

AKT2 NV-10 / CAPSO NV-10 PhK TMAO 0.5 M Urea
TMAO / PEG3440 PEG3440 / CAPSO TMAO / 0.5 M Urea 0.5 M Urea / NV-10
NV-10 / PEG3440 TMAO / 0.5 M Urea TMAO / Staurosporine 0.5 M Urea / Staurosporine

CAPSO/NV-10/PEG3440
or

TMAO/0.5 M Urea/Staurosporine

0.5 M Urea / TMAO / CAPSO
or

NV-10/PEG3440/Staurosporine
KIS

(1-313)
NV-10 TMAO/Staurosporine/CAPSO

or
0.5 M Urea / NV-10 / PEG3440

Staurosporine TTK
(514-804)

0.5 M Urea / Staurosporine NV-10
PEG3440 / CAPSO NV-10 / Staurosporine TMAO / CAPSO

NV-10 / PEG3440 / CAPSO
or

TMAO/0.5 M Urea/Staurosporine

TMAO / 0.5 M Urea / CAPSO
or

NV-10 / PEG3440 / Staurosporine

0.5 M Urea / PEG3440

p38α TMAO PEG3440 TMAO / PEG3440 / CAPSO  
or

0.5 M Urea/NV-10/Staurosporine
TMAO / PEG3440 / CAPSO

or
0.5 M Urea / NV-10 / Staurosporine

TMAO / NV-10
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3.4 Discussion

 The refolding screen described in chapter 2 was developed and tested using p38α as a 

model protein kinase. To demonstrate that the refolding screen is suitable for testing for the

refolding of protein kinases the screen was applied to a series of human protein kinases and

the results examined to determine if the refolding screen was suitable for determining

conditions which would support the refolding of protein kinases which have proved difficult

to express in E. coli. In addition the screen was developed to examine the effect of the

combination of additives on the refolding of protein kinases. A fractional factorial screen was

exploited to provide a testing of the interaction of a limited number of screen additives and to

provide a more robust test of the significance of the effect of different additives on the

refolding of the test protein kinases through ANVOA of the screening results.

Four protein kinases from the serine/threonine and dual specificity classes of protein

kinases, with tyrosine kinases being excluded. The protein kinases selected were distributed

through the kinome, in order to avoid close sequence similarity between the kinases selected.

KIS and TTK are shown to be closely related in the analysis of the kinome produced by

Manning et al. (2002). However the sequence identify of these two kinases is only 43 %

despite their close relationship. Despite this close relationship between KIS and TTK there

were important difference noted in the refolding of the two proteins in both screens under

which refolding was examined. In the initial screen, a significant difference between the

refolding of KIS at pH 9.5 and pH 5.8 was observed. However, the comparison of the average

recoveries of soluble protein for the refolding of TTK did not result in a significant difference

between pH 5.8 and pH 8.0 and pH 9.5. Despite their diverse sequences (Figure 3.1) the four

protein kinases of the kinase panel that have a published crystal structure, AKT2, p38α, PhK 

and TTK, adopt a common structure. The mainly α-helical C-terminal lobe and mainly β-

sheet N-terminal lobe of the kinase fold are seen to be common (Figure 3.2). It is also

expected that the KIS kinase domain adopts a similar structure. Given the similarity of the

folds of the protein kinases, and their relative sequence diversity the kinase panel selected

forms an excellent tool for demonstrating the suitability of the refolding screens for all

protein kinases, and for helping to address the question of whether the folding of the kinase

domain follows a common route.
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The refolding screen presented in chapter 2 was applied to the four additional protein

kinases selected, AKT2, KIS, PhK and TTK . Soluble, control protein was not available for

three of these protein kinases, and so the analytical readouts were modified slightly to

account for this difference to the studies on the refolding of p38α. The correlation between 

the monomeric protein recovery and the response units from the binding assay were used as a

control for the quality of the SPR data. Likewise the comparison of the soluble protein

recovery and the monomeric protein recovery was used to shed light on potential reasons for

any discrepancies between the monomeric recovery and the response units from the SPR

based assay.

The refolding of AKT2 resulted in a small number of conditions which gave

measurable recoveries of protein in the analytical size exclusion assay, and measurable

response units in the SPR-based binding assay (Figure 3.7). Although the number of

conditions is low, there is a significant, positive correlation between the two assays. In

addition the recovery of soluble protein is similar to the recovery of monomeric protein. This

is indicative of the presence of soluble oligomers. It appears, however that these soluble

oligomers are distinguished from the monomeric protein by the binding assay (Figure 3.8).

The refolding screen performed on KIS identified 10 conditions which promoted the

refolding of KIS (Figure 3.13). In these conditions the correlation between the monomeric

protein recovery and the SPR-based binding assay was strong and significant (Figure 3.12).

The relation of the soluble protein recovery and the monomeric protein recovery was mixed

(Figure 3.13).

The refolding of PhK performed as a positive control for the screen. The correlation

of the monomeric recovery and response units from the SPR-based binding assay was

negative and not significant. The SPR-based binding assay does not appear to be suitable for

detecting the refolding of PhK (Figure 3.16) and the analysis of the refolding of PhK centred

on the results of the analytical size exclusion assay. The refolding of PhK also produced large

amounts of soluble oligomers, as indicated by the large differences between the soluble

protein recovery and the monomeric protein recovery (Figure 3.17). However, some

conditions did give similar levels of soluble and monomeric recovery (Figure 3.17).

The final kinase tested using the screen outlined in chapter 2 was TTK. The refolding

of TTK did not show a dependence upon pH (Figure 3.19), a result which was supported by

the thermal melting analysis of TTK in different buffers, which saw the thermal melting



- 128 -

midpoint of TTK being similar in a range of buffers and at a range of pHs (Figure 3.22, Table

3.2). The correlation between the monomeric protein recovery and the SPR based activity

assay response units was not significant and negative (Figure 3.20). However, the soluble and

monomeric protein recoveries were similar, showing that limited amounts of soluble

oligomers were formed in refolding.

The five protein kinases tested in the initial refolding screen showed differences in

their patterns of refolding and in the behaviour of the refolded protein. KIS (Figure 3.13),

PhK (Figure 3.15) and p38α (Figure 2.9) showed a dependence of their refolding yields on 

the pH of the buffer in which they were refolded. However, TTK (Figure 3.19) and AKT2

(Figure 3.8) did not show significant differences in the recoveries of soluble protein at

different pHs. Based on the thermal unfolding of p38α (Figure 2.11) and TTK (Figure 3.22) 

this difference is probably due to a difference in the stability of the native state in these

conditions. p38α appears to be partially unfolded at pH 5.8, whereas TTK appears to be 

unaffected by this pH. The use of high pH is, therefore, beneficial to the refolding of protein

kinases, but is not essential in all kinases. The pIs of the kinases do vary, with TTK having a

higher pI than the other kinases used (Table 3.1). However, AKT2 has a pI similar to those of

KIS, PhK and p38α. This suggests that an effect more specific than the changes in pI relative 

to the pH at which refolding has occurred is responsible for the differences in the refolding

yields obtained. The role of histidine residues in the structure to the different kinases is a

possible candidate for the reason for the differences between the response of the kinsases to

the pH of refolding.

To examine the effect of the interaction of additives, and to improve the robustness of

the identification of refolding conditions a fractional factorial screen was used. To construct

this screen a set of additives, four in total were selected on the basis of their effects in the

initial screens on the refolding of the protein kinases tested. A wide variety of additives

permitted the refolding of p38α, so only those additives which gave an improvement in the 

recovery of monomeric protein over the control conditions at pH 8.0 and pH 9.5 were

considered. No additive which was included in the initial protein refolding screen was

effective at improving the recovery of monomeric protein for all five kinases tested. The best

additives for affecting multiple kinases were PEG3440, which supported the refolding of KIS

(Figure 3.13), p38α and PhK (Figure 3.17) and 0.5 M urea which also supported the refolding 

of KIS (Figure 3.13), p38α and PhK (Figure 3.17). NV-10 supported the refolding of PhK 

(Figure 3.17) and TTK (Figure 3.21) but resulted in a decrease in the recovery of monomeric
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protein with p38α. The recoveries of monomeric protein do not form similar patterns between 

any two protein kinases which were refolded with the initial screen.

The screen was performed and analysed using the same procedures as the initial

refolding screen so that the results could be directly compared. The maximum recovery of

monomeric protein was increased from the initial screen, and several combinations of factors

were found to be effective in increasing the refolding yields of some of the kinases tested

(Table 3.9). The effect of the significant additives and combinations of additives were mixed.

In several cases, the same additives were found to have a positive impact on the refolding on

one protein kinase and a negative effect on the refolding of a second protein kinase. No one

additive was a positive or negative factor in the refolding of all of the protein kinases tested

(Table 3.9). Overall, it is clear that in the fraction factorial refolding screen no consistent

effect can be observed on the refolding of protein kinases by a single additive or combination

of additives.

The two refolding screens performed on the selected protein kinases have shown that

it is possible to refold many protein kinases in a screen format, and to identify the extent of

the refolding through various analytical techniques. The results have underlined the

importance of having multiple analytical techniques which can be compared to identify which

conditions lead to the recovery of correctly folded, monomeric protein. The fractional

factorial screen has succeeded in producing detailed, statistically relevant results from a

smaller screening format than was required initially. The combination of additives has been

shown to be effective in supporting the refolding of protein kinases. The effect of additives

on protein kinases has been shown to depend on the individual kinase being refolded, rather

than having a common effect on protein kinases. This result undermines the concept of a

single folding mechanism underlining the folding of the kinase domain. If a common

mechanism of folding existed, it would be expected that more similarities in the pattern of

refolding would be found, with respect to the response to the changes in pH and in different

refolding additives. The lack of similarities in the best refolding conditions observed, does

not, however, provide conclusive evidence about the folding pathways, since the additives

may have little effect on the folding pathway, instead acting to prevent aggregation. The

further examination of the folding pathway of a protein kinase is necessary to determine the

existence and extent of any similarities.
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Chapter 4. Mutagenesis, Expression and Characterisation
of Human TTK tryptophan Mutants

4.1 Introduction

This chapter describes the expression and characterisation of wild type TTK

kinase domain and tryptophan to phenylalanine substitution mutants of the TTK

kinase domain. The creation of tryptophan to phenylalanine substitution mutants is

key for the study of the folding of TTK, and will allow comparison of the folding of

TTK and the folding of p38α examined by Davies (2004).  

Figure 4.1: Crystal structure of human TTK kinase domain with native tryptophan
residues highlighted. The structure consists of 2 lobes, a β-sheet rich N-terminal 
lobe, and an α-helical C-terminal lobe. All four native tryptophan residues are 
contained in the C-terminal lobe. Structure from pdb file 3CEK, rendered using ray
tracing module of Pymol (DeLano, 2008).
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W718
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The TTK kinase domain contains four native tryptophan residues, W612, W622,

W628 and W718 (Figure 4.1). These four residues are all contained within the C-

terminal lobe of the kinase domain, and are found in different environments. For

example, the crystal structure of the TTK kinase domain indicates that the residues

612 and 622 are found in a solvent exposed position (Figure 4.2), and residues 628

and 718 are buried in the core of the C-terminal lobe of the protein (Figure 4.1).

Figure 4.2: Space filling representation of the local environment around tryptophan
residues 612 (A) and 622 (B) showing that these residues are exposed to solvent in
the native structure Tryptophan residues highlighted in green. Structure from pdb file
3CEK, rendered using ray tracing module of Pymol (DeLano, 2008).

Residue 718 is the structural and sequence homologue of tryptophan 207 of

p38α (Figure 3.1). This residue is found to be conserved throughout the kinome and 

was shown to be key for the correct folding p38α (Davies, 2004). In addition if the 

local environments of W718 (TTK) and W207 (p38α) are examined in the respective 

crystal structures, it can be seen that the environments of these residues is conserved

as well as the residues themselves (Figure 4.3). Therefore, the folding similarities of

these two proteins, as studied by their respective single tryptophan mutants may

reveal important insights into whether common folding pathways exist in the

kinome.

A B
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Figure 4.3: Local environment of the core tryptophans of the kinase domains of (A) p38α and 
(B) TTK, showing hydrogen bonds to the core tryptophan (red dotted lines). Panel C –
structure alignment of p38α and TTK showing close alignment of the core tryptophans and the 
similarity of their local environments. p38α  - grey, TTK – pink. Red crosses represent ordered 
water molecules. Structures from pdb files 1WFC and 3CEK respectively, rendered using ray
tracing module of Pymol (DeLano, 2008).

The fluorescence of the protein is used to follow the folding of the protein

under conditions of denaturation and renaturation. If an excitation wavelength of 295

nm is used, then the fluorescence is dominated by the emission of the tryptophan

residues in the protein. The fluorescence of the tryptophan side chain is highly

sensitive to the local environment and undergoes a substantial change in the

fluorescence yield and in the wavelength of maximum emission when the residue

changes from a solvated to a hydrophobic environment. This sensitivity makes

tryptophan residues an excellent probe for folding studies. However, many large

proteins contain several tryptophan residues, and the contribution of these different

C

A B
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residues in different local environments makes the changes in the emission spectra of

the tryptophans on folding difficult to interpret. To make the spectra easier to

interpret, the number of tryptophan residues must be decreased. The conservative

mutation of a tryptophan to a phenylalanine residue is used to decrease the number

of tryptophans, ideally to a single tryptophan, whilst having a minimal effect on the

structure of the protein.

Site directed mutagenesis was used to create tryptophan to phenylalanine

substitutions in the TTK kinase domain. These mutants were purified and the

removal of the purification tag, and the phosphorylation state of the expressed

proteins determined by ESI-MS. Thermal melting and CD spectra analysis were used

to determine if the tryptophan to phenylalanine substitutions had had a deleterious

effect on the fold of the protein.

4.2 Materials and Methods

4.2.1 Materials

Reagents for site directed mutagenesis, including E. coli strain XL1 Blue

supercompetent cells were purchased from Stratagene (La Jolla, CA, USA).

Restriction enzymes used were purchased from New England Biolabs (Ipswich, MA,

USA). Oligonucleotide primers were purchased from Eurogentec (Southampton,

UK). Chromatography media was from GE Healthcare (Amersham, UK). Sypro-

Orange was from Invitrogen (Carlsbad, CA, USA). All other chemicals were

purchased from Sigma Aldrich (Poole, UK)

4.2.2 Site Directed Mutagenesis

Site-directed mutagenesis was carried out using the QuikChange II site

directed mutagenesis kit (Stratagene). This kit uses a Dpn1 digestion of methylated

and hemi-methylated DNA. PCR mutagenic primers were designed using the

manufacture’s online tools, and synthesized by Eurogentec. These primers are used

to introduce the mutation via PCR replication of a methylated template DNA. This

produces double stranded plasmids, with methylated or hemi-methylated plasmids

not containing the desired mutation. This methylated DNA is digested by Dpn1

before the reaction mixture was used to transform XL1-blue supercompetent cells.
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Briefly, forward and reverse oligonucleotide primers of 36 to 50 bases were

used in a PCR with template DNA, which had been produced in an E. coli strain that

methylates DNA. The thermal cycling conditions that were used are; 95 °C for 30

seconds, followed by 16 cycles of 95 °C for 30 seconds, 55 °C for 1 minute and 68

°C for 5 minutes 30 seconds. Following this the reaction was cooled to 20 °C. The

resultant PCR product was digested with Dpn1 for 1 hour at 37 °C. XL1-blue

supercompetent cells were transformed with 4 µL of the digested DNA as described

in section 2.2.2. Plasmid DNA was then isolated using the method described in

section 2.2.3. Incorporation of the desired mutations was confirmed by restriction

digest using enzymes with cut sites incorporated into the sequence by the mutation

performed, or by DNA sequencing.

4.2.3 Expression of Wild Type TTK and TTK Tryptophan Mutants

Aliquots of E. coli strain BL21* (DE3) competent cells, transformed with a

plasmid encoding λ-phosphatase and prepared according to section 2.2.3, were 

transformed with the wild type TTK (514-820) expression construct, or with a

tryptophan mutant expression construct according to section 2.2.2. Coexpression of

λ-phosphatase with the TTK kinase domain is known to be required for the kinase 

domain to be expressed in a soluble form in E. coli (AstraZeneca unpublished data).

For expression of TTK, a single colony was picked from the agar plate and used to

inoculate a 75 mL culture of Terrific Broth (Section 2.2.4) containing Kanamycin at

50µg/mL and Tetracycline at 12.5 µg/mL. This culture was incubated overnight at

37 °C. Expression cultures of 600 mL of Terrific Broth containing Kanamycin at 50

µg/mL and Tetracycline at 12.5 µg/mL were inoculated with 5 mL of the previous

culture and incubated in a shaking incubator at 37 °C and 180 rpm. When the OD600

of the culture reached ~0.45 the temperature was reduced to 20 °C. At OD600 ~0.6

the expression of TTK was induced by the addition of IPTG to a final concentration

of 0.1 mM. The culture was incubated for 20 hours and the biomass harvested after

this time by centrifugation at 6000 g for 20 minutes at 4 °C.

4.2.4 Purification of Wild Type TTK and TTK Tryptophan Mutants

Cell paste obtained from 7.2 litres of cell culture was resuspended in

1 litre of 50 mM Tris, 200 mM NaCl, 10 mM Imidazole, 4 mM DTT, pH 8.0 using a

homogeniser. Lysozyme (SigmaAldrich) was added to a final concentration of 0.5
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mg/mL, and the resuspended cells incubated for 3 hours at 4 °C. The lysis of the E.

coli cells was then completed by sonication. This was performed by four rounds of

30 s sonication followed by 2 minutes relaxation time. Samples were kept on ice

between periods of sonication. Insoluble material was then separated by

centrifugation at 35000 g at 4 °C for 30 minutes.

The recovered supernatant containing soluble TTK was then applied to a 35

mL NiNTA superflow column (GE Healthcare) equilibrated in 50 mM TrisHCl, 200

mM NaCl, 10 mM Imidazole, 4 mM DTT, pH 8.0 using a P1 peristaltic pump

(Pharmacia) at a flow rate of 5 mL/min. Once this was completed the column was

transferred to an AKTA purifier LC system equilibrated in the same buffer as the

column. Bound proteins were then eluted by raising the concentration of Imidazole

in the buffer using a step elution at a flow rate of 5 mL/min. Six steps were used,

step 1 – 100 mL buffer 10 mM Imidazole; step 2 – 100 mL buffer 20 mM Imidazole;

step 3 – 70 mL buffer 50 mM Imidazole; step 4 – 70 mL buffer 100 mM Imidazole;

step 5 – 70 mL buffer 250 mM Imidazole; step 6 – 100 mL buffer 500 mM

Imidazole.

Fractions containing TTK were collected and pooled. The protein

concentration was estimated by measurement of the A280 of the solution, assuming

that 1 A280 (10mm pathlength) = 1 mg/mL [Protein]. TEV protease (AstraZeneca)

was added to the pooled fractions, with the amount of added TEV depending on the

estimated total protein content of the pooled fractions. TEV protease was added for

the purpose of cleaving the N-terminal 6His tag from the expressed protein (Figure

4.4). The pooled fractions with TEV protease were dialysed overnight against 20

mM TrisHCl, 5 mM DTT, pH 7.4 using dialysis tubing with a 6-8 kDa molecular

weight cut-off.

The pooled fractions were applied to a 5 mL NiNTA Superflow column

equilibrated in 20 mM Tris 5 mM DTT pH 7.4. Cleaved TTK was recovered from

the flow through, and uncleaved TTK, cleaved 6His tag and TEV protease were

eluted from the column using a step elution with increasing Imidazole concentrations

as previously.

Fractions containing cleaved TTK were concentrated using a centrifugal

concentration device with a 10 kDa molecular weight cut-off. The concentrated

solution was applied to a 15 mL Source 30S cation exchange column equilibrated in

20 mM TrisHCl, 5 mM DTT pH 7.4 at a flow rate of 2.5 mL/min and TTK was
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eluted with a linear gradient of 0-250 mM NaCl over 30 min. The binding of TTK to

the column was of low affinity, so the flow through was reapplied to the column

after the elution of bound TTK to maximise the recovery of TTK.

4.2.5 Tryptophan Fluorescence of TTK

Fluorescence emission spectra were measured using a Perkin-Elmer LS50B

spectroflourimeter. Data were collected and the instrument controlled by FLWinLab

2 software (Perkin-Elmer). A 10 mm square quartz cell was used, with spectra being

recorded at 20 °C. Excitation and Emission slits were set to a bandwidth of 5 nm,

with an excitation wavelength of 295 nm. Emission spectra were collected at a

scanning speed of 60 nm per minute from 305 nm to 450 nm and at a resolution of

0.5 nm. Four scans were averaged to produce a single spectrum. Appropriate buffer

blanks were subtracted from each spectrum.

4.2.6 Circular Dichroism of TTK

Far-UV circular dichroism spectra of TTK (514-804) and tryptophan mutants

were collected using a JASCO J-810 spectropolarimeter. A 1 mm pathlength quartz

cuvette was used and the spectra were recorded at 20 °C. Spectra were collected at a

scanning rate of 50 nm per minute with a bandwidth and resolution of 1 nm. The

time constant was 0.5 s. 16 scans were averaged to produce a single spectrum.

The spectra were collected from 260 nm to between 210 nm and 190 nm

depending on the GdnHCl concentration in the sample analysed. As the

concentration of denaturant decreased from 6M the lower limit of the spectra was

lowered in a manner that maximised the information content of the spectra, whilst

minimising the time that the HT voltage for the photomultiplier tube was at

maximum (950 V).

4.2.7 Curve Fitting for Tryptophan Emission Spectra

Spectral broadening of the TTK fluorescence spectra was determined by

fitting the tryptophan emission spectra to a log normal distribution, described by

equation 4.1, 4.2 and 4.3 (Burstein et al., 2001), to obtain the λmax and the spectral

width of the spectrum.
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Where Imax is the maximum intensity, λmax is the wavelength of maximum

fluorescence intensity, v+ and v- are the wavelengths at half peak height, and p is a

measure of the asymmetry of the curve. The values derived from curve fitting were

compared to standard values to determine if spectral broadening of the tryptophan

fluorescence had occurred.

4.3 Results

4.3.1 Wild Type TTK Expression Construct

An expression construct for the kinase domain of wild type TTK was

supplied by AstraZeneca. It contains a sequence representing residues 514-

804 of the human TTK full length sequence which had been codon optimised

for expression in E. coli and was flanked by attB sites. The insert contains,

N-terminal of the TTK kinase domain sequence, an attB1 site for Gateway

cloning and a sequence encoding a TEV protease cleavage site. This insert

had been recombined into a pT7#3.3 expression vector, which added an N-

terminal 6His tag and contained a tetracycline resistance gene. The expressed

protein, therefore contained an N-terminal 6His-tag, attB1 Gateway

sequence, TEV protease cleavage site and human TTK residues 514-804. It is

therefore referred to as N6His-GW-TEV-TTK (514-804). This construct is

illustrated in figure 4.4.
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Figure 4.4: Diagrammatic representation of the TTK kinase domain expression
construct used. Major elements are shown, namely the N-terminal 6 Histidine tag,
attB1 site, TEV protease recognition site, and the TTK kinase domain, residues 514-
804 from the full length Human TTK sequence. Amino acid sequences of the attB1
site and TEV protease recognition site are shown in single letter code. Cleavage point
by TEV protease indicated by vertical red line

Figure 4.5: The amino acid sequence of the cleaved human TTK kinase domain
construct used. The sequenced is displayed in single letter amino acid code. The
initial residue is not found in human TTK, but remains from the TEV protease
recognition site.

4.3.2 Creation of TTK Tryptophan Mutants using Site-Directed Mutagenesis

The supplied expression construct was unsuitable for site-directed

mutagenesis, due to the size of the vector, and RNA secondary structure in the

vector. To create a template suitable for site-directed mutagenesis, the design of the

Gateway cloning system was exploited. A BP reaction (section 3.2.2.1) was

performed, using the pT7#3.3 TTK plasmid as the source vector, and pDONR221 as

the destination vector. This created a plasmid which was suitable for modification by

site-directed mutagenesis. A BSRG1 digest was performed on the plasmid

preparations produced to check for the incorporation of the coding insert into the

destination vector (Figure 4.5).
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Figure 4.6: 1% Agarose gel showing BSRG1 digest of TTK containing
pDONOR221 plasmids produced by BP reaction. Lane 1 – High Mass DNA ladder
(Invitrogen), Lane 2 – unreacted pDONOR221 digested with BSRG1, Lanes 3-7 –
Reacted pDONOR221 minipreps showing the incorporation of TTK containing
insert by band shift, Lane 8 – Low Mass DNA ladder (Invitrogen).

Wild type TTK contains 4 tryptophan residues, W612, W622, W628 and

W718. These residues are all located in the C-terminal lobe of the TTK kinase

domain.(Figure 4.1) A series of tryptophan mutants were created by exchanging

tryptophan residues in the TTK kinase domain for phenylalanine, which was

expected to result in a minimal effect of the structure of the TTK kinase domain.

Table 4.1 describes the mutants that were created.
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Table 4.1: Summary of the TTK tryptophan mutants created shown the tryptophan
to phenylalanine mutations and the remaining tryptophans in the sequence.
Mutant Tryptophan to

Phenylalanine mutations

Remaining Tryptophans

TTKWT None W612 / W622 / W628 /

W718

TTKW612F W622F W612F

W622F

W628 / W718

TTKW612F W622F W628F W612F / W622F / W628F W718

TTKW718F W718F W612 / W622 / W628

To create TTK tryptophan mutants, forward and reverse oligonucleotide

primers were designed using the online tools provided by Stratagene, and

synthesized by Eurogentec. These primers incorporated the codon for phenylalanine

(TTC) in place of the codon for tryptophan (TGG) at the required places. The

oligonucleotide primers that were designed to create a W628F mutation overlapped

with the W622 site, and so contained the W622F mutation as well, since a construct

containing a W628F mutation, but not a W622F mutation was not envisaged, and it

was important to not reverse the earlier mutation through poor primer design.

The oligonucleotide primers for the W612F mutation and the W622F

mutation introduced new restriction sites into the plasmid through the nucleotide

changes involved. An Xmn1 site was introduced with the W612F mutation and a

BstB1 site was introduced with the W622F mutation. In each case a double digest

using BSRG1 and the restriction enzyme for the mutation performed was used to

demonstrate the successful incorporation of the new restriction site, and therefore the

tryptophan to phenylalanine mutation into the sequence (Figure 4.6). The TTKWT

template was used for the TTKW612F W622F and TTKW718F mutants, whilst the

TTKW612F W622 construct as the template for the TTKW612F W622F W628F mutant.
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Figure 4.7 A 1% agarose gel showing the double digestion of putative TTKW612F

W622F with BstB1 and BSRG1. Lane 1 – High MW DNA ladder, Lane 2 – Control
Plasmid (pDONOR221 with TTKW612F) showing two bands expected when W622F
mutation is absent, Lanes 3-14 – TTKW612F W622F putative plasmids showing 3 bands
indicating incorporation of the W622F mutation except in lane 10, Lane 15 – Low
Mass DNA ladder.

The tryptophan mutations describe above were incorporated into the

sequence using the QickChange site-directed mutagenesis kit according to the

manufacturer’s instructions (method outlined in section 4.2.2). Once the mutagenesis

had been performed, and the incorporation of the mutation confirmed, an expression

vector was created for the mutant by recombining the pDONOR221 entry vector

containing the mutated TTK sequence and a pT7#3.3 N6His vector by the LR

reaction (Section 3.2.2.2). The expression vector was checked for the incorporation

of the insert by a BSRG1 digest (data not shown).

4.3.3 Expression of Wild Type TTK and TTK Tryptophan Mutants

E. coli BL21 (DE3) cells that had been pre-transformed with a plasmid

coding for λ-Phosphatase, and subsequently made competent were transformed with 

TTKWT or TTK mutant plasmids (Table 4.1) that were created as described in section

4.3.4. These transformed cells were cultured and the TTK constructs expressed as

described in section 4.2.3.
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4.3.4 Purification of Wild Type TTK and TTK Tryptophan Mutants

Wild Type TTK kinase domain and the tryptophan mutants described in table

4.1 were purified in the manner described in section 4.2.4. Using this purification

scheme it was possible to purify TTK to a high purity suitable for folding studies.

The W718F mutant of TTK was not able to be purified, since the protein

accumulated as inclusion bodies on expression.

TTK was initially purified by immobilised metal affinity chromatography

(IMAC) using NiNTA superflow resin. TTK eluted at imidazole concentrations of

100 mM and 250 mM (Figure 4.8). Fractions containing the protein of interest were

identified using SDS-PAGE (section 2.2.7).
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Figure 4.8: Purification of TTKWT by Immobilised Metal Affinity Chromatography.
(A) – chromatogram of the elution of TTK from Ni-NTA superflow column in
increasing concentrations of Imidazole. (B) SDS-PAGE gel of selected fractions from
the elution of TTK. Lane 1 – MW markers (See-Blue Plus 2, Invitogen); Lane 2 –
Crude extract; Lane 3 – Flow through; Lane 4 and 5 – 10 mM Imidazole wash; lane 6
and 7 – 20 mM Imidazole wash; lane 8 to 10 – 50 mM Imidazole wash; Lane 11 –
MW markers; Lane 12 to 14 – 100 mM Imidazole wash; Lane 15 to 16 – 250 mM
Imidazole wash; Lane 17 and 18 – 500 mM Imidazole wash. Position of the TTK
band is indicated by arrow.
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Fractions containing TTK as identified by SDS-PAGE were pooled and a

rough estimate of the protein concentration made by assuming that 1 A280 = 1

mg/mL. This estimation was used to calculate the amount of TEV protease which

would be require to complete the cleavage of the eluted protein, when incubated

overnight at 4 °C.

The cleavage of the 6His-tag, Gateway sequence and the majority of the TEV

protease site was combined with a dialysis of the pooled fractions into a low salt

buffer without imidazole allowing the subsequent purification steps of a subtractive

IMAC step, and cation exchange chromatography to occur without further desalting

or dialysis.

The dialysed fractions were applied to a NiNTA superflow column and

separated by binding to immobilised Ni ions. Cleaved TTK eluted from the column

in the flow-through (Figure 4.9), and cleaved tag, uncleaved TTK and TEV protease

eluted in high imidazole concentrations. The fractions that contained cleaved TTK

were identified by SDS-PAGE and pooled.
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Figure 4.9: Purification of TTK by subtractive immobilised metal affinity
Chromatography. (A) – Chromatogram of the elution of cleaved and uncleaved TTK,
TEV protease and cleaved tag from Ni-NTA superflow column (5 mL). (B) – SDS-
PAGE gel of selected fractions from the elution of TTK. Lane 1 – MW markers (See-
Blue Plus 2, Invitrogen); Lane 2 to 11 – flow through showing unbound, cleaved
TTK; Lane 12 - MW markers; Lane 13 and 14 – 20 mM imidazole wash; Lane 14
and 15 – 50 mM imidazole wash; lane 16 and 17 – 400 mM imidazole wash. Arrow
indicates position of TTK band.

The final purification step purified TTK by cation exchange chromatography

using a Source S column. TTK eluted from the column in the presence of low
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the column, so the flow-through was re-applied to the column to maximise the yield

of purified TTK.

0

200

400

600

800

1000

mAU

5.0

10.0

15.0

20.0

25.0

mS/cm

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 ml

F2 A1 A2 A3 A4 A5 A6 A7 A8 Waste

Figure 4.10: Purification of TTK by cation exchange chromatography. Panel A –
Elution profile of TTK from Source S column in 20 mM Tris 5 mM DTT pH 7.4.
Panel B – SDS-PAGE analysis of fractions from elution profile shown in Panel A.
Lane 1 MW markers (SeeBlue Plus 2, Invitrogen), Lane 2-5: Flow Through Fractions,
Lanes 6-10: Fractions from NaCl gradient elution, showing pure TTK eluting from
the column. Arrow indicates TTK band.
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Fractions identified as containing TTK were identified by SDS-PAGE and

pooled. The pooled fractions were concentrated using centrifugal concentrator device

with a 10 kDa cut-off to a concentration of 3-5 mg/mL. Purified TTK was stored in

buffer at 4 °C and used immediately.

4.3.5 Mass Spectrometry of TTK and TTK Tryptophan Mutants

ESI-MS was used to measure the molecular mass of purified TTK and TTK

tryptophan mutants. The measurement was performed after the 6His tag had been

cleaved. The wild type TTK construct had a measured mass of 33589.03 Da (Figure

4.11). This is in agreement with the calculated mass of 33589.9 Da. The molecular

masses of the TTK tryptophan mutants (Figure 4.12 and 4.13) were also in

agreement with the calculated masses for those constructs (Table 4.2).
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Figure 4.11: ESI-TOF mass spectrometry of wild type TTK. (A) – mass spectrum of
wild type TTK, (B) maximum entropy deconvolution of mass spectrum in panel (A),
showing the measured molecular mass of 33589.03 Da.
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Figure 4.12: ESI-TOF mass spectrometry of TTKW612F W622F. (A) – mass spectrum of
TTKW612F W622F, (B) maximum entropy deconvolution of mass spectrum in panel (A),
showing the measured molecular mass of 33501.05 Da.
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Figure 4.13: ESI-TOF mass spectrometry of TTKW612F W622F W628F. (A) – mass
spectrum of TTKW612F W622F W628F, (B) maximum entropy deconvolution of mass
spectrum in panel (A), showing the measured molecular mass of 33466.55 Da.
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Table 4.2: Molecular mass of TTK and TTK tryptophan mutants as measured by
ESI-MS and calculated from the sequence.

Protein Construct Measured Molecular

Mass

Calculated Molecular

Mass

Wild Type TTK 33,589.03±0.34 33,589.9

TTKW612F W622F 33,501.05±0.34 33,511.8

TTKW612F W622F W628F 33,466.55±0.33 33,472.8

The expression and purification of wild type TTK resulted in a yield of

purification of 4.2 mg of protein per litre of expression culture. This fairly low yield

of purification was measured after a single round of cation exchange

chromatography, in which TTK bound to the column with low affinity, requiring

multiple rounds of cation exchange chromatography through reapplication of the

flow through to the column to increase the yield of purified TTK. The yields of

purification at this stage were 4.0 mg/L and 3.9 mg/L for TTKW612F W622F and

TTKW612F W622F W628F respectively. The estimations of protein content of the polled

fractions after IMAC chromatography were also similar, approximately 260 to 280

mg of partially purified protein from 7.2 L of expression culture.

4.3.6 Far-UV CD Spectra of TTK and TTK Tryptophan Mutants

The far-UV CD spectra of wild type TTK and TTK tryptophan mutants were

measured and compared to identify if there are any major changes in the CD spectra

observed on the replacement of tryptophan residues with phenylalanine.

The wild type CD spectra were measured between 195 nm and 260 nm. The spectra

show minima at 208 nm and 222 nm (Figure 4.14). These minima are indicative of a

protein with a high alpha helical content.
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Figure 4.14: CD spectra of TTK and tryptophan mutants. Black line – wild type
TTK, Red line – TTKW612F W622F, Blue line – TTKW612F W622F W628F. Far-UV CD
spectra were gathered using a 1mm pathlength quartz cuvette at 20 °C and a protein
concentration of 0.1 mg/mL.

The CD spectra of the tryptophan to phenylalanine mutants are in good

agreement with the CD spectra of the wild type protein, with minima at similar

wavelengths (Table 4.3), and similar calculated secondary structure content. On this

basis it appears that the replacement of tryptophan with phenylalanine does not cause

substantial structural perturbation.

Table 4.3: Secondary structure content predictions for TTK and TTK tryptophan
mutants calculated by K2D (Andrade et al., 1993) from circular dichroism spectra.
Values in brackets for wild type TTK derived from crystal structure.

Protein α-Helix β-Sheet Random coil 

Wild Type TTK 27%(32%) 18%(16%) 55%(52%)

TTKW612F W622F 30% 15% 55%

TTKW612F W622F

W628F

29% 17% 54%
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Slight differences in the calculated secondary structure content of the crystal

structure and the secondary structure content of the expressed protein, since the

construct which is resolved in the crystal structure is shorter than the expressed

construct and a number of regions were not resolved in the crystal structure. It is

likely that these regions are flexible, and would appear as a random coil

conformation in CD experiments. It would therefore be expected that the random

coil percentage of the expressed construct would be higher than that of the crystal

structure, and the α-helix and β-sheet component correspondingly lower. This is 

indeed what is observed (Table 4.3).

4.3.7 Thermal Melting Analysis of TTK and TTK Tryptophan Mutants

The tryptophan to phenylalanine substitutions that were carried out on TTK

may have a deleterious effect on the fold or the stability of the kinase domain. To

check for this, the thermal melting curves of TTK and its tryptophan mutants were

determined using the fluorescent dye, Sypro-Orange, which binds to hydrophobic

areas of the protein which are exposed as the protein unfolds, and is quenched by

water. Thermal melting curves of TTK and the tryptophan mutants described in

section 4.3.2 were obtained using the procedure outlined in section 2.2.18. The

thermal melting curves were fitted to equation 2.1 and the thermodynamic

parameters calculated. The melting curves have a typical shape, with fluorescence

minima and maxima defining a melting transition. Figure 4.15 shows a typical

melting curve for wild type TTK. Samples are cooled to 12 °C before the experiment

begins. The temperature is then raised to 90 °C in 0.1 °C steps. It can be seen that

there is an initial baseline between 12 °C and 40 °C. The unfolding transition then

occurs between 40 °C and 60 °C. This is followed by a decrease in fluorescence

intensity between 60 °C and 90 °C.
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Figure 4.15: Thermal unfolding curve of TTK monitored by Sypro-Orange
fluorescence. Protein concentration was 0.2 mg/mL, the recorded fluorescence data
is shown as red circles and the black line represents the fitting of the data to equation
2.1. The three phases observed are an initial baseline between 12 and 40 °C, an
unfolding transition between 40 °C and 60 °C, and a decrease in recorded
fluorescence between 60 ºC and 90 °C. Data from a single unfolding experiment.

The measured Tm value for wild type TTK is 47.5 ± 0.97 °C and the change in

enthalpy at the transition temperature (ΔHm) is 46.1 ± 1.03 kcal mol-1. These

parameters were also measured for the tryptophan mutants of TTK. A summary of

these results are shown in figure 4.16, figure 4.17 and table 4.4.
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Figure 4.16: Thermal unfolding curves of TTK tryptophan mutants. (A) TTKW612F

W622F, (B) TTKW612F W622F W628F Red circles fluorescence data, black line represents
fitting of equation 2.1 to fluorescence data. Protein concentration was 0.2 mg/mL.
Curves shown are from a single refolding experiment.
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Figure 4.17: Average Tm for wild type TTK and TTK tryptophan mutants. Thermal
melting analysis performed at 0.2 mg/mL protein in 10 mM HEPES pH 7.4 and in 50
mM Tris pH 7.5. Results are mean of 5 experiments, bars show standard error.

The thermal melting analysis of the TTK tryptophan mutants indicate that the

fold of the tryptophan mutants has not been destabilised by the substitution of

tryptophan residues with phenylalanine. There has been an increase in the stability of

the W612F W622F W628F mutant over the wild type of ~ 5 °C (Table 4.4).

Table 4.4: Mid points of thermal melting transitions for TTK kinase domain and
tryptophan mutants. Data shown in 10 mM HEPES pH7.4.

TTK Construct Tm (°C) ΔHm (kcal mol-1)

WT 47.5 ±0.97 46.1 ± 1.03

W612F W622F 47.6 ± 0.35 42.9 ± 1.30

W612F W622F W628F 52.2 ± 0.64 44.3 ± 0.88

The changes in enthalpy of the unfolding transitions are consistent across the

tryptophan mutants, suggesting that no major change in the stability of the fold has

occurred.
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4.3.8 Tryptophan Fluorescence Spectra of TTK and TTK Tryptophan Mutants

At an excitation wavelength of 295 nm the fluorescence emission spectrum

of TTK is dominated by tryptophan residues. The contribution from other fluorescent

residues, phenylalanine and tyrosine, is minimised. Wild Type, native TTK has a

maximum fluorescence intensity (λmax) of 336.5 nm (Figure 4.18A). When the wild

type protein is unfolded in 6 M GdnHCl, a red shift in the λmax to 349 nm and an

increase in the fluorescence intensity is observed. This is consistent with buried

tryptophan residues being exposed to solvent, and quenching of tryptophan

fluorescence being released upon unfolding.
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Figure 4.18: Tryptophan emission spectra of TTK and TTK tryptophan mutants. (A)
– Wild Type TTK, (B) – TTKW612F W622F, (C) – TTKW612F W622F W628F. Native spectra
shown in blue, Unfolded spectra (6 M GdnHCl) in red. Protein concentration 0.1
mg/mL.

The tryptophan to phenylalanine substitutions performed would allow the

folding of the C-terminal lobe of the TTK kinase domain to be followed more
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specifically, first by eliminating the solvent exposed tryptophan residues, and then

by studying the core kinase domain tryptophan W718.

The W612F W622F mutant of TTK shows a slight decrease in the

fluorescence intensity of the native state, indicating that the mutated residues were

strongly quenched in the wild type native state (Figure 4.18B). There is also a large

blue shift in the λmax of the native state to 319 nm. When this mutant is unfolded with

6 M GdnHCl there is a red shift of the λmax to 349 nm and a decrease in the observed

fluorescence intensity. The fluorescence intensity of the denatured state of the

W612F W622F mutant is approximately half that of the wild type denatured state,

which is consistent with the replacement of two tryptophan residues.

The W612F W622F W628F mutant was created to allow the folding of the

conserved core tryptophan, W718, to be studied, and compared to W207 in p38α. 

The fluorescence spectra of the native state of TTKW612F W622F W628Fshows a decrease

of approximately 50 % in the fluorescence intensity when compared to the W612F

W622F mutant (Figure 4.18C). There is also a red shift in the λmax from the W612F

W622F mutant to a λmax of 332.5 nm. Upon unfolding, there is a red shift to a λmax of

348.5 nm and a decrease in fluorescence intensity.

Table 4.5 λmax for different TTK constructs under native and denaturing conditions.
Protein denatured with 6 M GdnHCL.

TTK Construct Native λmax Unfolded λmax

WT 336.5 nm 349 nm

W612F W622F 319 nm 349 nm

W612F W622F W628F 332.5 nm 348.5 nm

4.3.9 Spectral Broadening of Tryptophan Emission Spectra

Previous studies on the folding of p38α had shown a broad spectrum for the 

equivalent single tryptophan mutant, p38αW207, which was indicative of there being

two environments in the native state. To determine if a similar arrangement existed

for the single tryptophan mutant of TTK, TTKW612F W622F W628F, the native tryptophan

emission spectra was fitted to a log normal distribution using equation 4.1 (Figure

4.19). The unfolded protein spectra was also fitted to the same distribution. The

parameters for the log normal distribution are summarised in table 4.6.
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Figure 4.19: Fitting of log normal distribution to fluorescence spectra to estimate
parameters for curve. (A) Native (blue) and unfolded (red) fluorescence spectra of
TTKW612F W622F W628F, fitted log normal distribution shown as solid lines. (B)
Residuals for fitted curve to native spectra. (C) Residuals for fitted curve to unfolded
spectra.

Table 4.6: Log normal distribution parameters for the fitting of native and unfolded
TTKW612F W622F W628F spectra to equation 4.1.

Spectra λmax (nm) vp (nm) vn (nm)

Native 329.2 ± 0.1 302.1 ± 0.2 377.9 ± 0.2

Unfolded 351.7 ± 0.1 321.5 ± 0.1 389.8 ± 0.2
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To determine if the spectral width of the spectra of TTKW612F W622F W628F

indicates that there is heterogeneity in the tryptophan spectra, the calculated values

of the λmax and the spectra width are compared to expected values for tryptophan

residues under various degrees of solvent exposure. The plot shown in Ladokhin et

al. (2000) (Figure 4.20) is used to compare the expected values to the calculated

values.

Figure 4.20: Tryptophan fluorescence spectrum position-width analysis. Trp I, II
and III represent the classes of tryptophan that correlate with the extent of solvent
exposure (adapted from Ladokhin et al., 2000).

The spectra width of the unfolded protein was used as a control for the fitting

process. The spectra width of unfolded protein was calculated as 68.3 ± 0.3 nm with

a λmax of 351.7 ± 0.1 nm. This spectral width is above the line indicated for a single

tryptophan residue; however, the difference between the expected value at 352 nm

and the calculated value is 5 nm. This value is small enough that it may be

considered that the unfolded spectra consist of a single tryptophan in a single

environment.

The spectral width of the native protein was calculated as 75.8 ± 0.4 nm at a

λmax of 329.2 ± 0.1 nm. The position of the native TTKW612F W622F W628F indicates that

there is substantial spectral broadening of the native tryptophan spectra. This

indicates that there is heterogeneity in the tryptophan environments, similar to the

tryptophan spectra of the equivalent residue in p38α.
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4.4 Discussion

The study of protein folding requires the production of soluble protein in mg

amounts, at a high purity. In addition, for the study of the folding of a protein by

tryptophan fluorescence it is advantageous to be able to produce tryptophan mutants

which can clarify the folding of the wild type protein. The presence of multiple

tryptophans in a protein makes the interpretation of the folding observed by

tryptophan fluorescence more complicated, since the different tryptophan residues

are present in different environments, giving rise to different fluorescence signals.

The ideal method of study for a protein containing multiple tryptophans would be to

study the folding using single tryptophan mutants, where all but a single tryptophan

residue have been replaced with phenylalanine or other residues. The use of single

tryptophan mutants is necessary since the presence of multiple tryptophans, each in

their own environment causes difficulties in the interpretation of the results obtained,

and tends to broaden the folding transitions observed, possibly hiding intermediates.

Previous studies on the folding of p38α (Davies, 2004) had identified a 

single, core tryptophan, W207, which was absolutely essential for folding, and was

found to be conserved throughout the kinase domain (Davies, 2004). To allow a

direct comparison with this result, a single tryptophan mutant of TTK was created

containing only the homologous residue, W718. This residue was confirmed as

essential by creating a mutant in which only the W718 residue had been mutated. It

was not possible to produce this mutant as a soluble protein, indicating that like in

p38α this residue is essential for the folding of the kinase domain. An examination of 

the environment of the two residues shows that not only is the residue conserved in

the sequence, but is also structurally conserved, and that its environment is also

structurally conserved (Figure 4.3). The requirement of this residue for the correct

folding of TTK prevents the creation of other single tryptophan mutants of TTK.

Therefore, only one single tryptophan mutant was created and studied.

TTK was purified to a high purity using a 4 stage purification process,

following co-expression with λ-phosphatase in E. coli, involving an initial IMAC

step, cleavage of the 6His tag and other unwanted features by TEV protease, a

subtractive IMAC step to remove uncleaved TTK and the protease, and finally an ion
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exchange purification. Co-expression with λ-phosphatase was necessary since the 

expression of TTK alone results in the protein accumulating in inclusion bodies,

presumably due to phosphorylation (AstraZeneca unpublished data). This

purification strategy resulted in protein of a high purity which was suitable for use in

biophysical experiments. ESI-MS was used to confirm the identity of the purified

protein and the masses derived were in good agreement with the calculated masses

from the sequence. This agreement indicated that the protein was purified in a

unphosphorylated form.

Wild type TTK contains four native tryptophans, of which two are solvent

exposed in the native state (Figure 4.2). The contribution of these tryptophans to the

emission spectrum of the native state was expected to be minimal and their response

to the folding and unfolding of the native state low. A mutant was successfully

created that replaced these two residues with phenylalanine allowing study of the

buried tryptophan residues without a contribution from these exposed residues. The

tryptophan emission spectra of the native state was affected by these substitutions

with the native λmax decreasing (Figure 4.18). This indicates that the solvent exposed

residues had a significant contribution to the fluorescence spectrum of the native

state. The comparison of the spectra of the wild type and the W612F W622F mutants

of TTK in the presence of 6M GdnHCl showed a two fold drop in the fluorescence

intensity between the two proteins (Figure 4.18) and a λmax of 349nm (Table 4.5),

indicating that both protein were fully unfolded under these conditions, and that the

number of tryptophan residues in the protein was reduced by half.

The far-UV CD spectra of the wild type TTK and tryptophan mutants

were compared to identify if the tryptophan to phenylalanine substitutions carried

out had affected the secondary structure content of the protein. The CD spectra of the

proteins were similar, and the calculated secondary structure content of the proteins

were also similar to each other and to the secondary structure content calculated

from the crystal structure (Table 4.3). In addition, the thermal melting of the wild

type protein and tryptophan mutants was assessed using the Sypro-orange dye

binding method. The thermal melting temperature was not decreased by the

tryptophan to phenylalanine substitutions performed, although the stability of the

W612F W622F W628F mutant was higher that the wild type and W612F W622F

mutant (Table 4.4). These results indicate that the mutations performed have not

grossly affected the structure, although for a complete demonstration of this it would
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be necessary to crystallise the mutants and solve their structures via X-ray

crystallography.

Previous studies on p38α had shown spectral broadening of the tryptophan 

emission spectra of the native single tryptophan mutant. This was interpreted to

indicate that two conformational states were being populated (Davies, 2004). The

spectra of the single tryptophan mutant of TTK shows significant spectral

broadening (Figure 4.19, Table 4.6). This indicates that there are multiple

environments for this tryptophan residue. An examination of the B-factors associated

with the crystal structure does not identify W718 or its environment as being a

particularly mobile element in the context of the TTK crystal structure. The

heterogeneity of the environment of tryptophan 718 is more likely to be generated by

larger scale motions in the kinase domain, possibly associated with substrate or ATP

binding. Studies performed on cyclophilin A by Eisenmesser et al. (2005) have

shown that the binding of substrates can be facilitated by a transient conformational

shift from an inactive form of a protein to the substrate bound structure that occurs

before substrate binding and is required for substrate binding. It can be proposed that

such an effect is responsible for the heterogeneity found in the single tryptophan

spectra of TTKW612F W622F W628F and p38α. 

The characterisation performed on the wild type TTK and tryptophan mutants

indicates that they have been produced as soluble, correctly folded protein suitable

for use in examining the equilibrium folding of TTK. The tryptophan to

phenylalanine substitutions performed have been indicated to have minimal effect on

the structure and stability of the TTK fold and the yields of expression and

purification.
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Chapter 5. Equilibrium Folding of Human TTK Protein
Kinase Domain

5.1 Introduction

This chapter investigates the equilibrium folding of TTK. Using site directed

mutagenesis tryptophan to phenylalanine substitutions (Chapter 4) were made to

allow the study of the TTK kinase fold and to allow a direct comparison to be made

to the folding studies performed on p38α by Davies (2004).  

The TTK kinase domain contains four native tryptophan residues, W612,

W622, W628 and W718 (Figure 4.1). These four residues are all contained within

the C-terminal lobe of the kinase domain, and are found in different environments.

For example, the crystal structure of the TTK kinase domain indicates that the

residues 612 and 622 are found in a solvent exposed position (Figure 4.2), and

residues 628 and 718 are buried in the core of the C-terminal lobe of the protein

(Figure 4.1).

Using site directed mutagenesis two tryptophan to phenylalanine substitution

mutants were created from the wild type TTK kinase domain. These mutants were

W612F W622F and W612F W622F W628F (Table 4.1). The W718 residue was

shown to be required for folding since a mutant containing this mutation could not

be expressed as soluble protein. Wild type TTK and two tryptophan mutants were

expressed and purified to a high purity from E. coli (Chapter 4). These mutants were

observed to be of the correct molecular mass (Table 4.2) and to have similar CD

spectra (Figure 4.14) and similar thermal melting properties (Figure 4.17, Table 4.4)

to those of wild type protein.

Using the twin probes of far-UV circular dichroism, which examines the

secondary structure content of proteins, and tryptophan fluorescence the folding of

the kinase domain of TTK is examined, and the existence and nature of any folding

intermediates on the equilibrium folding pathway are identified.

5.2 Materials and Methods

5.2.1 Materials

All chemicals were purchased from Sigma Aldrich (Poole, UK).
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5.2.2 Equilibrium Folding and Unfolding

To perform equilibrium folding and unfolding experiments on wild type TTK

and the tryptophan mutants created, two solutions were required for each

experiment. For unfolding experiments, the first solution contained native, folded

protein at a concentration of 0.1 mg/mL in a 10 mM sodium phosphate pH 7.4 buffer

and the second solution contained protein at a concentration of 0.1 mg/mL, unfolded

by 6 M GdnHCl 10 mM sodium phosphate pH 7.4. For refolding experiments, the

first solution contained protein at a concentration of 0.1 mg/mL, unfolded by 5.25 M

GdnHCl 10 mM sodium phosphate pH 7.4 and the second solution contained native,

folded protein at a concentration of 0.1 mg/mL in a 10 mM sodium phosphate pH 7.4

buffer. The protein was denatured by different concentrations of GdnHCl since both

concentrations resulted in fully unfolded protein, and the concentrations used

resulted in a lower consumption of purified protein in the folding experiments.

Equilibrium experiments were performed by exchanging a measured volume

of solution in a quartz cuvette to increase or decrease the concentration of

denaturant. The total volume of the unfolding and refolding experiments was

maintained at a constant 3 mL. After mixing, the sample solution was allowed to

equilibrate for 15 minutes prior to a spectrum being recorded. Several samples were

allowed to equilibrate overnight after having been analysed after 15 minutes of

equilibration. The samples were then reanalysed using the same techniques and the

spectra compared to identify if 15 minutes was sufficient time to allow the protein to

reach equilibrium. The sample was maintained at a temperature of 20 °C during the

experiment. The solution in the quartz cuvette was analysed via tryptophan

fluorescence spectroscopy and the measured volume that was removed was analysed

by far-UV circular dichroism spectroscopy.

5.2.3 Data Normalisation

Both far-UV CD spectra (see section 4.2.6) and tryptophan fluorescence

spectra (see section 4.2.5) were measured at a series of denaturant concentrations.

The spectra were analysed, and features of the spectra were identified that described

the changes that the TTK kinase domain underwent upon folding or unfolding. The

changes in these features were used to plot transition curves for unfolding or

refolding.
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To allow a direct comparison between the different methods of reporting on

the extent of the folding of the TTK kinase domain it is necessary to transform the

data into the same units. The data was normalised as a fraction of folded protein to

achieve this, according to equation 5.1 (Pace, 1986).
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(5.1)

Where fN is the fraction of native protein present at denaturant concentration X, yD is

a measured value for the feature selected under denaturing conditions, i.e. λmax or

signal intensity at a given wavelength, yn is the measured value under native

conditions, and yx is the measured value at denaturant concentration X.

5.2.4 Analysis of Equilibrium Folding Curves

5.2.4.1 Two State Folding Transitions

Two state folding transitions were observed for some spectra. In a two state

transition there is a direct conversion of folded to unfolded protein with no

intermediate state. There is a single equilibrium constant, KN→U.

The proportion of folded protein present is described by assuming that the

fractions of folded and unfolded protein sum to 1 and that their ratio is given by the

Boltzman factor. From these assumptions we derive equations 5.2 and 5.3.
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Where, PN is the fraction of folded protein, PU is the fraction of unfolded protein, ΔG 

is the observed free energy change, R is the molar gas constant and T is the

temperature in degrees Kelvin.
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The fraction of folded protein is the sum of the amounts of each population.

The fraction folded is given by.

UUNN PSPSf  5.4

The Linear free energy model is used to describe the dependence of the

stability of the protein on the denaturant concentration. This model assumes that the

difference in the number of accessible sites for denaturant molecules to bind to the

protein is directly proportional to the accessible surface area. The relationship

between ΔG and the denaturant concentration is: 

  GdnHClCmG m  (5.5)

where Cm is the mid point of the folding transition, in mol dm-3. To fit the data to the

two state equilibrium model equation equations 5.2 5.3 and 5.5 are substituted into

equation 5.4.

5.2.4.2 Three State Folding Transitions

If the folding transitions observed were determined to be three state, then the

data was analysed according to the following method. A three state folding transition

is described by equation 5.6, which assumes the accumulation of an intermediate

state (I), with two equilibrium constants KN→I and KI→U for the transitions between

the native and intermediate state, and the intermediate and unfolded state

respectively.

UIN UIIN KK     (5.6)

The observed free energy change (ΔGobs) between the native states,

intermediate states and the unfolded state was calculated using equation 5.7

(Tanford, 1970)

KRTGobs ln (5.7)
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Where R is the molar gas constant, T is the temperature in degrees Kelvin and K is

the equilibrium constant.

 If a linear dependence of ΔGobs on the denaturant concentration is assumed,

then the free energy of folding (ΔG) can be calculated if this dependence is 

extrapolated to a denaturant concentration of zero. This is described by equation 5.8

(Greene and Pace, 1974; Pace, 1986; Santoro and Bolen, 1988), where the constant

m is the gradient of ΔGobs vs the denaturant concentration.

 GdnHClmGGobs  (5.8)

The combination of equations 5.7 and 5.8 then allows for the equilibrium constant,

K, to be calculated.
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At any denaturant concentration, the fraction folded, fN, can be described by

equation 5.10 (Morjana et al., 1993). The fraction folded data was fitted to this

equation using non-linear least squares regression, using Prism 4 software

(Graphpad).
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SN, SI and SU are the signal intensities that represent the native, intermediate and

unfolded states respectively. The equilibrium constants described in equations 5.9

and 5.10 were determined by substituting equations 5.11 and 5.12 into equation 5.10.
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5.3 Results

5.3.1 Equilibrium Folding and Unfolding of Wild Type TTK

The folding of wild type TTK was examined by the gradual addition or

removal of the denaturant, Guanidine hydrochloride, and examining the extent of

folding via the probes of circular dichroism and intrinsic tryptophan fluorescence as

described in sections 4.2.7 and 4.2.6 respectively.

As described in section 4.3.7 the CD spectra of wild type TTK shows

distinctive minima at 208 nm and 222 nm which are consistent with a protein with a

significant α-helical content. The 222 nm minima of α-helical content is used as a 

sensitive probe for the secondary structure content of the protein. The 208 nm band

is unusable due to interference from high concentrations of GdnHCl.

Upon unfolding in 6 M GdnHCl there is a substantial decrease in the

intensity of the band at 222 nm, consistent with the protein unfolding to a mostly

random coil conformation (Figure 5.1A). If denaturant is added stepwise to folded

TTK kinase domain then there is a sequential decrease in the intensity of the 222 nm

band (Figure 5.2B). The decrease in the intensity of the 222 nm band is small upon

the initial addition of GdnHCl to the protein. Up to concentrations of ~1 M GdnHCl

there is little change in the intensity of the CD signal. Once the denaturant

concentration rises beyond this, the 222 nm band decreases in intensity, and achieves

an intensity similar to that of the protein in 6 M GdnHCl by a denaturant

concentration of 4.09 M. If the protein unfolded in 6 M GdnHCl is refolded by the

sequential addition of folded protein in native buffer to dilute out the denaturant then

a native like CD spectra is obtained, indicating that the protein has fully refolded

from the unfolded state (Figure 5.1A). A sequence of spectra similar to those seen

when unfolding wild type TTK (Figure 5.1B) is observed when performing this

refolding reaction.

For several denaturant concentrations. The CD spectra were compared after

incubation times of 15 minutes and overnight (data not shown). There was no

significant difference in the observed spectra between the two times, indicating that

the incubation time of 15 minutes was sufficient for the protein to reach equilibrium

under the conditions used.
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Figure 5.1: Far-UV CD spectra of wild type TTK kinase domain. (A) Far-UV CD
spectra of wild type TTK kinase domain under native (solid line) and denaturing
(dashed line) conditions. Far-UV CD spectra of refolded wild type TTK kinase
domain shown by dotted line. Denatured spectra shows loss of secondary structure
consistent with protein adopting a random coil structure. (B) – Far-UV CD spectra of
wild type TTK kinase domain under conditions of varying concentrations of
denaturant. Concentrations used; 5 M (red circles), 4.55 M, 4.09 M, 3.53 M, 2.96 M,
2.63 M, 2.07 M, 1.58 M, 1.42 M, 1.27 M, 0.94 M, 0.76 M, 0.58 M, 0.39 M, 0.2 M
and native. Spectra collected at 20 °C and at a protein concentration of 0.1 mg/mL.

Figure 5.2 shows the refolding and unfolding curves obtained when plotting

the fraction folded of the protein, determined using equation 5.1, from the far-UV

CD signal at 222 nm. The unfolding and refolding curves obtained are fitted to two

state folding transitions and are nearly super-imposable (Figure 5.2C).
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Figure 5.2: Unfolding and refolding of wild type TTK induced by GdnHCl and
monitored by Far-UV CD. Fraction folded calculated by change in intensity at
222nm following equation 5.1. (A) Refolding of wild type TTK, solid line shows fit
to a two state folding model (Equation 5.7). Insert shows residuals of fit. (B)
Unfolding of wild type TTK, solid line shows fit to a two state folding model
(Equation 5.7). Insert shows residuals of fit. (C) Overlay of refolding and unfolding
and fits to two state folding models. Refolding shown as filled squares and unfolding
as open squares.
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The refolding and unfolding curves were successfully fitted to a two state

folding model (Equation 5.4). The refolding transition occurs between ~4 M and

~0.5 M. The mid point of the transition is 1.95 ± 0.04 M GdnHCl. The associated m

value is 0.91 ± 0.06 kcal mol-1 M-1 (Table 5.1). The unfolding transition occurs

between ~1 M and ~4 M GdnHCl. The mid point of the transition is 2.45 ± 0.06M

GdnHCl with an associated m value of 1.11 ± 0.11 kcal mol-1 M-1(Table 5.1).

The unfolding and refolding of wild type TTK kinase domain was also

observed using intrinsic tryptophan fluorescence. As seen previously (Figure 4.17A)

the protein in the native state showed a λmax of fluorescence of 336.5 nm (Table 4.5).

when wild-type TTK is unfolded by the addition of 6 M GdnHCl there is a red shift

in the λmax of fluorescence to a λmax of 349 nm (Table 4.5), which is typical for

tryptophan residues in a fully solvated environment. There is also an increase in the

fluorescence intensity at the λmax (Figure 4.17).

Upon the addition of denaturant to the native protein in a stepwise fashion

(Section 5.2.2) there is an increase in the fluorescence intensity and a red shift in the

λmax towards the unfolded λmax (Figure 5.3). Similar changes are observed in reverse

when the denaturant is diluted out.
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Figure 5.3: Fluorescence spectra of wild type TTK under conditions of various
denaturant concentration. Concentrations of denaturant for spectra in blue – 5 M,
4,55 M, 4.09 M, 3.53 M 2.96 M; in green – 2.6 3M, 2.07 M, 1.58 M, 1.42 M, 1.27
M, 0.94 M; and in red – 0.76 M, 0.85 M, 0.39 M, 0.2 M, and native.

The fluorescence intensity of wild type TTK shows an increase in intensity

when the denaturant concentration is decreased from the unfolded state. The

fluorescence intensity reaches a peak at ~1.5 M GdnHCl. The maximum intensity

then decays to reach the native state. This behaviour of the protein when unfolding

suggests the formation of an equilibrium intermediate on the folding pathway.

As shown in Figure 5.3, the fluorescence intensity of wild type TTK behaves

in a complex fashion.  The fluorescence intensity at the native λmax rapidly rises

above the intensity of the native state and then falls below the intensity of the native

state as the protein unfolds. This causes a problem for describing the folding using

fluorescence intensity at the native λmax, a commonly used measure of the extent of

folding when probing the folding of a protein using fluorescence spectroscopy.

Therefore, the λmax for each spectra was recorded, and used to determine the extent

of folding for each spectra. The unfolding and refolding transitions were not well

fitted to a two state folding model. A visual inspection of the folding transitions

appears to indicate the formation of an equilibrium folding intermediate. The folding
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transitions were, therefore, fitted to a three state folding model, which includes an

intermediate state in addition to the native and the unfolded state. The fraction folded

was calculated by equation 5.1 and the resultant data fitted to equation 5.10.
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Figure 5.4: Refolding and unfolding of wild type TTK induced by GdnHCl and
monitored by change in λmax of tryptophan fluorescence. (A) Refolding of TTK,
solid line shows fit to three state folding model (Equation 5.10). Insert shows
residuals. (B) Unfolding of wild type TTK,. solid line shows fit to three state folding
model (Equation 5.10). Insert shows residuals. (C) Overlay of refolding and
unfolding transitions. Solid lines show three state folding model fits. Refolding
shown as filled squares and unfolding as open squares.
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To support the use of a three state folding model in describing the folding of

wild-type TTK, phase diagram analysis was used (Kuznetsova et al., 2003). Phase

diagram analysis is a technique which is particularly sensitive to the presence of

intermediates in the folding transitions. The analysis however, cannot be used to

derive any thermodynamic parameters for the folding transitions examined. It can,

therefore, be used to qualitatively identify the presence of folding intermediates. The

technique can be applied to many combinations of folding probes, comparing, for

example, near and far UV CD or CD and fluorescence. To apply the technique to the

probe of tryptophan fluorescence, fluorescence intensities on opposite sides of the

λmax are plotted against each other. A simple two state folding transition will then

produce a straight line plot. If folding intermediates are populated in the folding

transition, then these intermediates appear as inflections in the phase diagram.

Inspection of these inflection points can identify the position of the intermediate on

the folding transition. Folding phase diagrams were constructed for wild type TTK

folding, probed by tryptophan fluorescence for both the refolding (Figure 5.5A) and

unfolding (Figure 5.5B) transitions using the fluorescence intensities at 320 nm and

365 nm.

Figure 5.5: Folding phase diagrams for wild type TTK. (A) Phase diagram for the
refolding of wild type TTK. (B) Phase diagram for the unfolding of wild type TTK.
Positions of the unfolded and native states have been indicated. Phase diagrams
constructed using fluorescence intensity at 320 nm and 365 nm.

The phase diagrams for the folding of wild type TTK indicate that both the

unfolding and refolding of wild type TTK occur through an equilibrium
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intermediate. This supports the use of a three state folding model to describe the

refolding and unfolding transitions of wild type TTK. The inflections close to the

unfolded and native states are not regarded as being significant.

The refolding transition occurs in two stages. The first transition occurs

between 3.5 M GdnHCl and ~1.5 M GdnHCl. The mid point of this transition is at

~2.4 M GdnHCl. The free energy change, ΔGU→I, associated with this transition is

-3.24 ± 0.78 kcal mol-1 with a corresponding m value of 1.46 ± 0.27

kcal mol-1M-1(Table 5.2). The second transition occurs between ~1.5 M GdnHCl and

~0.2 M GdnHCl with a mid-point of ~0.75 M GdnHCl. The free energy change,

ΔGI→N, associated with this transition is -1.08 ± 1.04 kcal mol-1 with a corresponding

m value of 1.97 ± 1.26 kcal mol-1M-1(Table 5.2).

The unfolding transition of wild type TTK occurs in two very distinct phases

with a clear accumulation of an intermediate state. The first transition occurs

between native conditions and 1.4 M GdnHCl, with a mid point of ~0.8 M. The free

energy change, ΔGN→I, associated with this transition is 5.38 ± 0.94 kcal mol-1 with a

corresponding m value of 6.15 ± 1.09 kcal mol-1M-1(Table 5.2). The second

transition occurs between ~1.5 M GdnHCl and ~4 M GdnHCl with a mid-point of

~2.5 M GdnHCl. The free energy change, ΔGI→U, associated with this transition is

3.33 ± 0.54 kcal mol-1 with a corresponding m value of 1.41 ± 0.20

kcal mol-1M-1(Table 5.3).

Information on the nature of the intermediate states discovered can be

elucidated by comparing the folding as measured by far-UV CD and tryptophan

fluorescence. Figure 5.6 shows these overlays. The intermediate formed upon

unfolding of the protein occurs at ~1.5 M GdnHCl. At this denaturant concentration

the far-UV CD spectra show that the secondary structure is almost completely

formed. This indicates that a molten globule intermediate is being formed.

Upon refolding a different behaviour is observed. The far-UV CD monitoring

of the refolding shows a recovery of secondary structure which is more coincident

with the refolding observed by tryptophan fluorescence (Figure 5.6).
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Figure 5.6: Overlay of far-UV CD and tryptophan fluorescence monitoring of the
folding of wild type TTK. (A) Refolding of wild type TTK. (B) Unfolding of wild
type TTK. CD data in blue, fluorescence in red. Solid lines show 3 state folding fits
as described in Figures 5.3 and 5.5.

Further insights into the nature of the intermediate states identified can be

obtained by an examination of the far-UV CD and tryptophan fluorescence

spectrums of wild type TTK at the denaturant concentrations where the intermediate

was noted to occur. The denaturant concentration to be examined was determined

from the phase diagrams of the fluorescence monitored folding of wild type TTK

(Figure 5.5).
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Figure 5.7: Far-UV CD spectra of wild type TTK in native, intermediate and
unfolded states. (A) wild type TTK under native (dashed line), unfolded (dotted line)
and intermediate conditions (solid line) upon refolding of wild type TTK. GdnHCl
concentration of intermediate 1.21 M. (B) wild type TTK under native (dashed line),
unfolded (dotted line) and intermediate conditions (solid line) upon unfolding of
wild type TTK. GdnHCl concentration of intermediate 1.43 M.
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Figure 5.8: Tryptophan fluorescence spectra of wild type TTK in native,
intermediate and unfolded states. (A) wild type TTK under native (dashed line),
unfolded (dotted line) and intermediate conditions (solid line) upon refolding of wild
type TTK. GdnHCl concentration of intermediate 1.21 M. (B) wild type TTK under
native (dashed line), unfolded (dotted line) and intermediate conditions (solid line)
upon unfolding of wild type TTK. GdnHCl concentration of intermediate 1.43 M.

The CD spectra of wild type TTK at the denaturant concentration

corresponding to the folding intermediate identified by phase diagram analysis
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(Figure 5.5A,B) show that both on refolding and upon unfolding the intermediate

retains a high degree of secondary structure (Figure 5.7A,B). The degree of

secondary structure present is similar upon refolding and unfolding of the protein.

The tryptophan fluorescence spectra of the intermediate formed in the folding

of wild-type TTK is also similar upon unfolding (Figure 5.8B) and refolding (Figure

5.8A). The λmax of the fluorescence spectra is blue shifted from the unfolded state, as

shown in Figure 5.8. In addition the fluorescence intensity of the intermediate states

is similar on both the unfolding and refolding transitions. This indicates that the

intermediates may contain a similar degree of tertiary structure, which is in between

the native and the unfolded states.

5.3.2 Equilibrium Folding and Unfolding of TTK W612F W622F

The crystal structure of the wild type TTK kinase domain indicates that

tryptophans 612 and 622 are positioned such that they are exposed to solvent (Figure

4.2). These solvent exposed tryptophan residues were mutated to phenylalanine to

allow the folding to be followed using the more specific probes of the two buried

tryptophan residues in the C-terminal lobe of the kinase domain. The far-UV CD

spectra (Figure 4.16) and the thermal unfolding (Figure 4.14A) indicate that no

major structural perturbation has been induced by the replacement of W612 and

W622 with phenylalanine.

The folding of TTKW612F W622F was followed by far-UV CD intensity at 222

nm (Figure 4.16). Similar to the spectra observed for wild type TTK kinase domain,

upon the addition of GdnHCl the intensity of the 222 nm band decreases until the

spectra is consistent with the protein adopting a random coil conformation. Upon the

removal of the denaturant by dilution, a native like CD spectra was recovered,

indicating complete refolding of the protein.

The far-UV CD intensity at 222 nm was converted to the fraction of protein

folded (Equation 5.1). The refolding of TTKW612F W622F occurs via a two state

transition (Figure 5.9A), with a mid point of 1.23 M GdnHCl. The total free energy

change associated with the transition is -4.70 ± 0.36 kcal mol-1 with a corresponding

m value of 0.94 ± 0.07 kcal mol-1M-1(Table 5.1) Similarly, the unfolding of

TTKW612F W622F also occurs via a two state transition (Figure 5.9B), with a mid point

of 2.71 M GdnHCl. The total free energy change associated with the transition is
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5.93 ± 0.44 kcal mol-1 with a corresponding m value of 1.13 ± 0.08 kcal mol-1M-1

(Table 5.1)
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Figure 5.9: Unfolding and refolding of TTKW612F W622F induced by GdnHCl and
monitored by far-UV CD. Fraction folded calculated by change in intensity at 222nm
following equation 5.1. (A) Refolding of TTKW612F W622F, solid line shows fit to a
two state folding model (Equation 5.7). Insert shows residuals of fit. (B) Unfolding
of TTKW612F W622F, solid line shows fit to a two state folding model (Equation 5.7).
Insert shows residuals of fit. (C) Overlay of refolding and unfolding and fits to two
state folding models. Refolding shown as filled squares and unfolding as open
squares.
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The refolding and unfolding curves observed by far-UV CD are not super-imposable.

The recovery of secondary structure content on the refolding of TTKW612F W622F is

shifted to higher GdnHCl concentrations compared to the loss of secondary structure

on unfolding. The native like secondary structure is more stable upon unfolding,

being retained up to a GdnHCl concentration of ~1 M. The full unfolding of the

secondary structure does not occur until higher denaturant concentrations also and

the recovery of secondary structure does not occur until lower GdnHCl

concentrations of ~ 3.5 M upon refolding.

The folding of TTKW612F W622Fwas monitored by tryptophan fluorescence as a

comparison to the folding monitored by far-UV CD spectroscopy. The native protein

has a blue shifted λmax of fluorescence compared to wild type TTK (Table 4.5). The

λmax of the W612F W622F mutant is 319 nm. When the protein is unfolded by the

addition of 6 M GdnHCl the λmax of fluorescence red shifts to 349 nm. Unlike wild

type TTK there is no increase in the intensity of the tryptophan fluorescence upon

full unfolding (Figure 4.18B). This is due to the replacement of the solvent exposed

tryptophan residues with phenylalanine. Upon a stepwise unfolding of the native

protein in GdnHCl there is a red shift in the λmax towards the unfolded λmax as well as

an initial increase in the fluorescence intensity towards an apparent intermediate

state. Following this there is a decrease in the fluorescence intensity and further red

shift in the λmax to the unfolded state (Figure 5.10).
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Figure 5.10: Fluorescence spectra of TTKW612F W622F under conditions of various
denaturant concentration. Concentrations of denaturant for spectra in blue – 2.96 M,
3.65 M, 4.09 M and 4.95 M; in green – 1.1 M, 1.27 M, 1.58 M, 2.07 M and 2.63 M;
and in red – 0.58 M and 0.2 M.

The refolding and unfolding transitions observed by tryptophan fluorescence

were not well fitted to a two state folding model. The transitions were better fitted to

a three state folding model, which describes an equilibrium between the unfolded,

native and an intermediate state. Since the fluorescence intensity at the native λmax

rises to a value greater than the native intensity (Figure 5.10) the λmax at each

denaturant concentration used was recorded, and the folding transitions plotted using

this measure. The fraction folded was calculated by equation 5.1 and the resultant

data fitted to equation 5.10.
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Figure 5.11: Refolding and unfolding of TTKW612F W622F induced by GdnHCl and
monitored by change in λmax of tryptophan fluorescence. (A) Refolding of TTKW612F

W622F, solid line shows fit to three state folding model (Equation 5.10). Insert shows
residuals. (B) Unfolding of TTKW612F W622F, solid line shows fit to three state folding
model (Equation 5.10). Insert shows residuals. (C) Overlay of refolding and
unfolding transitions. Solid lines show three state folding model fits. Refolding
shown as filled squares and unfolding as open squares.
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Phase diagram analysis was again used to support the fitting of the folding

transitions to a three state folding model. Phase diagram analysis indicates that both

the refolding (Figure 5.12A) and unfolding (Figure 5.12B) proceed via an

equilibrium folding intermediate. The phase diagrams do not indicate that there are

more than three states in the folding transitions observed.

Figure 5.12: Folding phase diagrams for TTKW612F W622F. (A) Phase diagram for the
refolding of TTKW612F W622F. (B) Phase diagram for the unfolding of TTKW612F W622F.
Positions of the unfolded and native states have been indicated. Phase diagrams
constructed using fluorescence intensity at 320 nm and 365 nm.

The refolding and unfolding transitions were fitted to three state models as

indicated by phase diagram analysis (Figure 5.12). The refolding of TTKW612F W622F

occurs in two phases. The first transition occurs between ~3 M GdnHCl and ~1 M

GdnHCl (Figure 5.11A). The mid point of this transition is at ~2 M GdnHCl. The

free energy change, ΔGI→U, associated with this transition is -4.15 ± 1.10 kcal mol-1

with a corresponding m value of 2.04 ± 0.45 kcal mol-1M-1 (Table 5.2). The second

transition occurs between ~1 M GdnHCl and ~0.2 M GdnHCl with a mid-point of

~0.5 M GdnHCl. The free energy change, ΔGN→I, associated with this transition is

-1.97 ± 0.31 kcal mol-1 with a corresponding m value of 2.60 ± 0.40 kcal mol-1M-1

(Table 5.2).

The unfolding transition of TTKW612F W622F occurs in two very distinct phases

with a clear accumulation of an intermediate state (Figure 5.11B). The first transition

occurs between native conditions and ~1.5 M GdnHCl, with a mid point of ~0.9 M.

The free energy change, ΔGN→I, associated with this transition is 3.86 ± 0.20 kcal
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mol-1 with a corresponding m value of 4.22 ± 0.22 kcal mol-1M-1 (Table 5.2). The

second transition occurs between ~1.5 M GdnHCl and ~4 M GdnHCl with a mid-

point of ~2.5 M GdnHCl. The free energy change, ΔGI→U, associated with this

transition is 3.90 ± 0.52 kcal mol-1 with a corresponding m value of 1.50 ± 0.18 kcal

mol-1M-1 (Table 5.2).

Information on the nature of the intermediate states discovered can be

elucidated by comparing the folding as measured by far-UV CD and tryptophan

fluorescence. Figure 5.13 shows these overlays. The intermediate formed upon

unfolding of the protein occurs at ~1.5 M GdnHCl. At this denaturant concentration

the far-UV CD spectra show that the secondary structure is almost completely

retained (Figure 5.13B). The tertiary structure of the protein is only partially

retained. This indicates the presence of a molten globule folding intermediate. The

relationship of the recovery of secondary and tertiary structure on the refolding of

the W612F W622F mutant is different to the relationship observed upon unfolding

(Figure 5.13A). The intermediate formed on the refolding pathway is not a molten

globule type.
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Figure 5.13: Overlay of far-UV CD and tryptophan fluorescence monitoring of the
folding of TTKW612F W622F. (A) Refolding of TTKW612F W622F. (B) Unfolding of
TTKW612F W622F. CD data in blue, fluorescence in red. Solid lines show three state or
two state folding fits as described in Figures 5.10 and 5.12.

Further insights into the nature of the intermediate states identified can be

obtained by an examination of the far-UV CD and tryptophan fluorescence

spectrums of TTKW612F W622F at the denaturant concentrations were the intermediate

was noted to occur. The denaturant concentration to be examined was determined

from the phase diagrams of the fluorescence monitored folding of TTKW612F W622F

(Figure 5.12).
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Figure 5.14: Far-UV CD spectra of TTKW612F W622F in native, intermediate and
unfolded states. (A) TTKW612F W622F under native (dashed line), unfolded (dotted line)
and intermediate conditions (solid line) upon refolding of TTKW612F W622F. GdnHCl
concentration of intermediate 1.06 M. (B) TTKW612F W622F under native (dashed line),
unfolded (dotted line) and intermediate conditions (solid line) upon unfolding of
TTKW612F W622F. GdnHCl concentration of intermediate 1.43 M.
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Figure 5.15: Tryptophan fluorescence spectra of TTKW612F W622F in native,
intermediate and unfolded states. (A) TTKW612F W622F under native (dashed line),
unfolded (dotted line) and intermediate conditions (solid line) upon refolding of
TTKW612F W622F. GdnHCl concentration of intermediate 1.06 M. (B) TTKW612F W622F

under native (dashed line), unfolded (dotted line) and intermediate conditions (solid
line) upon unfolding of TTKW612F W622F. GdnHCl concentration of intermediate 1.43
M.
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The CD spectra of TTKW612F W622F at the denaturant concentration

corresponding to the folding intermediate identified by phase diagram analysis

(Figure 5.13A,B) show that on unfolding of the protein the intermediate retains a

high degree of secondary structure (Figure 5.14B). However upon refolding the

intermediate formed contains a reduced amount of secondary structure content. The

CD spectra shows a CD intensity at 222 nm of ~60 % of the difference between the

native and the unfolded state.

The tryptophan fluorescence spectrum of the intermediate formed in the

folding of wild-type TTK is similar upon unfolding (Figure 5.15B) and refolding

(Figure 5.15A). The λmax of the fluorescence spectra is blue shifted from the

unfolded state, as shown in Figure 5.15. In addition the fluorescence intensity of the

intermediate states is similar on both the unfolding and refolding transitions. This

indicates that the intermediates may contain a similar degree of tertiary structure,

which is in between the native and unfolded states.

The CD and fluorescence spectra support the identification of the

intermediate on the unfolding pathway as a molten globule intermediate. The

differences in the CD spectra of the intermediate formed on the refolding pathway

demonstrate that this intermediate is probably not a classical molten globule type

intermediate.

5.3.3 Equilibrium Folding and Unfolding of TTK W612F W622F W628F

The study of the folding of proteins by tryptophan fluorescence is best

performed using proteins containing a single tryptophan residue, since multiple

tryptophans in multiple environments are difficult to interpret with many possible

changes occurring in the folding transition. The multiple tryptophans may also mask

folding events reported on by particular tryptophans. Single tryptophan mutants of

proteins allow the study of the folding of proteins to be better observed. Previous

work on the folding of p38α had identified a single tryptophan, W207, which was 

essential for the folding of p38α and was found to be absolutely conserved 

throughout the kinome. For comparison with p38α and to allow examination of the 

folding of the C-terminal lobe, the single tryptophan mutant, TTKW612F W622F W628F

was created. The replacement of the single tryptophan W718 alone results in a

construct which is insoluble. This prevented the study of other mutants of TTK

containing one tryptophan residue, since W718 could not be substituted.
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The thermal melting analysis (Figure 4.15B) and the native CD spectra

(Figure 4.13) indicates that the mutations performed do not have a detrimental effect

on the stability of the kinase domain fold of TTKW612F W622F W628F.

The folding of TTKW612F W622F W628F was examined following the far-UV CD

intensity at 222 nm (Figure 5.16). Similar to the spectra observed for wild type TTK

kinase domain and TTKW612F W622F, upon the addition of GdnHCl the intensity of the

222 nm band decreases until the spectrum is consistent with the protein adopting a

random coil conformation. Upon the dilution of the denaturant, a native like CD

spectra was recovered, indicating complete refolding of the protein.
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Figure 5.16: Unfolding and refolding of TTKW612F W622F W628F induced by GdnHCl
and monitored by far-UV CD. Fraction folded calculated by change in intensity at
222 nm following equation 5.1. (A) Refolding of TTKW612F W622F W628F, solid line
shows fit to a two state folding model (Equation 5.7). Insert shows residuals of fit.
(B) Unfolding of TTKW612F W622F W628F, solid line shows fit to a two state folding
model (Equation 5.7). Insert show residuals of fit. (C) Overlay of refolding and
unfolding and fits to two state folding models. Refolding shown as filled squares and
unfolding as open squares.
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The far-UV CD intensity at 222nm was converted to the fraction of protein

folded (equation 5.1). The refolding of TTKW612F W622F W628F occurs via a two state

transition (Figure 5.16A), with a mid point of 1.43 M GdnHCl. The total free energy

change associated with the transition is -4.81 ± 0.30 kcal mol-1 with a corresponding

m value of 0.96 ± 0.04 kcal mol-1M-1 (Table 5.1). Similarly, the unfolding of

TTKW612F W622F W628F also occurs via a two state transition (Figure 5.16B), with a mid

point of 2.57 M GdnHCl. The total free energy change associated with the transition

is 5.71 ± 0.37 kcal mol-1 with a corresponding m value of 1.09 ± 0.07 kcal mol-1M-1

(Table 5.1).

The folding of TTKW612F W622F W628Fwas monitored by tryptophan

fluorescence as a comparison to the folding monitored by far-UV CD spectroscopy.

The native protein has a slightly blue shifted λmax of fluorescence compared to wild

type TTK (Table 4.5). The λmax of the W612F W622F W628F mutant is 332.5 nm.

The λmax of fluorescence is red shifted compared to the W612F W622F mutant.

When the protein is unfolded by the addition of 6 M GdnHCl the λmax of

fluorescence red shifts to 349 nm. Unlike wild type TTK there is no increase in the

intensity of the tryptophan fluorescence upon this unfolding (Figure 4.18C). Upon a

stepwise unfolding of the native protein in GdnHCl there is a red shift in the λmax

towards the unfolded λmax as well as an initial increase in the fluorescence intensity

towards an apparent intermediate state. Following this there is a decrease in the

fluorescence intensity and further red shift in the λmax to the λmax of the unfolded

state (Figure 5.17).
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Figure 5.17: Fluorescence spectra of TTKW612F W622F W628F under conditions of
various denaturant concentration. Concentrations of denaturant for spectra in blue –
4.1 M, 4.65 M and 4.95 M; in green –1.06 M, 1.16 M, 1.36 M, 1.56 M, 1.76 M, 1.86
M and 2.09 M; in orange – 2.51 M, 3.02 M, 3.41 M and 3.62 M; and in red – 0.39
M, 0.56 M and 0.76 M.

The refolding and unfolding transitions observed by tryptophan fluorescence

were not well fitted to a two state folding model as was the case with wild type TTK

and the W612F W622F mutant. The transitions were better fitted to a three state

folding model, which describes an equilibrium between the unfolded, native and an

intermediate state. Since the fluorescence intensity at the native λmax rises to a value

greater than the native intensity and the unfolded intensity (Figure 5.17) the λmax at

each denaturant concentration used was recorded, and the folding transitions plotted

using this measure. The fraction folded was calculated by equation 5.1 and the

resultant data fitted to equation 5.10.



- 198 -

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

[GdnHCl] (M)

F
ra

c
ti

o
n

F
o

ld
e
d

0 1 2 3 4 5 6
-0.10

-0.05

0.00

0.05

0.10

[GdnHCl] (M)

R
e
s
id

u
a
ls

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

[GdnHCl] (M)

F
ra

c
ti

o
n

F
o

ld
e
d

0 1 2 3 4 5 6
-0.10

-0.05

0.00

0.05

0.10

[GdnHCl] (M)

R
e
s
id

u
a
ls

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

[GdnHCl] (M)

F
ra

c
ti

o
n

F
o

ld
e
d

A

B

C

Figure 5.18: Refolding and unfolding of TTKW612F W622F W628F induced by GdnHCl
and monitored by change in λmax of tryptophan fluorescence. (A) Refolding of
TTKW612F W622F W628F, Solid line shows fit to three state folding model (Equation
5.10). Insert shows residuals. (B) Unfolding of TTKW612F W622F W628F. Solid line
shows fit to three state folding model (Equation 5.10). Insert shows residuals. (C)
Overlay of refolding and unfolding transitions. Solid lines show three state folding
model fits. Refolding shown as filled squares and unfolding as open squares.
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Phase diagram analysis was used to support the use of three state models in

describing the observed folding transitions. The phase diagram analysis of the

refolding and unfolding of W612F W622F W628F appears to indicate that the

folding transitions contain two intermediates in the folding transition (Figure 5.19).

However, a closer examination of the fluorescence spectra indicates that one of these

changes occurs only in the intensity of fluorescence, with no change in the λmax

occurring concurrently. Therefore, the correct model to use for the folding transitions

observed by changes in the λmax of fluorescence would be a three state folding

model.
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Figure 5.19: Folding phase diagrams for TTKW612F W622F W628F. (A) Phase diagram
for the refolding of TTKW612F W622F W628F. (B) Phase diagram for the unfolding of
TTKW612F W622F W628F. Positions of the unfolded and native states have been indicated.
Phase diagrams constructed using fluorescence intensity at 320 nm and 365 nm.

The refolding of TTKW612F W622F W628F was successfully fitted to a three state

folding model (Figure 5.18A). The first transition occurs between ~4 M GdnHCl and

~1.3 M GdnHCl. The mid point of this transition is at ~2.1 M GdnHCl. The free

energy change, ΔGU→I, associated with this transition is -2.52 ± 0.83 kcal mol-1 with

a corresponding m value of 1.24 ± 0.29 kcal mol-1M-1 (Table 5.2). The second

transition occurs between ~1.3 M GdnHCl and ~0.4 M GdnHCl with a mid-point of

~0.9 M GdnHCl. The free energy change, ΔGI→N, associated with this transition is

-3.67 ± 0.7 kcal mol-1 with a corresponding m value of 4.02 ± 0.83 kcal mol-1M-1

(Table 5.2)

The unfolding transition of TTKW612F W622F W628F shows the clear

accumulation of an intermediate state in line with the folding transitions seen for the

other TTK constructs (Figure 5.18B). The first transition occurs between native

conditions and ~1.4 M GdnHCl, with a mid point of ~1 M. The free energy change,
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ΔGN→I, associated with this transition is 4.46 ± 1.12 kcal mol-1 with a corresponding

m value of 4.54 ± 1.15 kcal mol-1M-1 (Table 5.2). The second transition occurs

between ~1.4 M GdnHCl and ~5 M GdnHCl with a mid-point of ~2.8 M GdnHCl.

The free energy change, ΔGI→U, associated with this transition is 3.51 ± 1.54 kcal

mol-1 with a corresponding m value of 1.28 ± 0.51 kcal mol-1M-1 (Table 5.2).

The comparison of the folding transitions observed by far-UV CD and

tryptophan fluorescence sheds important light on the mechanisms of the folding of

TTKW612F W622F W628F. This comparison is shown in Figure 5.20.
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Figure 5.20: Overlay of Far-UV CD and tryptophan fluorescence monitoring of the
folding of TTKW612F W622F W628F. (A) Refolding of TTKW612F W622F W628F. (B)
Unfolding of TTKW612F W622F W628F. CD data in blue, fluorescence in red. Solid lines
show 3 state or two state folding fits as described in Figures 5.17 and 5.19.

The comparison of the folding transitions observed by far-UV CD and

tryptophan fluorescence shows that the recovery of tertiary structure is coincident
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with the recovery of secondary structure upon the refolding of the W612F W622F

W628F mutant of TTK. The folding intermediate observed by tryptophan

fluorescence contains ~ 60 % of the native secondary structure. The overlay for the

unfolding of TTKW612F W622F W628F indicates that the tertiary structure of the kinase

domain is initially stable up to ~ 0.8 M GdnHCl. There is then a rapid loss of tertiary

structure to the intermediate state. The secondary structure of the domain is more

stable than the tertiary structure and is retained up to ~1 M GdnHCl. The high

content of secondary structure in the partially unfolded intermediate indicates that a

molten globule intermediate has been formed. Support for this characterisation of the

intermediates formed can be gained by an examination of the CD spectra and

tryptophan fluorescence spectra of the conditions under which the intermediate

accumulates to its highest concentration. These points were identified using the

phase diagrams previously constructed (Figure 5.19).
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Figure 5.21: Far-UV CD spectra of TTKW612F W622F W628F in native, intermediate and
unfolded states. (A) TTKW612F W622F W628F under native (dashed line), unfolded
(dotted line) and intermediate conditions (solid line) upon refolding of TTKW612F

W622F W628F. GdnHCl concentration of intermediate 1.26 M. (B) TTKW612F W622F W628F

under native (dashed line), unfolded (dotted line) and intermediate conditions (solid
line) upon unfolding of TTKW612F W622F W628F. GdnHCl concentration of intermediate
1.43 M.
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Figure 5.22: Tryptophan fluorescence spectra of TTKW612F W622F W628F in native,
intermediate and unfolded states. (A) TTKW612F W622F W628F under native (dotted line),
unfolded (dashed line) and intermediate conditions (solid line) upon refolding of
TTKW612F W622F W628F. GdnHCl concentration of intermediate 1.26 M. (B) TTKW612F

W622F W628F under native (dotted line), unfolded (dashed line) and intermediate
conditions (solid line) upon unfolding of TTKW612F W622F W628F. GdnHCl
concentration of intermediate 1.43 M.
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The CD spectra of TTKW612F W622F W628F at the denaturant concentration

corresponding to the folding intermediate identified by phase diagram analysis

(Figure 5.19A,B) show that on unfolding of the protein the intermediate retains a

high degree of secondary structure (Figure 5.21B). However upon refolding the

intermediate formed contains a reduced amount of secondary structure content. The

CD spectra shows a CD intensity at 222 nm of ~ 53 % of the difference between the

native and the unfolded state.

The tryptophan fluorescence spectra of the intermediate formed in the folding

of wild-type TTK is similar upon unfolding (Figure 5.23B) and refolding (Figure

5.22A). The λmax of the fluorescence spectra is blue shifted from the unfolded state,

as shown in Figure 5.22. In addition the fluorescence intensity of the intermediate

states is similar on both the unfolding and refolding transitions. This indicates that

the intermediates may contain a similar degree of tertiary structure. This of particular

interest since the unfolding and refolding transitions observed for the W612F W622F

W628F were super-imposable as opposed to the unfolding and refolding transitions

for the wild type protein and the W612F W622F mutant which were not super-

imposable. This indicates that the folding of the region which is reported by the

W718 residue is fully reversible.

The CD and fluorescence spectra support the identification of the

intermediate on the unfolding pathway as a molten globule intermediate. The

differences in the CD spectra of the intermediate formed on the refolding pathway

demonstrate that this intermediate is not of the classical molten globule type.

The folding models which were applied to the folding transitions observed

with wild type TTK and the W612F W622F and W612F W622F W628F mutants

were used to determine the thermodynamic parameters associated with the observed

folding and unfolding transitions. These parameters are summarised in Table 5.1 and

Table 5.2.
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Table 5.1: Thermodynamic parameters determined for the refolding and unfolding of wild type TTK and TTK tryptophan mutants followed by
far-UV CD analysis. Parameters determined by fitting folding curves to a two state folding model.

Protein Refolding Unfolding
Cm (M) ΔG (kcal mol-1) m (kcal mol-1 M-1) Cm (M) ΔG (kcal mol-1) m (kcal mol-1 M-1)

Wild Type TTK 1.95±0.04 -5.50±0.38 0.92±0.06 2.45±0.06 6.71±0.69 1.12±0.11
TTKW612F W622F 1.23±0.07 -4.70±0.36 0.94±0.07 2.71±0.04 5.93±0.44 1.13±0.08

TTKW612F W622F W628F 1.43±0.05 -4.81±0.30 0.96±0.06 2.57±0.04 5.71±0.37 1.09±0.07

Table 5.2: Thermodynamic parameters determined for the refolding and unfolding of wild type TTK and TTK tryptophan mutants followed by
tryptophan fluorescence. Parameters determined by fitting folding curves to a three state folding model.

Protein Refolding Unfolding
ΔGI→N (kcal

mol-1)
mI→N(kcal
mol-1 M-1)

ΔGU→I(kcal
mol-1)

mU→I (kcal
mol-1 M-1)

ΔGN→I(kcal
mol-1)

mN→I(kcal
mol-1 M-1)

ΔGI→U (kcal
mol-1)

mI→U (kcal
mol-1 M-1)

Wild Type
TTK

-1.08±1.04 1.97±1.26 -3.24±0.78 1.46±0.27 5.38±0.94 6.15±1.09 3.33±0.54 1.41±0.20

TTKW612F

W622F
-1.97±0.31 2.60±0.40 -4.15±1.10 2.04±0.45 3.86±0.20 4.22±0.22 3.90±0.52 1.50±0.18

TTKW612F

W622F W628F
-3.67±0.7 4.02±0.83 -2.52±0.83 1.24±0.29 4.46±1.12 4.54±1.15 3.51±1.54 1.28±0.51
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5.3.4 Comparison of Unfolding and Refolding of TTK

The folding transitions of wild type TTK and two tryptophan to phenylalanine

substation mutants have been observed by far-UV CD and tryptophan fluorescence.

To determine if the mutations performed have affected the folding of the TTK kinase

domain the folding transitions for the wild type and mutants can be compared. The

comparison of the far-UV CD observed folding transitions is shown in Figure 5.23.

The unfolding transitions of TTK and the tryptophan mutants studied by far-

UV CD are very similar (Figure 5.23B). The transitions all are well described by a

two state folding model and show a broad transition between the native and the

unfolded state. There is some variability in the fit of the folding transitions to the two

state folding model, but this is within the experimental variation.
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Figure 5.23: Overlay of the folding transitions of wild-type TTK, TTKW612F W622F and
TTKW612F W622F W628F measured by far-UV CD. (A) Refolding transitions of ■ – wild 
type TTK, ▲ – TTKW612F W622F, ● – TTKW612F W622F W628F. Fits to two state folding
models, as described previously shown by solid line for wild type, dashed line for
W612F W622F and dotted line for W612F W622F W628F. Error bars show standard
error of three experiments. (B) Unfolding transition of □ wild type TTK, ◊ - TTKW612F

W622F, ○ - TTKW612F W622F W628F. Lines as for panel A. Error bars show standard error
of 3 experiments.
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The refolding transitions show more variability, with the refolding transition

of wild Type TTK being slightly different from the transitions of the W612F W622F

and W612F W622F W628F mutants (Figure 5.23A). The refolding transitions of the

tryptophan mutants of TTK closely overlay. The close overlay of the unfolding

transitions of TTK and the TTK tryptophan mutants, and the similarity of the

refolding transitions of these proteins indicates that the tryptophan to phenylalanine

substitutions performed have not altered the folding properties of the TTK kinase

domain.
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Figure 5.24: Overlay of the folding transitions of wild-type TTK, TTKW612F W622F and
TTKW612F W622F W628F measured by tryptophan fluorescence. (A) Refolding transitions
of ■ – wild type TTK, ▲ – TTKW612F W622F,  ● – TTKW612F W622F W628F. Fits to two
state folding models, as described previously shown by solid line for wild type,
dashed line for W612F W622F and dotted line for W612F W622F W628F. Error bars
show standard error of three experiments. (B) Unfolding transition of □ wild type 
TTK, ◊ - TTKW612F W622F, ○ - TTKW612F W622F W628F. Lines as for panel A. Error bars
show standard error of 3 experiments.
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The comparison of the folding transitions observed by tryptophan fluorescence

are expected to show difference between the three different constructs of TTK which

were studied. The unfolding transitions of the studied constructs show very similar

transitions (Figure 5.24B) despite the differences in the fluorescence spectra of the

constructs (Figure 4.17). The native state is stable up to a GdnHCl concentration of ~

0.8 M and then there is a rapid transition to an intermediate state. The difference in

the apparent fraction folded of the native state can be traced to the changes in the λmax

of fluorescence of the native state. The most blue shifted native state, that of the

W612F W622F mutant gives rise to the lowest fraction folded value for the

intermediate. Likewise, the most red shifted λmax of native protein, that of the wild

type, gives rise to the highest fraction folded for the intermediate.

The refolding transitions of TTK are strikingly different for the different

mutants studied (Figure 5.24A). This indicates that the different mutants are reporting

on different folding. The mutants containing more that one tryptophan show broader

transitions, with less clearly defined intermediate states than is seen with the single

tryptophan mutant. The intermediates can be seen, however, to accumulate at

approximately the same GdnHCl concentration. This indicates that the same type of

intermediate is being reported on by the different mutants studied.

5.4 Discussion

The folding of wild type TTK was monitored by far-UV circular dichroism

and tryptophan fluorescence. The folding transition, monitored by far-UV CD was not

well fitted to a three state folding model, but was instead fitted to a two state folding

model (Figure 5.2). The unfolding and refolding curves observed for wild type TTK

were nearly super-imposable (Figure 5.2).

Phase diagram analysis performed on the folding of wild type TTK, as

monitored by tryptophan fluorescence, indicated that the folding transitions were not

two state transitions (Figure 5.6). The unfolding and refolding transitions were,

therefore, fitted to three state folding models. The unfolding and refolding curves

were not super-imposable however. The intermediate state recorded in both the

refolding and unfolding accumulates significantly upon unfolding but does not
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accumulate significantly upon refolding (Figure 5.4). In addition the native state is

quite stable upon unfolding, but a similar stability of the native state is not seen upon

refolding (Figure 5.4).

The intermediate formed on the unfolding of wild type TTK is a molten

globule type intermediate (Figure 5.6B). The CD data indicate that upon refolding, the

recovery of the full CD intensity is delayed, and significant amounts of the secondary

structure are still to be formed in the intermediate.

The folding of TTKW612F W622F, when examined via far-UV CD was

determined to proceed via a two state transition. The refolding and unfolding curves

are however, not super-imposable (Figure 5.9). However the unfolding and refolding

curves are similar to their wild type TTK counterparts. This indicates that the

unfolding and refolding of the TTK kinase domain has not been altered by the

tryptophan to phenylalanine substitutions performed.

The folding of TTKW612F W622F was also determined to follow a three state

transition when examined by tryptophan fluorescence (Figure 5.12). The folding

curves obtained are not super-imposable (Figure 5.11). The accumulation of the

intermediate upon unfolding appears to occur at a different fraction folded than for

wild type TTK. However, examination of the fluorescence spectra of the protein at the

GdnHCl concentrations associated with the intermediate state reveals similar λmax to

wild type TTK and TTKW612F W622F.The TTKW612F W622F mutant shows similar

differences in unfolding and refolding that were seen with wild type TTK . The native

state is stable upon unfolding to ~0.2 M GdnHCl (Figure 5.11).

As observed for wild type TTK the comparison of the analysis of the

unfolding of TTKW612F W622F by far-UV CD and fluorescence indicates that when the

intermediate is formed, as identified by tryptophan fluorescence, the CD spectra has

been mostly recovered (Figure 5.13). This indicates that the intermediate formed is of

the molten globule type. The intermediate formed upon refolding does not share this

feature. At the point of the accumulation of the intermediate, approximately 53 % of

the secondary structure has been formed. The recovery of the CD spectra and the shift

in the λmax are nearly co-incident, indicating a different intermediate being formed

(Figure 5.13).

The single tryptophan mutant, TTKW612F W622F W628F was created to study the

conserved tryptophan residue, W718, allowing comparison with previous studies on

the folding of p38α. The unfolding and refolding of TTKW612F W622F W628F was
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monitored by far-UV CD and was determined to undergo a two state transition

(Figure 5.16). The unfolding and refolding were not super-imposable. However the

unfolding transition was super-imposable with the unfolding transitions of wild type

TTK and TTK W612F W622F (Figure 5.23). The refolding transition was also super-

imposable with the other mutants. This indicates that the tryptophan to phenylalanine

mutations did not alter the unfolding and refolding of the TTK kinase domain.

Phase diagram analysis of the folding of TTKW612F W622F W628F identified a four

state transition (Figure 5.19); however inspection of the spectra identified that the

final transition involved a change in fluorescence intensity only with no change in

λmax. Since the measure of folding was λmax shift , the folding transitions were fitted to

a three state folding model. The intermediate state recorded in both the refolding and

unfolding accumulates significantly upon unfolding but does not accumulate

significantly upon refolding. In addition the native state is quite stable upon

unfolding, remaining structured up to ~0.4 M GdnHCl (Figure 5.18). The native state

reached upon refolding is also stable below ~0.4 M GdnHCl, a feature not seen in the

other mutants studied (Figure 5.24A).

The overlay of far-UV CD data and the tryptophan fluorescence of the single

tryptophan mutant identifies that a molten globule intermediate forms on the

unfolding of the single tryptophan mutant (Figure 5.20). However upon refolding a

much lower amount of secondary structure is formed at the point at which the

intermediate accumulates.

The folding studies performed on wild type TTK and the tryptophan mutants

produced present a coherent story. The unfolding of the secondary structure of TTK,

as measured by far-UV CD, proceeds via a two state transition in which no

intermediate accumulates significantly (Figure 5.23). The tryptophan fluorescence

data identifies an intermediate state which is formed when the secondary structure of

the C-terminal lobe is present (Figure 5.24). This shows a classical molten globule

intermediate. Techniques such as ANS fluorescence or H/D exchange NMR could be

used to further define this intermediate state. The unfolding of this intermediate is

completed as secondary structure of the protein unravels and the protein adopts a

random coil conformation. The comparison of the spectra of the wild type TTK and

the W612F W622F mutant shows that the intermediate has a similar spectrum in each

mutant, with similar λmax of emission, indicating that the exposure to solvent of the
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tryptophan residues present is similar in the two proteins (Figure 5.8 and 5.15) . The

structure of the intermediate state is likely to be similar in the two mutants.

A dissimilar intermediate is formed upon the refolding of the protein. The

recovery of the native CD spectra and the recovery of the native λmax are co-incident.

Approximately 60% of the secondary structure is present in the intermediate state

(Figure 5.23 and 5.24).

The hysteresis observed between the refolding and unfolding of wild type

TTK and TTK tryptophan mutants is an interesting feature of the folding of the TTK

kinase domain (Figure 5.2, 5.9 and 5.16). The loss and recovery of the CD signal

upon the folding of wild type TTK is a simpler problem than the differences observed

in the folding as measured by fluorescence. Engel and Bächinger (2000) observed the

folding and unfolding of collagen III and attempted to explain the hysteresis between

the unfolding and refolding of this protein. They observed that the unfolding

transition maintained native structure to a higher denaturant concentration than the

refolding spectra showed native structure, and that the unfolding transition occurred

across a narrower range of denaturant. They attempted to fit these data to a simple

kinetic model for the folding of collagen III but were unable to do so. Instead they

posited that the high hysteresis and sharp transition were due to two factors; a

cooperative equilibrium transition, and a slow annealing step. The slow annealing step

is due to the requirement of cis-trans proline isomerisation in the folding of collagen.

The application of this result to the TTK kinase domain reveals a possible

explanation for the hysteresis. The slow phase of folding was eliminated by an

examination of the protein at various denaturant concentrations after 15 minute

incubations and after overnight incubations. No difference was observed in the

fluorescence or CD spectra collected after the incubations, indicating that no slow

changes were occurring in the folding process. In addition, of the 14 proline residues

in the construct of TTK crystallised to generate the structure shown in figure 4.1, 12

are visible in the structure and all adopt the trans configuration. No additional proline

residues are present in the construct of TTK used for this study. Rather we must

assume that the hysteresis is due to co-operative effects in the folding of the kinase

domain of TTK. We cannot, presently however, speculate as to whether these co-

operative effects are inter chain or intra chain effects. An insight into this could be

gained by a repetition of the folding studies at a lower protein concentration to

decrease inter chain effects. Further work would also need to be done to examine the
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folding of the C-terminal lobe and the formation of the interface between the lobes

that forms the substrate binding site. The same effect is likely to be responsible for the

differences observed in the tryptophan fluorescence of the unfolded and folded

proteins.

Tryptophan 718 shows a key importance in the folding of the TTK kinase

domain. It is required for correct folding, adopting and structurally and sequence

conserved position with a conserved structural environment. In addition the refolding

of the single tryptophan mutant bears a resemblance to the refolding of the p38α 

single tryptophan mutant. The folding of this mutant clearly proceeds via a folding

intermediate which has the character of a molten globule intermediate upon unfolding,

and a more mixed character upon refolding.

To fully understand the folding of the TTK kinase domain it would be

necessary to examine the folding at a second, lower protein concentration to

investigate the existence of inter-chain cooperatively. In addition FRET based studies

would be vital to the examination of the folding of the N-terminal lobe, and the

formation of the inter-lobe interface which forms the active site. Analysis of the

kinetics of folding and unfolding would complete the picture of the folding of the

TTK kinase domain.
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Chapter 6. General Discussion

6.1. The Refolding Problem and Shared Protein Folds

The vast increase in the number of solved protein structures available since the

first high-resolution protein structure determined in 1959 (Bodo et al., 1959), the

number of folding studies performed on proteins to date and the importance of

descriptors of these folds, such as contact order, in describing the folding of proteins,

have raised questions concerning the importance of these common folds in

determining the folding of proteins. The correlation of contact order with the rate of

folding of small proteins suggests that the topology of the native state may be more

important that the amino acid sequence in determining the folding of proteins

(Plaxco et al., 1998). From this observation some studies have been performed into

whether proteins of similar folds follow similar pathways of folding and share

similar structures for any transition states present in their folding. The results of

these studies have been mixed, and no clear yes/no answer has been produced. These

studies have largely been performed with small proteins and the folding of larger

common folds is still an interesting area of study (Zarrine-Afsar et al., 2005)

The kinase fold represents a valuable area of study to address these questions.

The fold is larger and more complex than the simple folds commonly studied, with

two lobes which interact to form the active site of the kinase domain. The kinase

domain is of key pharmaceutical interest and the potential understanding of the

folding of the kinase domain gained through studies on its folding could prove

valuable in obtaining soluble recombinant kinase domains for drug development

studies and structural studies on the kinase domain.

To address the problem of common folding pathways in the highly conserved

kinase fold, and to explore the possibilities of common methods of refolding protein

kinases from insoluble aggregates produced on overexpression of soluble protein a

refolding screen for protein kinases was created using the protein kinase p38α as a 

model protein kinase which was known to refold under equilibrium conditions

(Davies, 2004). The screening system was designed and tested using this protein

kinase, and the ability of the refolding screen to identify correctly refolded protein

kinase (Figures 2.12 and 2.14) was demonstrated by examination of the secondary

structure content of the refolded protein and the native protein, and by examination
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of the inhibition of the binding of the refolded protein by a high affinity p38α 

inhibitor, SB202190 (Figure 2.13). Following this development of the refolding

screen, the screen was applied to additional protein kinases, to demonstrate the

general suitability of the screen in refolding protein kinases, and to gather data on the

commonalities in the refolding of the selected protein kinases.

6.2. The Refolding of Five Protein kinases Through a Broad Refolding Screen

To allow the identification of conditions leading to the refolding of protein

kinases, a refolding screen was designed for protein kinases, which consisted of a

number of chemical refolding additives and a set of associated analytical methods

which test for the extent of the refolding of the test protein kinase. p38α was used 

initially as a model protein kinase to test the screen and to develop the readout

methods for the screen. High numbers of conditions in the refolding screen resulted

in a measurable recovery of refolded protein (Figure 2.9) with recoveries of refolded

protein of 10% under the control conditions at high pH. Several interesting features

of the refolding of p38α were noted from the results of the refolding screens 

performed on p38α. Firstly, the recoveries of refolded protein are substantially 

different depending on the source of the protein which was refolded. When the

protein to be refolded was sourced from protein produced in a soluble, folded form

in E. coli the recoveries of refolded protein were approximately two times greater

than those achieved when refolding p38α produced in inclusion bodies. It has been 

noted in studies on the scaling of tumbling speed with chain length and residual

structure of denatured protein that denatured protein adopts a more compact

ensemble of structures than was expected from initial studies on the tumbling of

denatured protein performed by Tanford et al. (1967). In addition residual native like

structure has been observed in the denatured state of Protein L (Yi et al., 2000). The

differences in the refolding of p38α between these different sources of refolded 

protein are likely to be due to differences in the residual structure present in the

denatured state of p38α, as a measurement of the multimeric nature of the denatured 

state showed both sources of protein to contain only monomeric protein of similar

distributions of hydrodynamic radius (Figure 2.2). The differences between the

refolding yield could also be due to a requirement for cis-trans proline isomerisation

in the folding of p38α, however an examination of the crystal structure to p38α does 
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not reveal any proline residues in a cis orientation, and the two preparations of

protein were stored in a denatured state for at least 24 hours prior to use.

 The refolding yields for p38α were shown to be highly dependent on the pH 

under which refolding was performed (Figure 2.9). The stability of the native state of

p38α under different pH and buffer conditions was tested (Figure 2.11) and the 

thermal stability of p38α was shown to be substantially lowered at low pH, with the 

mid point of the thermal melting transition decreasing by 12 °C between pH 7.0 and

pH 5.8. This result suggests that a key determinant of the yield of refolding is the

stability of the native state. An increase in the stability of the native state will deepen

the folding funnel and will promote faster folding. In addition, the protein will

populate any partially folded intermediate states less than if the difference between

the stability of the native state and any intermediates is lower. This reduces the

propensity and possibility for the partially folded intermediates to aggregate, leading

to high recoveries of refolding.

 The successful development of the screen using p38α, and the demonstration of 

the screen readouts identifying correctly refolded p38α, allowed the screen to be 

applied to protein kinases other than p38α. The refolding of four additional protein 

kinases was tested using the refolding screen, and the results of the refolding of these

kinase domains suggest that there are few commonalities in the refolding of protein

kinases from inclusion bodies. The effect of pH upon the refolding of p38α was not 

consistently observed in the refolding of the four additional kinases. In the case of

KIS and PhK there was a significant difference observed between the average

recoveries of refolded protein obtained at low pH and at high pH. With AKT2 and

TTK however, no significant difference was observed in the average soluble protein

recoveries between high pH and low pH conditions. The thermal melting of TTK

was also tested in the same fashion as p38α to further examine the role of the 

stability of the native state in the refolding yields obtained (Figure 3.22). The pattern

of changes in the mid-point of the thermal melting transition across the different pH

and buffer conditions tested was different from the pattern observed with p38α 

(Table 2.2 and 3.2). The analysis showed little change in the Tm for the thermal

melting across the pH and buffer range. This matches the result obtained with the

average recoveries of soluble protein in the screen, which does not vary significantly

between high and low pH conditions. However, if the melting temperatures are

compared to the recoveries of monomeric protein obtained, there is not a clear
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relationship. p38α melts at a lower temperature than TTK, ~44 °C vs ~48 °C. 

However the pattern in the recovery of refolded protein is opposite to this pattern,

with p38α refolding yields being greater than those obtained with TTK, with p38α 

giving recoveries of ~10 %, whereas TTK recoveries are in the range of 4 %. It can

be seen that the stability of the native state is correlated with the relative refolding

yields obtained between different pH and buffer conditions, but the absolute stability

of the native state does not appear to be related to the yield of refolding when

different proteins are compared.

The large number of different chemical refolding additives present in the

refolding screen allows for other potential similarities in the refolding of the kinase

domain to be identified. The conditions which give rise to high yields of refolded

protein, when compared to the control conditions at each pH, should highlight

similarities in the refolding pathways of the proteins, since the formation of similar

intermediates and the existence of similar traps for the refolding of the different

kinases should be highlighted by commonalities in the effective additives. The effect

of the additives used on the refolding of the tested protein kinases was mixed. Some

commonalities were observed between the additives that were effective in supporting

the refolding of two or more protein kinases, however, no single additive supports

the refolding of all five protein kinases. Instead the kinases which were refolded

behave differently. The kinases which are most similar in their pattern of effective

additives are KIS, p38α and PhK; however, even among these three kinases there are 

important differences in the effectiveness of the refolding additives (Figures 3.13 and

3.17). The pattern of the effect of the tested additives on the refolding of the five

tested protein kinases, and the pattern of the average soluble protein recovery at

different pHs do not support a common refolding conditions for the protein kinases

tested.

6.3. The Refolding of Five Protein Kinases through a Fractional Factorial

Screen

 The initial refolding screen design that had been developed with p38α and 

tested with the four additional members of the kinase panel only tests the effect of

single additives over control conditions at three different pHs. In addition, the design

of the screen does not allow easy analysis of the screen using statistical tests. To
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address this shortcoming in the screen, a new screen design was created that allowed

the testing of the combination of additives and the robust statistical analysis of the

screen results. The number of additives used was limited to six. The screen created

was a fractional screen, since this allowed the size of the screen to be decreased

while limiting the effect of the size reduction on the coverage of the combinations of

the refolding additives used in the shortened screen.

When the five kinases were refolded using the fractional factorial screen

designed,the refolding of protein kinases was improved by combining additives in

the refolding buffers used. All five protein kinases showed an improvement in the

refolding yields obtained in the screen format by combining different refolding

additives (Table 3.3).

The monomeric protein recovery of the refolded proteins was analysed using

ANOVA, and the significant, positive factors and combinations of factors from the

screen identified. The analysis of the refolding yields obtained in the fractional

factorial refolding screen shows a similar comparison between the refolding

additives to that seen in the initial screen design. It was observed that no one

refolding additive or combinations of additives was found to lead to a significant

increase in the refolding yield of the tested protein kinases. The single additive, NV-

10 was found to be a significant positive factor in the refolding of AKT2, KIS and

TTK. However, it was not a positive factor in the refolding of p38α and PhK (Table 

3.9). Similarly some combinations of additives have a positive effect on the refolding

of some kinases and a negative effect on the refolding of other protein kinases.

Overall, from the analysis of the positive and negative factors on the refolding of the

five tested protein kinases, it is clear that no single additive or combination of

additives is effective in assisting the refolding of the five protein kinases. This

undermines the concept of a common kinase folding pathway.

6.4. The Role of the Core Tryptophan of the Kinase Domain

Commonalities in the folding of the kinase domain were further examined by a

study of the equilibrium folding of a kinase domain. The kinase domain of the dual

specificity kinase TTK was chosen for this study. To allow closer study of the

folding of the kinase domain of TTK a number of mutants of TTK were created
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which substituted tryptophans in the kinase domain by phenylalanines. This was

performed to allow the study of the kinase domain with single tryptophan probes.

The mutants with tryptophan to phenylalanine substitutions were created by site

directed mutagenesis, and expressed and purified from E. coli after co-expression

with λ-phosphatase (Sections 4.3.2 through 4.3.4). The far-UV CD spectra (Figure 

4.14) and the calculated secondary structure content (Table 4.3) of the mutants did

not indicate that substantial changes in the fold had occurred, and the Tms of wild

type TTK and the mutants did not indicate a destabilisation of the tertiary structure

(Table 4.4), which would be indicated by a decrease in the Tm. The incorporation of

the desired mutations was demonstrated in the purified protein by ESI-MS analysis

(Table 4.2).

The replacement of the core tryptophan of the kinase domain, W718 in TTK,

was attempted in the background of the wild type TTK kinase domain. This mutant

could not be produced in a soluble form in E. coli. This result is similar to that

achieved with p38α, in which the core tryptophan of p38α, W207, could not be 

replaced without preventing the folding of p38α (Davies, 2004).  In the study of the 

folding of p38α, the replacement of W207 with residues other than phenylalanine, 

specifically tyrosine, histidine and lysine, did not result in the production of soluble

protein (Davies, 2004). The examination of the local environment of W207 in the

crystal structure of p38α indicates the importance of the tryptophan residue in the 

hydrophobic core of the protein, with the NH group of the indole ring of the

tryptophan protected from the hydrophobic core by a hydrogen bond to an ordered

water molecule (Davies, 2004).

The core tryptophan of the TTK kinase domain shows a very similar structure to that

of p38α. In the core of the C-terminal lobe of the TTK kinase domain the core 

tryptophan residue forms similar hydrogen bonds to the core tryptophan residue in

p38α. The local environment of the tryptophan is also very similar, with the local 

residues being very closely aligned in the two structures (Figure 4.3).

If the available structures of the other protein kinases that were studied using

the refolding screens performed in chapters 3 and 4 are examined, it can be seen that

the core tryptophan of the kinase domain, which is conserved in the kinome (Davies,

2004) is structurally conserved in the studied kinase. The local environment of the

conserved residue is also surprisingly conserved, with the exception of AKT2, which
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includes a second tryptophan residue in the core in the place of the varied residues

present in other kinases (Figure 4.3, Figure 3.1).

Figure 6.1: Local environments of the core tryptophan of the kinase domain in the
structures of the kinases of the kinase panel. The conserved core tryptophan is placed at the
centre of each frame. (A) AKT2, (B) p38α, (C) PhK, (D) TTK, (E) Alignment of the 
structures of the 4 kinase C-terminal lobe cores showing close alignment of kinase core
residues, AKT2 – blue, PhK – green, p38α – grey, TTK - pink.

A
B

C
D

E
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The conservation of the core tryptophan residue of the kinase domain suggests

that their may be similarities in the folding of the kinase domains of p38α and TTK. 

Both kinase domains require the presence of the tryptophan residue for correct

folding and the environment of the tryptophan is also conserved, suggesting that the

role of this tryptophan previously identified in the folding of p38α may also be found 

in TTK. Further analysis of the folding of the TTK kinase domain would examine

this possibility.

6.5. The Formation and Nature of Intermediate States on the Folding Pathway of

TTK and p38α. 

The equilibrium folding pathway of TTK has been characterised using the

folding probes of far-UV circular dichroism and tryptophan fluorescence. The

monitoring of the unfolding and refolding of TTK by far-UV CD showed similar

folding transitions for wild type TTK and the tryptophan mutants studied, further

indicating that the substitutions performed have not affected the fold or the folding

of the kinase domain (Figure 5.23). The folding transitions observed for refolding

and unfolding are not superimposable, indicating that the unfolding and refolding of

TTK occurs via different pathways. Both transitions are broad and difficult to

accurately fit to three state folding models, but do fit well to two state folding

models. Visual inspection of the folding transitions does not indicate the presence of

any folding intermediates (Figure 5.2B, 5.9B and 5.16B). A native like CD spectra is

maintained in low concentrations of denaturant, up to a GdnHCl concentration of

approximately 1 M upon the unfolding of TTK. However, when refolding TTK, a

native like CD spectra is not regained until a GdnHCl concentration of

approximately 0.5 M (Figure 5.2A, 5.9A, 5.16A). In addition, there is hysteresis

between the unfolding and refolding curves observed (Figures 5.2C, 5.9C, 5.16C).

 In the equilibrium folding of p38α, a substantially different behaviour of the 

kinase domain on refolding and unfolding was observed. The folding transitions

were broad and were determined to not be two state transitions by visual inspection,

which indicated a plateau at ~2 M GdnHCl, suggesting that an intermediate was

present. It was not possible, however to fit the transitions to three state folding

models, as the intermediate did not accumulate. Visual inspection of the suspected

intermediate suggested that it contained ~70 % of the native secondary structure, or
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that it contained ~23% α-helix (Davies, 2004). This behaviour of p38α presents a 

clear difference from the folding observed with TTK.

The folding of the kinase domain of TTK was also monitored by tryptophan

fluorescence. The four tryptophan residues of the TTK kinase domain are found in

the C-terminal lobe (Figure 4.1), no tryptophans are found in the inter-lobe interface

of the kinase domain of TTK nor in the N-terminal lobe. It was also observed that,

according to the crystal structure, two of the native tryptophans appear to be solvent

exposed in the native state (Figure 4.2). Two particular tryptophan to phenylalanine

mutants were created to explore the folding of TTK. The first substituted the solvent

exposed tryptophans, W612 and W622, by phenylalanine to allow the study of the

folding of the hydrophobic core of TTK. A single tryptophan mutant, containing

only the core tryptophan, W718, was also created.

The folding of the kinase domain of TTK monitored by tryptophan

fluorescence shows clear three state transitions, with an intermediate accumulating at

~1.5 M GdnHCl. The folding transitions observed by tryptophan fluorescence do not

coincide with the folding transitions observed by far-UV CD. This occurs because

these folding probes are monitoring the formation of tertiary and secondary structure

respectively, and the lack of coincidence of the two folding curves indicates the

presence of folding intermediates (Grimsley et al., 1997; Wang et al., 1998; Sathish

et al., 2002). The tryptophan mutants which were created showed similar folding

transitions to those observed with wild type TTK. The position of the intermediate

formed on unfolding changes on the axis of fraction folded, although the λmax of the

intermediate is similar, the lower fraction folded of the intermediate being due to the

blue shift in the λmax of the native state of the W612F W622F mutant over the wild

type and W612F W622F W628F mutant (Figure 4.17). The thermodynamic

parameters determined for the folding transitions are similar for the entire transition

between the three constructs studied, with an average total free energy change on

folding of -8.15 kcal mol-1 (Table 5.2). The intermediate present in the folding of

TTK was much better resolved in the unfolding of TTK than in the refolding. The

refolding and unfolding transitions of TTK as measured by tryptophan fluorescence

are not super imposable. The native state is stable up to a GdnHCl concentration of

~0.6 M on the unfolding of TTK, but is not similarly stable in this range on the

refolding of TTK. The behaviour of the W612F W622F mutant shows that the

spectra observed for the native state of wild type TTK is dominated by the buried
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tryptophans. The single tryptophan mutant of TTK shows that the intermediate

which was observed is described well by the core tryptophan residue; however the

differences observed between the refolding and unfolding of TTK were absent in the

fluorescence probed folding of the single tryptophan mutant..

The comparison of the folding of TTK monitored by far-UV CD and

tryptophan fluorescence identifies a folding intermediate in the equilibrium folding

of TTK. The intermediate that accumulates on the unfolding pathway of TTK shows

the features of a classical molten globule intermediate. The intermediate accumulates

at ~ 1.5 M GdnHCl in the wild type and at similar GdnHCl concentrations in the

tryptophan mutants. At this GdnHCl concentration the CD spectra show that at least

90% of the α-helical content of the protein is still present. Upon the refolding of 

TTK an intermediate is formed at approximately 1.5 M GdnHCl. At this

concentration of denaturant the proportion the secondary structure which is formed is

closer to 70%, indicating that a significant amount of secondary structure has not yet

formed in this intermediate. The intermediate which is formed could still be

considered to be a molten globule intermediate, as a large proportion of the

secondary structure is present in the intermediate, but it is clear that the intermediate

states are different, since ~30 % of the secondary structure which is formed in the

unfolding intermediate remains to be formed in the refolding intermediate. An

examination of tryptophan emission spectra of the intermediates formed on the

unfolding and refolding of TTK reveals that the intermediates have similar spectra,

indicating a similar arrangement of tertiary structure in the two intermediates.

Further study, possibly using a C-terminal lobe only construct in H/D exchange

NMR studies would be valuable to identify the residues which remain formed into

secondary structure upon unfolding but are not formed into secondary structure on

refolding.

 The refolding of p38α showed that the core tryptophan of the kinase domain 

was key in the formation of the observed folding intermediate. Comparison of the

folding of the tryptophan mutants showed that W207 identified the intermediate

state, and the intermediate is therefore likely to be formed in the local environment

of the W207 residue. The comparison of the folding studies performed on the

W612F W622F W628F mutant of TTK show the I→N transition and the 

accumulation of the intermediate is more clearly defined upon refolding compared to
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wild type TTK and W612F W622F mutant. This suggests that this intermediate

forms in the area reported on by the W718 residue.

6.6. Super-imposable and Non Super-imposable Folding Curves

The folding curves obtained for TTK via both far-UV CD and tryptophan

fluorescence are different between the refolding of the protein and the unfolding of

the protein, with the exception of the tryptophan fluorescence of the W612F W622F

W628F mutant. The folding transitions are not super-imposable, indicating that the

unfolding and refolding of TTK proceeds via different pathways (Figure 5.4C,

5.11C). The super-imposability of the unfolding and refolding transitions for the

single tryptophan mutant of TTK indicates that the unfolding and refolding of this

mutant proceed via the same pathway (Figure 5.18C). This indicates that the

differences observed in the folding of TTK occur in the C-terminal lobe, but not in

the core of the C-terminal lobe.

 The folding of p38α has been previously observed to produce super-imposable 

folding transitions with the folding probes of both far-UV CD and tryptophan

fluorescence of various tryptophan mutants. All of the folding transitions observed

with p38α produced super-imposable transitions, indicating that the protein was 

folding and unfolding through the same equilibrium pathway. This is a key

difference between the folding of the two protein kinases.

6.7. Simple Folding and Co-operative Folding.

The far-UV CD observation of the folding of TTK showed a difference in the

folding and the unfolding of TTK under equilibrium conditions. The native state of

the protein was stable to a higher GdnHCl concentration on unfolding and on

refolding. Similarly, the protein is fully unfolded at lower concentrations of GdnHCl

upon refolding than upon unfolding (Figure 5.23). This results in hysteresis in the

folding curves, indicating that the protein is unfolding and refolding through

different pathways. A similar difference is observed in the unfolding and the

refolding of TTK observed by tryptophan fluorescence. The unfolding of the kinase

domain proceeds via a clearly defined equilibrium intermediate, and the native state

is stable to approximately 0.6 M GdnHCl on unfolding (Figure 5.24). The refolding



- 226 -

of TTK does not show this stability of the native state at low GdnHCl

concentrations, and the intermediate does not accumulate in the fashion seen upon

unfolding. The refolding and unfolding of the single tryptophan mutant however is

similar, indicating that the differences in the folding and unfolding occur in areas not

monitored by the single tryptophan probe (Figure 5.24).

This is supported by the difference in the far-UV CD signal observed at the

GdnHCl concentration where the intermediate observed by tryptophan fluorescence

is formed. The CD signal is ~30 % lower upon refolding of the protein compared to

the signal upon unfolding (Figure 5.23). This indicates that more secondary structure

is retained in the intermediate. The hysteresis in the folding of TTK is similar to

hysteresis observed in the folding of creatine kinase (Zhu et al., 2001) and collagen

III (Engel and Bächinger, 2000), which was shown to be caused by a cooperatively

in the unfolding of the protein. TTK therefore unfolds via a cooperative mechanism

which may be mediated through the inter-lobe interface. The refolding of TTK does

not display the cooperatively observed on unfolding. This may be due to the lack of

the stabilising influence of the inter-lobe interface present in the native state.

 The folding of p38α was observed to be fully reversible by both far-UV CD 

and tryptophan fluorescence. The folding transitions observed by both far-UV CD

and tryptophan fluorescence were super-imposable, indicating that the unfolding and

refolding of p38α was proceeding via the same pathway (Davies, 2004). The folding 

experiments performed on p38α do not indicate a cooperative unfolding of the native 

state of p38α. This result points to a significant difference in the folding pathways of 

p38α and TTK. However both kinases fold via an intermediate state which shares 

similar properties.

6.8. Does the Kinase Domain Fold Via a Common Pathway?

The folding of the kinase domain has been explored through the refolding of

five protein kinases through two different refolding screens, and through the study of

the equilibrium folding of the kinase domain of TTK. Previous work on the folding

of p38α has also been used to examine the existence of a common protein kinase 

folding mechanism. The refolding of AKT2, KIS, p38α, PhK and TTK through the 

two refolding screens performed does not present a picture of a common folding

mechanism. The patterns of refolding of the tested protein kinases with respect to the
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pH at which refolding was performed, and the chemical additives which were

effective in supporting the refolding are not similar across the five kinases tested,

with the response to pH and the effective additives being different between the

proteins. The analysis of the fractional factorial screen does not show the additives

and combinations of additives selected in the screen to be effective for all the protein

kinases tested; indeed some additives were both positive and negative in their effect

on the folding of different kinases.

The more detailed study of the equilibrium folding of TTK does raise a

commonality identified between the folding of p38α and TTK. In both kinases the 

core tryptophan of the kinase domain, W207 in p38α and W718 in TTK, was found 

to be essential for the folding of the kinase domain. This residue is both sequence

and structurally conserved in both kinases and in other kinases also. This tryptophan

found in the hydrophobic core of the kinase domain forms a key component of the

folding of the kinases tested, and is important in the formation of the equilibrium

folding intermediates observed for both TTK and p38α. Further studies on the 

structure of this intermediate state would be needed to confirm that the conformation

of the intermediate is similar; however the amount of formed secondary structure,

when the differences in secondary structure content between the two kinases is

considered, is similar.

Despite the formation of a similar folding intermediate in the folding of TTK and

p38α, the two kinases fold via dissimilar mechanisms. In the folding of p38α the 

recovery of tertiary structure is not coincident with the recovery of secondary

structure. In TTK the recovery of the tertiary structure is nearly coincident with the

recovery of secondary structure on refolding. In addition, the recovery of structure

on the refolding and the loss of structure on the unfolding of p38α are 

superimposable; however this is not the case with TTK. This is the key difference

between the two protein kinases. The folding of p38α is fully reversible and follows 

the same pathways. The folding of TTK does not follow the same pathway, and

instead unfolds through a cooperative mechanism, which is not followed on

refolding.

The study of the folding of protein kinases presented here was restricted to

serine/ threonine and dual specificity protein kinases. However, the limited study of

the folding of FGFR1 by Davies (2004) supports the extension of the results
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presented here to cover the tyrosine protein kinases as well since this protein does

not refold from denatured protein in equilibrium experiments.

The combination of the refolding studies performed on the five protein kinases

presented in chapters 2 and 3, and the folding studies performed on TTK in chapter

5, when compared with the studies of Davies (2004) on p38α do not show a common 

mechanism of kinase folding. The unfolding of TTK is a cooperative process and the

folding of p38α is not similarly cooperative. The refolding screens on AKT2, KIS, 

p38α, PhK and TTK have not identified common conditions beneficial to the 

refolding of all five of the screened protein kinases. It is likely, therefore, that the

kinase domain folds through different pathways, although the study of the folding of

more protein kinases would be required to support this conclusion. Therefore, the

production of soluble protein kinases from E. coli will require a refolding screen for

those kinases which do not fold in the host cell but must instead be refolded in vitro.

6.9. Future Work

The characterisation of the folding of the kinase domain performed in detailed

experiments so far has focused on the folding of the C-terminal lobe of the kinase

domain due to the requirement of the core tryptophan for the correct folding of the

kinase domain. The key questions that remain to be answered in the folding of p38α 

and TTK cover the folding of the N-terminal lobe and the formation of the inter-lobe

interface. To allow the study of the folding of these areas, in the context of the whole

protein would require the creation of mutants exploiting FRET techniques to probe

the folding of these regions. Following the creation of these mutants, and the study

of the folding of these mutants through equilibrium techniques, the study of the

kinetics of folding for both p38α and TTK could be performed to complete the 

comparison of the folding of these two protein kinases and to identify if the

difference seen between the two protein kinases are due to the formation and

stability of the inter-lobe interface.

The study of the refolding of protein kinases was also limited to the study of

serine/threonine and dual specificity protein kinase domains. It would be interesting

to apply the screens to a number of tyrosine kinase domains to follow the folding

behaviour of these domains, and to identify how different the folding of these

domains is.
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Abstract

Protein kinases are key drug targets involved in the regulation of a wide variety of cellular processes. To aid the development of drugs
targeting these kinases, it is necessary to express recombinant protein in large amounts. The expression of these kinases in Escherichia coli

often leads to the accumulation of the expressed protein as insoluble inclusion bodies. The refolding of these inclusion bodies could pro-
vide a route to soluble protein, but there is little reported success in this area. We set out to develop a system for the screening of refolding
conditions for a model protein kinase, p38a, and applied this system to denatured p38a derived from natively folded and inclusion body
protein. Clear differences were observed in the refolding yields obtained, suggesting differences in the folded state of these preparations.
Using the screening system, we have established conditions under which soluble, folded p38a can be produced from inclusion bodies. We
have shown that the refolding yields obtained in this screen are suitable for the economic large-scale production of refolded p38a protein
kinase.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Protein kinases; Protein folding; Folding additives; Inclusion bodies; Refolding; Recombinant protein expression
1 Abbreviations used: ATF2, activating transcription factor 2; Capso, 3-
(cyclohexylamino)-2-hydroxy-1-propanesulfonic acid; CD, circular
dichroism; Chaps, 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-
sulfonate; DTT, dithiothreitol; ESI-MS, electrospray ionization mass
spectrometry; Hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid;
IPTG, isopropyl b-D-1-thiogalactopyranoside; MAPKAPK2, MAP kinase
Protein kinases are key components of cell signaling
pathways involved in the regulation of many critical cellu-
lar functions. Because of the key role that protein kinases
have in signaling cascades and regulatory functions in cells,
they are attractive drug targets. Many protein kinases have
altered expression or activity profiles in a wide variety of
diseases. Cancers are often associated with overactive or
overexpressed kinases, such as cyclin-dependent kinases
in which overexpression alters the cell cycle [1]. Other
kinases are implicated in conditions such as rheumatoid
arthritis [2].

P38a is a member of the protein kinase family, which is
viewed as a desirable target for pharmaceutical com-
pounds. P38a is a 41-kDa protein, that exhibits serine/ther-
onine-specific phosphorylation activity. The targets of the
0003-2697/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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activity of p38a are transcription factors such as ATF21

[3] and other protein kinases such as MAPKAP2 [4]. The
signaling pathway that leads to the activation of p38a is
triggered by cell stresses, such as the presence of bacterial
lipopolysaccaride or osmotic shock [5]. The presence of
these signals causes the production of proinflammatory
cytokines such as interleukin 1. The continued production
of these cytokines further stimulates p38a and leads to
activated protein kinase 2; NDSB, 3-(1-pyridinio)-1-propanesulfonate;
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definition compound; NHS, N-hydroxysulfosuccinimide.
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inflammatory diseases, such as rheumatoid arthritis [2].
The key role of the p38a-signaling cascade in inflammatory
responses underlies the pharmaceutical interest in p38a. By
inhibiting the activity of p38a with small-molecule inhibi-
tors, stimulation of p38a would be blocked, leading to a
down regulation of the inflammatory response.

The production of recombinant protein kinases is
important for the development of specific inhibitory com-
pounds for use as drugs. Purified, correctly folded, recom-
binant protein is essential to solve the structure of the
protein kinase in complex with a putative inhibitor, allow-
ing the binding mode and routes for increasing the specific-
ity or potency of the inhibitor to be identified [6].
Additionally, large-scale provision of recombinant protein
is required for the development of high-throughput screens
aimed at identifying small-molecule inhibitors. Protein for
these purposes is usually produced, by preference, in simple
bacterial expression systems for reasons of cost, speed, and
yield. However, several protein kinases are challenging to
express in a soluble form in Escherichia coli, commonly
aggregating into insoluble deposits of protein called inclu-
sion bodies [7]. These inclusion bodies are ordered aggre-
gates [8] deposited by cells when the folding machinery of
the cell is overloaded by the high expression level of the
recombinant protein [9]. Inclusion bodies form a conve-
nient source of high-quality, easy to isolate protein [10].
However, it is necessary to solubilize the protein from the
inclusion bodies and then refold the protein before it can
be used for structural studies. The refolding of protein
kinases is regarded a challenging prospect, with only a sin-
gle success in the refolding of the catalytic subunit of phos-
phorylase kinase reported in the literature [11].

The solubilization of protein from inclusion bodies is
commonly performed by the addition of high concentra-
tions of chaotropic denaturants such as guanidine or urea
to the purified inclusion bodies. These chaotropic denatur-
ants solubilize and denature inclusion bodies by combina-
tions of direct and indirect actions. First, the structure of
water is perturbed, so that hydrophobic molecules are
more soluble in water. Second, denaturants can also bind
to polar groups on the protein molecule, disrupting electro-
static and hydrogen bonding interactions key for the main-
tenance of the protein structure [12]. Addition of high
concentrations of these denaturants to proteins is generally
considered to result in the complete disruption of perma-
nent secondary structure within the protein [13].

The folding of proteins from the unfolded state is a com-
plex procedure and is thought to proceed along a large
number of different pathways [14]. This process of folding
to the native state is usually depicted by the protein travel-
ing through a landscape of conformations of differing ener-
gies toward an energy minimum. However, this landscape
(also known as the folding funnel) contains many local
energy minima in which a polypeptide chain may become
trapped as it attempts to fold to the native state. These
energy minima, from which the polypeptide chain may
not be able to escape, are termed misfolded states of the
protein and are prone to aggregation. This aggregation
commonly occurs through exposed hydrophobic patches
that in the folded protein would be protected and, when
the protein folds in vivo, could be shielded by chaperone
proteins, such as Hsp90 [15].

To avoid the misfolding of proteins that often occurs
during refolding, certain chemical additives can be used.
These additives function in a variety of ways to promote
the refolding of the protein to the native state. Some addi-
tives, such as detergents, bind to exposed hydrophobic
patches on partially refolded protein to protect the protein
from aggregation. Low concentrations of denaturant can
also be used; these stabilize several intermediate states,
increasing the potential refolding yield obtained once the
denaturant is reduced. Osmolytes, such as betaine, have
also been shown to promote the refolding of certain pro-
teins to their native states [16].

There is no rational method for predicting conditions,
that will promote the refolding of proteins. Consequently,
to rapidly identify conditions under which a protein may
refold to the native form from a denatured state, a wide vari-
ety of conditions may need to be examined. To do this, it is
desirable to format this search for refolding conditions into
a screen. Several generic refolding screens, such as the iFold
screen (Novagen), are available commercially. However,
these screens do not specify the methods that are used to
identify the conditions under which refolding has occurred.
Commonly, the use of a specific assay for the protein to be
refolded is suggested. This approach is not suitable for pro-
tein kinases, because to measure kinase activity, activation of
the protein kinase is required. This generally occurs via a
phosphorylation mechanism involving an activating protein
kinase, a process possibly inhibited by the refolding addi-
tives. It would also be necessary to purify the activated pro-
tein kinase from the activating protein kinase. Therefore, to
screen for the refolding of protein kinases it is desirable to
identify and validate other methods to measure the yields
of refolding and the folded state of the refolded protein.
These methods must be carefully selected, because the addi-
tives that are often used to promote the refolding of proteins
can interfere with the methods that are used to quantify the
yields of refolded protein. Additionally, these additives are
often used at high concentrations, further complicating the
identification of suitable methods for the assessment of
folded state of the refolded protein.

To allow the development of a screen for the refolding
of protein kinases and the selection and development of
methods for the identification of the yields of refolded pro-
tein kinases, a model protein kinase was selected. We used
the mitogen-activated protein kinase p38a. This protein
kinase was selected because it is possible to produce p38a
in E. coli either as a soluble folded protein or as inclusion
bodies, allowing the easy production of material for refold-
ing and for the validation of the analytical methods pro-
posed. This also made possible the comparison of the
refolding of protein kinases from inclusion bodies and
from native protein that has been denatured.
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In this report we demonstrate a high-throughput screen
able to identify conditions to promote the refolding of a
model protein kinase, p38a. We show a series of analytical
methods able to deliver specific information on the yields
of refolded protein kinase and that could be applied to pro-
tein kinases other than p38a. The refolded protein identi-
fied by a number of analytical methods was shown to be
correctly folded. Increasing the scale at which refolding is
performed does not lead to large changes in the yields of
refolded protein. Additionally, the refolding of p38a results
in the production of amounts of protein suitable for the
structural study of the kinase. We also show that
the refolding yields obtained are strongly dependent on
the pH at which the refolding occurs.

Materials and methods

Materials

NV-10 was purchased from Novexin Ltd (Cambridge,
UK). 3-(1-Pyridino)-1-propanesulfonate and b-cyclodex-
trin were purchased from Fluka (Buchs SG, CH). Tris
was purchased from Acros Organics (Geel, BE); P20 sur-
factant was supplied by Biacore and dimethyl sulfoxide
by Fisions (Ipswich, UK). All other chemicals were sup-
plied by Sigma–Aldrich (Poole, UK).

Production of human p38a inclusion bodies

Recombinant human p38a was produced as insoluble
protein in E. coli strain BL21 (DE3), transformed with
an expression plasmid encoding full-length human p38a.
Cells were grown to a OD600 of 0.6 at 37 �C, induced for
5 h with 0.4 mM IPTG, and harvested by centrifugation
at 8000g for 20 min. Inclusion bodies were prepared using
a modification of the protocol described by Georgio and
Valax [17]. Briefly, isolated cells were resuspended in ice-
cold 50 mM Tris, 150 mM NaCl, 2 mM DTT, pH 9.0,
and lysed by sonication. Insoluble material was separated
by centrifugation (35,000g for 40 min) and resuspended
in the same buffer. The insoluble fraction was washed with
2% Triton X-100 and 2 M urea to remove membrane frag-
ments and loosely bound proteins. Washed inclusion
bodies were solubilized in 50 mM Tris, 150 mM NaCl, 8
M Urea, 10 mM DTT, pH 9.0 for 1 h at 30 �C and stored
at 4 �C. Protein concentration was calculated from absor-
bance at 280 nm, (A280) using e280 of 48,130 M�1 cm�1.
The molecular weight of the protein and the absence of
covalent modifications were confirmed by ESI-MS.

Production of native p38a

Recombinant human p38a was produced according to
Davies [18]. Native, soluble p38a for comparing refolding
with inclusion body protein was denatured with 8 M urea,
10 mM DTT for 1 h at 30 �C and stored at 4 �C until use.
The protein mass was verified by ESI-MS.
Design of a refolding screen for kinases

A series of additives known to be effective in facilitating
the refolding of proteins were selected to be included in a
screen for the refolding of p38a. In total 31 additives were
chosen and grouped according to their chemical features.
Arginine, glycine, L-proline, sarcosine, and an arginine/glu-
tamate mix were grouped together into the ‘‘amino acids”

group [16,19–34]. Glucose, betaine sorbitol, and trimethyl-
amine N-oxide were grouped into the ‘‘osmolytes” group
[16,19–34]. Sodium chloride, sodium sulfate, and ammo-
nium sulfate were grouped into the ‘‘simple salts” group
[16,19–34]. Guanidine (2, 1, and 0.5 M) and urea (2, 1,
and 0.5 M) were grouped as ‘‘denaturants” [16,19–34].
Lauryl maltoside, Chaps, and Triton X-100 were grouped
as ‘‘detergents” [16,19–34]. Cyclohexanol, 1-pentanol, eth-
anol, glycerol, b-cyclodextrin, ethylene glycol, and PEG
3440 were grouped as ‘‘alcohols and polyols” [16,19–34].
3-(1-Pyridino)-1-propanesulfonate, formamide, and NV-
10 were grouped as ‘‘other additives” [16,19–34]. These
31 additives and a control lacking a specific refolding addi-
tive were formatted into a 96-well refolding screen, utilizing
three different buffers (Table 1). The three buffers used were
0.1 M Mes (pH 5.8), 50 mM Tris (pH 8.0), and 0.1 M
Capso (pH 9.5).
Refolding of human p38a

Refolding of p38a was initiated by rapid dilution of
denatured protein into various renaturation buffers in a
96-well screen, formatted in four 24-deep-well plates. A
volume of 5 ml of each renaturation buffer was aliquoted
into each well. Under rapid agitation at 4 �C, 100 ll of
denatured protein solution, at 5 mg/ml in 8 M urea, was
added in a single step to each renaturation buffer, for a
final protein concentration of 0.1 mg/ml and a final urea
concentration of 160 mM. Refolding was allowed to occur
under gentle agitation overnight at 4 �C. After refolding,
samples identified as containing soluble protein by SDS–
PAGE were concentrated 10-fold using Centricon concen-
trators and then dialyzed against 10 mM Hepes, 150 mM
NaCl, pH 7.4.

The percentage recovery of refolded protein, as identi-
fied by the analytical techniques described below, was cal-
culated by comparing the protein concentration identified
by the analytical techniques to the theoretical maximum
possible recovery of protein.
SDS–PAGE of refolded protein

Refolded protein was taken directly from the screen and
added to E-PAGE sample buffer (Invitrogen) and 1%
b-mercaptoethanol. Samples were heated to 70 �C for 10
min in a PCR thermal cycler block, according to the manu-
facturers’ instructions. Samples were run using 96-lane
E-PAGE gels (Invitrogen; Cat. No. EP096-06) and
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silver-stained to visualize bands. Samples for which no
band was visible were not further analyzed.

Denaturing capillary electrophoresis

Denaturing capillary electrophoresis was performed on
refolded protein samples subsequent to concentration and
dialysis using an Agilent ALP-5100 instrument; 4 ll of con-
centrated, dialyzed refolded protein solution was added to
2 ll of reducing sample buffer and heated to 95 �C for 5
min. The heated solution was diluted with 24 ll of water
and analyzed using the protein analysis program on the
ALP-5100 instrument on a HT-2 preprepared chip. Cali-
bration of the elution time of various molecular weight
proteins was carried out automatically using the supplied
protein ladder.

Analytical size exclusion chromatography

Analytical size exclusion chromatography was per-
formed using an Ettan LC system (GE Healthcare). Pro-
teins were eluted from a prepacked analytical scale
Superdex 75 column in 50 mM Tris, 150 mM NaCl, pH
9.0, at a flow rate of 50 ll/min. Samples were diluted 1:1
with 0.2 mg/ml myoglobin in 10 mM Hepes before analysis
and 25 ll was loaded onto the column. Absorbance was
monitored at 280 nm for p38a and 410 nm for myoglobin.
Peak areas were compared to a standard curve to calculate
the p38a protein concentration.

Analysis of the multimeric state of denatured inclusion
body protein and denatured soluble protein was carried
out as above, with the exception that a Superdex 200 col-
umn was used in place of the Superdex 75 and the column
was equilibrated in 8 M urea, 50 mM Tris, 150 mM NaCl,
pH 9.0, and eluted in this buffer.

Binding activity

The binding activity of refolded p38a was assessed using
a Biacore 3000 instrument (Biacore AS). An ureidoquinaz-
oline target definition compound (UTDC) [19] was immo-
bilized in a single lane of a CM5 chip (Biacore) using
standard amine coupling kit (Biacore). The surface of the
chip was activated by a solution of 1-ethyl-3-[3-dimethyl-
aminopropyl] carbodiimide hydrochloride and N-hydrox-
ysulfosuccinimide (NHS). This resulted in the creation of
semistable amine-reactive NHS-ester on the chip surface.
UTDC at 400 lM was then flowed over the surface, with
the free amine group reacting with the ester, resulting in
the release of NHS and the formation of a stable amide
bond between the UTDC and the chip surface. Unreacted
NHS-esters were removed by treatment of the surface with
ethanolamine. Control lanes were prepared in a similar
manner, except that TDC was not added to the surface
subsequent to activation. p38a was flowed over the pre-
pared surface in 10 mM Hepes, 150 mM NaCl, 0.05%
P20 surfactant, 0.5% dimethyl sulfoxide. Response units



Fig. 1. Purity of p38a inclusion body preparation assessed by reducing
SDS–PAGE. 10% Bis–Tris gel run with NuPAGE Mes–SDS running
buffer. Lane 1, molecular weight markers (SeeBlue Plus 2; Invitrogen);
lane 2, p38a inclusion body preparation in 8 M urea.
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due to protein binding to immobilized UTDC were com-
pared to response units due to binding to the control flow
lane. To eliminate nonspecific binding, protein was injected
in the presence of 10 lM UTDC to abolish specific binding.
Samples were maintained at 8 �C until analysis. Response
units due to specific p38a binding were compared to a stan-
dard curve prepared by measurement of binding of soluble,
correctly folded p38a. Each condition was analyzed in
triplicate.

Large-scale refolding

Larger scale refolding of p38 was carried out by drop-
wise addition of solubilized inclusion bodies, at a protein
concentration of 5 mg/ml, to renaturation buffer until the
protein concentration reached 0.1 mg/ml and the urea con-
centration 160 mM. The buffer was vigorously stirred.
Refolding was allowed to occur overnight at 4 �C under
gentle stirring. The refolding solution was then concen-
trated 10-fold using an Amicon stirred cell with a 10-kDa
cut-off ultrafiltration membrane (Millipore) and subse-
quently dialyzed against 10 mM Hepes, 150 mM NaCl,
pH 7.4. A portion of the resulting solution was used for
analysis via analytical size exclusion chromatography and
assayed for binding activity by a surface plasmon reso-
nance (SPR) method. The remaining protein was further
concentrated to approximately 1 ml using an Amicon cell
and Millipore membrane as previously described. The sam-
ple was then applied to a Superdex 75 12-mm � 60-cm col-
umn equilibrated in 50 mM Tris, 150 mM NaCl, pH 8.0,
and was eluted from the column in the same buffer at a flow
rate of 1 ml/min. Fractions identified as containing mono-
meric p38a, by comparison of peak position with analytical
size exclusion chromatography, were pooled and concen-
trated using a Centricon spin concentrator with a 10-kDa
cut-off.

Circular dichroism

Natively folded p38a and refolded p38a to be analyzed
by circular dichroism were extensively dialyzed against 10
mM sodium phosphate buffer, pH 7.4, before analysis. Cir-
cular dichroism analysis of p38a samples was performed on
a Jasco J-810 spectropolarimeter, using a 1-mm-path-
length quartz cuvette. Spectra were measured at a temper-
ature of 20 �C, with a resolution of 0.5 nm. A scanning rate
of 100 nm/min and a bandwidth of 1 nm were used, and
eight scans were averaged per spectrum. Buffer blanks were
subtracted from all spectra. The concentration of samples
for CD analysis was confirmed by A280 measurement
before analysis was performed.

Thermal melting analysis

Thermal melting analysis of p38a was performed using a
PCR-based thermal cycler (iCycler). Analyses were per-
formed in a 96-well format (Bio-Rad) using sypro-orange
dye (Molecular Probes) at a 1:1000 final dilution. Concen-
trated p38a was diluted to a concentration of 0.4 mg/ml
and mixed in a 1:1 ratio with two-fold concentrated buffers
to a final volume of 25 ll. The plate was sealed with optical
tape (Bio-Rad) and centrifuged at 1000 rpm for 1 min to
remove air bubbles. A temperature gradient of 12 to 90
�C in 0.2 �C steps was applied to the sample. Sample fluo-
rescence was recorded for 12 s at each temperature step.
The midpoint of the transition, Tm, was calculated through
fitting the data obtained to a six-parameter curve describ-
ing thermal unfolding.
Results

Screen development

Solubilized inclusion body preparation was found to be
of high purity (Fig. 1). The yield of purified, solubilized
p38a from inclusion bodies was 375 mg protein per litre
of expression culture. Inclusion bodies and native folded
protein were denatured in 8 M urea for 1 h at 30 �C in
accordance with general practice expected to produce fully
denatured protein. The denatured states of inclusion body
p38a and native denatured p38a were compared by dena-
turing analytical size exclusion chromatography to show
that the unfolded state of both preparations were similar.
Both preparations produced comparable elution profiles,
with a central peak at retention time �0.7 CV (Fig. 2),
which corresponds to the retention time measured for
monomeric control p38a (data not shown).

The screening methods used were rapid dilution of con-
centrated denatured protein into solutions containing var-
ious additives and at different pH values, followed by
concentration of the protein and dialysis into a neutral buf-
fer. Several analytical methods were developed to provide
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Fig. 3. Overview of the process of screening for conditions that enhance
the refolding of p38a. The process was designed to rapidly identify the
yield of refolding in a large number of conditions. Analytical methods are
shown in shaded boxes. Volume per condition at each stage and maximum
protein concentration are also shown.
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an assessment of the yield and folded state of the protein.
Purified folded p38a was used to identify the limits of
detection for each method and to demonstrate the repeat-
ability of the methods. An overview of the refolding screen
is outlined in Fig. 3. An analytical method was required to
identify the effectiveness of the screen additives at main-
taining p38a in a soluble form after dilution of the dena-
tured p38a into the various conditions. SDS–PAGE,
using a 96-well E-PAGE gel, was chosen because of its rel-
ative insensitivity to refolding additives compared to that
of other analytical methods and the low limit of detection
which was critical for detecting soluble protein at the low
concentration present in the screen (maximum of 0.1 mg/
ml). A series of dilutions of p38a was run in quadruplicate
on a single gel and stained. Using this dilution series, the
lowest detected band contained �16 lg protein, which cor-
responded to a screen recovery of 1.25% (Fig. 4). We
regarded this recovery a minimum for the refolding of pro-
tein at a large scale to allow production of sufficient protein
for structural studies. This analytical method was used to
restrict the number of conditions that were further ana-
lyzed. If a particular condition did not give a detectable
band on the gel, i.e., the recovery of soluble protein was
less than 1.25%, then the condition was not further ana-
lyzed. Control p38a was used to test the ability of this ana-
lytical method to identify soluble p38a in the presence of
the various refolding additives (data not shown). Refolding
conditions containing guanidine were found to precipitate
the SDS in the sample buffer, preventing the analysis of
these samples. All samples containing guanidine were
therefore analyzed by further analytical methods, despite
the lack of a visible band. The conditions identified as con-
taining potentially useful yields of refolded protein by
SDS–PAGE were concentrated 10-fold to give a maximal
theoretical concentration of 1 mg/ml, which would be
expected to be compatible with the use of less sensitive ana-
lytical methods with higher information content. Samples
were subsequently dialyzed into 10 mM Hepes, 150 mM
NaCl to remove additives that might interfere with these
techniques.

Capillary electrophoresis was chosen as a second analyt-
ical technique to be applied to refolded protein produced
by the screen to quantify the concentration of soluble pro-
tein after concentration and dialysis. This analytical
method was chosen because it offers a high-throughput,
quantitative method for analyzing the total protein remain-
ing in solution. The earlier analytical method, SDS–PAGE,
only allowed a semiquantitative assessment of protein con-
centration. The mean recovery was 237 lg/ml with a stan-
dard error of 2%, demonstrating that the assay is
reproducible. Example data from this analytical method
are shown in Fig. 5. This technique was used as a high-
throughput method to screen for the recovery of soluble
protein after concentration and dialysis. The recovery of
soluble protein identified was used as an additional restric-
tion on the number of conditions analyzed by further tech-
niques. Conditions that did not show a recovery of at least
5% were not analyzed further.



Fig. 4. (A) Dilution series of native folded p38a run on 6% E-PAGE gel under reducing conditions and stained using silver staining. Lane M, molecular
weight markers; lane 1, 1040 lg; lane 2, 520 lg; lane 3, 260 lg; lane 4, 130 lg; lane 5, 65 lg; lane 6, 32.5 lg; lane 7, 16 lg; lane 8, 8 lg. (B) Example of E-PAGE
gel from screen; numbered lanes correspond to single conditions from screen (Table 1). Gel images were processed using E-Editor (Invitrogen) to align lanes.
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Fig. 5. Capillary electrophoresis analysis of refolded p38a. (A) Protein
ladder; LM, lower marker; UM, upper marker; molecular weight of
markers indicated above peaks. (B) Example screen readout electrophe-
rogram. Typical protein analyzed was 0.02–1 lg per condition.

Refolding screen for protein kinase p38a / R.H. Cowan et al. / Anal. Biochem. 376 (2008) 25–38 31
In vitro refolding of a protein may result in intermedi-
ate species prone to intermolecular interactions with other
p38a molecules, resulting in the formation of soluble olig-
omers, that are not present in correctly folded prepara-
tions of native protein. Therefore, to determine whether
the soluble protein is in the correct monomeric form, an
analytical method that separates and quantifies the mono-
meric protein recovered from a refolding condition was
required. For these purposes, analytical size exclusion
chromatography was used. To account for injection-to-
injection variability due to the autosampler used on the
system, it was necessary to include an internal standard.
Myoglobin was selected as its elution peak can be identi-
fied by heme absorbance at 410 nm away from p38a
absorbance at 280 nm. A sample elution profile from a
standard curve is shown in Fig. 6A. A standard curve
of p38a was analyzed via this method in triplicate to
allow the concentration of monomeric protein to be calcu-
lated and to demonstrate the consistency of the assay. The
assay was reproducible but proved to have a lowest limit
of detection of 50 lg/ml (Fig. 6B). A typical chromato-
gram obtained from a screen condition is shown in
Fig. 6C.

The refolding of a protein may also result in a soluble
form of the protein that is monomeric but not correctly
folded. To identify the recovery of correctly folded p38a,
the binding of refolded protein to a UTDC known to bind
to unphosphorylated correctly folded p38a was quantified
using SPR [35]. Conditions in the refolding screen are likely
to lead to the formation of nonnative p38 species, which
may interact nonspecifically with the compound at the sur-
face of the chip. To control for this nonspecific binding, the
binding of p38a to the prepared surface was analyzed in the
absence and presence of an excess of the UTDC in solu-
tion. The excess of free UTDC at 1700-fold above the affin-
ity in solution [35] prevented the specific binding of p38a to
the prepared surface and so allowed the amount of nonspe-
cific binding to be identified. A wide range of protein con-
centration was tested using solubly expressed purified p38
(Fig. 7A). The linear range of response was 10–90 lg/mL
of protein and a standard curve was calculated from a trip-
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Fig. 6. Analytical size exclusion chromatography analysis of native folded
and refolded p38a. (A) Elution profile of 0.5 mg/ml p38a and 0.1 mg/ml
myoglobin. Peak A, p38a, MW 41.3 kDa; peak B, myoglobin, MW 16.2
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p38a analyzed by analytical size exclusion chromatography. (C) Example
of an elution profile from a screen; recovery shown 18%. Typical protein
analyzed was 0.25–12.5 lg.
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Fig. 7. Surface plasmon resonance analysis of refolded and native p38a
binding to immobilized TDC. (A) Series of injections of p38a onto
prepared chip showing increasing response with increasing p38a concen-
tration from 10 to 60 lg/ml. (B) Standard curve for control binding
experiments of soluble p38a. Each point is the mean of three replicate
analyses and error bars show the standard deviation. (C) Example analysis
of screen condition post dialysis. Curve 1, refolded p38a; curve 2; refolded
p38a with 10 lM TDC in solution. Typical protein concentration was 25–
75 lg/ml.
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licate analysis of control p38a (Fig. 7B), showing that the
analytical method is reproducible. The relative response
units used to quantify the binding of p38a to the prepared
surface was the difference in response units in the presence
and absence of free UTDC in solution at 10 lM. Typical
response curves obtained when analyzing a screen condi-
tion are illustrated in Fig. 7C.
Refolding screen for p38a

Inclusion bodies and soluble p38a were denatured with
8 M urea and tested in the screen. The refolding screen
was performed in triplicate to provide reliable data on
the refolding of p38a. The recovery of soluble protein mea-
sured by capillary electrophoresis was generally higher than
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Fig. 8. Recoveries of soluble, monomeric, and folded protein obtained when refolding inclusion bodies (A, C) and soluble, denatured protein (B, D). For
A and B results are for soluble protein recovery (j), monomeric protein recovery (e), and folded protein recovery (d). Each data point represents a single
refolding condition and is the mean of three replicates. For C and D results are for experiments at pH 8.0 for soluble protein recovery (j), pH 9.5 for
soluble protein recovery (N), pH 8.0 for monomeric protein recovery (.), pH 9.5 for monomeric recovery (�), pH 8.0 for folded protein recovery (s), and
pH 9.5 for folded protein recovery (j). Each data point represents the average of the mean recoveries for all conditions at a particular pH and additive
category (as described under Materials and Methods). The error bars indicate the range of values within a category.

Refolding screen for protein kinase p38a / R.H. Cowan et al. / Anal. Biochem. 376 (2008) 25–38 33
the recovery of monomeric protein measured by analytical
size exclusion chromatography and the recovery of folded
protein measured by SPR was generally similar to the
recovery of monomeric protein (Figs. 8A and 8B). The
refolding yields obtained for each additive in the screen
were reproducible across the three replicates, as indicated
by the standard error of the mean shown in Fig. 9.

The refolding yields identified by the analytical methods
used were compared for p38a derived from inclusion body
and for denatured native p38a. Strong differences in the
effect of the pH on the efficiency of the refolding were
found. With both sources of refolded protein (inclusion
body protein and denatured soluble protein), there were
large drops in the recoveries of soluble protein, monomeric
protein, and correctly folded protein at pH 5.8 compared
to the same recoveries at pH 8.0 and pH 9.5. This can be
seen by comparing all of the recoveries obtained at a par-
ticular pH, as shown in Figs. 8A and 8B. The recoveries
of soluble, monomeric, and folded protein, in the presence
of refolding additives, cluster at a higher recovery at pH 8
and 9.5 compared to that at pH 5.8. The drop in the recov-
ery of refolded protein was also generally consistent across
the 31 refolding additives used in the screen (Figs. 8A, 8B,
and 9). However, there were some exceptions; notably the
additives proline and NDSB gave recoveries of soluble pro-
tein as high as 50% but did not give similarly high recover-
ies of monomeric and folded protein. To elucidate the effect
of pH on the recovery of refolded protein, the thermal sta-
bility of natively folded p38a was examined in a series of
buffers (Fig. 10). The results showed that at pH 5.8 (in
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Mes buffer) the protein has a large drop in Tm, of �15 �C,
compared to higher pH conditions. Similar Tm values were
obtained for p38a in Mes and in other buffers at higher pH,
indicating that the reduction in Tm is due to the pH as
opposed to an effect of Mes. This indicates that pH 5.8
causes a destabilization of the structure of the native form
of the protein.

High levels of recovery of refolded protein were
observed in conditions that included no chemical refolding
additive (Fig. 9). Recoveries of approximately 10% were
observed with inclusion body protein and 20% with native,
denatured protein. These recoveries indicate that p38a
refolds fairly easily, as evidenced by the high number of
conditions under which high recoveries of refolded protein
were achieved (Figs. 8A and 8B). Although p38a was
found to refold relatively easily at high pH, many of the
refolding additives that were used enhanced the refolding
of p38a. Figs. 8C and 8D illustrate the effectiveness of
the groups of additives at high pH. A wide spread of results
was observed for some additive groups, particularly osmo-
lytes, denaturants, alcohols, and polyols. This wide range
indicates that, though some additives gave high recoveries
of refolded protein, a few additives in the group gave low
recoveries. Lower average recoveries within these groups
show that these groups, with the exception of usually a sin-
gle exceptional additive, are not efficient at enhancing the
refolding of p38a. Examples of these exceptional additives
were betaine and PEG, which showed enhancement of the
refolding of p38a, whereas similar additives with the same
groups failed to do so. From Figs. 8C and 8D, it is clear
that detergents are generally efficient in enhancing the
refolding of p38a compared to conditions lacking a specific
refolding additive, as seen by the high average recovery
with this particular additive group and narrow range of
the results in this group.

A clear difference was noted in the recoveries of soluble,
folded, and monomeric protein obtained when refolding
inclusion body protein and native denatured p38a. The
recovery of refolded protein obtained with denatured solu-
ble protein was generally approximately two-fold greater



Table 2
Comparison of refolding recoveries of p38a from screen runs and scaled-up experiments

Refolding experiment Renaturation buffer Soluble recoverya Monomeric recoveryb Folded recoveryc

Screen 0.1 M Capso 9 ± 2 13.0 ± 0.1 8 ± 2
Screen 0.1 M Capso + 10% Betaine 15.3 ± 0.7 11.0 ± 0.7 15 ± 1
Scaled-up 0.1 M Capso 13 10 9
Scaled-up 0.1 M Capso + 10% Betaine 15 13 13

Protein recoveries are expressed as percentage of total initial protein. Refolding screen recoveries are mean of three experiments ± SE of mean.
a Soluble protein recovery was assessed by capillary electrophoresis.
b Monomeric protein recovery was measured by analytical size exclusion chromatography.
c Folded protein was evaluated by binding activity via a surface plasmon resonance method (see Materials and methods).
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Fig. 11. Circular dichrosim spectra of natively folded p38a and p38a
derived from inclusion bodies refolded in 0.1 M Capso, 10% betaine, pH
9.5. Protein concentration was 0.1 mg/ml. Spectra were collected at 20 �C
and are the average of eight scans.
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than the recovery of refolded protein from inclusion body
protein at high pH (Figs. 8A and 8B). This was consistent
across the full range of additives. There was no difference in
the recoveries obtained at low pH. Despite lower yields
(Fig. 8), the recoveries of refolded protein obtained with
inclusion-body-derived p38a were still consistent with the
production of significant amounts of protein for structural
studies.

The refolding of p38a was performed at a larger scale,
and the refolded protein was purified to allow the second-
ary structure content of the refolded material to be exam-
ined and to determine the percentage of protein correctly
folded. The examination of the secondary structure content
of the refolded protein provides evidence that the screen is
identifying conditions producing correctly folded p38a.
This refolding was carried out at a 20-mg scale by dropwise
addition of p38a to refolding buffer under the same condi-
tions as in the refolding screen. Six conditions were selected
from the screen that had shown the highest recoveries of
soluble, monomeric, and folded protein. The conditions
from the screen that were tested were 0.1 M Capso, pH
9.5; 0.1 M Capso, 10% betaine, pH 9.5; 0.1 M Capso,
10% ethylene glycol (v/v), pH 9.5; 0.1 M Capso, 0.04%
PEG 3440 (w/v), pH 9.5; 50 mM Tris, pH 8.0; and 50
mM Tris, 1 mM cyclohexanol, pH 8.0. The recoveries of
protein from the scaled-up refolding were found to be sim-
ilar to those obtained in the refolding screen (Table 2),
showing that scaling up did not affect the yields obtained.
The far-UV CD spectra of p38a natively folded and p38a
refolded from inclusion bodies in the presence of 0.1 M
Capso, 10% betaine (w/v), pH 9.5 (after dialysis; see Mate-
rials and methods) were identical (Fig. 11), indicating that
the secondary structure content of the natively folded and
the refolded protein was the same. The other conditions
that were scaled up also showed similar far-UV CD spectra
(data not shown), indicating that the secondary structure
content of these refolded protein samples was also similar
to that of the native state.

To identify the percentage of refolded protein that was
correctly folded, the inhibition of refolded p38a to UTDC
by the known inhibitor of unphosphorylated p38a,
SB202190 [36] was determined. The binding was measured
via SPR and the results fitted to a stoichiometric binding
model, as shown in Fig. 12. From these data the concentra-
tion of inhibitor binding sites was estimated. Because
SB202190 binds to the ATP binding site in p38a, this inhi-
bition assay can measure the amount of correctly folded
protein. The refolded p38a was therefore found to be
92.7 ± 4% folded. These results show that the screen is able
to identify conditions producing correctly folded protein.

The refolding of p38a from inclusion bodies at a 20 mg
scale was used to calculate the yield of soluble, correctly
folded protein that could be achieved by this method. An
average yield of 13% monomeric, folded protein was
obtained from the method used. This corresponded to a
recovery of monomeric, folded protein of � 50 mg protein
per litre of expression culture. This yield would be suitable
for the production of protein for structural studies by a
refolding procedure.

Discussion

The refolding of protein kinases is a challenging process
with little reported success in the production of protein
suitable for structural studies. Overcoming this challenge
is likely to require the screening of a large number of con-
ditions, to identify those that allow refolding of the protein.
It is also critical that the analytical methods used to quan-
tify refolded protein are robust and sensitive.

Commercial refolding screens usually suggest the use of
a functional assay for the target protein as a primary
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Fig. 12. Inhibition of the binding of refolded p38a to immobilized UTDC by SB202190 detected with SPR. Data fitted to a stoichiometric binding model,
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method of quantifying the yield of refolding. However, for
kinases this is not a viable option for several reasons. First,
protein kinases usually require phosphorylation by another
protein kinase on key residues for activation. Inclusion-
body-derived protein kinases are unlikely to be appropri-
ately phosphorylated and therefore production of activated
kinase would require an additional activation step. This is
incompatible with high-throughput screening for refolding
conditions. In addition, some of the refolding additives
may interfere with the phosphorylation of the refolded
kinase, leading to false negatives. Second, many structural
approaches in the pharmaceutical industry make use of
mutants, such as kinase-dead mutants, that show no cata-
lytic activity. Because of these problems, biophysical meth-
ods of protein characterization are required for analyzing
the refolded protein.

The refolding of proteins generally requires a low pro-
tein concentration to reduce aggregation; this means that
the analytical techniques used must be highly sensitive.
Methods that had low limits of detection, corresponding
to minimum useful yields for refolding protein for struc-
tural studies, were chosen. For example, the limit of detec-
tion for the staining of SDS–PAGE gels corresponds to a
refolding yield of 1.25%. We considered this level of recov-
ery a minimum for which refolding would be viable for the
generation of protein for structural studies.

The refolding screen makes use of several refolding addi-
tives, some of which are present at high concentrations.
These additives may interfere with particular analytical
methods. For example, additives such as guanidine, which
cause large changes in the refractive index of the sample,
interfere with SPR measurements. Detergents also cause
large baseline deflections for denaturing capillary electro-
phoresis and analytical size exclusion chromatography.
The analytical methods selected were chosen to address
these concerns. An initial SDS–PAGE screening method
that is relatively insensitive to the additives used was
selected and the refolding additives were removed by dial-
ysis into a neutral buffer.

A hierarchical analysis design was used to eliminate
unproductive conditions early in the process (Fig. 3) by
examining total soluble protein content following refolding
and dialysis. Refolding conditions with a low recovery of
refolded protein were first eliminated by SDS–PAGE anal-
ysis of the refolded protein. Capillary electrophoresis was
also used to eliminate conditions with low recoveries of
refolded protein subsequent to concentration and dialysis,
with conditions with recoveries of less than 5% being elim-
inated to allow manageable numbers of samples to be pro-
gressed to the final two analytical methods.

We demonstrated a series of analytical methods for ana-
lyzing the refolded protein obtained from the screen and
showed that these methods have low limits of detection.
We showed that SDS–PAGE analysis of the refolded pro-
tein was able to identify yields of soluble protein in the
presence of refolding additives of at least as low as 1.25%
or 1.25 lg/ml (Fig. 4). Analytical size exclusion chromatog-
raphy was shown to be able to quantify the recovery of
monomeric protein to a limit of 50 lg/ml or a recovery
of monomeric protein of 5% (Fig. 6). Binding analysis by
SPR of refolded p38a was shown to be able to identify
the yield of folded p38a to a limit of 1% or 10 lg/ml
(Fig. 7). These limits of detection are expected to be com-
patible with screening of kinases with lower yields of
refolding than those shown by p38a.

Strong differences in the yields of refolding of inclusion
body protein and denatured soluble protein were identified
at higher pH values (Figs. 8A and 8B). The reasons for this
difference are unclear. There is no discernable difference in
the monomeric state of inclusion body protein and native
denatured protein in 8 M urea that can be identified by
analytical size exclusion chromatography (Fig. 2). This
demonstrates that there is no difference in the aggregation
states of the denatured protein from both sources. Some
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amount of secondary structure is known to be transiently
present in the unfolded state of proteins in high concentra-
tions of chaotropic denaturants, such as guanidine and
urea [13,37]. However, this is primarily sequence dependant
and would be expected to be the same in both protein prep-
arations [13,37]. It is noteworthy that no additional con-
taminant proteins of inclusion body protein and soluble
protein were identified by SDS–PAGE. (Fig. 1).

The refolding screens carried out identified that there is
a strong dependence of the refolding ability of p38a on pH.
At the low pH used in the screen, the refolding of p38a was
inefficient, with low yields of soluble protein identified by
capillary electrophoresis (Figs. 8A and 8B). The thermal
melting results showed that the inefficiency of refolding at
lower pH values is due to a destabilization of the native
structure of p38a in low-pH buffers (Fig. 10). We propose
that this destabilization is due to changes in the ionization
of residues in the protein, since the pI of p38a is around pH
5.5. Whether this effect is common to serine/theronine pro-
tein kinases or is a specific effect for p38a is not known.
However, a low pI is not a common feature of all protein
kinases, with several related protein kinases having calcu-
lated pIs of at least 8.5.

Conditions identified by the screen leading to compara-
tively high recoveries of refolded protein were used to refold
protein at a higher scale than was performed in the screen to
provide sufficient protein for further analysis and to deter-
mine whether there were significant differences in the refold-
ing yields obtained at a larger scale. The refolded protein
from this higher-scale refolding experiment was used for
the structural analysis of the refolded protein. We showed
that the far-UV CD spectra of control natively folded p38a
and refolded p38a were similar (Fig. 10), with a calculated
secondary structure content analogous to the published
structure of p38a [38]. We also showed the correctly folded
protein to be 92.7 ± 4% of the purified, refolded protein by
inhibitor binding studies (Fig. 12). This indicates that the
protein obtained from refolding inclusion bodies is correctly
folded. The similarity of the refolding yields obtained from
the refolding screen and from the larger-scale refolding per-
formed here demonstrates that the refolding screen is capa-
ble of identifying refolding conditions that are transferable
to high-scale refolding for the production of refolded protein
for structural studies. This transferability is key for the
screen to be useful for identifying refolding conditions for
other, more challenging protein kinases that are produced
in an insoluble form in E. coli.

The screening system that we have established could be
adapted to the refolding of other, more challenging protein
kinases in addition to p38a. These protein kinases may
require the identification of individually specific or generic
compounds capable of being immobilized on available
SPR analysis chips, whilst retaining the ability to specifically
bind the kinase under study. Specific ligands for many of
these kinases and generic compounds capable of binding a
wide range of kinases exist, making our screening system a
viable strategy for other kinases. The chemical additives
and buffer conditions of the screen may also require adjust-
ment. Details of the folding pathways and intermediates of
protein kinases in general are not currently known. It is,
therefore, not known whether protein kinases, and in partic-
ular serine-threonine kinases, will refold in similar condi-
tions. It is not known whether protein kinases other than
p38a will show similar poor refolding recoveries in low-pH
conditions or will have their refolding enhanced or indeed
permitted by similar chemical additives. This will require
testing of the refolding screen with example protein kinases
and the testing of different conditions to create a generic
refolding screen for protein kinases. The results of this test-
ing and the patterns of refolding seen with different protein
kinases will reveal important information about the similar-
ities in the folding pathways of the protein kinases tested and
for protein kinases in general. Analysis of conserved residues
may also reveal important residues in the folding of protein
kinases based on structural alignment of sequences and the
results of similar refolding screens on additional kinases.

We have established a screening system for the refolding
of a model protein kinase. We identified and described a ser-
ies of specific analytical methods that quantify the yields of
refolded protein and identified the oligomeric state of the
protein and whether the refolded protein has adopted the
correct fold. The yield of refolded protein depends strongly
on the pH at which the protein is refolded, and the source
of the protein to be refolded also strongly affects the yield
of refolded protein. In addition, we have shown that refold-
ing can be performed at larger scale, resulting in correctly
folded protein without reducing the recovery yields. This ini-
tial refolding screening system can be adapted and applied to
the refolding of other pharmaceutically important protein
kinases, leading to the identification of methods for the pro-
duction of protein in quantities required for essential struc-
tural analysis that underpin drug discovery projects.
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