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Abstract

A number of algorithms have been developed in the past for the purposes of
target tracking, these have generally been for simple polygonal environments.
However as the technology for autonomous vehicles develops for use in the real
world these tracking algorithms need to be tested in larger more realistic envi-
ronments.

This work investigates the use of tracking algorithms to control a team of road
based robotic platforms, tracking pedestrian targets in urban environments.

The novelty of this work is in the identification of the aspects of the environment
that affect target tracking algorithms, and modifying the algorithms to cope with
them. Problems such as the frequent stalemates reached as an algorithms move-
ment is limited by the highly restricted movement space or the identification of
“short cuts” in which the target can take much shorter routes between positions
than the robots. Algorithms are developed that overcome these limitations and
they are tested in a simulation that is an accurate representation of a real envi-
ronment. The algorithms are partly based on existing work and are developed
extensively to be suitable for the environment. These algorithms are tested for
their ability to maintain visual contact with the target.

The scenario is tested with varying numbers of robots, speeds and locations.
Three algorithms were developed and tested, one built as an extension of exist-
ing target tracking algorithms (Combined Urban Tracker) and another two algo-
rithms developed specifically for this environment (Short Cut Path, and Branch).

It is concluded that the Combined Urban Tracker and Short Cut Path algorithms
performed comparably with a less than 0.3% difference in performance between
the two both averaging roughly 54% effectiveness overall, however the Branch
algorithm fared significantly worse averaging only 43% overall. The areas within
the environment that give significant problems are large open spaces and areas
that are significantly occluded from the road network.

This work provides a platform on which further development in this area can be
based in order to progress tracking algorithms towards being of practical use.
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Chapter 1

Introduction

Autonomous surveillance has been of increasing interest in recent years,

particularly with respect to producing platforms that can perform surveil-

lance in the physical world. Recent projects such as the Ministry Of

Defence Grand Challenge (MOD, 2006) and the European Land Robot

Trials (ELRT, 2008b) are both pushing towards developing autonomous

platforms on which it is possible to perform automated reconnaissance

and surveillance. The motivation for exploring the use of robotic plat-

forms is the increased efficiency and cost savings that can be achieved

with automation. Of great importance is also increased safety to person-

nel, particularly when operating in dangerous environments in which it

is necessary to locate people, however it would be dangerous to explore

without prior information. The general goal of such programs are to col-

lect as much information about the environment as possible, and most

importantly to be able to identify items of interest, generally people, and

to then report this information. Then as an extension, track the move-
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ments of these people in order to provide up to date information. It is

therefore envisaged that the ultimate use for this work will be in mili-

tary operations in unfamiliar, foreign, hostile urban environments. By

providing a more complete picture of the state of the environment to the

user, it is hoped that the ultimate benefit of this work is to make oper-

ating in such environments safer. With a greater degree of information

about the environment, personal will be able to plan more effectively in

these problematic urban areas where visibility is extremely limited.

The goal of autonomous surveillance could be achieved with a wide range

of configurations, from static sensors such as CCTV cameras ((Collins

et al., 2001; Siebel and Maybank, 2002), also various case studies on

CCTV use provided in (Lipton et al., 2003)) to mobile robots (Rybski et al.,

2000; Grocholsky et al., 2006). Various configurations have been explored

and as technology progresses robots are becoming a more practical and

affordable solution. Teleoperated robots for the purposes of reconnais-

sance are already in operation (Voth, 2004), however as the requirements

of the Ministry Of Defence Grand Challenge made clear, it is of value for

the system to have as great a degree of automation as possible in order to

reduce the burden of operation from the personnel. This thesis therefore

is attempting to provide a stepping stone towards achieving such a goal.

Broadly the types of mobile systems envisaged are either ground based,

aerial or a hybrid (Grocholsky et al., 2006; Sukhatme et al., 2001). This

work focuses on the ground based domain, although it is acknowledged

that aerial surveillance can be particularly effective due to avoiding lim-

itations such as occlusion and obstacles. However ground based systems
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are likely to be able to contain more robust sensors and processing power

due to the weight limitations of an aerial vehicle. Additionally ground

based systems are likely to be able to get closer to areas of interest to

collect more detailed sensor information and possibly directly respond to

the situation. It should also be noted that there has been a significant

amount of work exploring the aerial surveillance domain.

A number of prerequisite technologies are required in order to perform

automated surveillance including the physical platform, sensors, sen-

sor processing and algorithms for the coordination and movement of the

robot. Work is being carried out in all these areas and advances are being

made that will allow autonomous surveillance to become a reality. The

building of physical platforms in particular is a fairly well established

area with a number of commercial off the shelf products already avail-

able on the market, many from the IRobot Corporation, particularly in

the all terrain area such as the packbot (Yamauchi, 2004) and ATRV-2

(as used in (Rybski et al., 2000)). Although many robotic platforms exist

that can travel along the roads, little literature can be found on the design

of such platforms. The most common method of producing a road based

platform appears to be to take a suitable car and modify it by adding

sensors and automatic control mechanisms (Kammel et al., 2008; Stone

et al., 2007; Leonard et al., 2007). Sensor interpretation is also a highly

researched area, particularly with respect to static CCTV style sensors.

The detection and tracking of objects and events of interest in CCTV im-

ages has been particularly well explored (Collins et al., 2001; Siebel and

Maybank, 2002; Fuentes and Velastin, 2006). On mobile platforms there
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has also been incredible amounts of work in the field of mapping the en-

vironment and location of the robot itself (overview of various methods

in (Filliat and Meyer, 2003) and (Meyer and Filliat, 2003)), particularly

in the popular combined field of simultaneous localisation and mapping

(SLAM, (Durrant-Whyte and Bailey, 2006; Bailey and Durrant-Whyte,

2006)). For the latter of the fields mentioned, algorithms for the coordi-

nation and movement of the robots, it has been found that this area is

particularly unexplored with respect to achieving the goal of autonomous

surveillance. Work has been performed on various similar and generally

simplified environments (Jung, 2005; Parker, 1999), however due to the

complexity of the environment at hand the existing work is viewed as in-

sufficient to meet the demands of the task. This work therefore focuses

upon the latter problem of the coordination and movement of robots in or-

der to attempt to progress the state of the art to a point that is sufficient

for the task.

Movement algorithms would be required that achieve various tasks such

as searching algorithms for the purposes of finding objects of interest.

Also tracking algorithms for the following of targets once found. In ex-

tremely adversarial scenarios such as the pursuit evasion problems, cap-

turing of the target is required. The area of tracking targets has been

found to be lacking, particularly when exploring the urban environment,

where the target is capable of potentially more agile movement as well as

traversing terrain that a robot is not. The goal of this study is to there-

fore explore this problem of tracking a target using a team of autonomous

robots, where the target is able to traverse terrain that the robots cannot.
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The form of this target is therefore a pedestrian being tracked by road

based robots.

The focus of this work is thus to maintain visual contact of a pedestrian

target in an urban environment using a team of road based robots.

In the environment at hand, the target has relative freedom of the en-

vironment with the ability to traverse all spaces with the exception of

obstacles such as buildings, walls and fences. The robots are however

confined to the road network. The robots have sonar, laser range finders,

GPS and a target detection system, each have limited fields of view and

range. The structure of the team is decentralised with each robot having

complete autonomy to make its own decisions, no mechanism is provided

to allow a robot to directly induce a decision or action in another. How-

ever, a communications channel is provided to allow the robots to pass

appropriate information between team members in order to make effec-

tive decisions. This information will influence the actions of other robots

but will not instruct them.

This work is undertaken as an engineering piece, aimed towards develop-

ing algorithms that can be utilised with limited hardware and reasonable

sensors. One of the goals is therefore to develop decentralised algorithms

that scale well with the number of robots and that uses a minimum of

communications bandwidth. Due to requiring the test to be an accurate

representation of reality, a minimum of simplifications have been made

in the construction of the environment.

Relevant work in the area of autonomous target tracking is discussed and
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limitations of existing algorithms are identified. Algorithms are produced

that are based upon existing work and developed further to be suitable

to this environment. Original algorithms are also developed, specifically

designed to account for aspects of an urban environment that are not

present in previously explored work. A representative simulation is de-

veloped in which to test the algorithms. The simulations are based on

real environments in the UK using data from Ordnance Survey© and use

realistic values for sensor performance. These algorithms are tested and

their performance compared. During the experimentation the maps used,

speed of the target, number of robots and the starting positions are var-

ied to both eliminate them as a factor that biases the results and explore

their effect upon the algorithms performance. A critical assessment of

the work is performed, identifying the areas of improvement that could

be made and identification of future work to address these issues.

Throughout this work a number of maps are displayed, all maps are prop-

erty of Ordnance Survey© Crown Copyright. All rights reserved.
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Chapter 2

Related Work

Before discussing the field it should be noted that throughout the thesis

the term sensor platform is used to refer to a static device that merely

collects information of the surrounding environment. This is in contrast

to a “robot”, which is used to refer to a device that not only senses but ac-

tively moves and reacts to changes in the environment. Sensor platforms

should also be distinguished from the term sensor, a sensor refers to an

element that can detect a property of the environment such as a camera

or sonar. A sensor platform can therefore contain one or more sensors.

Robotic surveillance has been explored in a variety of forms. These have

varied from simulation exercises to practical implementations in hard-

ware. The problem can be categorised in a number of forms. Figure 2.1

provides a break down of the various aspects that can be varied while

exploring the task of automated surveillance. Broadly the work in this

area can be classified by: the domain of interest, the dimensionality
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of the problem explored, the senors movement and capabilities and the

type of environment that is explored. These are broken down further to

show some of the common choices explored for each parameter. Some

of these parameters require further explanation: in the domain of inter-

est catagory sensor interpretation is generally the concept of analysing

sensor data to try to identify and extract the location of objects of in-

terest, robot placement is deciding upon the position to locate robots (or

static sensor platforms) in order to maximise a metric such as the total

area monitored (Poduri and Sukhatme, 2004), tracking and data associ-

ation involves attempting to determine an objects movement as well as

possibly trying to maintain the identity of multiple tracked objects as

they travel through an environment, robot movement and coordination is

then how to manoeuvre robots in order to best keep track of the targets.

Cellular space refers to environments where the targets or robots can

take position as relatively course positions such as in a grid formation

(Chakrabarty et al., 2002). Graph based environments are where the

environment is formed as a series of vertices connected by edges, such

as in the GRAPH-CLEAR problem (formalised in (Kolling and Carpin,

2007)) where agents attempt to clear a graph by moving a team in such a

manner that no intruder could possibly remain undetected. Vertices and

edges are generally used to represent rooms and areas and the connec-

tions between them.
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Domain of Interest
• Sensor interpretation and fusion

• Robot placement

• Tracking and data association

• Robot movement and coordination

Dimensionality
• Single-target, single-robot

• Multiple-target, single-robot

• Single-target, multiple-robot

• Multiple-target, multiple-robot

Movement
• Static

• Mobile

• Ground based

• Aerial

• Restricted movement

Environment
• Cellular space

• Analogue space

• Graph based

• Dynamic obstacles

• Static Obstacles

Figure 2.1: Field breakdown

It should also be noted that although ground based and aerial mobility

were listed as separate parameters there has also been work on hybrid

systems that incorporated both (Grocholsky et al., 2006).

Due to the large number of variables this leads to a great number of

possible combinations for research, and a number have been explored in

the past and will be briefly discussed in Section 2.1. Then more directly

related work is reviewed in Sections 2.3 and 2.4.

The environment that is explored in this work is as follows:

• Robot movement and coordination.

• Multiple mobile robots and a single target (MRST).
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• Analogue space.

• Static obstacles (excluding the robots and target).

• Restricted movement of the robot relative to the target.

Little work has been performed specifically upon this domain in the past.

This specific environment is important particularly due to the choice of

restricted movement of the target relative to the robot, this is a more ac-

curate representation of the challenges that would be encountered were

surveillance to be attempted in an urban environment than previous

work, as well as closer to the requirements that would be needed to ad-

dress problems such as the Ministry Of Defence Grand Challenge (MOD,

2006) and the European Land Robot Trials (ELRT, 2008b). The Grand

Challenge was a competition set by the Ministry Of Defence and was

aimed at producing a system that could locate threats such as snipers,

explosives, vehicles with mounted weaponry, groups of enemies as well as

civilians. This was to be performed within an urban war zone, with the

intention of then relaying their locations to local ground troops. It was

also a major requirement that such a platform should be automated and

not teleoperated in order to keep the burden of operation to a minimum.

In the trial itself, only static objects were required to be detected however

it is a natural extension to the requirements of such a system that once a

threat has been identified that it be tracked in order to keep an accurate

account of its location. The European Land Robot trials is specified as a

European equivalent to the DARPA Grand Challenge (Due to entry into

the DARPA GC being difficult for non-US teams) and is aimed at assess-
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ing the current state of the art in robotics. A number of scenarios are put

forward in the ELROB trials, the most relevant of which is the “Camp se-

curity” trial, in which a robot is required to “Search pre-designated area,

detect, report and monitor moving objects of interest” (ELRT, 2008a) in

an urban and semi-urban environment. The objectives of this challenge

are detailed as: “Detect and report intruders, Pursue intruders, Acquire

position and imagery of intruders and transmit to control station” (ELRT,

2008a).

There are a number of prerequisites in order to explore tracking on such

a large scale. If a test using an actual implementation was sought a

suitable environment and platforms on which to perform the trials would

be required, both of which would be difficult and costly to obtain. To

explore in simulation requires firstly the required computing power to

execute a simulation on such a large environment. Secondly suitable map

data is required that can accurately represent a real environment. It is

proposed that primarily the lack of availability of such data in the past

is the reason that such work has not been explored, however advances in

computing power also make the ability to explore this situation easier.

For the sake of practicality a few compromises have been made and are

addressed in Chapter 6. This work however does not attempt to address

all the issues required to solve performing surveillance in an urban envi-

ronment, merely to progress towards this final goal.
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2.1 The Wider Field

The general goal of Multiple Robot Single Target(MRST) problems is to

use the redundant advantage of numbers to increase the accuracy of the

localisation estimate (Spletzer and Taylor, 2003) as opposed to using the

redundant advantage of numbers to overcome the restrictions that the

environment places upon the robot.

Sensor interpretation is one of the most active fields of surveillance; the

predominant methods are in the area of image analysis which attempt to

identify people (Siebel and Maybank, 2002), crowds or vehicles (Maurin

et al., 2005; Reisman et al., 2004) from images in order to track them

through an environment. These often use techniques such as optical flow

or image subtraction. Sensor platform configurations range from static

CCTV style images to mobile sensors (robots). Current state of the art

visual systems cannot guarantee identification of a human target, partic-

ularly across multiple sensor platforms however research is being carried

out in this field (Siebel, 2003; Haritaoglu et al., 2000; Lipton et al., 1998)

with growing success and it is believed that such systems will become

available. It is therefore viewed as acceptable to assume that such a vi-

sion system is provided to the robot. This area is not within the scope

of this thesis as it is assumed that a visual sensor system capable of

identifying the target is available. It is known that through wall radar

(Lubecke et al., 2007) has been developed for urban scenarios and would

potentially provide a benefit however for this work only basic sensors are

presumed available.
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Sensor coverage is a significantly related topic, this focuses on the place-

ment of sensor platforms in order to maximise the overall coverage of the

environment (Poduri and Sukhatme, 2004; Meguerdichian et al., 2001).

Sensor coverage often uses wireless sensor networks ((Culler et al., 2004)

provides a general overview) and generally does not intend to actively

follow a target, however by covering the entire space or key areas and

sharing information it is able to track targets throughout. This work gen-

erally approaches the problem via a large number of sensor platforms, of-

ten more than 100 sensor platforms are proposed and used in tests (Wang

et al., 2006). The number is justified by the use of small scale devices of

limited cost, ability and power consumption (such as the Robomote (Sib-

ley et al., 2002) or the Urban Emergency Response System (Shi et al.,

2005)). This is in contrast to the approach taken in this work that pro-

poses a small number of relatively large and inevitably costly devices.

Ultimately it is a question of whether a large number of cheap robots can

match or out perform fewer more capable devices, and if there is a cost

benefit to either option. Small platforms will most likely be unable to nav-

igate rough terrain or even moderately sized obstacles, this will lead to

similar issues to the problem that is explored in this work where targets

are able to traverse areas that the robot is unable to. It is currently not

known if either the highly distributed approach or small team approach

has an advantage, as it is very dependant upon the cost and capabilities

of a particular implementation. This thesis will concentrate on the latter

option. A potentially useful concept from this area is the barrier coverage

problem (introduced in (Gage, 1992), overview in (Cardei and Wu, 2006)).

This attempts to cover a zone so that a target may not pass the cordon
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without being detected. If we were to take the possibility of a target hid-

ing in an unobservable area then this concept is useful to ensure that the

target does not leave that zone without being observed, sweep coverage

(Gage, 1992) is also introduced which is essentially a moving barrier.

Pursuit evasion (Isler et al., 2005; Guibas et al., 1999; Cheng, 2003) also

provides a very similar problem, however due to the additional complex-

ity of our environment the targets will not be evasive, consequently these

algorithms will not directly be applicable to this thesis. Many problems in

this domain also deal with capturing the target (Oh et al., 2007) whereas

the goal in this work is merely to keep the target within the field of view.

Autonomous air vehicles have also been of particular interest in the area

of autonomous surveillance (Frew, 2007). Such vehicles overcome many

of the inherent problems of ground based surveillance such as environ-

ment occlusion, restriction of movement via obstacles and localisation

that can be difficult using methods such as GPS in an “urban canyon”.

Hegazy (Hegazy, 2004) explores agent placement with specific reference

to urban environments, his work points out that although a birds eye

view removes a number of the problems of environment occlusion there

are still significantly differing levels of occlusion depending upon the type

of urban environment even to an aerial robot. This explores two types of

environment, suburban type areas with many low buildings such as two

story houses, secondly areas with many high rise buildings that provide

more significant problems to aerial robots.
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2.2 Definition of the Environment

One of the most relevant pieces of work is the CMOMMT (Cooperative

Multi-robot Observation of Multiple Moving Targets) work (Parker, 2002)

due to the fact that it formalises an environment for surveillance that pro-

vides a similar environment to this work, albeit in a simpler form. This

can be built upon to formalise the environment used in this work. The

definition describes a relatively simple environment containing convex

objects (shapes with no internal angles on its perimeter). As this caters

for the most general of problems (multiple robot multiple target) the al-

gorithm is applicable to the intended work since the multiple robot single

target problem is a subset of this. This work establishes the method of

comparison that has been adopted for this thesis: “to minimise the to-

tal time in which targets escape observation by some robot team member”

(Parker, 2002).

The problem is formalised as follows:
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S: a two-dimensional, bounded, enclosed spatial region

V : a team of m robot vehicles, vi; i = 1,2 . . . m, with 360◦ field of

view observation sensors that are noisy and of limited range

O(t): a set of n targets, oj(t), j = 1,2,. . .n such that target oj(t) is

located within region S at time t

B(t) = [bij(t)]m×n (2.1)

bij(t) =


1 if robot vi is observing target oj(t) in S at time t

0 otherwise
(2.2)

g(B(t), j) =


1 if there exists an i such that bij(t) = 1

0 Otherwise
(2.3)

A =
T∑
t=1

n∑
j=1

g(B(t, j))

T
(2.4)

Equations and descriptions taken verbatim from (Parker, 2002).

This is then illustrated in Figure 2.2. As shown on the left of Figure 2.2,

the environment is two dimensional and entirely enclosed (S), contained

within the environment is a set of targets (O) and a set of robots (V ).

Those that lie within the collective field of view of the robots are regarded

as under observation (g). Equation 2.1 defines a matrix over all targets

and robots such that B(t)x,y is 1 if robot x is observing target y (Illustrated

on the right of Figure 2.2). The matrix B(t) therefore describes which
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S: Environment

V:  Team of 
robots

Collective field of view of the robots

O: Targets

g: targets currently 
under observation

Robot

TargetV1

V2

o2

o3

Field of view

o1

Figure 2.2: Left: Illustration of the environment proposed in (Parker,
2002). Right: An example of targets being observed and equations pro-
duced.

robots are observing which targets. This is then used by equation 2.3,

where the function g(B(t), j) defines whether or not an individual target

is being observed by any of the robots, therefore identifying those that are

within the collective field of view of the team. This is shown on the right

of Figure 2.2, where two robots are tracking three targets. The targets o2

and o3 are under observation, producing ones in the appropriate rows and

columns of B(t) and the first column remaining zero to indicate that o1 is

not under observation. The columns are then combined in the function

g(B(t), j), showing a zero overall for the first target and ones for the other

two indicating that they are under observation.

The equations then culminate in equation 2.4, which calculates the per-

centage of time in which each target remains under observation, then

sums this for each target to produce a metric that defines how success-

fully the team tracked the targets. This metric would range from 0 to n,

n indicating at no point in time did any of the targets escape observation,

0 indicating at no time were the targets observed.
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The problem is then defined as maximising A in equation 2.4, that is to

maximise the number of targets that are being observed throughout the

trial.

The A value is also used as the metric for success and comparison of

various strategies. For this purpose A is normalised since it is relative

to the number of targets to A
n

, which is the average percentage of targets

that are observed over the trial. This metric will also be adopted for this

work. For the case of a single target, j will always equal 1; this causes

the first summation of equation 2.4. over the the A metric simplifies to

equation 2.5, which is essentially the percentage of time intervals that

the target is observed.

A =
T∑
t=1

g(B(t))

T
(2.5)

The work of Parker (Parker, 2002) also illustrates a number of important

factors. One of which is the need for a simple and easily distributed algo-

rithm to reduce reliance on centralised processing and communications

as well as preventing the complexity of the solution rapidly increasing

with the number of targets and robots.
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Figure 2.3: Example of a vector field containing one attractive and one
repulsive object(Generated using (VFDFLA, 2009)).

2.3 Tracking Algorithms

2.3.1 A-CMOMMT

As previously stated, this work attempts to produce a solution where the

computational complexity scales well with the number of targets and

robots, to this end a local vector field approach is taken. A vector field

is shown in Figure 2.3, that contains a single repulsive force and a single

attractive force, the arrows then show the resultant force that acts upon

a robot and thus the direction in which it will travel.

The vector field in this work is formed as a sum of a number of sub-goals,

as described by (Reif and Wang, 1999). This technique of summing sub

goals and behaviours produces very scalable and robust solutions. The

scalability of vector fields is due to the fact that each object of interest

(i.e. target or robot) produces only a single force each of which is then

combined with the simple operation of summation. Calculating this force
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for each robot then scales linearly with the number of objects of inter-

est in the environment due to each new object simply producing a single

additional force to the calculation.

Firstly the robot is attracted to local targets to attempt to keep them

within range of the robot, secondly the robots are repelled from each other

in order to prevent the robots clustering together and making redundant

observations. The equation used for this behaviour is shown in equation

2.6. ∆ is the the direction of movement produced as a result of the cal-

culations, this is a 2 dimensional vector denoting the x and y velocities

relative to the environment. flk is the force applied by the target ok, gli

is the force applied by robot vi and ωlk is a weighting that reduces the

influence of the target ok. Where there are n targets and M robots. Fig-

ure 2.4 shows an example in which two robots are providing the repelling

forces (g) and two targets providing the attractive force (f ), that are then

combined to produce the resultant force (and therefore movement, ∆).

∆ =
n∑
k=1

ωlkflk +
M∑

i=1,i 6=l

gli (2.6)

This heavily influences the work of this thesis by directly inspiring one

of the algorithms trialed. Also the general philosophy of producing com-

putationally efficient algorithms through purely reactive strategies are

used throughout this work. Despite directly inspiring one of the algo-

rithms tested in this work, there are a number of modifications required.

Firstly the simple model that any target within range is observed is re-

moved as it is one of the assumptions that through this simplification the
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o1

o2

v1
v3

v2

f 11

f 12

g12

g13

V

Target

Robot

Target Force

Observer Force

Final movement

Figure 2.4: A-CMOMMT Forces.

algorithm may not be suitable for environments with complex structures

of obstacles. Secondly the simplicity of a pure vector field approach using

only the robot and target forces is inadequate due to the fact that the

robot must remain constrained to the road network. A road network will

have many local minima that are likely to drastically reduce the robots

performance while using a simple vector field approach, as shown in Fig-

ure 2.5, the final trajectory produced will pull the robot towards a dead

end as well as off of the road network. The local minima is formed by

restrictions of the dead end, this will then trap the robot in the location

causing it to be of little use. Consequently, a prior knowledge of the road

network would need to be incorporated, so that a route can be planned

towards specific objects and avoid such minima.

Further details of the solution produced using A-CMOMMT is provided

in section 4.1.1 where the algorithm is extended and modified for use in

this work.
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Robot

Robot
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Target force

Robot force

Figure 2.5: Local minima restrictions of A-CMOMMT. Ordnance Survey©
Crown Copyright. All rights reserved.

2.3.2 Shortest Escape Path

The A-CMOMMT method although simple takes no account of occlusion.

An alternative method that is also very relevant is the approach of (Lee

et al., 2002; Gonzalez-Banos, 2002). This addresses the problem of mov-

ing the robot in order to maintain visibility of a target taking into account

the current field of view. This obviously increases the complexity of the

algorithm over the simple vector field approach. This was designed for

the single robot single target scenario however the algorithm is appli-

cable to the MRST environment. It is based upon a concept called the

escape path tree.

The algorithm uses a range scan similar to that produced by a laser scan-

ner (such as the SICK LMS range or the Hokuyo URG-04LX Laser Sen-

sor). It identifies the points at which the robot can escape the field of

view and then finds the shortest path the target can take to reach each

escape point. An example of a target and the escape paths generated
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from the robots’ laser scan is shown in Figure 2.6. As shown the short-

est paths consist of a series of straight lines between either pivot nodes

or escape points, escape points are points at which the target can leave

the current field of view. Free edges labelled on the diagram are edges in

the field of view through which a target can escape. Pivot nodes are cen-

tred on the corners of obstacles that the target must circumvent in order

to reach escape points the other side of the object. These escape points,

pivot nodes and paths form the Escape Path Tree (EPT) that defines all

the possibilities for escape. The tree is formed with the target as the root

node, each node of the tree is a pivot and each branch terminates at a

leaf node that is the escape point, the vertices’s connecting these nodes

of the tree then form the escape path. The EPT is illustrated in Figure

2.7 that shows the tree formed from the situation shown in Figure 2.6.

This tree can be formed efficiently by iterating over each ray of the laser

scan once (Gonzalez-Banos, 2002), generating the tree is therefore very

efficient and scales only relative to the resolution of the laser scanning.

To each escape path that originates from the target there is an associated

risk that defines the danger of the target escaping via that path, longer

paths are naturally lower risk since the robot has longer to modify its

field of view to compensate. A great number of distant escape points

could however overshadow the importance of a single more immediate

threat. To prevent this from happening the threat for a given pivot node

or escape point is calculated by taking the average risk of its child nodes.

The risk for a given escape point(ϕe) is detailed in equation 2.7.
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Figure 2.6: Escape path tree example

Escape Point

Pivot Node

Target(root node)

Figure 2.7: Escape path tree for Figure 2.6
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ϕe = cr2

(
1

h

)m+2

(2.7)

c Scaling factor

r Distance from escape point to robot

h Length of escape path

m Look-ahead component

Equation based upon work in (Gonzalez-Banos, 2002)

From the function 2.7 as the length of the escape path increases the over-

all risk decreases, however as the distance from the robot to the escape

point increases the risk increases. The reason for the latter is shown in

Figure 2.8. This features two possible examples of a robot observing a

target, in the left example the occlusion vertex is closer to the target, and

in the right the occlusion vertex is closer to the robot. The left example

in which the vertex is closer to the target requires a much greater move-

ment in order to keep the target in view compared to the example on the

right hence the risk increases with the distance to the occlusion vertex. m

is a component that can be tuned to define how reactive or proactive the

movement is, its minimisation causing the robot to be highly proactive.

The robots reaction to a given escape point (derived in (Gonzalez-Banos,

2002)) is determined by the following vector:

−∆φe =

 2cr
(

1
h

)2
∆r

−2cδr
(

1
h

)3
∆h


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Figure 2.8: Example of how the distance from robot to the Occlusion Ver-
tex affects the robots movement

δ The radius of the target.

This is based upon a coordinate system (∆r,∆h) which is centred on the

robot with the ∆r axis in the direction of the given escape point and ∆h

perpendicular to it. At times of low risk h is large, ∆r will dominate

in this situation due to being inversely proportional to h2 compared to

h3 for the ∆h component. The robot will therefore approach the target

positioning itself better for the future. Alternatively at times of high risk

the ∆h component will dominate and the robot will move perpendicular to

the direction of the occlusion, hence making an emergency move merely

to keep the target in view for the immediate future.

2.4 Searching

The algorithms that have been detailed so far are concerned with track-

ing a target. However the behaviour while a target is not being observed

will also impact upon the system’s performance. Although the goal of

26



this work is to develop a system that maximises the time in which a tar-

get is observed, it is inevitable that a target will escape observation and

a strategy will be required to reacquire it. A number of possibilities arise

for dealing with this. Through the simulation environment it would be

possible to locate a target even when it is out of view, this would allow

focus upon the tracking algorithms and not the search algorithm. This is

however an unrealistic assumption that a target’s precise location can be

obtained despite being out of view.

The optimal solution would be to perform a complete sweep, covering the

environment in a systematic manner in order to ensure detection such

as the pursuit-evasion problem and the museum problem (Gerkey et al.,

2006; Guibas et al., 1999). However these algorithms rely upon the abil-

ity to cleanse areas and prevent re-contamination by moving in a manner

which would prevent the target from slipping past and re-entering. This

relies upon the ability of the robot to traverse the same space as the tar-

get. As can be seen in Figure 2.9, a robot with restricted movement can

easily be prevented from entirely cleansing an area due to being unable

to view the entire space. Additionally, as stated in (Gerkey et al., 2006),

a solution taking into account multiple robots increases the complexity

exponentially and thus makes such a prospect impractical. Consequently

an approximate function must be found.
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Robot

Target

Unobservable
area

Figure 2.9: Example of an impossible search for a restricted robot due
to there being no valid position in which the robot can see the target.
Ordnance Survey© Crown Copyright. All rights reserved.

2.4.1 Jung

Jung provides effective methods for the tracking of multiple targets in en-

vironments that involve environment occlusions (Jung, 2002, 2005). This

presents a framework for distributing robots across an environment for

the collaborative sensing of multiple targets. Two algorithms are pro-

vided, one for use in a continuous, analogue environment and the second

for a topological map (i.e. a collection of interconnected nodes). The ana-

logue version works by convolving probability distributions over the en-

vironment using the positions of the robots and targets. This produces an

urgency map indicating the areas that are of highest urgency and thus

in need of inspection. The topological version works in a similar manner

calculating urgencies at a given node based upon the time since an obser-

vation was made and the size of the region. The topological algorithms

will be used in this work due to the road map being a topological struc-

ture. This will be the space traversed by the robots. The equations used

in the topological algorithm are shown in equations 2.8-2.12.
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Dr(R) a simple estimate of the density of robots in region R

Dt(R) an estimate of the target density in region R

θd a tunable parameter that details how willing a robot is to

travel long distances

α This roughly estimates the intrinsic importance of an area,

valuing places with a large area as more valuable

d Distance from robot to region

davg Average distance between regions

Dr(R) =
the number of robots in region R

area of region R
unit coverage

(2.8)

α =
area of region R

unit coverage
× θd (2.9)

Dt(R) =



−1 Dt(R) = 0&Dr(R) 6= 0

Dt(R) + α Dt(R) < 0&Dr(R) = 0

the number of targets in region R
area of region R

unit coverage
otherwise

(2.10)

u(Dr, Dt) =



Dt
Dr

Dr 6= 0

Dt × α Dr = 0&Dt 6= 0

1.0 Dr = Dt = 0

(2.11)

U(R) = u(Dt(R), Dr(R))× davg
d

(2.12)
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{No observations 
made yet

Observation made 
and no targets found

{Over time 
uncertainty in the 
area increases

{Previous observations
eventualy forgotten

Observation made 
and targets found

Time

Dt

Figure 2.10: Example of how the function Dt will act for the scenario
given.

Dt(R) is designed upon the concept that if a robot is not present it gradu-

ally increases the target density to indicate the level of uncertainty about

how many targets are in that region, as shown in the centre room in Fig-

ure 2.11. If an observation has been made and no targets observed then it

marks the area clear by reducing its value to a low value of −1(as shown

in the right most room in Figure 2.11). Otherwise targets are being ob-

served in this area therefore set it to a similar density estimate as used

for Dr (left of Figure 2.11).

Figure 2.10 shows how Dt will react in a given situation. At the start the

value stays at 0 indicating no observation has been made, an observation

is then made in the area and no targets are found and is therefor reset

to −1. The robot then leaves the area and gradually over time the un-

certainty increases until the fact that no targets are observed is entirely
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Robot

Target

Robot present and no 
targets observed.

Two robots present and two 
targets observed.

No robots present.
will gradually increase to represent the uncertaintyand

Figure 2.11: An example of a tracking situation and the corresponding
values for the Jung equations for each area.

forgotten. Then a robot returns to make an observation, this time targets

are found and the value is set to an appropriate value.

The core of the urgency calculation is then performed by u. This uses

the concept that if a robot is present making an observation then the ur-

gency is proportional to the density of targets and inversely proportional

to the density of robots. As shown in Figure 2.11, the left and right rooms

have an urgency relative to the number of robots, for the room with two

robots it is set to Dr
Dt

and 0 for the room with no targets (due to Dr be-

ing 0). If however no robots are present to make an observation and the

target density is unknown (either no observation has been made or it

has been sufficiently long since an observation has been made) then the

urgency is set to a high value of 1.0 to attract robots to make an obser-
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vation. Otherwise there are no robots present to make an observation,

however a previous target density is known, the urgency is therefore set

proportional to the target density. Due to the target density gradually

increasing the urgency will also naturally increase.

In U(R) the final urgency is then made inversely proportional to the dis-

tance a given robot will need to travel in order to make an observation (i.e.

encourage a robot to check near by urgent regions) and then normalised

using the average distance between nodes davg.

This produces a searching behaviour as robots move to areas of high un-

certainty in order to make an observation, once an observation has been

made the uncertainty and by association the overall urgency are reduced

by the target density being reset to -1 (assuming no target is observed),

thus making other areas of the map more urgent and attracting robots to

make observations. Over time, cleared areas urgency gradually increase

indicating that a target may have moved into that area and thus encour-

aging a robot to check the given area again.

Although this algorithm would work as it is with few modifications, it

could be made more efficient by providing the searching behaviour with

additional information such as initial estimates of target density based

upon the last known position of the target as well as incorporating the

Cartesian distance between topological nodes. Since targets are not re-

stricted to using the road network the Cartesian distance is also an indi-

cator of target density.

32



Chapter 3

Simulation Platform

Due to limitations in the current level of technology and funding with re-

spect to building platforms that can reliably operate in an urban environ-

ment safely, it is not possible to test in a real environment. Consequently

this work uses simulation as a basis for comparing the performance of

the algorithms developed. A number of simplifications have been made

in the construction of the simulation due to limited computational re-

sources and data, however these have been kept to a minimum. These

simplifications will be detailed in the subsequent chapters as well as in

the Further Work section (section 6.3).

In this chapter details are provided of the simulation platform developed

in order to test an algorithms performance in an urban environment.

Firstly a definition of the environment is given. This describes the en-

vironment that is to be implemented in the simulation platform.

Secondly the map data that was used in the trails is discussed and the
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modifications required in order to make it suitable for use in the simula-

tion.

This is followed by a description of the implementation of the simulation

platform. The implementations of the robots and target are then dis-

cussed, including the types of sensors and physical dimensions. Finally

the control architecture used to control the robots is shown.

3.1 Definition of the Environment

The simpler version of the problem was formally defined in section 2.2

and deals with the case of an environment that is relatively simple and

with only convex obstacles within the environment.

The goal of the exercise is to maximise the metric A, which is the ratio

of frames in which the target was observed. In the environment we have

three types of spaces. Firstly a space that both the target and robot can

traverse (J), those that the target alone can traverse (I) and one that

neither can traverse (H). These are all enclosed within the overall envi-

ronment space (S).

Then a team of robots (V ) is placed within the environment and a single

target (o).

As before the equations 3.1-3.3 define whether or not the target is under

observation.
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The environment provided in section 2.2 is therefore reformulated as fol-

lows to describe the problem at hand:

t Time.

T Time period for a given simulation run.

A The ratio of frames in which the target was observed.

H A two dimensional space that can not be traversed by any

agent and occludes all sensors, entirely enclosed within S.

I A two dimensional space that cannot be easily traversed by

robots but can be traversed by the target, entirely enclosed

within S.

J Free space traversable by all agents, entirely enclosed within

S.

S A two-dimensional, bounded spatial region containing spaces

H, I and J .

V A team of m robot vehicles, vi, i = 1, 2...m, with 360◦ field of

view observation sensors that are of limited range and re-

stricted to traversing space J freely.

o(t) A target that is located within region S, but not within H at

time t.

B(t) = [bi(t)]m (3.1)
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bi(t) =


1 if robot vi is observing target o(t) in S at time t

0 otherwise
(3.2)

g(B(t)) =


1 if there exists an i such that bi(t) = 1

0 Otherwise
(3.3)

A =
T∑
t=1

g(B(t))

T
(3.4)

Extending the diagram of the simpler environment we produce the space

as shown on the left of Figure 3.1. As shown the entire environment is

split into three spaces (H, I and J) that represent the various spaces that

the target and robots can traverse. Generally the space H (buildings and

walls) in real environments is found enclosed by I (land and paths) and

in turn the space I could be seen to be encompassed by J , as shown on

the right of Figure 3.1. There is however no requirement of this, merely

a common occurrence and therefore the spaces are said to merely reside

within the enclosed region S and not within each other.

3.2 Maps

The contents of the environment have been chosen to emulate real ur-

ban environments in order to make the test close to a realistic scenario.

The map data is provided by the OSMasterMap® data set from Ordnance
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S: Environment

I: Space traversable by 
targets alone

J: Space traversable 
by all

V:  Team of 
robots

Collective field of 
view of the robots

H: Space that obstructs 
sensors, robots and targets

O: Target

g: target currently 
under observation

J: RoadsI: Land, Paths
H: Buildings, walls

Figure 3.1: Left: Illustration of the environment space for the given prob-
lem. Right: Space demonstrated on a map. Ordnance Survey© Crown
Copyright. All rights reserved.

Survey© (Figure 3.2). The data is typically accurate to one metre and con-

tains features larger than a few metres. A notable limitation however is

that it does not contain information about visually transparent obstacles

such as chain link fencing or iron railings. Due to this lack of information,

these obstacles are presumed to be opaque to all sensors.

Shapes within the environment are defined as a series of x and y coordi-

nates that produce a polygon defining the perimeter of the shape. In the

case of obstacles with minimal width such as walls and fences there is

merely a line that defines the path of the object and not a closed polygon.

A prior road map is made available to the robots in the form of a series

of road nodes as shown in Figure 3.3, each node being displayed as a red

square. These nodes are spaced differently depending on the configura-

37



Figure 3.2: Left: Aerial photograph of real environment. Right: Sim-
ulated view of environment. Ordnance Survey© Crown Copyright. All
rights reserved.

tion of the road at that point. Obviously more nodes are used to represent

a curve than a straight road. Looking at one of the maps used in the tri-

als (will later be referred to as Map 2) these are spaced with an average

of 17m between nodes. The smallest being 0.15m and the largest roughly

200m. Each node comprises of:

• A unique reference number.

• The location of the node in a global coordinate frame.

• The enclosing area that defines the geometry of the road around the

node which allows the robot to detect when it is in danger of leaving

the road network.

• Which other road nodes are immediately adjacent, provided for path

planning purposes.

An example of the data is shown in Appendix C.

Other than the geometry of the roads, no prior information is made avail-

able to the robots as to the geographical layout or obstacles.
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Figure 3.3: Node positioning on the road network. Ordnance Survey©
Crown Copyright. All rights reserved.

Two types of map obstacles are present within the environment: hard

and soft. Hard obstacles (denoted by H in the problem definition) are fea-

tures such as walls, fences and buildings; no part of either the robot or

the target can intersect with these obstacles. Hard obstacles also block

all sensors and thus restrict the field of view of all agents as well as pro-

viding sensory information about the local environment. Soft obstacles

(denoted by I) are areas such as paths and grass. These offer no resis-

tance to the target or the sensors provided to the target for the purposes

of obstacle avoidance, this allows the target to freely traverse these ar-

eas. For the robot however these areas will block the sensors used for

navigation and obstacle avoidance, thus restricting the robot to the road

network. Sensors that are used for target detection however will be al-

lowed to pass, allowing the robot to detect a target that is within a soft

obstacle. Collision by a robot with a soft obstacle will not result in an

absolute stop in movement however by activating the collision sensors

present on the robot will force the robot entirely on to the road.
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3.2.1 Map Data Pre-processing

In order to import the maps into the simulations they have to be con-

verted into an appropriate format. This was done by pre-processing the

files, then supplying these to the simulation at run time. It would be

possible to process the files at run time. However the map files are ex-

tremely large and almost all of the machines performing the simulations

are unable to process the raw maps due to their limited memory.

The objectives of the pre-processing are to:

• Convert the files into an easily importable and compact format.

• Translate the map to be centred at [0, 0] within the environment.

• Remove elements not within the test area.

• Remove problematic structures.

The translation step is performed on all items that are parsed, there is

however no scaling of the map performed. Removing the elements not

within the test environment was also performed on all types of physical

obstacle. An obstacle is defined as being within the environment if a

single point of its perimeter falls within the test area.

3.2.2 Physical Layout

The pre-processing involves a number of steps. Firstly the buildings,

walls and fences are extracted. Buildings are identified within the raw
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Path Points New Points

Polygon Formed

Figure 3.4: Illustration of adding width to walls. Original path on the
left, polygon formed on the right

map data as those containing the theme “Buildings” or “Structures”. Other

obstructing features (generally walls and fences) are identified as those

with the theme “Land” and physicalPresence “Obstructing”. Ordnance

Survey define obstructing as “indicates that the feature prevents pedes-

trian access” (MasterMap, 2008).

Walls and fences are represented as a single line. The simulation envi-

ronment however requires an object with some degree of width therefore

these had to be widened to give some form of substance. This is done by

creating 2 new points to replace each existing one, these are placed by ex-

tending out 10cm in each direction perpendicular to the angle of the turn.

This forms a polygon around the line as shown in Figure 3.4. As shown,

a polygon is formed by the perimeter of these points and thus an object

with a width of 20cm.

Land and paths are also extracted, identified as being within the theme
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“Roads Tracks And Paths” and descriptive group “Roadside”, or being

within the theme “Land”.

As previously stated, problematic structures were removed. Due to the

simulation being 2 dimensional, certain structures cause problems, such

as foot bridges which cross the road. Were they not removed they would

appear as obstacles to the robots and prevent the robots from passing

them. These were identified by detecting structures whose body would

cross between two road nodes, and thus block the road.

Finally an enclosing box was placed around the perimeter of the environ-

ment to prevent either the robots or target from leaving the test area.

3.2.3 Road Network

The road nodes are parsed to form a graph like structure that can then

be loaded into each simulation. Nodes are identified by elements called

RoadLink within the raw map data, these define roads as a sequence of

x, y coordinates, each of these coordinates is defined as a node. The graph

is then formed as these nodes are linked to adjacent nodes on the road

network. The information extracted from the nodes is detailed in section

3.2 on page 38.

In addition to extracting this data from the raw files, the nodes coordi-

nates were translated by the same offset as used for the physical objects.

Nodes outside the test area were also removed from the graph.
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3.3 Simulation Implementation

3.3.1 Basis

The simulation environment was developed using the simulation envi-

ronment Player/Stage (Player, 2008). This is an open source simulation

platform that can simulate a wide range of 2 dimensional environments.

The project is split into two components Player and Stage. Player is a

generic robot control platform that can take instructions from a control

system and feed the sensor data back. The purpose of this is to provide

an abstraction layer which allows you to program algorithms relatively

independently of the physical hardware used, i.e. you can use various

brands of laser or GPS system interchangeably without modifying the

higher level code. Player acts as an interface between the high level con-

trol and the hardware. This can also be used irrespective of whether a

physical robot or a simulation is used.

Stage provides a simulator that interfaces with Player to provide the full

simulation platform. This implements many common sensors such as

laser range sensors, sonars and cameras. Parameters can be set for each

sensor such as its range and accuracy. The sensors used in this work are

laser sensors, rangers (a sonar style range finder), position (emulating a

GPS system), bump sensors and fiducial (emulating a target identifica-

tion system). These are discussed in Sections 3.4 and 3.5 in which the

target and robots sensors configurations are shown.

Stage works by executing the simulation at a fixed rate irrespective of the
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speed of any control loops. This is an accurate representation of reality in

that real robotic systems or environment will not pause to allow the con-

trol loop to finish its execution. This requires that the control algorithms

execute in real time at a sufficient rate to maintain control of the robot.

In this work the Player and Stage versions used were 2.1 and 2.0.2 re-

spectively. They are both developed on C++ and runs on POSIX operat-

ing systems, in the case of this work it was run on the Linux operating

system.

Communication between Player and the control algorithms are performed

over TCP/IP. The algorithms can therefore be executed remotely to the

simulation provided there is a network link between the control platform

and simulation platform. It also means that any language can be used

for programming the control algorithms. Java was used for the develop-

ment of all of the control algorithms. This utilises the JavaClient libraries

(Javaclient, 2008) that provide a simple interface, to the TCP/IP protocol

for communication with Player.

3.3.2 Collision Detection

The stage simulator uses a occupancy grid for its underlying representa-

tion of the obstacles within the environment. Ray tracing is then used

to detect collisions between dynamic objects and objects within the map.

This is a very efficient solution in terms of computational speed however

is not particularly efficient in terms if memory usage. A trade off exists
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between the computational complexity and memory usage verses the ac-

curacy of the collision detection, a finer grid will use more memory and

computational power. Ultimately a resolution of the underlying model

has to be chosen and was fixed at 60cm. This was chosen as the highest

resolution possible with the memory available to the computers that were

running the simulations. This was decided upon due to memory being ex-

perimentally found to be the limiting factor on the machines performing

the simulations. This however provided sufficient accuracy for the robots

to operate in a realistic manner and receive information through these

sensors that are an accurate representation of the original data.

3.3.3 Modifications

A number of modifications were made to make the simulator suitable to

be used in this work.

Firstly some of the logging features of the environment were not present

in the simulation in its original form, although logging of the positions

and orientations of each robot existed, logging abilities for the bumper

and fiducial sensors had to be added. The fiducial sensors logging was

of particular importance. Due to being the sensor used for target identi-

fication, it was essential to log this information so that post simulation

processing could calculate at what times the target was under observa-

tion.

Additionally a layered collision model was used in which all elements of

the environment are assigned integer “heights”. Objects can then collide
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with obstacles at a higher height. This was used to enforce the environ-

ment’s spaces as described in Section 3.1. The buildings and walls (space

H) is the highest, followed by the target, robots then land (space I). The

free space (J) is then simply left empty. As previously stated collision

between land and a robot does not result in a collision (i.e. induce a total

stop in movement). However by activating the robot’s collision detection

sensors, cause the robots control system to move the robot back on to the

road. The sensors are therefore set so that the bumpers and sonars are

activated despite the fact that land is at a lower level. The laser sensors

and fiducial sensors are however set so that they are not blocked by land.

In the case of the laser sensor this was achieved by setting the existing

configuration property laser_return to zero. In the case of the fiducial

sensor its ray tracing method was modified to ignore land and paths.

Thus robots, targets and buildings will block the field of view of lasers

and fiducial sensors. A target and robot and their permissible spaces in

the simulated environment are depicted in Figure 3.5.

Robot 

Target

Figure 3.5: Left: Robot and target in simulated environment. Red de-
notes space that cannot be traversed. Centre: Robots permissible space.
Right: Targets permissible space. Ordnance Survey© Crown Copyright.
All rights reserved.

A communications system was also developed as an extension to the

46



JavaClient libraries. This was an extension of the opaque interface that

already exists within the JavaClient. The opaque interface takes data

transmitted to it and forwards it on to all others subscribed to the inter-

face. This emulates a WiFi network between the robots through which

data can be passed. This is mainly used to pass the current location and

destination node of the robots to the rest of the team.

The map data provided by OSMasterMap® is in a vector format (Ap-

pendix C) where shape geometries are provided as a series of points that

form the shape of the object. The general method of inputting maps into

Stage is using a bit-mapped image with black and white pixels denot-

ing filled and empty space. With such a large environment this would

require two (one for each type of obstacle) particularly large bitmaps to

be supplied with the simulation. An ability to directly import polygons

from a file however was produced. This allows the maps to be stored

in a relatively compact format (a series of points defining the outlines

of each shape) and with little pre-processing from its MasterMap form.

Once the polygons have been imported the occupancy grid is formed. This

also meant that the resolution of the underlying occupancy grid could be

altered without adjusting the map. In an environment using a bitmap

however, the map’s accuracy can only be as high as the resolution of the

bitmap provided.
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3.3.4 Cluster

The experiments were executed on a cluster of roughly 100 nodes, each

node possessing a single core of a quad-core Q6600 processor and 512

megabytes of memory and running a Linux operating system. The Con-

dor clustering system was used to manage the cluster and to submit jobs

(Condor, 2009). The Condor system allows the execution of batch jobs

submitted to the cluster, once a job is submitted Condor waits for a com-

puter to become available (i.e. not in physical use by an operator, and not

already executing a job) that fits the specified requirements. The require-

ments generally specify the operating system, processor and memory re-

quirements. Once a machine is found the job is then uploaded, executed

and when done any files left over are copied back to the machine that

submitted the job. In this work the simulation logs were the only files

returned from the job.

Due to the execution nodes of the cluster not having a windowing system

it was also required to remove Player/Stages reliance on having a visual

interface. This also reduced processing power as time was not wasted

drawing the visual feedback.

3.4 Target Architecture

The target is an agent with omni-directional movement who has a 0.7 ×

0.7m footprint. For the purposes of obstacle avoidance, the target has a

laser range finder as shown in Figure 3.6. Its maximum speed is varied
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Target body

Laser sensor

Figure 3.6: Illustration of the target used in the simulation

relative to the top speed of the robots. The target’s absolute speed ranged

from 1.25m/s to 4.0m/s. The target moves using a vector field pushing

away from the previous locations of the target, forcing it to move to new

areas of the map. Obstacle avoidance is also incorporated into the vector

field in order to prevent the target crashing into hard obstacles.

3.5 Robot Architecture

The robot is a 2.5× 1.5m differential drive robot that is provided with:

• 360o Laser range finder than can detect the distance to “hard” ob-

stacles up to 100m away.

• Sonar array that can detect both hard and soft obstacles up to 5m

away, primarily used for obstacle avoidance.

• Bumper sensor for the purposes of detecting collisions.

• Target identification system. This is approximate to a suitable cam-

era system that would be able to identify a human (Siebel, 2003).
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This can identify the location of the target if it is within the field of

view. A “fiducial sensor” within player/stage is used to approximate

this system.

• Communications channel with which it can communicate to all other

robots.

• Global positioning system.

These sensors were chosen firstly as they provide the required sensing

capabilities to achieve the task at hand, but also as sensors commonly

available and used in mobile robotics (with the exception of the target

identification system).

Lasers are common in mobile robotics. Their functionality is generally

to provide obstacle avoidance and mapping of the environment (Hahnel

et al., 2003). Their advantage over sensors such as sonars are firstly the

range at which they can operate. The commonly used LMS-200 operates

at up to 80m (SICK AG, 2006), however, relatively long range sonars only

reach about 10m (MaxBotix, 2005; SensComp, 2003). Additionally, the

narrow focus of an individual measurement allows sensors to produce

relatively high resolution cross sections of the near environment. Sonars

by contrast have a relatively wide sensing area, only allowing for a coarse

representation of the environment. The narrow focus of the sensing also

means that cross talk between measurements and different sensors is

less likely.

Sonars, despite in many respects inferior to lasers, are suitable to their

task of obstacle avoidance as they need only a very low resolution and
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relatively short range ability. They are also preferable over lasers due

to being significantly less costly. These are commonly used in the ring

formation to provide a low resolution cross section of the area, and in

conjunction with algorithms such as VFH (Borenstein and Koren, 1991),

used for obstacle avoidance.

GPS systems are also extremely common. Their advantage is providing

an absolute position reference without any prior knowledge of the envi-

ronment. Despite this advantage their performance suffers significantly

from occlusion of the sky, and are generally unable to operate reliably in-

doors. Additionally they require time to warm up and can have relatively

high noise and errors, typically a DGPS system can manage only 4 to 6

metre accuracy (Borenstein et al., 1997). More advanced systems such as

rtk-gps (Meguro et al., 2005) or incorporating an IMU (Sukkarieh et al.,

1999) can address these problems, however at a significantly higher price.

The target identification system is not defined as a specific sensor, how-

ever it is envisaged that it is likely to be a visual system due to vision

being a common method of identifying humans at a distance in robotics.

A number systems exits that identify people using image sensors (Siebel,

2003; Foresti et al., 2005; Haritaoglu et al., 2000), these tend to be focused

towards static CCTV style systems however research into tracking from

mobile platforms has also been investigated with some success (Wilhelm

et al., 2004; Feyrer and Zell, 1999).

The layout of these sensors are shown in Figure 3.7. The bumpers are

merely placed at each of the four sides to provide complete coverage and

detection of collisions. The configuration of the sonars is then in a typical
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sonar ring formation. This allows the robot to detect obstacles approach-

ing from the front then to steer way and slowdown as needed. The laser,

fiducial sensor and GPS system are then placed at the centre of the robot.

The communications however have no physical presence, therefore have

no physical position on the robots body. In the context of the player/stage

simulation fiducial sensors “detect coded fiducials (markers) placed in the

environment”(Gerkey et al., 2004), this has been used to approximate a

vision system by adding a marker to the target that the fiducial sensor

detects and locates. Traditionally fiducial markers refer to a mark placed

within an image systems field of view as a point of reference, a fiducial

sensor would then be a sensor that can identify this mark.

In the simulation perfect sensors are used, no artificial noise or false sen-

sor readings are added. This is a simplification and would not be possible

in a real environment, however building a system that is robust to imper-

fect sensors is not within the scope of this work. It is however a natural

extension to include this in future work.

A number of constants have been chosen for the characteristics of the

various sensors. Varying these values may well affect the performance

of the robots. However the large number of parameters that would need

to be varied would make testing impractical. These have therefore been

fixed at reasonable values.

The laser range finder’s maximum range has been set at 100m. The abil-

ity for the technology to work at such a range is easily feasible. High

range systems such as surveying laser equipment are already capable of

operating at 2km (Zhang et al., 2008), and systems such as the 3DLS-K
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Laser sensor and 
fiducial sensor
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Figure 3.7: Illustration of the robots sensor configuration.

that is already in use on robotic platforms has a 80m range (IAIS, 2008).

It is therefore likely that 100m range will be available in the near future.

It is in fact probable that longer ranges will be available. However when

scanning from a central point, as the distance of the scan increases the

resolution will decrease. For instance, if the distance between scans is 1o,

at a 100m range the distance between scans will be 1.75m. Thus the data

gained at that range is likely to be fairly minimal and not of use to the

algorithms. The radius of this target identification system was similarly

set at 100m. This was again viewed as an acceptable range that a camera

could be expected to work at. In this situation, a larger radius could be of

benefit. It is likely to be of fairly minor benefit due to the fact that in an

urban environment line of sight visibility is rarely such a long distance.

The sonars were set at 5m. This is a reasonable value to expect sonars

to be capable of operating at due to products already existing that can
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achieve this (MaxBotix, 2005). This sonar reads at up to 20Hz and at

a 42KHz frequency. As these are being used purely for the purpose of

obstacle avoidance they do not need to be of any greater range. This

would also not affect the performance of the algorithms and therefore

can remain fixed.

The bumper sensors are kept at a zero range, thus only activated upon

contact with an object. GPS is assumed to be available throughout the en-

vironment. It is accepted that GPS is not always available, particularly in

an “urban canyon”. However introducing such complexity of intermittent

sensors is beyond the scope of this work. Similarly the communications

channel is not affected by distance. Many communications technologies

have limited range and this would again affect the performance of the

system. However is not within the scope of this work.

The robot is a differential drive system allowing it to turn on the spot,

its turning rate is limited to πrad/s, and its maximum speed is limited to

4.0m/s. Infinite acceleration and deceleration are allowed by the simula-

tion. This is also a simplifying assumption for the purposes of simplifying

the robots control mechanism however is not a realistic representation of

a robots true dynamics.

In this work only the robots speed is varied, another natural extension

in future work would be to incorporate a more sophisticated model. For

instance using a car like drive where the robot has a minimum turning

radius and very limited turning rate. Additionally, to test how varying

the various dynamics effects the robots ability to track the target.
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3.6 Control Architecture

The flow of data through the system is shown in Figure 3.8. The algo-

rithms are implemented in Java, utilising the JavaClient libraries (Java-

client, 2008). JavaClient sends the instructions generated by the algo-

rithms over TCP/IP to the “Player Robot Interface” (Player, 2008) with

a well defined message structure. These signals are then passed on to

the Stage simulator who applies them to the current simulation. Stage

then continually feeds back sensor information to the algorithms using

the same path. The log of the sensor data is then extracted from the

Player interface and stored for later analysis.

Stage Simulator

JavaClient Bindings

Algorithms

Commands Sensor dataTcp/Ip Layer

Player Robot Interface Log

Figure 3.8: Data Flow Architecture
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The structure of the system is detailed in Figure 3.9. The lower sec-

tion of the diagram shows the modules directly involved with supporting

the algorithms, such as providing them with sufficient data and control

mechanisms to achieve their goals. The upper box contains the modules

involved in the simulation. The “Java client bindings” in this figure is the

same as referred to in Figure 3.8. The simulation module simply refers to

the collection of interfaces and simulator detailed in the previous figure.

Inside the “Road Interface”, the roads layout is provided as prior informa-

tion in the form of a sequence of road nodes, as described in section 3.2.

Shortest path searching algorithms are also provided to allow searching

the graph formed by the road nodes for paths through the road network.

A data storage area is provided for keeping up to date information about

the state of the robot itself, as well as limited information about its peers.

The following data is stored:

• Data about the robots peers (provided by inter-robot communica-

tions):

G Robot locations.

G Robots destination location (the position that they are cur-

rently heading for).

G Location of a target if one is observed.
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• Data provided by sensors:

G Current position and orientation.

G Laser scan.

G Bumper contact.

G Sonar readings.

G Target location (assuming it is within the field of view).

The Inter-robot communications module takes the appropriate data from

the Data Storage and shares it with the team via the JavaClient Inter-

face. This simulates a WiFi style network where the data is broadcast by

the robot to all others. Inter-robot communications are for information

purposes only, there are no explicit commands for robots to instruct each

other. The Sensor Data Interface merely takes the data fed back from the

simulation and inserts it into the Data Storage in an appropriate form.

Movement Command Interface takes the movement signals from the Al-

gorithms, generally a signal to head in a given direction, and then sends

the signal to the simulation to produce the required movement. This then

uses data from the Data Storage about the robot’s current state to achieve

the correct speed and heading, as well as avoid obstacles.

This effectively forms a Layered control system (Brooks, 1986; Simmons

et al., 1997), with the Algorithm at the top layer setting high level be-

haviours of searching and tracking and the Movement Command Inter-

face at a lower layer, performing the lower level obstacle avoidance and

movement towards a desired positions. With both layers gaining sensor

data to help in their task via the Data Storage. The layers execute asyn-
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chronously to each other and the sensors.

It also bares similarity to a hybrid control system (Low et al., 2002; Con-

nell, 1992), with the Algorithm performing the deliberative long term

planning and the Movement Command Interface performing the reactive

short term actions.

Figure 3.9: Control Program layout
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Chapter 4

Tracking Algorithms

To address this problem three distinct algorithms have been developed.

The first is an extension of the two approaches A-CMOMMT and the Jung

approach as discussed in the literature review, this approach is named

the Combined Urban Tracker (CUT). The second is a custom made algo-

rithm called the Short Cut Path (SCP) algorithm, this also incorporates

the Shortest Escape Path algorithm discussed in section 2.3.2. A third

algorithm is then created that is based on the concept of positioning the

robots at key positions within the road network. Finally a no movement

strategy is also tested as a baseline comparison. These four algorithms

are to be individually tested and their performance compared against

each other. The results of this testing are shown in the following chapter.

Throughout this chapter a number of symbols are used, these are sum-

marised in Appendix D.
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E-CMOMMT

E-Jung

Target Found Target Lost

Figure 4.1: Switching behaviour of the Jung/A-CMOMMT algorithms

4.1 Combined Urban Tracker

The Jung and A-CMOMMT algorithms detailed in Sections 2.4.1 and

2.3.1 provide the complementary functions of searching and tracking.

These functions are being combined to produce a complete tracking algo-

rithm CUT (Combined Urban Tracker). Were the algorithms to be taken

verbatim, they would be unsuitable for this environment due to a lack of

understanding of the road network and the concept that there are areas

that a target can traverse but the robot cannot. Both the A-CMOMMT

and Jung algorithms are therefore modified to create the CUT algorithm,

these are referred to as E-CMOMMT and E-Jung due to being extensions

of the algorithms.

While the target is currently being observed, a modified version of the

E-CMOMMT algorithm is used for the whole team. Then when lost a E-

Jung style system performs the searching to re-acquire the target (Figure

4.1).
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4.1.1 E-CMOMMT

V =
n∑
k=1

ωlkflk +
M∑

i=1,i 6=l

ψligli (4.1)

The standard A-CMOMMT algorithm (as described in section 2.3.1) is

designed to cope with multiple targets and is as shown in equation 4.1,

where V is the movement vector that the robot takes, flk is the force that

acts upon the robot produced by the target ok, gli is the force produced by

the robot vi. ωlk and ψli are weighting functions that modify the influence

of each target and robot depending upon their distance from the robot.

The weighting function ψli was not included in the work cited in the liter-

ature review, however was included in earlier work on the A-CMOMMT

problem (Parker, 1999), it is reintroduced here as it allows for a greater

degree of control over the robots. The movement vector is generated by

summing the weighted force of each robot and target, the summation of

these forces and resulting movement vector as shown in Figure 4.2. The

forces (flk and gli) are based upon the trajectory of the robot or target.

Due to the weighting of the robots force (ψli, Figure 4.3) being negative,

the robots force is repulsive encouraging the robots to space out. Where

as the targets force (ωlk, Figure 4.3) transfers from negative, to positive

to zero; by remaining negative at close range this promotes keeping a cer-

tain distance from the target while still in general acting as an attractive

force. The values of the key points are specified based upon the robots

sensing capabilities (Parker, 1999), in this work they have been hand

coded to reasonable values based on the given robots sensing capability.
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o1

o2

v1
v3

v2

f 11

f 12

g12

g13

V

Target

Robot

Target Force

Observer Force

Final movement

Figure 4.2: The summation of forces using the A-CMOMMT algorithm

Figure 4.3: Left: Robot to target weighting function ωlk. Right: robot to
robot weighting function ψli. Taken from (Parker, 1999).

62



Target

Robot

Robot

Resultant movement
Target force

Robot force

Figure 4.4: An example of a local maxima forming due to the restric-
tions of A-CMOMMT. Ordnance Survey© Crown Copyright. All rights
reserved.

This strategy of directly summing forces, however, is extremely prone to

producing a local maximum on the road network in which the robot can

become stuck. As shown in Figure 4.4, the force directly pulls the robot

towards the target. However as the obstructions generate opposing forces

a local maxima will form, trapping the robot. Additionally, superfluous

movement tangential to the direction of the road would be encouraged

that, in addition to being relatively unhelpful, encourages the robot to

leave the road network.

The algorithm is amended, projecting all forces along the road network in

order to prevent movement tangential to the direction of the road. An ad-

ditional pull in the direction of the target along the road network was also

added to allow the robot to overcome the frequent local maxima present

within a road network (Ftt).

The final equations are shown in equation 4.2-4.9. The equations culmi-

nate in equation 4.2, where F is the resultant force that acts upon the

63



robot. R is the vector of the current road’s direction, Fc is a vector to the

centre of the road. Ftc and Ftt are the forces produced by the target, Ftc

uses a straight Cartesian vector from the target to the robot, Ftt uses the

topological road network to pull along the road network in the direction

of the target. Fo is the force applied by other robots. As can be seen, the

target and robot forces are summed as before: Ftc being equivalent to the

term
n∑
k=1

ωlkflk and Fo equivalent to
∑

i=1,i 6=l
ψligli. These are, however, then,

projected along the road network via the scalar product with the roads

trajectory (R). An additional force Fc is also added that pulls the robot

towards the centre of the road in order to keep the robot upon it. Finally

as previously stated a force is added (Ftt) that uses the topological road

network to pull towards the target along the road network. The short-

est distance from the target to the robot via the road network is used,

thus pulling towards the target along the road network. Due to this force

already being in the direction of the road there is no need for it to be

projected along the road network.

~F =
[
( ~Fo + ~Ftc) · ~R

]
R̂ + ~Ftt + ~Fc (4.2)

The Fo function can be seen in equation 4.3. This is simply a summation

of vectors from all robots to the robot performing the calculation. Each of

these vectors are then scaled by the weighting function Θrrf (d) (Equation

4.4), where d is a distance. Θrrf (d) is an implementation of the weighting

function ψli (shown on the right of Figure 4.3).
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The distance functions traditionally used in the A-CMOMMT algorithm

are also replaced with δ(A,B) when calculating the distance between

robots. This is the topological distance from A to B using the road net-

work as opposed to the Cartesian distance that is traditionally used.

Px The position of robot x.

δ(A,B) Topological distance from A to B on the road network.

Drx Constants that define the profile of the robot to target weight-

ing function.

j Index of robot.

~Fo =

i≤n∑
i=0,i 6=j

~PiPjΘrrf (δ(Pi, Pj)) (4.3)

Θrrf (d) =


−1 d < Dr1

d−Dr1
Dr2−Dr1 − 1 Dr1 < d < Dr2

0 otherwise

(4.4)

Ftc is implemented as a single vector from the position of the robot (Pj) to

the position of the target Γ) as show in in equation 4.5. This is weighted

by the function Θrtc that is an implementation of ωlk (shown on the left

of Figure 4.2). Note that due to this being the Cartesian force the Carte-

sian distance function, ∆(A,B), is used. The weighting function essen-

tially encodes the concept of pulling towards the target, however keep a
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reasonable distance, then at a long distances diminish the influence to

zero. At these long distances the topological function (Ftt) remains active

however, still pulling towards the target. However, using the efficient

shortest path route.

~Ftc = ~ΓPjΘrtc(∆(Γ, Pj)) (4.5)

Θrtc(d) =



d
Do1
− 1 d < Do1

d−Do1
Do2−Do1 Do1 < d < Do2

1 Do2 < d < Do3

1− d−Do3
Do4−Do3 Do3 < d < Do4

0 otherwise

(4.6)

Ftt is calculated using a single vector in the direction of the closest node,

on the road network, to the target (RΓ). This is then again scaled by a

weighing function. That essentially produces a diminishing force, when

close to the target the topological vector has no influence, thus allowing

the original forces used to dominate. However at large distances, where

the robot is more prone to get stuck in local minima, the topological force

dominates and thus pulls along the road network avoiding these areas.
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~Ftt = ~RΓΘrtt(∆(Γ, Pj)) (4.7)

Θrtt(d) =


0 d < Dp0

d−Dp0
Dp1−Dp0 Dp0 < d < Dp1

1 otherwise

(4.8)

The effects of the forces Fo, Ftc, and Ftt can be seen in Figure 4.5.

Target force projected onto the road network

Cartesian target force

Robot force. (length denotes size of force)

Topological target force(length denotes size of force)

Figure 4.5: Robot force(Fo ), Cartesian target force(Ftc ) projected
along the road network and topological target force(Ftt ). Ordnance
Survey© Crown Copyright. All rights reserved.

Finally ~Fc is a vector pulling towards the centre of the road simply achieved

as the vector from the robots current location to the centre of the road

(Cj).
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~Fc = Cj − Pj (4.9)

4.1.2 E-Jung

The original equations are detailed in section 2.4.1. As noted in this sec-

tion the algorithms in their original form are unsuitable for this new envi-

ronment due to the algorithm having no accounting for targets changing

region on the topological map. Thus the urgency at a given region is in-

dependent of the density of targets in adjacent regions. For this environ-

ment this omission is significant since the target will regularly move be-

tween adjacent areas. Due to the target also no longer being constrained

to the topological map, areas that are close in a Cartesian sense are also

of higher risk. Additionally, the existing model only uses the robot’s cur-

rent location when calculating the robot density. In an environment such

as the one at hand where travel time is significant, multiple robots could

identify the same area as urgent and expend a significant amount of time

travelling to a perceived urgent area. This could be significantly redun-

dant, therefore the nodes that each of the team are currently travelling

towards in order to make an observation are also taken into account when

calculating the robot density. The algorithms are as shown in equations

4.10-4.14. The urgency at a given point is defined as U in equation 4.10 as

a function on the density of the targets (Dt) and the density of the robots

(Dr).

U(R) = u(Dr(R), Dt(R)) (4.10)
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u(Dr, Dt) =


Dt
Dr

Dr 6= 0

a0Dt otherwise

(4.11)

Since this is a single target problem, the concept that an area with no

robots that has not been observed in a long time needs to be checked

for targets is removed explicitly from the urgency u, since this will now

naturally happen through the definition ofDr andDt. If a robot is present

to make an observation, the urgency becomes the target density scaled by

the robot density and otherwise proportional to the target density.

Dr(R) =
i<n∑

i=0,i 6=j

Drf (R,Pi) +
i<n∑

i=0,i 6=j

Drf (R,Φi) (4.12)

Drf (R,Pi) =



1
δ(R,Pi)

1 < δ(R,Pi) < a1

1 δ(R,Pi) < 1

0 otherwise

(4.13)

Where Φi is the current destination of robot i (j is the index of the robot

performing the calculation) and as before Px defines the position of a

robot. The robot density (Dr) is now inversely proportional to the dis-

tance to all the robots as well as their destinations. This therefore takes

into account that a robot is heading towards a given area, preventing

other robots heading towards the area and making redundant observa-

tions. These again use the topological distance calculation δ. The inverse

proportion is calculated through the robot force (Drf ). Drf caps the maxi-
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mum density for any given robot to one and also drops the density to zero

beyond a given point.

Dt(R) =


A Target lost &Dr > a3

Dt−1(R) + φ Target lost &Dr 6 a3

1
∆(R,Γ)

otherwise

(4.14)

Where A is the area covered at that node.

Dt again produces an urgency measure, representing the proximity of

the target. While there are no robots present to make an observation, the

urgency gradually increases to represent the uncertainty in that location.

However if the target is currently being observed, the urgency is reset to

being inversely proportional to the distance to the target. Finally if the

target is lost but there is a robot in the vicinity to make an observation

(or on its way to the location), the urgency is reset to a value relative to

the road area at that node (A) indicating that an observation has been

made and nothing found. A is used as this encourages large areas to be

checked more frequently.

4.2 Short Cut Path Algorithm (SCP)

This algorithm was based upon the initial observation that current algo-

rithms are most vulnerable at positions where the target can take “short

cuts” between sections of the road network (Figure 4.6). This produces a
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Figure 4.6: An example of possible short cut path. Ordnance Survey©
Crown Copyright. All rights reserved.

particularly difficult situation for a naive algorithm due to the assump-

tion that the robot is able to follow the target. Therefore, the areas of

the road network that offer potential shortcuts need to be identified and

accounted for in the tracking algorithm. To this end Short Cut Paths

are identified and added to a graph containing the road network and the

additional paths. This graph is referred to as the Short Cut Graph.

The shortcut paths are identified using the prior road map provided to

the robot. The robot continually scans for sections of road that are within

the field of view. A shortcut is then identified if equation 4.15 evaluates

true. Essentially this tests if the topological distance is much greater

than the Cartesian distance between the robot’s current node, and a road

node within the field of view. If so then a shortcut has been found. When

a shortcut is identified, a notional link is made between the section of

road that the robot is making the observation from, and the road at the

other side of the shortcut. As will be shown later, due to these areas

being notionally closer together, robots will be attracted to that area to
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cover the escape route.

δ(no, n)

∆(no, n)
> Sd (4.15)

The algorithm is based upon developing a cost map at key nodes across

the road network then assigning robots to explore the areas of highest

risk. Risk is assigned to each node as defined in equations 4.16-4.20.

t Time.

r(n) Immediate node cost.

ut(n) Urgency for node n at time t.

ut(n) =
ut−1(n) + r(n)

2
(4.16)

The immediate cost (r(n)) is the urgency calculated at this time. This is

filtered using equation 4.16, causing the final cost to gradually converge

to the immediate cost so that step changes in the input variables, such as

a robot changing its destination does not cause a drastic change in other’s

cost maps immediately, meaning that they in turn change their plans and

drive the system unstable.

r(n) = Uo(n)Ue(n)τ(n) (4.17)
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The criteria to generate the immediate cost of a node (r(n)) is a product of

three competing factors, those attributed to the robots (Uo(n)), the target

(Ue(n)) and cost of travelling (τ(n)).

τ(n) = e−δ(no,n) (4.18)

The travelling cost associated with a node is simply the topological dis-

tance from the robot’s current node (no) and the node in question (n). This

is scaled non-linearly via the exponential function, to indicate that closer

nodes are significantly preferable to distant nodes.

ax Normalising constants.

γ Time since the target was observed (represents uncertainty

at node).

∆(p1, p2) Cartesian distance between p1 and p2.

Ue(n) = a3

(
e−a4

∆(ne,n)2

γ + e−a4
δ(ne,n)2

γ

)
(4.19)

The target cost is formed as inversely proportional to both the topological

distance (δ, using a graph containing shortcut links) and the Cartesian

distance (∆). The target cost is where the shortcut paths come into play,

these paths link nodes that are not adjacent on the road network. How-

ever, they are adjacent on the modified network. Thus, when calculating

the topological distance, these nodes appear close and thus have a higher
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urgency. Additionally, the links’ topological distances are shorter than

a link on the road network. The distance between two adjacent nodes

on the road network is defined as a straight Cartesian distance between

the two, however for the short cut links a weighting is applied to this

distance causing the link to appear shorter. This makes nodes traversed

to via a short cut path more urgent. This is to represent the fact that

these areas are of higher risk. The shorter links will thus favour a node

that has been traversed to via a shortcut path over an equidistant node

that is traversed to purely via the road network. This higher urgency at

the opposing side of the link attracts robots to the high cost to cover the

route. The target cost at a given node is also scaled by the time since

the target was observed, this represents the growing uncertainty about

the target’s position as time passes. Immediately after an observation

is made, the influence of the target is narrow. Then as time increases

it becomes broader and broader, encouraging robots to scan wider and

wider regions, Figure 4.7 shows how the area of the influence changes

over time. As shown, soon after the target was lost (labelled t = 0.1) the

urgency is focused closely towards the location that that target was last

observed. Then as time increases the distribution widens increasing the

search area.

Ni Current destination node of robot i.

Uo(n) =

i6numRobots∏
i=1,i 6=c

(1− e−a1δ(n,ni))(1− e−a1δ(n,Ni)) (4.20)

The cost attributed to the robots (Uo(n)) is the product of the topological

distances from the node in question to each robot’s current position and
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Figure 4.7: Target urgency over time. X,Y axis show Cartesian distance
from the centre, where the target was last observed.

destination (the robots current destination will have been decided by pre-

vious applications of the algorithm). The closer a node is to a robot or the

destination of a robot, the lower its urgency will be.

As with the previous algorithm, once the target is within the field of view

of a robot, an algorithm will be needed to manoeuvre the robot to keep

it within the field of view. For this the Shortest Escape Path (SEP) al-

gorithm was used, that is described in Section 2.3.2. However, this will

again produce a movement with no regard for the environmental restric-

tions placed upon the robot, the SEP’s movement vector is therefore again

projected onto the roads vector to keep movement in the direction of the

road. This differs slightly from the way that the CUT algorithm works.

For the CUT algorithm, once the team has the target within the field of

view, the entire team switches over to the E-CMOMMT style algorithm.

75



Short Cut Positioning

SEP Tracking

Short Cut Positioning

SEP Tracking

Short Cut Positioning

SEP Tracking

Target

Algorithm currently being executed

Figure 4.8: Illustration of the switching between algorithms for the SCP
tracker.

However for the SCP algorithm only the robots that are currently view-

ing the target run the SEP algorithm, the others continue as normal. As

shown in Figure 4.8 the robot immediately with the target in sight has

switched to running the SEP algorithm while the others remain execut-

ing the positioning strategy, if either of the other robots movement were

to bring them within sight of the target they would also switch to the SEP

tracking algorithm.

4.3 Branch

This algorithm attempts to place robots such that they are in key posi-

tions of the road network, in order to prevent the target from leaving

its current area of the network without being observed. This also works

76



upon a Shortcut Graph, therefore trying to avoid allowing the target to

escape by travelling between sections of the road network. The equations

are detailed in equation 4.23-4.21 and are built upon the principle:

• The closer a node is to the root node the more urgent it is.

• The more road that is accessible through a given node the more

urgent it is.

• Junctions in the network tend to cover critical areas(i.e. maintain

views of 2 roads from a single point) thus are more urgent.

• Robots should spread out to cover as much area as possible.

u(n, g) = D(n, g)Λ(n)S(n,N)B(n) (4.21)

The urgency at a given node (u) is calculated using four competing factors

each representing one of the principles given. In equation 4.21, n refers

to the node for whom the urgency is being calculated. g is a set of nodes

that have previously been assigned for inspection by the algorithm. N is

the “root” node of the network, this is assigned as the node closest to the

target.

D(n, g) is a measure of separation between node n and each of the nodes

that have already been assigned for searching (g). This is normalised

by the radius of the search (M ). As shown in equation 4.22, the metric
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becomes proportional to the distance from the node in question to all of

the already marked nodes. Therefore this term represents the concept

that “Robots should spread out to cover as much area as possible”.

D(n, g) =

i<j∏
i=1

δ(n, gi)

M
(4.22)

Λ(n) indicates the amount of the road network that can be accessed by

travelling through that node, starting from the target’s position. This

therefore represents the concept that “The more road that is accessible

through a given node the more urgent it is.”. This is calculated by exe-

cuting the recursive function A(n, P ) (equation 4.23), which measures the

area of network accessible via node n. The function A(n, P ) is initiated

with the arguments A(N, []) (i.e it is started at the node closest to the

target). It then recursively searches the graph in a depth first manner,

by exploring the adjacent nodes on the road network. Lin refers to the ith

node adjacent to n on the road network. Calculating the amount of road

network accessible via the road node, this area is then assigned to Λ(n)

for each node. Since the road network is a graph with cyclic routes, the

argument P is added to the area calculation so that it can detect that a

node has been previously processed and avoid looping infinitely.

A(n, P ) =

i≤j∑
i=1

 δ(n, Lin) + A(Lin, [P,Lin]) δ(n, Lin) < M&Lin /∈ P

0 else

(4.23)
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while robots are available
η=Most urgent node given the node closest...

to the target (N ) and placed nodes(g)
Assign η to the closest robot to the node
Add η to list of placed nodes g

end loop

Table 4.1: Algorithm for assigning branch nodes to robots

S(n,N) is a normalised distance from the node n to the node N . This is

implemented to favour nodes that are closer to the target, representing

“The closer a node is to the root node the more urgent it is.”.

S(n,N) =

(
1− δ(n,N)

M

)
(4.24)

Finally B(n) measures the number of leaf nodes each node has, therefore

incorporating the concept that junctions are more critical areas of the

network.

Nodes are assigned to the robots using the algorithm described in Table

4.1. This method assigns the most urgent node to the closest robot to that

node. It then recalculates the urgencies, given the already assigned node,

and then assigns the next node to the closest robot (excluding the robot

that has already been assigned a node) and so on until all robots have

been assigned nodes.

The effects of this algorithm are shown in Figure 4.9. The size of the

square around each road node indicates its urgency. As shown, the junc-

tions in the network produce the largest urgencies and thus attract robots

to the location, placing them in a good position to respond to the target’s
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movement as well as blocking off potential routes that the target can take

to escape the team’s collective field of view.

Figure 4.9: Urgency of nodes using Branch positioning. Larger nodes are
more urgent. Ordnance Survey© Crown Copyright. All rights reserved.

4.4 No Movement

The no movement strategy is provided as a baseline for comparison. This

simply leaves each of the robots in their starting positions with their sen-

sors active and tracking the target if it comes within the field of view.
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4.5 Contribution

In this chapter a number of novel contributions have been made. Firstly

three algorithms have been developed for the purposes of target tracking

in an urban environment, CUT, SCP and Branch.

CUT is based on two existing algorithms A-CMOMMT and the Jung al-

gorithm. These are modified from their original form so that they are

suitable for operation on a road network. These modifications involve

projecting the existing forces that are used in the algorithms so that they

work in the direction of the road network. This prevents the robot from

firstly leaving the road network but also helps it to be more efficient by

not performing redundant movement. Additionally a centring force was

added to push the robots towards the road network again preventing it

from leaving the road network. Topological forces were also introduced to

these algorithms in order to prevent the robots becoming trapped in areas

of the road network and to manoeuvre along the road network instead.

Two more algorithms are developed from scratch specifically for this en-

vironment. The problem of “Shortcuts” has been identified which are

particularly dangerous to a team of road based observers. Both of the

new algorithms identify and account for shortcut paths.

The SCP algorithm attempts to configure the team in order to account

for the Shortcut Paths, and thus reduce their danger. It does this by

forming a graph on top of the road network containing these shortcut

paths, when calculating cost maps upon this altered graph the areas near

these shortcuts are highlighted as significant and thus attract robots to
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cover the area. This is used in conjunction with the Shortest Escape Path

algorithm, who’s movements were again projected to work in the direction

of the road network.

Finally the Branch algorithm is defined. This again works with the novel

shortcut graph used in the previous algorithm, however, it uses it in a

different manner. This attempts to station robots at key areas of the

road network in hope that the robots are in good positions to move as the

target moves and to block the most likely routes that the target can use

to escape observation.
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Chapter 5

Experiments and Results

5.1 Aims

Overall the aim of the experiments is to quantify the performance of each

algorithm. In detail the aims are to discover the following:

• The overall performance of the algorithms over a number of envi-

ronments.

• Identify features of the environment that cause problems to one or

more of the algorithms.

• Contrast the performance of each algorithm in problematic areas.

• Quantify how the algorithms are affected by the speed of the target.

• Quantify how the algorithms perform with various numbers of robots.
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The effectiveness of an algorithm is defined as the percentage of time that

the target remains under observation (Time samples in which the target was observed
Total simulation time ).

5.2 Design of experiments

The experiments performed involve simulating the robots in a number

of environments. A variety of maps are used to achieve a number of the

goals. Firstly varying the maps removes any bias that a particular algo-

rithm may have towards a specific map and allows us to achieve the goal

of producing an overall performance for each algorithm. Exploring vari-

ous maps will also allow the identification of particular common features

that the algorithms find challenging and to contrast their performance in

these areas.

The aim of quantifying how the algorithms cope with various speeds of

the target is achieved through the variation of the target’s speed between

trials. Six different speeds of the target relative to the robots are used

(0.31, 0.375, 0.43, 0.518, 0.75 and 1.0), the speeds are relative to the

robot’s maximum speed (i.e. speed = targetSpeed
robotSpeed

). The speeds are noted in

this way since obviously the absolute speed of the target is irrelevant.

However, what is important is the relationship between the target’s and

robot’s speed. As a point of reference however, the robots absolute speed

was fixed at 4m/s while the targets ranged from 1.25m/s to 4m/s. The

lower speed ratio was chosen due to the fact that at this speed ratio the re-

sults become highly skewed towards 100% effectiveness, a range of speed

ratios are then tested up to equal speed with the target. The speed ratio
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of one is a hard limit due to the fact that once the target becomes faster

than the robot the task for tracking becomes ultimately impossible as the

target will always be able to out pace the robots and escape their field

of view irrespective of the tracking algorithm. The specific speed ratios

were chosen while tuning damping factors on the targets control mech-

anism. However preliminary testing showed that at the higher speeds

the algorithms tended towards a final value (as will be shown later, Fig-

ure 5.18). More samples were therefore taken at the lower speeds where

larger changes can be observed, than in the higher linear region.

Tracking is impossible if the target is faster than the robots over an indef-

inite period of time due to the targets ability to eventually move beyond

any of the team’s sensor range. However, with a larger collective sensor

area, larger teams should be able to increase efficiency in such a scenario.

Additionally in a scenario where the target is evasive it would potentially

be possible to trap the target in a local area despite its speed.

Similarly to assess the effects that the number of robots makes, the num-

ber of robots was simply varied between trials. This was varied between

2 and 5. Five was found as an upper limit due to the memory limitations

of the computers executing the algorithms.

The parameters were varied between trials. At least 100 trials of each

possible combination of map, speed ratio and number of robots was run.

For each of these trials the starting positions of the robots and target are

randomised in order to remove any bias from a single configuration.

When producing the starting configuration it is assumed that the ini-
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tial location of the target is known and at least one member of the team

initially has the target in sight. The initial location of the target is a ran-

domly chosen road node, the remaining robots are then placed randomly

at road nodes between 20m and 400m from the initial target.

In summary the fixed variables for each trial are as follows:

• Six different speed ratios of the target relative to the robot (0.31,

0.375, 0.43, 0.518, 0.75 and 1.0)

• Four maps noted as Map 1 - Map 4

• Between 2 and 5 robots.

The only randomised variable is the starting positions of the target and

robots.

5.2.1 Test Areas

The maps range from 966, 000m2 to 2, 017, 000m2and are from areas around

Warwickshire and Birmingham, sourced from Ordnance Survey©. These

are shown in Figures 5.1-5.4. Significant aspects of these maps have been

labelled as follows:

A Large open areas such as parks and fields.

B Areas of the map that are entirely enclosed and thus not ac-

cessible to the target.
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C Small areas of road network that due to the limits of the map

are not accessible to the robots.

D Particularly notable short cut paths.

E Areas that are almost entirely obscured from view of the road

network.

F Long straight roads with few junctions.

These significant areas were identified in initial testing as significant

as either corresponding to areas that produce significantly high or low

effectiveness. The maps were generally chosen so that each provides a

variety of these significant areas. This variety allows for the testing of

how each algorithm copes with a number of examples of each type of

problem, and to compare their performance.

The areas are generally of suburban areas of towns, except for map 3

that is an entire village. An inherent problem with simulating this envi-

ronment is that due to memory constraints the region must be bounded.

However this commonly produces areas of the map that are inaccessible

to the robot by cutting out a section of the road network (these are la-

belled C on the annotated maps). This has lead to choosing specific areas

that contain a minimum of such areas.

Rural areas were not chosen due to the sparse nature of roads in such

areas providing little scope for the algorithms to perform. Town and city

centres were also avoided due to heavy pedestrianisation limiting the al-

gorithms scope for movement. Such areas also have fairly complex road
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structures such as overpasses and ring-roads, which are impossible to

account for in a 2 dimensional simulation, and also difficult to produce

algorithms that are able to navigate such structures.

A number of significant areas have been labelled on the maps. As will be

shown in the following sections these are generally areas that cause par-

ticular difficulty. That is with the exception of the areas labelled B. Such

areas appear conspicuously absent in the results for having no readings

however this is due to them not being accessible to the target due to be-

ing entirely enclosed by fences. A number of areas that are not entirely

enclosed have been labelled as inaccessible due to the entrance of such

an area being so small that a randomly moving target did not manage to

enter the area. Inaccessible areas of road network (labelled C) also corre-

spond to areas of low loss due to the fact that these are generally cut off,

by walls and buildings, from the target too. However in cases where the

target can access the region losses can be found.

Map 1

Map 1 is shown in Figure 5.1. The dimensions of this map are 1316×940m.

This provides a number of interesting aspects, in particular there are a

number of long straight roads. There are few short cut paths, however,

the path labelled D1 is particularly significant due to the fact that the

distance required to reach the other side via the road network is ex-

tremely long. The most significant area that this map provides is the

large open space labelled A2. This is a park with a number of easily
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Figure 5.1: Labelled image of Map 1. Ordnance Survey© Crown Copy-
right. All rights reserved.

A Large open areas such as parks and fields.

B Areas of the map that are entirely enclosed and thus not accessible
to the target.

C Small areas of road network that due to the limits of the map are
not accessible to the robots.

D Particularly notable short cut paths.

E Areas that are almost entirely obscured from view of the road net-
work.

F Long straight roads with few junctions.
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accessible entrances and exits meaning that the target can easily enter

and leave through any number. This essentially forms a shortcut path,

however, would not be detected due to the distance between both sides

meaning that the other side cannot be seen. This produces a particularly

dangerous area. There are also a number of areas obscured from the road

network (labelled E).

Map 2

Map 2 is shown in Figure 5.2. The dimensions of this environment are

1316 × 914m. This has a significant number of shortcut paths within it

giving opportunity to see their effects. The shortcut paths are also fairly

highly concentrated. There are again a large number of areas occluded

from the road network (labelled E) that the target may gain access to

and avoid detection. In contrast to the previous map, these areas have

quite large entrances meaning that a randomly moving target is more

likely to reach such areas, unlike the previous map where the target must

travel through relatively narrow entrances. This map also contains no

particularly large open areas in the centre of the map, instead the only

large open area is at the top right. Due to being on the edge of the map it

is not surrounded by road, this means that getting close to the target is

even more challenging and even impossible.
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Figure 5.2: Labelled image of Map 2. Ordnance Survey© Crown Copy-
right. All rights reserved.

A Large open areas such as parks and fields.

B Areas of the map that are entirely enclosed and thus not accessible
to the target.

C Small areas of road network that due to the limits of the map are
not accessible to the robots.

D Particularly notable short cut paths.

E Areas that are almost entirely obscured from view of the road net-
work.

F Long straight roads with few junctions.
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Figure 5.3: Labelled image of Map 3. Ordnance Survey© Crown Copy-
right. All rights reserved.

A Large open areas such as parks and fields.

B Areas of the map that are entirely enclosed and thus not accessible
to the target.

C Small areas of road network that due to the limits of the map are
not accessible to the robots.

D Particularly notable short cut paths.

E Areas that are almost entirely obscured from view of the road net-
work.

F Long straight roads with few junctions.
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Map 3

Map 3 is shown in Figure 5.3. The dimensions of this environment are

1338 × 1508m. The intention of this map was to look at an entire urban

area as opposed to a small section as in the other environments. This is

therefore an entire village and the largest of the environments. This also

provides the densest concentration of buildings and walls, consequently

there is little free and open space. A number of shortcut paths also exist.

Again due to the complexity of the road network these are particularly

threatening due to the distance required to travel to cover them. A large

number of long roads are also present within this map.

Map 4

Map 4 is shown in Figure 5.4. The dimensions of this environment are

1174× 832m. The dominating feature to this map is the central open area

in a similar manner to map 1. This area again is easily accessible due

to the lack of walls around the area. This again forms an area in which

the target can easily enter and leave, effectively forming a short cut path

as well as an area that the robots will find hard to get close to and track.

This map also contains a fairly high concentration of shortcuts in the

D1 and D2 regions. Despite in general not containing a large number of

straight roads this does contain one of the longest roads with no junctions

in the area of F1.
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Figure 5.4: Labelled image of Map 4. Ordnance Survey© Crown Copy-
right. All rights reserved.

A Large open areas such as parks and fields.

B Areas of the map that are entirely enclosed and thus not accessible
to the target.

C Small areas of road network that due to the limits of the map are
not accessible to the robots.

D Particularly notable short cut paths.

E Areas that are almost entirely obscured from view of the road net-
work.

F Long straight roads with few junctions.
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5.2.2 Trial Structure

The results were run over 8,000 trials. These were executed on a clus-

ter with roughly 100 computers. In each trial the target and robots are

placed on the road network and the simulation is executed for 10 minutes.

The data that the robots’ sensors collect was logged throughout the trial.

The effectiveness metric is subsequently calculated after the simulation

using the recorded logs.

5.3 Results

5.3.1 Analysis of Maps

In the proceeding sections the results for each map are presented. In each

section the effectiveness for each run is calculated and presented in the

tables and charts. The tables present the average effectiveness calculated

for each simulation run, these results are then compared by plotting the

effectiveness against the number of robots used. The effectiveness for a

given configuration is calculated as the mean effectiveness from all trials

performed, where the starting positions were randomised between trials.

Appendix B shows the histograms of the effectiveness. As can be seen the

effectiveness is skewed towards 100% at the lower speeds, particularly

for the better performing algorithms CUT and SCP. Then as the target

reaches the same speed as the robots this becomes skewed towards 0%

for all algorithms.
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A heat map is also shown in each section (figures 5.7, 5.10, 5.12 and

5.17), these indicate the locations where the target tends to become lost

for each map. On these heat maps blue denotes an area where the tar-

get was never lost, then transferring through yellow to red denoting an

area where the target was lost for a significant amount of time. Further

maps are shown in Appendix A, these have been normalised to show the

percentage of time that the target spent in the region in which it was

not observed (i.e. time spent in region while not observed
total time spent in reigon ) this was also filtered to re-

move areas in which the robot spent a negligible amount of time. The

heat maps displayed in the following sections denote the areas of most

importance due to displaying the areas in which the most overall time

was spent lost. However, since certain areas are significantly bad, a dis-

proportionate amount of readings are made in these areas and obscure

others when shown on a single scale. The graphs in Appendix A there-

fore show areas that incur a high probability of losing the target whether

or not a significant amount of time was spent there.

Map 1

The table of results derived from the trials is shown in Table 5.1, these are

then visualised in the plots in Figure 5.5. Overall, for this map the SCP

algorithm performs best with an average performance of 58.5%, closely

followed by CUT at 55.8% and Branch fairly significantly behind on 48.4%.

The baseline of No Movement achieving 35.9%.

A heat map that shows the areas in which the target spent the majority

of its time lost is show in Figure 5.7. One of the most notable common
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Number of Robots CUT SCP Branch None
Speed Ratio 0.31

2 0.730 0.758 0.621 0.387
3 0.773 0.748 0.634 0.419
4 0.778 0.790 0.658 0.467
5 0.795 0.775 0.665 0.515

Speed Ratio 0.375
2 0.614 0.649 0.522 0.328
3 0.681 0.697 0.544 0.405
4 0.748 0.741 0.600 0.468
5 0.827 0.817 0.666 0.506

Speed Ratio 0.43
2 0.533 0.558 0.458 0.299
3 0.585 0.644 0.538 0.363
4 0.647 0.658 0.562 0.413
5 0.645 0.671 0.549 0.430

Speed Ratio 0.518
2 0.456 0.536 0.430 0.276
3 0.563 0.581 0.457 0.338
4 0.560 0.594 0.480 0.369
5 0.615 0.627 0.532 0.434

Speed Ratio 0.75
2 0.326 0.387 0.302 0.256
3 0.418 0.477 0.389 0.289
4 0.387 0.432 0.357 0.286
5 0.434 0.475 0.385 0.343

Speed Ratio 1.0
2 0.268 0.280 0.238 0.203
3 0.318 0.372 0.340 0.243
4 0.356 0.401 0.351 0.285
5 0.341 0.377 0.328 0.292

Table 5.1: Effectiveness for map 1.
Effectiveness = Time samples in which the target was observed

Total simulation time
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None
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0.43 0.518

0.75 1.0

Figure 5.5: Effectiveness against number of robots for map 1. Speed
relative to the robots labelled above each graph.
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failure areas of all algorithms appears to be the large open space labelled

A2 and A3. These areas will obviously always have a higher than normal

probability of losing the target due to the lack of roads in the area of the

target for robots to travel down and maintain a field of view. It should

be noted that the ability of the SCP and Branch algorithms to implement

their strategy is particularly impaired due to the reliance on the method

used to generate the short cut paths. Due to the lack of a prior map of

the environment, the short cut paths are not known and thus generated

on the fly as described in section 4.2. The algorithm relies upon being

able to view both sides of a shortcut at the same time. However for large

open spaces, even though a shortcut does exist the other side is outside

the sensor radius, thus not observed and a shortcut is not formed. Con-

sequently the SCP and Branch algorithm will not necessarily move to

the opposing side of the open space to cover if the target moves out of

the opposing side. This impairment seems to have meant that in these

areas the two algorithms based upon Shortcut Paths fair no better than

the CUT algorithm. In the isolated example in the area of A3 (shown in

Figure 5.6), the Branch algorithm fairs worse in open spaces. This is due

to the Branch algorithm not attempting to keep a robot in direct view of

the target, merely posting robots at fixed positions. If these fixed posi-

tions do not then naturally have a good view of the open space it will be

highly impaired. The lack of readings in the area A1 is due to the narrow

entrance to the area, meaning that the target seldom entered.

The results also highlight that dead ends seem to coincide with areas of

the road network that are occluded from the road network. Thus dead
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Figure 5.6: Close up of area A3 on Map 1 (Figure 5.1). Colour map scaled
to highlight the differences in performance.

ends are also coincidental to high losses. From observation of the various

searching algorithms, generally as robots approach dead ends the prox-

imity of a robot leads to the area gradually becoming less and less urgent.

Eventually other areas become more significant and the robot leaves to

explore that area before having fully explored the local vicinity.
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Figure 5.7: Areas of highest risk for map 1(Figure 5.1) and various speed ratios (highest risk is denoted by red).
Ordnance Survey© Crown Copyright. All rights reserved.
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The long straight road in the area of F1 also show a higher than normal

loss. Due to straight roads containing fewer nodes than curved roads,

then all algorithms will be at a slight disadvantage as the searching be-

comes coarser. However the Branch algorithm will be particularly dis-

advantaged due to it merely trying to place the robots at fixed positions.

Therefore as the nodes become coarser the robots will be positioned fur-

ther away from the target. This can again be seen on the heat maps

in Appendix A.1, where the SCP and CUT do not register significantly

high readings in these areas until the high speed ratios of 0.75 or 1. The

Branch algorithm however starts to see losses sooner at the 0.43 speed

ratio. One notable feature of the results is the presence of a number of

long straight roads that do not correlate with a high loss rate. This is

due to the fact that the entry to these roads is relatively narrow. Conse-

quently a randomly moving target with obstacle avoidance is unlikely to

find the entrance and go down such roads. Consequently the target did

not enter such areas and few readings were made.

Higher areas are also present in the vicinity of the shortcut paths D1 and

D2. The significance of these areas are discussed in later maps as these

types of area are more prominent.

Map 2

As shown in Table 5.2 and Figure 5.8, similar results are seen as for map

1 with CUT and SCP overall achieving the better results with the Branch

algorithm significantly behind. Overall CUT performs best achieving an
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effectiveness overall speed ratios of 47.5%, SCP 46%, Branch 32.3% and

No Movement 28.6%.

The graphs in Figure 5.8 show that the effectiveness is far more depen-

dant upon the number of robots as the target reaches higher speed ratios.

At lower speed ratios the gradient of the line is far shallower than at the

high speed ratios. This is to be expected as at low speed ratios the ef-

fectiveness tends towards one, thus the robots are able to keep track of

the target. As the speed ratio increases the target escapes observation

of a single robot more often, the number of robots in the team becomes

important as a larger area of the environment can be covered.

Again the only large dominant space of this area (A1, Figure 5.10) pro-

duces an area that the target spends a significant amount of time not

under observation.

An additional failure common to all algorithms are areas that are mostly

obscured from the road network, these are labelled E and are particu-

larly visible on a normalised map as shown in Figure 5.9. This shows

that even in these areas the probability that the robots will lose sight

of the target is extremely high. Unfortunately, due to the limitations of

the robots there is little possibility for improvement in obscured areas.

The best that could be expected would be to identify if the target is head-

ing to such an area and then indicate that a different form of tracking

will be required. One possibility is using boundary coverage to attempt

to encompass the area such that as soon as the target leaves, it will be

observed. An alternative would be if robots that were able to enter such

areas were available activate them.
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Number of Robots CUT SCP Branch None
Speed Ratio 0.31

2 0.689 0.681 0.526 0.383
3 0.718 0.692 0.456 0.385
4 0.726 0.708 0.476 0.457
5 0.760 0.713 0.473 0.437

Speed Ratio 0.375
2 0.592 0.600 0.429 0.342
3 0.651 0.612 0.428 0.380
4 0.654 0.634 0.424 0.362
5 0.656 0.608 0.410 0.417

Speed Ratio 0.43
2 0.516 0.519 0.366 0.277
3 0.555 0.538 0.376 0.314
4 0.564 0.542 0.385 0.343
5 0.603 0.541 0.351 0.334

Speed Ratio 0.518
2 0.460 0.415 0.293 0.227
3 0.473 0.449 0.317 0.257
4 0.459 0.440 0.285 0.279
5 0.493 0.473 0.304 0.307

Speed Ratio 0.75
2 0.249 0.226 0.168 0.158
3 0.243 0.265 0.206 0.161
4 0.285 0.291 0.209 0.199
5 0.303 0.320 0.217 0.228

Speed Ratio 1.0
2 0.150 0.153 0.139 0.132
3 0.188 0.190 0.156 0.154
4 0.198 0.198 0.169 0.164
5 0.208 0.226 0.180 0.173

Table 5.2: Effectiveness for map 2.
Effectiveness = Time samples in which the target was observed

Total simulation time
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Figure 5.8: Effectiveness against number of robots for map 2. Speed
relative to the robots labelled above each graph.
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Figure 5.9: Normalised heat map of map 2 with heavily obscured areas
labelled.

As expected, high losses are found in the areas that contain clusters of

shortcut paths (labelled D). The differences between each algorithms per-

formance in these areas is discussed fully in Section 5.3.2.
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Figure 5.10: Areas of highest risk for map 2(Figure 5.2) and various speed ratios (highest risk is denoted by
red). Ordnance Survey© Crown Copyright. All rights reserved.
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Map 3

Overall the CUT algorithm performs best in this map with an effective-

ness of 55.3% again closely followed by SCP at 54.7%. Once more Branch

falling significantly behind at 45.6% and finally No Movement at 36.8%.

This is a particularly dense map, with few open spaces and short cut

paths. Also a significantly high percentage of the environment is inac-

cessible to the target due to being occupied by buildings or fences. As a

result no single area is singled out as being particularly poor. Looking

at the normalised maps in Appendix A.3, we see again the development

of long roads being a particular problem, especially for the Branch algo-

rithm.

Other than the common straight roads on this map, the other areas in

which the target gets lost is similar to previous maps. The most promi-

nent areas that produce a high risk of losing the target are mostly oc-

cluded areas. However due to the dense nature of this environment there

are few particularly large areas. At higher speed ratios (as shown in Ap-

pendix A.3) there is some development around the cluster of short cut

paths labelled D1.
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Number of Robots CUT SCP Branch None
Speed Ratio 0.31

2 0.731 0.743 0.636 0.407
3 0.787 0.694 0.626 0.495
4 0.772 0.758 0.622 0.530
5 0.803 0.788 0.659 0.588

Speed Ratio 0.375
2 0.619 0.659 0.562 0.387
3 0.691 0.606 0.542 0.391
4 0.702 0.719 0.590 0.449
5 0.714 0.700 0.602 0.478

Speed Ratio 0.43
2 0.537 0.510 0.427 0.328
3 0.575 0.553 0.432 0.350
4 0.580 0.593 0.466 0.386
5 0.593 0.593 0.495 0.429

Speed Ratio 0.518
2 0.449 0.456 0.378 0.270
3 0.528 0.559 0.455 0.348
4 0.505 0.551 0.412 0.341
5 0.549 0.559 0.441 0.423

Speed Ratio 0.75
2 0.471 0.490 0.377 0.280
3 0.502 0.537 0.401 0.299
4 0.521 0.532 0.457 0.390
5 0.578 0.564 0.504 0.422

Speed Ratio 1.0
2 0.206 0.202 0.171 0.144
3 0.263 0.243 0.212 0.210
4 0.276 0.254 0.239 0.238
5 0.319 0.264 0.234 0.252

Table 5.3: Effectiveness for map 3.
Effectiveness = Time samples in which the target was observed

Total simulation time
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Figure 5.11: Effectiveness against number of robots for map 3. Speed
relative to the robots labelled above each graph.
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Figure 5.12: Areas of highest risk for map 3(Figure 5.3) and various speed ratios (highest risk is denoted by
red). Ordnance Survey© Crown Copyright. All rights reserved.
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Figure 5.13: Normalised heat map of map 3.

Map 4

In this map the SCP algorithm again comes out slightly better at 56.4%

CUT falling at 55.7%, Branch 44.6% and No Movement 39.8%.

As seen in previous maps, open areas are again a problem. Similarly to

map 1 the Branch algorithm fairs worse in the open space, as show in the

close up of area A1 in Figure 5.14.

This map again highlights the problem of obscured areas (labelled E),

shown on the normalised heat map in Figure 5.15. The particularly no-

table area of C1 is also caused by an area that is effectively obscured

from the road network, since the area of the road network in that area is

inaccessible due to the boundary of the map.

112



A
m

o
u
n

t o
f tim

e
 sp

e
n

t lo
st

High

Low

Figure 5.14: Close up of area A1 on Map 4. Colour maps have been scaled
to highlight the differences in performance.
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Figure 5.15: Normalised heat map of map 4 with heavily obscured areas
labelled.
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Number of Robots CUT SCP Branch None
Speed Ratio 0.31

2 0.713 0.716 0.611 0.459
3 0.749 0.743 0.574 0.490
4 0.782 0.767 0.607 0.568
5 0.821 0.757 0.604 0.600

Speed Ratio 0.375
2 0.681 0.706 0.567 0.458
3 0.685 0.697 0.498 0.435
4 0.732 0.710 0.522 0.500
5 0.702 0.678 0.530 0.489

Speed Ratio 0.43
2 0.611 0.668 0.473 0.368
3 0.612 0.625 0.485 0.389
4 0.655 0.670 0.495 0.430
5 0.706 0.670 0.528 0.521

Speed Ratio 0.518
2 0.496 0.516 0.412 0.323
3 0.519 0.535 0.462 0.379
4 0.515 0.542 0.442 0.358
5 0.561 0.512 0.438 0.397

Speed Ratio 0.75
2 0.388 0.406 0.301 0.306
3 0.404 0.431 0.343 0.335
4 0.443 0.427 0.364 0.355
5 0.403 0.444 0.356 0.356

Speed Ratio 1.0
2 0.253 0.300 0.253 0.228
3 0.281 0.311 0.270 0.248
4 0.315 0.348 0.291 0.255
5 0.351 0.365 0.283 0.300

Table 5.4: Effectiveness for map 4.
Effectiveness = Time samples in which the target was observed

Total simulation time
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Figure 5.16: Effectiveness against number of robots for map 4. Speed
relative to the robots labelled above each graph.
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Figure 5.17: Areas of highest risk for map 4(Figure 5.4) and various speed ratios (highest risk is denoted by
red). Ordnance Survey© Crown Copyright. All rights reserved.
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Algorithm Mean
CUT 0.536
SCP 0.539

Branch 0.427
None 0.353

Table 5.5: Mean effectiveness over over all trials

Map Summary

As shown from the results so far, overall there is no significant advan-

tage to either the CUT algorithm or the SCP algorithm, both averaging

roughly the same throughout all the trials performed. This is also shown

in Table 5.5, with only a 0.3% difference between the SCP and CUT algo-

rithm overall. The Branch positioning however fared significantly worse

averaging roughly 11% behind the others and on occasions falling below

the no movement strategy (Figure 5.8), however averaging 9.3% above

the no movement algorithm overall.

As can be seen from Figure 5.18 and Table 5.6 the algorithms are fairly

substantially effected by the speed of the target relative to the robots.

With the CUT and SCP experiencing a drop in effectiveness of 49.0% and

45.9% respectively between the speed ratios of 0.31 and 1.0. However both

CUT and SCP remain roughly 40% effective, even with the targets only

25% slower than the robots. As the target reaches similar speeds to the

robot however the effectiveness of all the algorithms seem to converge

towards that of the no movement, with the better algorithms remaining

only 5−6% better than a No Movement strategy. This shows that the tar-

get’s advantage of increased mobility and comparable speed ratios make

effective tracking by the team extremely difficult.
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Algorithm Mean
Speed Ratio 0.31 0.375 0.43 0.518 0.75 1.0

CUT 0.758 0.684 0.595 0.512 0.397 0.268
SCP 0.739 0.677 0.597 0.522 0.419 0.280

Branch 0.590 0.527 0.462 0.409 0.333 0.241
None 0.474 0.424 0.373 0.333 0.291 0.220

Table 5.6: Comparison of algorithms over all maps, comparing the speed
ratio of the target relative to the robots.
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None

Figure 5.18: Effectiveness of algorithms against speed ratio of robot. Differing numbers of robots are shown on
different lines.
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5.3.2 Analysis by Algorithm

This section includes the results presented in the previous section how-

ever concentrates on contrasting the algorithms performance overall.

As seen, the overall trend shows that CUT and SCP have similar perfor-

mances followed by the Branch positioning that fares significantly worse.

The Branch positioning is unique in being particularly bad in regions

containing long relatively straight roads as shown in Figure 5.21. This

is due to the Branch algorithm attempting to place itself at key places

on the network. It will tend to stay at the ends of roads where junctions

naturally occur, this means that no robot is being directly placed close to

the target. By comparison the other algorithms have some mechanism

for keeping a robot within a reasonable distance. This effect can be seen

on maps 3 and 4 where a number of long straight roads caused problems

particularly for the Branch algorithm (shown in Figure 5.20).

As can be seen on Map 2 where the road network that contains a signifi-

cant number of shortcut paths (Figure 5.19), Branch also performs partic-

ularly badly. The algorithm merely tries to position the robots such that

the target can be observed no matter what route it takes from its current

location. It does not however incorporate any mechanism to make long

journeys early, in order to preempt the target taking such a route. When

it encounters a shortcut path it is viewed as acceptable to locate itself on

the node which is closest to the target since this covers a similar amount

of the network, it is however also classed as more urgent due to being

closer to the target. Therefore when the target traverses this shortcut
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Figure 5.19: Heat map of Map 2 (Figure 5.2) illustrating Branch positions
inability to cope with shortcut paths
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Figure 5.20: An area of Map 4 that proved particularly problematic for
the Branch algorithm (Figure 5.4).
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Figure 5.21: An area of Map 3 that proved particularly problematic for
the Branch algorithm(Figure 5.3).

the robot finds itself unable to follow and having to make a significantly

long movement in order to follow.

Figure 5.22 shows the positions at which targets became lost and then

remained lost for a significant amount of time. The path in black shows

the movement immediately before the target became lost (thus showing

the targets trajectory, then a marker is placed at the position at which

it became lost and then a line in colour for where it travelled after. The

trails displayed are specifically the ones where the target got lost due

to travelling through a shortcut. For clarity, some of the paths after be-

coming lost have been removed due to the large number of paths in the

area, particularly for the Branch algorithm. The SCP and CUT algo-

rithms do cope with these situations better, as shown by there generally

being fewer instances of the targets after having travelled through such
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areas. Note that again for clarity not all instances are shown however the

general level of losses is representative. This can be seen in Figure 5.23

that shows the positions at which robots became lost. In areas where too

many paths were present to display, or the path was not due to a short-

cut, some were removed before plotting in Figure 5.22. However, all the

positions are included in Figure 5.23. As can be seen, in general there is

still a similar level between the CUT and SCP algorithms however sig-

nificantly more from the Branch algorithm.

Comparing the SCP and CUT algorithms in Figure 5.19 in the areas of

D1 and D2 both are vastly improved over the Branch and no movement

strategy. However the SCP algorithm is showing little benefit over the

CUT in this area despite the specific accounting for the shortcuts con-

tained in this area. This indicates that the use of Cartesian cost maps

in conjunction with the topological map is sufficient to attract robots to

these areas without the need to specifically identify and account for the

short cuts. Overall this shows that short cut paths are not a significant

enough problem to cause the SCP algorithm specifically coded to cope

with them to perform significantly better than the naive algorithm.

5.3.3 Comparison by Problem

This section is mostly a summary of the previous two sections to sum-

marise the findings.
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Figure 5.22: Positions at which the targets became lost and their move-
ments before(Black) and after becoming lost in an area of Map 2. Top:
CUT algorithm, Middle: SCP algorithm, Bottom: Branch algorithm. Ord-
nance Survey© Crown Copyright. All rights reserved.
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Figure 5.23: All positions at which the target became lost for the area on
Map2. Ordnance Survey© Crown Copyright. All rights reserved.

Open Spaces and Occluded Spaces

As shown these problems seem to effect all algorithms, causing them all

to perform badly. However in isolated examples the Branch algorithm

is particularly at a disadvantage in open spaces due to it not explicitly

trying to keep a robot within visual contact of the target.

Occluded spaces have shown to be a significant remaining problem for

all algorithms. This demonstrates that these are significant enough a

problem that for complete coverage of the environment a variety of robots

is required, including those that can explore these regions.

Short Cut Paths

Generally the shortcut paths do not provide a significant enough chal-

lenge that the algorithms specifically designed to cope with the problem

have a particular advantage. The addition of combining Cartesian and

topological forces to the algorithms is sufficient to attract robots to such

nodes without the explicit identification of the short cut. The approach
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of CUT is comparable to the SCP algorithm in these areas. The Branch

algorithm however performs significantly worse in such areas due to its

algorithm viewing it as acceptable not to proactively cover such areas.

Long Roads

Long roads are specifically a problem for the Branch algorithm and gen-

erally do not effect the other algorithms. This is due to the algorithm

keeping the robots at fixed positions at the end of roads and not directly

within line of sight of the target.
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Chapter 6

Critical Assessment and

Further Work

6.1 Contribution

A particularly unique aspect of urban surveillance has been identified in

this work that has previously been unexplored, namely a problem where

the robots and targets are unable to traverse similar spaces. A literature

review identified relevant algorithms to this domain, particularly focus-

ing on simple algorithms that scale well with respect to the number of

robots present in the system. A testing environment has then been de-

fined in which to explore this problem. This environment is specified as

an extension to a pre-existing definition used for target tracking. The en-

vironment chosen has three types of spaces, defining space that cannot be

traversed, space inaccessible to the robots and free space. Although only
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two types of obstacle are used in this work, the principle could easily be

extended to allow for more complex forms of environment, such as allow-

ing the target to traverse smaller obstacles such as fences or walls while

preventing access to buildings. This can provide a more realistic scenario

in the future.

It was also identified that the new environment necessitates changes in

the existing algorithms in order to account for the restricted space in

which the robots traverse. These include the frequent local maxima that

are produced by a road network when using previous algorithms that

have little understanding of the structure of the environment. The pres-

ence of “Short Cut Paths” was also identified that could allow targets to

easily escape observation. Highly occluded areas and large open spaces

are also identified. These are later shown, through testing, as one of the

most problematic of all areas.

Three new algorithms were produced as a result of the observations CUT,

SCP and Branch. SCP is primarily original, however it incorporates the

existing Shortest Escape Path algorithm. Branch is an original algo-

rithm.

The CUT algorithm is primarily based on existing work from (Jung, 2002,

2005) and (Parker, 2002). These were modified firstly to project the move-

ments to work along the direction of the road network. Secondly the dis-

tance metrics used in the calculations were purely based upon a Carte-

sian space. These were modified to incorporate knowledge of distance

using the topological road network in order to overcome the limitations
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previously stated, where due to the naive forces the robots becomes stuck

at certain points in the road network.

The SCP algorithm incorporated the SEP tracker for the tracking of a

target in view and is built on top of a custom made algorithm for the

positioning of robots. The unique aspect of this algorithm is its detection

of short cut paths through which targets can escape. The team is then

organised in order to account for these paths and attempt to preempt

the target using such a route. It therefore classifies which routes are of

highest risk and from this information positions the robots to attempt to

minimise the risk. This identification of Short Cut Paths, incorporation

into the Short Cut Graph, and use in calculating the movements of the

robots is particularly unique to this work.

The Branch algorithm is then developed as an entirely new algorithm

based on the concept of placing robots at key positions on the road net-

work in order to be best positioned for future movement. This again uses

the novel Short Cut Path and Short Cut Graph in its calculation of the

best position to move to.

A simulation has been developed based upon the Player/Stage (Player,

2008) platform. This was used to test the three algorithms and the base-

line comparison in a variety of environments and configurations. Of the

three algorithms tested, the CUT and SCP algorithms perform reason-

ably comparably. Over all there is less than 0.3% difference in effective-

ness between these two algorithms: SCP achieving 53.9% and CUT 53.6%.

The branch algorithm however fares particularly worse at an average of

43.8% overall.
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There was the initial observation that targets escape through shortcut

paths which lead to the specific modification of algorithms to account

for them. However as shown, due to high risk shortcuts generally be-

ing closer, in a Cartesian sense, this is enough for the CUT algorithm to

attract robots to the area, and thus the specific coding does not produce

enough benefit for a significant improvement to be seen overall.

Finally the outstanding issues that remain problematic have been iden-

tified. Mostly the highly occluded areas of the map and the large open

spaces. In such areas it would probably be impossible to resolve the is-

sues due to much of the limitation being due to the robots restricted move-

ment. This therefore shows that, for a comprehensive tracker across the

whole environment, a variety of sensors are needed and that road based

sensors would need to be supplemented in such areas.

6.2 Critical Assessment

There are a number of factors that would be present in real life that would

affect an actual implementation and that were not possible to incorporate

into the test environment. These factors will have an impact on the algo-

rithms effectiveness and may require them to be modified. However the

simulation is still viewed as an accurate representation of reality.
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6.2.1 Environment Construction

Additional Agents

Additional traffic to the road is likely to be a significant factor, the addi-

tion of which is a natural continuation of this work. Agents present that

are not directly involved in the scenario are likely to significantly impact

the robots ability to manoeuvre but also provide dynamic occlusions to

the field of view. This could incorporate both pedestrian and road traffic.

Rules of the road such as speed limits, one way streets and road lanes are

also factors that would be a natural addition to the current simulation

model.

Target Ability

The intelligence of the target is a factor that will significantly impact

upon the robots ability to track the target. This work was stated as non-

adversarial and thus this was not addressed. However inclusion of this

intelligence is a natural extension to the work.

Environmental Parameters

Due to limited memory the environments were constructed with bounds

to the environment. Although there will always be a requirement for

bounds to any environment, larger areas may give the target more free-

dom and thus impact on the overall performance.
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Latency and data loss within the system was also not taken into account

particularly with respect to communications.

The prior knowledge of the targets starting position is an element that

benefits the robots that could also be removed to make the scenario more

realistic.

Simulations were also kept at a fixed duration. This decision was taken

again in order to keep the number of trials to an acceptable level. How-

ever longer simulations may well show issues between the algorithms

ability to run indefinitely. Longer trials should potentially show that cer-

tain algorithms may be adept at tracking a target that is in view. How-

ever, once lost is not adept at re-acquiring it. Short trials would favour

such an algorithm by limiting the amount of time a target can spend per-

manently lost.

The number of robots was limited due to the amount of processing power

available. Due to the effectiveness tending towards 100% at lower speeds,

increasing the number of robots will only have a small impact on these

results. Particularly due to the fact that the most significant areas are

those not visible from the road network, a problem that cannot be ad-

dressed with numbers. However, it is likely to see increases in effective-

ness at higher target speeds, as shown in the results, at higher target

speeds the effectiveness is far more dependant on robot numbers. Ulti-

mately as numbers increase the target will rarely be lost while visible

from the road network, meaning the effectiveness will converge towards

those seen at lower speeds where the target is also rarely lost.
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Maps

An accurate road map is assumed to be available. This type of data is

readily available however unexpected changes to the road network could

be present such as road works or minor inaccuracies to the data.

The impact of 3 dimensions is also likely to impact the robots ability to

maintain a view of a target. Due to the limitations of the environment

obstructions had to be classified as purely occluding or non-occluding to

all sensors. There was no representation of how the obstacles blocked

the sensors and if they only partially blocked the sensor view such as low

walls.

6.2.2 Robot construction

A number of simplifications were also made in the specification of the

robots. A localisation system with low noise is assumed to be present.

This was viewed as acceptable since many localisation systems using

GPS are accurate to less than 1m as well as allowing localisation and

navigation in urban environments. However taking into account the ef-

fects of noisy sensors is also a possibility.

The target identification system is also assumed to be a perfect system in

this work and thus could be revised to represent a more realistic system

which fails to identify and also possibly produces false positive matches.

Noise could also be applied to the laser and sonar sensors as well as a

more limited range.
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Inter-robot communications are currently assumed to be of unlimited

bandwidth and range. Limitations upon these devices could also be ex-

plored within the context of this problem.

The robots were constructed using a simple differential drive model, a

more complex system such as car like drive system could be incorporated

to see how this effects the robots ability. Additionally only the speed of

the robots was varied in the trials, other dynamics such as the robots

acceleration and turning speed could also be varied.

6.2.3 Data Limitations

The data provided by Ordnance Survey has a few limitations that affects

the simulations representation of reality. These are viewed as relatively

minor, however they should be noted. The data used in the simulations is

quoted as accurate to 1m and includes features greater than a few meters

in any dimension. This is a possible limitation as to its applicability to

real life. It is however unlikely that this level of accuracy will greatly

affect the robots as objects of such small dimensions are rarely present

on the road network and would also provide little obstruction to the target

or opportunity for occlusion. As previously noted the data does not have

any description of the visual appearance of objects. This is particularly

important for obstacles that may be visually transparent such as chain

link fences, railings or low walls. It was assumed that these are opaque in

these simulations. This naturally impedes the robots as more occlusions

make their task harder. One would therefore assume that including this
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information would produce a corresponding increase in efficiency.

6.2.4 Control Problem

A number of issues were experienced in the running of the simulations.

These were mainly due to the large amount of processing power and

memory required in order to simulate a large environment and multiple

robots. This then led to control problems, as the server and client side has

trouble keeping their messages synchronised as one may become starved

of processing power. In this situation, the control of the robot becomes

difficult since, if the algorithms side becomes starved of processor time,

the frequency of the control loop is reduced thus making tasks like obsta-

cle avoidance difficult. This could then cause robots to crash during the

periods in which control was reduced. This was minimised by reducing

the simulation speed and memory usage. However it still had an impact

upon the results particularly when simulating 5 robots. The effects of

this, however, can be noticed as some of the graphs show decreasing ef-

ficiencies relative to the number of robots. This appears to be due to the

ability of the simulation to keep all robots functional.

6.3 Further Work

This work has attempted to provide a platform in which to progress to-

wards producing a system that is capable of autonomous surveillance

in an urban environment. Obviously there are many steps in between
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this work and actually achieving this. Many of the challenges are hard-

ware related such as producing autonomous platforms that are capable of

traversing the road network autonomously. These technologies are being

explored and should be available in the near future.

6.3.1 Sensor Noise and Uncertainty

Modifying the simulations to include a measure of uncertainty in the sen-

sors readings or the possibility of mistaken or missed identification by the

target identification system is a fairly natural progression of the current

simulation. For instance the camera system was assumed to identify the

target with 100% accuracy if it was within the field of view. This is obvi-

ously not possible with a real system.

6.3.2 Additional Agents

The most interesting work would be to include additional agents that are

not directly involved in the scenario, such as general traffic and pedes-

trians. The impact of these agents on the ability of a team to perform a

surveillance task appears to be unexplored. The main limiting factor that

prevented the inclusion of such agents in this work was the limitations of

memory and processing power. However in the future as more processing

power, or a more efficient simulation implementation becomes available,

exploring this area would be possible.
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6.3.3 Additional Robots

Currently the algorithms also have a large scope for improvement par-

ticularly in the areas identified as troublesome. The particular problem

area of large open spaces and areas that are occluded to the road net-

work could also be addressed by potentially integrating robots of differ-

ent capabilities into the simulation such as cooperative air and ground

surveillance (Grocholsky et al., 2006).
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Chapter 7

Conclusions

This work has explored the problem of target tracking in an urban envi-

ronment. The motivation for this work is to increase safety to personnel,

specificaly for military operations in urban environments where visibil-

ity is extremely limited. By providing methods to track targets in urban

environments, this provides more complete information about the loca-

tion of objects of interest to the user. Allowing the user to make more

informed plans, reducing the uncertainty and risk involved.

An environment in which to explore target tracking in an urban envi-

ronment was defined and a simulation for this environment developed. A

literature review of algorithms relevant to the task of tracking a target in

an urban environment, specifically looking at algorithms that scale well

with the number of robots taking part in the exercise has been performed.

Three algorithms were developed for the task: CUT, SCP and Branch.

These are based on existing algorithms and incorporating measures to

account for the challenges of this new environment: notably the highly

restricted space that the robots traverse as well as the inability of the
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robots to follow the target in a similar manner to previous algorithms;

the newly identified problem of short cut paths was also accounted for.

These algorithms were tested and their effectiveness obtained in a num-

ber of environments using real map data based on urban environments in

the UK. The general results show that the SCP and CUT algorithms per-

form reasonably comparably while the Branch algorithm performs sig-

nificantly worse. Additionally that the short cut path problem does not

seem to present a significant enough challenge that the specific coding for

these situations gives the algorithm any significant advantage over the

naive algorithms. The particular places within the environment in which

these algorithms have trouble have been identified, generally consisting

of open spaces and areas significantly occluded from the road network

and, in the case of the Branch algorithm, particularly long straight roads.

It has been shown that the remaining areas of significant difficulty are

mostly areas that are not visible from the road network and that future

work should be focused towards addressing such areas, as well as making

the simulation a progressively more realistic scenario through additions

such as non-participatory agents and more realistic target movement.

The contributions of this thesis have been as follows:

• Definition of the environment in which to explore target tracking in

urban environments.

• Literature review of relevant algorithms to the task of tracking a

target in an urban environment.

• Identification of particularly difficult aspects of urban environments
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that make road based surveillance difficult.

G Highly restricted robot movement

G Frequent local minima

G Short Cut Paths

G Highly Occluded areas

G Open spaces

• Development of 3 algorithms for the tracking of a target in an urban

environment

G SCP algorithm

o Specifically accounts for the situation of short cut paths.

o Identifies areas of the map in which a short cut path exists

and incorporates this knowledge into its planning.

o Attempts to cover the paths that present the highest risk

then take preemptive movement.

G CUT algorithm

o Based on a combination of two existing algorithms A-CMOMMT

and Jung.

o Both algorithms were modified to be suitable for a road net-

work by incorporating additional forces that act along the

road network, as well as projecting the existing forces onto

the road network.
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o Due to the nature of the environment both topological and

Cartesian distances were incorporated into the algorithms

to account for the fact that the robots essentially traverse

a topological space and the targets traverse a Cartesian

space.

G Branch Algorithm

o Attempts to place robots at key areas of the road network

such that an robot cannot leave the current area without

being observed.

o Also incorporates shortcut paths.

• Simulation, evaluation and comparison of the algorithms.

G Overall the SCP and CUT algorithms perform comparably:

o Only 0.3% difference between the two. Both achieving roughly

a 53%− 54% effectiveness overall.

o At lower target speed ratios SCP and CUT achieve 74%

and 76% effectiveness respectively falling to 42% and 40%

at higher speed ratios and then 28% and 27% at the same

speed as the target .

G with the Branch algorithm performing significantly worse

o Achieved a 43% effectiveness overall.

o At lower speed ratios seeing an effectiveness of 59% falling

to 33% at the higher speed ratios and 24% at the same speed

as the target.
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• Identification of outstanding issues and the type of areas that re-

main problematic for the algorithms developed.

G Primarily the need to account for large and occluded areas ei-

ther by blocking the exits to such areas and thus keeping the

target in a known area even though not observed or calling in

a more capable robot.

142



References

Bailey, T. and Durrant-Whyte, H. (2006). Simultaneous localization and

mapping (slam): part ii. Robotics & Automation Magazine, IEEE,

13(3):108–117.

Borenstein, J., Everett, H. R., Feng, L., and Wehe, D. (1997). Mobile

robot positioning: Sensors and techniques. Journal of Robotic Systems,

14(4):231–249.

Borenstein, J. and Koren, Y. (1991). The vector field histogram-fast ob-

stacle avoidance for mobile robots. Robotics and Automation, IEEE

Transactions on, 7(3):278–288.

Brooks, R. (1986). A robust layered control system for a mobile robot.

Robotics and Automation, IEEE Journal of, 2(1):14–23.

Cardei, M. and Wu, J. (2006). Energy-efficient coverage problems in wire-

less ad-hoc sensor networks. Computer Communications, 29(4):413–

420.

Chakrabarty, K., Member, S., Iyengar, S. S., Qi, H., and Cho, E. (2002).

Grid coverage for surveillance and target location in distributed sensor

networks. IEEE Transactions on Computers, 51:1448–1453.

143



Cheng, P. (2003). A short survey on pursuit-evasion games. Techni-

cal report, Department of Computer Science, University of Illinois at

Urbana-Champaign.

Collins, R., Lipton, A., Fujiyoshi, H., and Kanade, T. (2001). Algorithms

for cooperative multisensor surveillance. Proceedings of the IEEE,

89(10):1456–1477.

Condor (2009). Condor high throughput computing. [online] accessed 3rd

march 2009. url http://www.cs.wisc.edu/condor.

Connell, J. (1992). Sss: a hybrid architecture applied to robot navigation.

In Robotics and Automation, 1992. Proceedings., 1992 IEEE Interna-

tional Conference on, pages 2719–2724 vol.3.

Culler, D., Estrin, D., and Srivastava, M. (Aug. 2004). Guest editors’

introduction: Overview of sensor networks. Computer, 37(8):41–49.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and

mapping: part i. Robotics & Automation Magazine, IEEE, 13(2):99–

110.

ELRT (2008a). European land-robot trial, camp security trial re-

quirements. [online] accessed 27th december 2008. url http://www.c-

elrob.eu/files/cs.pdf.

ELRT (2008b). European land-robot trial. [online] accessed 7th may

2008. url http://www.elrob.org.

Feyrer, S. and Zell, A. (1999). Detection, tracking, and pursuit of humans

with an autonomous mobile robot. In Intelligent Robots and Systems,

144



1999. IROS ’99. Proceedings. 1999 IEEE/RSJ International Conference

on, volume 2, pages 864–869 vol.2.

Filliat, D. and Meyer, J.-A. (2003). Map-based navigation in mobile

robots:: I. a review of localization strategies. Cognitive Systems Re-

search, 4(4):243–282.

Foresti, G., Micheloni, C., Snidaro, L., Remagnino, P., and Ellis, T. (2005).

Active video-based surveillance system: the low-level image and video

processing techniques needed for implementation. Signal Processing

Magazine, IEEE, 22(2):25–37.

Frew, E. (10-14 April 2007). Cooperative standoff tracking of uncertain

moving targets using active robot networks. Robotics and Automation,

2007 IEEE International Conference on, pages 3277–3282.

Fuentes, L. M. and Velastin, S. A. (2006). People tracking in surveillance

applications. Image and Vision Computing, 24(11):1165–1171. Perfor-

mance Evaluation of Tracking and Surveillance.

Gage, D. (1992). Sensor abstractions to support many-robot systems. Pro-

ceedings of SPIE Mobile Robots VII, Volume 1831:pp 235–246.

Gerkey, B. P., Thrun, S., and Gordon, G. (2006). Visibility-based pursuit-

evasion with limited field of view. Int. J. Rob. Res., 25(4):299–315.

Gerkey, B. P., Vaughan, R. T., and Howard, A. (2004). Player

version 1.5 user manual. [online] accessed 14th nov 2009. url

http://playerstage.sourceforge.net/doc/player-manual-1.5.ps.gz.

145



Gonzalez-Banos, H. C.-Y. L. L. J.-C. (2002). Real-time combinatorial

tracking of a target moving unpredictably among obstacles. Robotics

and Automation, 2002. Proceedings. ICRA ’02. IEEE International Con-

ference on, 2:1683–1690 vol.2.

Grocholsky, B. P., Keller, J., Kumar, V., and Pappas, G. (2006). Coopera-

tive air and ground surveillance. IEEE Robotics & Automation Maga-

zine, 13(3):16 – 25.

Guibas, L. J., Latombe, J.-C., LaValle, S. M., Lin, D., and Motwani, R.

(1999). A visibility-based pursuit-evasion problem. International Jour-

nal of Computational Geometry and Applications, 9(4/5):471–.

Hahnel, D., Burgard, W., Fox, D., and Thrun, S. (2003). An efficient fast-

slam algorithm for generating maps of large-scale cyclic environments

from raw laser range measurements. In Intelligent Robots and Sys-

tems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International

Conference on, volume 1, pages 206–211 vol.1.

Haritaoglu, I., Harwood, D., and Davis, L. (2000). W4: Real-time surveil-

lance of people and their activities. 22(8):809–830.

Hegazy, T. A. (2004). A Distributed Approach to Dynamic Autonomous

Agent Placement for Tracking Moving Targets with Application to Mon-

itoring Urban Environments. PhD thesis, School of Electrical and Com-

puter Engineering Georgia Institute of Technology.

IAIS (2008). 3dls-k continuously rotating 3d laser scanner. market-

ing material. [online] accessed 29th october 2008. url http://www.3d-

scanner.net/datasheet/3dls_flyer_kont_eng.pdf.

146



Isler, V., Kannan, S., and Khanna, S. (2005). Randomized pursuit-evasion

in a polygonal environment. IEEE Transactions on Robotics, 5(21):864–

875.

Javaclient (2008). Javaclient for player/stage. [online] accessed 7th may

2008. url http://java-player.sourceforge.net/.

Jung, B. (2005). Cooperative target tracking using mobile robots. PhD

thesis, University of Southern California, Los Angeles, CA.

Jung, B. (November 2002). Tracking targets using multiple robots: The

effect of environment occlusion. Autonomous Robots, 13:191–205(15).

Kammel, S., Ziegler, J., Pitzer, B., Werling, M., Gindele, T., Jagzent, D.,

Schröder, J., Thuy, M., Goebl, M., von Hundelshausen, F., Pink, O.,

Frese, C., and Stiller, C. (2008). Team annieway’s autonomous system

for the 2007 darpa urban challenge. J. Field Robot., 25(9):615–639.

Kolling, A. and Carpin, S. (2007). The graph-clear problem: definition,

theoretical properties and its connections to multirobot aided surveil-

lance. Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ

International Conference on, pages 1003–1008.

Lee, C.-Y., Gonzalez-Banos, H., and Latombe, J.-C. (2-5 Dec. 2002). Real-

time tracking of an unpredictable target amidst unknown obstacles.

Control, Automation, Robotics and Vision, 2002. ICARCV 2002. 7th In-

ternational Conference on, 2:596–601 vol.2.

Leonard, J., Barrett, D., How, J., Teller, S., Antone, M., Campbell, S.,

Epstein, A., Fiore, G., Fletcher, L., Frazzoli, E., Huang, A., Jones, T.,

147



Koch, O., Kuwata, Y., Mahelona, K., Moore, D., Moyer, K., Olson, E.,

Peters, S., Sanders, C., Teo, J., and Walter, M. (2007). Team MIT urban

challenge technical report. Technical report, Massachusetts Institute

of Technology.

Lipton, A., Fujiyoshi, H., and Patil, R. (1998). Moving target classification

and tracking from real-time video. In Applications of Computer Vision,

1998. WACV ’98. Proceedings., Fourth IEEE Workshop on, pages 8–14.

Lipton, A., Heartwell, C., Haering, N., and Madden, D. (2003). Automated

video protection, monitoring & detection. Aerospace and Electronic Sys-

tems Magazine, IEEE, 18(5):3–18.

Low, K. H., Leow, W. K., and Ang, J. M. H. (2002). A hybrid mobile robot

architecture with integrated planning and control. In AAMAS ’02: Pro-

ceedings of the first international joint conference on Autonomous agents

and multiagent systems, pages 219–226, New York, NY, USA. ACM.

Lubecke, V., Boric-Lubecke, O., Host-Madsen, A., and Fathy, A. (3-8 June

2007). Through-the-wall radar life detection and monitoring. Mi-

crowave Symposium, 2007. IEEE/MTT-S International, pages 769–

772.

MasterMap (2008). Os mastermap topography layer technical specifica-

tion annexe d v1.6. Â© crown copyright.

Maurin, B., Masoud, O., and Papanikolopoulos, N. (March 2005). Track-

ing all traffic: computer vision algorithms for monitoring vehicles,

individuals, and crowds. Robotics & Automation Magazine, IEEE,

12(1):29–36.

148



MaxBotix (2005). Lv-maxsonar -ez4 high performance sonar range finder

datasheet. copyright 2005 - 2007.

Meguerdichian, S., Koushanfar, F., Potkonjak, M., and Srivastava, M.

(2001). Coverage problems in wireless ad-hoc sensor networks. INFO-

COM 2001. Twentieth Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings. IEEE, 3:1380–1387 vol.3.

Meguro, J., Hashizume, T., Takiguchi, J., and Kurosaki, R. (2005). Devel-

opment of an autonomous mobile surveillance system using a network-

based rtk-gps. In Robotics and Automation, 2005. ICRA 2005. Proceed-

ings of the 2005 IEEE International Conference on, pages 3096–3101.

Meyer, J.-A. and Filliat, D. (2003). Map-based navigation in mobile

robots:: Ii. a review of map-learning and path-planning strategies. Cog-

nitive Systems Research, 4(4):283–317.

MOD (2006). Mod grand challenge. [online] accessed 7th may 2008. url

http://www.challenge.mod.uk/.

Oh, S., Schenato, L., Chen, P., and Sastry, S. (2007). Tracking and co-

ordination of multiple agents using sensor networks: System design,

algorithms and experiments. Proceedings of the IEEE, 95(1):234–254.

Parker, L. E. (1999). Cooperative robotics for multi-target observation.

Intelligent Automation and Soft Computing, 5:5–19.

Parker, L. E. (2002). Distributed algorithms for multi-robot observation

of multiple moving targets. Auton. Robots, 12(3):231–255.

149



Player (2008). [online] accessed 7th may 2008. url

http://playerstage.sourceforge.net/.

Poduri, S. and Sukhatme, G. S. (2004). Constrained coverage for mobile

sensor networks. In In IEEE International Conference on Robotics and

Automation, pages 165–171.

Reif, J. H. and Wang, H. (1999). Social potential fields: a distributed

behavioral control for autonomous robots. Robotics and Autonomous

Systems, 27:171–194.

Reisman, P., Mano, O., Avidan, S., and Shashua, A. (14-17 June 2004).

Crowd detection in video sequences. Intelligent Vehicles Symposium,

2004 IEEE, pages 66–71.

Rybski, P., Papanikolopoulos, N., Stoeter, S., Krantz, D., Yesin, K., Gini,

M., Voyles, R., Hougen, D., Nelson, B., and Erickson, M. (2000). Enlist-

ing rangers and scouts for reconnaissance and surveillance. Robotics &

Automation Magazine, IEEE, 7(4):14–24.

SensComp (2003). 6500 series ranging module. datasheet.

Shi, X., Hu, J., Xu, Y., and Song, J. (2005). Architecture and simulation of

sensor network system for urban surveillance. Robotics and Biomimet-

ics (ROBIO). 2005 IEEE International Conference on, pages 640–645.

Sibley, G. T., Rahimi, M. H., and Sukhatme, G. S. (2002). Robomote: A

tiny mobile robot platform for large-scale sensor networks. In Proceed-

ings of the IEEE International Conference on Robotics and Automation,

Washington, DC, USA.

150



SICK AG (2006). LMS200/211/221/291 laser measurement systems.

datasheet. copyright SICK AG.

Siebel, N. T. (2003). Design and Implementation of People Tracking Algo-

rithms for Visual Surveillance Applications. PhD thesis, Department

of Computer Science, The University of Reading, Reading, UK.

Siebel, N. T. and Maybank, S. (2002). Fusion of multiple tracking algo-

rithms for robust people tracking. In Heyden, A., Sparr, G., Nielsen, M.,

and Johansen, P., editors, Proceedings of the 7th European Conference

on Computer Vision (ECCV 2002), København, Denmark, volume IV,

pages 373–387.

Simmons, R., Goodwin, R., Haigh, K. Z., Koenig, S., and O’Sullivan, J.

(1997). A layered architecture for office delivery robots. In In Pro-

ceedings of the First International Conference on Autonomous Agents,

Marina del Rey, pages 245–252. ACM Press.

Spletzer, J. R. and Taylor, C. J. (2003). Dynamic sensor planning and

control for optimally tracking targets. I. J. Robotic Res., 22(1):7–20.

Stone, P., Beeson, P., Meriçli, T., and Madigan, R. (2007). Austin robot

technology. Technical report, DARPA Urban Challenge.

Sukhatme, G. S., Montgomery, J. F., and Vaughan, R. T. (2001). Experi-

ments with aerial-ground robots. In Balch, T. and Parker, L., editors,

Robot Teams: From Diversity to Polymorphism. AK Peters.

Sukkarieh, S., Nebot, E., and Durrant-Whyte, H. (1999). A high in-

151



tegrity imu/gps navigation loop for autonomous land vehicle applica-

tions. Robotics and Automation, IEEE Transactions on, 15(3):572–578.

VFDFLA (2009). Vector field diagram and field

line applet. [online] accessed 2nd january 2009. url

http://web.mit.edu/jbelcher/www/java/vecnodyncirc/vecnodyncirc.html.

Voth, D. (2004). A new generation of military robots. Intelligent Systems,

IEEE, 19(4):2–3.

Wang, G., Cao, G., and Porta, T. F. L. (2006). Movement-assisted sensor

deployment. IEEE Transactions on Mobile Computing, 5(6):640–652.

Wilhelm, T., Bohme, H. J., and Gross, H. M. (2004). A multi-modal sys-

tem for tracking and analyzing faces on a mobile robot. Robotics and

Autonomous Systems, 48(1):31–40. European Conference on Mobile

Robots (ECMR ’03).

Yamauchi, B. (2004). Packbot: A versatile platform for military robotics.

In Proceedings of SPIE 5422, pages 228–237.

Zhang, Y., Wu, H., Cheng, X., and Liu, C. (2008). Accuracy evaluation of

three dimensional laser range scanner based on field calibration. 8th

International Symposium on Spatial Accuracy Assessment in Natural

Resources and Environmental Sciences, pages 119–126.

152



Appendix A

Heat Maps

153



A.1 Map 1
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Figure A.1: Heat map of lost positions for the CUT algorithm on map 1.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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Figure A.2: Heat map of lost positions for the SCP algorithm on map 1.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.

155



Percentage of time spent lost

HighLow

0.31 0.375

0.43 0.518

0.75 1.0

Figure A.3: Heat map of lost positions for the Branch algorithm on map 1.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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Figure A.4: Heat map of lost positions for the No Movement on map 1.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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A.2 Map 2
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Figure A.5: Heat map of lost positions for the CUT algorithm on map 2.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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Figure A.6: Heat map of lost positions for the SCP algorithm on map 2.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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Figure A.7: Heat map of lost positions for the Branch algorithm on map 2.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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Figure A.8: Heat map of lost positions for the No Movement on map 2.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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A.3 Map 3
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Figure A.9: Heat map of lost positions for the CUT algorithm on map 3.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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Figure A.10: Heat map of lost positions for the SCP algorithm on map 3.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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Figure A.11: Heat map of lost positions for the Branch algorithm on map
3. Speed of the target relative to the robots listed above each diagram.
Values have been normalised to highlight areas that have a high prob-
ability of losing the target as opposed to areas that the target spent a
significant amount of time unobserved. Ordnance Survey© Crown Copy-
right. All rights reserved.
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Figure A.12: Heat map of lost positions for the No Movement on map 3.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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A.4 Map 4
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Figure A.13: Heat map of lost positions for the CUT algorithm on map 4.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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Figure A.14: Heat map of lost positions for the SCP algorithm on map 4.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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Figure A.15: Heat map of lost positions for the Branch algorithm on map
4. Speed of the target relative to the robots listed above each diagram.
Values have been normalised to highlight areas that have a high prob-
ability of losing the target as opposed to areas that the target spent a
significant amount of time unobserved. Ordnance Survey© Crown Copy-
right. All rights reserved.
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Figure A.16: Heat map of lost positions for the No Movement on map 4.
Speed of the target relative to the robots listed above each diagram. Val-
ues have been normalised to highlight areas that have a high probability
of losing the target as opposed to areas that the target spent a significant
amount of time unobserved. Ordnance Survey© Crown Copyright. All
rights reserved.
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Appendix B

Histograms of Effectiveness
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Figure B.1: Map 1 results. Horizontal axis denotes effectiveness, vertical
denotes frequency.
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Figure B.2: Map 1 results. Horizontal axis denotes effectiveness, vertical
denotes frequency.
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Figure B.3: Map 2 results. Horizontal axis denotes effectiveness, vertical
denotes frequency.
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Figure B.4: Map 2 results. Horizontal axis denotes effectiveness, vertical
denotes frequency.
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Figure B.5: Map 3 results. Horizontal axis denotes effectiveness, vertical
denotes frequency.
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Figure B.6: Map 3 results. Horizontal axis denotes effectiveness, vertical
denotes frequency.
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Figure B.7: Map 4 results. Horizontal axis denotes effectiveness, vertical
denotes frequency.
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Figure B.8: Map 4 results. Horizontal axis denotes effectiveness, vertical
denotes frequency.
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Appendix C

Example of Map Data
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<osgb:RoadLink fid=’osgb4000000015407464’> A unique number identifying the road
<osgb:theme>Road Network</osgb:theme> Some terms defining the nature of the road
<osgb:descriptiveGroup>Road Topology</osgb:descriptiveGroup>
<osgb:descriptiveTerm>Motorway</osgb:descriptiveTerm>
<osgb:natureOfRoad>Dual Carriageway</osgb:natureOfRoad>
<osgb:polyline>

<gml:LineString srsName=’osgb:BNG’>
<gml:coordinates> A series of x,y co-ordinates that define

426459.000,304140.000 the location of the road nodes
426296.000,304000.000
426238.000,303949.000

</gml:coordinates>
</gml:LineString>

</osgb:polyline>
<osgb:directedNode orientation=’-’ xlink:href=’#osgb4000000015231358’/> Links to roads connected to this road
<osgb:directedNode orientation=’+’ xlink:href=’#osgb4000000015231171’/>
<osgb:referenceToTopographicArea xlink:href=’#osgb1000000114532371’/> Links to the data that
<osgb:referenceToTopographicArea xlink:href=’#osgb1000001793275732’/> defines the physical
<osgb:referenceToTopographicArea xlink:href=’#osgb1000002100378879’/> shape of the road

</osgb:RoadLink>

Figure C.1: Example of OSMasterMap road node data. (Ordnance Survey ©Crown Copyright. All rights re-
served)
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<osgb:TopographicArea fid=’osgb5708345604675470’> A unique number identifying the road layout
<osgb:featureCode>65664</osgb:featureCode>
<osgb:theme>Roads Tracks And Paths</osgb:theme>
<osgb:calculatedAreaValue>34564.567776</osgb:calculatedAreaValue>
<osgb:descriptiveGroup>Road Or Track</osgb:descriptiveGroup>
<osgb:make>Manmade</osgb:make>
<osgb:physicalLevel>50</osgb:physicalLevel>
<osgb:polygon>

<gml:Polygon srsName=’osgb:BNG’>
<gml:outerBoundaryIs>

<gml:LinearRing>
<gml:coordinates>

423100.790,301408.210 Sequence of co-ordinates defining the
423112.400,301435.020 perimeter of the road
423123.950,301458.940
...
423100.790,301408.210

</gml:coordinates>
</gml:LinearRing>

</gml:outerBoundaryIs>
</gml:Polygon>

</osgb:polygon>
</osgb:TopographicArea>

Figure C.2: Example of OSMasterMap road dimensions. (Ordnance Survey ©Crown Copyright. All rights
reserved)
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Appendix D

List of Symbols

D.1 General

∆(a, b) A function calculating Cartesian distance between the points a

and b.

δ(a, b) A function calculating topological distance between the points a

and b.

d Distance.

Px The position of robot x.

T Total simulation time.

t Time.

j Index of the robot performing the calculation.

n Road node.
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D.2 Symbols Used in E-CMOMMT Algorithm

~F Movement vector of the robot.

~Fo Force produced by robots.

~Ftc Cartesian force produced by the target.

~Ftt Topological force produced by the target.

~R Vector in the direction of the road that the robot is on.

~Fc Centring force, pulling in the direction of the centre of the road.

Θrrf Robot to robot weighting function.

Θrtc Robot to target weighting function for Cartesian force.

Θrtt Topological weighting function.

Drx Constants that define the profile of the robot and target weighting

function.

Γ Location of the target.

RΓ Road node closest to the target.

Cj Point at the centre of the road parallel to the robot.

D.3 Symbols Used in E-Jung Algorithm

R Region.
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U(R) Urgency at R.

Dr(R) Robot density at R.

Dt(R) Target density at R.

u(Dr, Dt) Urgency function, calculates U(R), given Dr and Dt.

Drf (Pj, Pi) Density at a region, given the current robots position (Pj) and

that of another robot (Pi).

Γ Location of the target.

A The area covered at that node.

φ Rate at which Target density increases.

D.4 Symbols Used in SCP Algorithm

r(n) Immediate node cost.

ut(n) Urgency for node n at time t.

Sd Constant defining the ratio of topological to Cartesian distance needed

to be a shortcut.

r(n) Urgency at node n.

Uo(n) Urgency at node n attributed to the robots.

Ue(n) Urgency at node n attributed to the target.

τ(n) Travel cost.
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ax Normalising constants.

γ Time since the target was observed.

Ni Current destination node of robot i.

D.5 Symbols Used in Branch Algorithm

g Nodes that have already been assigned to a robot for searching.

M Search radius.

u(n, g) Urgency at a node n, given the already assigned nodes g.

D(n, g) A measure of separation between node n and each of the nodes

that have already been assigned for searching (g).

Λ(n) Indicates the amount of the road network that can be accessed by

travelling through that node.

N Root node of the network.

S(n,N) Normalised distance from the node n to the node N .

B(n) The number of leaf nodes of node n.
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