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AN IDENTITY FOR THE DEDEKIND ETA-FUNCTION INVOLVING
TWO INDEPENDENT COMPLEX VARIABLES

BRUCE C. BERNDT1 and WILLIAM B. HART

1. Introduction

Recall that the Dedekind eta-function η(τ) is defined for q = e2πiτ and τ ∈ H = {τ :
Im τ > 0} by

η(τ) = q1/24(q; q)∞,

where

(a; q)∞ :=
∞∏
n=0

(1− aqn).

The purpose of this paper is to prove the following striking identity for the eta-
function, of which we know no other examples of a similar type.

Theorem 1.1. For w, z ∈ H,
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. (1.1)

We describe now the genesis of (1.1). In preparing his doctoral thesis [2], the second
author searched for modular equations involving

u1(τ) :=
η(τ/m)

η(τ)
and v1(τ) := u1(nτ), (1.2)

(and various modular transforms thereof). His goal was to generalize the modular
equations of ‘irrational kind’ for the Weber functions

f(τ) := e−πi/24η
(
x+1

2

)
η(τ)

, f1(τ) :=
η
(
τ
2

)
η(τ)

, f2(τ) :=
√

2
η(2τ)

η(τ)
,

discussed in §75 of Weber’s book [3], i.e., the case m = 2 in (1.2). For example, if
n = 3, letting

u(τ) := f(τ), u1(τ) := f1(τ), u2(τ) := f2(τ)

and

v(τ) = f(3τ), v1(τ) := f1(3τ), v2(τ) := f2(3τ),
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one can prove the identity

u2v2 = u2
1v

2
1 + u2

2v
2
2, τ ∈ H.

Generally, Weber’s modular equations depend on n and increase in complexity as n
increases.

In attempting to generalize these modular equations, the second author began with
an appropriately normalized set of transforms (under modular substitutions) of u3(τ) :=
η(τ/3)/η(τ). However, he eventually realized that the modular equations obtained for
these ‘generalized Weber functions’ did not appear to vary as n increased. Moreover,
the single identity that he found was completely general in that the second parameter
nτ was not related to τ in any way, i.e., the equation held for two completely inde-
pendent complex variables. Simplification then gave the identity for the eta-function
given in Theorem 1.1 above. The identity was then verified in many cases to tens of
thousands of decimal places.

2. Proof of Theorem 1.1

Let q = e2πiw, Q = e2πiz, and ρ = e2πi/3. Then (1.1) is equivalent to the identity

27q3/8Q3/8(q3; q3)3
∞(Q3;Q3)3

∞ = q1/24Q1/24(q1/3; q1/3)3
∞(Q1/3;Q1/3)3

∞

+ iρ1/4q1/24Q1/24(ρq1/3; ρq1/3)3
∞(ρQ1/3; ρQ1/3)3

∞

− iρ−1/4q1/24Q1/24(ρ−1q1/3; ρ−1q1/3)3
∞(ρ−1Q1/3; ρ−1Q1/3)3

∞,

or

27q1/3Q1/3(q3; q3)3
∞(Q3;Q3)3

∞ = (q1/3; q1/3)3
∞(Q1/3;Q1/3)3

∞
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∞.
(2.1)

To prove (2.1), we use Jacobi’s identity [1, p. 285]

(q; q)3
∞ =

∞∑
n=0

(−1)n(2n+ 1)qn(n+1)/2. (2.2)

Observe that

ρn(n+1)/2 =

{
1, if n ≡ 0, 2 (mod 3),

ρ, if n ≡ 1 (mod 3),

Hence, by (2.2),

(ρq1/3; ρq1/3)3
∞ =

∞∑
n=0

(−1)n(2n+ 1)ρn(n+1)/2qn(n+1)/6

=
∞∑
n=0

n≡0,2 (mod 3)

(−1)n(2n+ 1)qn(n+1)/6 + ρ
∞∑
n=0

n≡1 (mod 3)

(−1)n(2n+ 1)qn(n+1)/6
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= (q1/3; q1/3)3
∞ + (ρ− 1)

∞∑
n=0

(−1)3n+1(6n+ 3)q(3n+1)(3n+2)/6
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∞, (2.3)

where we used (2.2) twice again. For brevity, set

A := (q1/3; q1/3)3
∞, B := (Q1/3;Q1/3)3

∞, C := q1/3(q3; q3)3
∞, D := Q1/3(Q3;Q3)3

∞.

Using the notation above, (2.3), its analogue with ρ replaced by ρ−1, and their ana-
logues, with q replaced by Q, in (2.1), we find that it suffices to prove that

27CD = AB + iρ1/4 (A− 3(ρ− 1)C) (B − 3(ρ− 1)D)

− iρ−1/4
(
A− 3(ρ−1 − 1)C

) (
B − 3(ρ−1 − 1)D

)
. (2.4)

Observe that ρ1/4 = (
√

3 + i)/2. Thus, the coefficient of AB on the right-hand side of
(2.4) is equal to
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Next, the coefficients of AD and BC on the right-hand side of (2.4) are each equal to
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The coefficient of CD on the right-hand side of (2.4) is equal to

9iρ1/4(ρ− 1)2 − 9iρ−1/4(ρ−1 − 1)2

= 9i
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= 9i(−3i) = 27. (2.7)

Hence, using the calculations (2.5)–(2.7) in (2.4), we see that (2.4) indeed has been
shown, and so this completes the proof.
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