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Abstract

A reflected Brownian motion in the Gelfand-Tsetlin cone is used to construct Dyson’s process
of non-colliding Brownian motions. The key step of the construction is to consider two
interlaced families of Brownian paths with paths belonging to the second family reflected off
paths belonging to the first. Such families of paths are known to arise in the Arratia flow
of coalescing Brownian motions. A determinantal formula for the distribution of coalescing
Brownian motions is presented.
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1 Introduction

The ordered eigenvalues Y1(t) ≤ Y2(t) ≤ . . . ≤ Yn(t) of a Brownian motion in the space of n×n
Hermitian matrices form a diffusion process which satisfies the stochastic differential equations,

Yi(t) = yi + βi(t) +
∑

j 6=i

∫ t

0

ds

Yi(s) − Yj(s)
, (1)

where β1, β2, . . . , βn are independent real Brownian motions. This is a result that goes back
to Dyson [12] and we will refer to Y as a Dyson non-colliding Brownian motion. A number of
important papers in recent years have developed a link between random matrices and certain
combinatorial models, involving random permutations, last passage percolation, random tilings,
random growth models and queueing systems, see Baik, Deift and Johansson, [1] and Johansson,
[19], amongst many others. A recent survey is given by König [18]. At the heart of this connection
lies the Robinson-Schensted-Knuth algorithm, a combinatorial procedure which has its origins in
group representation theory, and using this the following remarkable formula, was observed by
Gravner, Tracy and Widom, [15] and Baryshnikov [2], representing the largest eigenvalue Yn(t)
( assuming Y (0) = 0) in terms of independent, real-valued, Brownian motions B1, B2, . . . , Bn,

Yn(t)
dist
= sup

0=t0≤t1≤...≤tn=t

n
∑

i=1

{

Bi(ti) − Bi(ti−1)
}

. (2)

O’Connell and Yor, [21], give a proof of this identity by considering reversibility properties of a
queueing system, which in a subsequent paper, O’Connell [22], is shown to be linked to the RSK
algorithm also. Another proof, again involving RSK, is given by Doumerc, [10]. A representation
theoretic approach to the identity is taken by Bougerol and Jeulin, [4], see also Biane, Bougerol
and O’Connell, [5].

In this paper a different proof of the identity (2) is given, based around the following construction.
Let

(

Y (t); t ≥ 0
)

be a Dyson process, with components Y1, Y2, . . . Yn solving (1). Let
(

X(t); t ≥
0
)

be a process with (n + 1) components which are interlaced with those of Y , meaning,

X1(t) ≤ Y1(t) ≤ X2(t) ≤ . . . ≤ Yn(t) ≤ Xn+1(t), for all t ≥ 0, (3)

and which satisfies the equations

Xi(t) = xi + γi(t) +
{

L−
i (t) − L+

i (t)
}

. (4)

Here
(

γ(t); t ≥ 0
)

is a standard Brownian motion in Rn+1, independent of the Brownian motion
β which drives Y . The processes (L+

i (t); t ≥ 0) and (L−
i (t); t ≥ 0) are continuous non-decreasing

processes that increase only at times when Xi(t) = Yi(t) and Xi(t) = Yi−1(t) respectively: they
are twice the semimartingale local times at zero of Xi − Yi and Xi − Yi−1. The two exceptional
cases L−

1 (t) and L+
n+1(t) are defined to be identically zero. Conditionally on Y the particles

corresponding to X evolve as independent Brownian motions except when collisions occur with
particles corresponding to Y . Think of the particles corresponding to the components of Y as
being “heavy” so that in collisions with the “light” particles corresponding to components of X
their motion is unaffected. On the other hand the light particles receive a singular drift from the
collisions which maintains the interlacing. We will verify that is possible to start X and Y from
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the origin so that xi = yj = 0 for all i and j. Then, see Proposition 5, the process X is distributed

as a Dyson non-colliding process with (n + 1) particles. Thus if we observe only the particles
corresponding to the components of X, the singular drifts that these particles experience from
collisions with the unseen particles corresponding to Y are somewhat magically transmuted into
an electrostatic repulsion. This is a consequence of a relationship between the semigroup of the
extended process (X,Y ) and the semigroup of X that is called an intertwining relation.

The case n = 1 is directly related to a result obtained previously by Dubédat, [11]. If we
define U(t) = (X2(t) − X1(t))/

√
2 and V (t) = (X1(t) + X2(t) − 2Y1(t))/

√
6 then the process

(

(U(t), V (t)); t ≥ 0
)

becomes a Brownian motion in a wedge of angle π/3 with certain oblique
directions of reflection on the boundary. If the process starts from the origin, which is the apex
of the cone, Dubédat has proved that (U(t); t ≥ 0) is distributed as a Bessel process of dimension
three.

Intertwinings are intimately related to time reversal and concepts of duality between Markov
processes. In the next section we present a duality between two systems of interlaced (driftless)
Brownian motions

(

X,Y
)

and
(

X̂, Ŷ
)

. In the case of the first interlaced system, particles
corresponding to components of X are reflected off particles corresponding to components of
Y , for the second system

(

X̂, Ŷ
)

the interaction is the other way around. The duality can be
checked explictly at the level of the transition semigroups, because, somewhat surprisingly, we
are able to give explicit formulae for the transition densities. These formulae are proved directly
in Section 2, but they were originally obtained through studying a system of coalescing Brownian
motions, sometimes known as the Arratia flow. The interlaced systems of paths arise when we
consider both forwards and backwards paths in the flow, and the transition densities for the
interlaced systems can be determined from an explicit expression for the joint distribution of a
system of coalescing Brownian motions. This is presented in Section 5.

2 A duality between interlaced Brownian motions

Consider a continuous, adapted, Rn+1 × Rn-valued process
(

X(t), Y (t); t ≥ 0
)

having compo-
nents X1(t),X2(t), . . . Xn+1(t) and Y1(t), Y2(t), . . . , Yn(t) which is defined on a filtered probability
space

(

Ω,F ,
{

Ft

}

t≥0
,Qn

x,y

)

satisfying, for all t ≥ 0, the interlacing condition

X1(t) ≤ Y1(t) ≤ X2(t) ≤ . . . ≤ Yn(t) ≤ Xn+1(t),

and the equations

Yi(t) = yi + βi(t ∧ τ), (5)

Xi(t) = xi + γi(t ∧ τ) + L−
i (t ∧ τ) − L+

i (t ∧ τ), (6)

where,

τ is the stopping time given by τ = inf
{

t ≥ 0 : Yi(t) = Yi+1(t) for some i ∈ {1, 2, . . . , n − 1}
}

,

β1, β2, . . . βn, γ1, γ2, . . . γn+1 are independent Ft-Brownian motions,

L−
1 (t) = L+

n+1(t) = 0 for all t ≥ 0, otherwise the processes L+
i and L−

i are continuous, non-
decreasing and increase only when Xi = Yi and Xi = Yi−1 respectively,

L+
i (t) =

∫ t

0
1
(

Xi(s) = Yi(s)
)

dL+
i (s) L−

i (t) =

∫ t

0
1
(

Xi(s) = Yi−1(s)
)

dL−
i (s).
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The process just defined is called a stopped, semimartingale reflecting Brownian motion. For
general results on such processes see, for example, Dai and Williams, [7]. In this case it is
not difficult to give a pathwise construction starting from the Brownian motions βi, for i ∈
{1, 2, . . . , n}, and γi for i ∈ {1, 2, . . . , n + 1}, together with the choice of initial co-ordinates
x1 ≤ y1 ≤ x2 . . . ≤ yn ≤ xn+1. We obtain Yi immediately. Xi is constructed by alternately using
the usual Skorokhod construction to push Xi up from Yi−1 and down from Yi. For more details
see Section 3 of [26], where a similar construction is used. In fact by the same argument as
Lemma 6 in Soucaliuc, Toth and Werner, [26] pathwise uniqueness holds, and hence the law of
(

X,Y
)

is uniquely determined. This uniqueness implies, by standard methods, that the process
is Markovian, and in fact we are able to give an explicit formula for its transition probabilities.

We denote by φt the centered Gaussian density with variance t. Φt is the corresponding distri-
bution function

Φt(y) =

∫ y

−∞

1√
2πt

exp{−z2/(2t)}dz,

and

φ′
t(y) =

−y√
2πt3

exp{−y2/(2t)}.

Let W n+1,n = {(x, y) ∈ Rn+1×Rn : x1 ≤ y1 ≤ x2 ≤ . . . ≤ yn ≤ xn+1}. Define qn
t

(

(x, y), (x′, y′)
)

for (x, y), (x′, y′) ∈ W n+1,n and t > 0 to be equal to determinant of the (2n + 1) × (2n + 1)
matrix

(

At(x, x′) Bt(x, y′)
Ct(y, x′) Dt(y, y′)

)

where

At(x, x′) is an (n + 1) × (n + 1) matrix with (i, j)th element φt(x
′
j − xi);

Bt(x, y′) is an (n + 1) × n matrix with (i, j)th element Φt(y
′
j − xi) − 1(j ≥ i).

Ct(y, x′) is an n × (n + 1) matrix with (i, j)th element φ′
t(x

′
j − yi);

Dt(y, y′) is an n × n matrix with (i, j)th element φt(y
′
j − yi).

Lemma 1. For any f : W n+1,n → R which is bounded and continuous, and zero in a neigh-

bourhood of the boundary of W n+1,n,

lim
t↓0

∫

W n+1,n

qn
t

(

w,w′
)

f(w′)dw′ = f(w),

uniformly for all w = (x, y) ∈ W n+1,n.

The proof of this lemma is postponed to Section 6.

Proposition 2. (qn
t ; t > 0) are a family of transition densities for the process

(

X,Y
)

killed at

the instant τ , that is to say, for t > 0 and (x, y), (x′, y′) ∈ W n+1,n,

qn
t

(

(x, y), (x′, y′)
)

dx′dy′ = Qn
x,y

(

Xt ∈ dx′, Yt ∈ dy′; t < τ).
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Proof. For any choice of z′ ∈ R, each of the functions (t, z) 7→ Φt(z
′ − z), (t, z) 7→ φt(z

′ − z)
and (t, z) 7→ φ′

t(z
′ − z) satisfies the heat equation on (0,∞) × R. Thus, by differentiating the

determinant, we find that,

1
2

2n+1
∑

i=1

∂2qn
t

∂w2
i

(w,w′) =
∂qn

t

∂t
(w,w′) (t, w,w′) ∈ (0,∞) × R2n+1 × R2n+1. (7)

We need to identify certain boundary conditions. We treat w′ = (x′, y′) ∈ W n+1,n as fixed. First
consider (x, y) ∈ ∂W n+1,n satisfying yi = yi+1 for some i ∈ {1, 2, . . . n − 1}. We see that the
ith and (i + 1)th rows of both Ct(y, x′) and Dt(y, y′) are equal, and hence qn

t

(

(x, y), (x′, y′)
)

=
0. Next consider (x, y) ∈ ∂W n+1,n satisfying xi = yi for some i ∈ {1, 2, . . . n}. Calculate
∂

∂xi
qn
t ((x, y), (x′, y′)) by differentiating the ith rows of At(x, x′) and Bt(x, y′). Notice that, under

our assumption that xi = yi, the ith row of ∂
∂xi

At(x, x′) is equal to the ith row of −Ct(y, x′).

Likewise the ith row of ∂
∂xi

Bt(x, y′) is equal to the ith row of −Dt(y, x′). Thus we deduce

that ∂
∂xi

qn
t ((x, y), (x′, y′)) = 0. Finally consider (x, y) ∈ ∂W n+1,n satisfying xi+1 = yi for some

i ∈ {1, 2, . . . n}. Similarly to the previous case we obtain ∂
∂xi+1

qn
t ((x, y), (x′, y′)) = 0.

Let f : W n+1,n → R be a bounded and continuous, and zero in a neighbourhood of the boundary.
Then define a smooth function F on (0,∞) × W n+1,n via

F (t, w) =

∫

W n+1,n

qn
t (w,w′)f(w′)dw′.

By virtue of the above observations regarding qn
t , and differentiating through the integral, we

find that

1
2

2n+1
∑

i=1

∂2F

∂w2
i

(t, w) =
∂F

∂t
(t, w) on (0,∞) × W n+1,n,

with the boundary conditions

F (t, w) = 0 whenever w = (x, y) satisfies yi = yi+1

∂F

∂xi
(t, w) = 0 whenever w = (x, y) satisfies xi = yi

∂F

∂xi+1
(t, w) = 0 whenever w = (x, y) satisfies xi+1 = yi

Fix T, ǫ > 0. Applying Itô’s formula, we find that the process
(

F
(

T + ǫ− t, (Xt, Yt)
)

; t ∈ [0, T ]
)

is a local martingale, which is easily seen to be bounded and hence is a true martingale. Thus

F
(

T + ǫ, (x, y)
)

= Qn
x,y

[

F
(

ǫ, (XT , YT )
)]

= Qn
x,y

[

F
(

ǫ, (XT , YT )
)

1(T < τ)
]

.

Appealing to the previous lemma, we may let ǫ ↓ 0 and so obtain,

F
(

T, (x, y)
)

= Qn
x,y

[

f(XT , YT ))1(T < τ)
]

.

Since the part of the distribution of (XT , YT ) that charges the boundary of W n+1,n exactly
corresponds to the event {T ≥ τ} this suffices to prove the proposition.
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We now consider a second reflected semimartingale Brownian motion
(

X̂, Ŷ
)

having components

X̂1(t), X̂2(t), . . . X̂n+1(t) and Ŷ1(t), Ŷ2(t), . . . , Ŷn(t) which is defined on filtered probability space
(

Ω,F ,
{

Ft

}

t≥0
, Q̂n

x,y

)

satisfying, for all t ≥ 0, the interlacing condition

X̂1(t) ≤ Ŷ1(t) ≤ X̂2(t) ≤ . . . ≤ Ŷn(t) ≤ X̂n+1(t),

and the equations

Ŷi(t) = yi + βi(t ∧ τ̂ ) + L−
i (t ∧ τ̂) − L+

i (t ∧ τ̂), (8)

X̂i(t) = xi + γi(t ∧ τ̂), (9)

where,

τ̂ is the stopping time given by τ̂ = inf
{

t ≥ 0 : X̂i(t) = X̂i+1(t) for some i ∈ {1, 2, . . . , n}
}

,

β1, β2, . . . βn, γ1, γ2, . . . γn+1 are independent Ft-Brownian motions,

the processes L+
i and L−

i are continuous, non-decreasing and increase only when Ŷi = X̂i+1

and Ŷi = X̂i respectively,

L+
i (t) =

∫ t

0
1
(

Ŷi(s) = X̂i+1(s)
)

dL+
i (s) L−

i (t) =

∫ t

0
1
(

Ŷi(s) = X̂i(s)
)

dL−
i (s).

Notice the difference between this process and
(

X,Y
)

is the reflection rule: here Ŷ is pushed off

X̂ whereas it was X that was pushed off Y .

Define
(

q̂n
t ; t > 0

)

via

q̂n
t

(

(x, y), (x′, y′)
)

= qn
t

(

(x′, y′), (x, y)
)

for (x, y), (x′, y′) ∈ W n+1,n. (10)

The following proposition is proved by arguments exactly parallel to those just given in proof of
Proposition 2.

Proposition 3. (q̂n
t ; t > 0) are a family of transition densities for the process

(

X̂, Ŷ
)

killed at

the instant τ̂ , that is to say, for t > 0 and (x, y), (x′, y′) ∈ W n+1,n,

q̂n
t

(

(x, y), (x′, y′)
)

dx′dy′ = Q̂n
x,y

(

X̂t ∈ dx′, Ŷt ∈ dy′; t < τ̂).

The duality, represented by (10), between the transition semigroups of
(

X,Y
)

and
(

X̂, Ŷ
)

is not
unexpected. It is consistent with general results, see for example DeBlassie [8], and Harrison
and Williams [16], which show that, in a variety of contexts, the dual of a reflected Brownian
motion is another reflected Brownian motion where the direction of reflection at the boundary
is obtained by reflecting the original direction of reflection across the normal vector. This is
precisely the relationship holding between

(

X,Y
)

and
(

X̂, Ŷ
)

here.
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3 An intertwining involving Dyson’s Brownian motions

It is known that Dyson’s non-colliding Brownian motions can be obtained by means of a Doob
h-transform. Let W n = {y ∈ Rn : y1 ≤ y2 ≤ . . . ≤ yn}. Suppose that

(

Y (t); t ≥ 0
)

is,
when governed by the probability measure Pn

y , a standard Brownian motion in Rn, relative to
a filtration {Ft; t ≥ 0}, starting from a point y ∈ W n and stopped at the instant τ = inf{t ≥
0 : Yi(t) = Yj(t) for some i 6= j}. The transition probabilities of Y killed at the time τ are given
explicitly by the Karlin-McGregor formula, [17],

Pn
y

(

Yt ∈ dy′; t < τ
)

= pn
t (y, y′)dy′, (11)

for y, y′ ∈ W n, where, with φt again denoting the Gaussian kernel with variance t,

pn
t (y, y′) = det

{

φt(y
′
j − yi); 1 ≤ i, j ≤ n

}

. (12)

If the initial co-ordinates y satisfy y1 < y2 < . . . < yn, then we may define a new probability
measure by the absolute continuity relation

Pn,+
y =

hn(Y (t ∧ τ))

hn(y)
· Pn

y on Ft, (13)

for t > 0, where hn is the function given by

hn(y) =
∏

i<j

(yj − yi). (14)

Under P
n,+
y the process Y evolves as a Dyson non-colliding Brownian motion, that is to say

τ is almost surely infinite and the stochastic differential equations (1) hold. The transition
probabilities

Pn,+
y

(

Y (t) ∈ dy′
)

= pn,+
t (y, y′)dy′, (15)

are related to those for the killed process by an h-transform

pn,+
t (y, y′) =

hn(y′)

hn(y)
pn

t (y, y′), (16)

for y, y′ ∈ W n \∂W n. Finally we recall, see O’Connell and Yor, [21], that we may describe P
n,+
0 ,

the measure under which the non-colliding Brownian motion issues from the origin by specifying
that it is Markovian with transition densities

(

pn,+
t ; t > 0

)

and with the entrance law

P
n,+
0

(

Y (t) ∈ dy
)

= µn
t (y)dy, (17)

for t > 0, given by

µn
t (y) =

1

Zn
t−n2/2 exp

{

−
∑

i

y2
i /(2t)

}







∏

i<j

(yj − yi)







2

, (18)

with the normalising constant being Zn = (2π)n/2
∏

j<n j!.
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Now suppose that
(

X,Y
)

is governed by the probability measure Qn
x,y defined in the previous

section. Recall that
(

qn
t ; t > 0

)

are the transition densities of the process killed at the time
τ = inf{t ≥ 0 : Yi(t) = Yj(t) for some i 6= j}. Suppose the initial co-ordinates y of Y satisfy
y1 < y2 < . . . < yn, then we may define a new probability measure Q

n,+
x,y by the absolute

continuity relation

Qn,+
x,y =

hn(Y (t ∧ τ))

hn(y)
· Qn

x,y on Ft, (19)

for t > 0. It follows from the fact that under Qn
x,y the process Y evolves as a Brownian motion

stopped at the instant τ , that hn(Y (t ∧ τ)) is a martingale, and that this definition is hence
consistent as t varies. Under the measure Q

n,+
x,y , the process Y now evolves as a non-colliding

Brownian motion satisfying the stochastic differential equation (1), whilst the process X satisfies
(4). The corresponding transition densities

(

qn,+
t ; t > 0

)

are obtained from those for the killed
process by the h-transform

qn,+
t

(

(x, y), (x′, y′)
)

=
hn(y′)

hn(y)
qn
t

(

(x, y), (x′, y′)
)

(20)

for (x, y), (x′, y′) ∈ W n+1,n with the components of y all distinct.

Lemma 4. The family of probability measures with densities given by
(

νn
t ; t > 0

)

on W n+1,n,

given by

νn
t (x, y) =

n!

Zn+1
t−(n+1)2/2 exp

{

−
∑

i

x2
i /(2t)

}







∏

i<j

(xj − xi)













∏

i<j

(yj − yi)







,

form an entrance law for
(

qn,+
t ; t > 0

)

, that is to say, for s, t > 0

νn
t+s(w

′) =

∫

W n+1,n

νn
s (w)qn,+

t (w,w′)dw.

Accordingly we may define a probability measure Q
n,+
0,0 , under which the process

(

X,Y
)

is

Markovian with transition densities
(

qn,+
t ; t > 0

)

and with the entrance law

Q
n,+
0,0

(

Xt ∈ dx, Yt ∈ dy
)

= νn
t (x, y)dxdy. (21)

It is easy to see that under this measure
(

X,Y
)

satisfies the equations (1) and (4), starting from
the origin x = 0, y = 0. Presumably any solution to (1) and (4) starting from the origin has the
same law, but we do not prove this.

We may now state the main result of this section.

Proposition 5. Suppose the process
(

Xt, Yt; t ≥ 0
)

is governed by Q
n,+
0,0 then the process

(

Xt; t ≥
0
)

is distributed as under P
n+1,+
0 , that is as a Dyson non-colliding Brownian motion in W n+1

starting from the origin.

This result is proved by means of a criterion described by Rogers and Pitman [24] for a function
of a Markov process to be Markovian. Carmona, Petit and Yor, [6], describe some further
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examples of intertwinings, and discuss the relationship between intertwinings and various notions
of duality. For x ∈ W n+1 let W n(x) = {y ∈ Rn : x1 ≤ y1 ≤ . . . ≤ yn ≤ xn+1}, and define

λn(x, y) = n!
hn(y)

hn+1(x)
, (22)

for x ∈ W n+1 \ ∂W n+1 and y ∈ W n(x). The normalising constant being chosen so that λn(x, ·)
is the density of a probability measure on W n(x). This follows from the equality

∫

W n(x)
hn(y)dy =

1

n!
hn+1(x), (23)

which is easily verified by writing hn(y) = det
{

yj−1
i ; 1 ≤ i, j ≤ n

}

. The proof of Proposition 5

depends on the following intertwining relation between
(

qn,+
t ; t > 0

)

and
(

pn+1,+
t ; t > 0

)

, for all
t > 0, x ∈ W n+1 \ ∂W n+1, and (x′, y′) ∈ W n+1,n,

∫

W n(x)
λn(x, y)qn,+

t

(

(x, y), (x′, y′)
)

dy = pn+1,+
t (x, x′)λn(x′, y′). (24)

This may be verified directly using the explicit formula for qn
t given in the previous section.

Alternatively the following derivation is enlightening. Recall that if
(

X̂t, Ŷt; t ≥ 0
)

is governed

by Q̂n
x,y then the process

(

X̂t; t ≥ 0
)

is a Brownian motion stopped at the instant τ̂ = inf
{

t ≥
0; X̂i = X̂j for some i 6= j

}

. Consequently the transition probabilities of the killed process
satisfy

∫

W n(x′)
q̂n
t

(

(x, y), (x′, y′)
)

dy′ = pn+1
t (x, x′). (25)

Now using the duality between qn
t and q̂n

t and the symmetry of pn+1
t we may re-write this as

∫

W n(x′)
qn
t

(

(x′, y′), (x, y)
)

dy′ = pn+1
t (x′, x). (26)

Finally to obtain (24) we swop the roles of (x, y) and (x′, y′) and use the expressions for qn,+
t

and pn+1,+
t as h-transforms. As a first application of the intertwining we have the following.

Proof of Lemma 4. Notice that νn
t (x, y) = µn+1

t (x)λn(x, y). Hence, by virtue of the intertwining
and the fact that

(

µn+1
t ; t > 0

)

is an entrance law for
(

pn+1,+
t ; t > 0

)

we have,

∫

W n+1,n

dxdy νn
s (x, y)qn,+

t

(

(x, y), (x′, y′)
)

=

∫

W n+1

dx µn+1
s (x)

∫

W n(x)
dy λn(x, y)qn,+

t

(

(x, y), (x′, y′)
)

=

∫

W n+1

dx µn+1
s (x)pn+1,+

t (x, x′)λn(x′, y′) = µn+1
t+s (x′)λn(x′, y′) = νn

t+s(x
′, y′).

A similar argument, following [24], proves the proposition.
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Proof of Proposition 5. For a sequence of times 0 < t1 < t2 < . . . < tn, repeated use of the
intertwining relation gives,

Q
n,+
0,0

(

Xt1 ∈ A1,Xt2 ∈ A2, . . . ,Xtn ∈ An

)

=
∫

A1

dx1 . . .

∫

An

dxn

∫

W n(x1)
dy1 . . .

∫

W n(xn)
dyn νn

t1(x1, y1)q
n,+
t2−t1

(

(x1, y1), (x2, y2)
)

. . .

. . . qn,+
tn−tn−1

(

(xn−1, yn−1), (xn, yn)
)

=
∫

A1

dx1 . . .

∫

An

dxn

∫

W n(x1)
dy1 . . .

∫

W n(xn)
dyn µn+1

t1 (x1)λ
n(x1, y1)q

n,+
t2−t1

(

(x1, y1), (x2, y2)
)

. . .

. . . qn,+
tn−tn−1

(

(xn−1, yn−1), (xn, yn)
)

=
∫

A1

dx1 . . .

∫

An

dxn

∫

W n(x2)
dy2 . . .

∫

W n(xn)
dyn µn+1

t1 (x1)p
n+1,+
t2−t1

(

x1, x2

)

λn(x2, y2) . . .

. . . qn,+
tn−tn−1

(

(xn−1, yn−1), (xn, yn)
)

=
∫

A1

dx1 . . .

∫

An

dxn

∫

W n(xn)
dyn µn+1

t1 (x1)p
n+1,+
t2−t1

(

x1, x2

)

. . . pn+1,+
tn−tn−1

(

xn−1, xn

)

λn(xn, yn) =

∫

A1

dx1 . . .

∫

An

dxn µn+1
t1 (x1)p

n+1,+
t2−t1

(

x1, x2

)

. . . pn+1,+
tn−tn−1

(

xn−1, xn

)

.

Notice that in the above proof, if we integrate yn over some smaller set than W n(xn) we find
that

Q
n,+
0,0

(

Ytn ∈ A|Xt1 ,Xt2 , . . . ,Xtn

)

=

∫

A∩W n(Xtn )
λn(Xtn , y

)

dy. (27)

This may be interpreted as the following filtering property: the conditional distribution of Yt

given
(

Xs; s ≤ t
)

is given by the density λn(Xt, ·) on W n(Xt).

4 Brownian motion in the Gelfand-Tsetlin cone

Proposition 5 lends itself to an iterative procedure. Let K be the cone of points x =
(

x1, x2, . . . xn
)

with xk =
(

xk
1, x

k
2 , . . . , x

k
k

)

∈ Rk satisfying the inequalities

xk+1
i ≤ xk

i ≤ xk+1
i+1 . (28)

K is sometimes called the Gelfand-Tsetlin cone, and arises in representation theory. We will
consider a process X(t) =

(

X1(t),X2(t), . . . Xn(t)
)

taking values in K so that

Xk
i (t) = xk

i + γk
i (t) + Lk,−

i (t) − Lk,+
i (t), (29)

where
(

γk
i (t); t ≥ 0

)

for 1 ≤ k ≤ n, 1 ≤ i ≤ k are independent Brownian motions, and
(

Lk,+
i (t); t ≥ 0

)

and
(

Lk,−
i (t); t ≥ 0

)

are continuous, increasing processes growing only when

Xk
i (t) = Xk−1

i (t) and Xk
i (t) = Xk−1

i−1 (t) respectively, the exceptional cases Lk,+
k (t) and Lk,−

1 (t)

being identically zero for all k. For initial co-ordinates satisfying xk
i < xk

i+1 for all k and i, we
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may give a pathwise construction, as in Section 2, based on alternately using the Skorokhod con-
struction to reflect Xk

i downwards from Xk−1
i and upwards from Xk−1

i−1 . The potential difficulty

that Xk−1
i meets Xk−1

i−1 does not arise.

In order to construct X starting from the origin we use a different method. First we note that
if the pair of processes

(

X,Y
)

, governed by the measure Q
n,+
0,0 satisfies equations (1) and (4),

then Y is measurable with respect to the Brownian motion β, and consequently,

the Brownian motion γ = (γ1, γ2, . . . γn+1) is independent of Y . (30)

By repeated application of Proposition 5, there exists a process
(

X(t); t ≥ 0
)

, starting from the
origin, such that

the process
(

Xk(t); t ≥ 0
)

is distributed as P
k,+
0 , for k = 1, 2, . . . , n,

the pair of processes
(

Xk+1(t),Xk(t); t ≥ 0
)

are distributed as Q
k,+
0,0 , for k = 1, . . . , n − 1,

for k = 2, . . . , n − 1 the process
(

Xk+1(t); t ≥ 0
)

is conditionally independent of
(

X1(t), . . . ,Xk−1(t); t ≥ 0
)

given
(

Xk(t); t ≥ 0
)

.

By its very construction the process X satisfies the equations (29), for some Brownian motions
γk

i , which by the observation (30) are independent. Even starting from the origin, pathwise
uniqueness, and hence uniqueness in law hold for X. Consequently we may state the following
proposition.

Proposition 6. The process
(

X(t); t ≥ 0
)

, satisfying (29), if started from the origin, satisfies

for each k = 1, 2, . . . , n,

(

X(k)(t); t ≥ 0
)

is distributed as under P
k,+
0 .

It is not difficult to see that for any t > 0, and k = 2, . . . , n− 1 the process
(

Xk+1(s); 0 ≤ s ≤ t
)

is conditionally independent of
(

X1(s), . . . Xk−1(s); 0 ≤ s ≤ t
)

given
(

Xk(s); 0 ≤ s ≤ t
)

. For
any xk ∈ W k we will denote by K(xk) the set of all (x1, x2, . . . xk−1) such that for all i and j,
xj+1

i ≤ xj
i ≤ xj+1

i+1 . The k(k − 1)/2-dimensional volume of K(xk) is given by

1
∏

j<k j!
hk(x

k).

Recall from (27) that the conditional distribution of Xk(t) given
(

Xk+1(s); 0 ≤ s ≤ t
)

has
the density λk(Xk+1(t), ·) on W k(Xk+1(t)). Combining this with the conditional independence
property noted above we deduce that the conditional distribution of

(

X1(t),X2(t) . . . Xk(t)
)

given
(

Xk+1(s); 0 ≤ s ≤ t
)

is uniform on K(Xk+1(t)). Finally using the fact that the distribution
of Xn(t) is given by the density µn

t on W n we deduce that the distribution of X(t) has the density

µ
n
t (x) = (2π)−n/2t−n2/2 exp

{

−
∑

i

(xn
i )2/(2t)

}







∏

i<j

(xn
j − xn

i )







, (31)

with respect to Lebesgue measure on K. Baryshnikov, [2], studies this distribution in some
detail. Let

(

H(t); t ≥ 0
)

be a Brownian motion in the space of n × n Hermitian matrices,
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and consider the process
(

H1(t),H2(t), . . . Hn(t); t ≥ 0
)

where Hk(t) is the k × k minor of
H(t) = Hn(t) obtained by deleting the last n− k rows and columns. It is a classical result that
the eigenvalues of Hk−1(t) are interlaced with those of Hk(t). Baryshnikov shows that, at any
fixed instant t > 0, the distribution of the eigenvalues of H1(t),H2(t), . . . Hn(t) is given by the
density (31). However it is not the case that the eigenvalue process is distributed as the process
(

X(t); t ≥ 0
)

.

O’Connell, [22], describes another process
(

Γ(t); t ≥ 0
)

taking values in K which is constructed
via certain explicit path transformations. This process arises as the scaling limit of the RSK
correspondence. The process X described above has several features in common with Γ. For
each k, the subprocess

(

Γk(t); t ≥ 0
)

evolves as Dyson k-tuple starting from zero. Additionally

(

X1
1 (t),X2

2 (t), . . . ,Xn
n (t); t ≥ 0

) dist
=

(

Γ1
1(t),Γ

2
2(t), . . . ,Γ

n
n(t); t ≥ 0

)

, (32)

but remarkably all other components Γk
l with l < k are given by explicit deterministic transfor-

mations applied to the processes Γ1
1,Γ

2
2, . . . Γ

n
n. A feature that X certainly does not share.

Notice that, for k ≥ 2,
Xk

k (t) = γk
k (t) + Lk,−

k (t), (33)

where Lk,−
k (t) grows only when Xk

k (t) = Xk−1
k−1 (t). On applying the Skorokhod lemma, see

Chapter VI of [23], we find that

Lk,−
k (t) = sup

s≤t

(

Xk−1
k−1 (s) − γk

k (s)
)

. (34)

Iterating this relation we obtain

Xk
k (t) = sup

0=t0≤t1≤t2≤...≤tk=t

k
∑

i=1

{

γi
i(ti) − γi

i(ti−1)
}

, (35)

which in the light of Proposition 6 proves the identity (2). This is essentially the same argument
for (2) as given by O’Connell and Yor, [21], with Proposition 6 replacing the corresponding
statement about Γ.

We close this section by giving an explicit formula for the transition densities of the Markov
process

(

X1
1 (t),X2

2 (t), . . . ,Xn
n (t); t ≥ 0

)

. This is continuous analogue of a formula obtained

Schutz, [25], for the totally asymmetric exclusion process. For n ≥ 1 let Φ
(n)
t denote the nth

iterated integral of the Gaussian density φt,

Φ
(n)
t (y) =

∫ y

−∞

(y − x)n−1

(n − 1)!
φt(x)dx, (36)

and for n ≥ 0 let Φ
(−n)
t denote the nth derivative of φt. Define for x, x′ ∈ W n,

rt(x, x′) = det
{

Φ
(i−j)
t (x′

j − xi); 1 ≤ i, j ≤ n
}

. (37)

Lemma 7. For any f : W n → R which is bounded and continuous and zero in a neighbourhood

of the boundary of W n,

lim
t↓0

∫

W n

rt

(

x, x′
)

f(x′)dx′ = f(x),

uniformly for all x ∈ W n.
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The proof of the lemma is given in Section 6.

Proposition 8. The process
(

X1
1 (t),X2

2 (t), . . . ,Xn
n (t); t ≥ 0

)

satisfying (33) is Markovian with

transition densities given by rt(x, x′).

Proof. For a fixed x′ ∈ R, and any n, the function (t, x) 7→ Φ
(n)
t (x′−x) solves the heat equation

on (0,∞)×R. From this we easily see that for a fixed x′ ∈ Rn, that the function (t, x) 7→ rt(x
′−x)

solves the heat equation on (0,∞) × Rn. Moreover if xi = xi−1 for any i = 2, 3, . . . , n then the
ith and (i− 1)th rows of the determinant defining ∂

∂xi
rt(x, x′) are equal and hence this quantity

is zero.

Let f : W n → R be a bounded, continuous and are in a neighbourhood of the boundary of W n.
Then define a smooth function F on (0,∞) × W n via

F (t, x) =

∫

W n

rt(x, x′)f(x′)dx′.

By virtue of the above observations regarding rt, and differentiating through the integral, we
find that

1
2

n
∑

i=1

∂2F

∂x2
i

(t, x) =
∂F

∂t
(t, x) on (0,∞) × W n,

with the boundary conditions

∂F

∂xi
(t, x) = 0 whenever xi = xi−1 for some i = 2, 3, . . . , n.

Let X denote a process governed by a probability Rx, with components X1(t) ≤ X2(t) ≤
. . . ≤ Xn(t) satisfying the equations Xk(t) = xk + γk(t) + Lk(t), where γk are independent
Brownian motions and Lk is an increasing process growing only when Xk(t) = Xk−1(t), with
L1 being identically zero. Fix T, ǫ > 0. Applying Itô’s formula, we find that the process
(

F
(

T + ǫ − t,Xt

)

; t ∈ [0, T ]
)

is a local martingale, which being bounded is a true martingale.
Thus

F
(

T + ǫ, x
)

= Rx

[

F
(

ǫ,X(T )
)]

.

Appealing to the previous lemma, we may let ǫ ↓ 0 and so obtain,

F (T, x) = Rx

[

f(X(T ))
]

,

which, since it is clear the distribution of X(T ) does not charge the boundary of W n, proves the
proposition.

In view of Proposition 6, we obtain from rt by a simple integration the following expression for
the distribution function of the largest eigenvalue of H(t):

P
n,+
0

(

Xn(t) ≤ x
)

= det
{

Φ
(i−j+1)
t (x)

}

. (38)

It is possible to verify this equality directly by using the Cauchy-Binet formula (personal com-
munication, K. Johansson).
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5 Coalescing Brownian motions

In this section we consider the joint distribution of a family of coalescing Brownian motions.
Fix z1 ≤ z2 ≤ . . . ≤ zn and consider the process of n coalescing Brownian Motions,

t 7→ Zt =
(

Zt(z1), . . . Zt(zn)
)

,

where each process
(

Zt(zi); t ≥ 0
)

is a Brownian motion (relative to some common filtration)
starting from Z0(zi) = zi, with for each distinct pair i 6= j the process

t 7→ 1√
2
|Zt(zi) − Zt(zj)|

being a standard Brownian motion on the half-line [0,∞) with an absorbing barrier at 0. Thus
informally

(

Zt(zi); t ≥ 0
)

and
(

Zt(zj); t ≥ 0
)

evolve independently until they first meet, after
which they coalesce and move together. Such families of coalescing Brownian motions have been
well-studied; for some recent works concerning them see [14] and [20]. The main result of this
section is a simple formula for the joint distribution function of

(

Zt(z1), . . . Zt(zn)
)

. A different
“exact” solution for coalescing Brownian motion, is derived in [3] by the empty interval method.

For a fixed t > 0, the distribution of Zt(z) is supported on W n. That part of the distribution
supported on the boundary of W n corresponds to the event that coalescence has occurred.
Whereas the restriction of the distribution to the interior W n (corresponding to no coalescence)
is given by Karlin-McGregor formula :

P
(

Zt(zi) ∈ dz′i for all i
)

= det
{

φt(z
′
j − zi)

}

dz′. (39)

In fact we can bootstrap from this result to a complete determination of the law of Zt(z), which
can be expressed in the following neat way.

Proposition 9. For z, z′ ∈ W n, the probability

P
(

Zt(zi) ≤ z′i for 1 ≤ i ≤ n
)

is given by the determinant of an n × n matrix with (i, j)th element given by

Φt(z
′
j − zi) if i ≥ j,

Φt(z
′
j − zi) − 1 if i < j,

where

Φt(z) =

∫ z

−∞

dy√
2πt

exp{−y2/(2t)}.

Proof. First we note that by integrating the Karlin-McGregor formula we obtain

P
(

Zt(z1) ≤ z′1 < Zt(z2) ≤ z′2 < . . . ≤ z′n−1 < Zt(zn) ≤ z′n
)

= det
{

Φt(z
′
j − zi)

}

. (40)

We are going to obtain the desired result by showing how the indicator function of the event of
interest

{

Zt(z1) ≤ z′1, Zt(z2) ≤ z′2, . . . , Zt(zn) ≤ z′n
}
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can be expanded in terms of the indicator functions of the events of the form

{Zt(zi(1)) ≤ z′j(1) < Zt(zi(2)) ≤ z′j(2) < . . . < z′j(s−1) < Zt(zi(s)) ≤ z′j(s)
}

,

for increasing subsequences of indices i(1), i(2), . . . , i(s) and j(1), j(2), . . . , j(s). To this end I
claim firstly that, whenever z, z′ ∈ W n,

det
{

1(zi ≤ z′j)
}

= 1(z1 ≤ z′1 < z2 ≤ z′2 < . . . < zn ≤ z′n). (41)

I claim secondly that

det

{

1(zi ≤ z′j) i ≥ j

−1(z′j < zi) i < j

}

= 1(z1 ≤ z′1, z2 ≤ z′2, . . . , zn ≤ z′n). (42)

To prove the first claim take the matrix M =
{

1(zi ≤ z′j)
}

, and subtract from each column
(other than the first) the values of the preceding column. The diagonal elements of this new
matrix are

1(zi ≤ z′i) − 1(zi ≤ z′i−1) = 1(z′i−1 < zi ≤ z′i);

adopting the convention that z′0 = −∞. Thus the product of these diagonal elements gives
the desired result. We have to check that in the expansion of the determinant this is the only
contribution. Suppose that ρ is a permutation, not the identity. Then we can find i < j with
ρ(i) > i and ρ(j) ≤ i. Consider the product of the (i, ρ(i))th and (j, ρ(j))th elements of the
matrix (after the column operations). We obtain

1(z′ρ(i)−1 < zi ≤ z′ρ(i))1(z′ρ(j)−1 < zj ≤ z′ρ(j)).

This can only be non-zero if both z′ρ(i)−1 < zi and zj ≤ z′ρ(j); but zi ≤ zj so this would imply

z′ρ(i)−1 < z′ρ(j). In view of the fact ρ(i) − 1 ≥ ρ(j) this is impossible.

Consider the matrix N appearing in the second claim. The product of its diagonal elements
gives the desired result. To show that this is the only contribution to the determinant, take ρ
a permutation, not equal to the identity and i < j with ρ(i) > i and ρ(j) ≤ i, as before. Then
the product of the (i, ρ(i))th and (j, ρ(j))th elements of the matrix is

−1(z′ρ(i) < zi)1(zj ≤ z′ρ(j))

Since zi ≤ zj , for this to be non-zero we would have to have z′ρ(i) < z′ρ(j), which is impossible for

ρ(i) > ρ(j).

Let T = {−1(j > i)} be the upper triangular matrix so that N = M + T and consider the
Laplace expansion of det(M + T ) in terms of minors. For increasing vectors of subscripts i and
j let M [i, j] denote the corresponding minor of M and let T̃ [i, j] be the complementary minor of
T so that

det(N) = det(M + T ) =
∑

i,j

(−1)s(i,j)M [i, j]T̃ [i, j],

for appropriate signs s(i, j). Evaluating det(N) via the second claim, and the minors M [i, j] via
(general versions of ) the first claim we have obtained an expansion of 1(z1 ≤ z′1, z2 ≤ z′2, . . . , zn ≤
z′n) as a linear combination of terms of the form 1(zi(1) ≤ z′j(1) < zi(2) ≤ z′j(2) < . . . ≤ z′j(s)).
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To complete the proof replace, in the above expansion, zi by Zt(zi) and take expectations. On
the lefthandside we obtain P

(

Zt(z1) ≤ z′1, Zt(z2) ≤ z′2, . . . , Zt(zn) ≤ z′n
)

. On the righthandside
we have a linear combination of probabilities: P

(

Zt(zi(1)) ≤ z′j(1) < Zt(zi(2)) ≤ z′j(2) < . . . <

z′j(s−1) < Zt(zi(s)) ≤ z′j(s)
)

each of which can re-written by means of the integrated Karlin-

McGregor formula as a minor of the determinant det{Φ(z′j − zi)}. And to finish we notice
that the righthandside is now the Laplace expansion of the determinant of the sum of matrices
{Φ(z′j − zi)} and {−1(j > i)}.

The expression just obtained for the distribution of coalescing Brownian motions is closely related
to the formula for the transition density of the interlaced Brownian motions given by Proposition
2. In fact differentiating the formula in Proposition 9 and comparing it with the definition of
qn
t , we find that,

qn
t

(

(x, y), (x′, y′)
)

= (−1)n
∂n

∂y1 . . . ∂yn

∂n+1

∂x′
1 . . . ∂x′

n+1

P
(

Zt(xi) ≤ x′
i, Zt(yj) ≤ y′j for all i, j

)

.

(43)

This represents a duality between the the interlaced Brownian motions and coalescing Brownian
motions which generalises the well-known duality between Brownian motion on the half-line
[0,∞) with a reflecting barrier at zero, and Brownian motion on the half-line with an absorbing
barrier at zero.

There is interesting alternative way of expressing the equality (43). The Arratia flow or Brownian
web is an infinite family of coalescing Brownian motions, with a path starting from every point
in space-time. Let t ∈ [s,∞) 7→ Zs,t(x) denote the path starting from (s, x). It is possible
to define on the same probability space a dual flow with paths running backwards in time:
s ∈ (−∞, t] 7→ Ẑs,t(x) being the path beginning at (t, x). For the details of this construction
see [28] and [14]. The flow Z and its dual Ẑ are such that for any s, t, x and y, the two events
Zs,t(x) ≤ y and Ẑs,t(y) ≥ x differ by a set of zero probability. Using this we may rewrite (43) as

qn
t

(

(x, y), (x′, y′)
)

dx′dy = P
(

Z0,t(xi) ∈ dx′
i, Ẑ0,t(y

′
j) ∈ dyj for all i, j

)

. (44)

An alternative approach to proving this equality would be to combine Proposition 2 with results
from [26] and [27] which state that the paths of the dual flow Ẑ are Brownian motions reflected
off paths of Z. Closely related duality results for the Arratia flow are given in [9] and [13].

6 Proofs of two lemmas

Proof of Lemma 7. The contribution to the determinant defining rt(x, x′) coming from the prin-
cipal diagonal is equal to the standard heat kernel in Rn. The lemma will follow if we can show
all other contributions to the determinant are uniformly negligible as t tends down to 0. Choose
ǫ > 0 so that the function f is zero in an 2ǫ-neighbourhood of the boundary of W n. Then
consider a contribution to the determinant corresponding to some permutation ρ which is not
the identity. There exist i < j with ρ(i) > i and ρ(j) ≤ i, and the contribution corresponding

to ρ consequently contains factors of Φ
(i−ρ(i))
t (x′

ρ(i) − xi) and Φ
(j−ρ(j))
t (x′

ρ(j) − xj). Noting that

j − ρ(j) > 0 and i − ρ(i) < 0 we see that on the set {x′
ρ(i) − xi > ǫ} ∪ {x′

ρ(j) − xj < −ǫ} at
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least one of these factors, and indeed the entire contribution, tends to zero uniformly as t tends
down to zero. But on the complement of this set we have x′

ρ(i) ≤ xi + ǫ ≤ xj + ǫ ≤ x′
ρ(j) + 2ǫ,

and ρ(j) ≤ ρ(i) implies that x′
ρ(j) ≤ x′

ρ(i), so we see that x′ is within the 2ǫ-neighbourhood of
the boundary of W n, and does not belong to the support of f . This proves the lemma.

Proof of Lemma 1. It is convenient to write z1 = x1, z3 = x2, . . . z2n+1 = xn, and z2 = y1, z4 =
y2, . . . , z2n = yn, with a corresponding change of notation for x′

i and y′i also. Now reorder the
columns and rows of the determinant defining qn

t so that the (i, j)th entry is a function of the
difference z′j − zi. We may now argue in the same way as in the preceding proof. Choose ǫ > 0

so that the function f is zero in an 2ǫ-neighbourhood of the boundary of W n+1,n. Consider a
contribution to the determinant corresponding to some permutation ρ which is not the identity.
There exist i < j with ρ(i) > i and ρ(j) ≤ i, and the contribution corresponding to ρ conse-
quently contains factors which are functions of z′ρ(i) − zi and z′ρ(j) − zj . Noting that j − ρ(j) > 0

and i − ρ(i) < 0, and checking the entries of the determinant above and below the diagonal we
see that on the set {z′ρ(i) − zi > ǫ} ∪ {z′ρ(j) − zj < −ǫ} at least one of these factors, and indeed
the entire contribution, tends to zero uniformly as t tends down to zero. As above, this proves
the lemma.
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