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Travelling waves in a model of quasi-active dendrites

with active spines

Y Timofeeva∗

Department of Computer Science and Centre for Complexity Science,

University of Warwick, Coventry, CV4 7AL, UK

Abstract
Dendrites, the major components of neurons, have many different types of branching structures

and are involved in receiving and integrating thousands of synaptic inputs from other neurons. Den-

dritic spines with excitable channels can be present in large densities on the dendrites of many cells.

The recently proposed Spike-Diffuse-Spike (SDS) model that is described by a system of point hot-

spots (with an integrate-and-fire process) embedded throughout a passive tree has been shown to

provide a reasonable caricature of a dendritic tree with supra-threshold dynamics. Interestingly,

real dendrites equipped with voltage-gated ion channels can exhibit not only supra-threshold re-

sponses, but also sub-threshold dynamics. This sub-threshold resonant-like oscillatory behaviour

has already been shown to be adequately described by a quasi-active membrane. In this paper we

introduce a mathematical model of a branched dendritic tree based upon a generalisation of the

SDS model where the active spines are assumed to be distributed along a quasi-active dendritic

structure. We demonstrate how solitary and periodic travelling wave solutions can be constructed

for both continuous and discrete spine distributions. In both cases the speed of such waves is

calculated as a function of system parameters. We also illustrate that the model can be naturally

generalised to an arbitrary branched dendritic geometry whilst remaining computationally simple.

The spatio-temporal patterns of neuronal activity are shown to be significantly influenced by the

properties of the quasi-active membrane. Active (sub- and supra-threshold) properties of dendrites

are known to vary considerably among cell types and animal species, and this theoretical frame-

work can be used in studying the combined role of complex dendritic morphologies and active

conductances in rich neuronal dynamics.

∗y.timofeeva@warwick.ac.uk
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I. INTRODUCTION

Dendrites with their complex, branching structures form the major receiving part on

neural cells and represent the targets for synaptic inputs from other neurons. Ramón y Ca-

jal who was one of the first to investigate the structure of the central nervous system more

than 100 years ago revealed that dendritic spines are present in the dendrites of many

neurons of the cerebral cortex of mammals [1]. Dendritic spines are small protrusions

from the dendrites (usually no more than 2 µm) with a bulbous head attached to the den-

drite by a narrow stem, and they are frequently found on the dendrites of many types of

neurons. Interestingly, different dendrites of a given neuron may exhibit widely different

spine densities and such variations may even be observed along the length of a dendritic

segment. Dendritic spines are the most common synaptic specialisations that provide junc-

tion points for the axons of other neurons and have been linked to a basic mechanism for

Hebbian learning in the nervous system [2]. The properties of spines have been also as-

sociated with the amplification of distal synaptic inputs [3], orientation tuning in complex

cells of the visual cortex [4], coincidence detection [5] and the implementation of logical

computations [6]. Recent advances in molecular tools and imaging methods additionally

reveal that together with complex electro-chemical changes spines might undergo mor-

phological changes, thereby linking dendritic spines to neuronal plasticity and long-term

memory formation [7, 8]. Moreover, confocal and two-photon microscopy observations

have confirmed the generation of action potentials in the dendrites [9], and dendritic spines

equipped with excitable membranes provide favorable sites for initiations of these action

potentials.

One of the first theoretical models of spiny dendritic tissue was proposed by Baer and

Rinzel [10] who considered a passive uniform unbranched dendritic cable coupled to a

population of excitable dendritic spines. In this continuum model the spines are coupled

to the dendrite via a spine stem resistance and the active spine-head dynamics is described

by Hodgkin-Huxley kinetics. Numerical simulations have shown that global signals, in

the form of travelling pulses [10] as well as periodic and irregular travelling waves [11],

may be supported by this system. Later, Coombes and Bressloff showed that the active

membrane dynamics of spines could be analytically treated using an integrate-and-fire

(IF) process [12] (instead of Hodgkin-Huxley kinetics). The resulting Spike-Diffuse-Spike
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(SDS) model is an idealised system for the description of dendritic wave propagation in

spine-studded dendritic trees, and importantly it admits exact mathematical analysis. This

reduced model has been extensively studied with both continuous and discrete distribu-

tions of active spines, and has been shown to support solitary pulses, periodic travelling

waves and irregular wave patterns [12–16]. In all these studies the dendrites are considered

to be purely passive. This assumption does not account for voltage-gated ion channels that

are present in dendrites of many neurons (see [17] for a recent review), and in particular

those that can exhibit sub-threshold oscillatory behaviour and resonances (for example,

Ca2+-activated K+ and hyperpolarisation-activated (h) channels). The channels associated

with the Ih current especially have received considerable attention from experimentalists in

recent years after being discovered at extremely high densities in distal dendrites of CA1 (a

layer of hippocampus) and cortical pyramidal neurons. These channels have been shown

to have a large impact on the integration of synaptic activity [18]. From a mathematical

perspective Hodgkin and Huxley in their classical work of 1952 [19] and later Mauro et

al. [20] have demonstrated that a linearisation of such channel kinetics around the steady-

state may adequately describe the observed resonant dynamics. This is also supported by

the recent finding that under sub-threshold conditions dendritic processing of time-varying

inputs in cortical and hippocampal pyramidal neurons can be described as a linear filter

[21, 22]. The linear approximation extends the more usual ‘RC’ circuit description of a

passive membrane to the so-called quasi-active case (modelled by an ‘LRC’ circuit) that is

able to display resonant-like behaviour due to the additional presence of inductances [23].

In this paper a generalised version of the SDS model is introduced and studied where

the active spines are distributed along a resonant (rather than a passive) dendritic structure.

In Section II we provide the general form of the model with the dynamics of a dendritic

cable described by a quasi-active membrane. Next, in Section III we consider the con-

tinuum limit of this model where spines are uniformly distributed along the cable. We

demonstrate how the profiles of solitary pulse, double pulse and periodic travelling wave

solutions can be explicitly constructed in this model and how the speed of such travelling

waves can be studied as a function of system parameters. In Section IV we consider a

more biologically realistic case of a discrete distribution of active spines and show how

this model can be solved in terms of the Green’s function of the infinite resonant dendrite.
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We also study the speed of the corresponding saltatory travelling wave as a function of

spine spacing. In Section V we generalise the discrete model of Section IV to an arbitrary

dendritic geometry. The voltage response across the branching structure is constructed us-

ing the “sum-over-trips” techniques for dendrites with a quasi-active membrane recently

developed by Coombes et al. [24] as a generalisation of the original work of Abbott et

al. [25] for passive dendrites. This approach obviates the need for the numerical solution

of an underlying set of partial differential equations (PDEs) and leads to a minimal com-

putationally fast model of dendrites with active channels which can regulate local spike

initiations (e.g., Na+, Ca2+ and K+ channels) and sub-threshold resonance properties of

neurons (e.g., Ca2+-activated K+ and h channels). In Section VI we provide a discussion

of the further potential of this work.

II. THE MODEL

We consider an infinite unbranched dendritic cable with a resonant membrane and a

given distribution of spines along its length (see schematic diagram in Figure 1). The

dynamics of the membrane voltage in the cable V = V(x, t) is described by the system of

equations

∂V
∂t

= D
∂2V
∂x2 −

V
τ
−

1
C

I − ρ(x)
V̂ − V

rs

 , x ∈ R, t ∈ R+ (1)

L
dI
dt

= −rI + V. (2)

Here C is the capacitance of the cell membrane, τ = CR is the (passive) membrane time

constant and D is the cable diffusion coefficient. The standard cable equation is coupled

to a resonant current that flows through the path represented by an inductance L in series

with a resistance r in an ‘LRC’ electrical circuit. Spines with the given distribution ρ(x)

are connected to the dendrite through the spine-stem resistance rs and generate a sequence

of action potentials in their spine heads given by the function V̂(x, t). Denoting the mth

firing time of the spine at position x by T m(x) we model

V̂(x, t) =
∑

m

η(t − T m(x)), (3)
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Resonant dendritic cable 

Active spines

IF IF IF 

‘LRC’ circuit 

FIG. 1. Schematic diagram of a dendritic cable with resonant membrane and active spines.

where η(t) specifies the universal shape of an action potential. These firing times are

generated by an IF-type firing mechanism:

T m(x) = inf{t | U(x, t) ≥ h, t ≥ T m−1(x) + τR}. (4)

The function U(x, t) that plays the role of the generator of action potentials in spine heads

evolves according to

Ĉ
∂U
∂t

= −
U
r̂

+
V − U

rs
, (5)

subject to the reset condition U(x, t+) = Ures whenever U(x, t) reaches the threshold level

h, with Ures < h. The parameters Ĉ and r̂ describe the capacitance and resistance of the

spine-head membrane respectively. Throughout the paper we consider a simple action

potential shape given by a rectangular pulse η(t) = η0Θ(t)Θ(τs − t) with strength η0 and

duration τs. Here Θ(t) is the Heaviside step function. The term τR in (4) represents a

refractory timescale for controlling multiple spiking events from active spines and τR ≥ τs.

The model presented here can be easily reduced to the original SDS model (with a passive

dendritic cable) [12–16] by considering the limit r → ∞ for the resistance in the ‘LRC’

circuit.
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III. CONTINUUM LIMIT

In this section we consider a constant spine distribution, i.e. ρ(x) = ρ for all x, and show

how one may explicitly construct the profiles of solitary and periodic travelling waves. We

consider the firing time ansatz of a ∆ periodic travelling wave as T m(x) = x/s + (m − 1)∆,

where s denotes the speed of the wave and m = 1, 2, . . . A solitary wave that causes

the spine head at x to reach threshold only once may then be described by the firing time

T 1(x) = x/s. Introducing a moving frame ξ = t − x/s travelling wave solutions of (1)–(2)

satisfy:
D
s2 Vξξ − Vξ −

(
1
τ

+
ρ

Crs

)
V −

I
C

+
ρη0

Crs
Θ(ξ)Θ(τs − ξ) = 0, (6)

LIξ = −rI + V, (7)

where Vξ ≡ dV/dξ and Iξ ≡ dI/dξ. The characteristic equation of the system of differential

equations (6)–(7) describes solutions of the form eλξ for the homogeneous problem and has

the form

λ3 +

[
r
L
−

s2

D

]
λ2 −

s2

D

[
r
L

+

(
1
τ

+
ρ

Crs

)]
λ −

s2

DL

[(
1
τ

+
ρ

Crs

)
r +

1
C

]
= 0. (8)

It can be easily shown that the roots of this cubic polynomial, λi, i = 1, . . . , 3, are restricted

to the following two cases:

Case I) λ1 ∈ R
+, λ2,3 ∈ R

−,

Case II) λ1 ∈ R
+, λ2,3 = α ± iβ ∈ C, α ∈ R−.

For travelling pulse solutions which approach zero in the limit ξ → ±∞ and when all

λi ∈ R (i.e. Case I) the solution to (6)–(7) takes the form

I(ξ) =


c1eλ1ξ, −∞ < ξ ≤ 0,

c2eλ1ξ + c3eλ2ξ + c4eλ3ξ + Q, 0 ≤ ξ ≤ τs,

c5eλ2ξ + c6eλ3ξ, ξ ≥ τs,

(9)

V(ξ) = LIξ(ξ) + rI(ξ), (10)

where

Q = ρη0

[
rs

((
1
τ

+
ρ

Crs

)
rC + 1

)]−1

.
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By ensuring the continuity of I(ξ), V(ξ) and Vξ(ξ) at ξ = 0 and ξ = τs the unknown

coefficients c1, . . . , c6 may be found as follows

c1 = c3
λ2(λ3 − λ2)
λ1(λ3 − λ1)

(1 − e−λ1τs), c2 = −c3
λ2(λ3 − λ2)
λ1(λ3 − λ1)

e−λ1τs ,

c3 = Q
λ1λ3

(λ2 − λ1)(λ3 − λ2)
, c4 = −c3

λ2(λ2 − λ1)
λ3(λ3 − λ1)

,

c5 = c3(1 − e−λ2τs), c6 = −c3
λ2(λ2 − λ1)
λ3(λ3 − λ1)

(1 − e−λ3τs).

If two roots of polynomial (8) are complex (i.e. λi satisfy Case II) the solution for I(ξ) has

the form

I(ξ) =


c1eλ1ξ, −∞ < ξ ≤ 0,

c2eλ1ξ + eαξ[c3 cos(βξ) + c4 sin(βξ)] + Q, 0 ≤ ξ ≤ τs,

eαξ[c5 cos(βξ) + c6 sin(βξ)], ξ ≥ τs,

(11)

and the coefficients c1, . . . , c6 may also be found from the continuity conditions (see Ap-

pendix A1 for more details). Two examples of the exact solutions for travelling pulses are

shown in Figure 2.

0 30

0

10

20

A

0 30

0

2

4

B

-30

-10

-30

-2

FIG. 2. The exact solutions for travelling pulses in the model of a resonant cable with active spines

for the following parameters: C = 1, τ = 1, D = 1, rs = 10, η0 = 100, τs = 2, ρ = 15, s = 1, (A)

r = 0.1, L = 0.1 and (B) r = 0.01, L = 0.01.

The self-consistent speed of the travelling pulse can be found along the lines outlined

in [12] for the SDS model with a passive cable by demanding that the IF process in the

spine head reaches the threshold h at ξ = 0. In the travelling wave frame the dynamics for

the IF process has the form

Uξ = −ε0U +
V

Ĉrs

, (12)
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where ε0 = (1/̂r+1/rs)/Ĉ. Solving this first-order system with the conditions limξ→−∞U(ξ) =

0 and U(0) = h we get that

h =
1

Ĉrs

∫ 0

−∞

V(ξ′)eε0ξ
′

dξ′. (13)

This yields an implicit equation for the speed of the pulse as a function of the system

parameters:

h = q
(Lλ1 + r)

Ĉrs(λ1 + ε0)
, (14)

where q = c1 for Case I and q = c1 for Case II. This expression can be solved numerically

for s. An example in Figure 3 (middle plot) demonstrates the speed of a travelling pulse

as a function of the spine density ρ. Different curves demonstrate how the speed varies for

the different choices of parameters r and L. An application of a linear stability analysis

presented in [12] to this model as well as direct numerical simulations indicate that it is

the faster branch that is stable. The resonant properties of a dendritic membrane have a

noticeable impact on the minimum spine density capable of supporting a travelling pulse

in the model. Four smaller plots in Figure 3 indicated by (a), (b), (c), and (d) show the

examples of profiles of the stable travelling pulses for the parameters marked by crosses

on the corresponding speed curves. Note that the speed curve (a) and the corresponding

profile of a pulse are obtained in the limit r → ∞ that recovers the results obtained in [12]

for a passive dendritic membrane.

The propagation of a double pulse can be studied along the same lines by assuming

an occurrence of two firing events from the spine head at position x at the firing times

T 1(x) = x/s and T 2(x) = x/s + ∆. In this case the solution to equations (6)–(7) with real

λi (Case I) takes the form

I(ξ) =



c1eλ1ξ, −∞ < ξ ≤ 0,

c2eλ1ξ + c3eλ2ξ + c4eλ3ξ + Q, 0 ≤ ξ ≤ τs,

c5eλ1ξ + c6eλ2ξ + c7eλ3ξ, τs ≤ ξ ≤ ∆,

c8eλ1ξ + c9eλ2ξ + c10eλ3ξ + Q, ∆ ≤ ξ ≤ ∆ + τs,

c11eλ2ξ + c12eλ3ξ, ∆ + τs ≤ ξ < ∞,

(15)

V(ξ) = LIξ(ξ) + rI(ξ), (16)
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FIG. 3. Speed of a travelling pulse as a function of spine density ρ. (a) Passive membrane (r → ∞),

(b) r = 0.1, L = 0.1, (c) r = 0.01, L = 0.01 and (d) r = 0.001, L = 0.01.The profiles of travelling

pulses are shown for ρ = 150 and (a) s = 2.3291, (b) s = 2.2226, (c) s = 1.1490, and (d)

s = 0.8818. Other parameters are as in Figure 2, h = 0.25, Ĉ = 1, r̂ = 1.

and the unknown coefficients c1, . . . , c12 may be found from the continuity conditions at

ξ = 0, ξ = τs, ξ = ∆ and ξ = ∆ + τs. It is also straightforward to modify equation (15) for

Case II when two of the eigenvalues are complex (given in Appendix A2) and the unknown

coefficients may also be found by requesting the continuity of solutions at each interval of

ξ. The speed of a travelling double pulse can be found by demanding that the spine head

reaches the threshold at ξ = 0 and ξ = ∆. Here we assume a simple refractory mechanism

whereby the function U(ξ) is held at the reset level Ures = 0 for a time τs after a spiking

event. Then the speed can be found by simultaneously solving the following system of

equations for unknown s and ∆:

h =
1

Ĉrs

∫ 0

−∞

V(ξ′)eε0ξ
′

dξ′, (17)

h =
e−ε0∆

Ĉrs

∫ ∆

τs

V(ξ′)eε0ξ
′

dξ′. (18)

After integration equation (17) has the same form as equation (14). The integral in (18)

can also be found for both Case I and Case II. For example, for real λi equation (18) takes

9



the form

h =
1

Ĉrs

[
c5(eλ1∆ − eλ1τs+ε0(τs−∆))(Lλ1 + r)

λ1 + ε0
+

c6(eλ2∆ − eλ2τs+ε0(τs−∆))(Lλ2 + r)
λ2 + ε0

+
c7(eλ3∆ − eλ3τs+ε0(τs−∆))(Lλ3 + r)

λ3 + ε0

]
(19)

(see Appendix A2 for λi from Case II). Figure 4A shows the speed of a double pulse as a

function of spine density ρ for the parameters r = 0.001 and L = 0.01 (solid black curve).

In the same figure we plot the speed of a solitary pulse for the same parameters (dashed

red curve). Speeds of the single and double pulses are very similar to each other (see the

inner plot in this figure). This can be explained by Figure 4B that shows the period ∆ as a

function of ρ. The values of ∆ are reasonably large and thus the two pulses only interact

weakly. Figures 4C and D show the profiles of the slow and fast waves respectively when

ρ = 140.

For studying a periodic travelling wave we consider the firing times T m(x) = x/s+ (m−

1)∆ with m = 1, 2, . . . . Then the solution to (6)–(7) with real λi (Case I) takes the form

I(ξ) =


c1eλ1ξ + c2eλ2ξ + c3eλ3ξ + Q, 0 ≤ ξ ≤ τs,

c4eλ1ξ + c5eλ2ξ + c6eλ3ξ, τs ≤ ξ ≤ ∆,
(20)

V(ξ) = LIξ(ξ) + rI(ξ), (21)

and the unknown coefficients c1, . . . , c6 may be found from the continuity and periodicity

of the solutions. The form of solution (20) for Case II is given in Appendix A3. Figure 5

demonstrates an example of a periodic travelling wave for some chosen set of parameters.

The self-consistent speed of such a wave can be determined by demanding that the IF

process in the spine head reaches the threshold at ξ = ∆, i.e from the condition U(∆) = h.

This condition leads to equation (18) which implicitly defines a dispersion relationship

s = s(∆) giving the wave speed s as a function of the period ∆. In the limit r → ∞ these

results recover the results obtained by Coombes in [13] for the SDS model with a passive

dendritic cable. Figure 6 shows an example of a dispersion curve in our model. One may

notice an oscillatory behaviour in the upper and lower branches of the dispersion curve.

For a better view magnified plots of the areas marked by rectangles are shown in Figures

6A and B. These oscillations arise from the resonant nature of the dendritic membrane
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FIG. 4. A: Speed of a double pulse (black curve) and a solitary pulse (dashed red curve) as a

function of spine density ρ. The inner plot is a magnified view of a part of the lower branch when

ρ is between 380 and 400. B: Period ∆ of a double pulse as a function of spine density ρ. C and

D: Two profiles of double pulses when ρ = 140 (indicated by crosses in A and B). Parameters:

r = 0.001, L = 0.01, Ures = 0, τR = τs, (C) s = 0.2104, ∆ = 5.5907, (D) s = 0.7292, ∆ = 31.858.

Other parameters are as in Figure 3.

and they become more pronounced as r → 0. The stability of the periodic travelling

wave can be determined using a kinematic theory (given in Appendix B) that indicates

that the solution of the system is stable if the gradient of the dispersion curve is positive,

i.e. s′(∆) > 0. Thus, the oscillatory nature of the dispersion curve leads to alternating

regions of stable (positive gradient, solid line) and unstable (negative gradient, dashed line)

periodic travelling waves. A similar type of a dispersion curve, but with oscillations only

present in the upper branch, has been earlier observed in [26] for a continuum model of

synaptically interacting IF neurons after taking into account filtering properties of resonant

dendrites. The oscillatory behaviour of both upper and lower branches of the dispersion

curve in our model indicates the existence of parameter regions where the fast and slow

stable periodic travelling waves coexist.
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FIG. 5. An example of a periodic travelling wave in the model of a resonant cable with active

spines for the following parameters: r = 0.01, L = 0.008, ρ = 25, s = 1, ∆ = 7, τs = 3. Other

parameters are as in Figure 2.

This mathematical treatment for studying periodic travelling waves may be naturally

extended to waves of multiple periodicity. For example, a double periodic wave can be

studied by introducing two periods ∆1 and ∆2 (∆1 < ∆2) and considering that during one

periodic cycle the firing events from the spine head at position x occur at the firing times

x/s, x/s + ∆1 and x/s + ∆2. As shown in [26] the solutions of multiple periodic waves

may branch from the stationary points of the dispersion curve (the points of changes in

stability).

IV. DISCRETE LIMIT

In this section we consider the case of a discrete distribution of spines. We assume that

spines are connected to the cable at the discrete points xn with the distribution function

ρ(x) in (1) given by ρ(x) =
∑

n∈Γ δ(x− xn), where Γ is a discrete set that indexes the spines.

This model can be solved using an approach recently developed in [24]. Let us use the

notation Isp(x, t) for the total current that is passed into the cable from all active spines, i.e.

Isp(x, t) = ρ(x)(V̂ − V)/rs. Introducing the Laplace transform with spectral parameter ω

L[ f (t)] = f̃ (ω) =

∫ ∞

0
f (t)e−ωtdt, (22)
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FIG. 6. Dispersion curve s = s(∆) of the periodic travelling wave for the following parameters:

ρ = 25, r = 0.001, L = 0.07, h = 0.26, Ures = 0, τR = τs. Other parameters as in Figure 3. A and

B: Magnified views of two parts of the dispersion curve indicated by rectangles. Solid (dashed)

line corresponds to the stable (unstable) solution.

and applying it to equations (1)-(2) with the initial conditions V(x, 0) = 0 and I(x, 0) = 0

we obtain the following ODE

−Ṽxx + γ2(ω)Ṽ =
Ĩsp

CD
, (23)

γ2(ω) =
1
D

[
1
τ

+ ω +
1

C(r + ωL)

]
,

where Ṽ = Ṽ(x, ω) and Ĩsp = Ĩsp(x, ω). A new re-scaled space X = γ(ω)x can be introduced

here and equation (23) then takes the form

−ṼXX + Ṽ =
Ĩsp(X/γ(ω), ω)

CDγ2(ω)
. (24)

Using the Green’s function e−|X|/2 of the operator (1− dXX) on an infinite domain, we may

write the general solution to (24) in the following form:

Ṽ(X, ω) =

∫ ∞

−∞

e−|X−Y |

2
Ĩsp(Y/γ(ω), ω)

CDγ2(ω)
dY. (25)

We introduce the function

G̃(x, ω) =
e−γ(ω)|x|

2Dγ(ω)
, (26)
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and then in original coordinates the solution (25) takes the form

Ṽ(x, ω) =
1
C

∫ ∞

−∞

G̃(x − y, ω)Ĩsp(y, ω)dy. (27)

Performing the inverse Laplace transform L−1[ f̃ (ω)] defined by the Bromwich integral

L−1[ f̃ (ω)] = f (t) =
1

2πi

∫ c+i∞

c−i∞
f̃ (ω)eωtdω (28)

to equation (27) we get

V(x, t) =
1

Crs

∑
k∈Γ

∫ t

0
G(x − xk, t − t′)[V̂(xk, t′) − V(xk, t′)]dt′, (29)

where G(x, t) = L−1[G̃(x, ω)] is the Green’s function of the infinite resonant dendrite.

Here k is the index of spines that have fired. Note that in the limit r → ∞ we get γ2(ω) =

(1/τ + ω)/D and recover the original SDS model with purely passive dendritic cable and

the Green’s function

G(x, t) =
1

√
4πDt

e−x2/(4Dt)−t/τΘ(t), (30)

as studied in [14–16].

The implicit equation for the dendritic voltage (29) has a Dyson-like form suggesting

a Neumann series solution that can be obtained by repeated substitution of (29) into itself

[15, 27, 28]. The spine neck resistance rs is typically large in biophysical units (in the

range of 5 − 150 MΩ in [29] or even larger as shown for example in [30, 31]). This

leads to the contributions of the second- and higher-order terms in the series expansion

becoming negligible and allows us to approximate the solution for the voltage by just the

first term in equation (29) (see [15, 28] for more discussion). Thus, assuming that each

spine is allowed to fire only once we have

V(x, t) =
1

Crs

∑
k

∫ t

0
G(x − xk, t − t′)η(t′ − Tk)dt′, (31)

where the firing times are Tk = T 1(xk) as defined by (4). These firing times for the con-

struction of solution (31) may be found from the set of threshold conditions U(xn, t) ≡

Un(t) = h, n ∈ Γ, with Un(t) obtained by integrating (5) with the initial conditions

Un(0) = 0. In particular, to find a new firing time Tk+1 > maxk{Tk} we have to solve

the set of threshold conditions for the functions

Un(t) =
1

Ĉrs

∫ t

0
eε0(t′−t)V(xn, t′)dt′. (32)
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A closed form expression of the Green’s function of the resonant dendrite is only

present in the Laplace (frequency) domain as equation (26), and for any practical com-

putational implementation the functions V(x, t) and Un(t) are best represented in Laplace

space. For our simple choice of the function η(t) = η0Θ(t)Θ(τs − t) we have that

Ṽ(x, ω) =
η0

2DCrs

1 − e−ωτs

ωγ(ω)

∑
k

e−(γ(ω)|x−xk |+ωTk) (33)

and

Ũn(ω) =
η0

2DCĈr2
s

1 − e−ωτs

ωγ(ω)(ω + ε0)

∑
k

e−(γ(ω)|xn−xk |+ωTk). (34)

By solving the set of threshold conditions L−1[Ũn(ω)] = h we obtain a vector of times

showing when each spine is able to reach the threshold and identify the smallest time from

this vector as a new spiking event. Note that if multiple firing events are not considered,

the number of equations in the set of threshold conditions can be reduced by ignoring

the spines that have already fired. As a result of finding a newly fired spine an extra

term has to be added into the sum in (34) and the same routine is then repeated to obtain

subsequent firing events. Once the firing times are determined the solution V(x, t) can be

easily constructed by using (33) and performing L−1[Ṽ(x, ω)].

In Figure 7 we show a space-time density plot of V(x, t) in our model with 40 spines

that are regularly separated with spine spacing d. The wave is initiated from a single active

spines at the location x = 0 at time t = 0 and it propagates in a saltatory manner with a

large increase in voltage just after an individual firing event. The presence of a resonant

membrane results in oscillations in the tail of this wave. These oscillations can be better

seen in Figures 8 and 9 that show examples of voltage profiles as functions of time and

space respectively. In Figure 8 we plot V(x, t) at the locations of spine 15 and spine 16

along the cable. Figure 9A shows an example of the voltage profile as a function of space

for the time T25 = 9.6667 (when spine 25 fires) and the time T25 + τs. A part of this figure

indicated by a dashed rectangle is magnified in Figure 9B.

For the case of regular distribution of spines xn = nd, the firing times occur at regular

intervals Tn = n∆, where ∆ measures the time between successive threshold crossings at

adjacent spine heads. Although a solitary wave in the discrete model travels with a non-

constant profile as shown in Figure 7, the speed of this wave is well defined as s = d/∆.
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FIG. 7. An example of a travelling wave in the model of a resonant cable with a discrete distribution

of active spines for the following parameters: D = 1, τ = 1, η0 = 4, rs = 1, r̂ = 1, Ĉ = 2.5, τs = 1,

h = 0.05, r = 0.001, L = 0.1, spine spacing d = 0.4805.
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FIG. 8. An example of the voltage profile as a function of time for spine 15 (at x = 6.727) and

spine 16 (at x = 7.2075) along the cable. The parameters are as in Figure 7.

This speed may be determined in a self-consistent manner [14, 15] by the implicit equation

limn→∞U(nd, n∆) = h, which gives

L−1

 1 − e−ωτs

ωγ(ω)(ω + ε0)

∞∑
n=1

e−(γ(ω)nd+ωn∆)

 =
2DCĈr2

s

η0
h. (35)

In Figure 10 we plot the speed s as a function of distance between the spines for two

different sets of parameters r and L. In each case waves fail to propagate if the spines
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FIG. 9. A: An example of the voltage profile as a function of space for the time of firing of spine

25 (T25 = 9.6667, black curve) and the time T25 + τs (red curve). The parameters are as in Figure

7. B: A magnified view of the part of A indicated by a dashed rectangle.
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FIG. 10. Speed of a solitary saltatory wave in the model of resonant membrane with active spines

for r = 0.001, L = 1 (black curve) and r = 0.0001, L = 0.1 (red curve). Other parameters are as in

Figure 7. The inner plot is a magnified view of parts of the speed curves showing the limit points

for s.

are separated beyond some critical value (to the right of limit point LP). By generalising

the stability analysis in [32] it is possible to establish that, as in the continuum model, the

faster of the two branches is stable. The inner plot in this figure is a magnified view for

small spine spacing, and it demonstrates that the speed of the wave attains its maximum
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for small d. Varying only resonant properties of a dendritic cable it is possible to obtain

a range of maximum speeds that the system is able to support. Note that these maximum

speeds are reached for different values of spine spacing d in each case. This discrete model

can be further extended to allow multiple spiking events from individual spines as shown

in [15]. In the next section we demonstrate how this model can be generalised to arbitrary

dendritic geometries relevant to real neurons.

V. BRANCHED DENDRITIC STRUCTURES

Let us consider an arbitrary branched dendritic structure with a discrete distribution

of active spines that are connected to each branch (see Figure 11). The dynamics for the

FIG. 11. Schematic diagram of a dendritic tree with active spines.

membrane voltage Vi(x, t) and the resonant current Ii(x, t) with local spatial coordinate x on

each branch i are given by equations (1)–(2). The branching structure also requires spec-

ifying the appropriate boundary conditions at all nodes (points where branches connect)

and terminals (nodes without connections), and these are the continuity of potential and

the conservation of current. Assuming that Vi(x, 0) = 0 and Ii(x, 0) = 0 for all branches,

the voltage on each branch can be found as

Vi(x, t) =
1

Crs

∑
j

∑
k j

∫ t

0
Gi j(x, xk j , t − t′)η(t′ − Tk j)dt′, (36)

where k j indexes the kth spine on branch j and Gi j(x, xk j , t) is the Green’s function of the

given branching structure. This function can be constructed using the “sum-over-trips”

approach developed by Abbott et al. [25] for passive dendrites, in particular its recent

generalisation by Coombes et al. [24] to account for resonant properties of the dendritic
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membrane. The function G̃i j(x, y, ω) = L[Gi j(x, y, t)] can be found in terms of the Green’s

function G̃(x, ω) of an infinite resonant dendrite (equation(26)) as follows

G̃i j(x, y, ω) =
∑
trips

Atrip(ω)G̃(Ltrip(i, j, x, y, ω), ω), (37)

with an infinite number of trips of length Ltrip and trip coefficients Atrip. We refer the reader

to [24] for complete details. Following our earlier approach for an infinite cable the firing

times Tk j can be found by solving the set of threshold conditions Un j(t) ≡ L
−1[Ũn j(ω)] = h

for each branch, where the dynamics Un j for each spine head is given by (5). The solution

Vi(x, t) can then be computed using the Laplace transform representations of the functions

Gi j(x, y, t) and η(t) in (36) to find Ṽi(x, ω) and finally performing L−1[Ṽi(x, ω)].

We now consider an example of a neural geometry with 24 branches as shown in Figure

12. The spines are distributed along each branch with the average spine spacing of 10 µm.

The biophysical parameters across the tree are considered to be the same except for the

diffusion coefficients that vary from branch to branch. We assume that one spine at the

1

2

FIG. 12. An example of neural geometry with 24 dendritic branches. Arrow 1 indicates

the location of one spine with a low threshold level h. Arrow 2 indicates the location in

the tree for which the voltage profiles are shown in Figure 13. Morphology obtained from

http://www.koki.hu/∼gulyas/ca1cells/cellfiles.htm

location indicated by arrow 1 in Figure 12 has a lower threshold level for the IF mechanism

in its spine head than other spines and is easily able to generate repetitive spikes. In Figure

13 we plot the membrane voltage as a function of time measured at the location indicated

by arrow 2 in Figure 12. Examples of the voltage profiles are shown for the system with

purely passive dendrites (Figure 13A) and for the system with resonant membrane and two
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different choices for the inductance L (Figures 13B and C). Varying only the properties of

the resonant membrane we are able to observe different patterns of firing in the model.

Three snapshots with the neural geometry in Figure 13 demonstrate the membrane voltage

in each of these cases at time t = 50 ms.
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FIG. 13. Top: Examples of the voltage profiles at the location indicated by arrow 2 in Figure 12.

Bottom: Snapshots of the membrane voltage across the tree at time t = 50 ms. Parameters: C = 1

µF/cm2, τ = 1 ms, diffusion coefficients vary from branch to branch, rs = 400 MΩ, η0 = 40 mV,

τs = 1 ms, τR = 5 ms, r̂ = 4.5, Ĉ = 0.0001, h = 0.05, Ures = 0. A: passive membrane (r → ∞), B:

r = 2000 Ω cm2, L = 6 H cm2, C: r = 2000 Ω cm2, L = 20 H cm2.

VI. DISCUSSION

In this paper we introduced a generalised version of the SDS model by assuming that

the active spines are distributed along a resonant dendritic structure. This generalisation

allows us to investigate the implication of excitable channels in the spine-head membrane

together with resonant channels in the dendrites for single neuron dynamics. The focus of

this paper was on both continuous and discrete distributions of spines. Since the resonant

dendrites are modelled by a quasi-active (linearised active) membrane and the nonlinear
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properties of excitable spines are mimicked by the threshold dynamics the model is mathe-

matically tractable. We showed how travelling wave solutions can be explicitly constructed

in our model and how the speed of such waves can be studied as a function of important

system parameters. We also demonstrated that this model can be naturally extended to

a branched dendritic structure. Importantly, this theoretical framework obviates the need

for the numerical solution of the underlying set of PDEs. The voltage response across a

dendritic tree can be found in terms of the Green’s function that has to be computed only

once for a given dendritic structure. As we illustrated here the variation of the resonant

properties of the neural membrane in the same system might lead to completely different

patterns of firing activities. In real cells, action potentials propagate through the dendritic

tree in a complex way and this propagation will depend on action potential initiation (in the

axon leading to action potential backpropagation or in the dendrites generating dendritic

spikes). Such waves are believed to serve a number of functions, for example to induce

synaptic plasticity and to contribute to synaptic integration (more discussion on that can

be found in [33]).

Our study does not cover tapered dendrites, and in its current form this framework can

be applied to a tapered branch only by approximating the branch by a set of short seg-

ments of constant diameters. However, an introduction of exponential tapering leads to

the underlying PDE model which is linear (see [34] for a recent discussion of tapering)

suggesting that the “sum-over-trips” formalism may be extended to cover this case. An-

other natural extension of this work would be to obtain a minimal soma-tree model by

coupling a branched dendritic tree to a soma. It is relatively straightforward to construct

the Green’s function for the case of a linear soma model as shown in [24]. An incorpora-

tion of an active soma is a substantially harder challenge, however some progress may be

achievable by using piece-wise linear models of active membrane.

The way in which neurons respond to spatio-temporal patterns of synaptic inputs de-

pends, to a large extend, on the properties and densities of voltage-gated ion channels.

Narayanan and Johnston [35] for example have recently demonstrated that the spatial gra-

dient of h channel density produces a resonance frequency map in dendrites which gener-

ates different filtering behaviour for inputs in different regions. Our theoretical framework

is practical in use with real neural geometries, in particular when these geometries are sup-
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plemented with data governing the distribution of active ionic conductances. In the case

of channels responsible for sub-threshold resonance properties of neurons, access to dual

potential recording data will allow one to recover the quasi-active properties of dendrites

using the theory and algorithms developed by Cox and Griffith [36]. Our model can then

be used for a more systematic exploration of the way in which the biophysical properties

of individual branches contribute to the overall response at the level of the whole tree.

Dendritic spines are highly dynamic structures that are also known to have significant

impact on neuronal processes and are particularly critical for local signal integration and

molecular compartmentalisation [37]. The notion of discrete dendritic spines in the model

allows us to attribute individual biophysical parameters (that can be dynamic) to groups

of spines depending on their locations on a dendritic tree. Experimental observations also

indicate that synaptic efficacy scales with distance from the soma [38], a characteristic that

is often referred to as “dendritic democracy”. This phenomenon has been earlier explored

from a theoretical perspective in a passive model of a dendritic tree [28]. Recent exper-

imental and computational studies of Katz et al. [39] show that the synapses are scaled

in the direction of normalising the contribution of individual inputs to dendritic spikes in

CA1 pyramidal neurons. It would be useful to extend [28] and investigate democracy in

the presence of active conductances within the framework we have presented here.

Although new experimental technologies for studying dendrites have significantly ad-

vanced in recent years, there is as yet little understanding of the specific structure–function

relationships between channel densities and local geometry. Thus, working within this ex-

tended theoretical framework allows us to improve our understanding of how the presence

of ion channels combined with the complexity of dendritic geometries can influence single

neuron computation. In addition, a minimal computationally fast soma-tree model based

on the extension of this framework might be a good candidate for studying networks of

spatially extended neurons.
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APPENDIX

A1. Single pulse, Case II

Defining the solutions for I(ξ) and V(ξ) on each interval of ξ by Ii(ξ) and Vi(ξ), i =

1, . . . , 3, the continuity conditions yield the following set of equations:

I1(0) = I2(0), I2(τs) = I3(τs), V1(0) = V2(0),

V2(τs) = V3(τs), V1ξ(0) = V2ξ(0), V2ξ(τs) = V3ξ(τs).

Then the coefficients c1, . . . , c6 can be found from the system of linear equations AC = B,

where

C = (c1, c2, c3, c4, c5, c6)T, B = (Q,−Q, rQ,−rQ, 0, 0)T,

and the elements of matrix A, namely ai j, are defined as follows

a11 = 1, a12 = −1, a13 = −1, a14 = 0, a15 = 0, a16 = 0,

a21 = 0, a22 = eλ1τs , a23 = eατs cos(βτs), a24 = eατs sin(βτs), a25 = −a23, a26 = −a24,

a31 = Lλ1 + r, a32 = −a31, a33 = −(Lα + r), a34 = −Lβ, a35 = 0, a36 = 0,

a41 = 0, a42 = eλ1τs(Lλ1 + r), a43 = eατs[cos(βτs)(Lα + r) − Lβ sin(βτs)],

a44 = eατs[sin(βτs)(Lα + r) + Lβ cos(βτs)], a45 = −a43, a46 = −a44,

a51 = λ1(Lλ1 + r), a52 = −a51, a53 = L(β2 − α2) − rα, a54 = −β(2Lα + r), a55 = 0, a56 = 0,

a61 = 0, a62 = eλ1τsλ1(Lλ1 + r), a63 = eατs[(Lα2 − Lβ2 + rα) cos(βτs) − (2Lαβ + rβ) sin(βτs)],

a64 = eατs[(Lα2 − Lβ2 + rα) sin(βτs) + (2Lαβ + rβ) cos(βτs)], a65 = −a63, a66 = −a64.

A2. Double pulse, Case II

I(ξ) =



c1eλ1ξ, −∞ < ξ ≤ 0,

c2eλ1ξ + eαξ[c3 cos(βξ) + c4 sin(βξ)] + Q, 0 ≤ ξ ≤ τs,

c5eλ1ξ + eαξ[c6 cos(βξ) + c7 sin(βξ)], τs ≤ ξ ≤ ∆,

c8eλ1ξ + eαξ[c9 cos(βξ) + c10 sin(βξ)] + Q, ∆ ≤ ξ ≤ ∆ + τs,

eαξ[c11 cos(βξ) + c12 sin(βξ)], ∆ + τs ≤ ξ < ∞.
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The unknown coefficients c1, . . . , c12 (as well as c1, . . . , c12 in (15) for Case I) can be found

from the equations that ensure the continuity conditions at each interval of ξ:

I1(0) = I2(0), I2(τs) = I3(τs), I3(∆) = I4(∆), I4(∆ + τs) = I5(∆ + τs),

V1(0) = V2(0), V2(τs) = V3(τs), V3(∆) = V4(∆), V4(∆ + τs) = V5(∆ + τs),

V1ξ(0) = V2ξ(0), V2ξ(τs) = V3ξ(τs), V3ξ(∆) = V4ξ(∆), V4ξ(∆ + τs) = V5ξ(∆ + τs).

Equation (18) for Case II takes the form

h =
1

Ĉrs

[
c5(eλ1∆ − eλ1τs+ε0(τs−∆))(Lλ1 + r)

λ1 + ε0

+ Q1[eα∆((α + ε0) cos(β∆) + β sin(β∆)) − eατs+ε0(τs−∆)((α + ε0) cos(βτs) + β sin(βτs))]

+ Q2[eα∆((α + ε0) sin(β∆) − β cos(β∆)) − eατs+ε0(τs−∆)((α + ε0) sin(βτs) − β cos(βτs))]
]
,

where

Q1 =
c6(Lα + r) + c7Lβ

(α + ε0)2 + β2 , Q2 =
c7(Lα + r) − c6Lβ

(α + ε0)2 + β2 .

A3. Periodic wave, Case II

I(ξ) =


c1eλ1ξ + eαξ[c2 cos(βξ) + c3 sin(βξ)] + Q, 0 ≤ ξ ≤ τs,

c4eλ1ξ + eαξ[c5 cos(βξ) + c6 sin(βξ)], τs ≤ ξ ≤ ∆.

The unknown coefficients c1, . . . , c6 (as well as c1, . . . , c6 in (20) for Case I) can be found

from the continuity and periodicity of the solution, i.e. by solving simultaneously the

following equations:

I1(0) = I2(∆), I1(τs) = I2(τs), V1(0) = V2(∆),

V1(τs) = V2(τs), V1ξ(0) = V2ξ(∆), V1ξ(τs) = V2ξ(τs).

B. Kinematic theory

Following [40] the ansatz for periodic travelling waves gives

dT n

dx
=

1
s(∆n)

, ∆n(x) = T n(x) − T n−1(x).
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For linear stability analysis we consider local perturbations of the firing times as T n(x)→

T n(x)+gn(x). A propagating wave of period ∆ is stable if under the perturbation the system

converges to the unperturbed solution, i.e. gn(x) → 0 as x → ∞. Inserting the perturbed

solution in the kinematic equation above gives

dgn(x)
dx

= −
s′(∆)
s2(∆)

[gn(x) − gn−1(x)].

Thus, a linear stability analysis of the kinematic equation shows that a periodic wave

solution with period ∆ is stable if s′(∆) > 0.
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Branching dendrites with resonant membrane: A “sum-over-trips” approach. Biological Cy-

bernetics, 97:137–149, 2007.

[25] L F Abbott, E Fahri, and S Gutmann. The path integral for dendritic trees. Biological Cyber-

netics, 66:49–60, 1991.

[26] M P James, S Coombes, and P C Bressloff. Effects of quasi-active membrane on multiple

periodic traveling waves in integrate-and-fire systems. Physical Review E, 67(051905), 2003.

[27] P C Bressloff and S Coombes. Physics of the extended neuron. International Journal of

Modern Physics B, 11:2343–2392, 1997.

[28] Y Timofeeva, S J Cox, S Coombes, and K Josić. Democratization in a passive dendritic tree:
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