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Abstract

Rapid advancements in experimental techniques have benefited molecular biology

in many ways. The experiments once considered impossible due to the lack of

resources can now be performed with relative ease in an acceptable time-span;

monitoring simultaneous expressions of thousands of genes at a given time point

is one of them. Microarray technology is the most popular method in biological

sciences to observe the simultaneous expression levels of a large number of genes.

The large amount of data produced by a microarray experiment requires consid-

erable computational analysis before some biologically meaningful hypothesis can

be drawn. In contrast to a single time-point microarray experiment, the temporal

microarray experiments enable us to understand the dynamics of the underlying

system. Such information, if properly utilized, can provide vital clues about the

structure and functioning of the system under study. This dissertation introduces

some new computational techniques to process temporal microarray data. We fo-

cus on three broad stages of microarray data analysis - normalization, clustering

and inference of gene-regulatory networks. We explain our methods using various

synthesized datasets and a real biological dataset, produced in-house, to monitor

the leaf senescence process in Arabidopsis thaliana.



Chapter 1

Introduction

1.1 Introduction

Over the last ten years or so genome sequencing has made rapid progress. Genome

sequencing has facilitated transfer of information from DNA of a species to elec-

tronic computers. Identification and symbolic representation of correct genes are

only the preliminary goals of genome sequencing, the holy grail of biology lies in

understanding the functions of those genes. This has given birth to a new research

field known as functional genomics.

Much of the success in genome sequencing can be accredited to high through-

put DNA sequencing techniques. This led to what primarily used to be a wet

science to become in larger part an information science [Qua07]. Similar high

throughput techniques have been developed for functional genomics also. Most

notable among them are DNA microarray technologies. Microarrays allow re-

searchers to monitor simultaneous gene expression levels of thousands of genes in

an organism in a single experiment. On one hand, advancing experimental tech-

niques are producing tons of data which can provide clues about the functions

of genes, on the other hand, it is becoming more complicated to extract mean-
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ingful information from that data and build biological hypotheses which can be

tested in laboratories. The development of computational methods and tools to

analyse such massive data is the task of computational biology and bioinformatics.

This dissertation addresses some of the challenges found in analysis of mi-

croarray data and provides techniques to address them. We provide a complete

pipeline for dealing with three broad stages in microarray data analysis, namely,

normalization, clustering and inference of gene regulatory networks. Our goal is

to automatically infer the meaningful signals using statistical techniques and build

plausible biological hypotheses for further testing in the laboratory.

1.2 The Central Dogma of Molecular Biology

To understand how gene expression works, we need to understand the Central

Dogma of biology. Cells are fundamental working units of every living organ-

ism. Cells are largely made of proteins which define their shapes and structures.

Proteins are functional molecules essential for performing many life functions like

catalysis, signalling etc. The central dogma of biology charts out the flow of infor-

mation from DNA molecules to proteins. DNA is a stable molecule containing the

complete genetic blueprint of living organisms. The information in DNA is stored

as a code made up of four chemical bases known as nucleotides : adenine (A),

guanine (G), cytosine (C), and thymine (T). Segments of DNA known as genes

are transcribed into messenger RNA(mRNA) which are subsequently translated

into proteins. This complete process is known as gene expression.

Figure 1.1 presents a pictorial representation of the stages involved in the cen-

tral dogma. There are three broad stages in the inheritance of genetic information

and its conversion from one form to another. In the first stage of replication, a
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The Central Dogma of Molecular Biology

Replication
DNA duplicates

Transcription
RNA synthesis

Translation
Protein synthesis

DNA

Information

Information

mRNA

RNA polymerase Nucleus

Cytoplasm

Nuclear membrane

mRNA
ribosome

protein

Protein

RNA

(Andy Vierstraete 1999)

Figure 1.1: The central dogma of molecular biology. Figure from [Vie99].

DNA creates identical copies of itself and the genetic information is replicated. A

segment of DNA called a gene contains both coding sequences that determine the

function of the gene, and non-coding sequences that determine when the gene is

active (expressed). When a gene is active, the second stage in the central dogma

named as transcription takes place, where the coding and non-coding sequences of

the gene are copied to produce a single stranded RNA copy of the gene’s informa-

tion. The RNA moves from the nucleus into the cytoplasm where the ribosomes

are located. There are multiple types of RNAs in nature, but the one responsi-

ble for protein coding is known as messenger RNA or mRNA. The mRNAs are

surrounded by ribosomes. In the final stage of the central dogma known as trans-
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lation, the mRNA sequence is translated into a sequence of amino acids as the

protein is formed. The translation of mRNA to protein is performed by ribosomes

which read three bases (a codon) at a time in the mRNA sequence and translate

them into one amino acid according to the rules specified by genetic code.

A key consideration is that all the cells in an organism’s body contain the

same copy of DNA molecule, yet all the cells are not same. The diversity is

due to the difference in gene expressions across different cell types. Different gene

subsets which eventually lead to different proteins synthesized, express themselves

in different ways by reflecting both the cell types and their conditions. Microarrays

quantify the gene expressions by monitoring the abundance of mRNA molecules

during the transcription stage. The amount of each mRNA detected in the cell

can provide information on the level of expression for the corresponding gene.

1.3 How Do Microarrays Work

Microarray technology is based on the principle of DNA hybridization, a process in

which DNA strands bind to their unique complementary strands. A DNA molecule

consists of two complementary strands, each strand containing the information to

describe the other (adenine(A) bonds only to thymine(T), and cytosine(C) bonds

only to guanine(G)). A microarray is typically a solid surface of either glass or

silicon chip. A set of specific DNA oligonucleotides, or cDNA, or small fragments

of PCR (polymerase chain reaction) products corresponding to mRNAs (these all

are collectively called known sequences) are attached on the solid surface at fixed

locations using covalent bonds. The choice of oligonucleotides, cDNA, or PCR

products depends on the manufacturers of the arrays. The immobilized known

sequences are also called probes. The fluorescently tagged targets (unknown se-

quences) bind by hybridization to the probes on the array with which they share



Chapter 1. Introduction 5

Figure 1.2: Overview of a typical microarray experiment with two samples. Figure ob-
tained from [Com09].

significant sequence complementarity. After allowing sufficient time for the hy-

bridization to take place, the excess sample is washed off the solid surface. The

binding affinity of each probe with the labelled target reflects the proportion of

the expression of the gene represented by that probe. Hybridized microarrays are

excited by a laser and scanned at suitable wavelength for detection of fluorescent

dyes to estimate the amount of intensity bound to each probe. The intensity

measured at each probe is an indicator of the expression level of the gene on that

array, which after adjustment for technical artefacts, should provide an estimate

of the level of gene expression which can be used for further analysis.

Microarrays can be used to measure gene expressions in different ways. One of

the most popular approaches is to compare gene expression levels in two different
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samples representing the same cells or cell types under two different conditions.

In this case, the mRNA extracted from each sample is labelled differently, for

instance, a green label (using the fluorescent dye Cy3 having the fluorescence

emission wavelength of approximately 570 nm) for the sample from condition 1,

and a red label (using the fluorescent dye Cy5 having the fluorescence emission

wavelength of approximately 670 nm) for the sample from condition 2. Both the

Cy-labelled samples are mixed and hybridized on a single array. The hybridized

array is scanned at the suitable wavelengths to produce separate expression pro-

files for Cy3 and Cy5 tags. Figure 1.2 shows steps in a typical microarray exper-

iment involving two sample types. Such experiments typically rely on the ratio

based analysis of relative intensities of samples to identify up-regulated or down-

regulated genes.

Another popular variation of microarray experiment involves hybridization of

single-labelled population of samples to each array. In this case, the experiments

give estimations of the absolute level of gene expressions. If we want to compare

gene-expressions for two different samples, we need to perform two separate single-

label experiments and compare the absolute gene-expression levels. In this case,

comparisons are primarily made between the data obtained from different arrays,

as opposed to between the labelled populations hybridized to a single array. The

experiments with two-colour labels are also known as two-channel experiments.

On the same lines, the single-colour experiments are known as single-channel

experiments. An advantage of single-channel experiments over two-channel ex-

periments is that the absolute value of gene expressions may be easily compared

between studies from different experiments conducted months or years apart. At

the same time, it is possible to treat a two-channel experiment as a single-channel

experiment by taking each channel intensity as the absolute expression level rather
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than relying on the intensity ratios of spots between samples.

Microarrays are useful in a wide variety of studies to achieve wide variety of

objectives. The objectives can be broadly divided into four categories -

1. Class comparison - Involves comparison of gene expression profiles among

samples selected from predefined classes to identify the differentially ex-

pressed genes,

2. Class prediction - Similar as class comparison, but requires building a sta-

tistical model to predict the class of a new specimen based on its expression

profile,

3. Class discovery - Involves the identification of novel subtypes of specimens

within a population. In context of drug discovery, class discovery methods

can be used to find putative (sub-)types of diseases and to identify informa-

tive subsets of genes with disease-type specific expression profile,

4. Pathway analysis - Involves identification of co-regulated genes, or the ones

which belong to the same biochemical pathway.

Microarrays were first used to study global gene expressions in Saccharomyces

cerevisiae in 1997 by DeRisi et al. [DIB97]. A genome-wide measurement of tran-

scription is called an expression profile and provides us with a complete list of

genes whose transcription level is affected in a given condition. In a biological

sense, what we measure is how the gene expression of each gene changes to per-

form certain coordinated tasks.
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1.4 Time Courses vs. Independent Data Point

There are two types of microarray datasets : time-independent (or single point

steady-state), and time-series(time dependent) datasets. The majority of the mi-

croarray experiments are carried out for pair-wise comparison between different

samples at a single time-point. It is relatively easy to compare and contrast single-

point datasets belonging to different experimental conditions to identify the sets

of differentially expressed genes across conditions. However, to verify that the ob-

tained results are reliable and robust to variations in the experimental procedure,

it is necessary to repeat a given experiment several times independently. Thus,

a successful comparison for time-independent datasets requires several indepen-

dent repetitions of the experiment in which the different conditions are tested in

parallel. In general, the time-independent gene expression profiles are capable of

recovering steady-state behaviour of the system, but fail to recover the temporal

regulating relationships.

Time course experiments, on the other hand, can improve the inference greatly

in contrast to time-independent data sets [ZSD06]. Time course experiments have

been proven to be useful in a number of experimental systems, providing informa-

tion about the difference in each transcript over different time points, reflecting

information about the order of events and their trends. Another main advantage

of the time-course experiment is that samples for a given experiment are all de-

rived from a single relatively homogeneous population, making the results much

less sensitive to the population-specific effects or the slight differences in the ex-

perimental or biological background. The time points at which mRNA samples

are taken are usually determined by the investigator’s judgement concerning the

biological events of interest.
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Time course experiments can be further classified into two categories : peri-

odic and developmental. Periodic time-courses include natural biological processes

whose temporal profiles follow regular patterns. Examples are cell cycles [SSZ+98],

circadian rhythm [HHS+00, CCWN+01] etc. In developmental time course exper-

iments, gene expression levels are measured at successive times, depending on the

timing of phenomena of interest, during the developing phase, for example , nat-

ural growth or decay [TBW+02, HVV+04] in a cell type. Such experiments are

also useful in understanding effect of controlled stimulus in a given system, for

example, the effect of drug treatment on a cell type over a period of time.

1.5 Data Generation and Processing

Collection and analysis of data in any high-throughput experiment like microarray

can be performed in two major stages :

1. Material processing and data collection stage, and

2. Information processing stage

The material processing and data collection stage is concerned with the lab based

activities related to the biological samples and experimental instruments, and can

be further broken down into the following steps -

1. preparation of biological samples to be studied;

2. extraction of RNAs from the samples;

3. labelling of RNAs using fluorescent dyes;

4. hybridization of labelled RNA extracts to the array;
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5. excitation of arrays by laser at suitable wavelength to detect the hybridiza-

tion intensity;

6. scanning the hybridized array to produce image files.

Figure 1.3: Processing pipeline for a typical microarray experiment.

The information processing stage is essentially computer based analysis of the

data and can be broken down into four distinct steps -

1. image processing of the scanned images to extract gene expression levels;

2. normalization of gene expression values;

3. clustering of genes;

4. inference of regulatory networks.

A systematic diagram for the order of steps in each stage can be seen in

Figure 1.3. The last three steps in the information processing stage are the focus
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of this thesis. The steps need to be performed in a sequential order as shown in

the pipeline in Figure 1.3 before some meaningful hypothesis from data can be

derived. We present a brief description of the steps in the information processing

stage -

� Image processing - The digital images obtained from microarray experiments

need to be analysed in order to gain information about gene expression lev-

els. Each spot on the array is identified and its intensity is measured and

compared with the background. Image quantification is usually performed

by image processing software which sometimes are provided by microarray

manufacturers. The image quantification software extract the data from

digitalized images and combine in a table commonly known as the image

quantization matrix. Each row represents one spot on the array, and each

column represents different quantitative characteristics like mean or median

pixel intensity for that spot. Image quantification for microarray experi-

ments is not a trivial task and can be regarded as an area for experts.

� Normalization - The data from multiple hybridizations or different arrays in

the image quantization matrix must be further analysed and should be com-

bined into a gene expression matrix. In the gene expression matrix, each row

represents a gene and each column represents a particular biological sam-

ple or experimental condition. The combination of information from image

quantization matrix to gene expression matrix is not a trivial task. There

are several experimental artefacts which must be taken into account while

doing the conversion. There are many biological and experimental variations

which can affect the expression level of each spot. The biological samples

and the experimental conditions may differ across different arrays, and ob-

taining a single value for each gene can require considerable attention. The

data must be normalized to handle the variations in the experiments and the



Chapter 1. Introduction 12

values across spots. There are many methods for microarray normalization

but there is no standard fitting all the cases. The data normalization is very

much dependent on the platform, experimental setup and practitioner’s hy-

pothesis. Once the data has been normalized properly, we use values in the

gene expression matrix for further analysis and data mining.

� Cluster Analysis - The next step after data normalization is to group the

genes based on certain features which help in reduction of data dimension.

The goal of clustering techniques is to discover the underlying gene pathways

representing the biological processes. Genes lying in the same pathway are

often activated or depressed simultaneously or sequentially upon receiving

stimuli. Clustering can help in recognizing biologically relevant patterns

among genes. The importance of clustering is more apparent while dealing

with a large number of genes. Automated grouping of genes in several

clusters on the basis of structural or functional similarity can substantially

help in recognition of genes of interest, and thus, can reduce the amount of

data to be analysed further.

� Inference of regulatory networks - The ultimate goal of microarray experi-

ments is to understand the interactions among genes. Understanding the in-

teractions can help unlock the functioning and behaviour of genes leading to

development of potential therapeutic targets and drug discovery. Gene reg-

ulatory networks are indicators of networks among genes and are concerned

with the control of transcription i.e., how genes are up or down regulated

with respect to different signals. Inference or reverse-engineering of gene

regulatory networks from data is a step downstream to cluster analysis in

the microarray information processing pipeline. Reverse-engineering refers

to an approach where one tries to design a model that fits the data. The
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choice of computational methods for creating the models depends crucially

on the kind of modelling techniques used. The models can produce further

hypothesis which can be verified in additional laboratory experiments.

1.6 Overview of the Arabidopsis Experiment

Much of the work in this dissertation is explained and tested with the microarray

data produced by scientists at Warwick Horticulture Research group at the Uni-

versity of Warwick, UK. The experiment was performed to study the process of

senescence in leaves of Arabidopsis thaliana over a period of time.

Arabidopsis thaliana (also known as thale cress, mouse-ear cress or Arabidop-

sis) is a small garden weed type flowering plant. Although not an economically

important plant, Arabidopsis has become popular as a model organism in plant

biology due to its genome being one of the smallest among other plant genomes.

It was also the first plant genome to be sequenced. Arabidopsis has several traits

that make it a useful model for understanding the genetic, cellular, and molecular

biology of flowering plants. Arabidopsis has a short life cycle of about 8-10 weeks

and it can grow about 50 cm in height in as little as 1cm3 of soil. The small

size and the rapid life cycle of the plant are advantageous for research. It can be

grown in a small space and it produces many seeds. Each of these traits leads to

Arabidopsis being a model plant organism for plant biologists.

The primary goal of the project undertaking the biological experiment ex-

plained in the following sections was to understand the senescence process in

leaves of Arabidopsis. Senescence is a term for the collective process that leads

to the ageing and death of a plant or a plant part, like a leaf. In the case of

animals, ageing and senescence are used interchangeably, but, in case of plants,
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Figure 1.4: Arabidopsis plant.

senescence is well differentiated from ageing which is a passive time-dependent

degenerative process. Senescence in a plant, on the other hand, is an internally

regulated developmental process based on an adoptive mechanism, and the death

is its consequence. The basic molecular mechanism of senescence both in plant

and animal systems may be the same. Senescence can take place due to natural

reasons, or due to environmental stress factors. The process involves expression

of specific genes. As for example, plants undergo the process of leaf senescence to

prepare for winter and recycle some of the valuable and scarce mineral nutrients.

Leaf senescence is also a mechanism to get rid of old and photosynthetically less

efficient leaves in the evergreen plants.

In Arabidopsis, leaf senescence is a programmed cell event responding to wide

range of external and internal signals. The leaf senescence in Arabidopsis is con-

trolled by age in a predictable manner. Each individual leaf has a similar lifespan
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and therefore, leaves that develop later in life, will senesce later. In addition to

age, plant hormones and environmental conditions can modulate the progression

of leaf senescence [Sma94, Pes05]. The process, however, is not only concerned

with death alone, but involves several events associated with massive mobiliza-

tion of nutrients in a highly ordered and regulated manner from senescing leaves

to new leaves, seeds and buds, thus contributing to the nutrient cycling. Many

different genes show enhanced expressions during senescence process, and can

help elucidate the underlying signalling pathways. Identification of the key genes

and pathways can result in understanding the mechanisms that occur during the

senescence process. Although, the leaf senescence alone can not explain the senes-

cence process in the whole plant, but can provide vital clues for understanding

senescence as a whole process.

1.6.1 Material Processing and Data Collection

The experiment was performed over 40 days with the following steps involved in

the material processing and data collection stage.

� Plant growth and leaf material acquisition: Arabidopsis plants (Columbia

seed type also known as COL-0) were grown in a controlled environment

at 20oC temperature , 70% relative humidity and 250µ mol m−2s−1 light

intensity. The plants were subjected to long days with 16 hours of sunlight.

The seventh leaf (leaf 7) on its emergence during the development of each

plant was tagged with a cotton around it. Figure 1.5 (a) shows a cotton

tagged leaf. The cotton tags would act as identifiers later in the experi-

ment. Four such leaves were selected for harvesting purposes. After 19 days

from sowing, when the leaf 7 was fully developed, it indicated the beginning

of the time course. The biological replicates were harvested both in morning

and evening (7h and 14h into light period) on every other day for next 22
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days. Figure 1.5(b) shows the plant growth on day 1,15 and 19 since the

data collection started. Figure 1.6 shows the development of leaf 7 from

fully developed until fully senescent. This resulted in total 22 time point

samples for each leaf.

(a) (b)

Figure 1.5: (a) Cotton tag around leaf 7 (b) The plant images on day 1, 15 and 19 since
the data collection started. Leaf 7 is marked with an arrow.

Figure 1.6: Profiles of a leaf over 22 days during the senescence. The left most (first)
profile shows a fully developed leaf and the profile was taken 19 days after sowing the
plant.

� RNA isolation and probe preparation: RNA was isolated from 4 individual

leaves as separate biological replicates using the Triazol method (Invitrogen)

followed by RNeasy column purification (Qiagen). RNA was amplified using

a MessageAmp II (Ambion) and then labelled with Cy3 or Cy5 using reverse

transcriptase (SuperScript II, Invitrogen). Each amplified RNA sample was

labelled twice with Cy3 and twice with Cy5 giving 4 technical replicates for

each leaf sample. Two Cy3 and Cy5 labelled samples (in 25% formamide,

5x SSC, 0.1% SDS and 0.5 mg ml−1 yeast tRNA) were mixed in different

combinations for hybridization to microarray slides.
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� Hybridization: The microarrays used for analysis of the samples were Com-

plete Arabidopsis Transcriptome Micro Arrays (CATMA). Each array con-

tains 30,336 gene probes belonging to the genome of Arabidopsis. These

arrays are produced by Warwick HRI using a sterile spotting machine. The

description of the machine and the array can be found in [LKB+07]. These

arrays were hybridized with labelled samples at 42oC overnight. Slides were

washed and then scanned using an Affymetrix 428 array scanner at 532nm

(Cy3) and 635nm (Cy5).

1.6.2 Information Processing

Array Scan 
Images

Image 
Quantification Matrices

Gene Expression 
Data Matrix

Time

G
en

e

Figure 1.7: Scanned images are read using Imagene to produce text files with details of
signal intensity and other statistics for each gene in the image file. The text files are read
to produce quantization matrices after adjusting the gene intensity. The quantization
matrices are further combined using normalization method to produce the final gene
expression matrix for further data analysis.

The first step of the information processing stage, i.e. the image analysis
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was performed using Imagene version 7 software (BioDiscovery, http://www.

biodiscovery.com/). Figure 1.7 presents a schematic diagram of obtaining a

final gene expression matrix from scanned image files. We have one scanned dig-

ital image file (.tiff format) for each replicate at each time-point. The image files

were read using the Imagene software to produce text files with signal intensity

values for the genes, along with other statistics like background mean, median etc.

The quantified values for all the replicates were further adjusted and combined to

produce a final gene expression matrix. The process to produce the gene expres-

sion matrix from quantification matrices is called normalization. The expression

values in the final gene expression matrix will be used for the remaining stages in

the information processing pipeline. The normalization step to produce the final

gene expression matrix along with the other steps in the information processing

stage are explained in greater details in later chapters.

1.7 Road-map of the Dissertation

This chapter presented an overview of the microarray technology and explained

the experiment performed to understand the process of senescence in Arabidop-

sis leaves. The main focus of this dissertation is on the development of statistical

techniques for the last three steps in the information processing stage in a microar-

ray experiment, last three steps being normalization, clustering, and inference of

regulatory networks.

The immediate step after the image analysis in the information processing

stage of microarray is to clean the data from unwanted experimental variations,

and combine the expressions collected from different arrays to produce a single

gene expression matrix. Chapter 2 presents a normalization method to deal with

different sources of experimental biases in the data. The data is normalized us-

http://www.biodiscovery.com/
http://www.biodiscovery.com/
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ing a statistical error model and different sources of experimental variations are

estimated. The method further uses an iterative algorithm to minimize the cor-

relation among the residual terms across replicates.

The normalized data is clustered according to the temporal profiles of genes in

Chapter 3. Clustering assigns genes into groups based on their related expression

patterns; such groups contain functionally related genes or genes that are co-

regulated. We adopt a Granger causality based temporal-precedence technique

to cluster the Arabidopsis genes. The association graph showing the connectivity

between various genes is analysed using a graph-theoretic method to detect dense

regions in the graph. The dense regions could be indicators of the biologically

relevant complexes. The genes in the subgraphs representing the dense regions

are queried against publicly available Gene Ontology database to test for the func-

tional similarities between genes.

In Chapter 4, we present a reverse-engineering technique to infer gene cir-

cuits from temporal microarray data. We extend the Granger causality technique

presented in Chapter 3 to infer directional network structures from gene data

in a multivariate context. We name this technique Partial Granger Causality

(PGC). Partial Granger Causality is tested using various artificial datasets repre-

senting different scenarios of connections among the participating entities. Partial

Granger Causality is further applied to a publicly available dataset for Human T-

cell activation. We apply Partial Granger Causality to infer gene circuits from

the Arabidopsis data in chapter 5.

Chapter 5 brings the techniques discussed in previous chapters together and

presents a complete pipeline for analysis of the Arabidopsis data; starting from
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normalization to the inference of selected gene circuits. Chapter 5 also introduces a

frequency based analysis for the Arabidopsis dataset to detect interesting patterns

in the frequency domain. The Partial Granger Causality discussed in chapter 4 is

extended to infer interactions between sets of genes, and the extended technique is

called Complex Granger Causality. Three gene circuits, namely, circadian, ethy-

lene, and a global gene circuit are inferred using Partial and Complex Granger

Causality.

In the last chapter, we summarize the work done in each chapter. We conclude

with a discussion on the possibilities of improvements in the proposed methods

and some open questions.



Chapter 2

Normalization of Gene Expression

Data

Microarray technologies provide a powerful mechanism to simultaneously detect

and measure expression levels for tens of thousands of genes in a single experi-

ment. The vast quantity of data if suitably analysed can help in understanding

cellular processes, diagnosis of diseases and development of potential therapeu-

tic targets. The effective analysis of the experimental results relies on the good

quality of data. Experimental variations such as design of arrays, mRNA qual-

ity, labelling and dye effects, hybridization conditions, human and machine errors

in the scanning process contribute towards obscuring variations found in a Mi-

croarray data. To overcome these obscure variations, and make the observations

from different arrays comparable, an effective normalization technique is required.

The beginning point of any normalization method is reading the digital image

files and forming the image quantization matrices. The gene-expression values in

the matrices then need to be adjusted to produce cleaner data for further analysis.

Image processing softwares like GeneSpring [gen09], Imagene [ima09] etc. analyze

image files and generate a number of statistics for each gene intensity. The typ-
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ical measurements reported are total intensity, mean, median and mode of pixel

intensity distribution, as well as an estimate of these for the local background,

and other statistics such as the standard deviation of both signal and background.

Once the appropriate adjustments have been made during image analysis to pro-

duce the quantization matrices, the process of normalization begins to adjust the

gene values for different systematic biases. Normalization techniques differ ac-

cording to microarray platforms and designs of experiments. We discuss mainly

the normalization techniques used for two-channel or two-colour (red and green)

microarray platforms in this chapter.

The objective of normalization is to adjust the gene expression values of all

genes on the array to remove experimental artefacts. All normalization methods

are based on some underlying assumptions about the data and the experimental

design, and consequently, the normalization approach used must be appropriate

to the particular experiment in consideration. In a typical microarray experiment,

there are two decisions to be made for normalization : which genes to use as nor-

malization genes, and which normalization algorithm to use.

Normalization approaches typically use either the complete set of arrayed genes

or a control set of genes, generally, either a set of housekeeping genes or a set of

spiked-in genes. Housekeeping genes are the ones that are involved in essential

activities of cell maintenance and survival, but that are not involved in cell func-

tion or proliferation. Because all cells need to express these genes to survive, it

is reasonable to expect that such genes will be similarly expressed in all samples

in the experiment. Unfortunately, it is often difficult to identify housekeeping

genes, also, there is a accumulating evidence that many of these genes change

in expression under some circumstances [LSGH02, TZL+99]. Spiked-in genes on
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the other hand are realized by including in all the samples some RNA which is

generally not found in either sample. For example, adding some yeast RNA in

human samples. By placing some relative amount of RNA into all the samples, it

is possible to create an artificial set of housekeeping genes which will have same

expression across both the channels in a two-colour microarray experiment. The

problem with this method is that it is necessary that the proportion of sample

RNA of spiked RNA must be the same in both the channels. This is a technically

challenging problem.

Once a normalization gene set has been selected, a normalization factor is

calculated for each gene and is used to adjust the data to compensate for the

experimental variability. The key consideration in normalization methods involves

determination of the amount by which the genes in the red channel change relative

to the genes in the green channel. The bias can differ from array to array and

gene to gene. Once the size of the bias is estimated, we obtain the final signal

value by subtracting the normalization factor from the observed log ratio of genes

between two channels. The normalization algorithms to estimate this bias can be

categorized in three categories :

1. Linear or global normalization

2. Intensity based normalization, and

3. Location based normalization

Linear or global normalization assume that the red and green intensities have

a linear relationship for the normalization genes on a given array. The slope of this

linear relationship will determine the amount of normalization required. Since a

single parameter is used to scale the whole data, this type of normalization tech-

nique is also known as global normalization. Some of the examples for the global
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normalization technique are, log centering, rank invariant methods [TRLW01],

quantile-based method [BIAS03], linear regression approach [CP91], and Chen’s

ratio based method [CDB97] etc. Yang et al.[YDLS01] summarized a number of

normalization methods for global normalization in their publication.

Another group of normalization techniques called intensity based normaliza-

tion methods consider that the overall magnitudes of the spot intensity may have

an impact on the relative intensities between the channels. This claim is assessed

using so-called M-A plots proposed by Yang et al. [YDLS01, YDL+02]. Locally

weighted linear regression (LOWESS) analysis has been proposed as a normaliza-

tion method that can remove such intensity-dependent effects [YDL+02, Cle79].

Kepler et al. [KCM02] proposed a local regression to estimate normalized inten-

sities as well as intensity dependent error variance. Smyth et al. [SS03b] present

a comparison of methods used for intensity based normalization methods.

An artefact that is sometimes observed is that the background subtracted

log-ratios on an array varies in a predictable manner based on their position on

the array. Such artefacts could appear due to the difference in print-tips used

to create the slide. In order to perform such location based normalization, it

is necessary that there be significant number of normalization genes within each

grid. A non-linear LOWESS normalization for correcting spatial heterogeneity

was proposed by Edward [Edw03]. Chen et al. proposed a normalization method

to adjust for location based biases combined with intensity biases [CKS+03]. Fan

et al. [FTVWY04, FHP05] have presented error model based iterative algorithms

to estimate the print-tip effects on two-colour microarrays.

There are number of other techniques proposed to deal with the choice of nor-
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malization techniques with reference samples. See [Qua01, Qua02, PYK+03] for

a detailed review of the subject.

Much of the above techniques depend on the experimental designs where ref-

erence gene sets are available, which serve as a basis for comparison between

samples. Another class of popular normalization techniques which do not utilize

common reference samples have been studied using statistical error models. The

experiments which do not compare two samples, or do not use reference samples,

the log ratios of channel intensities do not need to be representative of expres-

sion level of genes on an array. Instead of taking log ratios, the analysis must

be based on channel specific intensities. Models of this type have been suggested

by Kerr and Churchill [KKC00, KC01], Wolfinger et al. [WGW+01], Dobbin et

al. [DSS03] etc. Such models explicitly include various factors of variations like

sample bias, dye bias, array bias etc. and are fitted for each gene on the array.

As an example, we present a model presented by Kerr and Churchill [KKC00]

to help understand this concept. Assume that a microarray experiment involves

multiple arrays. Every measurement in the microarray experiment is associated

with a particular combination of an array, a dye (Cy3 or Cy5), a variety type, and

a gene. Let yijkg denote the log value of measurement from the ith array, jth dye,

kth variety type, and gth gene. To account for the multiple sources of variation

in a microarray experiment, they formulated the model in the following way :

yijkg = µ+ Ai +Dj + Vk +Gg + AGig + V Gkg + εijkg

Here, µ denotes the overall average signal, Ai represents the effect of ith array,

Dj represents the effect of jth dye, Vk represents the effect due to the kth verity

type, Gg represents the effect of the gth gene, AGig represents the effect due to the

combination of array i and gene g, and V Gkg represents the interaction between
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kth verity and gth gene. The error terms εijkg are assumed to be independent

and identically distributed with mean 0. All of the above effects may not be

of general interest but account for sources of variations in the microarray data.

It is possible to include other effects as well in the model based on the requirement.

Although, there are many methods for microarray normalization but there is

no standard fitting all the cases. The data normalization is very much dependent

on the platform, experimental setup and practitioner’s hypothesis. Also, normal-

ization alone cannot control all systematic variations but plays an important role

in microarray data analysis. The adjusted expression data can significantly vary

with different normalization procedures. Subsequent analyses, such as detection

of differentially expressed genes, clustering and inference of gene networks depend

a lot on the quality of data obtained after normalization [PYK+03].

2.1 Normalization Model for the Arabidopsis Experiment

To understand what could be a suitable model for normalization for the Arabidop-

sis data discussed in section 1.6, let us summarize the scenario again. We collected

data from 4 leaves, each one provided us a biological sample at each time point.

RNA samples were extracted from each leaf which were labelled twice with Cy3

and twice with Cy5, providing 4 technical replicates for each biological sample.

The data has been collected over 22 days. The main aim of the experiment is to

monitor the temporal activities in leaves during the process of senescence. The

data from a two-colour experiment like ours (Cy3 and Cy5 dyes representing green

and red colours respectively) can be analysed in two ways. One way is, when we

are comparing fold change in two samples where each sample is labelled differently.

We take log ratio of Cy3 and Cy5 for each gene to provide us one data point for ev-

ery two spots on the array. The other way is, we read absolute level of gene expres-
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sion for each spot on array and treat each Cy3 and Cy5 readings as separate data

points. Since we are not interested in fold change or comparison of samples, nor do

we use any reference sample in our experiment, we take absolute levels of gene ex-

pression for our analysis. We use background-subtracted gene intensities reported

by Imagene software for preparing the quantization matrix. Using this approach,

we have 4 leaves×4 replicate×22 time-points×30336 genes = 10, 678, 272 values

in our spot quantization matrix. The matrix can be arranged in a 30336×16×22

form, where 30336, 16 and 22 are the number of genes, total replicates and total

time points respectively. Considering that we know the independent biological

and technical units in the experiment, and we have 16 values for each gene for

each time point, we aim to estimate the influence of unwanted systematic varia-

tions and minimize them. Lack of reference samples and availability of multiple

replicates allow us to construct a statistical error model for normalizing the gene

expression values. As a test, whether our model satisfies the criteria of removing

systematic biases, the residuals associated with genes in a replicate, standardized

by the estimated gene-wise variances, should show a Gaussian distribution. Also,

the correlation between residuals from one replicate to other replicate should be

minimum.

In the following sections, we construct a statistical error model which can deal

with our dataset. The model is generic in nature and can deal with any dataset

adhering to similar experimental condition like ours. We test the model using the

complete Arabidopsis dataset.

2.2 Methods

Let Ygbi be the log of observed gene expression for gene g, on biological sample

b, measured on the replicate i. To account for multiple sources of variations in a
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microarray experiment, consider the following model

Ygbi = αg + βb + γbi +Mgbi + ζgbi (2.1)

where αg is the assumed true value of the gene expression, βb is the systematic

variation associated with each biological sample,γbi is the systematic variation

associated with the replicate i for the biological sample b. Mgbi is the confounding

effect of dyes and other experimental conditions. Finally, ζgbi is the residual or

error term in the model. Our goal is to -

1. Estimate all the above factors of variations

2. Estimate the error term ζgbi such that it is independent and identically

distributed with zero mean and constant variance, and

3. Minimize the correlation between the error terms across replicates

Here we assume that each gene is spotted only once on each array and the repli-

cates include both biological and experimental replicates.

For simplicity, the model in 2.1 can be expressed as

Ygbi = αg + βb + γbi + εgbi (2.2)

where

εgbi = Mgbi + ζgbi (2.3)

For the further derivation, we fix g = 1, 2, . . . , G, b = 1, 2, . . . , B and i =

1, 2, . . . , I associated with each b. We first present the following steps for estima-

tion of γbi, βb and αg, and later we show how to process εgbi to achieve final goals.
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With each biological sample b and the replicate i associated with it, the average

gene expression for a gene g can be obtained as

Y gb =
1

I

I∑
i=1

Ygbi (2.4)

The bias associated with each replicate i for a given b can be obtained by removing

the effect of average gene expression Y gb from each Ygbi. Thus

Ygbi − Y gb = αg + βb + γbi − αg − βb −
1

I

I∑
i=1

γbi + ε′gbi (2.5)

Using the Least-square estimates, the systematic variation γbi can be estimated

as

⇒ γ̂bi =
1

G

G∑
g=1

(Ygbi − Y gb) (2.6)

To estimate the variation βb among biological samples we first remove the variation

γ̂bi from the log of observed gene expression. Let

Y ′gbi = Ygbi − γ̂bi

hence according to our model in 2.2

Y ′gbi = αg + βb + εgbi

Now, for each b we have

Y ′′gbi = Y ′gbi − Y gi
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where Y gi is the average gene expression for a given replicate i across all the

biological samples b = 1, 2, . . . , B.

Y ′′gbi = αg + βb − [αg +
1

B

B∑
b=1

βb] + ε′′gbi

β̂b for b = 1, 2, . . . , B can be estimated using Least-squares and by averaging

over all the genes g = 1, 2, . . . , G. In the next step, we can remove the biolog-

ical variation βb and the combined effect of variation of biological sample b and

replicate i captured in γ̂bi from the Ygbi to estimate the expected value of the gene

expression αg.

Y ′′′gbi = Ygbi − β̂b − γ̂bi = αg + εgbi

α̂g =
1

B × I
∑
b,i

Y ′′′gbi (2.7)

After estimating α̂g, β̂b and γ̂bi, we can compute ˆεgbi from our model in Equation

2.2 as

ˆεgbi = Ygbi − α̂g − β̂b − γ̂bi (2.8)

In our model βb and γbi are variations specific to biological samples and repli-

cates. But there may be many other sources of variations in an experiment which

may be confounded in various combinations and are captured in the expression

εgbi which is specific to each gene, biological sample and replicate. In the ideal

conditions, εgbi should be independent and identically distributed and should be

uncorrelated across replicates. But this seldom is the case because of presence of

many other unknown sources of experimental variations in a dataset. Thus εgbi

demands a separate analysis and treatment.
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2.2.1 Select-and-Reject Method

Recall that according to Equation 2.3, εgbi is composed of Mgbi and ζgbi which can

be calculated separately. Consider a G×R matrix E having values of εgbi. G is the

total number of genes and R are the total replicates present in the experiment.

Let X be the R × R correlation matrix of E. In order to remove high degree

of correlation among the values in E across different columns (corresponding to

different replicates), we can apply an iterative procedure where the εgbi values

for each replicate i denoted as the Ei column can be represented as a linear

combination of highly correlated columns selected from the rest of the columns in

E. The iterative process can be summarized in the following steps -

1. Set X to be the correlation matrix of E.

2. Pick a column i in the matrix X, corresponding to the column Ei in the

matrix E. Find the entry having the lowest correlation coefficient in column

i. The entry identifies the least correlated column Ej with the Ei column in

E.

3. Estimate the Sk coefficient and ζi in the following equation with Least-square

method

Ei = ΣSkEk + ζi

where k 6= i, j

4. Estimate the correlation of Ei with rest of the Ek columns and call the

correlation matrix as X ′. Also compute the variance ζi for the estimated Êi.

5. If every entry in X ′ < 0.1 or ζi stabilizes across successive iterations, then

store ΣSkEk as Mgbi and ζi as ζgbi, and go to step 2 with next the i. Other-



Chapter 2. Normalization of Gene Expression Data 32

wise, go to step 1 with E replaced by the Ek (where k 6= i, j) columns and

iterate.

2.2.2 Equal Distribution of Negative Correlation

Upon inspection of the results on a small data sample, we found that though the

correlation among replicates drops significantly, there is still a presence of more

negatively correlated ζgbi terms compared to positively correlated ones. In order

to deal with the skewness in the correlation terms, we distribute the correlation

in system equally among all the replicates. Assuming ζgbi as -

ζgbi = ζgbi − alζgbi + alζgbi

and further

θgbi = ζgbi − alζgbi

So

ζgbi = θgbi + alζgbi (2.9)

θgbi is the white noise element. By denoting the matrices having θgbi elements

as θ, al elements as A and ζgbi matrix as ζ we have,

ζ = θ + Aζ (2.10)

The correlation matrix (ρ) of θ across all the replicates R has approximately

the same correlation coefficient

ρ =


1 −1

R−1
. . .

−1
R−1

1 . . .

...
...
. . .


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The unknown matrix A can be computed from 2.10 where

θ = (I − A)ζ

Denoting the covariance matrix of θ and ζ as Σθ and Σζ respectively, we have

A = I −
√

(Σθ)(
√

(Σζ))
−1 (2.11)

So eventually, the final model in terms of Equation 2.1, after removing all the

effects of variations and further breaking the error terms ζgbj in a way to equally

distribute the remaining correlation in the system, can be expressed as

ˆYgbi = α̂g + θgbi (2.12)

where ˆYgbi is the adjusted value for the original expression value Ygbi observed

for gene g with biological sample b using the replicate i.

2.3 Results

The proposed normalization technique was applied to the Arabidopsis data by

keeping the time fixed, i.e. for each time point, we took all the gene values from

all the replicates and normalized them independent of the data obtained at other

time points. Here we present the results obtained during normalization for the

data obtained at time point t = 1. The process of normalization is same for all

the time-points and similar results can be expected.

We first estimated the values of αg,βb and γbi according to Equation 2.2-2.7.

Then, the residuals εgbi were calculated according to Equation 2.8. To check if

the residuals between replicates were independent from each other, we computed
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their correlation matrix. Figure 2.1 plots the correlation coefficients of εgbi values

across all 16 replicates. The plot shows most of the coefficients to be distributed

in the range of ±0.3. There also exists a relatively high degree of correlation

among residuals between some replicates, where the correlation coefficients are

in the range of ±0.4. The presence of high correlation among residuals between

replicates is indicative of the fact that the residual values are not independent of

each other. The high correlation between them must be minimized.

Figure 2.1: Correlation coefficients across replicates for εgbi

In order to minimize the correlation among residual terms between replicates,

we applied our iterative Select-and-Reject method described in section 2.2.1. The

Select-and-Reject procedure further divides the εgbi terms into Mgbi and ζgbi, leav-

ing ζgbi as the final residual obtained by the method. Figure 2.2 plots the corre-

lation coefficients for ζgbi terms between all the replicates. We can see that most

of the correlation coefficients are confined within the region on ±0.2 and very
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Figure 2.2: Correlation coefficients across replicates for ζgbi

few are near the value of ±0.4. The plots shows a significant drop in correlation

among residual terms across replicates compared to the ones shown in Figure 2.1,

confirming the decline of correlation among residuals between replicates.

Furthermore, we can see that there is improvement in the estimation of ˆYgbi

after applying the Select-and-Reject algorithm. In an ideal situation, we would

expect the estimated gene value vs. residual value plot to be completely flat,

indicating that the estimated gene values and the residual terms are completely

independent of each other. Figures 2.3 and 2.4 present the scatter plots of 1000

genes (randomly selected from dataset for better visibility of the plot) for corre-

sponding ˆYgbi values with εgbi and ζgbi respectively. We can see that there is some

difference in the orientation of the scatter plot in Figure 2.4 due to the application

of the Select-and-Reject procedure. The plot in Figure 2.4 is more balanced on

both axes compared to the plot in the Figure 2.3.
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Figure 2.3: Scatter plot of ˆεgbi vs. ˆYgbi Figure 2.4: Scatter plot of ˆζgbi vs. ˆYgbi

Even though the correlation among residuals between replicates had reduced

significantly, there still existed some negative correlation values as seen in Figure

2.2. To adjust the residuals to be independently and identically distributed, we

needed to disperse this correlation equally among all the replicates. The task of

dispersing the negative correlation in the data was achieved by applying Equa-

tion 2.9 on the correlation matrix. Table 2.1 lists the correlation coefficients for

ζgbi values, whereas, Table 2.2 lists the correlation coefficients for θgbi values after

applying Equation 2.9. The values is Table 2.2 indicate the equal distribution of

correlation between replicates for the θgbi values. A histogram plot of θgbi values

for all the genes is shown in Figure 2.5. The plot shows a zero mean Gaussian

distribution supporting the claim of independent identically distributed residuals

for Equation 2.12.

Figure 2.6 shows the profile plots for 4 randomly selected genes (AT1G01160,

AT1G01370, AT1G03900 and AT1G06460) from the dataset. The original pro-

files of the genes before normalization are plotted in blue. The adjusted values for

those genes after applying the normalization procedure are plotted in red. We can
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Figure 2.5: Histogram for θgbi for all the genes

(a) Gene AT1G01160 (b) Gene AT1G01370

(c) Gene AT1G03900 (d) Gene AT1G06460

Figure 2.6: Original (in blue) and adjusted (in red) values for four genes across all repli-
cates

see that in all the cases, the profiles with red colour are much flatter than their

corresponding blue profiles. The flatter profiles are desirable, because under ideal
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conditions, when there are no systematic biases, we expect the values observed at

all the replicates for any gene to be the same. But due to the lack of ideal con-

ditions, the values observed for a gene at different replicates vary. An important

purpose of a good normalization method is to adjust the observed values in such

a way that it minimizes the difference observed at different replicates.

The same procedure for estimating biases and minimizing correlation among

residual terms between all the replicates was applied for data at each time-point.

The plots in Figures 2.7 denote the correlation coefficients of ζgbi and θgbi values

for all the genes for time points t = 1, 2, . . . , 6. We can see that the plots in Figure

2.7 (g)-(l) are much flatter compared to their counterparts in Figure 2.7(a)-(f).

These results show the fulfilment of our targets that we set in the beginning of

normalization.

2.4 Summary

Cleaning of data from unwanted experimental variations is an important step in

microarray data analysis. Much of the the further investigation depends on the

quality of data obtained at this stage. This chapter started with a discussion on

the need for data normalization and provided a brief overview of various methods

proposed for a two-colour microarray experiment. We provided a summary of the

microarray experiment to collect the Arabidopsis data discussed in Chapter 1.

This chapter proposed a statistical error model based normalization technique to

deal with various unwanted artefacts in the data. After estimating various sources

of biases in the data, the correlation among residual terms between replicates was

minimized using an iterative procedure. We further proposed a way to deal with

the remaining negative correlation in the data and correct the residual terms to

show a zero mean Gaussian behaviour.
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(a) At t = 1 (b) At t = 2 (c) At t = 3

(d) At t = 4 (e) At t = 5 (f) At t = 6

(g) At t = 1 (h) At t = 2 (i) At t = 3

(j) At t = 4 (k) At t = 5 (l) At t = 6

Figure 2.7: Plots in (a)-(f) show the correlation coefficients for ζgbi between the repli-
cates for time points 1...6, whereas, plots in (g)-(l) show the correlation coefficients for
θgbi between the replicates for the corresponding time points. We can see that the
plots in (g)-(l) are much flatter compared to the ones in (a)-(f)
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The normalization techniques available in the existing literature focus mainly

on removing effects from certain predefined sources of technical variations. These

predefined sources of variations like dye, sample, variety, gene-specific biases

etc. are modelled as separate terms in the computational model for estimation.

Though these methods are capable of dealing with individual terms, such specific

designs can make the normalization models very specialized to certain types of

microarray experiments, where the probability of those variations being present

is large. Also, seldom is it the case that we have information about all types of

biases present in the system. In the absence of the accurate distinction between

the possible biases in the experiment, it is difficult to incorporate them as sep-

arate variables in the normalization model. Our proposed model, in contrast to

the existing models, does not explicitly rely on distinction of individual sources of

variations, but rather, only the biases associated with the biological samples and

the replicates are modelled as individual terms. All other sources of variations

are combined together in a separate term in the model to be analysed exclusively.

Such a design makes the normalization model generic for any highly replicated mi-

croarray data. The model is traceable at each stage and the last stages requiring

the application of the select-and-reject algorithm and the dispersion of negative

correlation can be skipped, provided the model satisfies the statistical tests in the

first stage itself. Our approach, however, cannot deal with location specific biases

like print-tip effects etc. which need to be explicitly handled. The next step after

normalization in the information processing pipeline of microarray data analysis

is clustering of data, which we will discuss in the next chapter.



Chapter 3

Functional Clustering of Gene

Expression Data

Microarray experiments have traditionally focused on measurement of gene ex-

pressions at a single time point; they are increasingly being applied to mea-

sure the expression-levels across multiple time points. Such time-course mea-

surements can help in gaining insights into the dynamics of gene interactions

[KLW06, HHS+00, WFS04]. The computational analysis of temporal microarray

data requires three distinct stages to be performed before some meaningful hy-

pothesis can be derived from data. The first stage is the normalization stage where

data is cleaned from the effects of unwanted experimental biases [Qua01, Spe03].

The second stage requires the grouping of data based on certain features which

helps in reduction of data dimensions. The third and final stage is the inference

of the relationship between various genes of interest and understanding the func-

tioning of smaller subsystems which comprise together to make a bigger system.

Though these three stages have an ordered sequence of execution, the computa-

tional methods applied at these stages need not be dependent on each other. The

normalization method solely relies on the experimental design of the microarray

experiment [Spe03, KC01]. The clustering step can be performed using point-
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based, model-based or feature based grouping of data [AYA07] depending on the

hypothesis adopted by the practitioner. The final stage of relationship inference

between genes is restricted to the sets of selected genes which can be studied as

a system of bivariate or multivariate causal interactions. Keeping in mind, the

final goal of microarray data analysis being identification of interactions between

genes at the third level, the quest for this goal should ideally start when the data

is being grouped together at the clustering stage.

There are plenty of clustering techniques which exist for clustering of temporal

gene expression data and can be broadly classified as :

1. Point-wise distance based methods - group genes by minimizing an objective

function based on a distance measure computed between gene pairs. The dis-

tance measure could be Euclidean distance, mutual information, correlation

or its respective variants [DH05] etc. The point-wise methods can be further

classified into two classes : (a) partitioning, and (b)hierarchical. Among par-

titioning methods, k-means [Seb84] and self-organizing maps (SOM) [EHI03]

are widely used approaches. Hierarchical methods on the other hand cre-

ate a hierarchy of relative distances and place multinomial points along a

one-dimensional axis based on the relative distance between points. A typ-

ical representation of results obtained from hierarchy based methods is in

form of a dendogram [JW88]. Point-wise distance based approaches are the

most widely used clustering techniques for gene expression data due to their

computational and conceptual simplicity. These methods are also popular

due to their implementation in the large number of software packages de-

signed for analysis of gene expression data. Some biological case studies

using point-wise methods for clustering gene expression data can be found

in [ESBB98, GSK+00, THC+99].
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2. Feature based clustering methods - aim at detecting salient features and

local or global shape characteristics of the expression profiles. As opposed

to a distance based similarity measure, looking for general shape among the

gene profiles can uncover more intricate relationships, such as time shifts and

inversion in expression profiles. Ji and Tan [JT05] proposed a time-lagged

based cluster identification technique which relied on the directional change

of profiles across consecutive time points. Edge detection method by Chen

et al. [CFS99] summed the number of edges of two gene expression curves

where edges had the same direction within a time lag to generate a score.

Directional changes were also used to compute the slope of expression values

in Event method by Kwon et al. [KHN03] to cluster the gene profiles. Some

of the feature based clustering methods transform the raw expression data

to symbols which are further analysed to detect similarity between profiles

[BHWK05, EBJ06]. Dominant Spectral Component Method by Yeung et

al. [YSLY04] decomposes temporal expression sequences into spectral com-

ponents using the autoregressive modelling technique to measure gene-gene

relationship to form clusters. Graph-theoretic approaches studying the na-

ture, properties, structure of the graph where the genes represent the nodes

and the arcs representing association between genes also come under feature

based clustering methods. Graph spectral clustering [NJW02] and minimal

spanning tree method [GR69, XOX02] are other well-known feature based

clustering methods.

3. Model based clustering methods - shift the similarity emphasis from the

data to the unknown model that describes the data. Such methods are

based on statistical mixture models which assume that data is generated

by a finite mixture of underlying probability distributions, with each com-

ponent corresponding to a distinct cluster [YLW08, PLL02]. Model based
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clustering relies on the fundamental assumption that the observed expres-

sion profiles are clustered in functional space based on their characteris-

tics. The focus of this approach is in functional decomposition of data,

rather than the decomposition of raw data. The computational approach

in model based clustering methods is based on maximizing the likelihood

of data points. Expectation-maximization (EM) is a popular model based

clustering approach to estimate unknown parameters (mean and standard

deviation in case of Gaussian distribution) of underlying probability distri-

bution for each cluster in order to maximize the likelihood of the observed

expression profiles [DLR77]. Based on similar lines to the EM algorithm,

Schliep et al. [SS03a, SSS05] suggested gene clustering based on a mixture

of Hidden Markov Models (HMM). Along the similar thoughts that time-

course gene dataset is a set of time series generated by stochastic processes,

Ramoni et al. [RK02] suggested the use of autoregressive representation for

each stochastic process defining a cluster. This method relies on regression

and groups together genes whose dynamics can be expressed with roughly

the same auto-regressive equation. Bar-Joseph et al. [BJGJ+03] presented

a clustering algorithm that uses splines to cluster the continuous represen-

tation of time series expression data. In some cases, prior knowledge has

been used to fit the models to the expression profiles. For example, Zhao

et al. [ZPB01] and Lu et al. [LZQ+04] have used sinusoids to identify

yeast genes with cyclic behaviour. Moller-Levet et al. [MLW03] presented a

method based on a pre-defined comprehensive set of profiles to cluster genes

according to their match with respective profiles.

One of the ultimate goals of all gene clustering algorithms is to discover the

underlying gene pathways representing biological processes. Genes that are ly-

ing in the same pathway are often activated or depressed simultaneously or se-
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quentially upon receiving stimuli. The biological signal is typically transmitted

through intermediate gene interactions due to physical or chemical activities. The

simultaneous or sequential activation or depression is delineated by the underly-

ing network connection patterns. In this chapter, we present a novel approach

for clustering of temporal microarray data. Our approach is a hybrid of both

model-based and feature-based clustering methods. The temporal recording of

gene expressions provides an excellent opportunity to view the gene profiles with

respect to time and helps in understanding the underlying causal processes driving

the behaviour of the genes and the system in turn. Like any dynamical system, in

a system with a temporal expression profile, time plays a crucial role in the way

the system behaves. The primary hypothesis behind the approach presented in

this chapter is : the observed effect on any gene is due to some cause propagated

over time. The observed expression of a gene could be due to the effect of other

genes present in the system which may be activating or inhibiting the gene under

observation with different time-lags. In other words, we perceive the system as

a set of interacting entities, where each entity is an independent process and the

interactions between them are temporal activities taking place between a pair of

processes.

A system with such behaviour is a widely accepted concept in Economics and

Neuroscience. Granger [Gra69] proposed a method to evaluate the influence of

one time series on the other time series. Granger causality has recently been intro-

duced in bioinformatics [MC07, NU08, KG08, GWDF08] to reverse engineer gene

circuits from microarray data. We will utilize Granger causality in association

with a graph-theoretic feature-based method to cluster the functional modules

present in a large dataset. A functional module can be defined as a separate sub-

structure of a network having a group of genes or their products that are related
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by physical or genetic interactions. Biological networks are considered to have

modular structures where the various substructures of a complex network behave

as functional units [JMBO01, TSKS04]. Biological networks have been found to

have certain architectural properties which distinguish them from randomly gen-

erated networks [Bar02].

This chapter is organized in the following way. We first present the method

of bivariate Granger causality to quantify the associations between pairs of genes.

We then present the graph theoretic method to detect the highly connected re-

gions in the association network to find the modular complexes. We demonstrate

our ideas using synthesized datasets and a small sample of our dataset for Ara-

bidopsis thaliana. We finally apply our method on a larger dataset for Arabidopsis

to extract interesting clusters. We also analyze the structural properties of the

association graph obtained for the larger dataset.

3.1 Methods

In accordance to general equilibrium theory, economists assume that everything

depends on everything else; and hence, the notion of causal relationship between

different time-series arises. The idea of causality is related to the idea of succes-

sion in time and that the cause always precedes the effect. Consider two processes

X and Y . If Y is causal to X, the current and lagged values of Y should contain

information that can be used to improve the forecast of X, rather than consid-

ering only the past and present values of X alone. Granger [Gra69] proposed

the definition of causality, widely known as Granger-causality in the literature to

examine whether the forecast of future values of X can be improved if along with

X’s own values - the current and past values of Y are also taken into account.

Another reason why lagged values are considered for corresponding variables is to
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avoid spurious regressions between dependent and explanatory variables [GN86].

The inclusion of past values of both variables implies that the time-series are fil-

tered. With respect to the causal relationship between two time-series, only the

corresponding innovations matter [Sch79]. We assume that our time-series is sta-

tionary in nature. Let It be the total information present at time t. It contains

two time series X and Y . Let X̄t be the set of all current and past values of Xt

i.e. X̄t = {xt, xt−1, . . .} and similarly Ȳt = {yt, yt−1, . . .}. Let σ2(.) be the variance

of the corresponding forecast error. Granger’s definition of causality between X

and Y included three scenarios.

1. Granger Causality : Y is Granger causal to X if and only if the future values

of X can be predicted better i.e with a lower variance, if the current and

past values of Y are used.

σ2(xt+1|It) < σ2(xt+1|It − Ȳt)

2. Instantaneous Granger Causality : Y is instantaneously Granger causal to

X if and only if the application of an optimal linear function leads to the

better prediction of future value of X, xt+1 if the future value of Y , yt+1 is

used in addition to the current and past values of Y .

σ2(xt+1|It, yt+1) < σ2(xt+1|It)

3. Feedback : The feedback between X and Y exists if X is causal to Y and

Y is causal to X.

Feedback is only defined for the case of simple causal relations because the

direction of instantaneous causality cannot be determined without additional in-

formation or assumption.
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The bidirectional Granger causality can be tested in the context of linear

regressive models. For a pairwise interaction between two variables, we use au-

toregressive specification of a bivariate vector autoregression. Assume a particular

autoregressive lag length p, and we can estimate the following unrestricted equa-

tion by ordinary least squares (OLS):

Xt =

p∑
i=1

αiXt−i +

p∑
i=1

βiYt−i + ut (3.1)

where Xt is the is the prediction of the X at time t based on its own past

values as well as the past values of Y , αi and βi are the weighting factors, and

ut is the prediction error(residual) with a variance that measures the strength of

the prediction error. If all the weighting factors βi in Equation (3.1) are equal to

zero then we can conclude that Y does not contribute towards the prediction of

X, but in the case of any βi being not equal to zero, we will say that the past

values of Y are contributing towards the prediction of the current X. Therefore

we can have two hypotheses as follows -

Null Hypothesis H0 : ∀i ∈ {1, 2, 3, . . . , p}, βi = 0 (3.2)

Alternate Hypothesis H1 : ∃i ∈ {1, 2, 3, . . . , p}, βi 6= 0 (3.3)
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We can conduct a F-test of the hypotheses by estimating the following equation

using Ordinary Least Squares

Xt =

p∑
i=1

γiXt−i + εt (3.4)

where εt is the prediction error or residual.

Let RSS1 and RSS0 be the sum of squared residuals of Equation (3.1) and

(3.4), respectively, i.e.

RSS1 =
T∑

t=p+1

û2
t (3.5)

RSS0 =
T∑

t=p+1

ε̂2t (3.6)

and

S1 =
(RSS0 −RSS1)/p

RSS1/(T − 2p− 1)
∼ Fp,T−2p−1 (3.7)

If the test statistic S is greater than the specified critical value specified critical

value, we reject the null hypothesis that Y does not Granger-cause X.

The results are strongly dependent on the number of lags of explanatory vari-

ables. To find a suitable lag value in Equations (3.1) and (3.4) we use Akaike

Information Criteria(AIC, [Aka69]). Any value p which minimizes the AIC value

is chosen as the lag order.

AIC(p) = 2log(|σ|) +
2m2p

n
(3.8)
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where σ is the estimated noise covariance, m is the dimension of the stochastic

process and n is the length of the data window used to estimate the model.

We will use the test of Granger causality to establish association between gene

pairs in our interaction network. If the test for causality passes in any direction,

either from X → Y or from Y → X, we add an edge in the network. We are

not interested in the direction of the edge and the association network is not

directional at all.

3.1.1 Network Analysis

Even though most of the biological networks are sparse in their connectivity, the

complexity of connections increases with the increasing number of nodes. A net-

work of interacting entities can be readily modelled as a graph where the entities

are represented by nodes and the associations between them as edges. It is of-

ten argued [SMO+03, XSD+02] that graph theoretic approaches can help analyse

large interacting networks to find clusters (highly dense regions) in a network.

Clusters in a gene-gene interaction network are often biological complexes or part

of biochemical pathways [DES08]. Algorithms for finding clusters or highly dense

regions are an ongoing topic of research and are often based on network flow

theory[Gol84] or spectral clustering[NJW02]. We use a clustering method pro-

posed by Bader and Hogue [BH03] to detect the dense regions in the association

network obtained by our Granger causality based method. The method weighs

all the vertices based on their local network density to detect dense regions in the

graph. The decision to use this algorithm to analyse our association matrix was

based on two reasons: a) this is one of the earliest methods to use a clustering

algorithm to identify molecular complexes in a biological network, and hence is

widely known, and, b) it has a publicly available software plug-in for a widely
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used network analysis platform called Cytoscape [SMO+03]. Thus, the method

and its implementation are both widely used and tested. It should be noted that

application of other clustering methods to detect dense regions can produce differ-

ent clusters and some may have better performances but these are not tested here.

The functioning of the method by Bader and Hogue can be understood in the

following way. Given a graph G = (V,E), where V and E being the sets of vertices

and edges respectively, the density of a graph is based on the connectivity level

and is defined as DG = |E|/|Emax|, where Emax is the total number of all possible

edges in a complete graph G.

The vertex weighting in the graph starts by weighing all the vertices based on

their local network density using the highest k-core of the vertex neighbourhood.

A k-core is a graph of minimal degree, ∀v ∈ V and the degree of v ≥ k. The

highest k-core of a graph is the central and most densely connected subgraph.

The highest k-core component gives us the highest k-core level, kmax in the vertex

neighbourhood. The final weight of the vertex is the product of kmax and the

density of the corresponding highest k-core component. This type of weighting

amplifies the weighting of heavily connected graph regions while removing the less

connected graph regions which are present in abundance.

Once the vertex weighting is done, the algorithm seeds a subgraph(complex)

with highest weighted vertex and moves outwards to include vertices in the neigh-

bourhood whose weight is greater than a given threshold. The algorithm prop-

agates through the included neighbours and recursively checks the subsequent

nodes. The process stops when no more nodes can be added to the complex and

is repeated for the next highest unseen weighted vertex in the network.
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In the post-processing stage, the complexes which do not contain at least 2-

core (graph with minimum degree 2) are filtered out. Finally, all the complexes

in the network are scored and ranked. The complex score for a given subgraph

GC = (Vc, Ec) is defined as the product of the density of the subgraph and the

number of vertices (Dc × |Vc|). Other scoring schemes are also possible but are

not tested in the original algorithm.

3.2 Results

3.2.1 Illustrative Datasets

We test our method on three sets of synthetic multivariate datasets. Each set

represents a collection of stochastic processes in the form of a time-series. We

construct each set in such a way that the processes belonging to the set are inter-

dependent, whereas the sets themselves are disjoint from each other.

Dataset 1:

x1(t) = 0.95
√

2x1(t− 1)− 0.9025x1(t− 2) + ε1(t)

x2(t) = 0.5x1(t− 2) + ε2(t)

x3(t) = −0.4x1(t− 3) + ε3(t)

x4(t) = −0.5x1(t− 2) + 0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε4(t)

x5(t) = −0.25
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε5(t)
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Dataset 2:

x1(t) = 0.05
√

2x1(t− 1) + ε1(t)

x2(t) = 0.5x1(t− 3) + ε2(t)

x3(t) = 0.5x2(t− 2) + ε3(t)

x4(t) = −0.5x3(t− 3) + 0.25
√

2x1(t− 1) + ε4(t)

Dataset 3:

x1(t) = 0.95
√

2x1(t− 1)− 0.9025x1(t− 2) + ε1(t)

x2(t) = 0.2x1(t− 1) + ε2(t)

x3(t) = 0.15
√

2x2(t− 2) + ε3(t)

x4(t) = 0.25
√

2x3(t− 1) + ε4(t)

x5(t) = 0.5
√

2x2(t− 2)− 0.5
√

2x4(t− 1) + 0.25
√

2x5(t− 1) + ε5(t)

x6(t) = 0.25
√

2x1(t− 2)− 0.25
√

2x5(t− 1) + 0.25
√

2x3(t− 3) + ε6(t)

In the above datasets, εi ∼ N(0,1) represents the uncorrelated random error

associated with each process. In Dataset 1, x1 is the driving force for x2, x3 and

x4 with time lags 2,3 and 2 respectively. x4 further drives x5 and they both share

a feedback loop. Similarly, in Dataset 2, x1 drives x2 with time lag 3 and x2 in

turn drives x3. x1 and x3 both together drive x4. Similarly, in Dataset 3, we have

x1 driving x2. x2 drives x3 with lag 2 and x3 in turn drives x4. The process x5

is driven by x2 and x4 with time lag 2 and 1 respectively. In the end, x6 receives

the drives from x1, x5 and x3 with time lags 2,1 and 3 respectively. The datasets

are disjoint from each other due to different sources of initiation. The datasets

show different arrangements of connections between the processes which include

feedback loops, low and high coefficients of drive between processes, multiple pro-
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cesses together driving a single process and all the processes interacting with other

processes on a different time lag.

Figure 3.1: Plot of time-series for Dataset 1

Figure 3.2: Plot of time-series for Dataset 2

Figures 3.1, 3.2 and 3.3 display the raw time series for the processes in Dataset

1, 2 and 3 respectively. We apply the Granger causality to infer the interactions

between different entities in each dataset. A critical value of α = 0.05 was chosen

for the F-test to accept or reject the hypothesis. The causal hypothesis H0 was
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Figure 3.3: Plot of time-series for Dataset 3

tested for each pair of processes denoted by (X, Y ) in both ways i.e, X causing

Y , and Y causing X. Since we are only interested in the presence of interaction

between (X, Y ), we ignore the directionality of causal influence and quantify the

association between the pair with the higher of causality value obtained from both

directions. If there is no causal relationship between the pair, the association be-

tween X and Y is quantified as zero. The networks obtained after computing the

Granger causality and weighing the edges for all the synthetic datasets are shown

in Figures 3.4, 3.5 and 3.6. The true edges according to the equations describing

the datasets are plotted with solid bold lines, whereas the extra detected edges

are plotted with thin dashed lines.

We see in Figure 3.4 for (Dataset 1) that node 1 connects to nodes 2,3 and 4.

Nodes 4 and 5 are also connected in the inferred network structure. The equations

describing the Dataset 1 reflect these facts. One of the extra link present is the

interaction of node 2 with node 3 showing the fact that nodes 2 and 3 are both

driven by node 1. They exhibit an interaction according to the F-test criteria but

their strength is very low compared to other interactions. Since node 1 is also a
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driving force for node 4, so according to the previous argument, nodes 2 and 3

are also found to drive node 4. Node 4 and node 5 share a feedback loop, thus an

interaction between them exists. There is a similar situation with nodes 1,2 and

3 interacting with node 5 due to node 1 being the common driving force behind

nodes 2 and 3.

Figure 3.4: Inferred network for Dataset 1

Figure 3.5: Inferred network for Dataset 2

The connections are simpler and more sparse in the case of Figure 3.5 for

Dataset 2 where an extra edge not described by the system of equations is present

in the inferred network. Similarly, in the network obtained for Dataset 3, the

influence of node 1 on nodes 3 and 5 can be attributed to the fact that the in-

fluence is propagating through node 2 which is directly regulating nodes 3 and 5.

The influence of node 2 on 6 is due to node 2 being the driving force for node 3

which in turn is directly influencing node 6. In the similar fashion, the dashed
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line between nodes 4 and 6 can be explained due to node 4 driving node 5 which

in turn is driving node 6.

Figure 3.6: Inferred network for Dataset 3

Having analysed the individual datasets, we further investigate what happens

when all the three datasets are put together to form a bigger system of processes

and the pairwise interaction between the processes are computed. We create a

system of 15 entities where the first 5 entities represented the processes in Dataset

1, the entities from 6 to 9 represented the processes from Dataset 2, and the last 6

entities represented the processes in Dataset 3. We then test for Granger causal-

ity for all possible pairs of processes (total 210 directional edges for a complete

network with 15 nodes) in the system. We plot the interaction strength between

the processes in Figure 3.7 where the x and y axes represent the 15 × 15 matrix

of processes in the system. The interaction strengths between the processes are

shown on the z-axis. We can clearly see three different island-like structures in the

graph where entities 1 to 5 interact within themselves, 6 to 9 within themselves

and 10 to 15 within themselves. The plot clearly shows that there is no cross talk

between the entities across different sets even though they are present within the

same system.
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Figure 3.7: Simulation results with Dataset 1, 2 and 3 integrated into one system.

3.2.2 Arabidopsis Dataset : Small Example

After testing our method on the synthesized datasets, we test our method on the

Arabidopsis discussed in Chapter 1. We test our method on two samples of differ-

ent sizes of the same dataset. We first test our method on a smaller sample of 85

genes belonging to three different categories of biological processes. This smaller

sample helps us mimic the scenario shown by our synthetic model. The primary

advantages of choosing the smaller dataset is that it helps us in minimizing the

search space for ontological validation of clusters by mining on-line repositories

which may not be complete for all the genes. In the end, we apply our technique

on a larger dataset of 1800 genes and study the clusters obtained and the general

structural properties of the network.

For the smaller dataset, we selected 85 genes belonging to three different cate-

gories of biological processes according to Gene Ontology (GO) database [gen00].
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The selected genes include genes which participate in maintaining the circadian

rhythm of the plant, genes which are responsible for ageing and the genes in-

volved in plant death. We use the gene ontology (GO) interface provided at the

Arabidopsis repository at TAIR (http://www.arabidopsis.org/index.jsp) to find

the names of the genes which are experimentally confirmed to perform above

mentioned biological functions. It should be noted that this interface does not

provide any p-value associated with the GO terms for the selected genes. This

selection should be considered just as a weak indication of a gene performing the

mentioned biological function. While verifying the results, we use another gene

annotation tool (BinGO) [MHK05] which provides the statistical significance for

the biological functions for the genes. We selected the time-series data for those

genes from our microarray dataset described earlier. Some of the selected genes

had flat profiles, i.e. the temporal expressions of the genes did not show much

fluctuation across time. Such genes were filtered out using the 2σ technique and

discarded. We finally had a set of 30 genes responsible for circadian rhythm, 34

genes involved in the ageing process and 21 genes participating in the cell death,

leading in total to a set of 85 genes. Figure 3.8 shows the profiles of the selected

genes.

The temporal profiles of genes were adjusted by taking the first difference of

successive time points to obtain the stationary behaviour. We then applied the

causality test to all the pairs of genes in the system. A complete network with 85

genes has total links equal to 2×
( 85

2

)
= 7140. In the second stage, for each pair

of nodes (X, Y ), we selected the maximum of the causality values for directions

X → Y and Y → X and assigned that value as the weight for the edge between

X and Y . To further simplify the network, we applied a threshold corresponding

to 0.975 quantile of all the edge value to ignore the edges with weights below that
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threshold. The final network is presented in Figure 3.9. The network is arranged

in a degree sorted layout. The vertices with higher degree are bigger in size. The

size of a vertex is decided according to the total degree associated with it. The

biological relevance of the degree distribution of nodes in a biological network is

discussed later in the chapter.

To find the modules in the network, we applied the graph-theoretic approach

discussed in section 3.1. The approach detects densely connected regions in the

network. Dense regions are the maximally connected sub-components in the graph

and may be representative of the complexes in the context of biological networks.

The graph-theoretic analysis gives us 4 subgraphs presented in Figure 3.10. These

subgraphs are obtained by setting the k-core value = 2 and the results are pre-

sented after trimming the nodes with single degree.

To verify our hypothesis that these subgraphs represent functional modules,

we use the functional information stored in the Gene Ontology (GO) database

using the BinGO tool. Table 3.1 summarizes the information obtained for all the

subgraphs. The first column in the table represents the GO-ID of the functional

category stated in the Functional Description column. The genes in the table

are grouped together to show the GO category they belong to, along with their

statistical over-representations in columns 2 and 3. The p-values in column 2 are

computed by the Hypergeometric Test which is exact and equivalent to an exact

Fisher test. To reduce the False Discovery Rates (FDR), a multiple testing correc-

tion (Benjamini and Hochberg’s FDR correction [BH95]) is applied and reported

in column 3. The Functional Description column lists the biological functions

the corresponding genes are associated with. The ‘Known/Total’ column repre-

sents the ratio of genes known to perform a certain biological function in the GO
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(a) Circadian genes (b) Ageing genes

(c) Death genes

Figure 3.8: Temporal profiles of genes selected for smaller dataset for Arabidopsis

database with respect to the total number of genes having a reference in GO. We

can see that the number of known genes in GO is less than the total number of

genes submitted. This is due to the fact that the functional annotation of Ara-

bidopsis genomes is incomplete and a particular type of annotation for a gene may

differ. We may find a gene that has GO classification and no functional summary

text, while other genes have functional summary text and no GO classification,

while others have no classification whatsoever.

The subgraph in Figure 3.10(a) is composed of 8 genes (AT5G02810, AT1G68830,
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Figure 3.9: Degree sorted network structure

AT1G63260, AT2G46830, AT5G65970, AT5G15850, AT1G67070, AT2G25930). 6

out of the 8 genes are known in the GO database. No annotations could be ob-

tained for the remaining 2 genes (AT5G65970 and AT1G67070). 4 out of the

6 known genes are clearly known as the genes participating in the circadian

rhythm process. AT5G15850 is known to be associated with the regulation of

flower development which is related to the circadian rhythm of the Arabidopsis

plant. Gene AT1G63260 is wrongly classified as it is known to participate in

the ageing process. Similarly, in the second network ( Figure 3.10(b)), there are

13 genes in all(AT1G09530, AT4G14400, AT2G19450, AT2G02990, AT5G51810,

AT5G20250, AT3G16770, AT2G29350, AT3G45290, AT1G55490, AT1G61560,

AT2G34690, AT5G03280). 8 of the genes have entries in GO and no annotation

could be found for the remaining 5 genes (AT1G09530, AT5G51810, AT5G20250,

AT3G45290 and AT3G16770). 5 out of the 8 known genes are involved with

the biological process of defence, immune response and cell death. AT2G19450

and AT2G02990 are known for ‘response to stress’(GO process ID - 9651). Gene
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(a) (b)

(c) (d)

Figure 3.10: Extracted subgraphs indicating potential modules of interest in the smaller
dataset. Biological functions performed by modules in respective figures are a.) Circa-
dian rhythm b.) Immune and Defense response c.) Circadian rhythm d.) Ageing

AT2G29350 is classified for ‘ageing’ and is the odd member in the network. The

third network shown in Figure 3.10(c) has 10 genes (AT2G44110, AT5G61380,

AT4G08920, AT5G57360, AT2G46790, AT5G60100, AT1G79230, AT3G46640,

AT5G57810, AT1G22770 ) with 7 of them known in the GO database and 3

(AT3G46640, AT1G79230, AT2G44110) are without any annotation. 5 out of the

7 annotated genes are known to participate in rhythmic activity. Gene AT5G60100

is known for regulation of circadian rhythm (GO process ID - 42752). Gene

AT5G57810 is known for ‘ageing’ and is wrongly put in this network. The last sub-
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network shown in Figure 3.10(d) is composed of 8 genes (AT4G23410, AT5G14930,

AT3G44880, AT4G30270, AT2G17480, AT2G21045, AT2G19580, AT3G12090). 6

out of the 8 genes are known in the GO database. All the 6 genes are known to

participate in ageing process of the plant. No annotations were found for genes

AT2G17480 and AT4G30270.

3.2.3 Arabidopsis Dataset : Bigger Example

We next applied our method on a larger dataset of 1800 genes selected according

to their frequency profile as described in Section 5.2.2 in Chapter 5. We ranked

the genes according to their power spectrum in frequency domain and chose the

top 1800 genes for analysis with our method. We constructed an association net-

work for all the pairs of genes using the test for causality to detect the edges in

the network. We applied a threshold corresponding to 0.99 percentile of all the

edge values to select the most dominant edges in the network for further analy-

sis. We applied the dense region finding method on the network using different

combinations of k-core score which resulted in a number of different clusters. We

present some of the clusters we found in Figures 3.12-3.15. The GO descriptions

of selected genes in the shown clusters is summarized in Table 3.2. The table

reports the information in the same manner as it did in case of the smaller sized

data sample.

Simple network statistics : We computed certain network statistics to confirm

that our network is not a randomly generated network and has the properties

desired in a biological network. A total of 1353 nodes were present in the network

after filtering out weaker edges. The total number of edges present in the network

was 21,214 which is around 1.1% of the total possible directed edges in the net-
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work, which is an indication of sparseness, a common characteristics of biological

networks [BA99]. There is one connected component in the network indicating

strong connectivity. The mean shortest path length is 2.6 which means that most

genes are close to each other and the network diameter representing the maximum

distance between two connected nodes is 6. Both the phenomenon have been de-

scribed as small world properties of real networks [WS98]. We also compute and

report the following widely used topological properties for our network.

Node degree distribution : We calculated the degree distribution p(k) of the

genes, measuring the probability that a given gene interacts with k other genes.

Barabsi and Albert [BA99] used the node degree distribution to distinguish be-

tween the topologies of random and scale-free networks. Our network shows a

power-law like distribution on log scale as shown in Figure 3.11(a). The plot

shows that there are few nodes with large number of neighbours and they domi-

nate the connectivity in the network. Also, the tail of power-law distribution on

normal scale indicates that highly connected vertices have a large degree of occur-

ring. Such networks exhibit preferential connectivity indicating that a new node

will link to established nodes which are well connected, resulting in a structure

where few hubs hold together numerous small nodes.

Shared neighbour distribution : Figure 3.11(b) shows the shared neighbour

distribution for the network. P (i, j) is the number of partners shared between

nodes i and j, that is, nodes that are neighbours of both i and j. The shared

neighbours distribution gives the number of node pairs (i, j) with P (i, j) = k for

k = 1, 2, 3, . . .. The distribution again shows a power law like distribution indi-

cating the presence of motifs with large numbers of connected components in the

network.
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Closeness centrality : Closeness centrality is a measure of how fast information

flows from a given node to other reachable nodes in the network. Closeness cen-

trality (C) of a network with n nodes is computed as the reciprocal of the average

shortest path length is computed as follows : C(n) = 1
mean(L(i,j))

where L(i, j) is

the length of the shortest path between two nodes i and j. Figure 3.11(c) plots the

closeness centrality of all the nodes against number of neighbours. The isolated

nodes have their closeness centrality equal to 0. An increasing trend of closeness

centrality in our network further indicates strong connectivity and ability to form

hubs.

Topological coefficient : Another characteristics of interaction networks can be

captured by calculating the topological coefficients [GR03, RSM+02]. The topo-

logical coefficient,TC(k), is a relative measure for the extent to which a gene in

the network shares interaction partners with other genes. Also the topological

coefficient as shown in Figure 3.11(d) decreases with the number of links (close to

1
k
), demonstrating that, relatively, in our network, hubs do not have more com-

mon neighbours than genes with fewer links. This indicates that genes with many

links are not artificially clustered together. Moreover, it confirms the presence of

modular structures in the network organization.

3.3 Comparison With Respect to Other Existing Methods

In order to have a comparison of our proposed method with some existing meth-

ods, we use the smaller Arabidopsis dataset of 85 genes discussed in Section 3.2.2.

The small size and the knowledge about the functionality of genes are the main

advantages of using the smaller dataset. The small size of dataset also allows us
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(a) (b)

(c) (d)

Figure 3.11: Structural properties of association network obtained for bigger dataset. a)
A power-law like distribution obtained for the node degree distribution. b) A distribution
of number of partners shared between a pair of nodes c) Closeness centrality of all the
nodes d) Plot for topological coefficient.

to present the results in an easy-to-view graphical format. We apply two widely

used techniques to establish association between the pairs of genes in the dataset.

The association between genes are measured using a) Pearson correlation coeffi-

cient, and b)Euclidean distance. The genes in the dataset were arranged in an

ordered fashion before computing the association between them, i.e., the first 30

in the dataset of 85 genes performed circadian rhythm related activity, the next

34 genes were associated with ageing, and the last 21 genes participated in cell

death. Figure 3.17 and Figure 3.18 present the graphical representation of the

association matrices obtained for the gene pairs using correlation coefficient and

Euclidean distance respectively. Each cell in an association matrix is filled with

a colour based on the quantitative entry in that cell. The mapping of colours

with the magnitudes of cells is displayed by the colour-bars in the figures. We
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can see that the colour coding starts from blue (for low magnitude of association)

to red (for high magnitude of association). The strongly associated gene pairs

are represented by shades of red in their respective cells. The diagonal entries of

both the association matrices are drawn in dark red, indicating maximum degree

of association between self-to-self pair. The association matrices are symmetric,

thus, the inspection of only the lower diagonal entries should suffice in detection

of strongly associated gene pairs.

In an ideal scenario, where the genes performing similar activity group to-

gether, we expect three distinct regions in Figures 3.17 and 3.18. The lower

diagonal blocks from cell 1 to 30, cell 31 to 64, and cell 65 to 85 should indicate a

high degree of intra-block association, each block should be coloured in different

shades of red according to the colour-magnitude mapping shown in the colour-

bars. But, this is not the case in the figures obtained by us where we can see no

clear blocks in the figures. The lack of any block-wise patterns in the colour coded

cells of association matrices indicate the absence of strong associative information

between genes based on the measures discussed above. This is the first indication

that the measures like correlation and Euclidean distance may not be suitable for

our dataset.

To investigate further, we applied a threshold to keep the strongest edges in

the graphs obtained from the association matrices. The criteria to choose the

threshold was same as the one used in section 3.2.2 for selecting the strong edges

in the graphs. The filtered graphs were analysed using the graph-theoretic tech-

nique with the similar settings as used in case of smaller Arabidopsis dataset in

section 3.2.2. The correlation based associative graph resulted in two subgraphs

shown in Figure 3.16, whereas the euclidean distance based graph did not yield
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any subgraph at all. The gene ontology analysis of the two subgraphs shown

in Figure 3.16 is presented in Table 3.3. We can see that in Network 1, three

out of total six genes belonged to rhythmic process related activity, whereas, in

Network 2, five out of a total of twelve genes belonged to ageing process. These

networks and their related biological relevance are much inferior compared to the

subgraphs obtained in section 3.2.2 using our technique, where we obtained 4 dis-

tinct subgraphs with distinct biological functions and better gene ontology results.

(a) Network 1

(b) Network 2

Figure 3.16: Two subgraphs of potential interest were detected when correlation co-
efficient was used to establish association between genes in the smaller Arabidopsis
dataset.
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GO-ID p-value corr p-value Known/Total Functional De-
scription

Gene Names

Network 1
48511 4.0370E-9 8.2759E-8 3/4 Rhythmic pro-

cess
AT5G24470 AT2G46790
AT5G61380

Network 2
16280 2.8611E-12 2.0600E-10 5/8 Ageing AT5G45900 AT2G29350

AT5G35630 AT3G10985
AT4G28050

Table 3.3: GO annotations for clusters found in the smaller Arabidopsis dataset using
correlation as the measure of association between genes

We have used a fresh and distinct approach to cluster temporal microarray

gene expression data. One of the key questions that we have tried to address us-

ing this method is that how some variables are useful for forecasting others. The

proposed method facilitates a way to study such forecasting relationships between

two variables. In other words, we are asking if a variable X can predict another

variable Y . Equivalently, we can say if X is exogenous in time-series sense with

respect to Y or not. Yet a third expression meaning the same thing is, if X is

linearly informative about future Y . The basic idea behind this method is, if an

event X causes another event Y , then X should precede Y in time. This is why

our illustrative models are based on time, and within that time frame the lags like

t− 1,t− 2,· · · etc. denote the temporal association within the processes.

While discussing widely used pairwise association methods for clustering, like

any form of correlation or distance based methods, the time is static. In these

methods, the time does not play any role. The core of these methods rely on

association rather than prediction. So if we re-order the sequence of observations

for any pair of variables (X, Y ), the association measure between them does not

change. As for example, let the original observation be X = {xt−1, xt−2, xt−3} and

Y = {yt−1, yt−2, yt−3}. The Association measure using correlation/distance for

(X, Y ) = C. After reordering of the observations, let X ′ = {xt−3, xt−1, xt−2} and

Y ′ = {yt−3, yt−1, yt−2}. The new association measure using correlation/distance
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for (X ′, Y ′) = C ′ where C = C ′. Hence, this assumption is not suitable for dy-

namical systems. This is the reason why the usual pairwise association methods

can give us less reliable results than the ones by our method. And hence a com-

parison between the two methods will not be fair. There has been some work in

model based clustering methods based on Bayesian statistics where the dynamics

of profiles (modelled as regressive processes) have been used to create clusters

[RK02, ACDC+08]. Such methods are different from our approach as, first, our

approach is based on the frequentist approach rather than the Bayesian approach,

and second, the essence of our approach lies in detecting the causal association

between genes. Another important aspect to consider is the choice of time lag in

our method which is decided using the AIC criteria. The lag value is not fixed, but

is chosen iteratively for each individual pair (X, Y ) according to what describes

the variables best.

We have demonstrated the performance of the method using various artificial

datasets and examples from real biological datasets. It is easy to see that the

pair-wise association based techniques, like distance or correlation based mea-

sures, would not work as desired, when we are investigating a system where the

interaction with respect to time is an important concept.

3.4 Summary

Clustering helps in reducing the data dimensions by grouping genes with sim-

ilar profiles or similar functionalities. In this chapter, we proposed a clustering

method to group functionally related genes in a temporal microarray dataset. Our

method exploits the temporal interdependence between genes. The interdepen-

dence was determined using the test of Granger causality between two time series.

The method is simple in its implementation, and testable at every stage. The as-
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sociation graph representing the dependence between genes is further analysed

using a graph-theoretic method. The graph-theoretic method detects the dense

regions in the graph which could represent biological complexes or motifs. We

test our approach using a set of artificial datasets and two datasets of different

sizes belonging to the Arabidopsis experiment. The functional similarity between

genes belonging to detected clusters was verified using the publicly available gene

ontology database. We further analysed the structural properties of the associa-

tion network obtained for the larger of the two datasets for Arabidopsis. We show

using different network characteristics that the computed association network is

not a random network in its structure, and has the properties expected in a real

biological network.

There are a few considerations which should be taken into account while ap-

plying this approach. The data must be cleaned properly using appropriate nor-

malization method to remove unwanted experimental biases. We discussed the

normalization technique applied for our dataset in Chapter 2. For any time-series

based statistical method, it is important that the data has been collected at in-

tervals which capture the natural changes in the system. Selection of correct

lag order using an information based criterion is also important as the test of

Granger causality is strongly dependent on that decision. Most important of all,

the experimental design should be able to support the hypothesis of the prac-

titioner. Further care should be taken while discovering directional causal links

using Granger causality. We will see more of this in the next chapter.

In this chapter, our effort was not to detect a causal network structure from

gene data, but to find a suitable association matrix based on interactions between

them. Once the interesting modules have been found, different reverse engineering
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methods like Bayesian networks, Structural equations etc. can be applied to infer

causal networks from selected genes of interest. It should be noted that in order

to detect causal interactions between genes, the multivariate approach instead of

pairwise one, can give better results while re-engineering a causal network struc-

ture from data. The next chapter discusses an extension of Granger causality

presented in this chapter and demonstrates how it can be used in a multivariate

context for reverse engineering of gene circuits. It should be noted that multivari-

ate reverse engineering approaches are only possible for a small number of genes

due to their massive computational requirements.



Chapter 4

Partial Granger Causality

Reconstructing gene-regulatory networks is one of the key problems of functional

genomics [VSWBR02, Kit02]. A gene network can be visualized as a graph in

which each node represents a gene and the interactions between them are rep-

resented by the edges in the graph. The edges can represent direct or indirect

interactions between the genes. Large scale monitoring of gene expression is

considered to be one of the most promising techniques for reconstructing gene

networks [Ber01]. Microarrays generate abundant data which could be used for

reconstructing gene networks. Inference of gene networks is also the last stage in

the information processing pipeline of microarray data analysis as explained in

section 1.5 of the Introduction chapter. Once the data has been properly normal-

ized and genes of interest selected, a reverse engineering approach can be applied

to understand the functional connectivity between genes. This computational

approach can help us understand the underlying biological pathways and their

patterns of connectivities. Mapping of gene pathways typically involves infer-

ences arising from various studies performed on individual pathway components.

Although pathways are often conceptualized as distinct entities, it is often un-

derstood that inter-pathway cross-talk and other properties of networks reflect

underlying complexities that cannot by explained by consideration of individual
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pathways in isolation. In order to consider interaction between individual paths, a

global multivariate approach is required. A variety of approaches have been pro-

posed to describe gene-regulatory networks, such as Boolean networks [Kau93],

Difference equations [VSWBR02], Differential equations [YTC02] and Bayesian

networks [FLNP00, PREF01] etc. While Boolean networks, Difference and Dif-

ferential equations are based on prior biological understanding of the molecular

mechanism, Bayesian networks on the other hand have been used to infer network

structures directly from the data itself. The acyclicity constraint of the Bayesian

networks are addressed by Dynamic Bayesian networks [DGM+06, KIM03] but

computational and theoretical problems arise in the case of an incomplete dataset

which is a common problem in gene expression measurements. Relevance networks

and Gaussian graphical models [WGH06] are other commonly used methods to

infer network structures from time-series data, both being simple but incapable of

producing directed network structures. With each approach having its advantages

and disadvantages, the field of inference of network structure from gene-expression

data is still open to new techniques.

In this chapter, we present a gene network reconstruction technique based on

the idea of Granger causality discussed in Chapter 3. We discuss an extension

of the method which can be used to infer the interaction patterns among mul-

tiple time series representing a set of stochastic processes. As discussed in the

earlier chapter, the proposed technique relies on the statistical interdependence

among multiple simultaneous time series. The interdependence between a pair

of time-series could be causal in nature and therefore symmetric measures may

not be suitable for measuring it. Wiener [Wie56] proposed a new way to measure

causal influence of one time series on another by conceiving the notion that the

prediction of one time series could be improved by incorporating the knowledge
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of the second one. Granger [Gra69] formalized this concept in the context of the

linear autoregression model of causal influences which we discussed in Chapter 3.

Granger causality was extended by Geweke [Gew82] who proposed a measure of

interdependence between two sets of time series. We have seen a recent interest in

biological community regarding application of Granger causality [MC07, NU08]

for temporal Microarray data. But we realize that a straightforward application

of Granger causality for biological data may not be suitable when the chances of

latent and exogenous variables present in the system are high. Also, a pairwise

detection of causal links can lead to discovery of redundant connections in the

inferred network.

In this chapter, we introduce a definition of Partial Granger Causality (PGC).

Partial Granger causality computes the interdependence between two time series

by eliminating the effect of all other variables in the system. The proposed idea of

Partial Granger Causality is tested for various toy models representing different

scenarios of interdependence between sets of time series. We then apply this

approach to a highly replicated microarray time series data for T-cell activation

to infer the gene network.

4.1 Methods

4.1.1 Measures of Linear Interdependence

Geweke proposed a measure to quantify the interdependence between two sets

of stochastic processes based on the definition of causality proposed by Granger

[Gew82]. To explain the method, we focus on a bivariate stochastic system with

X and Y as its members. Expressing the processes in their autoregressive form
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similar to Equation (3.4), we have

Xt =
∞∑
i=1

a1iXt−i + ε1t (4.1)

Yt =
∞∑
i=1

b1iYt−i + ε2t (4.2)

where ε1t and ε2t are the prediction errors. A joint autoregressive representa-

tion having information of the past measurements of both processes X and Y can

be written as

Xt =
∞∑
i=1

a2iXt−i +
∞∑
i=1

c2iYt−i + ε3t (4.3)

Yt =
∞∑
i=1

b2iYt−i +
∞∑
i=1

d2iXt−i + ε4t (4.4)

Equation (4.3) represents the prediction of the current value of X based on its

own past values as well as the past values of Y . The variance σ2(ε3t) measures the

strength of the prediction error. Granger causality suggests that if the prediction

of one process is improved by incorporating its own past values and the past

information of the other process, then the second process is said to Granger cause

the first process. In other words, if the variance of the prediction error for the first

process is reduced by the inclusion of past measurements of the second process,

then a causal relationship between the two processes exist. According to Geweke’s

decomposition of causality measure, the causal influence from Y to X where

σ2(ε3t) < σ2(ε1t) can be expressed as

FY→X = ln

(
|σ2(ε1t)|
|σ2(ε3t)|

)
(4.5)

If FY→X > 0, then Y → X exists. On the parallel lines, the causal influence
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from X to Y is defined as

FX→Y = ln

(
|σ2(ε2t)|
|σ2(ε4t)|

)
(4.6)

The third kind of interdependence between X and Y is due to the factors

possibly exogenous to (X, Y ) system, and is termed as instantaneous causality,

where γ = σ(ε3t, ε4t) 6= 0. The instantaneous causality can be expressed as

FX.Y = ln

(
|σ2(ε3t)|.|σ2(ε4t)|

|L|

)
(4.7)

where

L =

 σ2(ε3t) γ

γ σ2(ε4t)


When γ = 0, FX.Y = 0, no instantaneous causality exists. But when γ2 > 0,

then FX.Y > 0 and the instantaneous causality exists.

The above definitions imply that the total interdependence between two time

series X and Y can be defined as

FX,Y = FX→Y + FY→X + FX.Y (4.8)

Thus, the total interdependence between two time-series X and Y can be

decomposed into three components: two directional causal influences between X

and Y , and the instantaneous causality between the two.

4.1.2 Partial Granger Causality

In a network with multiple nodes, where each node represents a stochastic process,

various possibilities of interdependence among them may arise. Such interdepen-

dences can be denoted by the edges in the network. Any two entities in the
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network can be connected in either a direct way or in an indirect way. While

inferring the network structure from data, it is important that only the direct

influences of interactions are considered while drawing an edge between any two

entities. This issue is of important concern for network inference in order to filter

out redundant channels. Apart from that, there could be presence of exogenous

inputs and latent variables in the system. Exogenous variables represent the com-

mon experimental drives present in any experimental setup, whereas, the latent

variables account for the unobserved or hidden data which could not be captured

during the experiment. The above definitions of directional causality apply to

only two variables. But while considering a network of multiple variables, a mul-

tivariate approach is desirable. The benefit of multivariate model fitting is that it

uses information from all the participating entities in the system, making it pos-

sible to verify whether two entities share direct causal influence while the effect

of other entities are taken into account. Also, the pairwise analysis of two time

series is not sufficient to reveal if the causal relationship between a pair is direct

or not. We can assume that both exogenous and latent variables apply a common

input in the current time as well as in past to all the observed variables. The

above definitions of causality can be extended in a multivariate context to deal

with the effects of common inputs and all other observable variables while mea-

suring the directional influence between any two variables. We call this method

Partial Granger Causality (PGC) . In the proposed definition of Partial Granger

Causality, we compute the linear dependence between two entities by eliminating

the effect of all other variables. As a result of this elimination, it is possible to

compute the strength of direct interaction between two entities in a system. As an

extension to the bivariate systems described in the previous section, we propose

the definition of Partial Granger Causality in this section.
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The basic idea of Partial Granger Causality comes from the definition of Par-

tial Correlation [JW88]. Partial Correlation between two response variables Y1

and Y2 after eliminating the effects of other predictor variables Z1, . . . , Zr can be

understood in the following way. Consider the grouping of variables such that

the response variables are represented by vector YYY = {Y1, Y2} and the predictor

variables by the vector ZZZ = {Z1, . . . , Zr}. The covariance matrix after performing

the multivariate regression to predict YYY from ZZZ can be represented as ΣΣΣ, where

ΣΣΣ can be partitioned as  ΣY YΣY YΣY Y | ΣY ZΣY ZΣY Z

ΣZYΣZYΣZY | ΣZZΣZZΣZZ


Representing the identity matrix as III, the matrix ΣΣΣ can alternatively be rep-

resented by the following algebraic manipulation -

ΣΣΣ = IIIΣΣΣIII =

 III | −ΣY ZΣY ZΣY ZΣZZΣZZΣZZ
−1

000 | III


 ΣY YΣY YΣY Y | ΣY ZΣY ZΣY Z

ΣZYΣZYΣZY | ΣZZΣZZΣZZ


 III | 000

−ΣY ZΣZZ−ΣY ZΣZZ−ΣY ZΣZZ
−1 | III



=

 ΣY YΣY YΣY Y −ΣY ZΣZZΣY ZΣZZΣY ZΣZZ
−1ΣZYΣZYΣZY | 000

000 | ΣZZΣZZΣZZ


where ΣY YΣY YΣY Y − ΣY ZΣZZΣY ZΣZZΣY ZΣZZ

−1ΣZYΣZYΣZY represents the association between Y1 and Y2

after eliminating the effects of Z1, Z2, . . . , Zr. This formulation leads us to the

definition of Partial Granger Causality, which can be understood in the following

way

Consider two processes X and Z. The joint autoregressive representation for
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X and Z can be written as

Xt =
∞∑
i=1

a1iXt−i +
∞∑
i=1

c1iZt−i + ε1t (4.9)

Zt =
∞∑
i=1

b1iZt−i +
∞∑
i=1

d1iXt−i + ε2t (4.10)

The noise covariance matrix for the system can be represented as

S =

 σ2(ε1t) σ(ε1t, ε2t)

σ(ε1t, ε2t) σ2(ε2t)


Extending this concept further, the vector autoregressive (VAR) representation

for a system involving three processes X,Y and Z can be written in the following

way.

Xt =
∞∑
i=1

a2iXt−i +
∞∑
i=1

b2iYt−i +
∞∑
i=1

c2iZt−i + ε3t (4.11)

Yt =
∞∑
i=1

d2iXt−i +
∞∑
i=1

e2iYt−i +
∞∑
i=1

f2iZt−i + ε4t (4.12)

Zt =
∞∑
i=1

g2iXt−i +
∞∑
i=1

h2iYt−i +
∞∑
i=1

k2iZt−i + ε5t (4.13)

The noise covariance matrix for the above system can be represented as

Σ =


σ2(ε3t) σ(ε3t, ε4t) σ(ε3t, ε5t)

σ(ε3t, ε4t) σ2(ε4t) σ(ε4t, ε5t)

σ(ε3t, ε5t) σ(ε4t, ε5t) σ2(ε5t)


The Partial Granger Causality between X and Y by eliminating all the effect

of Z, can be calculated by partitioning the noise covariance matrices S and Σ in

the following way -
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S =

 σ2(ε1t) | σ(ε1t, ε2t)

σ(ε1t, ε2t) | σ2(ε2t)

 =

 S11 | S12

S21 | S22



Σ =

 σ2(ε3t) | σ(ε3t, ε5t)

σ(ε3t, ε5t) | σ2(ε5t)

 =

 ΣXY | ΣXY Z

ΣZXY | ΣZZ


The measure for Partial Granger Causality from Y to X by eliminating the

effect of Z can be expressed as

FY→X|Z = ln

(
|S11 − S12S

−1
22 S21|

|ΣXY − ΣXY ZΣ−1
ZZΣZXY |

)
(4.14)

Based on the above formulation, we demonstrate in the following sections

that Partial Granger Causality is a good tool for inferring a network structure

from a given set of time series data. An equivalent representation of Partial

Granger Causality exists in the frequency domain as well, as proposed by Guo et

al. [GWDF08] . The main results are presented in Appendix A.

4.1.3 Prerequisites For Causal Models

Stationary time series: Measurement of linear dependence between multiple time

series assumes the time series to be stationary. We assume our time-series to be

weakly stationary.

Linear independence among entities: Before fitting an autoregressive model on

a set of processes, it is important to check that the processes are linearly inde-

pendent. The check ensures that the fluctuation in the estimate of one parameter

will not be compensated by the fluctuations in the estimate of other parameters.

To check for linear independence among p variables, a sample variance-covariance

matrix S can be calculated, which contains p variances and 1
2
p(p− 1) potentially

different covariances. The determinant of S provides a generalized sample vari-

ance, and is equal to zero in case of linear dependence between the variables. In
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the case of linear dependence among variables, some of the variables should be

removed from the sample [JW88].

Selection of lag order: The above definitions are dependent on a choice of

appropriate lag values for variables. A lag-value p which minimizes the Akaike

Information Criterion (AIC, [Aka69]) according to Equation (3.8) can be used in

estimation of OLS regressions.

4.1.4 Bootstrap Analysis

To construct a confidence interval for every edge present in the network, it is

important to estimate the distribution of the PGC values between different pairs

of entities in a network. The confidence interval can be used as a statistical

measure to separate relevant edges from the pool of all possible edges in the

network. The distribution of the PGC values in a network is determined by the

bootstrap method. Consider a set of variables Y = {E1, E2, . . . , EN}, where each

Ei is a time series of equal length. The PGC value between any two variables

can be denoted as fi which can be computed according to Equation (4.14). The

set of all possible PGC values for all the possible p pairs of variables in Y can

be denoted as F = {f1, f2, . . . , fp}. The following procedure can be applied to

compute a bootstrap confidence interval for F using the 3σ method.

� Multiple samples of data for the system Y can be generated to create a

bootstrap sample B = {Y ∗1 , Y ∗2 , . . . , Y ∗L}.

� For each Y ∗i in B, compute PGC values F ∗i . This will give bootstrap esti-

mates F ∗1 , F
∗
2 , . . . , F

∗
L for the PGC values obtained from the bootstrap sam-

ple B.

� A standard deviation σ∗i for each fi in F can be computed by the distribution

of corresponding f ∗i values in F ∗1 , F
∗
2 , . . . , F

∗
L.
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� For 99.7% confidence level, obtain lower bound(lb) and upper bound(ub)

for each fi.

(lb, ub) = {fi − 3× σ∗i , fi + 3× σ∗i }

� Test the null hypothesis that the fi value is significant by rejecting the null

hypothesis if the confidence interval does not contain the value 0. So, the

edges having their fi values in F are accepted to appear in the network

whose lb >0. The rest of the edges are supposed to be absent.

4.2 Results

4.2.1 Illustrative Examples

We demonstrate the concept of Partial Granger Causality for network inference

with the following toy models. These models have been used earlier in the liter-

ature [BS01]. A Matlab routine was developed to compute the PGC values and

was tested on the following examples.

Each example has a set of 5 time-series where each time-series represents a

node in the interaction network. For a complete graph of 5 nodes, where each

node is connected to every other node in the network, there are at the most 20

possible directed edges. See Table 4.1 for edge enumeration for all the directed

edges. We computed PGC values for all the node pairs (X, Y ) forming an edge in

the complete graph for both the directions (X → Y and Y → X) by eliminating

the effects due to all other nodes and common input present in the system. The

magnitude of PGC for each directed edge represents the weight associated with

that edge. The confidence interval for each edge was constructed using the boot-

strap criteria for 2000 generated datasets for each example.
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Example 1: Consider a set of 5 simultaneously generated time-series according

to the following equations:

x1(n) = 0.95
√

2x1(n− 1)− 0.9025x1(n− 2) + w1(n)

x2(n) = 0.5x1(n− 2) + w2(n)

x3(n) = −0.4x1(n− 3) + w3(n)

x4(n) = −0.5x1(n− 2) + 0.25
√

2x4(n− 1) + 0.25
√

2x5(n− 1) + w4(n)

x5(n) = −0.25
√

2x4(n− 1) + 0.25
√

2x5(n− 1) + w5(n)

where wi(n) are zero-mean uncorrelated white processes with identical vari-

ance. One can see that x1(n) is a direct source to x2(n),x3(n), and x4(n). x4(n)

and x5(n) share a feedback loop and there is no direct connection from x1(n) to

x5(n). The final network structure obtained after computing the PGC values and

the confidence intervals on each edge can be seen in Figure 4.1a. Figure 4.2a plots

the magnitude of PGC values computed for each edge in the network for a dataset

representing Example 1. We can see that the PGC values for edges 10 (4 ← 5),

11 (1→ 2), 12 (1→ 3) , 13 (1→ 4) and 20(4→ 5) are comparatively higher than

the PGC values for the other edges in the network. Figure 4.3a represents the in-

ferred edges for 20 different datasets representing the above set of equations. The

x-axis in Figure 4.3a represents the edge numbers according to Table 4.1 and the

y-axis represents the dataset numbers. The bright boxes in the figure represent

the selected edges after computing confidence intervals for PGC values. We can

see that for most of the datasets, the selected edges are edge numbers 10,11,12,13

and 20.

Example 2: The system in Example 1 is modified where x1(n) influences x2(n),



Chapter 4. Partial Granger Causality 96

which in turn affects x3(n) and then finally couples to x4(n). x4(n) and x5(n) share

a feedback loop in same way as in the previous example. The modified system of

equations can be represented by the following equations.

x1(n) = 0.95
√

2x1(n− 1)− 0.9025x1(n− 2) + w1(n)

x2(n) = −0.5x1(n− 2) + w2(n)

x3(n) = 0.4x2(n− 3) + w3(n)

x4(n) = −0.5x3(n− 2) + 0.25
√

2x4(n− 1) + 0.25
√

2x5(n− 1) + w4(n)

x5(n) = −0.25
√

2x4(n− 1) + 0.25
√

2x5(n− 1) + w5(n)

wi(n) are again zero-mean uncorrelated white processes with identical vari-

ance. The network structure obtained after applying our method is shown in

Figure 4.1b. Figure 4.2b plots the magnitude of PGC values for each edge in the

network for a dataset for this example. Figure 4.3b shows the selected edges for

20 such datasets generated for this example.

Example 3: The system in Example 2 is further modified and a direct con-

nection from x5(n) to x1(n) is formed. Following set of equations represent the

modified system.

x1(n) = 0.95
√

2x1(n− 1)− 0.9025x1(n− 2) + 0.5x5(n− 2) + w1(n)

x2(n) = −0.5x1(n− 2) + w2(n)

x3(n) = 0.4x2(n− 3) + w3(n)

x4(n) = −0.5x3(n− 2) + 0.25
√

2x4(n− 1) + 0.25
√

2x5(n− 1) + w4(n)

x5(n) = −0.25
√

2x4(n− 1) + 0.25
√

2x5(n− 1) + w5(n)

The network structure found after computing PGC values for Example 3 is
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Edge Number Edge Edge Number Edge
1 (1 ← 2) 11 (1 → 2)
2 (1 ← 3) 12 (1 → 3)
3 (1 ← 4) 13 (1 → 4)
4 (1 ← 5) 14 (1 → 5)
5 (2 ← 3) 15 (2 → 3)
6 (2 ← 4) 16 (2 → 4)
7 (2 ← 5) 17 (2 → 5)
8 (3 ← 4) 18 (3 → 4)
9 (3 ← 5) 19 (3 → 5)
10 (4 ← 5) 20 (4 → 5)

Table 4.1: Enumeration of all the directed edges in the toy examples.

shown in Figure 4.1c. The PGC values for inferred edges obtained for a dataset

are shown in Figure 4.2c. Figure 4.3c shows the selected edges for 20 such datasets

generated for this example.

Example 4: The system in Example 2 is modified where x1(n) connects to

x4(n) via two distinct pathways, through x2(n) and x3(n) respectively.

x1(n) = 0.95
√

2x1(n− 1)− 0.9025x1(n− 2) + w1(n)

x2(n) = −0.5x1(n− 2) + w2(n)

x3(n) = 0.5x1(n− 3)− 0.4x2(n− 2) + w3(n)

x4(n) = −0.5x3(n− 1) + 0.25
√

2x4(n− 1) + 0.25
√

2x5(n− 1) + w4(n)

x5(n) = −0.25
√

2x4(n− 1) + 0.25
√

2x5(n− 1) + w5(n)

The network structure found after computing PGC values for Example 4 is

shown in Figure 4.1d. The magnitudes of PGC values computed for a dataset

for this example are plotted in Figure 4.2d, and the inferred edges for multiple

datasets are shown in Figure 4.3d.
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 4.1: Network structures for the discussed examples.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Figure 4.2: Plot of PGC values for edges in the discussed examples. See Table 4.1 for
edge enumeration.
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(a) (b)

(c) (d)

Figure 4.3: Detection of edges on multiple datasets. The x-axis represents the edges
which were expressed for the corresponding dataset on the y-axis. (a) The network in
Example 1 has edge number 10,11,12,13 and 20 expressed for most of the datasets.
See Table 4.1 for relationship between edge numbers and the edges. (b) Example 2
has edges 10,11,15,18 and 20 expressed for most of the datasets. (c) The network in
Example 3 has edge number 4,10,11,15,18 and 20 expressed for most of the datasets
and (d) Example 4 has edges 10,11,12,15,18 and 20 expressed for most of the datasets.

The bootstrap approach helped us in identifying the statistically relevant edges

for each dataset. We performed the confidence interval test using 2000 datasets

for each example. Figure 4.3 shows the selected edges for 20 datasets for each ex-

ample. Table 4.2 presents the confidence interval limits and the mean of causality

values for the bootstrap samples for toy Examples 1 and 4 The plots in Figure 4.2

show PGC values for 4 datasets, each dataset belonging to a particular example.

Figures 4.4 represents the Q-Q plot for actual and fitted values for a dataset for
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Figure 4.4: Q-Q plots for the variables in Example 1.

Figure 4.5: Residual plots for the variables in Example 1.
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Example 1. Figure 4.5 plots the distribution of residuals obtained after fitting the

model to data. Linear Q-Q plots and normal distribution of residuals are desirable

for a good model fit. Such plots can be used as diagnostic tools to access fit of

model to data.

A careful consideration at the PGC values for each example indicated that

only the edges with comparatively higher PGC values passed the bootstrap cri-

terion for edge selection. This can be seen by considering the confidence interval

limits and the mean causality values in Table 4.2 for Example 1 and 4. The

mean causality values for the edges passing the bootstrap criteria is significantly

higher than the mean causality values of the other edges in that network. Similar

observations can be made by looking at the Figure 4.3 which plots the selected

edges for 20 different datasets for each example. As can be seen in the figure, the

majority of those datasets represent the expected network structures. The filled

bright squares in the figure denote the edges which passed the bootstrap confi-

dence interval criteria. These are also the edges having considerably higher PGC

values than other edges in the network. This phenomena was observed for all

the toy models indicating that the edges with higher magnitude have a more sig-

nificant role in detection of network structure. This is an important observation

considering that bootstrap is a computationally expensive and time-consuming

process. The VAR (Vector Auto Regressive) modeling of a process with q entities

requires O(q2) parameters and is suitable for modelling small networks but time

consuming for bigger networks. Performing bootstrapping on a bigger network

using this technique will require considerable time and computational resources.

The toy models mimic different scenarios of connections between the partici-

pating entities. We saw that PGC was correctly able to infer the network structure
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from data for each example. The visual matrix in Figure 4.3 showed that similar

edges were expressed for most of the datasets for a given example. There were a

few extra edges for some of the datasets which could be attributed to the prop-

erty of data, some signals in a particular dataset were more dominant due to the

introduced noise. Finally, the entries in Table 4.2 show that only the most domi-

nant edges, i.e. edges with higher PGC value pass the confidence interval criteria

for edge selection. The positive lower bound for the relevant edges supports the

hypothesis in the bootstrap section.

4.2.2 Application to T-cell Data

T-cells are part of the adaptive immune response and are of two types : Helper

T-cells and Killer T-cells. Activation of T-cells is a central event in initiation of

immune response. T-cell activation is initiated by the interaction between the

T-cell receptor (TCR) complex and the antigenic peptide present on the surface

of an antigen-presenting cell. T-cells act by releasing certain proteins known as

cytokines which are responsible for activating cells, triggering them to grow and

divide or to die. A complex network of cytokines is secreted by the helper T-

cells that determine the course of the immune response. Killer T-cells, on the

other hand, release cell-damaging enzymes that create holes in the membranes of

the target cells and trigger them to undergo programmed cell death. The pro-

posed methodology was applied to a publicly available microarray gene expres-

sion data obtained from a well-established model of T-cell activation by Rangel

et al.[RAG+04]. The data was collected from 2 experiments characterizing the

response of a human T-cell line (Jurkat) to PMA and ionomycin treatment. The

dataset comprises recorded expression levels of 58 genes observed after 0, 2, 4, 6,

8, 18, 24, 32, 48 and 72 hours. The dataset can be downloaded from the web-
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site http://public.kgi.edu/∼wild/LDS/index.htm mentioned in the publication by

Rangel et al.

Fitting the VAR model on the data: The VAR model was fitted on the trans-

formed dataset with the lag selection performed according to the AIC criterion

mentioned in Equation 3.8. A lag value between 2 to 6 was chosen which mini-

mized the AIC value for the system. Figure 4.6 represents the Q-Q plot for four

genes. The plots were obtained after fitting the VAR model on the whole dataset.

The linearity of the plots indicates that the actual time series values for a gene

were in accordance with the predicted series. Plots in Figure 4.7 represent the his-

tograms and cross-correlation measures for the standard innovations obtained for

those four genes. The innovations exhibit Normal distribution. A similar pattern

was observed for other genes as well after fitting the VAR model. The coefficient of

determination for all 58 equations, each one representing a gene, is also presented

in Figure 4.8. After the model fitting was done, a variance-covariance matrix for

the residuals was obtained for the whole system. PGC values were computed for

each pair of genes in the dataset according to Equation 4.14. The distribution of

calculated PGC values can be found in the Figure 4.8.

Detection of the network structure: The total number of possible edges in a

system of 58 entities is
( 58

2

)
× 2 = 3306. Performing a bootstrap on such a big

system is extremely time-consuming and computationally demanding due to the

complexity of VAR models. We then relied on the observation that we made while

studying the toy models, which revealed only the edges with higher PGC values

compared to the rest of the edges. This was confirmed by the confidence interval

tests performed on those models. Figure 4.3 and Table 4.2 support this theory for

toy models. A threshold to select the most dominant edges was chosen from the
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Figure 4.6: Q-Q plots of actual data versus predicted data after fitting the autoregres-
sive model.

tail of the empirical distribution of PGC values for the T-cell data. Though the

choice of threshold is user dependent and can vary from case to case, we use the

value of 0.5743 which corresponds to the 97.5 percentile as the threshold to detect

the relevant edges. A total of 83 edges were found to have PGC value higher than

the threshold. The obtained network can be seen in Figure 4.9.

Analysis of the inferred network structure: The threshold criteria for inference

of network structure resulted in the elimination of 11 genes from the final network

obtained. The elimination of nodes doesn’t imply that they don’t play an active

role in the T-cell system, but only indicates that the interaction caused by them in

our inferred causal network is weaker than the interactions caused by the entities

present in the network. A complete list of the genes shown in Figure 4.9 along
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Figure 4.7: Histogram and cross-correlation plot for innovations after fitting the autore-
gressive model.

(a) (b)

Figure 4.8: (a) Plot of coefficient of determination after fitting the VAR model on T-cell
data.(b) Histogram plot for the PGC values between all pairs of genes in the dataset.
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with the missing ones can be found in Table 4.3. Some key genes are listed in the

caption of Figure 4.9.

From a purely computational point of view, the network has two remarkable

properties which are commonly found in most of the biological networks. The

first property is the sparseness of connections in the network, and the second

is the existence of hub-and-spoke structure in the network. There are several

edges emanating from nodes 32 (superoxide dismutase 1), 57 (LAT) and 58 (v-

akt murine thymoma viral oncogene homolog 1), and several edges terminating

at nodes 7 (CD69), 11 (jun D proto-oncogene) and 24 (adenomatosis polyposis

coli). Barabasi argues that such structures are natural for the biological systems

and knocking out a hub can break down the network [Bar02]. Among the links

found in the network, we obtained a few gene-gene interactions that have been

documented earlier. Zhang et al.[ZIT+99] showed that LAT is required for up-

regulation of CD69 in T-cells, whereas the role of IL-2Rγ for regulation of CD69

was discussed by Cheng et al.[CONG02]. Pasquet et al. reported the activation of

integrin-αM by LAT [PGQ+99]. Influence of FYB on CD69 has been reported by

Cambiaggi et al. [CSC+92]. A significant correlation between NF-κB activation

and level of IL-16 was discovered by Takeno et al.[THU+02] and also reported by

Hidi et al. [HRAA+00].

4.3 Comparison With Respect to Other Methods

We summarize the main advantages of using this technique and compare this

technique with other commonly used approaches for inferring network structure

from biological data. The main benefits of using our technique are the following:

� Non-availability of prior knowledge about the system is not a limitation and

does not restrict us from studying large systems.



Chapter 4. Partial Granger Causality 109

Gene number Gene name
1 retinoblastoma 1 (including osteosarcoma)
2 cyclin G1
3 TNF receptor-associated factor 5
4 clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2, apolipoprotein J)
5 mitogen-activated protein kinase 9
6 CD27-binding (Siva) protein
7 CD69 antigen (p60, early T-cell activation antigen)
8 zinc finger protein, subfamily 1A, 1 (Ikaros)
9 interleukin 4 receptor
10 mitogen-activated protein kinase kinase 4
11 jun D proto-oncogene
12 lymphocyte-specific protein tyrosine kinase
13 small inducible cytokine A2 (monocyte chemotactic protein 1, homologous to mouse Sig-je)
14 ribosomal protein S6 kinase, 70kD, polypeptide 1
15 integrin, alpha M (complement component receptor 3, alpha; also known as CD11b (p170)
16 catenin (cadherin-associated protein), beta 1 (88kD)
17 survival of motor neuron 1, telomeric
18 caspase 8, apoptosis-related cysteine protease
19 E2F transcription factor 4, p107/p130-binding
20 proliferating cell nuclear antigen
21 cyclin C
22 phosphodiesterase 4B, cAMP-specific (dunce (Drosophila)-homolog phosphodiesterase E4)
23 interleukin 16 (lymphocyte chemoattractant factor)
24 adenomatosis polyposis coli
25 inhibitor of DNA binding 3, dominant negative helix-loop-helix protein
26 Src-like-adapter
27 cyclin-dependent kinase 4
28 early growth response 1
29 transcription factor 12 (HTF4, helix-loop-helix transcription factors 4)
30 myeloid cell leukemia sequence 1 (BCL2-related)
31 cell division cycle 2, G1 to S and G2 to M
32 superoxide dismutase 1, soluble (amyotrophic lateral sclerosis 1 (adult))
33 cyclin A2
34 quinone oxidoreductase homolog
35 interleukin-1 receptor-associated kinase 1
36 SKI-INTERACTING PROTEIN
37 myeloid differentiation primary response gene (88)
38 caspase 4, apoptosis-related cysteine protease
39 transcription factor 8 (represses interleukin 2 expression)
40 apoptosis inhibitor 2
41 GATA-binding protein 3
42 retinoblastoma-like 2 (p130)
43 chemokine (C-X3-C) receptor 1
44 interferon (alpha, beta and omega) receptor 1
45 FYN-binding protein (FYB-120/130)
46 interleukin 2 receptor, gamma (severe combined immunodeficiency)
47 colony stimulating factor 2 receptor, alpha, low-affinity (granulocyte-macrophage)
48 myeloperoxidase
49 apoptosis inhibitor 1
50 cytochrome P450, subfamily XIX (aromatization of androgens)
51 CBF1 interacting corepressor
52 caspase 7, apoptosis-related cysteine protease
53 mitogen-activated protein kinase 8
54 jun B proto-oncogene
55 interleukin 3 receptor, alpha (low affinity)
56 nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
57 linker for activation of T cells
58 v-akt murine thymoma viral oncogene homolog 1

Table 4.3: List of genes in the T-cell data
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� Our model is inherently able to capture feedback cycles in a system which

is a common feature for biological systems.

� The computation in its simplest case is very straightforward and as a result

the outcome is very reliable and robust.

� In this chapter we only deal with linear causality cases, but we can readily

extend the concept to non-linear cases.

� An equivalent representation of this method exists in frequency domain

which can be useful while dealing with frequency domain datasets.

Among the commonly used methods for inference of network structure from

time-series data, relevance networks, Gaussian graphical models and Bayesian net-

works are the prominent and widely used ones. In the following text we present

a brief overview of these methods and the problems associated with them.

Relevance networks (RN): Relevance networks are based on pairwise associa-

tion score which is a correlation based method. The principle disadvantage of this

method is, that inference of an interaction between two nodes is not performed

in the context of the whole system. Correlation based methods are incapable of

distinguishing between direct and indirect interactions and are unable to capture

feedback loops.

Gaussian graphical models (GGM): GGMs - also known as undirected prob-

abilistic graphical models are inferred by calculating partial correlation between

two nodes conditional on all the other nodes in the network. Though the direct

interaction between two nodes is computed in the context of the whole network,

the method still suffers from some of the problems of relevance networks, namely
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lack of direction and feedback cycles in the inferred network.

Bayesian networks (BN): Bayesian networks are probabilistic graphical models

that represent a set of variables and their probabilistic independencies. Temporal

observations of variables are modeled using Dynamic Bayesian networks which

can overcome the limitation of acyclicity constraint associated with Bayesian net-

works. In a fully observable dataset, the parameter estimation and structure

learning should not be overly complicated, but in case of missing variables, the

computational and theoretical problems arise. The structure learning generally

requires use of optimization algorithms which can be computationally costly and

suffer from their own problems like getting stuck in a local minima. The final in-

ferred structure is also dependent on the choice of prior and the scoring function

used to evaluate the generated structures. Bayesian networks themselves are not

carriers of causal connections between variables. However, causal connections can

be derived by means of interventions in the dataset by fixing the values of a vari-

able to a constant and assuming that values of none other variables are affected.

The ability of Bayesian networks to infer a causal network from intervention

data distinguishes it from other computational techniques discussed above includ-

ing ours. This leads to an interesting observation and takes us back to the basic

definition of causality. Bayesian networks use intervention data to detect effec-

tive causality by modelling the hidden states of variables causing the observed

data, whereas, our technique relies on functional causality resting on the tempo-

ral dependencies among the data themselves without reference to how they were

caused by the underlying processes. Causality in the context of Granger causality

is strictly based on temporal precedence and assume that data reflects the states

that cause data. Other techniques like Differential equations, Petri nets, Process
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calculi etc. use extensive biological understanding to model the system and are

better suited to studying effective causality between variables. Granger causality

based models on the other hand are applicable to any time-series dataset without

requiring any prior knowledge about the system. Our method contains number of

implicit assumptions like weak stationarity of time-series and Gaussian behaviour

of uncorrelated residuals. A number of transformation methods have proposed to

deal with such issues and can be applied according to the data. The assumption

of linearity in our models can be overcome by extending the models to their non-

linear forms. Some non-linear extensions of Granger causality can be found in the

publications by Ancona et al. [AMS04] and Marinazzo et al. [MPS06].

4.4 Summary

Advances in experimental techniques in molecular biology have enabled researchers

to perform high-throughput experiments and simultaneously monitor activities of

numerous biological entities at different time points. Quantitative analysis of ex-

perimental data helps researchers to build hypothesis about the system and design

new experiments. In this chapter, we proposed the use of Partial Granger Causal-

ity to quantitatively infer the causal network structure based on microarray data.

The application of this technique was first studied for various toy models and then

later applied to the T-cell microarray data for inference of the network structure.

The multivariate nature of this technique makes it useful for the systems having

large number of entities engaged in cross-communication with each other. The

technique is simple in nature and can be easily applied to small as well as bigger

systems. The proposed causality model can be most useful when experimental

conditions are chosen in such a way that they activate the measured network

strongly and there is minimum error in data recording.



Chapter 5

Listening to Genes

Uncovering the biological meaning embedded in time-series gene expression data

is one of the most challenging problems in the post-genomic era. The expression

patterns observed over multiple time points provide us with a rich set of informa-

tion detailing the temporal profiles of the genes. Such profiles when studied at

the genome wide level can help us understand the functional mechanism of the

underlying cellular processes.

Temporal analysis of microarray data has not only helped in identifying func-

tional categories of genes but also in understanding the behaviour of various gene

circuits. Techniques like Fourier estimation have been used to detect periodic

signals in various organisms including yeast and human cells [SSZ+98, WFS04,

KLW06]. Claridge-Chang et al. [CCWN+01] used Fourier components to deter-

mine a set of genes expressed with a robust circadian rhythm in adult Drosoplhila

heads. Similar microarray study on circadian rhythm in Arabidopsis was carried

out by Harmen et al.[HHS+00] which empirically tested for statistically significant

cross-correlation between the temporal profile of each gene and a cosine wave of

definite period and phase. Temporal microarray data has also been helpful in

understanding the gene circuits using methods like Ordinary Differential Equa-
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tions [Alo07] and Dynamic Bayesian networks [DGM+06, KIM03]. This chapter

presents a complete pipeline for analysing the Arabidopsis data discussed in Chap-

ter 1. We apply the techniques discussed in the previous chapters on the complete

dataset. We supplement those techniques with a frequency domain analysis.

The first step in dealing with the microarray dataset is to process the data

using the normalization technique developed in Chapter 2. The normalization can

help us deal with unwanted systematic variations associated with each biological

sample and experimental conditions. The gene expressions were corrected for var-

ious unwanted biases and negative correlation across replicates was minimized.

The next step after normalization is clustering of data to reduce the data di-

mension. Three popular approaches [AYA07] for clustering microarray data are

: a) Point-wise distance based methods [DH05] b) model-based clustering meth-

ods [PLL02] and c) feature-based clustering methods [BHWK05]. We presented

a technique to find functional clusters from temporal data in Chapter 3. In this

chapter, we introduce another approach to cluster data based on its frequency

profile. This approach certainly belongs to the feature-based clustering methods,

but differs from the idea of visual clustering techniques where genes are classi-

fied according to their distances from class centres. Frequency is an important

feature in any temporal data and there are many advantages of dealing with tem-

poral data in frequency domain. We call our method auditory clustering approach.

After applying our frequency based clustering approach to the data, we use

Partial Granger Causality discussed in Chapter 4 to infer network structures for

interactions among selected genes. We present three gene circuits in this chapter.

The first circuit is the Circadian circuit comprising of 7 genes (ELF4, TOC1,
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CCA1, LHY, PRR7, PRR9 and GI). The second circuit is the Ethylene signalling

circuit comprising of 16 genes, and the third circuit is a global gene profile circuit

of 9 genes. For all the circuits, we present the causality analysis in both the

time and frequency domain. We further introduce the idea of Complex Granger

Causality to show the interactions among groups of genes in the Circadian and

Ethylene circuits. In both the circuit, we find that the complex Granger causality

plays an important role in reconciling experimental and computational results.

Interactions in the global gene profile circuit present more interesting results to

answer questions like, if there is a global picture of interactions among genes. To

create the global profiles for the genes, we first simply cluster the genes using

the k-mean clustering algorithm. We then use the cluster centres (means) as

representatives of each cluster and apply the Partial Granger Causality to infer

the interaction pattern. We see a clear hierarchical structure of interactions among

the representative genes. At the top of the hierarchy are the genes with a peak

in the middle, at the middle level there are genes with a decreasing trend, and at

the bottom level the genes exhibit an increasing trend.

5.1 Methods

5.1.1 Data Generation : Overview of the Dataset

An overview of the microarray experiment to obtain the dataset was presented in

Section 1.6 of Chapter 1. We provide here a brief recap of the dataset obtained.

Gene expressions for a total of 30,336 genes were collected. The data was obtained

over 22 days during the leaf senescence process. The biological replicates were

harvested both in morning and evening at every alternate day, thus giving total

22 time points. There were four biological replicates collected at each time point

where each biological replicate resulted in four technical replicates. The final spot
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quantization matrix obtained after scanning the hybridized arrays resulted in a

30336 × 16 × 22 matrix where 30336, 16 and 22 are the number of genes, total

replicates and total time points respectively.

5.1.2 Normalization

The data needs to be cleaned from various unwanted experimental biases and

the expression values obtained at different replicates need to be comparable. We

proposed a normalization technique to deal with our data in Chapter 2. We first

estimated the various sources of experimental variations in the data using an

error model. After removing the sources of unwanted variations in the dataset,

the residuals associated with genes in a replicate, standardized by the estimated

gene-wise variances showed a Gaussian distribution. Also, the correlation between

residuals from one replicate to other replicate was minimized using an iterative

algorithm. The normalized data is used for further analysis.

5.1.3 Clustering : Auditory Clustering

The genes were clustered according to their frequency profiles, thus the name

auditory clustering. Availability of temporal data allows us to analyse it in both

time and frequency domains; we take advantage of this fact and investigate the

behaviour of the data in frequency domain. We use a toy example to illustrate

the method. We randomly select 3000 genes from our dataset to build the toy

example. Analysis of toy example is presented in Figure 5.1. A power spectrum

of selected 3000 genes was computed using discrete Fourier transformation. An

analysis of the power spectrum indicated presence of two major frequencies present

in the system. The major frequencies were found for day 1 and day 22. We used
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this information to generate the simulation data using the following equations :

xgt = ag + k × cos(2πt(1)

N
) + k × cos(2πt(11)

N
) + t× εt (5.1)

where

k =

 0.1× U(0, 1) if 0 < g ≤ 1000

0.5× U(0, 1) + 0.1 g > 1000

The term ag is the DC term computed for the gene g from selected dataset after

taking the Fourier transform. εt is the uniform error associated with simulated xgt.

Figure 5.1: Synthesized data. A. Gene intensity vs. time. B. The magnitude of discrete
Fourier transform of the data in A. The DC term is not shown. C. M0 (DC term), M1

(corresponding to the first column in B) and M11 (the 11th column in B).A clear structure
of two clusters is shown. D. The histogram of the magnitude of M11.

The panel (A) in Figure 5.1 plots the time domain representation of the gen-

erated 3,000 genes. Though it is difficult to see the grouping of genes in the time
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domain representation, we transform the data to the frequency domain and the

results are shown in Figure 5.1 (B). Two dominant frequencies corresponding to

the 1st (named M1) and the 11th (named M11) components of the discrete Fourier

transformation can be seen in the figure. Figure 5.1 (C) also confirms that two

different frequencies are present in the data, one in the high frequency (M11) and

the other being in the low frequency (M1). The behaviour can also be seen in the

Figure 5.1(D). The functional meaning of clusters is obvious in terms of frequency.

Each frequency has its own physiological meaning. The genes with higher M11

values are most sensitive to (controller of) faster changes, whereas the genes with

higher M1 values are responsible for slower changes. In general, we can deal with

a data set which has multiple frequencies.

5.1.4 Network Analysis : Complex Granger Causality

In Chapter 4, we introduced the concept of Partial Granger Causality to infer net-

work structure from temporal gene expression data. Based on the same principles,

we introduce here a system of complex interactions. A complex essentially means

a set of multiple time series. Complex interactions are considerably different from

interactions observed at pairwise level. For example, a pair of variables may not

have individual interaction with the third variable, but when in combination with

each other, they may interact with the third variable. On the other hand, when

two variables are negatively correlated, each of them can interact with the third

variable, but when they are grouped together, the interaction may disappear. The

complex interaction between sets of time series can be explained in the following

way.

Consider three multiple stationary time series XXX,YYY and ZZZ with k, l and m

dimensions respectively. We consider the relationship from YYY toXXX by conditioning
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on ZZZ. The joint autoregressive representation for XXX and ZZZ can be written as


XXX t =

∞∑
i=1

aaa1iXXX t−i +
∞∑
i=1

ccc1iZZZt−i + εεε1t

ZZZt =
∞∑
i=1

bbb1iZZZt−i +
∞∑
i=1

ddd1iXXX t−i + εεε2t

(5.2)

The noise covariance matrix for the system can be represented as

Γ =

 σ2(εεε1t) σ(εεε1t, εεε2t)

σ(εεε2t, εεε1t) σ2(εεε2t)

 =

 Γxx Γxz

Γzx Γzz


where σ2 and σ represent variance and co-variance respectively. Extending this

representation, the vector autoregressive representation for a system involving all

the three time series XXX,YYY and ZZZ can be written in the following way.



XXX t =
∞∑
i=1

aaa2iXXX t−i +
∞∑
i=1

bbb2iYYY t−i +
∞∑
i=1

ccc2iZZZt−i + εεε3t

YYY t =
∞∑
i=1

ddd2iXXX t−i +
∞∑
i=1

eee2iYYY t−i +
∞∑
i=1

fff 2iZZZt−i + εεε4t

ZZZt =
∞∑
i=1

ggg2iXXX t−i +
∞∑
i=1

hhh2iYYY t−i +
∞∑
i=1

kkk2iZZZt−i + εεε5t

(5.3)

The noise covariance matrix for the above system can be represented as

Σ =


σ2(εεε3t) σ(εεε3t, εεε4t) σ(εεε3t, εεε5t)

σ(εεε4t, εεε3t) σ2(εεε4t) σ(εεε4t, εεε5t)

σ(εεε5t, εεε3t) σ(εεε5t, εεε4t) σ2(εεε5t)

 =


Σxx Σxy Σxz

Σyx Σyy Σyz

Σzx Σzy Σzz


where εεεit, i = 1, · · · , 5 are the uncorrelated prediction errors over time. The con-

ditional variance Γxx − ΓxzΓ
−1
zz Γzx measures the accuracy of the autoregressive

prediction of XXX based on its previous values conditioned on ZZZ whereas the con-

ditional variance Σxx − ΣxzΣ
−1
zz Σzx measures the accuracy of the autoregressive

prediction of XXX based on its previous values of both XXX and YYY conditioned on
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ZZZ. The traces of matrix Γxx − ΓxzΓ
−1
zz Γzx and the matrix Σxx − ΣxzΣ

−1
zz Σzx are

denoted by Tx|z and Txy|z respectively. We define the Complex Granger causality

from vector YYY to vector XXX conditioned on vector ZZZ to be

FYYY→XXX|ZZZ = ln

(
Tx|z
Txy|z

)
(5.4)

The 99.7% confidence interval can be constructed using the bootstrap method.

An interaction between two genes or two group of genes is significant if and only

if the low bound of the confidence interval is greater than zero.

5.2 Results

5.2.1 Normalization

The correlation matrix of residuals from 16 replicates for time point 1 is shown

in Figure 5.2. The result obtained after removing the different biases is shown in

x ∈ [1, 16]×y ∈ [1, 16]. The existence of negative correlation among the replicates

can be seen in Figure 5.2 (more downward spikes than upward). After applying

our method to the data, the negative correlation is evenly distributed over all

replicates x ∈ [21, 36] × y ∈ [1, 16]. This considerably improves the outcome of

the normalization. A detailed description of the method can be found in Chapter

2.

5.2.2 Frequency Analysis

After normalizing the data, we turn our attention to create clusters in frequency

domain. The representation of a time dependent signal as a weighted sum of sine

and cosine functions can be studied using Fourier analysis. It is important to note

that a successful Fourier analysis depends on a careful design of experiment and

data collection method. Too short data or a collection on data points on irregular
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Figure 5.2: Correlation matrix of residuals before and after the application of select-
and-reject algorithm during normalization (see Chapter 2 for details). For x = 1, 2, · · · , 16
is the correlation matrix before applying the algorithm. For x = 21, 22, · · · , 36 is the
correlation matrix after applying the algorithm. The diagonal elements of two matrices
are all set to 0.

intervals can miss the natural cycles present in the system and the Fourier anal-

ysis may not be fruitful. We took such important issues in consideration while

collecting the data. First, our data is long enough and collected over 22 days

which allows to capture changes in gene expression profiles during the senescence

process. Second, our data was collected to capture the cyclic behaviour due to

daily activity (24 hour period) in the plant. Twice a day data collection also

allowed us to monitor the gene expressions due to day and night effect. Though

our data was not collected on smaller intervals which meant that we missed the

smaller frequencies but the larger frequencies could still be captured and utilized

for our purpose.
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A B

C D

E F

Figure 5.3: (A) Gene intensity vs. time. Only 200 genes are shown. (B) Magnitude of all
genes vs. frequency. It is clear to see that there are two main frequencies in the data,
i.e. the one of one day period (M11, the 11th column) and the other of 22 days period
(M1, the first column). The DC term M0 is not shown. (C) Two dimensional plot of M11 vs.
M1. (D) The histogram of the DC term. There are two peaks in the histogram. (E) The
histogram of M1, it is a Weibull distribution. (F) The histogram of M11, it is an exponential
distribution.

We show the results of frequency domain analysis in Figures 5.3 and 5.4. Fig-

ure 5.3 (A) plots the time-domain representation of 200 randomly selected genes.

We can see that it is difficult to visualize any grouping in this small dataset. We

then perform the Fourier transformation on the complete dataset and plot the

power spectrum in Figure 5.3(B). We can see the presence of two dominant fre-

quencies in the spectrum; one with a period of 22 days (M1, the 1st column) and

other with a period of 1 day (M11, the 11th column).

The column corresponding to the DC term (M0) is not shown in the figure.

A histogram plot of the DC terms in shown in Figure 5.3(D). The plot indicates

a bimodal distribution, indicating two groups of overall signalling strength in the

gene data. To visualize the relationship between the two dominant frequencies at
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M1 and M11, we plot them opposite to each other in Figure 5.3(C). For visualiza-

tion purposes, we select only the top values of M1 (all values > 8) and M11 (all

values > 5). The thick black line in the plot indicates that genes with strong 1 day

rhythm are separate from genes with 22 day rhythm. Figures 5.3(E) and (F) plot

histograms of M1 and M11 values respectively. We can see that distributions of

values in M1 and M11 resemble Weibull and Exponential distributions respectively.

F

E

D

C

B

A

Figure 5.4: (A) Time trace of the top (in red and black) and bottom (in blue) ten genes
with the strongest amplitude of the period of 22 days. There are two classes: one is
up-regulated (red thick line), the other is down-regulated (black thick lines). (B) Time
trace of the top (in red and black) and bottom (in blue) ten genes with the strongest
amplitude of period of 1 day. There are two classes: one is on-phase (red thick line),
the other is off-phase (black thick line). (C) Time trace of the first top (in red) and
bottom (in blue) ten genes without rhythms. Plots in (D), (E) and (F) plot the frequency
representation of top genes in (A), (B) and (C) respectively.

In order to have a clear understanding of the power spectrum, we perform

further analysis and present the results in Figure 5.4. We select top ten and

bottom ten genes ranked according to their magnitudes in M1 and plot their time-

domain representation in Figure 5.4(A). In Figure 5.4(B), we present the top ten
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and bottom ten genes according their corresponding magnitudes in M11. Similarly,

top ten and bottom ten genes were selected according to their ranking in the DC

term (M0) and plotted in Figure 5.4(C). Figures 5.4 (D),(E) and (F) are frequency

representations of top ten genes in Figures 5.4(A),(B) and (C) respectively. Figure

5.4(A) has time plot of genes with a period of 22 days. The bottom ranked ten

genes are plotted in blue and have flat profiles. The top ten ones, drawn in red

and black show big fluctuations across time. All the top ten genes can be divided

into two classes (a) down-regulated (6 genes) and (b) up-regulated (4 genes). We

plot one of the up-regulated genes with a thick red line, and one of the down-

regulated ones with a thick black line for clear visualization. One could infer that

genes are related to leaf senescence. We next turn our attention to the genes

having a period of 1 day in Figure 5.4(B). Again the bottom ranked ten genes

are plotted in blue and have flat profiles. The top ten genes, drawn in red and

black are oscillatory genes and could qualify as circadian genes. The top ten genes

can again be classified as (a) In-phase genes (6 genes) and (b) Out-phase genes

(4 genes). We have drawn examples of an in-phase gene and an out-phase gene

using thick red and thick black lines respectively. Finally, in Figures 5.4(D),(E)

and (F), we plot the frequency domain representations of top ten genes plotted in

Figures 5.4(A),(B) and (C) respectively.

5.2.3 A Circadian Circuit

The frequency plot of top ten genes with one day period in Figure 5.4(B) shows

an interesting mix of in-phase and out-phase genes. A look at the gene annotation

database identifies the gene with highest M11 value as ELF4. The plot indicates

a strong oscillatory rhythm for ELF4 for each day. ELF4 plays an important

role in maintaining the circadian rhythm of the plant as reported by Doyle et

al.[DDB+02] and McWatters et al.[MKH+07]. The strong oscillatory behaviour
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of circadian genes is also reported by Harmen et al. [HHS+00]. From the gene

annotation database, we found that ELF4 is related to two other genes CCA1 and

LHY. ELF4 is necessary for light-induced expressions of both CCA1 and LHY.

Yonovsky et al. [YK03] reported a Circadian circuit involving ELF4, CCA1,

TOC1 and LHY. See Figure 5.5(A). We plot the expression of these genes in

Figure 5.6(A).

(a) (b)

(c)

Figure 5.5: Circadian circuits reported in literature. (a)Morning and evening loop in
Arabidopsis. From Yonovsky et al. [YK03]. (b)Morning, evening and an unknown loop
by Ueda [Ued06] (c) Inclusion of GI gene in the circuit by Locke et al.[LKBG+06]

Ueda [Ued06] and Locke et al. [LKBG+06] present circadian circuit with three

loops: PRR9, PRR7 and LHY/CCA1 are in one loop (morning loop or loop III),

TOC1 and GI as another loop (night loop or loop II), and TOC1,LHY/CCA1 and

a unknown gene making the third loop (loop I). See Figure 5.5(B) and (C).

We therefore consider a circuit of 7 genes for our computational analysis. A

complete gene annotation for selected genes is provided in Appendix B. We applied

partial Granger causality discussed in Chapter 4 on these genes and the resulting
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Figure 5.6: One gene circuit controlling circadian activity. A. Time trace of four genes,
ELF4, TOC1, LFY and CCA1. ELF4 and TOC1 are in-phase oscillators, LFY and CCA1 are
in-phase oscillators, but they are off-phase oscillators with respect to ELF4 and TOC1.
B. Magnitudes vs. frequency for the four genes. They have highest magnitude at the
frequency of one-day period. C. The gene circuit obtained in terms of PGC (see an-
notation in Supplemental material II). D. Complex interactions between different group
of genes and GI. D. Gene interactions in the frequency domain.

network is shown in Figure 5.6(C). ELF4 plays an important role in regulating

the circadian rhythm and is the most upstream gene. It interacts with both loop

III and loop I. Loop III genes are closely interconnected via interactions between

PRR9, LHY and CCA1, and the interaction between CCA1 and PRR7. Similarly,

in loop I, TOC1 modulates LHY and CCA1. There are also links between loop III

and loop I. PRR9 exerts influence on TOC1. TOC1 and PRR7 have a feedback

loop. GI is an isolated gene on our structure without having any interaction with

other genes. The observation of GI being an isolated gene in our structure also

coincides with the experimental findings. On page 4 of [LKBG+06], it is men-

tioned that The GI single mutant had a relatively weak phenotype, whereas our

assays of the triple GI; lhy;cca1 mutant demonstrate GI’s importance. This led us

to introduce the notion of interaction between complexes as presented in Section
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5.1.4. We plot the interaction results of individual and grouped genes with GI

in Figure 5.6(D). We see that interaction of single genes ELF4, TOC1, LHY and

CCA1 with GI is almost negligible. The complex interactions of GI with pairs like

(ELF4,TOC1), (ELF4,LHY) and (ELF4,CCA1) is also low. But when a complex

of four genes (ELF4, TOC1, LHY and CCA1)is formed and their collective influ-

ence on GI is computed, we see a high peak in the interaction graph. This leads

to an indication that there may be a possibility of strong phenotype of GI when

complex interactions are taken into account.

We also analyse the interaction between genes in the frequency domain using

partial Granger causality and present the results in Figure 5.6(E). We can see

that most of the interactions show a 24 hour periodic behaviour by exhibiting a

peak at one day period.

5.2.4 Ethylene Circuit

The Ethylene signalling pathway [NJ00, HE04] is one of the most well studied

circuits in the literature due to its importance in developmental processes and fit-

ness responses. We selected a group of 16 genes which have been reported in the

literature to play a central role in the pathway. See Appendix B for annotation of

selected genes. Ethylene is perceived by a family of integral membrane receptors.

In Arabidopsis, at least five family members are involved: ETR1, ETR2, ERS1,

ERS2 and EIN4. ETR1 and ERS1 belong to type 1 receptors whereas EIN4,

ETR2 and ERS2 are type 2 receptors. The receptors are hypothesized to be in

a functionally active form that constitutively activates CTR1. It is reported that

the interaction of type 1 receptors with CTR1 is stronger than type 2 receptors.

CTR1 is an upstream gene, and has been reported as the regulator of the pathway

[HE04]. In our inferred circuit, we obtain interactions of CTR1 with ERS2 and
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CTR1 with ETR1. Both are biologically verified [HE04]. Though EIN2 is an

important component in the Ethylene circuit, its function is not completely un-

derstood [SA05]. It has been suggested that in the downstream of CTR1 and on

the upstream of EIN2, a SIMKK-MPK6 pathway exists which may be regulated

by CTR1, but this is yet to be verified biologically. So, we directly focus on the

interactions between CTR1 and EIN2 and check whether CTR1 regulates EIN2

or not. To understand the interactions between CTR1 and EIN2, we chose to use

complex causality by grouping together CTR1, ETR1 and ERS2; and analysing

the interaction of the group with EIN2. We found that CTR1 does have a re-

lationship with EIN2 and this is shown in the Figure 5.7A (thick arrow). EIN3

is most closely related to EIL1 [HE04] and this interaction can be found in the

inferred network. Except two genes (EIN4 and EIL2) which are isolated and have

no interactions with the rest of the genes, we see that the pathway shows a clear

hierarchical structure. Interactions in the frequency are shown in Figure 5.7(B).

Some interactions, for example ETR2 → ERS1, EIN6 → EIL4 etc., exhibit a

strong daily rhythm.

5.2.5 A Global Circuit

Finally, we turn our attention to a global picture involving all the genes in the

dataset to see if there is any interaction network of interest showing how leaf

senescence is turned on. All genes were clustered using k-mean clustering algo-

rithm provided by Matlab [Seb84, mat]. Initially, we clustered all the genes by

pre-specifying the number of clusters to be 32,28,24,. . .etc. We then removed all

the clusters with flat profiles using visual inspection and selected the ones showing

clear trends of high activity. We then picked up the one gene from each cluster

representing the centre of that cluster for further analysis. The time trace of

representative genes is shown in Figure 5.8(A).
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Figure 5.7: A. An ethylene gene circuit with 16 genes. Only genes with interactions are
shown here. The thick arrow is the complex interaction between CTR1, ETR1 and ERS2
and EIN2. B. Interactions in the frequency domain calculated in terms of PGC. Only 14
significant interactions are shown.

A clear hierarchical structure can be seen in Figure5.8(A). The upstream genes

show a typical concave shape. All genes in the middle layer in hierarchy have a

peak at the beginning and then they decrease. Finally, the bottom layer genes

increase their intensity as they approach 22 days. This behaviour of fits our intu-

ition while thinking about the senescence process in leaf. During the life time of

a leaf, senescence associated genes are first expressed at a relatively low intensity.

Their intensity increases to peak level as an indication of the initiation of leaf

senescence. The hierarchical and stable global circuit indicates that senescence is

a stable process and is independent of a single or even a group of genes. Whether

this is true for other genomes (as for example ageing in mammals) as well is an

interesting and challenging problem. On the other hand, network inference re-

sults show the power of our Granger causality approach. Intuitively, one would

not expect that gene 1, for example in Figure 5.8, would cause gene 3, since the

down-regulation of gene 3 starts at an early time (day one).
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Figure 5.8: Causal relationship between genes: a global circuit. A. A total of 11 genes
are shown and a clear hierarchy structure is demonstrated. B. The interactions in the
frequency domain.

In Fig. 5.8B, the interactions in the frequency domain are plotted. We can

see that the interactions at the frequency domain are different between the top

and middle layer and the middle layer and bottom layer. In general, we have

a peak in the middle frequency between the top and the middle layer: see for

example, 1 → 3. But the interactions between the middle and the bottom layer

are concentrated on either the high or the low frequencies.

5.3 Summary

In this chapter, we presented a complete work-flow for temporal microarray data

processing. A fresh approach has been taken to accomplish each step in the work

flow; from processing of raw data to gene network inference. The normalization

method allows each gene to be represented as identical and independent stochastic

process, and the auditory clustering reduces the data dimension by applying sim-
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ple but powerful frequency based approach. We have shown in this chapter that

the clustering method not only categorizes the genes according to their function-

ality but also allows a purely data driven natural ranking of genes based on their

power spectrum profile. Two important concerns, namely, the optimal number of

clusters in a dataset and ranking of each gene within each cluster are naturally

handled using our method.

We describe in Section 5.2.3 how the natural ranking of genes allowed us to

select key genes involved in the circadian circuit of Arabidopsis. Encouraged by

these results, we decided to study the circadian circuit in more detail and analyse

it. We used our method of complex and partial Granger causality to infer the

gene interaction network for the circuit. Our time and frequency based analysis

show that the computationally inferred network structure is in agreement with

the experimental findings. We further applied Partial Granger Causality in time

as well as frequency domain to selected genes involved in the Ethylene pathway.

In the end, we clustered the complete dataset of 30,336 genes with a standard k-

mean clustering method to detect any pattern among the genes. After selecting a

representative gene from each cluster, we applied Partial Granger causality to ob-

tain a global interaction circuit. A clear hierarchical interaction pattern emerged

for the genes involved in the global circuit.

These are the first steps in applying a frequency domain approach to deal

with temporal microarray data. There remain many issues to be further explored

on the lines of frequency domain analysis. Is there any random gene (white

signal) or a group of random genes having a flat power spectral density? Is there

an link between the life-span distribution of genes and power spectral density

distribution? Here we only checked for the frequency domain interactions at an
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identical frequency. For a complex system, we expect that interactions at different

frequencies exist. In the frequency domain analysis, it is known that the most

efficient way to nullify an input signal at a given frequency is by applying a filter.

Can we develop biological filter to fulfil certain purposes, for example, to prolong

the life span of a leaf? An approach like this on datasets collected at shorter

intervals can lead us to detection of other interesting frequencies hidden in the

data.



Chapter 6

Summary and Future Work

This thesis attempts to introduce some new computational techniques to analyse

temporal microarray data. We concentrated on the information processing part

of microarray data analysis, essentially on normalization, clustering and reverse

engineering of gene circuits from data.

Chapter 1 presented an overview of microarray techniques and the experi-

mental details to produce the data used in this thesis. Chapter 2 introduced a

normalization technique to clean the data from various unwanted artefacts. The

effect of normalization was confirmed by verifying the distribution plot of residuals

associated with genes, and by minimizing correlation coefficients between residual

terms across replicates. In Chapter 3, we discussed a temporal-precedence based

clustering technique to group functionally similar genes. The core method in the

proposed clustering technique was based on the definition of causality provided

by Clive Granger in Economics. Chapter 4 extended the idea of Granger causal-

ity to introduce a definition of Partial Granger Causality to infer causal network

structures from gene-expression data. Finally in Chapter 5, we provided a com-

plete analysis of Arabidopsis data using the techniques developed in the previous

chapters. We also presented the analysis of data in the frequency domain and
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discussed three gene circuits of potential interest to Arabidopsis researchers. In

this chapter, we first summarize the important steps covered in each chapter, and

then conclude with a discussion on future work.

6.1 Recapitulation

Chapter 1- Introduction

The chapter starts with a brief discussion of the central dogma of molecular biol-

ogy and the process of gene expression. We provided an overview of the microar-

ray technology which allows simultaneous measurement of thousands of genes.

The chapter discusses the two broad stages in the processing of microarray data

: a) material processing stage, which is mainly performed in wet labs and in-

volves growth of biological samples, RNA extraction, hybridization experiments

and collection of gene expression data, and b) information processing stage, which

involves computational analysis of the collected data to extract meaningful signals

and build plausible biological hypotheses. The focus of this thesis is on the de-

velopment of new computational techniques for each step within the information

processing stage of microarray data analysis. The chapter provides an overview

of the obstacles faced at each step, and prepares a road-map for the techniques

proposed in this thesis. In the final sections, we discussed the case study of the mi-

croarray experiment to understand the senescence process in leaves of Arabidopsis

Thaliana.

Chapter 2 - Normalization of Gene Expression Data

The data must be normalized to minimize the systematic biases before some mean-

ingful analysis can be carried out. The chapter introduces a novel method to

normalize highly replicated microarray data using a statistical error model. The

existing error models in literature have traditionally focused on modelling different
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sources of variations as individual terms in their analysis. A careful application

of the existing models can lead to minimization of the error sources included in

the models, but may miss out the effects due to other sources of unwanted varia-

tions which were not explicitly handled. Our model, instead of distinguishing and

incorporating individual sources of experimental variations, rather relies on the

information present in terms of available biological and technical replicates, and

groups all other sources of experimental variations in a single term for a separate

treatment. A design of this nature makes the proposed normalization technique

generic for processing any highly replicated microarray data. The execution steps

in the model are modular in design, and at each step, statistical tests are defined

to check for the behaviour of the estimated data. Such checks at each step can

determine if the data meets the required standard, or, whether there is a need to

execute the subsequent steps for further processing. The final aim of the normal-

ization method is to have a zero mean Gaussian behaviour for the residuals within

a replicate, and minimize the correlation between residuals across the replicates.

Chapter 3 - Functional Clustering of Gene Expression Data

Clustering is the next step in information processing stage of the microarray data

analysis. The chapter starts with an overview of various clustering techniques ap-

plied in microarray data analysis. The chapter then introduces a new clustering

technique based on the Granger test of causality to group temporal gene expres-

sions in a microarray data. The approach further utilizes a graph-theoretic method

to detect hubs and modules in the connection graph obtained from the clustering

method. This is the first study based on the concept of Granger Causality which

uses interdependence between two time series to construct a gene connection ma-

trix. The Granger Causality test allows for the connection between genes to be

determined based on the prediction, rather than based on associative measures
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like point-wise, or, global or local shape-wise similarities. The graph-theoretic

method helps in analysis of large connection graphs to automatically detect the

hubs and modules in the network which could be potential candidates for func-

tionally related biological modules. The concepts in the chapter are demonstrated

with synthetic and real datasets of different sizes. The gene in the inferred mod-

ules obtained from the analysis of the real biological datasets, were queried against

Gene Ontology (GO) databases to check for their biological functions. Our results

show that the majority of the genes in the inferred modules were related in terms

of their GO identifiers. The chapter further investigates the topological proper-

ties of the connection graph obtained for the larger dataset for Arabidopsis. Our

analysis shows that the computed topological properties clearly distinguished our

inferred graph as having the properties expected from of a real network compared

to a random one.

Chapter 4 - Partial Granger Causality

This chapter introduces a new computational technique called Partial Granger

Causality to infer causal network structures from temporal gene expression data.

Partial Granger Causality extends the idea of pair-wise Granger causality in the

context of multivariate systems. In a biological system, where genes are engaged in

cross communication with each other in direct or indirect ways, a pairwise analysis

to infer gene networks from data will not produce a desirable result. The concept

of Partial Granger Causality builds on the idea of pairwise Granger Causality,

and uses partial correlation to restrict the effects from other variables while com-

puting the interdependence between two variables. Partial Granger Causality is

capable of producing directed networks which are not possible with other widely

used correlation based approaches like Relevance Networks or Gaussian Graphical

Models. Partial Granger Causality also offers an advantage in terms of distinction
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between direct and indirect links, which is an important concern while inferring

network structures of biological entities. The chapter presents examples for testing

Partial Granger Causality on various artificial datasets, and also on a real biolog-

ical dataset for Human T-Cell activation. The implementation of Partial Granger

Causality is simple and the models produced are statistically traceable at each

stage. Partial Granger Causality does not require prior knowledge for inference of

network structures from data. The linear form of Partial Granger Causality can

easily be extended to non-linear forms when needed. Partial Granger Causality

also has an equivalent representation in frequency domain which can be useful

while understanding interactions at the frequencies of interest.

Chapter 5 - Listening to Genes

The chapter presents a complete pipeline for processing the Arabidopsis data using

the techniques discussed in the previous chapters. It also presents a novel approach

to cluster and rank genes according to their frequency profiles. A clustering of

this type, naturally allows genes with similar dynamics (potentially indicative of

similar biological functions) to rank close to each other in a frequency range. The

chapter presents an extension of Partial Granger Causality introduced in previ-

ous chapter to infer interactions between sets of genes. The set-wise interaction

method is named as Complex Granger Causality. The Complex Granger Causal-

ity results in a directed network where the interactions between different sets of

genes, or influence of a set of genes on an individual gene is being estimated. In-

ference of set based interactions is a new concept in microarray data analysis. We

have shown the usefulness of this concept with two examples of gene interactions

belonging to different pathways of Arabidopsis. The chapter also presents three

inferred gene circuits of potential interest to Arabidopsis researchers : a circadian

gene circuit, an ethylene circuit, and a global gene circuit. The interactions are
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presented both in time as well as frequency domain.

6.2 Future Work

While most of the work in this thesis is based on the same datasets, the com-

putational techniques introduced in each chapter are quite generic in nature and

a straightforward application of these methods to other datasets is possible. Al-

though, the hierarchy in the information processing pipeline of microarray data

analysis is fixed, the methods at each stage are independent of each other. While

the technique at each stage attempts to solve a problem, it also raises a series of

other questions and creates opportunities for further developments.

The normalization method proposed in Chapter 2 includes several factors of

variations in its formulation, but there are many other factors which can be in-

cluded explicitly and would depend on the design of experiment and the platform

used. A particular issue is removal of location based print-tip effects. Since print-

tip effects are specific to different arrays, and can also have variations within

arrays, a global approach of having a single term like Mgbi in our model to handle

such effects may not be sufficient. Similar issues can arise for other local exper-

imental artefacts like gene-specific dye bias etc. Our model is inherently linear

in its formulation at all the stages. The assumption of linear relationships needs

to be overcome while handling the cases where the linearity between variable or

replicates is not viable. This leads to another question, if there are other suit-

able alternatives to the select-and-reject algorithm, and under what conditions

those alternatives can be applied for faster and better results. Our normalization

method does not include the effect of temporal effects or correlations which may

exist in form of common cause due to biological or non-biological(experimental)

reasons. Much effort has been put into dealing with such temporal effects while
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normalizing expression data. See for examples [ACDC+08, BJGS+03, LL04].

The association graph in Chapter 3 is built on the linear formulation of the

Granger causality test presented in section 3.1. The relationship between all the

pairs of genes need not be linear in the system, and thus the linear assump-

tion in the Granger causality need not hold true for all the cases. Several non-

linear formulations of Granger causality tests have been proposed in literature

[AMS04, MPS06], but with the restriction of a limited number of temporal record-

ings for our data, a better strategy for performing the Granger causality test can

be adopted. It will also be useful to have a comparison of network structures

inferred from datasets of different sizes and see how the dataset size impacts the

behaviour of the the results. We apply just one of the many techniques [BH03]

proposed to detect dense regions in an association graph. Application of different

techniques will lead to detection of different clusters and it will be interesting to

see how the biological meanings of those cluster differ with the currently detected

ones. The complexity of connections in the association graph can be reduced

by avoiding the application of a global threshold to detect the dominant edges

in the graph. An alternative technique like shortest-path measure [MC07, FJ09]

between two genes in the association graph can be applied to keep the dominant

connections. Such selections will rely more on the local connectivity patterns to

decide on the edges to keep rather than a global threshold. Finally, the biolog-

ical verification of detected subgraphs can be extended to other public ontology

databases as well, and need not be dependent on the information provided by

the Gene Ontology (GO) Consortium alone. Such information can help us an-

swer questions like which development stages a set of genes are expressed at, or,

whether they are involved in a certain disease or not; such questions are beyond

the scope of the present GO system and a list of specific ontology databases can
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be found at [SAR+09, web09].

Chapter 4 proposes an extension of Granger causality discussed in Chapter

3 to infer network structures from data in a multivariate context. Improvement

steps like linear to non-linear models and comparisons using different dataset sizes

as proposed in Chapter 3 apply to the technique in Chapter 4 as well. The unre-

stricted vector autoregressive model, as the one used in Chapter 4 is a theory-free

method but can be computationally exhaustive. The unrestricted form can be

simplified to restricted form at times when some information about the system

is already known. Also, a Bayesian approach to fit vector autoregressive models

can be applied in case of prior information about variables in the system. The

Bayesian approach can also overcome the problems of over-parametrization faced

by VAR models. It can happen that the residual terms are sensitive to normal dis-

tribution in some cases, especially with small sized datasets. Hacker and Hatemi-J

[HHJ06] have recently proposed a bootstrap based approach in context of Granger

causality that is not sensitive to the normal distribution of the error term, and

can be studied further to improve our proposed method.

Our frequency based approach in Chapter 5 opens further possibilities for

analysis of temporal data in frequency domain. A deeper understanding of phys-

iological meaning of frequencies present in dataset need to be developed. As an

example, Guo et al. [GWDF08] have reported the importance of three dominant

frequencies in HeLa cell cycle. Though, the power spectral density of genes pro-

vided us important clues in analysing expression data, it lacked the variations at

smaller frequencies due to absence of data points at smaller intervals. Collection

of data at smaller intervals can increase the analysis power of the method. We

also need to understand the distribution of individual spectral profiles at each
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frequency. We saw that the data at frequencies of 1 day period and 22 day period

in the power spectral density presented in section 5.2.2 had Weibull and Exponen-

tial distributions respectively. Can we related the life span distribution of genes

with their corresponding power spectral density distribution ? In our analysis, we

have only considered interactions at an identical frequency. The method can be

extended to infer interactions at different frequency giving a dynamic profile of

the activities taking place in the system. A widely used approach while dealing

with frequency domain data is to develop filters to amplify or abbreviate a signal,

a filter-based approach to understand the behaviour of the system can be helpful

in gaining some useful insights about the functioning of the system. Last but not

the least, the overall computational analysis of any experimental dataset depends

on the high quality of data, and the choice of best experimental conditions to

captures the biological variations in the best way.



Appendix A

Partial Granger Causality

Frequency Domain Formulation of Partial Granger Causality.

We discussed the time domain formulation of Partial Granger Causality (PGC)

in Chapter 4. In this section, we present the frequency domain formulation of

Partial Granger Causality. The formulation of PGC in frequency domain was

proposed by Guo et al. [GWDF08]. We present the main results in this section.

Before we start, we briefly discuss the following concepts which will be useful for

understanding the further concepts.

The autoregressive model of time series assumes that xt, the value of the

process at a time t depends on its p previous values weighted by coefficients a

plus a random white noise residual ε:

xt =

p∑
i=1

aixt−i + εt (A.1)

In a multivariate case XXX(t) having k channels, the process value at time t is a

vector of size k, the model coefficients AAA(t) are k × k matrices, and the residual

component EEE is a vector of size k:
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XXX(t) = (X1(t), X2(t), . . . , Xk(t))
T (A.2)

XXX(t) =

p∑
i=1

AAA(i)XXX(t− i) = EEE(t) (A.3)

Assuming that AAA(0) = III (the identity matrix), and changing the signs of AAA(i)

changed, the Equation (A.1) can be rewritten as

EEE(t) =

p∑
i=1

AAA(i)XXX(t− i) (A.4)

Equation (A.4) can be transformed to the frequency domain by applying the

Z-transformation [OS89, Mar87], and can be written as

EEE(f) = AAA(f)XXX(f) (A.5)

XXX(f) = AAA−1(f)EEE(f) = HHH(f)EEE(f) (A.6)

HHH(f) =

(
p∑

m=0

AAA(m)exp(2πimf∆t)

)
(A.7)

where ∆t is the sampling interval. The matrix HHH is called the transfer matrix

of the system. The power spectrum of the signal is then computed as

SSS(f) = XXX(f)XXX∗(f) = HHH(f)EEE(f)EEE∗(f)HHH∗(f) = HHH(f)ΣΣΣHHH∗(f) (A.8)

where ΣΣΣ is the noise covariance matrix and is not dependent on the frequency.

Based on these concepts, we explain how Partial Granger Causality can be for-

mulated in frequency domain.
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Consider two processes, X and Z in their time domain autoregressive repre-

sentation using the lag polynomial L (where L(Xt) = Xt−1, L
2(Xt) = Xt−2 etc.)

 D11(L) D12(L)

D21(L) D22(L)


 Xt

Zt

 =

 φt

ψt

 (A.9)

with D11(0) = 1, D22(0) = 1, D12(0) = 0, D21(0) = 0 and σφt, ψt = 0. Let Σ(1)

be the noise covariance matrix for the above system, where

Σ(1) =

 Σ
(1)
xx Σ

(1)
xz

Σ
(1)
zx Σ

(1)
zz


Similarly, for a system with three variables X, Y and Z, we have their similar

representation as


B11(L) B12(L) B13(L)

B21(L) B22(L) B23(L)

B31(L) B32(L) B33(L)




Xt

Yt

Zt

 =


εxt

εyt

εzt

 (A.10)

and the noise covariance matrix for the system can be denoted as Σ(2) where

Σ(2) =


Σ

(2)
xx Σ

(2)
xy Σ

(2)
xz

Σ
(2)
yx Σ

(2)
yy Σ

(2)
yz

Σ
(2)
zx Σ

(2)
zy Σ

(2)
zz


Taking the Z-transformation of Equations (A.9) and (A.10), and applying the

transformation matrix as shown in Equation (A.5), we have

 X(λ)

Z(λ)

 =

 Gxx(λ) Gxz(λ)

Gzx(λ) Gzz(λ)


 φ(λ)

ψ(λ)

 (A.11)
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for Equation (A.9) and


X(λ)

Y (λ)

Z(λ)

 =


Hxx(λ) Hxy(λ) Hxz(λ)

Hyx(λ) Hyy(λ) Hyz(λ)

Hzx(λ) Hzy(λ) Hzz(λ)




εx(λ)

εy(λ)

εz(λ)

 (A.12)

for Equation(A.10), where λ represents frequency. We make an assumption

that the spectra of X(λ) and Z(λ) from Equation (A.11) remain identical to

spectra from Equation (A.12), we can perform the following substitution,


φ(λ)

Y (λ)

ψ(λ)

 =


Gxx(λ) 0 Gxz(λ)

0 I 0

Gzx(λ) 0 Gzz(λ)


−1

Hxx(λ) Hxy(λ) Hxz(λ)

Hyx(λ) Hyy(λ) Hyz(λ)

Hzx(λ) Hzy(λ) Hzz(λ)




εx(λ)

εy(λ)

εz(λ)



=


Qxx(λ) Qxy(λ) Qxz(λ)

Qyx(λ) Qyy(λ) Qyz(λ)

Qzx(λ) Qzy(λ) Qzz(λ)




εx(λ)

εy(λ)

εz(λ)

 (A.13)

Now, consider Σ(1) and Σ(2) to be the noise covariance matrices for Equations

(A.9) and (A.10) respectively. The spectral decomposition of the spectral density

of X from Equation (A.9) can be denoted as

SX(λ) = Gxx
ˆ

Σ
(1)
xxG

∗
xx +Gxz

ˆ
Σ

(1)
zz G

∗
xz (A.14)

and the spectral decomposition of the spectral density of X from Equation

(A.10) can be denoted as

SX
′
(λ) = Qxx

ˆ
Σ

(2)
xxQ

∗
xx +Qxy

ˆ
Σ

(2)
yyQ

∗
xy +Qxz

ˆ
Σ

(2)
zz Q

∗
xz (A.15)

where
ˆ

Σ
(1)
xx and

ˆ
Σ

(2)
xx denote the conditional variances of residuals for X for
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systems shown in Equations (A.9) and (A.10) respectively by partitioning the

Σ(1) and Σ(2) matrices in way we explained in section 4.1.2 of Chapter 4. We have



ˆ
Σ

(1)
xx = Σ

(1)
xx − Σ

(1)
xz Σ

(1)
zz

−1
Σ

(1)
zx

ˆ
Σ

(1)
zz = Σ

(1)
zz

ˆ
Σ

(2)
xx = Σ

(2)
xx − Σ

(2)
xz Σ

(2)
zz

−1
Σ

(2)
zx

ˆ
Σ

(2)
zz = Σ

(2)
zz

ˆ
Σ

(2)
yy = Σ

(2)
yy − Σ

(2)
yz Σ

(2)
zz

−1
Σ

(2)
zy − (Σ

(2)
yx−Σ

(2)
yz Σ

(2)
zz

−1
Σ

(2)
zx )(Σ

(2)
xy−Σ

(2)
xz Σ

(2)
zz

−1
Σ

(2)
zy )

Σ
(2)
xx−Σ

(2)
xz Σ

(2)
zz

−1
Σ

(2)
zx

We require only the first terms from Equation (A.14) and (A.15) for our pur-

pose, which can be thought of as intrinsic power after removing the effect of other

variables in the system. This leads to the following definition of PGC at frequency

λ:

fY→X|Z(λ) = ln
|Gxx

ˆ
Σ

(1)
xxG∗xx|

|Qxx
ˆ

Σ
(2)
xxQ∗xx|

(A.16)

By the Kolmogorov formula [Kol33] for spectral decompositions and under

some mild conditions, the Granger causality in the frequency domain and in the

time domain measures satisfies

FY→X|Z =
1

2π

∫ π

−π
fY→X|Z(λ)dλ (A.17)
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Gene Number Gene Name Description
At2g40080.1 ELF4 (EARLY

FLOWERING 4)
Encodes a novel nuclear 111 amino-acid phytochrome-
regulated component of a negative feedback loop in-
volving the circadian clock central oscillator compo-
nents CCA1 and LHY. ELF4 is necessary for light-
induced expression of both CCA1 and LHY, and
conversely, CCA1 and LHY act negatively on light-
induced ELF4 expression. ELF4 promotes clock ac-
curacy and is required for sustained rhythms in the
absence of daily light/dark cycles. It is involved in the
phyB-mediated constant red light induced seedling de-
etiolation process and may function to coregulate the
expression of a subset of phyB-regulated genes.

At1g01060.1,
At1g01060.2,
At1g01060.3,
At1g01060.4

LHY (LATE
ELONGATED
HYPOCOTYL)

myb-related putative transcription factor involved in
circadian rhythm along with another myb transcrip-
tion factor CCA1

At2g46830.1,
At2g46830.2

CCA1 (CIRCADIAN
CLOCK ASSOCI-
ATED 1)

Transcription factor; encodes a transcriptional repres-
sor that performs overlapping functions with LHY in
a regulatory feedback loop that is closely associated
with the circadian oscillator of ARABIDOPSIS.

At5g61380.1 TOC1 (TIMING OF
CAB1 1)

Transcription regulator; pseudo response regulator in-
volved in the generation of circadian rhythms. TOC1
appears to shorten the period of circumnutation speed.
TOC1 contributes to the plant fitness (carbon fixation,
biomass) by influencing the circadian clock period.

At5g02810.1 PRR7 (PSEUDO-
RESPONSE REGU-
LATOR 7)

Transcription regulator; PRR7 and PRR9 are partially
redundant essential components of a temperature-
sensitive circadian system. CCA1 and LHY had a
positive effect on PRR7 expression levels.

At2g46790.1,
At2g46790.2

PRR9 (PSEUDO-
RESPONSE REGU-
LATOR 9)

Pseudo-response regulator PRR9. Involved in clock
function. PRR7 and PRR9 are partially redundant
essential components of a temperature-sensitive circa-
dian system. CCA1 and LHY had a positive effect
on PRR9. Interact with TOC1 in a yeast two-hybrid
assay.

At1g22770.1 GI (GIGANTEA) Together with CONSTANTS (CO) and FLOWERING
LOCUS T (FT), GIGANTEA promotes flowering un-
der long days in a circadian clock-controlled flower-
ing pathway. GI acts earlier than CO and FT in the
pathway by increasing CO and FT mRNA abundance.
Located in the nucleus. Regulates several developmen-
tal processes, including photoperiod-mediated flower-
ing, phytochrome B signaling, circadian clock, carbo-
hydrate metabolism, and cold stress response. The
gene’s transcription is controlled by the circadian clock
and it is post-transcriptionally regulated by light and
dark.

Table B.1: Gene names and descriptions in circadian circuit.
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B.2 Gene Annotations

Gene Number Gene Name Description

At5g03730.1

,At5g03730.2

CTR1 (CON-

STITUTIVE

TRIPLE RE-

SPONSE 1)

Kinase; Homologous to the RAF family of ser-

ine/threonine protein kinases. Negative regulator in

the ethylene signal transduction pathway. Interacts

with the putative ethylene receptors ETR1 and ERS.

Constitutively expressed.

At1g66340.1 ETR1 (ETHY-

LENE RE-

SPONSE 1)

Two-component response regulator; Similar to

prokaryote sensory transduction proteins. Contains

a histidine kinase and a response regulator domain.

Homodimer. Membrane component. Binds ethylene.

Mutations affect ethylene binding and metabolism of

other plant hormones such as auxin, cytokinins, ABA

and gibberellic acid. Ethylene receptor. Has histidine

kinase activity.

At4g20880.1 ERT2 Ethylene-responsive nuclear protein / ethylene-

regulated nuclear protein; similar to ethylene-

responsive nuclear protein -related [Arabidopsis

thaliana] (TAIR:AT5G44350.1); similar to IMP de-

hydrogenase/GMP reductase [Medicago truncatula]

(GB:ABE90052.1)

At3g23240.1 ERF1 (ETHY-

LENE RE-

SPONSE

FACTOR 1)

DNA binding / transcription factor/ transcriptional

activator; encodes a member of the ERF (ethylene re-

sponse factor) subfamily B-3 of ERF/AP2 transcrip-

tion factor family (ERF1). The protein contains one

AP2 domain. There are 18 members in this subfam-

ily including ATERF-1, ATERF-2, AND ATERF-5.

EREBP like protein that binds GCC box of ethylene

regulated promoters such as basic chitinases. Con-

stitutive expression of ERF1 phenocopies ethylene

over production. Involved in ethylene signaling cas-

cade,downstream of EIN2 and EIN3.

Continued on next page
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At3g04580.1

,At3g04580.2

EIN4 (ETHY-

LENE INSEN-

SITIVE 4)

Ethylene receptor, subfamily 2. Has serine kinase ac-

tivity.

At3g20770.1 EIN3 (ETHY-

LENE INSEN-

SITIVE3)

Transcription factor; ethylene-insensitive3

At5g03280.1 EIN2 (ETHY-

LENE INSEN-

SITIVE 2)

Transporter; Involved in ethylene signal transduction.

Acts downstream of CTR1.

At5g21120.1 EIL2 (ETHY-

LENE

INSENSITIVE3-

LIKE 2)

Transcription factor; ethylene-insensitive3-like2

(EIL2)

At2g27050.1 EIL1 (ETHY-

LENE

INSENSITIVE3-

LIKE 1)

Transcription factor; ethylene-insensitive3-like1

(EIL1)

At1g73730.1 EIL3 (ETHY-

LENE

INSENSITIVE3-

LIKE3)

Transcription factor; Encodes a putative transcription

factor involved in ethylene signalling. Isolated DNA

binding domain has been shown to bind DNA in vitro.

At5g10120.1 Identical

to Putative

ETHYLENE-

INSENSITIVE3-

like 4 protein

(EIL4)

Similar to ethylene insensitive 3 family protein

[Arabidopsis thaliana] (TAIR:AT5G65100.1); simi-

lar to 52O08 27 [Brassica rapa subsp. pekinensis]

(GB:AAZ67573.1); contains InterPro domain Ethy-

lene insensitive 3; (InterPro:IPR006957)

At1g04310.1 ERS2 (ETHY-

LENE RE-

SPONSE

SENSOR 2)

receptor; encodes an ethylene receptor related to bac-

terial two-component histidine kinases.

At2g40940.1 ERS1 (ETHY-

LENE RE-

SPONSE

SENSOR 1)

receptor; Ethylene receptor, subfamily 1. Has histi-

dine kinase activity.

Continued on next page
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At3g33520.1 EIN6 structural constituent of cytoskeleton; Encodes

ACTIN-RELATED PROTEIN6 (ARP6), a putative

component of a chromatin-remodeling complex. Re-

quired for both histone acetylation and methylation

of the FLC chromatin in Arabidopsis. Located at

specific regions of the nuclear periphery. Expression

throughout plants shown by in-situ and immunolocal-

ization methods. Mutants show defects in fertility,

leaf, flower and inflorescence development and shorter

flowering times.

At1g55010.1 PDF1.2 similar to PDF 1.5 ; similar to Cysteine-rich antifungal

protein 4 precursor (AFP4) (GB:O24331); contains In-

terPro domain Gamma thionin; (InterPro:IPR008176)

At5g65100.1 ethylene insen-

sitive 3 family

protein; Identi-

cal to Putative

ETHYLENE-

INSENSITIVE3-

like 5 protein

(EIL5)

similar to ethylene insensitive 3 family protein

[Arabidopsis thaliana] (TAIR:AT5G10120.1); simi-

lar to 52O08 27 [Brassica rapa subsp. pekinensis]

(GB:AAZ67573.1); contains InterPro domain Ethy-

lene insensitive 3; (InterPro:IPR006957)

Table B.2: Gene names and descriptions in ethylene circuit.
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B.3 Gene Annotations

Gene Name Description
At2g34960.1 CAT5 (CATIONIC AMINO ACID TRANSPORTER

5);cationic amino acid transporter; Arabidopsis thaliana
amino acid permease family protein (At2g34960)

At3g09900.1
AtRABE1e /
AtRab8E

Arabidopsis Rab GTPase homolog E1e; GTP binding; sim-
ilar to AtRABE1d/AtRab8C, GTP binding [Arabidopsis
thaliana] (TAIR:AT5G03520.1); similar to ras-related pro-
tein RAB8-3 [Nicotiana tabacum] (GB:BAB84324.1); con-
tains InterPro domain Small GTP-binding protein domain;
(InterPro:IPR005225); contains InterPro domain Ras small
GTPase, Rab type; (InterPro:IPR003579); contains Inter-
Pro domain Sigma-54 factor, interaction region; (Inter-
Pro:IPR002078); contains InterPro domain Ras GTPase; (In-
terPro:IPR001806); contains InterPro domain Ras; (Inter-
Pro:IPR013753)

At4g38495.1 Unknown protein; similar to conserved hypothetical
protein [Aedes aegypti] (GB:EAT47050.1); similar to
OSIGBa0138E08-OSIGBa0161L23.9 [Oryza sativa (in-
dica cultivar-group)] (GB:CAH67928.1); similar to
Os04g0274400 [Oryza sativa (japonica cultivar-group)]
(GB:NP 001052351.1); contains InterPro domain YL1
nuclear, C-terminal; (InterPro:IPR013272)

At1g03550.1 Secretory carrier membrane protein (SCAMP) family protein;
similar to secretory carrier membrane protein (SCAMP) fam-
ily protein [Arabidopsis thaliana] (TAIR:AT2G20840.1);
similar to similarity to SCAMP37 [Pisum sativum]
(GB:AAC82326.1); similar to Os01g0780500 [Oryza sativa
(japonica cultivar-group)] (GB:NP 001044437.1); similar
to Os07g0564600 [Oryza sativa (japonica cultivar-group)]
(GB:NP 001060004.1); contains InterPro domain SCAMP;
(InterPro:IPR007273)

At5g21950.1 Hydrolase, alpha/beta fold family protein; similar to hydro-
lase, alpha/beta fold family protein [Arabidopsis thaliana]
(TAIR:AT4G33180.1); similar to Alpha/beta hydrolase fold
[Medicago truncatula] (GB:ABE81749.1); contains InterPro
domain Esterase/lipase/thioesterase; (InterPro:IPR000379);
contains InterPro domain Alpha/beta hydrolase fold-1; (In-
terPro:IPR000073); contains InterPro domain Alpha/beta hy-
drolase; (InterPro:IPR003089)

At1g53170.1 ATERF-8/ATERF8 (ETHYLENE RESPONSE ELEMENT
BINDING FACTOR 4); DNA binding / transcription fac-
tor/ transcriptional repressor; encodes a member of the ERF
(ethylene response factor) subfamily B-1 of ERF/AP2 tran-
scription factor family (ATERF-8). The protein contains one
AP2 domain. There are 15 members in this subfamily includ-
ing ATERF-3, ATERF-4, ATERF-7, and leafy petiole.

Table B.3: Cluster 1: Some gene names and descriptions.
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Gene Name Description
At4g38250.1,
At4g38260.1

Amino acid transporter family protein; similar to amino
acid transporter family protein [Arabidopsis thaliana]
(TAIR:AT2G42005.1); similar to amino acid transport
protein (GB:AAB82307.1); similar to OSIGBa0158F05.8
[Oryza sativa (indica cultivar-group)] (GB:CAH66759.1);
similar to OSJNBa0017B10.14 [Oryza sativa (japonica
cultivar-group)] (GB:CAE03099.2); contains InterPro
domain Amino acid/polyamine transporter II; (Inter-
Pro:IPR002422); contains InterPro domain Amino acid
transporter, transmembrane; (InterPro:IPR013057) @ un-
known protein; similar to unknown protein [Arabidopsis
thaliana] (TAIR:AT1G20740.1); similar to H0409D10.8
[Oryza sativa (indica cultivar-group)] (GB:CAH66750.1);
similar to Os09g0323500 [Oryza sativa (japonica cultivar-
group)] (GB:NP 001062871.1); contains InterPro domain
Protein of unknown function DUF833; (InterPro:IPR008551)

At5g22210.1,
At5g22210.2

Unknown protein

At1g78270.1 UDP-glucose glucosyltransferase, putative; similar to
UDP-glucoronosyl/UDP-glucosyl transferase family pro-
tein [Arabidopsis thaliana] (TAIR:AT1G22360.1); similar
to transcription factor/ transferase, transferring glyco-
syl groups [Arabidopsis thaliana] (TAIR:AT1G22380.1);
similar to UGT85A1 (UDP-glucosyl transferase 85A1), UDP-
glycosyltransferase/ transferase, transferring glycosyl groups /
transferase, transferring hexosyl groups [Arabidopsis thaliana]
(TAIR:AT1G22400.1); similar to glycosyltransferase NTGT5b
[Nicotiana tabacum] (GB:BAD93690.1); contains InterPro
domain UDP-glucuronosyl/UDP-glucosyltransferase; (Inter-
Pro:IPR002213)

At2g29640.1 Josephin family protein; Identical to Josephin-like protein
[Arabidopsis Thaliana] (GB:O82391); similar to josephin
protein-related [Arabidopsis thaliana] (TAIR:AT1G07300.1);
similar to unknown protein [Oryza sativa (japonica cultivar-
group)] (GB:AAP06835.1); similar to Os03g0265200 [Oryza
sativa (japonica cultivar-group)] (GB:NP 001049646.1); con-
tains InterPro domain Machado-Joseph disease protein MJD;
(InterPro:IPR006155)

At5g46190.1 KH domain-containing protein; similar to KH
domain-containing protein [Arabidopsis thaliana]
(TAIR:AT4G18375.2); similar to Os08g0200400 [Oryza
sativa (japonica cultivar-group)] (GB:NP 001061211.1); simi-
lar to KH, type 1 [Medicago truncatula] (GB:ABE79454.1);
contains InterPro domain KH; (InterPro:IPR004087);
contains InterPro domain KH, type 1; (InterPro:IPR004088)

At5g41765.1 Unknown protein; similar to unknown protein [Arabidop-
sis thaliana] (TAIR:AT4G00232.1); contains InterPro domain
Protein of unknown function DUF573; (InterPro:IPR007592)

At2g38050.1 DET2 (DE-ETIOLATED 2); Similar to mammalian steroid-
5-alpha-reductase. Involved in the brassinolide biosynthetic
pathway.

Table B.4: Cluster 2: Some gene names and descriptions.
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Gene Name Description
At3g52500.1 Aspartyl protease family protein; similar to aspartyl protease

family protein [Arabidopsis thaliana] (TAIR:AT4G16563.1);
similar to aspartic protease [Fagopyrum esculentum]
(GB:AAS48510.2); contains InterPro domain Peptidase
A1, pepsin; (InterPro:IPR001461); contains InterPro domain
Peptidase aspartic, catalytic; (InterPro:IPR009007)

At4g23820.1 Glycoside hydrolase family 28 protein / polygalacturonase
(pectinase) family protein; similar to glycoside hydrolase
family 28 protein / polygalacturonase (pectinase) family
protein [Arabidopsis thaliana] (TAIR:AT5G41870.1); simi-
lar to Os05g0587000 [Oryza sativa (japonica cultivar-group)]
(GB:NP 001056466.1); similar to Os02g0256100 [Oryza sativa
(japonica cultivar-group)] (GB:NP 001046468.1); similar to
putative polygalacturonase [Oryza sativa (japonica cultivar-
group)] (GB:AAT44156.1); contains InterPro domain Viru-
lence factor, pectin lyase fold; (InterPro:IPR011050); con-
tains InterPro domain Glycoside hydrolase, family 28; (In-
terPro:IPR000743); contains InterPro domain Pectolytic en-
zyme, Pectin lyase fold; (InterPro:IPR012334)

Table B.5: Cluster 3: Some gene names and descriptions.

Gene Name Description
At3g15190.1 Chloroplast 30S ribosomal protein S20, putative; Identi-

cal to 30S ribosomal protein S20, chloroplast precursor
(RPS20) [Arabidopsis Thaliana] (GB:Q9ASV6;GB:Q9LIL6);
similar to Os01g0678600 [Oryza sativa (japonica cultivar-
group)] (GB:NP 001043859.1); similar to ribosomal protein
rpS20 [Bigelowiella natans] (GB:AAP79183.1); contains In-
terPro domain Ribosomal protein S20; (InterPro:IPR002583);
contains InterPro domain Ribosomal protein S20p; (Inter-
Pro:IPR010013)

At1g15290.1 Binding; similar to binding [Arabidopsis thaliana]
(TAIR:AT4G28080.1); similar to tetratricopeptide re-
peat (TPR)-containing protein [Arabidopsis thaliana]
(TAIR:AT1G01320.1); similar to putative tetratricopeptide
repeat(TPR)-containing protein [Oryza sativa (japon-
ica cultivar-group)] (GB:BAC84544.1); similar to TPR
repeat [Medicago truncatula] (GB:ABE77904.1); simi-
lar to H0811D08.1 [Oryza sativa (indica cultivar-group)]
(GB:CAJ86110.1); contains InterPro domain Tetratri-
copeptide region; (InterPro:IPR013026); contains InterPro
domain Tetratricopeptide TPR 1; (InterPro:IPR001440);
contains InterPro domain Tetratricopeptide TPR 2; (Inter-
Pro:IPR013105); contains InterPro domain Tetratricopeptide-
like helical; (InterPro:IPR011990)

Table B.6: Cluster 4: Some gene names and descriptions.

Gene Name Description
At5g36170.1,
At5g36170.2,
At5g36170.3

HCF109 (HIGH CHLOROPHYLL FLUORESCENT 109);
translation release factor; Required for normal processing of
polycistronic plastidial transcripts

At1g72310.1 ATL3 (Arabidopsis Tx́icos en Levadura 3); protein binding
/ zinc ion binding; Encodes a putative RING-H2 zinc finger
protein ATL3 (ATL3).

Table B.7: Cluster 5: Some gene names and descriptions.
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Gene Name Description
At1g47900.1 Unknown protein; similar to unknown protein [Arabidop-

sis thaliana] (TAIR:AT1G19835.1); similar to Putative
myosin-like protein [Oryza sativa (japonica cultivar-group)]
(GB:AAL77142.1); similar to Os03g0246500 [Oryza sativa
(japonica cultivar-group)] (GB:NP 001049544.1); contains In-
terPro domain Protein of unknown function DUF869, plant;
(InterPro:IPR008587)

Table B.8: Cluster 6: Some gene names and descriptions.

Gene Name Description
At2g39725.1,
At2g39725.2

Complex 1 family protein / LVR family protein; similar
to Os08g0278600 [Oryza sativa (japonica cultivar-group)]
(GB:NP 001061438.1); similar to unknown protein [Oryza
sativa (japonica cultivar-group)] (GB:BAC99750.1); con-
tains InterPro domain Complex 1 LYR protein; (Inter-
Pro:IPR008011)

At5g07410.1 Pectinesterase family protein; similar to ATPPME1,
pectinesterase [Arabidopsis thaliana] (TAIR:AT1G69940.1);
similar to pectin methylesterase allergenic protein [Salsola
kali] (GB:AAX11262.1); contains InterPro domain Virulence
factor, pectin lyase fold; (InterPro:IPR011050); contains In-
terPro domain Pectinesterase; (InterPro:IPR000070)

Table B.9: Cluster 7: Some gene names and descriptions.



Chapter B. Gene Annotations 156

Gene Name Description
At1g59670.1 ATGSTU15 (Arabidopsis thaliana Glutathione S-transferase

(class tau) 15); glutathione transferase; Encodes glutathione
transferase belonging to the tau class of GSTs. Naming con-
vention according to Wagner et al. (2002).

At1g32960.1 Subtilase family protein; similar to subtilase family pro-
tein [Arabidopsis thaliana] (TAIR:AT1G32950.1); simi-
lar to subtilase family protein [Arabidopsis thaliana]
(TAIR:AT4G10540.1); similar to subtilase family pro-
tein [Arabidopsis thaliana] (TAIR:AT1G32940.1); similar
to Os09g0530800 [Oryza sativa (japonica cultivar-group)]
(GB:NP 001063751.1); similar to Protease-associated PA;
Proteinase inhibitor I9, subtilisin propeptide [Medicago
truncatula] (GB:ABE90461.1); contains InterPro domain
Protease-associated PA; (InterPro:IPR003137); contains In-
terPro domain Peptidase S8 and S53, subtilisin, kexin,
sedolisin; (InterPro:IPR000209); contains InterPro do-
main Proteinase inhibitor I9, subtilisin propeptide; (Inter-
Pro:IPR010259); contains InterPro domain Proteinase in-
hibitor, propeptide; (InterPro:IPR009020)

At2g39440.1 Unknown protein; similar to unknown protein [Arabidop-
sis thaliana] (TAIR:AT1G61280.1); similar to hypothetical
protein MtrDRAFT AC126784g11v2 [Medicago truncatula]
(GB:ABE94681.1); contains InterPro domain PIG-P; (Inter-
Pro:IPR013717)

At3g54140.1 Proton-dependent oligopeptide transport (POT) family pro-
tein; similar to ATPTR2-B (NITRATE TRANSPORTER 1),
transporter [Arabidopsis thaliana] (TAIR:AT2G02040.1); sim-
ilar to proton-dependent oligopeptide transport (POT) fam-
ily protein [Arabidopsis thaliana] (TAIR:AT1G62200.1); sim-
ilar to proton-dependent oligopeptide transport (POT) fam-
ily protein [Arabidopsis thaliana] (TAIR:AT5G01180.1); simi-
lar to LeOPT1 [Lycopersicon esculentum] (GB:AAD01600.1);
similar to putative peptide transport protein [Oryza sativa
(japonica cultivar-group)] (GB:BAD31819.1); similar to pep-
tide transporter [Hordeum vulgare] (GB:AAC32034.1); con-
tains InterPro domain TGF-beta receptor, type I/II extracel-
lular region; (InterPro:IPR000109)

Table B.10: Cluster 8: Some gene names and descriptions.

Gene Name Description
At3g55470.1,
At3g55470.2

C2 domain-containing protein; similar to C2
domain-containing protein [Arabidopsis thaliana]
(TAIR:AT1G63220.1); similar to Os-FIERG2 gene product
[Oryza sativa] (GB:AAC04628.1); contains InterPro domain
C2; (InterPro:IPR000008); contains InterPro domain C2
calcium/lipid-binding region, CaLB; (InterPro:IPR008973)

At2g35070.1 Unknown protein; similar to unknown protein [Arabidop-
sis thaliana] (TAIR:AT2G35090.1); similar to conserved hy-
pothetical protein [Medicago truncatula] (GB:ABE89621.1);
contains domain UNCHARACTERIZED (PTHR14360)

At1g27300.1 Unknown protein; similar to Os02g0509600 [Oryza sativa
(japonica cultivar-group)] (GB:NP 001046928.1)

Table B.11: Cluster 9: Some gene names and descriptions.
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