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Improved Energy Detector for Random Signals in Gaussian Noise
Yunfei Chen, Member, IEEE

Abstract—New and improved energy detector for random
signals in Gaussian noise is proposed by replacing the squaring
operation of the signal amplitude in the conventional energy
detector with an arbitrary positive power operation. Numerical
results show that the best power operation depends on the
probability of false alarm, the probability of detection, the
average signal-to-noise ratio or the sample size. By choosing
the optimum power operation according to different system
settings, new energy detectors with better detection performances
can be derived. These results give useful guidance on how to
improve the performances of current wireless systems using the
energy detector. It also confirms that the conventional energy
detector based on the generalized likelihood ratio test using the
generalized likelihood function is not optimum in terms of the
detection performance.

Index Terms—Energy detector, probability of detection, prob-
ability of false alarm, spectrum sensing.

I. INTRODUCTION

THE energy detector is a very useful non-coherent detector
for signals corrupted by Gaussian noise [1]. It detects the

presence of a signal by measuring its energy and comparing
the measured energy with a predetermined threshold. The
measurement and the comparison require no channel state
information. Thus, the energy detector has a very simple
structure, and it has been widely used in wireless com-
munications systems. For example, in ultra-wide bandwidth
systems with pulse position modulation, the energy detector
is a good alternative to the Rake receiver [2] - [4] and the
transmitted-reference receiver [5] in applications where simple
receiver structures are preferred [6]- [8]. As well, in cognitive
radio systems, although the energy detector underperforms the
matched filtering detector and the feature-based detector [9],
[10], it is often used in spectrum sensing applications where
a quick sensing decision is required, as the energy detector
offers great simplicity while the feature-based detector often
needs a large sample size to calculate cyclostationarity, covari-
ance or eigenvalues, and the matched filtering detector is often
unrealistic. The performance of the energy detector can be
further improved by adopting collaboration between different
cognitive radio users [11], [12].

The original energy detector proposed in [1] dealt with the
detection of an unknown deterministic signal buried in Gaus-
sian noise. In [13] and [14], this detector has been extended to
detect a random signal corrupted by Gaussian noise. However,
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all of these results are based on the generalized likelihood
ratio test method, where the generalized likelihood function
is maximized [15]. In some communications applications, the
probability of erroneous detection or the probability of correct
detection are of more interest. The detector that maximizes the
generalized likelihood function may not be the same as the
detector that maximizes the probability of correct detection
or that minimizes the probability of erroneous detection. This
gives motivation to an investigation of energy detectors that
are better than those presented in [1], [13], [14].

In this letter, improved energy detector for random signals
corrupted by Gaussian noise is derived. The derivation is based
on a simple modification to the conventional energy detector
in [1], [13], [14] by replacing the squaring operation of the
signal amplitude with an arbitrary positive power operation.
Numerical results show that the best power operation of the
signal amplitude depends on the probability of false alarm,
the probability of detection, the average signal-to-noise ratio
(ASNR) or the sample size, but it generally does not equal to
two as in the conventional energy detector.

II. DERIVATION

Consider a binary hypothesis testing problem with

𝐻0 : 𝑦𝑖 = 𝑤𝑖

𝐻1 : 𝑦𝑖 = 𝑠𝑖 + 𝑤𝑖 (1)

where 𝐻0 represents the hypothesis that the signal is ab-
sent, 𝐻1 represents the hypothesis that the signal is present,
𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 index the 𝑛 signal samples, 𝑤𝑖 is additive
white Gaussian noise with mean zero and variance 𝜎2, and
𝑠𝑖 is the fading signal. In a binary pulse position modulated
(BPPM) ultra-wide bandwidth (UWB) system, the bit interval
is divided into two parts. If the data bit is 0, the signal
will be transmitted in the first part of the bit interval. If
the data bit is 1, an additional time shift will be introduced
such that the signal will be transmitted in the second part of
the bit interval. At the receiver, the energy of the first part
is compared with that of the second part to determine the
presence of the signal, and therefore, the data bit transmitted
[8]. In this case, 𝑦𝑖 in 𝐻0 represents the received signal for
the part without signal in the bit interval, while 𝑦𝑖 in 𝐻1

represents the received signal for the part with signal in the
bit interval. In a cognitive radio system, 𝑦𝑖 represents the
signal from the primary user. Assume that the random signal
follows a Gaussian distribution with mean zero and variance
𝛼2. Also, assume that the signal samples are independent. In
this letter, real signals are considered. The results can be easily
extended to complex signals. As well, the noise samples 𝑤𝑖,
𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛, are assumed independent.
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From (1), the joint probability density function (PDF) of
the samples can be derived as

𝑝(y∣𝐻0) =
1(√

2𝜋𝜎2
)𝑛 𝑒

−
∑𝑛

𝑖=1 𝑦2𝑖
2𝜎2 (2)

under 𝐻0 and

𝑝(y∣𝐻1, s) =
1(√

2𝜋𝜎2
)𝑛 𝑒

−
∑𝑛

𝑖=1(𝑦𝑖−𝑠𝑖)
2

2𝜎2 (3)

under 𝐻1, conditioned on the unkown signal amplitudes s,
where y = [𝑦1 𝑦2 ⋅ ⋅ ⋅ 𝑦𝑛] and s = [𝑠1 𝑠2 ⋅ ⋅ ⋅ 𝑠𝑛]. Using
the generalized likelihood ratio test approach together with the
Gaussian distribution of 𝑠𝑖, the conventional energy detector
can be derived as [13], [14]

𝐻1

𝑊 = 1
𝑛

∑𝑛
𝑖=1

(
𝑦𝑖

𝜎

)2 ≷ 𝑇
𝐻0

(4)

where the signal sample 𝑦𝑖 is normalized with respect to
the noise standard deviation and then squared, and 𝑇 is the
detection threshold to be determined. Using (4), the PDF of
𝑊 under 𝐻0 can be shown to follow a chi-square distribution
or a Gamma distribution

𝑝𝑊 ∣𝐻0
(𝑥) =

1

𝜃𝑘0
0 Γ(𝑘0)

𝑥𝑘0−1𝑒
− 𝑥

𝜃0 , 𝑥 ≥ 0 (5)

with shape parameter 𝑘0 = 𝑛
2 and scale parameter 𝜃0 = 2

𝑛 , and
the PDF of 𝑊 under 𝐻1 also follows a Gamma distribution

𝑝𝑊 ∣𝐻1
(𝑥) =

1

𝜃𝑘1
1 Γ(𝑘1)

𝑥𝑘1−1𝑒
− 𝑥

𝜃1 , 𝑥 ≥ 0 (6)

with shape parameter 𝑘1 = 𝑛
2 and scale parameter 𝜃1 = 2

𝑛 (1+
𝛾), where Γ(⋅) denotes the complete Gamma function and
𝛾 = 𝛼2

𝜎2 is the ASNR [13], [14]. Denote

𝑃𝐹 = 𝑃𝑟{𝑊 > 𝑇 ∣𝐻0} (7)

as the probability of false alarm and

𝑃𝐷 = 𝑃𝑟{𝑊 > 𝑇 ∣𝐻1} (8)

as the probability of detection. The receiver operating char-
acteristics (ROC) curve is the most important performance
measure for a hypothesis testing problem. It describes the re-
lationship between 𝑃𝐹 and 𝑃𝐷. Using (5) in (7), the detection
threshold can be determined according to the Neyman-Pearson
rule as

𝑇 = 𝐹−1
𝑊 ∣𝐻0

(1− 𝑃𝐹 , 𝑘0, 𝜃0) (9)

and the ROC curve for the conventional energy detector can
be derived using (6) and (9) in (8) as

𝑃𝐷 = 1− 𝐹𝑊 ∣𝐻1
(𝑇, 𝑘1, 𝜃1)

= 1− 𝐹𝑊 ∣𝐻1
(𝐹−1

𝑊 ∣𝐻0
(1− 𝑃𝐹 , 𝑘0, 𝜃0), 𝑘1, 𝜃1) (10)

where 𝐹𝑊 ∣𝐻1
(𝑥, 𝑘1, 𝜃1) =

∫ 𝑥

0
1

𝜃
𝑘1
1 Γ(𝑘1)

𝑡𝑘1−1𝑒
− 𝑡

𝜃1 𝑑𝑡 is the

cumulative distribution function (CDF) of a Gamma dis-
tribution with shape parameter 𝑘1 and scale parame-
ter 𝜃1, and 𝐹−1

𝑊 ∣𝐻0
(𝑥, 𝑘0, 𝜃0) is the inverse function of

𝐹𝑊 ∣𝐻0
(𝑥, 𝑘0, 𝜃0) =

∫ 𝑥

0
1

𝜃
𝑘0
0 Γ(𝑘0)

𝑡𝑘0−1𝑒−
𝑡
𝜃0 𝑑𝑡 with shape pa-

rameter 𝑘0 and scale parameter 𝜃0. The detector in (4)
maximizes the generalized likelihood function, as can be seen
from [15, eq. (7.2)], but it doesn’t necessarily minimize the
probability of false alarm or maximize the probability of
detection in (10).

In order to improve the detection performance of the con-
ventional energy detector, in this letter, a new energy detector
is proposed as

𝐻1

𝑊 ′ = 1
𝑛

∑𝑛
𝑖=1

(
∣𝑦𝑖∣
𝜎

)𝑝

≷ 𝑇 ′

𝐻0

(11)

where 𝑝 > 0 is an arbitrary constant and 𝑇 ′ is the detection
threshold to be determined. Thus, the only difference between
(4) and (11) is that the squaring operation in (4) is replaced
by an arbitrary positive power operation of 𝑝 in (11) and
that the detection threshold is changed accordingly. One sees
that the conventional energy detector is a special case of the
new energy detector when 𝑝 = 2. In this case, the decision
variable 𝑊 ′ doesn’t follow a Gamma distribution in general.
However, as will be shown later, 𝑊 ′ can be well approximated
as a Gamma random variable by matching the mean and
the variance. This approximation enables us to determine the
detection threshod 𝑇 ′ for the new detector in (11), which is
otherwise difficult to obtain without the distribution of 𝑊 ′.
Using [16, eq. 3.462.9], one has the mean and the variance of
𝑊 ′ as

𝐸{𝑊 ′∣𝐻0} =
2𝑝/2√
𝜋
Γ

(
𝑝+ 1

2

)

𝑉 𝑎𝑟{𝑊 ′∣𝐻0} =
2𝑝Γ

(
2𝑝+1

2

)
𝑛
√
𝜋

− 2𝑝

𝑛𝜋
Γ2

(
𝑝+ 1

2

)
(12)

under 𝐻0, and the mean and the variance of 𝑊 ′ as

𝐸{𝑊 ′∣𝐻1} =
2𝑝/2√
𝜋
Γ

(
𝑝+ 1

2

)(√
1 + 𝛾

)𝑝

𝑉 𝑎𝑟{𝑊 ′∣𝐻1} =
2𝑝 (1 + 𝛾)

𝑝
Γ
(
2𝑝+1

2

)
𝑛
√
𝜋

− 2𝑝 (1 + 𝛾)
𝑝

𝑛𝜋
Γ2

(
𝑝+ 1

2

)
(13)

under 𝐻1. Using (12) and (13) in a Gamma approximation,
one has the PDF of 𝑊 ′ under 𝐻0 as a Gamma distribution
given in (5) but with shape parameter and scale parameter

𝑘′0 =
𝐸2{𝑊 ′∣𝐻0}
𝑉 𝑎𝑟{𝑊 ′∣𝐻0} = 𝑛 ⋅ Γ2

(
𝑝+1
2

)
Γ
(
2𝑝+1

2

)√
𝜋 − Γ2

(
𝑝+1
2

)

𝜃′0 =
𝑉 𝑎𝑟{𝑊 ′∣𝐻0}
𝐸{𝑊 ′∣𝐻0} =

2𝑝/2

𝑛
⋅
√
𝜋Γ

(
2𝑝+1

2

)− Γ2
(
𝑝+1
2

)
Γ
(
𝑝+1
2

)√
𝜋

(14)

and the PDF of 𝑊 ′ under 𝐻1 as a Gamma distribution given
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in (6) but with shape parameter and scale parameter

𝑘′1 =
𝐸2{𝑊 ′∣𝐻1}
𝑉 𝑎𝑟{𝑊 ′∣𝐻1}

= 𝑛 ⋅ Γ2
(
𝑝+1
2

)
Γ
(
2𝑝+1

2

)√
𝜋 − Γ2

(
𝑝+1
2

)
𝜃′1 =

𝑉 𝑎𝑟{𝑊 ′∣𝐻1}
𝐸{𝑊 ′∣𝐻1}

=
2𝑝/2(1 + 𝛾)𝑝/2

𝑛
⋅
√
𝜋Γ

(
2𝑝+1

2

)− Γ2
(
𝑝+1
2

)
Γ
(
𝑝+1
2

)√
𝜋

. (15)

Finally, using (14) and (15), one has a closed-form expression
for the detection threshold as

𝑇 ′ = 𝐹−1
𝑊 ′∣𝐻0

(1− 𝑃𝐹 , 𝑘
′
0, 𝜃

′
0) (16)

and the ROC curve for the new detector as

𝑃𝐷 = 1− 𝐹𝑊 ′∣𝐻1
(𝑇 ′, 𝑘′1, 𝜃

′
1)

= 1− 𝐹𝑊 ′∣𝐻1
(𝐹−1

𝑊 ′∣𝐻0
(1− 𝑃𝐹 , 𝑘

′
0, 𝜃

′
0), 𝑘

′
1, 𝜃

′
1) (17)

where 𝐹𝑊 ′∣𝐻1
(⋅, ⋅, ⋅) and 𝐹−1

𝑊 ′∣𝐻0
(⋅, ⋅, ⋅) are similar to

𝐹𝑊 ∣𝐻1
(⋅, ⋅, ⋅) and 𝐹−1

𝑊 ∣𝐻0
(⋅, ⋅, ⋅) defined before, respectively,

except that 𝑘0, 𝑘1, 𝜃0 and 𝜃1 in 𝐹𝑊 ∣𝐻1
(⋅, ⋅, ⋅) and 𝐹−1

𝑊 ∣𝐻0
(⋅, ⋅, ⋅)

are replaced by 𝑘′0, 𝑘
′
1, 𝜃

′
0 and 𝜃′1 given in (14) and (15) in this

case. One sees that the value of 𝑝 is implicitly related to the
probability of false alarm 𝑃𝐹 , the probability of detection 𝑃𝐷 ,
the ASNR 𝛾, and the sample size 𝑛 through (17). One can
find the optimum value of 𝑝 that maximizes the probability
of detection by using (17) at fixed values of 𝑃𝐹 , 𝛾 and 𝑛.
Then, the value of 𝑝 that achieves the maximum probability
of detection is a function of 𝑃𝐹 , 𝛾 and 𝑛. One can also find
the optimum value of 𝑝 that minimizes the probability of false
alarm by using (17) at fixed values of 𝑃𝐷, 𝛾 and 𝑛. Then,
the value of 𝑝 that achieves the minimum probability of false
alarm is a function of 𝑃𝐷 , 𝛾 and 𝑛. As well, one can find the
optimum value of 𝑝 that minimizes the sample size 𝑛 by using
(17) at fixed values of 𝑃𝐹 , 𝑃𝐷 and 𝛾. Then, the value of 𝑝
that achieves the minimum sample size is a function of 𝑃𝐷 ,
𝑃𝐹 and 𝛾. Thus, (17) is a very general expression that can be
used in different applications. An analytical expression for the
optimum value of 𝑝 is difficult to obtain, if not impossible. In
the next section, the optimum values of 𝑝 will be examined
at different parameters of 𝑃𝐹 , 𝑃𝐷 , 𝛾 or 𝑛 through numerical
calculations.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, the performances of the conventional energy
detector and the improved energy detector are compared. In
order to conduct the comparison, the accuracy of the Gamma
approximation to the CDF of 𝑊 ′ is verified by simulation
first. Then, the optimum values of 𝑝 are determined.

Figs. 1 and 2 compare the simulated CDF of 𝑊 ′ with
the Gamma approximate CDF of 𝑊 ′ under 𝐻0 and 𝐻1,
respectively. The simulated CDF is obtained by using the
MATLAB function ’ecdf’. One sees from Figs. 1 and 2
that the Gamma approximation works well in most cases
considered. The accuracy of the approximation increases when
𝑝 decreases, 𝑛 increases or 𝛾 decreases. The value of the
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Fig. 1. Comparison of the simulated CDF and the Gamma approximation
for 𝑊 ′ under 𝐻0 when 𝛾 = 0 𝑑𝐵.
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Fig. 2. Comparison of the simulated CDF and the Gamma approximation
for 𝑊 ′ under 𝐻1 when 𝑛 = 10.

ASNR 𝛾 has the largest effect on the approximation error.
Since practical ultra-wide bandwidth systems often operate at
a low SNR to achieve low power consumption and the licensed
user’s signal is usually weak in cognitive radio systems, the
accuracy of the Gamma approximation may be enough for
practical energy detectors. Moreover, this accuracy can be
improved by using more signal samples in the detection.

Fig. 3 shows the optimum value of 𝑝 that maximizes the
probability of detection vs. 𝑃𝐹 for different fixed values of
𝛾 and 𝑛, based on (17). The value of 𝑝 is tested from 0.01
to 10 with a step size of 0.01. From Fig. 3, one sees that
the optimum value of 𝑝 decreases as 𝑃𝐹 increases. The rate
of the decrease is approximately constant when 𝑃𝐹 is small.
However, when 𝑃𝐹 is approaching 1, the optimum value of 𝑝
drops quickly. One also sees that, when 𝛾 = 10 𝑑𝐵, none of
the optimum values of 𝑝 equal to two, corresponding to the
conventional energy detector. When 𝛾 = 0 𝑑𝐵, the optimum
value of 𝑝 equals to two for 𝑃𝐹 = 10−1. From (7), the
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value of 𝑃𝐹 is the probability that the cognitive radio decides
that the licensed band is occupied while it is actually free.
This represents a missed opportunity for the cognitive radio
to transmit its data in the licensed band. From the cognitive
radio’s perspective, 𝑃𝐹 should be set as small as possible and
𝑃𝐹 = 10−1 may be too high in practice. Thus, practical values
of 𝑃𝐹 may be less than 10−1 and the optimum 𝑝 doesn’t equal
to two in these cases either. One concludes from Fig. 3 that
the conventional energy detector doesn’t give the maximum
probability of detection in most cases considered. Fig. 4 shows
the optimum value of 𝑝 that maximizes the probability of
detection vs. 𝛾 for different fixed values of 𝑃𝐹 and 𝑛, as
well as the optimum value of 𝑝 that minimizes the probability
of false alarm vs. 𝛾 for different fixed values of 𝑃𝐷 and 𝑛,
based on (17). From Fig. 4, one sees that the optimum value
of 𝑝 maximizing 𝑃𝐷 decreases as 𝛾 increases, and the rate
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Fig. 5. Comparison of the ROCs for the conventional energy detector and
the new energy detector when 𝑛 = 10 for different values of 𝛾.

of the decrease is higher at small values of 𝛾 than that at
large values of 𝛾. On the other hand, the optimum value of
𝑝 minimizing 𝑃𝐹 increases as 𝛾 increases in most cases, and
the rate of the increase is lower at small values of 𝛾 than
that at large values of 𝛾. The optimum value of 𝑝 maximizing
𝑃𝐷 approaches some common floor when 𝛾 is large, while the
optimum value of 𝑝 minimizing 𝑃𝐹 approaches some common
floor when 𝛾 is small. Again, in most cases, the optimum
value of 𝑝 doesn’t equal to two as in the conventional energy
detector. One concludes from Figs. 3 and 4 that the optimum
value of 𝑝 depends on 𝑃𝐹 , 𝑃𝐷, 𝛾 or 𝑛. In practical systems,
𝑃𝐹 , 𝑃𝐷 and 𝑛 are often predetermined. The value of 𝛾 can
be estimated using SNR estimation methods proposed in [17]
and [18], depending on the system structures. Using the known
𝑃𝐹 , 𝑃𝐷 , 𝑛 and the estimated 𝛾, together with graphs similar
to Figs. 3 and 4, one can determine the optimum value of 𝑝
for operation in the new energy detector.

Fig. 5 compares the ROC curve of the conventional energy
detector with that of the new energy detector with optimized
𝑝 from (17). The theoretical results for the conventional and
new energy detectors are obtained by using (10) and (17),
respectively. The simulation results for the conventional and
new energy detectors are obtained by using (9) and (16)
in (4) and (11), respectively. One sees that the new energy
detector with optimized 𝑝 outperforms the conventional energy
detector in all the cases considered. However, this is not
obvious for 𝛾 = 10 𝑑𝐵, where the difference between the
conventional energy detector and the new energy detector
is graphically negligible. The performance gain increases as
the probability of false alarm decreases, and it is significant
when 𝑃𝐹 is less than or equal to 10−3. This implies that
one may choose 𝑃𝐹 to be smaller than or equal to 10−3 in
order to achieve significant gain by using the optimized energy
detector, or one may choose 𝑃𝐹 to be larger than 10−3 in
order to avoid significant loss by using the conventional energy
detector. One also sees that the theoretical performance gain
from the Gamma approximation overestimates the simulated
performance gain from the true distribution when 𝛾 = 0 𝑑𝐵,
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Fig. 6. Comparison of the bit error rates for the conventional energy detector
and the new energy detector using different fixed values of 𝑝 for a BPPM
UWB system in the IEEE CM1 channel.

while it underestimates the simulated performance gain when
𝛾 = −10 𝑑𝐵, at small values of 𝑃𝐹 . This is mainly caused
by the approximation errors in (14) and (15), which give
values of 𝑝 that optimize (17) but not necessarily the true
performance. However, it is crucial to apply approximation
to the distribution of 𝑊 ′ in order to derive the threshold 𝑇 ′

for detection. One may use more accurate approximations to
the distribution of 𝑊 ′ to reduce the approximation errors.
The performance gain always exists, even using a fixed non-
optimized 𝑝 in some cases, as will be shown later. In the case
of low operating ASNR, the theoretical performance gain may
be considered as a lower bound of the true gain.

Fig. 6 shows the bit error rate performance of the new
energy detector for a BPPM UWB system using the IEEE
CM1 channel model [21]. In the simulation, the pulse duration
is set to 2 ns, while the additional time shift is set to 100
ns and the bit interval is set to 200 ns to avoid intersymbol
interferences, as the energy detector is often used in UWB
applications where reliability is more important than the data
rate [6] - [8]. A second-order Gaussian monocycle is used.
The number of channel realizations tested is 250, and the
number of data bits tested is 1000. Unlike the new energy
detector in Fig. 5 that uses the optimized 𝑝 for each ASNR
value, in Fig. 6, a fixed 𝑝 is tested for all the values of SNR.
Thus, the result is not based on (17), and it doesn’t depend
on the approximation accuracy. One sees that, when 𝛾 is less
than 0 dB, the performance difference is negligible. However,
when 𝛾 is larger than 0 dB, the larger the value of 𝑝 is, the
better the new energy detector will perform. The conventional
energy detector has a larger bit error rate than the new energy
detector with 𝑝 fixed at 2.5 to 4. Thus, the new energy
detector outperforms the conventional energy detector even
when a fixed 𝑝 is used without any knowledge of the ASNR
to determine the optimum 𝑝. The conventional energy detector
is based on the maximization of the generalized likelihood
function, as can be seen from [15, eq. (7.2)], while the new
energy detector is based on the maximization of the probability

of detection or the minimization of the probability of false
alarm, as can be seen from (17). Figs. 3 - 6 in this letter
prove that they are not the same in general.

The purpose of this letter is to reduce the performance gap
between the conventional non-coherent energy detector and the
coherent detector. This can be achieved by trying something
between the generalized likelihood function and the decision
variable. In this letter, instead of taking a squaring operation
over the received sample, one takes an arbitrary positive power
operation. In this sense, the idea is ad hoc. However, the
obtained results are still encouraging. The performance gain of
the new energy detector over the conventional energy detector
might be caused by the fact that a squaring operation may
understate the signal component in the sample when the SNR
is large and overstate the signal component in the sample when
the SNR is small. The above results show that changing the
squaring operation to an arbitrary positive power operation is
effective in improving the performance of the conventional
energy detector. Interestingly, similar methods have also been
used in equalization and power control to achieve better
performances [19], [20].

IV. CONCLUSION

The detection performance of the conventional energy de-
tector has been improved by choosing the value of the power
operation of the signal sample according to the system set-
tings. Numerical results have shown that the optimum power
operation depends on the probability of false alarm, the ASNR
as well as the sample size. Using the relationships between
the optimum power operation and the probability of false
alarm, the ASNR and the sample size, new energy detectors
that outperform the conventional energy detector have been
derived. Future works include examination of other non-
linear forms of the signal samples to improve the detection
performance of the energy detector further.
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