
http://wrap.warwick.ac.uk

Original citation:
Tan, Guang and Jarvis, Stephen A., 1970-. (2007) Improving the fault resilience of
overlay multicast for media streaming. IEEE Transactions on Parallel and Distributed
Systems, Volume 18 (Number 6). pp. 721-734. ISSN 1045-9219

Permanent WRAP url:
http://wrap.warwick.ac.uk/32030

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“© 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/32030
mailto:publications@warwick.ac.uk

Improving the Fault Resilience of Overlay Multicast for Media Streaming

Guang Tan, Stephen A. Jarvis and Daniel P. Spooner
Department of Computer Science, University of Warwick,

Coventry, CV4 7AL, United Kingdom
{gtan,saj,dps }@dcs.warwick.ac.uk

Abstract

This paper addresses the problem of fault resilience of
overlay-based live media streaming from two aspects: (1)
how to construct a stable multicast tree that minimizes the
negative impact of frequent member departures on existing
overlay, and (2) how to efficiently recover from packet er-
rors caused by end-system or network failures.

In particular, this paper makes two contributions: (1) A
distributedReliability-Oriented Switching Tree(ROST) al-
gorithm that minimizes the failure correlation among tree
nodes. By exploiting both bandwidth and time properties,
the algorithm constructs a more reliable multicast tree than
existing algorithms that solely minimize tree depth, while
not compromising the quality of the tree in terms of service
delay and incurring only a small protocol overhead; (2)
A simpleCooperative Error Recovery(CER) protocol that
helps recover from packet errors efficiently. Recognizing
that a single recovery source is usually incapable of pro-
viding timely delivery of the lost data, the protocol recovers
from data outages using the residual bandwidths from mul-
tiple sources, which are identified using a minimum-loss-
correlation algorithm. Extensive simulations are conducted
to demonstrate the effectiveness of the proposed schemes.

1 Introduction

Overlay multicast [4] has emerged as an effective tech-
nique to provide large-scale data dissemination over net-
works. While it is the case that shifting multicast func-
tionality from routers to end hosts brings greater flexibility,
the transient nature of the end hosts introduces problems of
service reliability – in an overlay multicast tree, the (unan-
nounced) departure of a member may result in data outages
on all its downstream members. This paper considers this
issue in the context of live media streaming, where the data
is streamed from a single source to a large number of clients
over a data delivery tree. Such an application has several
characteristics that differentiate it from other applications
(e.g., file transfers) and hence calls for special considera-

tions in system design: (1) It is bandwidth-intensive and yet
the available bandwidth resources possessed by a multicast
group may be far from rich. Each member has an out-degree
(the number of immediate downstream nodes) constraint,
and there may exist a large proportion offree-riders(i.e.,
zero-out-degree members) in the network [10] [13] [15]; (2)
Multicast members exhibit a significant amount of hetero-
geneity in bandwidths [11] [13], and as a result the mul-
ticast tree nodes have a wide range of out degrees, which
implies that the tree shape can be vastly different under var-
ious overlay construction methods; (3) Multimedia stream-
ing does not require perfect reliability, and the packet error
recovery can be performed in a best-effort manner.

Based on these observations, this paper proposes two
techniques to enhance the fault resilience of live media
streaming: theReliability-Oriented Switching Tree(ROST)
algorithm and theCooperative Error Recovery(CER) pro-
tocol. The ROST algorithm is a proactive component in
which the tree is adjusted toward a structure that minimizes
failure correlation among tree nodes1 – that is, the failure of
a node will affect as few downstream nodes as possible. For
it to be reliable, it is generally believed that the tree should
be as short (and hence wide) as possible [9] [14] [12] [5] [3],
under the constraint that no network congestion occurs near
the nodes. While this is effective, we show that it is not op-
timal. Inspired by the use of member’s long-tailed lifetime
distribution in tree construction [12], this paper proposes to
combine the members’ bandwidth and time properties as a
new criterion to adjust the tree. We define a metric called
bandwidth-time product(BTP) as the product of one mem-
ber’s outbound bandwidth2 and its age, and move the nodes
with large BTPs gradually up the tree in a distributed man-
ner. Simulation results under realistic experimental settings
show that ROST (1) reduces the average number of stream-
ing disruptions per member by 36-57% compared to a cen-
tralized depth-optimal approach; (2) achieves the smallest

1In this paper, every node in the overlay is a member of a multicast
group, so we will use the term node and member interchangeably.

2The outbound bandwidth is the maximum outgoing bandwidth pro-
vided by the access link. For simplicity, it is also referred to as bandwidth.

end-to-end service delay (or tree depth) among three rep-
resentative distributed algorithms, and only incurs a small
increase in service delay of 10-15% compared to the cen-
tralized depth-optimal approach; and (3) introduces a very
low protocol overhead.

The Cooperative Error Recoveryprotocol is a reactive
mechanism that recovers from streaming disruptions in-
curred by the failures of upstream nodes. When a non-
leaf overlay node fails, the affected nodes need to rejoin
the tree, which involves failure detection and parent re-
finding periods and usually lasts in the order of tens of sec-
onds [4]. During these periods, the affected nodes must
retrieve the lost data from other normal nodes before the
receiving buffer is exhausted. Many techniques have been
proposed to identify recovery nodes and request data from
them [17] [2] [18] [16] [6]. However, they are all based
on a single-source-based recovery mechanism. We propose
to use multiple recovery nodes, which are identified using
a minimum-loss-correlation algorithm, in order to recover
from node failures. Our experiments demonstrate that sub-
stantial improvements can be achieved using this scheme.

This paper focuses on the single-tree based data deliv-
ery paradigm. Although there exist multiple-tree based ap-
proaches that improve fault-resilience by leveraging some
specialized media encodings (e.g. multiple description cod-
ing [9]), using a single-tree provides a more general ap-
proach and we believe that the techniques developed under
this scheme can also be applied to the multiple-tree case.

The remainder of this paper is organized as follows. The
next section reviews related work in both reliable overlay
construction and packet error recovery; Section 3 describes
the ROST algorithm in detail; Section 4 presents the CER
protocol; Section 5 introduces the simulation methodology;
Section 6 analyzes the simulation results and Section 7 con-
cludes the paper.

2 Related Work

2.1 Construction of Overlay Multicast Trees
Some earlier work on overlay construction for large-

scale single-source multicast include NICE [1] and
ZIGZAG [14]. However, these methods do not consider the
out-degree limits of multicast nodes and thus are not suited
to high bandwidth media streaming.

For media data multicast, most algorithms try to build a
fault resilientoverlay. An important approach to achieving
this is to build a short tree. Intuitively, the shortness helps to
reduce the number of descendant nodes that will be affected
by a failed node. An additional merit of this approach is that
it generally leads to a small average service delay from the
source. Theminimum depth algorithm[5] [9] [12] is an
example of this approach. It searches from the tree root
downward to the leaf layer to identify a parent with spare
bandwidth capacity for a new node to join. If there are

multiple choices, the nearest parent (in terms of network
delay) is chosen. A variant of this algorithm [8] first se-
lects a number of members randomly from the overlay, and
then performs the minimum depth algorithm. Borrowing
the idea of “fat-trees” in parallel architectures, Birrer et al.
propose to build a fat tree [3] with similar characteristics
to the short and wide tree. Thehigh-bandwidth-first algo-
rithm [5] achieves minimum tree depth by placing the nodes
from high to low layers in a non-increasing order of band-
widths; that is, nodes do not have more bandwidth capacity
than any node higher up in the tree. This algorithm achieves
a global optimization. However, it imposes very high pro-
tocol overhead and is therefore not practical for real imple-
mentation.

In contrast to the depth-optimizing approach using the
members’ bandwidth properties, Sripanidkulchai et al. pro-
pose another approach [12] which leverages the member’s
time property: if the members’ lifetimes follow a distri-
bution with a long tail [15] [11], then the older members
are less likely to leave before the younger ones. This idea
leads to the design of thelongest-first algorithm[12], which
selects the longest-lived member among those with spare
bandwidth capacities as the new member’s parent. This al-
gorithm, however, turns out to yield poor performance since
it results in a tall tree.

2.2 Packet Error Recovery for Overlay Multicast

STORM [17] is a resilient multicast protocol for
continuous-media applications, in which the media data is
delivered using network-layer multicast, while the error re-
covery mechanism is built on an overlay. Each receiver
maintains a list of recovery parents which provide the loss
repair service. The idea of using multiple recovery parents
is similar to our CER protocol. However, the selection of
recovery parents and the recovery procedure are both dif-
ferent from our scheme. Lateral Error Recovery (LER) [16]
aims to provide fast recovery for overlay multicast. In LER,
all subtrees immediately under the root node (calledplanes
in LER) are organized in a way such that a node in a subtree
has a small network latency from its recovery nodes in other
subtrees. Since failure correlation of these subtrees is small,
the error recovery can be performed in a fast and reliable
manner. This tree construction method may however result
in large network stretch under the out-degree constraints.

Probabilistic Resilient Multicast (PRM) [2] is a multicast
data recovery scheme that uses a technique calledrandom-
ized forwarding. The randomized forwarding adds some
random cross-tree edges on the overlay, so packets losses
can be repaired in a proactive manner. PRM handles node
failures by raising the forwarding probability of some re-
covery nodes to one. This is equivalent to using all the resid-
ual bandwidth of one recovery node. Cooperative Patch-
ing [6] uses a list of recovery nodes for each receiver when

2

(b) Bandwidth-ordered
 (c) Time-ordered
(a) Random

increasing

ages
increasing BWs

1

1

1

Figure 1:Examples of the three types of tree. Darker colors rep-
resent older nodes. The dashed lines represent the regions affected
by a node failure.

recovering from parent failures. This technique focuses on
the selection of recovery nodes.

LER, PRM and Cooperative Patching all use a single
source to recover from upstream node failure, which differs
from our work.

3 The Reliability-Oriented Switching Tree
(ROST) Algorithm

3.1 Analysis of Existing Algorithms

As introduced in Section 2, the reliability of an overlay
multicast tree can be optimized in two ways:

• Depth-optimizing: the tree is optimized in depth. Two
representative algorithms are the minimum-depth al-
gorithm and the high-bandwidth-first algorithm, of
which the latter is the extreme case of the former.
Since the high-bandwidth-first algorithm places the
nodes in order of bandwidth, the constructed tree is
called abandwidth-ordered (BO) tree. An example of
a BO tree is shown in Fig. 1(b).

• Time-optimizing: the nodes are placed in the tree ac-
cording to their time properties (ages). A represen-
tative algorithm is the longest-first algorithm. An ex-
treme case of this approach is atime ordered (TO) tree,
in which the nodes are placed in a strict order of ages,
that is, nodes are not older than any node found at
higher levels in the tree. Fig. 1 (c) gives an example
of this kind of tree.

The average number of nodes affected by a failure in the
BO tree is small since the resulting tree is short. For exam-
ple, in Fig. 1, a failed node 1 in the BO tree (see Fig. 1 (b))
causes less streaming disruptions on its descendants than in
a random tree (see Fig. 1 (a)). However, this type of tree
needs frequent disconnections and reconnections between
nodes to maintain such a bandwidth layout. For example, if
some nodea in a layeri leaves, then the node, sayb, with
maximum bandwidth in layeri+1 should be moved to node
a’s position, which further forces all ofb’s children rejoin

the tree. This recursive rejoin imposes very high overheads
on the multicast nodes.

The time-optimizing algorithm places the younger nodes
under the older nodes, making use of the fact that under a
long-tailed lifetime distribution, older nodes are more likely
to stay longer in the network. The research in [12] has
shown that this algorithm can give good prediction on the
relative stableness of multicast members. However, a pure
time-based algorithm like this will result in a tall tree [12],
which greatly increases the failure correlation of the tree
nodes and finally makes the tree more unstable.

In light of the benefits of time-ordering to tree reliabil-
ity, a natural question is: Is it possible to incorporate this
element into the bandwidth-based algorithm so that the re-
liability of the depth-optimal tree can be further improved?
The answer to this question, of course, ultimately depends
on how great the power of time ordering is. Besides which,
a major challenge is to ensure that the tree depth does not
significantly deviate from the optimal value as produced by
the BO tree, so that the benefits from the time ordering are
not cancelled out, or even exceeded, by the negative effect
of the increased tree depth, as in the longest-first algorithm.
In addition to the primary goal concerning the reliability and
tree depth, some other desired properties of the expected ap-
proach include: (1) A small protocol overhead. In contrast
to the high overhead of the BO algorithm, the new method
should not impose heavy burden of parent re-finding on in-
dividual multicast members; (2) A distributed implementa-
tion. For large-scale overlay networks in which the nodes
may arrive in flash crowds, centralized tree construction ap-
proaches like the BO algorithm or the algorithm used in [9]
are generally limited in scalability; (3) A scheme for pro-
tecting against cheating/malicious behavior. Most of the
previous approaches relying on information such as band-
width or time do not consider the possibility of cheating
behavior, and thus are potentially vulnerable to malicious
attacks. The new scheme should prevent this in an effective
way; and (4) Being simple to implement. Introducing ex-
tra switching operations in addition to basic multicast tree
construction/fixing have been studied in previous work [7].
However, these methods generally require complex node
coordinations. The new approach should consider this prac-
tical issue.

3.2 Basic Idea of ROST

The ROST algorithm uses a simple switching tree tech-
nique to optimize the overlay. The criterion guiding the
switching operation is a metric calledBandwidth-Time
Product(BTP), which is defined as the product of a node’s
outbound bandwidth and its age. The basic idea of the al-
gorithm is to move nodes with large BTPs higher in the tree
so that better service quality (less stream disruptions and
smaller service delay) can be offered to these nodes. Since

3

either a large bandwidth or a long service time helps to in-
crease BTP, a node can be encouraged to contribute more
bandwidth resource or longer service time as a trade for
service quality. From the user’s perspective, this forms an
incentive mechanism that helps increase overall system re-
sources.

3.3 Key Operations

ROST is performed in a completely distributed manner.
It includes three basic operations: Join, Leaving and BTP-
based Switching.

Member Joining and Leaving When a new member
joins the network, ROST assumes that there is a bootstrap
mechanism that provides at least one active member in the
group. The new member then queries the existing members
for information about other participants until it obtains a
certain number (say, 100) of known members or the proce-
dure exceeds some time limit. It then sends a JOIN request
to these members, who will respond with an ACCEPT mes-
sage if they have spare bandwidths. If there are more than
one possible parents, the new member chooses the one with
the smallest tree depth as its parent (each member knows its
own layer number in the tree). If multiple such parents exist
at the same layer, it chooses the nearest parent in terms of
network delay. When a member leaves, it may give notifica-
tion to its neighbors or it may just leave abruptly. In either
case, the children of the leaving node have to rejoin the tree
by contacting other members.

BTP-based Switching The multicast source is pre-
assigned an infinite BTP, and always remains at the top of
the tree. When a new member initially enters the network,
its BTP is 0. In most cases, the high layers of the tree are oc-
cupied and the new member becomes a low-layer node. As
time goes on, a node’s BTP increases at a rate proportional
to its bandwidth. If its bandwidth is larger than its parent,
then there must be some time point in the future when its
BTP exceeds its parent (if the parent does not leave before
itself). At that time the algorithm will exchange the roles of
these two nodes. Fig. 2 gives an example of this operation.

In Fig. 2 (a), nodea’s BTP is 10 and has an out-degree
of 2; nodeb has a BTP of 12 and an out-degree of 3. Node
b is therefore moved up to become the parent and nodea
is moved down to become the child. Now that nodea can
support only two of the three nodesd, e, f , one child must
be assigned a new parent. The algorithm choosesf , the
node with the largest BTP and reconnects to nodeb, which
now has a spare out-degree.

The switching is performed autonomously by all mem-
bers. For every interval of a certain time (called aswitching
interval), a member compares its own BTP with its parent’s
current BTP. If its BTP exceeds that of its parent, and its

f
e
d

c
b

a

f

e
d

c
a

b

10

10

12

5
4
3

12

5

4
3

(a)
 (b)

g
 g

Figure 2: Illustration of the BTP-based switching operation. (a)
Before switching; (b) After switching. The numbers represent the
nodes’ BTPs.

bandwidth is no less than the parent’s bandwidth, then the
switching operation is triggered. The bandwidth compar-
ing avoids unnecessary switching since if the child has a
smaller bandwidth, the BTP will eventually be exceeded by
the parent, and it will ultimately be placed below the parent.

When a node decides to switch with its parent, it first
tries to “lock” a set of relevant nodes, including its parent,
its grandparent and all of its children and siblings, in or-
der to maintain a consistent state of the nodes. If any of
these nodes is already in the process of another switching,
or operations such as overlay failure recovery, the lock can-
not be acquired and the initiating node waits for a certain
amount of time (say, 15 seconds) before it tries to check the
switching condition and lock again. It can be seen that a
switch operation involves an average overhead of2d + 1 in
terms of the number of parent changes, whered is the aver-
age node out degree. By choosing a relative large switching
interval (e.g., 15 minutes) this overhead can be made very
small while preserving the advantages of this method, as
will be demonstrated in the experiments.

The algorithm moves nodes up the tree in a gradual man-
ner. This potentially prevents short-lived clients (which ac-
count for a nontrivial fraction of clients [15] [13]) from
climbing up the tree upon joining, which may bring stream
disruptions to many downstream nodes. In contrast, plac-
ing a new member at the leaf layer first and then adjusting
its position according to its behavior can reduce this risk.
The longer a node stays in the network, the safer it is to be
moved up the tree.

3.4 Preventing Cheating or Malicious Behavior
Truth telling is critical for ROST. Without a mechanism

to enforce this, a node can simply report that it has a large
bandwidth or has stayed in the overlay for a long time in or-
der to have itself gradually moved up toward the root of the
tree. As a result, the ROST approach would benefit nodes
that cheat, instead of providing incentives for nodes to con-
tribute to the system. Worse still, a malicious node may
easily attack the system by moving to a place near the root
and then disrupting the streaming to most tree nodes.

4

ROST addresses these problems using areference node
mechanism. Using this mechanism, a node can verify the
BTP of another node by inquiring of some nodes called
referees. Each node is associated with two types of ref-
erees: age referees and bandwidth referees. When a node
initially joins the overlay, its parent records its joining time
to rage > 1 randomly chosen nodes, called age referees,
which then establish heartbeat connections with the new
node and act as its age witnesses. When a node needs to
show its age information, it simply tells others about the
addresses of its age referees, which can then be consulted
for the trustable age information. Note that a node’s age
referees cannot be designated by itself, in order to prevent
possible collusion; while the parent can do this because it
has no incentive to collude with a child which is a potential
competitor for its own tree position.

To ensure reliable bandwidth information, a newly arriv-
ing node also obtains two sets of nodes from parent: aband-
width measurer setand abandwidth referee set. The former
is a set of nodes with enough spare incoming bandwidths
that can be used to measure the new node’s effective outgo-
ing bandwidth. To do this, the new node concurrently trans-
mits testing data to these nodes, who can measure the partial
bandwidths and jointly form an aggregated bandwidth mea-
sure on the parent. The parent then saves this value to the
rbw > 1 bandwidth referees. Later on, when the bandwidth
information is needed by others, the node only need to pro-
vide the addresses of the bandwidth referees.

Both rage andrbw are greater than 1 for the purpose of
fault tolerance. When a node discovers that a referee leaves
or breaks down, it asks its parent to assign a new referee,
which then synchronizes with the existing active referees.
Note that in an asynchronous environment like the Inter-
net, the age information maintained by the multiple referees
need not be strictly consistent, since the difference is upper
bounded by a heartbeat interval, which is small compared
to the age of a node.

The above mechanism adds extra complexity and over-
head to the overlay network. However, it is important to
recognize that the cheating and malicious access problems
are not unique to the ROST algorithm, but rather, common
to all forms of overlay network where centralized authority
is unavailable and peers’ information can not be obtained by
simple probing. Our design here not only serves as an im-
portant complement to the basic ROST algorithm, but also
provides a solution to the same problem probably encoun-
tered in other overlay-based applications.

4 The Cooperative Error Recovery (CER)
Protocol

Due to network congestion, transient or permanent inter-
mediate failures of routing services, packet errors (mainly
losses) are inevitable. To restore the normal streaming, a

member needs to rejoin the tree. This process involves fail-
ure detection, contacting with multiple nodes (e.g., 50) to
select an appropriate parent, and potentially some waiting
time when concurrent join requests compete on some par-
ent. Taking into account all these factors, this process can
take a time in the order of tens of seconds [4]. Yang et
al. [18] have proposed a proactive approach to expedite this
process by computing a rescue scheme in advance. How-
ever, in a large-scale Internet-based system which is dy-
namic in nature, this still remains as a general problem.

To address this problem, we propose to use multiple co-
operative error recovery sources, called aminimum-loss-
correlation group(MLC group), to help a node that suffers
from a stream disruption find the lost data while it is look-
ing for a new parent. As the name suggests, the MLC group
has the property that a node failure or packet missing on
one node is unlikely to affect other nodes within the same
group. This is important because in a tree structure with
a high degree of flow dependence, a packet loss occurring
on a certain node may affect many downstream nodes. By
carefully choosing a set of nodes with small loss correlation,
the loss recovery can be performed more efficiently.

4.1 Minimum-Loss-Correlation Recovery Group
Loss correlation is caused by the common network path

shared by two multicast members. The failure of any entity
on the shared path, including the underlying physical links
and intermediate overlay nodes, could result in streaming
disruptions on both of these members. However, it is diffi-
cult for an overlay protocol to identify the shared physical
links between two general overlay nodes. Also because the
failure probability of physical links is much lower than that
of overlay members, we only consider the loss correlation
at the overlay level.

We assume a treeT = (V,E), whereV andE are the
sets of all nodes and edges respectively, and define the loss
correlation functionw : V × V → I, whereI is the set of
non-negative integers, andw(v1, v2) represents the number
of common edges between the tree paths from the rootr to
v1 andv2. The MLC group problem is thus to find a set
of nodesK such that

∑
vi,vj∈K w(vi, vj) is minimum. We

solve this problem in two steps. First, a node constructs a
partial tree using the information of other nodes maintained
by itself. Recall that during the multicast process, nodes pe-
riodically exchange neighbor information with each other,
so each node will know about a medium-sized (e.g., 100)
subset of other nodes. The information of each node in-
cludes its own address, the addresses, layer numbers and
out degrees of all its ancestors. An example of a node using
these information to construct a treeT is shown in Fig. 3.

The second step is to find the desired MLC group. We
assume that thei-th level of the treeT is a node setLi,
with L0 consisting of only the root noder. Each node has
a children setCi = {ci0, ci1, · · · }, and a descendants set

5

failed region

1
 2
 3
4
 5

current node

Figure 3:Illustration of finding an MLC group. The solid circles
represent the external nodes known by current node.

Di = {di0, di1, · · · }. The proposed algorithm first identi-
fies a setG′ of root nodes ofK subtrees, from which the
members of the MLC groupG can be derived. The follow-
ing steps describe the algorithm.

Algorithm 1 Finding the minimum-loss-correlation recov-
ery group

1: Initialize the MLC root setG′ ← ∅ and MLC group set
G ← ∅

2: Starting fromL0, find the first levelLi in T such that
|Li| < K ≤ |Li+1|;

3: For eachvi ∈ Li, randomly pick a child ofvi, say,
cij , let G′ ← G′ + {cij} andCi ← Ci − {cij}, until
|G′| ≥ K.

4: For eachvi ∈ G′, randomly pick a descendantdij ∈
Di, and letG ← G + {dij} andDi ← Di − {dij}.

The number sequence1, 2, · · · , 5 in Fig. 3 gives an ex-
ample of the process of identifying a MLC groupG′. G can
then be derived fromG′ by randomly selecting descendants
from the subtrees rooted at allvi ∈ G′. The randomized
selection is used for the purpose of load balancing and for
also providing alternatives for the isolated nodes in search
for the nearest recovery nodes.

4.2 The Loss Recovery Protocol

Explicit loss notification For each packet in the stream,
there is a delivery deadline and playback deadline for a spe-
cific member. The playback deadline is the delivery dead-
line plus the application’s buffering time. Any packet miss-
ing the playback deadline is meaningless. When a mem-
ber detects a delivery deadline missing, it regards this as a
packet loss, and may try to re-find it within the playback
deadline. First, it needs to determine whether or not the
packet loss or streaming disruption is due to its parent so
as to avoid duplicate error recovery or unnecessary rejoins.
An approach calledExplicit Loss Notification(ELN) is used
to address this problem. In this approach, each multicast
member, upon detecting a packet loss, sends a notification

packet containing only the missed sequence number to its
children, who then infer that the packet loss does not orig-
inate from their parent. The notification packet is further
propagated downstream so that all the descendant nodes can
count on the upstream recovery. If a member continuously
detects large gaps (e.g., sequence gap> 3) between the se-
quence of both normal data and ELN packets, there must
be a parent failure or link congestion/failure occurring and
this member simply launches the rejoin process. Note that
a ELN packet only contains a sequence number (or a series
of sequence numbers when necessary) and hence will bring
negligible extra overhead on the network compared to the
normal streaming traffic.

Repairing the lost data A member places the nodes of its
recovery group in order of network distance. Upon detect-
ing a packet loss, it sends a packet repair request to the first
recovery node. The request also contains a list of other re-
covery members. The first recovery node searches its buffer
or waits a certain time for the requested packet to arrive.
If found or received, the requested packet is sent back to
the requesting node, otherwise the first recovery node sends
back an negative acknowledgement (NACK) packet and at
the same time, it forwards the request to the second recovery
node, which then performs the same repair operation. This
process continues until the requested packet is discovered
or all recovery nodes are contacted. All repaired packets
are sent back to the intermediate nodes in addition to the
original requesting node.

If a member detects a parent failure, it still sends a loss
repair request to the first recovery group node, asking for
a recovery at a full streaming rate. If the first node has
only a residual bandwidth ofε1 < 1 (here we assume
the full stream rate is 1), it takes responsibility for send-
ing all packets that satisfy:(n mod 100) < 100ε1, where
n is the sequence number. The first recovery node then
passes the request on to the second recovery node, which
has a residual bandwidth ofε2 and then takes care of repair-
ing packets whose sequence numbers satisfy100ε1 ≤ (n
mod 100) < 100(ε1 + ε2). The process continues until
the sum of all residual bandwidths of the examined recov-
ery nodes is no less than 1, or all recovery nodes have been
contacted.

5 Simulation Setup

An event-driven simulator has been developed to study
the performance of different algorithms. The GT-ITM
transit-stub model [19] is used to generate an underlying
network topology consisting of 15600 nodes. Link delays
between two transit nodes, transit nodes and stub nodes, and
two stub nodes are chosen uniformly between[15, 25] ms,
[5, 9] ms and[2, 4] ms, respectively. Of all the 15360 stub
nodes, a fraction of them are randomly selected to partici-

6

pate in the multicast tree. The server’s location is fixed at a
randomly chosen stub node.

In all simulations, the media streaming rate is assumed
to be 1. The root node has a bandwidth of 100, resembling
the capability of a powerful source server. Other nodes’
outbound bandwidths follow a Bounded Pareto distribu-
tion [11] [12] [10], whose shape, lower bound and upper
bound parameters are set to 1.2, 0.5 and 100, respectively.
This means that 55.5% of the members are effectively “free-
riders”, and a small number of “super-nodes” exist with out-
degrees larger than 20. The nodes’ lifetimes follow a log-
normal distribution with the location and shape parameters
set to 5.5 and 2.0, respectively, which are chosen according
to the statistical findings in [15]3. According to theLittle’s
Law, the node arrival rateλ is determined from dividingM
by the mean value of lifetime, i.e. 1809 seconds. For the
ROST algorithm, the default switching interval is 360 sec-
onds.

The following five algorithms are implemented: (1)
Minimum-depth algorithm as introduced in Section 2. A
new member always chooses a parent highest in the tree
from up to 100 nodes in the network. (2) Longest-first al-
gorithm as introduced in Section 2. A new member always
chooses the oldest parent from up to 100 nodes in the net-
work. (3) and (4)Relaxed bandwidth-ordered algorithm
andrelaxed time-ordered algorithm. These are two variants
of the BO and TO algorithms as introduced in Section 2.
Since the (strict) BO and TO trees have unacceptably high
protocol overheads in terms of average number of reconnec-
tions for a single node during its lifetime, a modification is
made to make the compared scenarios more realistic: when
a member joins/rejoins the tree, it always searches from the
high to low layers to see if there is a smaller-bandwidth
or younger node, and if so, the located node is replaced
with the new one. The evicted node, and possibly together
with some of its children in the case of time ordering, are
forced to rejoin the tree. This results in bandwidth/time or-
dering among parents and children, but a node may have
smaller bandwidth/age than another non-child node in the
next layer. Since these two variants still follow the basic
ideas of bandwidth/time ordering, they are used for perfor-
mance comparisons. Note that both algorithms assume a
central administrator providing global topological informa-
tion. (5) ROST algorithm, as introduced in Section 3.

6 Performance Evaluation

This section first compares the ROST algorithm against
the other four tree construction algorithms from the point
of view of different performance criterion, and then studies

3Ref. [13]) suggests using a Pareto distribution to model the tail dis-
tribution of node lifetime. Since both lognormal and Pareto distributions
share a similar characteristic in the tail: that longer lived peers have longer
expected residual lifetimes, we only consider the lognormal model here.

the performance of the CER protocol.

Comparison of Tree Reliability Service reliability is
measured by the average number of streaming disruptions
experienced by a single node during its lifetime in the
steady state of a multicast tree. The experiments consider
the extreme case in which every node departs abruptly with-
out notification to others, and hence results in a disruption
on each of its descendants. This metric reflects the stability
of a tree in the most uncooperative and dynamic environ-
ment. Fig. 4 compares the performance of the five algo-
rithms under different sizes of networks.

It can be seen that the minimum-depth algorithm and the
longest-first algorithm perform the worst, because they ei-
ther are completely reliability-ignorant or operate very con-
servatively in ordering the nodes in ages. The relaxed BO
algorithm has substantially improved reliability over these
two methods because of the reduced tree depth. Yet it is de-
feated by the relaxed TO algorithm in all cases, which has
better reliability owing to the time ordering.

The ROST algorithm appears to be a scheme yielding
the best result. Compared to the relaxed BO algorithm, the
number of disruptions has been reduced by 36-57%; and
compared to the relaxed TO algorithm, which is the second
best algorithm, the reduction is up to 40% in certain cases.
This shows how the ROST algorithm outperforms both the
BO and TO algorithms by combining their strengths. A fur-
ther observation is that the average service disruptions per
node is much less sensitive to the network size as compared
with the minimum-depth, longest-first and relaxed TO al-
gorithms, which do not consider bandwidth ordering and
therefore vary more significantly in tree depth.

Fig. 5 provides more distribution information about the
reliability of an 8000-node network. Fig. 6 shows the ac-
cumulative number of stream disruptions experienced by a
typical member under the difference algorithms. This mem-
ber has a moderate bandwidth and a long lifetime in order to
observe the network over a long period. It joins the overlay
after the network enters a steady state. One can see that with
the ROST algorithm, the frequency of stream disruptions
(i.e., the slope of the line) becomes smaller as the mem-
ber ages, which reflects how ROST benefits the long-lived
members. Although with only an average bandwidth, the
member gradually ascends the tree and becomes less and
less frequently interrupted by the dynamics of other mem-
bers.

Service Delay and Network Stretch This set of experi-
ments examine the quality of the tree produced by the vari-
ous algorithms in terms of end-to-end service delay and net-
work stretch. Theaverage service delaymeasures the aver-
age of all nodes’ end-to-end service delays along the over-
lay paths. Theaverage stretchis the average of all nodes’

7

2000
 5000
 8000
 11000
 14000

0

1

2

3

4

5

6

A
v
g

.
d

is
ru

p
ti
o

n
s
 p

e
r

n
o

d
e

Avg. Number of nodes in a steady state

 Minimum-depth

 Relaxed bandwidth-ordered

 Longest-first

 Relaxed time-ordered

 ROST

Figure 4: Avg. number of disruptions per
node.

1
 2
 4
 8
 16
 32
 64
 128

30

40

50

60

70

80

90

100

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
ta

g
e

o
f
 n

o
d
e
s

Number of disruptions

 Minimum-depth

 Relaxed bandwidth-ordered

 Longest-first

 Relaxed time-ordered

 ROST

Figure 5: CDF of avg. number of disrup-
tions.

-33
 0
 33
 67
 100
 133
 167
 200
 233
 267
 300

0

10

20

30

40

50

60

70

N
u

m
b

e
r

o
f

d
is

ru
p

ti
o

n
s

Time (minutes)

 Minimum-depth

 Relaxed bandwidth-ordered

 Longest-first

 Relaxed time-ordered

 ROST

Figure 6: Accumulative number of disrup-
tions of a typical member over time.

stretches, which is defined as the ratio of one nodes’ ser-
vice delay to the delay along the direct unicast path in the
underlying network [4] [1].

Fig. 7 shows that the ROST algorithm achieves the best
result in terms of both metrics among the three distributed
algorithms (the other two are the minimum-depth algorithm
and the longest-first algorithm). This reflects how band-
width ordering in ROST benefits the tree depth.

Compared with the relaxed BO tree, the ROST algorithm
has a small increase in the two defined metrics of 10-15%.
This is because the ROST algorithm optimizes the layout
in a more confined space (only along the child-parent paths
regardless of the bandwidth order between siblings), and
hence yields a more sub-optimal bandwidth layout. How-
ever it should be pointed out that the best performance of
the relaxed BO algorithm relies on a centralized controller
owning the global topological information, which makes it
impractical for large-scale networked systems.

Fig. 8 shows the average stretch of nodes under vari-
ous network sizes, which agree with the observations from
Fig. 7. Fig. 9 shows the service delay of a typical member
with the same property as assumed in the experiments with
Fig. 6. It can be seen that under the ROST and relaxed TO
algorithms, the examined member’s delay becomes smaller
as time progresses, implying a higher and higher position in
the multicast tree. In contrast, the delay fluctuates with no
convergence with the other three algorithms which do not
consider time ordering.

Comparison of Protocol Cost Both bandwidth ordering
and time ordering require reconnections between nodes to
optimize the structure of the tree, thus introducing a pro-
tocol overhead. This overhead is measured in the average
number of reconnections brought by the optimizing mech-
anism on a single node during its lifetime. Fig. 10 com-
pares the protocol overheads of the five algorithms. Note
that the minimum-depth algorithm and the longest-first al-
gorithm do not impose any protocol overheads at all.

The results show that the ROST algorithm performs best
among the three algorithms that do incur protocol over-
heads. Besides which, the the ROST algorithm requires
far less than one reconnection for a single node during its
lifetime. This indicates that ROST is very efficient in gen-
eral. Recall that the average node lifetime is 1809 seconds
and the default switching interval is 360 seconds. These
translate to 5 switches per node, which is clearly larger than
the measured overhead. The reason behind this is that a
switching interval does not necessarily correspond to an ac-
tual switching operation; rather, it only provides a possible
opportunity for switching. In an overlay that has evolved
for a long time, many high-bandwidth or long-lived nodes
have already occupied the high positions in the tree, so most
nodes have been left fewer chances to climb up the tree.

Effects of Switching Interval Fig. 11 shows the impact
of various switching intervals on the performance of an
8000-node system. As expected, a smaller interval provides
more adjusting opportunities for the overlay and thus the
streaming reliability is higher. Because of the implicit band-
width ordering, a small interval also leads to a small average
service delay and network stretch. These benefits, however,
come at the expense of an increase of protocol overhead,
as shown in the bottom-right sub-figure in Fig. 11. Also
note that the protocol overhead is fairly small (0.15 recon-
nections per node) even when the interval takes the smallest
value (i.e., 480 seconds).

Effects of Recovery Group Size This section examines
the effect of different recovery group sizes on the user-
perceived quality of service and the requirement on the user
buffer through packet-level simulation. The data is propa-
gated from the tree root at a constant rate of 10 packets per
second after the network enters a steady state. By default,
each node has a playback buffer size of 5 seconds, or 50
packets, hence every lost packet must be repaired within 5

8

2000
 5000
 8000
 11000
 14000

0

100

200

300

400

500

600

A
v
g
.
s
e
rv

ic
e
 d

e
la

y
 (

m
s
)

Avg. Number of nodes in a steady state

 Minimum-depth

 Relaxed bandwidth-ordered

 Longest-first

 Relaxed time-ordered

 ROST

Figure 7: Avg. network delay vs. network
size.

2000
 5000
 8000
 11000
 14000

0

2

4

6

8

10

12

A
v
g

.
n

e
tw

o
rk

 s
tr

e
tc

h

Avg. Number of nodes in a steady state

 Minimum-depth

 Relaxed bandwidth-ordered

 Longest-first

 Relaxed time-ordered

 ROST

Figure 8:Avg. stretch vs. network size.

-33
 0
 33
 67
 100
 133
 167
 200
 233
 267
 300

64

128

256

512

1024

S
e

rv
ic

e
 d

e
la

y
 (

m
s
)

Time (minutes)

 Minimum-depth
 Relaxed bandwidth-ordered

 Longest-first
 Relaxed time-ordered

 ROST

Figure 9:Service delay of a typical member
over time.

2000
 5000
 8000
 11000
 14000

0

1

2

3

4

5

6

7

A
v
g
.
n
u
m

b
e
r

o
f
re

c
o
n
n
s
.
p
e
r

n
o
d
e

Avg. Number of nodes in a steady state

 Minimum-depth

 Relaxed bandwidth-ordered

 Longest-first

 Relaxed time-ordered

 ROST

Figure 10:Comparison of protocol overheads.

480
 960
 1200
 1800

0.60

0.65

0.70

0.75

0.80

A
v
g
.
#
d
is

tr
u
p
ti
o
n
s
 p

e
r

n
o
d
e

Switch interval (seconds)

480
 960
 1200
 1800

0.08

0.10

0.12

0.14

0.16

A
v
g
.
#
re

c
o
n
n
.s

 p
e
r

n
o
d
e

Switch interval (seconds)

480
 960
 1200
 1800

160

165

170

175

180

185

190

195

A
v
g
.
s
e
rv

ic
e
 d

e
la

y

Switch interval (seconds)

480
 960
 1200
 1800

3.0

3.2

3.4

3.6

3.8

A
v
g
.
n
e
tw

o
rk

 s
tr

e
tc

h

Switch interval (seconds)

Figure 11:Effect of switching interval.

seconds. It is assumed that a member needs 5 seconds to de-
tect a failure of its parent, and another 10 seconds to rejoin
the tree; thus a failure recovery takes 15 seconds in total.
We only consider packet losses incurred by node failures.
A node’s residual bandwidth is uniformly distributed in 0-9
packets/second, and it only uses the residual bandwidth to
help others in error recovery.

A metric calledstarving time ratio, defined as the ratio of
the total streaming disruption time to the whole view time
since the playback begins, is used to evaluate the quality of
service perceived by a user under the workload assumed in
Section 5. Fig. 12 presents the average starving time ratios
of all multicast members for varying recovery group sizes.
The tree is constructed using the minimum-depth algorithm.
The result shows that, compared with the group size of 1, a
small increase to a group size of 3 can reduce the average
starving time by an order of magnitude (< 0.2% for all net-
work sizes).

Fig. 13 depicts the relationship between the user’s buffer
size and starving time ratio. Clearly, a larger buffer size
can better accommodate streaming dynamics. However, a
large buffer size also means a long startup delay, and hence
worse quality of service in terms of interactivity. Again

we can see that a small increase in the recovery group size
can dramatically reduce the required buffer size. For exam-
ple, for the one-recovery-node case, the buffer size must
be ≥ 27 seconds to make the average starving time ra-
tio ≤ 0.55%, whereas for the two-recovery-node case, the
buffer size needs only to be 5 seconds to meet the same re-
quirement.

Evaluation of ROST+CER In this section, we compare
ROST+CER against a general overlay multicast scheme, in
which the tree is constructed using the minimum-depth al-
gorithm, and the packet losses are recovered from a sin-
gle source. We vary the recovery group size from 1 to 3,
and examine the average starving time ratio under the two
schemes. Fig. 14 gives the results with a 95% confidence
interval. It can be observed that for each group size, the
use of ROST+CER significantly reduces the average starv-
ing time ratio. On average, the ratio is reduced by 8-9 times.
One can also see that, even with a recovery group size of 1,
the ROST+CER scheme performs better than a Minimum-
depth+Single source scheme with two recovery group mem-
bers, which again reflects the effectiveness of ROST.

9

2000
 4000
 6000
 8000
 10000
 12000
 14000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
v
e

ra
g

e
 s

ta
rv

in
g

 t
im

e
 r

a
ti
o

 (
%

)

Avg. number of peers in a steady state

 Recovery group size = 1

 Recovery group size = 2

 Recovery group size = 3

 Recovery group size = 4

Figure 12:Avg. starving time ratio vs. group
size.

5
 10
 15
 20
 25
 30

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

 A
v
e
ra

g
e

 s
ta

rv
in

g
 t

im
e

 r
a
ti
o

 (
%

)

Buffer size (seconds)

 Recovery group size = 1

 Recovery group size = 2

 Recovery group size = 3

Figure 13: Avg. starving time ratio vs.
buffer size.

1
 2
 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
v
e

ra
g

e
 s

ta
rv

in
g

 t
im

e
 r

a
ti
o

 (
%

)

Recovery group size

 Minimum-depth + Single Source

 ROST+CER

Figure 14:Evaluation of ROST+CER.

7 Conclusions

This paper addresses the fault resilience for overlay mul-
ticast using two techniques: (1) A proactive algorithm
called ROST that minimizes the failure correlation among
multicast tree nodes by gradually switching the tree to-
ward a structure partially ordered in bandwidth and par-
tially ordered in time; (2) A reactive component that recov-
ers from streaming disruptions incurred by upstream mem-
ber failures using a CER protocol. The experimental results
demonstrate the superiority of the proposed schemes.

8 Acknowledgments

We are grateful to the anonymous reviewers for their ex-
cellent feedback. This research was sponsored in part by
grants from the NASA AMES Research Center (adminis-
trated by USARDSG, contract no. N68171-01-C-9012), the
EPSRC (contract no. GR/R47424/01) and the EPSRC e-
Science Core Programme (contract no. GR/S03058/01).

References
[1] S. Banerjee, B. Bhattacharjee, C. Kommareddy. Scalable

Application Layer Multicast.ACM SIGCOMM 2002.

[2] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Re-
silient multicast using overlays.ACM SIGMETRICS 2003.

[3] S. Birrer, D. Lu, F. E. Bustamante, Y. Qiao and P. Dinda.
FatNemo: Building a Resilient Multi-Source Multicast Fat-
Tree. InProc. of the Ninth International Workshop on Web
Content Caching and Distribution (WCW), October 2004.

[4] Y. Chu, S. Rao, and H. Zhang. A Case for End System Mul-
ticast.Proc. of ACM SIGMETRICS, June 2000.

[5] M. Guo, M. Ammar. Scalable live video streaming to coop-
erative clients using time shifting and video patching.Proc.
of INFOCOM 2004.

[6] M. Guo, M. H. Ammar and E. W. Zegura. Cooperative Patch-
ing: A client based P2P architecture for supporting contin-
uous live video streaming.Proc. of the 13th International
Conference on Computer Communications and Networks
(ICCCN), 2004. J. Jannotti,

[7] D. Helder and S. Jamin. End-host Multicast Communication
Using Switch-tree Protocols. InProc. of Internation Confer-
ence on Global and Peer-to-Peer Computing on Large Scale
Distributed Systems, 2002.

[8] V. N. Padmanabhan, Helen J. Wang, Philip A. Chou. Re-
silient Peer-to-Peer Streaming.Proc. 11th IEEE Interna-
tional Conference on Network Protocols (ICNP), 2003.

[9] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sri-
panidkulchai. Distributing Streaming Media Content Using
Cooperative Networking.ACM NOSSDAV, May 2002.

[10] S. Saroiu, P. Gummadi and S. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems.Proc. of Multi-
media Computing and Networking (MMCN), 2002.

[11] S. Sen and J. Wang. Analyzing peer-to-peer traffic across
large networks.IEEE/ACM Trans. on Networking.Vol. 12,
No. 2, April 2004.

[12] K. Sripanidkulchai, A. Ganjam, B. Maggs and H. Zhang.
The feasibility of supporting large-scale live streaming appli-
cations with dynamic application end-points.Proc. of ACM
SIGCOMM, 2004, Portland, Oregon, USA.

[13] K. Sripanidkulchai, B. Maggs and H. Zhang. An analysis of
live streaming workloads on the Internet.Proc. of the 4th
ACM SIGCOMM IMC, Oct., 2004. Italy.

[14] D. A. Tran, K. A. Hua, and T. T. Do. A peer-to-peer archi-
tecture for media streaming.IEEE JSAC.Jan. 2004.

[15] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin.
A Hierarchical Characterization of A Live Streaming Media
Workload.IEEE/ACM Trans. on Networking, 12(5), 2004.

[16] K. Wong, W. Wong, G. Chan, Q. Zhang, W. Zhu, and Y.-Q.
Zhang. Lateral Error Recovery for Application-Level Multi-
cast.Proc. of IEEE INFOCOM 2004.

[17] X. R. Xu, A. C. Myers, H. Zhang and R. Yavatkar. Resilient
Multicast Support for Continuous-Media Applications.Proc.
NOSSDAV, 1997.

[18] M. Yang and Z. Fei. A Proactive Approach to Reconstructing
Overlay Multicast Trees.Proc. IEEE INFOCOM 2004.

[19] E. W. Zegura, K. Calvert and S. Bhattacharjee. How to
Model an Internetwork.Proc. of IEEE INFOCOM ’96, San
Francisco, CA.

10

