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Enrichment and elective culture for methylotrophs from sediment of the River Thames 

in central London yielded a diversity of pure cultures representing several genera of 

Gram-negative and Gram-positive bacteria, which were mainly of organisms not 

generally regarded as typically methylotrophic. Substrates leading to successful 

isolations included methanol, monomethylamine, dimethylamine, trimethylamine, 

methanesulfonate and dimethylsulfone. Several isolates were studied in detail and 

shown by their biochemical and morphological properties and 16S rRNA gene 

sequencing to be Sphingomonas melonis strain ET35, Mycobacterium fluoranthenivorans 

strain DSQ3, Rhodococcus erythropolis strain DSQ4, Brevibacterium casei strain MSQ5, 

Klebsiella oxytoca strains MMA/F and MMA/1, Pseudomonas mendocina strain TSQ4, 

and Flavobacterium sp. strains MSA/1 and MMA/2. The results show that facultative 

methylotrophy is present across a wide range of Bacteria, suggesting that turnover of 

diverse C1-compounds is of much greater microbiological and environmental 

significance than is generally thought. The origins of the genes encoding the enzymes of 

methylotrophy in diverse heterotrophs need further study, and could further our 

understanding of the phylogeny and antiquity of methylotrophic systems. 

 

 2



Introduction 41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

Bacteria with the ability to grow on one-carbon compounds as their sole source of energy and 

carbon have been known since the late 19th century (Loew, 1892). One of the earliest 

organisms isolated was the Gram-positive bacterium, Bacillus methylicus (later renamed 

Bacterium methylicum, but no longer available in culture): an aerobic, non-spore-forming, 

facultative methylotroph producing red pigmentation when grown on formate or methanol, 

and which also grew on formaldehyde (Loew, 1892; Migula, 1900; Bergey et al., 1939). 

During the 20th century, numerous specialized methylotrophs were described, including a 

great diversity of methanotrophs, some of which were obligate methane-users, many also 

using methanol, and a few being capable of growth on multicarbon compounds (Whittenbury 

et al., 1970; Dedysh et al., 2005a). Methylotrophy came to be recognized as a property of 

specialized bacteria capable of growth on C1-compounds (and some of which would only 

grow on C1-compounds), with the names of numerous genera and species reflecting this 

concept (e.g. Methylobacterium, Methylomonas, Methylosinus, Methyloversatilis, Bacillus 

methanolicus; Whittenbury et al., 1970; Arfman et al.,1992; Kalyuzhnaya et al., 2006; 

Lidstrom, 2006). The occurrence of methylotrophy in prokaryotes was subsequently realized 

not to correlate with traditional bacterial classification (Brautaset et al., 2004), as facultative 

methylotrophy was progressively shown to be a property of diverse typically heterotrophic 

genera including Paracoccus, Hyphomicrobium, Micrococcus, Arthrobacter, Brevibacterium, 

Beijerinckia, Bacillus, Klebsiella, Afipia, Variovorax, Amycolatopsis, Mycobacterium, and 

Acinetobacter (Nishio et al., 1975; Bamforth and Quayle, 1978; Duménil et al., 1979; 

Levering et al., 1981; Nazina, 1981; Dijkhuizen et al., 1988; Kato et al., 1988; Nesvera et al., 

1991; Cercel, 1999; Mitsui et al., 2000; Alves et al., 2001; Borodina et al., 2002; Anesti et 

al., 2005; Moosvi et al., 2005a, b; Dedysh et al., 2005b; Kelly et al., 2006; Lidstrom, 2006; 

Ghosh et al., 2007). The ribulose monophosphate (RuMP) cycle and its key enzymes (3-

 3



66 

67 

68 

69 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

hexulose-6-phosphate synthase and 6-phospho-3-hexulose isomerase) were once regarded as 

diagnostic characters of some methylotrophs (Dijkhuizen et al., 1992), but are now known to 

be widespread among bacteria and Archaea, for formaldehyde fixation and detoxification, 

and ribulose 5-phosphate biosynthesis in Archaea (Reizer et al., 1997; Yasueda et al., 1999; 

Kato et al., 2006; Orita et al., 2006). The RuMP cycle also seems to function not only in 

“typical” methylotrophs, but in methylotrophic Brevibacterium, Bacillus brevis and other 

Gram-positive methylotrophs (Yurimoto et al., 2002; Anesti et al., 2005). Examination of the 

GenBank database shows the occurrence of the gene for 3-hexulose-6-phosphate synthase in 

the genomes of at least 12 species of Gammaproteobacteria, and the gene for 

hydroxypyruvate reductase (a key enzyme in the serine pathway of formaldehyde fixation) 

occurs in numerous members of the Alpha-, Beta-, Gamma- and Deltaproteobacteria (D. P. 

Kelly, database searches, unpublished). The development and persistence of methylotrophic 

pathways in phylogenetically diverse bacteria and Archaea is not surprising, given the 

evidence for the activity for methanotrophic and methylotrophic organisms in the late 

Archaean (2.8 billion years ago; Brocks et al., 2003). 

 While classical methods of enrichment culture led to the isolation of most currently 

recognized methylotrophs, more recent studies have used molecular methods for the 

detection of the organisms in samples of environmental DNA. These have included the 

detection of enzyme-encoding genes (such as methanol dehydrogenase) and the use of the 

polymerase chain reaction with primers for the 16S rRNA genes of known methylotrophs 

(McDonald and Murrell, 1997; Wang et al., 2004; Anesti et al., 2005). The development of 

stable isotope probing (SIP), in which soil or water samples are incubated with 13C-labelled 

methane or methanol, has enabled the isolation of 13C-labelled DNA produced by 

methylotrophs, and their subsequent identification by 16S rRNA gene analysis (Radajewski 

et al., 2000, 2002; Ginige et al., 2004; Borodina et al., 2005; McDonald et al., 2005; 

Nercessian et al., 2005). SIP sometimes reveals 13C-labelling in the DNA of organisms not 
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previously regarded as methylotrophs, such as the Flavobacteria, but by direct culture some 

Flavobacterium strains are now known to be methylotrophic (Moosvi et al., 2005b). There is 

thus a need for the isolation into pure culture of novel strains detected by SIP if they are to be 

rigorously assessed for methylotrophy.  

 We have used classical enrichment culture and isolation on various elective C1-

substrates in a study of methylotrophs present in the River Thames, with the aim of obtaining 

a ‘snapshot’ overview of the diversity of such bacteria in the river, and to recover and 

identify novel organisms. Microbiological studies of the Thames date back to the 19th 

century, with numerous bacteria being reported by Frankland (1885, 1899) and Ward (1898, 

1899). The river is routinely monitored for its bacterial load, especially with respect to faecal 

contamination, but prior to our studies, which have been conducted over a five-year period 

(2002-2006), there had been no report of any methylotrophs in the River Thames where it 

runs through central London. 

 

Results and Discussion 

 

Diversity of methylotrophic bacteria recovered from the River Thames, 2002-2006  

 

Samples were taken on six separate occasions and enrichments set up with methanol, 

monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), 

methanesulfonate (MSA), or dimethylsulfone (DMSO2) as elective substrates. Numerous 

colony types were observed on subsequent plating on to agar media, with as many as five 

different morphologies and colours from one sampling. These ranged in colour from white to 

orange, but few appeared to give the characteristic pink pigmentation of the facultative 

methylotroph, Methylobacterium (Kelley et al., 2004; Green, 2006; Lidstrom, 2006), 

suggesting that most methylotrophs recovered were examples of other genera. Of the new 
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isolates studied in detail, most were obtained from liquid shake-flask enrichment cultures, but 

strains DSQ3 and DSQ4 were obtained from direct plating of sediment suspensions from the 

Sugar Quay site on to DMA-agar medium. These two strains grew very poorly in liquid 

DMA shake-flask cultures and were routinely grown and maintained on DMA in static 

culture or on agar slants. These strains would thus have been unlikely to have been recovered 

by the shake-flask enrichment method.  Only strains positively assigned to specific genera are 

described below, but additional strains of Rhodococcus, Arthrobacter, Xanthobacter, and 

Paracoccus were also tentatively identified among the numerous other methylotrophic 

isolates obtained, growing variously on methanol, formate, or DMSO
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2.  

 Substrates on which the isolates were obtained, and their growth substrate ranges are 

summarized in Table 1, and Gram-stain, physiological and morphological properties of the 

novel isolates are summarized in Tables 2 and 3.  

 

[TABLE 1] 

 

Mycobacterium fluoranthenivorans strain DSQ3 

 

Strain DSQ3 showed short straight to curved rods during active growth (Fig. 1), but became 

more pleomorphic with changes from long thin rods to vibrioid and spiral morphology in 

older cultures. Its partial 16S rRNA gene sequence (944 bp; EU416230) showed 99.6% 

identity (937/941 nucleotides) to Mycobacterium fluoranthenivorans (AJ617741; Hormish et 

al., 2004), which is a high G-C, acid-fast, but non-pigmented Mycobacterium. The orange 

pigmentation of strain DSQ3 is, however, common in Mycobacterium species (Holt  et al., 

1994). The G+C content of its DNA (73.8 mol%) was slightly above the range reported for 

Mycobacterium (64-71 mol%; Wayne and Gross, 1968; Hartmans et al., 2006). Unlike some 

Mycobacterium species (Holt  et al., 1994), strain DSQ3 was catalase negative, and some 
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cells were observed in Gram-stained preparations to have single, central, swellings, typical of 

endospores. Methanol-using Mycobacterium strains have previously been reported (Urakami 

and Yano, 1989; Galkin  et al., 2006), and a facultative methanol-using strain of M. gastri 

was shown to use the RuMP cycle (Kato et al., 1988; Mitsui et al., 2000). Growth was 

supported by DMA as the sole source of carbon and energy, but little or no growth occurred 

with MMA, TMA, methanol, formate, MSA, and DMSO
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2. Chemoorganotrophic growth was 

shown on a wide range of multicarbon substrates (Table 2).  

 

Rhodococcus erythropolis strain DSQ4  

 

Strain DSQ4 showed a filamentous rod-coccus cell morphology, with individual cells varying 

between 2-6 µm in length and 0.5 µm diameter during the growth cycle, and typically 2 µm 

length during rapid growth on DMA. Its 16S rRNA gene sequence (1418 bp; EU481631) 

showed 99.6% sequence identity to Rhodococcus erythropolis. Its physiological properties 

and the observed morphology were typical of Rhodococcus (Table 2; Fig. 2). The G+C 

content of its DNA (67.2 mol%) was within the range seen for Rhodococcus (67-73 mol% 

G+C).  Methylotrophic growth was obtained on DMA, but was very slow or absent on 

methanol, formate, MMA, TMA, MSA, DMSO2. It was moderately sensitive to sodium 

chloride: growth yields on sucrose were depressed by 18, 42 and 69% by 1.25, 2.5 and 5% 

(w/v) NaCl. Methylotrophy in Rhodococcus has not previously been studied. 

 

Brevibacterium casei strain MSQ5 

 

Strain MSQ5 was identified as B. casei from its physiological properties (Table 2) and a 

partial 16S rRNA gene sequence (343 bp; EU815829), which showed 100% identity to the 

corresponding nucleotides of the type strain (DSM 20657T, AJ252418; NCDO 2048, 
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X76564) and strain FM1A (AY468375), and 99.7% identity (342/343 aligned nucleotides) to 

B. casei strains 3Tg (AY468375) and 3S(a) (AY468374), all of which are known to be 

methylotrophic (Anesti et al. 2004, 2005). It was a regular, aerobic, Gram positive rod (Fig 

3), producing orange/pink colonies, which may be compared to Brevibacterium linens 

(yellow to deep orange colonies) and B. rufescens (red-pink; Nazina, 1981). Possibly the red 

growth on C
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1-compounds produced by “Bacillus methylicus” (Loew, 1892) may indicate that 

“B. methylicus” was in fact also a Brevibacterium. Methylotrophy had previously been 

shown in several other Brevibacterium strains (Nesvera et al., 1991; Anesti et al., 2004, 

2005). 

 

[TABLE 2]   [FIGURES 1, 2, 3] 

  

Sphingomonas melonis strain ET35  

 

A partial sequence (740 bp; EU416229) of the 16S rRNA gene of strain ET35 showed 99.9% 

identity to that of Sphingomonas melonis (AB055863), 99.7% to S. aquatilis (AF131295), 

and lower similarity (98-99%) to S. pruni, S. mali and Caulobacter leidyi. Interestingly, the 

clones of methylotrophic putative sphingomonads recovered using 13C-stable isotope probing 

were most closely related phylogenetically to S. stygia (Nercessian et al., 2005), but the ET35 

sequence showed only 94% sequence identity to S. stygia (AB025013). The properties of 

strain ET35 (Table 3), including colony colour, lack of motility, salt-tolerance, and other 

physiological characteristics are consistent with those of S. melonis (Buonaurio et al., 2002; 

Yabuuchi and Kosako, 2005; Yoon et al., 2006). Its methylotrophic growth was supported by 

methanol or formate but not by other C1-substrates, including dimethylsulfide and DMSO2. 

Growth on formate and methanol was stimulated by addition of bicarbonate (10 mM), which 

raised the growth yields from 7 to 9 g dry wt (mol formate)–1, and from 12 to 19 g dry wt 
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(mol methanol)–1. Its growth rates (µ) on formate or methanol at 25˚C were 0.05 h–1 and 0.10 

h
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–1, respectively, stimulated to 0.12 h–1 and 0.17 h–1 by bicarbonate. It showed high growth 

rates (0.30–0.46 h–1) on sucrose, fructose, glucose, and C4-acids, with typical growth yields 

of 40 g dry wt (mol fructose)–1, 70 g (mol sucrose)–1, and 31 g (mol succinate)–1. It grew with 

2.5% (w/v) NaCl but growth was not sustained in the presence of 5% (w/v) NaCl.  

 Interestingly, although strain ET35 was isolated as a methylotroph, it also grew on 

several substituted thiophenes, suggesting from its colour and physiology when first isolated 

that it might have been a strain of Xanthobacter (Padden et al., 1997). It used a wider range 

of substituted thiophenes than either X. tagetidis or Rhodococcus sp. strain TTD-1 

(Kanagawa and Kelly, 1987; Padden et al., 1997), with growth yields (g dry wt [mol 

substrate] –1) of: thiophene-2-carboxylate (20), thiophene-3-carboxylate (22), thiophene-2-

acetate (34), thiophene-3-acetate (20), 5-methyl-thiophene-2-carboxylate (24) and 3-methyl-

thiophene-2-carboxylate (14). These yields represented 8-20% conversion of substrate-

carbon to new biomass, which was similar to the carbon-conversion efficiency of 25% from 

thiophene-2-carboxylate by Rhodococcus strain TTD-1 (Kanagawa and Kelly, 1987). The 

difference between the yields of strain ET35 on thiophene-2-carboxylate and thiophene-2-

acetate was 14 g dry wt mol–1, (indicating that about 25% of the carbon of the acetate moiety 

of thiophene-2-carboxylate was converted to cell-carbon), and the growth yield on acetate 

alone was about 14 g dry wt mol–1, consistent with the contribution to growth of the acetate 

moiety of thiophene-2-acetate.  

 

Pseudomonas mendocina strain TSQ4 

 

A partial sequence of the 16S rRNA gene of this strain (552 bp; EU416231) showed 99.5% 

identity (549/552 aligned nucleotides) to the database sequence for Pseudomonas mendocina 

(CP000680.1) and 98.6% (544/552 nt) to P. pseudoalcaligenes (DQ071558). Strain TSQ4 
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exhibited pale pink fluorescence under UVA illumination. P. mendocina was not previously 

reported as methylotrophic, but does use C
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2-C8 primary alcohols (Smith et al., 2003). A 

facultatively methylotrophic strain of P. alcaligenes was described by Cercel (1999): the 

G+C content of the DNA of strain TSQ4 (64.2 mol%) was in the range for Pseudomonas (58-

69 mol%), and similar to that for P. alcaligenes (64-68 mol%; Palleroni, 2005). Unlike strain 

TSQ4, the strain described by Cercel (1999) was not pigmented, lacked catalase, and did not 

produce acetoin, but did possess gelatinase, and lysine decarboxylase. In other physiological 

respects (Table 3) the strains were similar.  

 

Klebsiella oxytoca strains MMA/F and MMA/1  

 

Strain MMA/F showed 99.6% 16S rRNA gene sequence (1126 bp; AY186181) identity to 

Klebsiella oxytoca (AY150697) and 99.2% identity to K. pneumoniae (AY369139). The 

partial 16S rRNA sequence of strain MMA/1 (606 bp; EF468682) showed 99.3% identity to 

the K. oxytoca and 99.0% to the K. pneumoniae sequences. These reference sequences for K. 

oxytoca and K. pneumoniae showed 99.6% identity to each other, so identification of strains 

MMA/F and MMA/1 as K. oxytoca, rather than K. pneumoniae, were deduced by their being 

positive for indole production, urease and lysine decarboxylase, which K. pneumoniae is not. 

In all other properties they were similar to each other (Tables 1 and 3), and their 

characteristics were consistent with those expected for Klebsiella: a capsulated, non-motile, 

Gram-negative rod, able to denitrify with copious production of N2 gas, positive for 

gelatinase and catalase, and negative for oxidase, arginine dihydrolase and ornithine 

decarboxylase. Like Klebsiella, growth was unaffected by 2.5% NaCl. Growth of each was 

supported with similar growth rates by MMA (µ = 0.21–0.23 h–1; growth yield 11 g dry 

wt/mol–1), methanol (µ = 0.31–0.35 h–1), DMA and TMA, but not by formate, MSA or 

DMSO2.   
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Strains with the characteristics of K. oxytoca could be isolated repeatedly in 

successive years, with one such strain differing from strain MMA/F only in being positive for 

use of citrate. These results thus confirm the reports of methylotrophic strains of Klebsiella 

by Nishio et al. (1975) and Cercel (1999). The presence of the gene for hexulose phosphate 

synthase in Klebsiella oxytoca strain Msa1 (GenBank AF282849), suggests that these 

organisms probably used the ribulose monophosphate pathway of formaldehyde assimilation. 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

270 

271 

272 

273 

 

Flavobacterium sp. strains MSA/1 and MMA/2 

 

Analysis of the 16S rRNA gene sequences of strains MSA/1 and MMA/2 showed both to be 

most closely related to Flavobacterium species. Strain MSA/1 (1291 bp; AY786182) showed 

highest identity (up to 96.5%) to the GenBank sequences of F. limicola, F. psychrolimnae 

and F. frigoris. A partial sequence from strain MMA/2 (379 bp; AY836678) showed 95% 

identity to F. geladicus (AJ440996) and 93.4% to F. degerlachei (AY771756). The two 

strains showed only 95% sequence identity to each other. The DNA G+C content of 26 

Flavobacterium species ranges between 29-38 mol% (Bernardet and Bowman, 2006), so the 

DNA G+C content of 34.4 and 30.2 mol% for strains MSA/1 and MMA/2 were consistent 

with identification as Flavobacterium species. Some 26 valid species of Flavobacterium were 

described by Bernardet and Bowman (2006), and up to 75 species have been reported 

(Euzéby, 2008). Precise identification of species requires a polyphyletic approach and is not 

simple (Bernardet et al., 2002; Bernardet and Bowman, 2006), so we have necessarily only 

characterized these strains to the genus level. Some older species, including some able to 

metabolize xenobiotics, have been shown more likely to be strains of Sphingomonas 

paucimobilis (Bernardet and Bowman, 2006), but the 16S rRNA gene sequences of strains 

MSA/1 and MMA/2 showed only 73-75% identity to that of S. paucimobilis (D16144). The 

two strains differed in their pigment colour, and their methylotrophic abilities (Tables 1 and 
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3). Strain MSA/1 grew on MSA (µ = 0.20 h–1; growth yield 11 g dry wt mol–1), methanol (µ 

= 0.31 h
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–1), and formate, but did not grow on MMA, DMA, TMA or DMSO2. In contrast, 

strain MMA/2 could not grow on MSA, but did grow on MMA (µ = 0.20 h–1), DMA and 

TMA, as well as methanol (µ = 0.28 h–1). Because of these differences, some enzymes of 

methylotrophy were assayed in each strain: as expected, strain MMA/2 grown on MMA 

contained MMA dehydrogenase activity, which was absent from MSA-grown strain MSA/1. 

Both contained active methanol, formaldehyde and formate dehydrogenases, as expected for 

methylotrophic growth. Hydroxypyruvate reductase was present in cell-free extracts of both 

at activities of about 60 nmol NADH oxidized min–1 (mg protein) –1. The only previous report 

of methylotrophy in a Flavobacterium strain was in an isolate from the Antarctic (Moosvi et 

al., 2005b). 

 

[TABLE 3] 

 

Conclusions and prospects 

 

Two novel findings from this study of the River Thames are (1) that among several hundred 

colonies of methylotrophs observed qualitatively on elective-agar plates and on plating from 

enrichment cultures, pink-pigmented facultative methylotrophs (Methylobacterium species; 

Kelley et al., 2004; Green, 2006) were uncommon; and (2) the range of randomly-selected 

pure cultures contained examples of heterotrophic genera already known to harbour 

methylotrophic strains, but also revealed methylotrophy in other genera. The latter included 

Sphingomonas, no pure cultures of which had previously been reported to exhibit 

methylotrophy, and genera from three phyla of the Bacteria with a limited previous history of 

methylotrophy (Klebsiella, Flavobacterium and Mycobacterium).  
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 This and other studies have now shown facultative methylotrophy in taxonomically 

unrelated members of the Alpha-, Beta- and Gammaproteobacteria, Actinobacteria and 

Firmicutes (Lidstrom, 2006). The view that “there has been an overemphasis on 

methylotrophy as a novel taxonomic trait” (Boucher et al., 2003; Jakobsen et al., 2006) is 

thus supported, and confirms that attempts to define “methylotrophs” as discrete taxonomic 

entities (Ghosh et al., 2007) are invalid. Methylotrophy is an ancestral metabolic trait 

(Brocks et al., 2003; Battistuzzi et al., 2004), and it is possible that genes to confer 

methylotrophic capacity were acquired by taxonomically diverse organisms through lateral 

gene transfer over geological time. A mechanism for such transformation could be plasmid-

borne gene transfer. A plasmid carrying genes for methanol dehydrogenase and some 

enzymes of C
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1-assimilation occurs in numerous strains of Bacillus methanolicus, and has 

been studied in great detail (Brautaset et al., 2004; Jakobsen et al., 2006). To date, 

comparable “methylotrophy plasmids” have not been shown in Gram negative 

methylotrophs, although some contain cryptic plasmids (Warner and Higgins, 1977; Lidstrom 

and Wopat, 1984). There has, however, been a report of a bacterium containing such a 

plasmid, capable of replication in both Gram negative and Gram positive bacteria 

(Meganathan and Ranganathan, 2008). This plasmid enabled transfer of methylotrophy for 

use of methanol, dimethylsulfoxide, DMS and methylamines to a wide variety of non-

methylotrophs. Such a plasmid in natural populations could explain the diaspora of 

methylotrophy across taxonomically-unrelated bacteria. Methylated compounds such as 

methylamines and DMS are ubiquitous in the environment, and their use as supplementary 

energy and carbon sources by bacteria normally regarded as “heterotrophic” has largely been 

overlooked to date. It is clearly worth further study. The phylogenetic origins of the enzymes 

of C1-metabolism in diverse heterotrophs would also be a rewarding study. 

 

Experimental procedures 
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The River Thames 

The River Thames, in the south-east of England, is 346 km long, of which 237 km is non-

tidal. The tidal section of the river (109 km) has a tidally-variable salinity ranging from about 

0.3 g l–1 (5 mM NaCl) at Barnes in S.W. London, through 0.6 g l–1 (10 mM) at London 

Bridge (central London), to 20 g l–1 (340 mM) near the estuary at Chapman Buoy. Tidally 

and seasonally, the depth of the river in the section sampled varies between about 2 to 9 m. 

The river is now one of the cleanest metropolitan rivers in the world, after having had a 

history of extreme pollution, especially during the nineteenth century: concern about 

pollution can even be traced back to the 14th century, but today seals and more than 100 fish 

species have returned to the central London reaches of the river. While there is still pollution, 

particularly when storm water overwhelms the sewage system, the natural oxygenation of the 

river is enhanced by two purpose built vessels the 'Thames Bubbler' (commissioned in 1989) 

and the 'Thames Vitality' (1997), which can pump 30 tonnes of oxygen per day directly into 

the River as necessary. Oxygenation on an emergency basis is also achieved by injection of 

hydrogen peroxide. 

 

The River Thames sampling sites 

Sediment and water samples were taken on numerous occasions from five locations on the 

River Thames during September to November, 2002-2005. Surface sediment samples with 

river water were taken at low tide from (1) “Tower Beach”, on the North Bank of the river, 

opposite the museum warship “HMS Belfast”, East of the Sugar Quay Wharf walkway; and 

the following South Bank sites: (2) a tidal sand bank West of Waterloo Bridge, adjacent to 

the Royal Festival Pier; (3) the tidal beach adjacent to Tower Bridge; (4) adjacent to 

“Gabriel’s Wharf”; and (5) adjacent to the pier in front of the Tate Modern Art Gallery. The 

median map reference location of these sites was around 51° 30' 20" N and 0° 05' 00" W. 
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Water temperatures during this period were 4-9˚C, at about pH 7.9, with salinity in the stretch 

of the river sampled was typically around 0.6-1.0 g l
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–1 (10-17 mM NaCl).  

Enrichment cultures were set up with one of six elective methylotrophic substrates: 

methanol, MMA, DMA, TMA, DMSO2, or MSA.  

 

Culture media, elective culture, and assessment of growth substrates  

The mineral salts medium contained (grams per litre in distilled water): KH2PO4 (1.5), 

Na2HPO4.2H2O (7.9), NH4Cl (0.8), MgSO4.7H2O (0.1), trace metal solution (10 ml), initial 

pH 7.3, was prepared as described by Kelly and Wood (1998), sterilized at 121˚C for 15 min. 

For some enrichment cultures on MMA, DMA or TMA, the NH4Cl was omitted, to force 

selection of organisms that used the methylamines as sources of nitrogen as well as carbon 

and energy. One-carbon growth substrates were supplied as (mM): MMA (20), DMA (10), 

TMA (10), methanol (20), DMSO2 (10), sodium MSA (15), or sodium formate (25). To test 

for growth on multicarbon substrates, trisodium citrate was used at 5 mM and other organic 

acids at 10 mM, monosaccharides and amino acids at 10 mM, and disaccharides at 5 mM. 

Agar media were prepared by addition of Oxoid agar No. 1 (15 g l–1). For culture with 

methanol on solid medium, agar mineral medium was inoculated and a sterile filter paper 

with 50 µl methanol placed in the inverted Petri dish lids, before incubating in a gas-tight 

box. For liquid culture in shake-flasks with methanol, the flasks were sealed with “Subaseal” 

vaccine stoppers. 

 Liquid medium enrichment cultures (50 ml in 250 ml Erlenmeyer flasks) on elective 

media were inoculated with about 10 g of sediment samples and shaken in an orbital shaker 

at 30˚C. These cultures were subcultured (10 % v/v, without transfer of sediment) into fresh 

medium after 4-6 days. After 2-4 transfers, aliquots were spread on to agar media for 

isolation of pure cultures by subculture of single colonies. 
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 Elective culture was also achieved by direct inoculation on to agar media: sediment (10 g) 

was shaken with sterile deionized water, the sediment allowed to settle, and aliquots of the 

suspension spread on media with MMA, DMA or TMA. Plates were incubated aerobically 

for up to eight days and the range of colony types assessed. Colonies were repeatedly 

subcultured on to new plates to obtain pure cultures. These cultures were also plated on to 

substrate-free agar to ensure that growth was methylotrophic and not simply due to use of the 

agar or its impurities. 

 Growth substrates used by the pure culture isolates were assessed at 25˚C by inoculation 

into 5 ml medium in 25 ml sterile plastic Universal tubes and incubated without shaking for 

up to 14 days. Growth was assessed visually and as OD440nm after vortex-mixing of the 

cultures to obtain homogeneous suspensions. Growth rates and growth yields of some 

organisms were determined in shake-flask cultures by following increase in OD440nm at 

different temperatures with various substrates. Growth with KNO3 (25 mM) as respiratory 

oxidant was tested in completely filled tubes with sucrose or methanol as substrate. Nitrogen 

production (as gas bubbles) was checked visually; and determinations made of nitrate 

disappearance and nitrite formation (Cawse 1987; Kelly and Wood 1998). Aerobic growth 

with alternative nitrogen sources was assessed on sucrose through several subcultures in the 

absence of NH4Cl with KNO3, MMA, DMA, TMA, cyanate, thiocyanate, or EDTA, each at 

2.5 mM. Tolerance of NaCl was tested in cultures on sucrose with salt concentrations 

between 107-860 mM. Growth over a range of temperatures was assessed at 4, 15, 20, 25, 30, 

37 and 45˚C. All growth determinations were carried out at least in duplicate, with repeat 

experiments for some tests. 

 

Characterization of pure culture isolates of methylotrophic bacteria 

Gram staining, acid-fast staining, spore and capsule stains, motility in hanging drops, and 

catalase, oxidase and phosphatase activities were all assessed by standard methods (Schaeffer 
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and Fulton, 1933; Barrow and Feltham, 1995). Flagella staining used the method of Kodaka 

et al. (1982). Biochemical characterization was done using API®20E test strips (BioMérieux 

SA, Marcy-l’Etoile, France) according to the manufacturer’s instructions. Assay of enzymes 

involved in C
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1-substrate metabolism all used previously described methods (Anesti et al., 

2005; Moosvi et al., 2005a). Scanning electron microscopy of gold sputter-coated 

preparations was carried out by the Electron Microscopy Unit of King’s College London. For 

determination of the G+C content of chromosomal DNA, about 0.5 g wet-weight of bacteria 

were used for DNA isolation (Beji et al., 1987), which was then resuspended in 100 µl sterile 

deionized water for assay. The purified DNA samples showed high purity A260nm/A280nm ratios 

of 1.8-2.0. The G+C content was determined by the acetic acid method of Fredericq et al. 

(1961), assayed in triplicate to give virtually identical replicate values. 

 

Determination of the sequences of the 16S ribosomal RNA genes of some isolates.  

Genomic DNA was isolated and 16S ribosomal gene sequences determined as described by 

Schäfer (2007). Phylogenetic relationships of the sequences were determined using the 

BLASTN and BLAST2 on-line programs of the NCBI (www.ncbi.nlm.nih.gov/blast), and 

from neighbor-joining distance trees produced using BLAST pairwise alignments. Accession 

numbers for the 16S ribosomal RNA gene sequences have been deposited with GenBank as: 

strain ET35 (EU416229), strain DSQ3 (EU416230), strain MSQ5 (EU815829), strain TSQ4 

(EU416231), strain MMA/F (AY186181), strain MMA/1 (EF468682), strain MSA/1 

(AY786182), and strain MMA/2 (AJ836678). 
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Legends to Figures  648 

649 

650 

651 

652 

653 

654 

655 

656 

 

Fig. 1. Scanning electron micrograph of Mycobacterium fluoranthenivorans strain DSQ3. 

Bar is 5 µm. 

  

Fig. 2. Scanning electron micrograph of Rhodococcus erythropolis strain DSQ4. Bar is 5 µm.  

 

Fig. 3. Scanning electron micrograph of Brevibacterium sp. strain MSQ5. Bar is 5 µm. 
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