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SELFISH TRAFFIC ALLOCATION FOR SERVER FARMS∗

ARTUR CZUMAJ† , PIOTR KRYSTA‡ , AND BERTHOLD VÖCKING§

Abstract. We study the price of selfish routing in noncooperative networks like the Internet.
In particular, we investigate the price of selfish routing using the price of anarchy (a.k.a. the coordi-
nation ratio) and other (e.g., bicriteria) measures in the recently introduced game theoretic parallel
links network model of Koutsoupias and Papadimitriou. We generalize this model toward general,
monotone families of cost functions and cost functions from queueing theory. A summary of our main
results for general, monotone cost functions is as follows: 1. We give an exact characterization of all
cost functions having a bounded/unbounded price of anarchy. For example, the price of anarchy for
cost functions describing the expected delay in queueing systems is unbounded. 2. We show that
an unbounded price of anarchy implies an extremely high performance degradation under bicriteria
measures. In fact, the price of selfish routing can be as high as a bandwidth degradation by a factor
that is linear in the network size. 3. We separate the game theoretic (integral) allocation model
from the (fractional) flow model by demonstrating that even a very small or negligible amount of
integrality can lead to a dramatic performance degradation. 4. We unify recent results on selfish
routing under different objectives by showing that an unbounded price of anarchy under the min-max
objective implies an unbounded price of anarchy under the average cost objective and vice versa.
Our special focus lies on cost functions describing the behavior of Web servers that can open only a
limited number of Transmission Control Protocol (TCP) connections. In particular, we compare the
performance of queueing systems that serve all incoming requests with servers that reject requests in
case of overload. Our analysis indicates that all queueing systems without rejection cannot give any
reasonable guarantee on the expected delay of requests under selfish routing even when the injected
load is far away from the capacity of the system. In contrast, Web server farms that are allowed to
reject requests can guarantee a high quality of service for every individual request stream even under
relatively high injection rates.
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1. Introduction. The price of anarchy (also known as the coordination ratio)
is a game theoretic measure introduced by Koutsoupias and Papadimitriou in [16] to
reflect the price of selfish routing in noncooperative network systems like the Internet.
In large-scale communication networks it is typically impossible to regulate network
traffic to achieve an optimal performance of the system. In such networks, a common
strategy of individual users is to follow the most rational approach, that is, to behave
selfishly to maximize its own profits. This motivates investigations in game theoretical
flavor of the relationship between systems in which each user is aware of the situation
facing all other users and trying to optimize its own strategy (that is, being in a Nash
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equilibrium) and optimal strategies in such systems.
It is well known that Nash equilibria do not always optimize the overall perfor-

mance. Therefore, in order to understand the phenomenon of noncooperative sys-
tems, Koutsoupias and Papadimitriou [16] initiated investigations of the behavior of
the price of anarchy (or the worst-case coordination ratio), which is the ratio between
the worst possible Nash equilibrium and the social (i.e., overall) optimum. In other
words, this analysis seeks the price of uncoordinated individual utility-maximizing de-
cisions (hence “the price of anarchy”). Koutsoupias and Papadimitriou [16] proposed
that model to study routing problems in which a set of several agents want to send
traffic from the sources to destinations along parallel links with linear cost functions.

In this paper, we generalize the results for the routing problems for the model
with parallel links and provide the first thorough study of the price of anarchy under
more realistic cost functions. Our goal is to investigate families of cost functions that
are defined as generally as possible and our main motivation comes from the problem
of allocating traffic in the model of a Web server farm, for which parallel links are
the natural model. We consider agents maintaining Web server farms and offering
the service of data storage for content providers (e.g., to store large images and other
embedded files, which usually make up most of the traffic on the Internet). The
request data streams, which would normally go to the content providers, must now
be redirected to the new Web servers. This defines a load balancing problem in which
streams must be mapped to the servers such that a high quality of service can be
guaranteed for every stream. An important aspect that has to be taken into account
is that different streams might have different characteristics, e.g., caused by different
file lengths. For practical studies that investigate the reasons for and impacts of this
variable traffic, see, e.g., [4, 6, 7, 22, 23].

Our special focus lies on cost functions describing the behavior of Web servers that
can open only a limited number of Transmission Control Protocol (TCP) connections.
In particular, we compare the performance of queueing systems that serve all incoming
requests with servers that reject requests in case of overload. Our analysis indicates
that all queueing systems without rejection cannot give any reasonable guarantee on
the expected delay of requests under selfish routing even when the injected load is
far away from the capacity of the system. In contrast, the systems that are allowed
to reject requests can guarantee a high quality of service for every individual request
stream, even under relatively high injection rates.

We present the first exhaustive study of the price of anarchy for the parallel links
model under more realistic cost functions, with the main emphasis on the applications
for Web server farms. In most of our studies, we assume that data streams can be
described by a single weight (depending on the rate of requests and the expected
length of the requested files). In this case, the load on a server is defined to be the
sum of the weights of the streams mapped to the server. However, the cost occurring
at a server can depend in a nontrivial way on this load; e.g., we consider general,
continuous, and nondecreasing cost functions.

Furthermore, we generalize our analysis to the study of selfish routing for parallel
links under more complex cost functions that depend not only on the sum of the
injected rates but also on distributions of session length that might be different for
different streams. We point out that our approach is not completely general in the
sense that it still assumes Poisson arrivals of requests in every individual stream.
However, we are able to derive the first rigorous analysis for selfish routing taking
into account the heterogeneous nature of Internet traffic in the form of general session
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length distributions.

Outline of the paper. Section 2 contains the description of a part of the model
that is not related to game theory, whereas section 3 introduces concepts related to
game theory. Previous and related work is outlined in section 4. Section 5 presents our
results concerning general monotone cost functions, and section 6 contains our results
about queueing theoretical cost functions. Finally, section 7 has some concluding
remarks.

We hold in this paper the policy that in order to follow the discussion of our new
results and their consequences, the reader does not need to go into the proofs of these
results presented in sections 5 and 6. Thus, reading the content of sections 5 and 6,
skipping the proofs therein, gives a precise description of our results.

2. Description of the routing problem. The routing problem described above
can be formally defined as a scheduling problem with m servers and n data streams.
The set of servers and streams is denoted by [m] and [n], respectively, where [N ]
stands for the set {1, 2, . . . , N}. The data streams shall be mapped to the servers
such that a cost function (describing, for example, waiting time or denial of service) is
minimized. The particular cost functions that we consider will depend on the traffic
and server model that will be defined next in this section. In general, we will compare
the solution (i.e., a mapping of the streams to servers) achieved by selfish agents with
the optimal solution to a min-max optimization problem based on the notion of the
price of anarchy that will be defined later in this section.

2.1. Traffic model. Traffic streams are assumed to be sequences of requests for
service. We consider sequences of stochastic nature. We assume that requests are
issued by independent customers and are Poisson. Let ri denote the injection rate of
data stream i. The lengths of the sessions of stream i are determined by a probability
distribution Di, i.e., the service time or session length distribution of stream i. We
define the weight of stream i to be λi = ri ·E[ session length with respect to Di ].

A server farm is a set of m servers, all using the same policy to serve re-
quests. Different servers, however, may have different performance depending on
their bandwidths. We denote the bandwidth of server j by bj . We assume that
b1 ≥ b2 ≥ · · · ≥ bm, unless we explicitly state a precise assumption on the values of
bj ’s. Also, unless otherwise stated, we will assume that streams are unsplittable; that
is, every stream must be mapped to exactly one server.

2.2. Server models: Sequential and parallel servers. We distinguish be-
tween two general server farm models, one consisting of m sequential servers, each of
which has a single service channel that can serve requests one after the other, and
another of m parallel servers, each of which has multiple service channels so that it
can handle a certain number of requests in parallel.

For a sequential server the bandwidth corresponds to the speed or service rate of
its service channel. That is, the service channel of server j needs time �/bj to serve a
session of length �. If a session arrives when serving another session, then this session
is stored in a first-come-first-served (FCFS) queue associated with the server. As
soon as the service channel finishes its session, it starts serving the next session in the
queue. The waiting time of a session is the time a session has to wait in the queue.
The system time of a session is its waiting time plus its service time. If the mapping of
the streams to the servers is fixed, then queueing theory allows us to derive formulas
for the expected waiting time and the expected system time of a server as a function
of the injection rates and session length distributions of the streams mapped to the
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server. We assume that the social objective is to minimize the maximum expected
waiting or, alternatively, system time over all servers.

A parallel server has multiple service channels, and we assume that all of them
have the same, uniform service rate. On each of its channels it can serve a session
independently from other channels. Each channel serves requests with service rate
1; that is, the time a channel needs to serve a session is equal to the length of the
session. The number of channels of server j corresponds to its bandwidth, and it is
denoted by bj. For example, it may correspond to the number of TCP connections
that can be opened simultaneously on a Web server. In the queueing model, requests
arriving at a server that cannot be handled immediately as all channels of the server
are blocked are put into an FCFS queue. This queue is shared among all channels of
the server. Like in the case of sequential servers, we aim at minimizing the maximum
expected waiting or system time over all servers. Alternatively, in the rejection model,
blocked requests are rejected and disappear from the system. A natural objective in
this model is to minimize the number or the fraction of rejected requests.

In queueing theoretical notation, a server with k channels that delays blocked
requests corresponds to a so-called M/D/k/∞ or, for short, M/D/k queue, where
D corresponds to the service time (session length) distribution of the injected re-
quest stream. When blocked customers are rejected, then the corresponding queue is
denoted by M/D/k/k. For a more detailed discussion about queueing theory back-
ground, we refer the reader to standard literature; see, e.g., [9, 11, 12].

2.3. Cost functions and families of cost functions. The cost occurring at
the servers under some fixed allocation (i.e., a mapping of streams to servers) is defined
by families of cost functions FB = {fb|b ∈ B}, where B denotes the domain of possible
bandwidth values and fb describes the cost function for servers with bandwidth b ∈ B.
Typically, we will assume B = R>0 or B = N>0, but, additionally, sometimes we will
study finite domains of bandwidth. For example, a collection of identical servers with
some specified bandwidth b can be described by a family of cost functions FB = {fb}.

A cost function f is called simple if it depends only on the injected load, that
is, if the cost of a server is a function of the sum of the streams’ weights mapped
to the server (but does not depend on other characteristics such as, e.g., the session
length distribution). A simple cost function is called monotone if it is nonnegative,
continuous, and nondecreasing. For an ordered set B, a family of simple cost functions
FB is called monotone if (i) fb is monotone for every b ∈ B and (ii) the cost functions
are nonincreasing with b, i.e., fb(λ) ≥ fb′(λ) for every λ ≥ 0 and 0 < b ≤ b′. A typical
example of a monotone family of cost functions we will consider is derived from the
formula for the expected system time (delay) on an M/M/1 server with injection rate
λ and service rate b, namely,

1

b−min{b, λ} .

The question of finding the price of selfish routing under cost functions of this form
was already posed in the seminal paper by Koutsoupias and Papadimitriou [16]. This
cost function is, however, only one particular example of cost functions that we will
investigate; our analysis is applicable to a very general class of cost functions.

3. Preliminaries in game theory. In this section we present game theoretic
aspects of our model in more detail. We distinguish between the integral allocation
model and the fractional flow model.
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3.1. Integral allocation model. The integral (or atomic) allocation model dis-
tinguishes between mixed and pure strategies. The set of pure strategies for agent
i ∈ [n] is [m]; that is, a pure strategy maps every stream to exactly one server. The
mapping is described by a matrix X = (xj

i )i∈[n],j∈[m], where xj
i is an indicator vari-

able with xj
i = 1 if stream (agent) i chooses strategy (server) j and 0 otherwise. A

mixed strategy is a probability distribution over pure strategies. Let pji denote the
probability that agent i maps its stream to server j. We define the load of server j
under an allocation (xj

1, . . . , x
j
n) by wj =

∑n
i=1 λi · xj

i and the cost of server j by

Cj = fbj (x
j
1, . . . , x

j
n).

Observe that wj and Cj are random variables depending on the probabilities pji . Let
�j denote the expected cost on server j, that is, �j = E [Cj ]. For a stream i, the

expected cost of stream i on server j is defined by cji = E [Cj |xj
i = 1].

In this paper, we focus our attention on the problem of minimization of the
maximum cost of the servers. In this model, we define the social cost C by

C = E

[
max
j∈[m]

Cj

]

and the optimal cost (social optimum) opt to be the minimum cost of a pure strategy,

opt = min
X

max
j∈[m]

fbj (x
j
1, . . . , x

j
n),

where the minimum is taken over all matrices X = (xj
i )i∈[n],j∈[m] such that xj

i ∈ {0, 1}
for i ∈ [n], j ∈ [m] and

∑m
j=1 x

j
i = 1 for i ∈ [n].

In order to formalize the notion of rational and selfish behavior of the system users,
we introduce Nash equilibria of server farms. We say the probabilities (pji )i∈[n],j∈[m]

define a (system in a) Nash equilibrium if and only if pji > 0 implies cji ≤ cqi for every
i ∈ [n] and j, q ∈ [m]. Thus, a Nash equilibrium is characterized by the property that
there is no incentive for any agent to change its strategy. Then, in such a model, the
price of anarchy, for a fixed set of servers and streams, is defined by max C

opt , where
the maximum is over all Nash equilibria. In other words, the price of anarchy specifies
by which factor the cost of the system can increase due to selfish behavior. For a fixed
family of cost functions FB, the price of anarchy R determines the maximum price of
anarchy over all possible server farms, typically described as an asymptotic function
in m.

In our study, we will identify several instances of cost functions for which R is
unbounded. In the case when R is unbounded, we will investigate the bicriteria price
of anarchy R. Let optΓ denote the value of an optimal solution assuming that all
injection rates ri are increased by a factor of Γ. Then the bicriteria price of anarchy
R is defined to be the smallest Γ satisfying C ≤ optΓ over all Nash equilibria. In
other words, we ask by which factor the injected load must be decreased so that the
worst-case cost in Nash equilibrium cannot exceed the optimal cost for the original
rates.

3.2. Fractional flow model. The motivation behind the fractional (nonatomic)
flow model is to assume that every stream consists of infinitely many units, each car-
rying an infinitesimal (and thus negligible) amount of flow. Each such unit behaves
in a selfish way. Intuitively, we expect each such unit to be allocated (selfishly) to
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a server promising minimum cost, taking into account the behavior of other units of
flow. Assuming infinitesimal small units of flow, we obtain the fractional variant of
the integral allocation model (this model was also considered in [10, 24, 25, 26, 29]).

To define the model formally, in the fractional model the variables xj
i that describe

the mapping of streams to servers can take arbitrary real values from [0, 1] subject
to the constraint

∑
j∈[m] x

j
i = 1 for every i ∈ [n]. The model does not distinguish

between mixed and pure strategies, and, in particular, the load on server j is simply
defined by wj =

∑
i∈[n] λi · xj

i . The social cost C in this case is defined by

C = max
j∈[m]

Cj ,

and the optimal cost (social optimum) opt is

opt = min
X

max
j∈[m]

fbj (x
j
1, . . . , x

j
n),

where the minimum is taken over all matrices X = (xj
i )i∈[n],j∈[m] such that xj

i ∈ [0, 1]

for i ∈ [n], j ∈ [m], and for each i ∈ [n], we have
∑m

j=1 x
j
i = 1.

There are several equivalent ways to define a Nash equilibrium in this model. We
use the characterization of Wardrop [33]; see also [28, 29]. A fractional allocation is in
Nash equilibrium if xj

i > 0 implies Cj ≤ Cq, for every i ∈ [n] and j, q ∈ [m]. The price
of anarchy is defined analogously to the integral allocation model and is denoted by
R∗.

3.3. Integral allocations with negligible weights. The fractional flow model
is a simplification of the integral allocation model that aims to model the situation
in which each stream carries only a negligible fraction of the total load. We will
investigate in detail the relationship between fractional flow and integral allocations of
streams with tiny weights. For this purpose we define the notion of “ε-small streams.”
Assuming a server farm with identical servers and homogeneous traffic, we have the
following definition. Stream i is called ε-small if

λi ≤ ε

m

∑
i′∈[n]

λi′ ,

that is, the stream has at most an ε
m -fraction of the overall weight.

In the case of heterogeneous servers or heterogeneous traffic we need a slightly
more technical definition. Let us fix a server farm and a set of streams with positive
weights. Let opt∗ denote the minimum of maximum cost over all fractional flow
allocations. For a stream i ∈ [n], define the scaled stream i to be a stream with rate
r′i = ri/ε and session length distribution D′

i = Di. (Observe that this implies that the
weight of the scaled stream is λ′

i = λi/ε.) Then stream i is called ε-small if, for every
j ∈ [m], the cost of server j is at most opt∗, assuming this server gets assigned only
the scaled stream i and no other stream.

We define Rε to be the price of anarchy under the restriction that all streams are
ε-small.

3.4. Average-cost objective functions. Besides the min-max objective intro-
duced above, we shall also briefly consider another objective function that has been
investigated by Roughgarden and Tardos [29]. The average-cost objective function
aims at minimizing the expected weighted average cost over all streams (see also, e.g.,
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[8, 31] for related results). Formally, the cost under this objective function is defined
by

Cave =
1

λ

∑
j∈[m]

E [wj · Cj ] ,

and the social optimum is defined by

optave = min
X

⎛
⎝ 1

λ

∑
j∈[m]

wj · fbj (xj
1, . . . , x

j
n)

⎞
⎠ ,

where λ =
∑

i∈[n] λi is the total injected weight and the minimum is taken over
the same matrices X as in the definitions of the social optimum under the min-max
objective in sections 3.1–3.3.

We shall consider the price of anarchy for various types of average-cost objective
functions similarly as for the min-max objective function. In particular, the price of
anarchy for average-cost objective functions is defined in the same way as for the min-
max model considered before; the only difference is that now one compares average
social cost with average social optimum. The price of anarchy for integral, fractional,
ε-small, and bicriteria integral allocation under this objective function is denoted by
Σ, Σ∗, Σε, and Σ, respectively.

4. Previous research. The model investigated in this paper has been intro-
duced in a seminal paper of Koutsoupias and Papadimitriou [16]. In that paper, only
the integral allocation model is studied and only for linear cost functions (that is,
functions of the form fb(x1, . . . , xn) =

∑n
i=1 λixi/b). The motivation behind study-

ing these cost functions was to investigate the price of selfish routing under simple cost
functions. Koutsoupias and Papadimitriou [16] give some basic results for the price
of anarchy in this model (e.g., tight bounds for the model with two links, i.e., two
servers). These results were later extended in [5, 15, 18], and, in particular, tight
bounds in this model were established by Czumaj and Vöcking in [5]. Even though
Koutsoupias and Papadimitriou [16] explicitly mention the interest in and the need of
investigating more general cost functions, in particular, cost functions corresponding
to the performance in queueing systems, no prior works for nonlinear cost functions
are known in this model. For an up-to-date survey on the price of anarchy in the
Koutsoupias–Papadimitriou (parallel links) model and related models, see Vöcking
[32].

Roughgarden and Tardos [29] (see also, e.g., [2, 8, 31]) considered a related general
network model, where the streams may be required to be routed in a network from
a source to a destination, and the cost of allocating the stream to any edge in the
routing path is taken into account. They focus mainly on the fractional flow model,
making the assumption that each stream consists of infinitely many units, each of
which behaves in a selfish way (see the fractional model described in section 3.2).
The network parameter (to be minimized) is the average latency (or, equivalently,
the total latency) experienced by the system. They showed that when the latency
functions of the edges are linear, then the average latency in a Nash equilibrium is at
most 4

3 times the average latency in an optimal routing. For arbitrary nondecreasing
and continuous latency functions, they show the existence of Nash equilibria whose
average latency may be arbitrarily greater than the average latency in an optimal
routing. Roughgarden [27] extends this study and gives some more precise bounds
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for various classes of latency cost functions, including some queueing systems cost
functions. Roughgarden and Tardos [29] also give a bicriteria result that the average
latency in Nash equilibrium is at most the average latency in an optimal routing of
double the amount of flow. A similar model has also been investigated by Friedman
[10], who studied how the amount of flow in the system influences the price of anarchy
under the average-cost objective. Friedman also studies the queueing model M/M/1
in this context. Finally, Roughgarden and Tardos [30] show that some of the results
from [29] do not require the combinatorial structure of networks and can be extended
to nonatomic congestion games.

Roughgarden and Tardos [29] also consider integral allocations. They give an
example of a network in which a bicriteria price of anarchy is unbounded. (This is
in contrast to the fractional flow, where the identically defined price of anarchy is
upper bounded by 2.) In addition, they prove a sufficient condition under which the
bicriteria price of anarchy is bounded. The sufficient condition is that the streams
are so small that adding any stream to any server increases the average latency by at
most a factor of α for any fixed α > 0. They remark that this condition is restricted to
pure allocations, and its application requires families of cost functions with fb(0) > γ
for any b > 0 and fixed γ > 0. Bounds on the price of anarchy in general atomic
(integral allocation) network and congestion games were proved by Awerbuch, Azar,
and Epstein [1] and by Christodoulou and Koutsoupias [3]. For further references on
the price of anarchy in routing games, see the recent survey by Roughgarden [28].

5. Results for monotone cost functions.

5.1. Fractional allocation. Our first theorem shows that all monotone cost
functions behave nicely under fractional allocation.

Theorem 5.1. For every server farm whose servers are described by monotone
cost functions, the price of anarchy R∗ in the fractional flow model is 1.

This theorem follows almost directly from the definition of Nash equilibria speci-
fying that all servers with positive flow at Nash equilibrium must have the same cost,
which under monotone cost functions implies that all Nash equilibria have the same
social cost C = opt (see, e.g., [29, Lemma 2.5]). As a consequence of this theorem, let
us observe that it immediately separates (in the fractional flow model) the two dif-
ferent notions of the price of anarchy investigated by Koutsoupias and Papadimitriou
[16] (the price of anarchy R∗) and by Roughgarden and Tardos [29] (the average-cost
price of anarchy Σ∗). Both notions of the price of anarchy compare the cost of a Nash
equilibrium with the optimal cost but use different definitions of cost. In sharp con-
trast to Theorem 5.1, Roughgarden and Tardos [29] prove that there exist instances
of fractional flow for monotone families of cost functions in which the average-cost
price of anarchy is unbounded. This shows that minimum average latency and min-
imum maximum costs can differ arbitrarily under general, monotone cost functions.
In the context we consider here, that of server farms, the maximum cost seems to be
the natural choice as it guarantees fairness and efficiency for every customer (agent)
simultaneously.

5.2. Integral allocation. Now let us turn to the integral allocation model. We
say a price of anarchy R over a family of cost functions FB is bounded if, for every m
and every server farm with m servers with cost functions from FB, there exists Γ > 0
such that for every set of streams the value of the worst-case Nash equilibrium is at
most Γ · opt. (Observe that Γ might depend on m.) Otherwise, the price of anarchy
is unbounded. Our first result is a complete characterization of monotone families of
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class functions for which the price of anarchy is bounded versus unbounded.
Theorem 5.2. The price of anarchy R over a monotone family FB of cost

functions is bounded if and only if

∃α ≥ 1, ∀b ∈ B, ∀λ > 0, fb(2λ) ≤ α · fb(λ).
The proof of this theorem is presented in section 5.4. Notice that this character-

ization of bounded versus unbounded price of anarchy can be applied also to server
farms with identical servers. (Recall that such farms are described by families of cost
functions consisting only of a single cost function.)

Observe that for every family of monotone cost functions we can identify a mini-
mum α ∈ R≥1 ∪ {∞} that fulfills the conditions specified in the theorem. A natural
question is “How does the price of anarchy depend on α?” In fact, our analysis (see
the proof of Theorem 5.2 and Lemma 5.5) shows that the price of anarchy is at most
mO(logα). Furthermore, observe that α is constant if the family of cost functions is as-
sumed to be fixed. Thus, we can conclude that for every fixed family of cost functions
the price of anarchy is either unbounded or polynomially bounded in the number of
servers, m.

Let us illustrate the power of the above theorem by investigating some examples.
First, we consider families over polynomial cost functions, i.e., functions of the form∑k

r=0 ar ·λr for a fixed k ≥ 0. For these families we can pick α = 2k to conclude that
here the price of anarchy is bounded. In contrast, there is no such α for exponential
cost functions, i.e., cost functions for which an additive increase in the load leads to
a multiplicative increase in the cost. The same is true for linear threshold functions
of the form max{0, λ− 1}.

Corollary 5.3. The price of anarchy R for server farms with polynomial cost
functions of bounded degree is bounded, whereas the price of anarchy for server farms
of (identical) servers with exponential cost functions or linear threshold cost functions
is unbounded.

In the next sections we shall discuss several other, practically motivated examples
of families of cost functions with unbounded price of anarchy based on well-known
formulas from queueing theory that describe, for example, the expected delay or the
expected fraction of rejections.

5.3. Integral allocations with negligible weights. It is known that the frac-
tional flow model and the integral allocations model are very closely related, and in
some cases an almost identical behavior of these two models can be observed (see,
e.g., Remark 2.3 in [29]). In this section, we study the relationship between these
two models. Recall that Rε is the price of anarchy for Nash equilibria over ε-small
streams. Then we can show the following result, whose proof can be found in section
5.4.

Theorem 5.4. Let FB be any monotone family of cost functions. For every
ε > 0, the price of anarchy Rε over ε-small streams is bounded if and only if the price
of anarchy R is bounded.

Interestingly, this theorem separates fractional flow from integral allocations with
negligible weights. On one hand, there are several practical examples for families
of cost functions (e.g., M/M/1 waiting time or Erlang loss formulas) for which our
results imply that for arbitrarily small ε the price of anarchy Rε (and hence R) is
unbounded. On the other hand, Theorem 5.1 implies that R∗, the price of anarchy
in the fractional model, is 1. Moreover, the instances proving the characterization of
unbounded price of anarchy use only pure strategies. Thus, even pure allocations with
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negligible weights are different from fractional flow.
Finally, we point out that unbounded price of anarchy is not only a special phe-

nomenon of cost functions having a pole or an unbounded first derivative. Later in
the paper, we will see a practical example of a family of cost functions (based on
the Erlang loss formula) that have an unbounded price of anarchy, although these
functions as well as their first derivatives are upper bounded by one.

5.4. Proof of Theorems 5.2 and 5.4. We prove Theorems 5.2 and 5.4 in a
single proof using two lemmas. The first lemma proves the sufficient conditions for a
bounded price of anarchy, while the second lemma proves the necessary conditions.

Lemma 5.5. Suppose we are given a server farm with m servers having cost
functions from a fixed, monotone family FB satisfying

∃α ≥ 1, ∀b ∈ B, ∀λ > 0, fb(2λ) ≤ αfb(λ).

Then, for every set of streams the worst-case cost over all Nash equilibria is upper
bounded by opt ·mO(1).

Proof. Fix an arbitrary allocation in Nash equilibrium. Let C denote the cost of
this allocation. We will show that C ≤ m · α�logm� · opt = mO(1) · opt.

We first observe that

fb(s λ) ≤ α�log s� · fb(λ)

for every s ≥ 1. Let X =
∑

i∈[n] λi denote the total injected load. Let x denote

the load on server 1 (which has the greatest bandwidth) under an optimal fractional
allocation, i.e., an allocation with minimum maximum cost over all servers assuming
that streams can be split arbitrarily. Without loss of generality, we assume that
server 1 has the maximum load over all servers, and hence X ≤ mx. (Recall that
since server 1 is the server with the greatest bandwidth and each function fb ∈ FB is
nondecreasing in λ and nonincreasing in b, there exists an optimal fractional allocation
with maximum load for server 1.) In this way,

fb1(X) ≤ fb1(mx) ≤ α�logm� · fb1(x) ≤ α�logm� · opt.

Let M denote the set of servers j ∈ [m] with
∑

i∈[n] p
j
i > 0. Pick any server j in

M . Let i ∈ [n] denote a stream with pji > 0. Then, the Nash equilibrium property

guarantees that cji ≤ c1i . Hence, for every j ∈ M ,

E [Cj ] ≤ E
[
Cj |xj

i = 1
]

= cji ≤ c1i ≤ fb1(X) ≤ α�logm� · opt.

Furthermore, for j ∈ [m] \ M , we have E [Cj ] = fbj (0) ≤ opt ≤ α�logm� · opt. As a
consequence,

C = E

[
max
j∈[m]

Cj

]
≤ m · max

j∈[m]
E [Cj ] ≤ m · α�logm� · opt = mO(1) · opt,

which completes the proof of Lemma 5.5.
Now, we prove a sufficient condition for an unbounded price of anarchy. Observe

that the negation of the property gives the sufficient condition for a bounded price of
anarchy as specified in Theorem 5.2.
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Lemma 5.6. Let ε > 0 be chosen arbitrarily. Suppose we are given a server
farm with only two identical servers, each with the same monotone cost function f
satisfying

∀α ≥ 1, ∃λ > 0, f(2λ) > α · f(λ).
Then, for every Γ ≥ 1, there exists a pure Nash equilibrium over ε-small streams with
cost C > Γ · opt.

Proof. First, let us show that the above property of the function f implies that

(5.1) ∀α ≥ 1, β > 0, ∃λ > 0, f((1 + β) · λ) > α · f(λ).
Indeed, if we consider the negations of the two statements, then it suffices to show
that ∃α ≥ 1, β > 0, ∀λ > 0 f((1+β) ·λ) ≤ α ·f(λ) implies ∃α′ ≥ 1, ∀λ > 0, f(2λ) ≤
α′ · f(λ). Assume that indeed ∃α ≥ 1, β > 0, ∀λ > 0 f((1 + β) · λ) ≤ α · f(λ) holds.
Now, if β ≥ 1, f(2λ) ≤ α′ · f(λ) follows by monotonicity if we set α′ = α. If β < 1,
then f(2λ) ≤ α′ · f(λ) follows by setting α′ = α�1/ log(1+β)�.

Now, consider a server farm with two identical servers, each with the same mono-
tone cost function f satisfying condition (5.1). For the purpose of contradiction,
assume there exists Γ such that C ≤ Γ · opt for every Nash equilibrium over ε-small
streams. Therefore, by (5.1), there exists λ > 0 such that f((1 + ε/10)λ) > Γ · f(λ).
Using this assumption, we will now define a Nash equilibrium over ε-small streams
with cost C > Γ · opt.

First, let us consider streams of identical weight w ∈ [λε/2, λε] and assign them
to the servers so that the cost on each server is exactly f(λ). Let τ be the number
of streams per server in this allocation. Now, let us slightly change the instance
by taking two streams, one from each server, and “breaking” each of them into two
smaller streams, one of weight 3

5 w and the other of weight 2
5 w. It is easy to see that

the optimal allocation for this instance has cost opt = f(λ).
Let us consider a different allocation of the streams to the servers. We assign

τ − 1 streams of weight w and two streams of weight 3
5 w to the first server and

the remaining streams to the second server. In this way, the first server has cost
f(λ + 1

5 w), whereas the second server has cost f(λ − 1
5 w). This allocation defines

a Nash equilibrium, because the streams have minimum weight 2
5 w, and therefore

there is no incentive for any of them to change its strategy. The cost of this Nash
equilibrium is

C = f
(
λ+

w

5

)
≥ f

(
λ+

λ · ε
10

)
> Γ · f(λ) = Γ · opt.

Clearly this contradicts our initial assumption that C ≤ Γ · opt for any Nash equilib-
rium over ε-small streams. This completes the proof of Lemma 5.6.

Now, Theorems 5.2 and 5.4 follow immediately from Lemmas 5.5 and 5.6.

5.5. Bicriteria price of anarchy. It is not surprising that selfish routing can
lead to a dramatic cost increase when the cost function has a pole. In principle, bicri-
teria measures can be much more informative as they filter out the extreme behavior
of cost functions and look directly at the quality of the load balancing obtained by
selfish routing. The following theorem, however, shows that an unbounded price of
anarchy R implies a very poor worst-case behavior under bicriteria measures as well.

Theorem 5.7. Consider a server farm with m servers, with cost functions drawn
from a monotone family FB. If the price of anarchy R is unbounded, then the bicriteria
price of anarchy R has value at least m, even over ε-small streams.
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Proof. Let n denote, as usual, the number of streams, and let α = mn−1. Assume
that n is such that m

n ≤ ε. Since R is unbounded, Theorem 5.2 implies that there
exist fb ∈ FB and λ > 0, such that fb(2λ) > αfb(λ).

Assume that we have m identical servers, each with bandwidth bj = b (j ∈ [m]),
and a set of n identical data streams, each having weight λi =

λm
Γn (i ∈ [n]), where

Γ > 0 is chosen such that λm
b ≤ Γ. Define the probabilities pij as pij = 1

m for each
i, j ∈ [m]. These probabilities define a Nash equilibrium, since all the expected costs
cij have the same value.

Let us fix a server j. The probability that all the data streams are assigned to
server j is Πip

i
j = m−n. In this case, the cost on server j is fb

(
λm
Γ

)
, since we have n

streams, each of weight λm
Γn , and so their total weight is λm

Γn n = λm
Γ .

Therefore, with probability m−n, the cost on a particular server j is at least
fb

(
λm
Γ

)
, and thus also maxj∈[m] Cj ≥ fb

(
λm
Γ

)
. Additionally, these events corre-

sponding to different servers are pairwise disjoint. Using these observations, we can
estimate C = E [maxj Cj ] as

E

[
max

j
Cj

]
≥ m · fb

(
λm

Γ

)
·m−n =

fb
(
λm
Γ

)
mn−1

.

We want to show that if C ≤ optΓ, then Γ ≥ m. We consider two cases, λ ≥ b and
λ < b. In the first case we have λ ≥ b, which, by our assumption λm

b ≤ Γ, implies
that Γ ≥ m, and so we are done in this case.

Suppose now that λ < b, and assume toward a contradiction that there is Γ such
that λm

b ≤ Γ, C ≤ optΓ, and Γ < m. Then, we obtain

fb
(
λm
Γ

)
mn−1

≤ optΓ ≤ fb

(
λm

Γn
· n

m
· Γ

)
= fb (λ) ,

where the last inequality follows by observing that the value of optΓ is at most the
value of a solution in which we assign n

m (we can assume that n
m is a positive integer)

data streams to each server, after blowing up each data stream by Γ. Then, we obtain

(5.2) fb

(
λm

Γ

)
≤ mn−1 · fb (λ) .

By our assumption, ∀α ≥ 1, ∃λ > 0, fb(2λ) > αfb(λ). This, by the arguments
from the proof of Lemma 5.6, implies that ∀α ≥ 1, β > 0, ∃λ > 0, fb((1 + β)λ) >
αfb(λ). Now, we plug α = mn−1, 1+β = m

Γ to obtain a contradiction with inequality
(5.2).

Since all the servers are identical, a data stream of weight λi is ε-small if λi ≤
ε
∑

j λj

m . Since in our case λi = λm
Γn for all i ∈ [n], the last condition is equivalent

to λm
Γn ≤ ελΓ , which gives m

n ≤ ε. The last inequality is true by the choice of n,
and so our data streams are ε-small. Also, observe, that we have chosen Γ such that∑

i λi =
λm
Γ ≤ b; i.e., the constructed instance is extremely lightly loaded.

The example proving the bad price of anarchy from Theorem 5.7 is a server farm
of identical servers. For this case one can easily show that a bicriteria price of anarchy
of m is the worst possible, as a Nash equilibrium cannot be worse than mapping all
streams to the same server, and this, of course, is not worse than an optimal allocation
with all rates blown up by a factor of m.

Even worse, our proof of this negative result gives a construction of a Nash equi-
librium in which also all streams are identical and the total injected load

∑
i∈[n] λi is
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less than the bandwidth of a single server. Thus, the bicriteria price of anarchy can
be very poor, even in extremely lightly loaded cases.

5.6. Average-cost objective functions. There has been a lot of prior research
that (unlike in our analysis above considers an objective function) aims at minimizing
average cost (and hence also the total cost); see, e.g., [29]. In this section we investigate
the relationship between different objective functions under integral allocation. Recall
that the prices of anarchy for the average-cost objective function are denoted by Σ,
Σ∗, Σε, and Σ.

Theorem 5.8. For any monotone family of cost functions, Σ is bounded if and
only if R is bounded. For every ε > 0, Σε is bounded if and only if R is bounded as
well.

Furthermore, for a server farm with m servers with cost functions from a mono-
tone family of cost functions, if the price of anarchy Σ is unbounded, then Σ ≥ m,
and this holds even over ε-small streams.

Proof. Fix a monotone family FB = {fb|b ∈ B} of cost functions. First let us
show that Σ for this family is bounded if the price of anarchy R is bounded. Clearly,
if R is bounded, then we obtain from Theorem 5.2

∃α ≥ 1, ∀b ∈ B, ∀λ > 0, fb(2 · λ) ≤ α · fb(λ).
We will show that Σ is bounded provided this property is given. Fix any Nash
equilibrium with probabilities pji , i ∈ [n], j ∈ [m]. We have to give an upper bound

on the ratio between the expected average latency given by the probabilities pji , on
one hand, and the optimal average latency, on the other hand. Let w = w1, . . . , wm

denote a vector of random variables with wj describing the injected load of server j.
Let w∗ denote a corresponding load vector of an optimal allocation that minimizes
the average latency. We have to show that there exists Γ ≥ 1 such that

E

⎡
⎣ ∑
j∈[m]

wj · fbj (wj)

⎤
⎦ ≤ Γ ·

∑
j∈[m]

w∗
j · fbj (w∗

j ).

Define X =
∑

j∈[m] wj =
∑

j∈[m] w
∗
j . Then fb1(X) corresponds to the cost that is

obtained by assigning all of the load to the fastest server. Using the same arguments
as in the proof of Lemma 5.5, we obtain E

[
fbj (wj)

] ≤ fb1(X) for every j ∈ [m], and
thus

E

⎡
⎣ ∑
j∈[m]

wj · fbj (wj)

⎤
⎦ ≤

∑
j∈[m]

X · fb1(X) ≤ m2 · α�1+logm� · X
m

· fb1
(
X

m

)

≤ m2 · α�1+logm� ·
∑
j∈[m]

w∗
j · fbj (w∗

j ).

The second inequality follows from our assumptions on the family of cost func-
tions. The third inequality needs some more explanation. Observe that there ex-
ists j ∈ [m] with w∗

j ≥ X/m. Applying monotonicity of our cost function family,

we obtain X
m fb1(

X
m ) ≤ w∗

j fbj (w
∗
j ), which yields the inequality. As a consequence,

Σ ≤ m2 α�1+logm�; that is, Σ is bounded.
It remains to show that an unbounded price of anarchy R implies unbounded Σ.

If R is unbounded, then the family of cost functions satisfies

∀α ≥ 1, ∃b ∈ B, ∃λ > 0, fb(2λ) > αfb(λ).
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In Lemma 5.6 we describe an instance with two identical servers and a set of ε-
small streams such that both servers have identical loads in an optimal allocation
but there is a Nash equilibrium in which one of the servers receives more load than
the other server. Using the above property we show that if one server has load at
least (1+ ε/10) times the average load, then the cost on this server can deviate by an
arbitrarily large factor from the optimal cost, which then proves that R is unbounded.
A straightforward adaptation of this argument shows also that Σ is unbounded if the
above condition is fulfilled.

The proof of Theorem 5.7 in the average-cost case is basically the same as in the
min-max case, since the values of the two objectives are the same in the lower bound
instance. This completes the proof of Theorem 5.8.

We conclude that in the case of integral assignments, the average-cost objective
leads to exactly the same characterizations for the price of anarchy and bicriteria price
of anarchy as those given in the Theorems 5.2, 5.4, and 5.7 for the min-max objective.

We also point out that the property proven in Theorem 5.8 is nontrivial. In gen-
eral, the behavior of the two objective functions can be quite different. For example,
for the fractional case, Roughgarden and Tardos [29] give examples with unbounded
price of anarchy Σ∗, whereas Theorem 5.1 shows that R∗ = 1.

6. Results for queueing theoretical cost functions. Koutsoupias and Pa-
padimitriou [16] asked as an open problem to investigate the price of anarchy of
realistic cost functions of the form 1

b−min{λ,b} . This particular cost function describes

the expected waiting time (delay) under an M/M/1 queueing process with injection
rate λ and service rate b. Our characterization of bounded and unbounded price of
anarchy given in Theorem 5.2 immediately implies that the integral price of anarchy
for this family of functions is unbounded. This resolves an open problem from [16].
In the following, we consider the behavior of cost functions motivated by queueing
theory in more detail. In particular, in section 6.3.3 we give a simple greedy exact
algorithm for solving a related fractional scheduling problem with Pollaczek–Khinchin
(P-K) cost functions under heterogeneous traffic.

6.1. Queueing systems without rejection. Several other studies are con-
cerned with similar cost functions motivated by queueing systems; see, e.g., [13, 14,
17, 20]. In order to avoid discussions about what exactly is the right queueing model
(e.g., M/M/1, M/D/1, M/G/1, M/G/b, . . . ) and what is the right cost model (e.g.,
expected waiting time or expected system time), let us introduce a unifying concept
of “monotone queueing functions.” A monotone cost function fb is called a mono-
tone queueing function if it satisfies limλ→b− fb(λ) = ∞. (Having the monotonicity,
we may therefore think that the value of fb(λ) is unbounded and thus undefined for
every λ ≥ b.)

This assumption is motivated by the fact that expected waiting as well as expected
system time in every queueing process without rejection goes to infinity when the
injection rate approaches the service rate (or bandwidth) of the server. An immediate
consequence of the pole of these functions is that parameter α from Theorem 5.2 is
∞. Thus, we have the following corollary to Theorems 5.1, 5.2, and 5.7.

Corollary 6.1. For every family FR>0 of monotone queueing functions, R∗ = 1,
R = ∞, and R ≥ m, even under the restriction that all streams are ε-small.

The proof for this negative result in Theorem 5.7 uses a Nash equilibrium in which
all streams are identical and the total injected load

∑
i∈[n] λi is less than the band-

width of a single server. Thus, selfish routing can lead to a catastrophic performance
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degradation, even under bicriteria measures in extremely lightly loaded cases.
Recall that the instances proving the unbounded price of anarchy R are con-

structed from pure strategies only. However, the bad instances for the bicriteria price
of anarchy R that we have seen until now use mixed strategies. This motivates us to
investigate whether the randomness introduced due to the choice of mixed strategies
is the only source of bad bicriteria price of anarchy. The following theorem demon-
strates that bicriteria price of anarchy can also be poor when we restrict ourselves to
pure strategies only.

Theorem 6.2. Let FR>0 be any family of monotone queueing functions. Suppose
m is the number of servers and there exists b >

√
m such that fb((1− b

m ) ·b) < f1(
b
m ),

where f1, fb ∈ FR>0 . Then, the bicriteria price of anarchy over pure strategies is at
least m

2 b .
Before we prove Theorem 6.2, we give some further explanation of this theorem.

For example, the cost function for M/M/1 waiting time is λ
b(b−min{b,λ}) , and the

cost function for M/M/1 system time is 1
b−min{b,λ} . If we assume the cost function

for waiting time, then the theorem implies a bicriteria price of anarchy over pure
strategies of Ω(m1/3). Similarly, for system time the bicriteria price of anarchy is
Ω(m1/2). In both cases, the total injected load in the example that gives these bad
results is very small.

We now return to the proof of Theorem 6.2. The following lemma immediately
yields Theorem 6.2.

Lemma 6.3. Let FR>0 be a family of monotone queueing functions. Suppose we

are given m + 2 servers with bandwidths 1 = b1 = b2 = · · · = bm ≤ bm+1 = b2

m ≤
bm+2 = b, such that fbj ∈ FR>0 for each j = 1, 2, . . . ,m+ 2. Assume, moreover, that
there exists an ε with 0 < ε < min{1/Γ, 1}, such that the functions f1 and fb fulfill

(6.1) fb

((
1− 1

2Γ

)
b+ ε

)
≤ f1

(
1

2Γ

)
,

where Γ = m
2b and b

2Γ − ε/2 > 1. Then, in this system, C > optΓ, where C is the
maximum value over all Nash equilibria assuming only pure strategies. Thus, for the
bicriteria price of anarchy R over pure strategies we have R ≥ m

2b .
Proof. Before we define an appropriate instance of the problem, we will need some

technical observations which use the properties of monotone queueing functions. First,
let us define the following useful notation:

cost(ε) = max

{
f1

(
1

2

)
, fb

(
b

2
− εΓ

2

)}
.

Observe that cost(0) is a finite nonnegative number. Now, by the properties of mono-
tone queueing functions, observe that limε′→0 fb/(2Γ)

(
b
2Γ − ε′/2

)
= ∞. This implies

that there exists an ε′ > 0, such that

(6.2) fb/(2Γ)

(
b

2Γ
− ε′/2

)
> cost(0).

Observe, furthermore, that replacing ε by min{ε, ε′} still maintains assumption (6.1)
and b

2Γ−ε/2 > 1. Thus, from now on we assume that ε is such that (6.1), b
2Γ−ε/2 > 1,

and (6.2) (with ε′ = ε) hold.
We define the following instance of the problem. Let the servers 1, 2, . . . ,m be

called slow. We also have a fast server with bm+2 = b and an additional server with
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bandwidth bm+1 = b2

m = b
2Γ . Assume that each slow server holds one small data

stream with weight 1
2Γ , and let the fast server have one large data stream with weight

b
2Γ − ε/2. The additional server does not hold any data stream.

In the solution we have just defined, each slow server has cost (after blowing the
streams up by Γ) f1

(
1
2

)
, and the fast server has cost fb

(
b
2 − εΓ

2

)
. Recall that

cost(ε) = max

{
f1

(
1

2

)
, fb

(
b

2
− εΓ

2

)}
,

and observe that by the definition of monotone queueing functions, the value of cost(ε)
is finite even if ε → 0, and obviously optΓ ≤ cost(ε).

Now, we will define a Nash equilibrium for our instance. We put as many small
data streams on the fast server as possible, to fill this server almost to its bandwidth
b. More precisely, we first assign to the fast server a total amount of

(
1− 1

2Γ

)
b+ ε of

small streams. Observe that we have enough small streams to achieve this. Suppose
toward a contradiction that there is not enough small streams, i.e., their total size
m
2Γ <

(
1− 1

2Γ

)
b+ε. Because m

2Γ = b, this last inequality is same as b <
(
1− 1

2Γ

)
b+ε;

thus b
2Γ < ε. By our assumption 1 ≤ bm+1 = b

2Γ , we obtain that 1 < ε, which is
a contradiction to our assumption on ε. Second, if there are any remaining small
streams, then we additionally assign to the fast server a maximum number � of small
streams such that

fb

((
1− 1

2Γ

)
b+ ε+

�

2Γ

)
≤ f1

(
1

2Γ

)
(6.3)

(if � = 0, then (6.3) simply reduces to (6.1)). If, after these assignments of small
streams to the fast server, there still are remaining small streams, we assign them
to slow servers—one small stream per one slow server (some of the small servers will
thus remain empty).

The large stream cannot now be assigned to the fast server (it would exceed its
bandwidth), and by b

2Γ − ε/2 > 1, the large stream also cannot be put on any slow
server. Therefore, the large data stream must be assigned to the additional server
m+ 1.

We argue that we have defined a Nash equilibrium. First, none of the small
streams would go from the fast server to a slow server, since by (6.3) we have
fb

((
1− 1

2Γ

)
b+ ε+ �

2Γ

) ≤ f1
(

1
2Γ

)
. Also, none of the small streams would go from the

fast server to the additional server, since the remaining space on the additional server
is ε/2, which, in particular, is smaller than the size of a small stream, ε/2 < 1

2Γ . It is
also easy to see that none of the small streams, if any, would want to change from a
slow server to the fast or to the additional server.

Finally, the large stream cannot go from the additional server to any slow server
(since b

2Γ − ε/2 > 1), or to the fast server (since it would exceed the capacity on the
fast server).

The cost on the additional server in this Nash equilibrium is fb/(2Γ)
(

b
2Γ − ε/2

)
,

and hence, by the properties of monotone queueing functions, limε→0 fb/(2Γ)
(

b
2Γ − ε/2

)
= ∞. Recall that we have chosen ε > 0 such that (6.2) holds with ε′ = ε. Thus, we
obtain that C, which is the maximum value over all Nash equilibria, is larger than
cost(0). By monotonicity, we have that cost(0) ≥ cost(ε). Finally, we obtain that
optΓ ≤ cost(ε) ≤ cost(0) < C.

To summarize, we have shown that even for pure strategies and under a small
total injection rate the slowdown due to the lack of coordination can be significant.
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6.2. An alternative bicriteria measure. For the family of monotone queueing
functions there is another interesting bicriteria measure. It is a natural question to
ask by how much one has to decrease the bandwidths of the servers such that an
optimal allocation under the decreased bandwidths is at least as expensive as a Nash
equilibrium for the original system. Let Rbw denote the corresponding worst-case
bicriteria price of anarchy.

It turns out that for most functions from queueing theory the effect of changing
the bandwidths is larger than the effect of changing the injection rate. In fact, most of
these functions show superlinear scaling, i.e., fb(λ) ≤ 1

α ·fb/α(λ/α) for every λ ∈ [0, b)
and α ≥ 1. Applying this property, we can determine the bicriteria bandwidth price
of anarchy very precisely.

Theorem 6.4. For every family FB of monotone queueing functions with super-
linear scaling, Rbw = m, where m is the number of servers.

Let OPTΓ denote the value of the optimum solution in a system where bandwidths
of all servers are slowed down by a factor of Γ. We first prove the following lemma.

Lemma 6.5. Fix an arbitrary monotone queueing function f = fb. Consider a
server farm with m identical servers with cost function f . Then for every ε > 0 and
Γ < m there exists a Nash equilibrium over ε-small streams such that C > OPTΓ.

Proof. Assume that we have m identical servers, each with bandwidth bj = b
(j ∈ [m]), and a set of n identical data streams, each having weight of λi = b−δ

n
(i ∈ [n]), where n is such that m

n ≤ ε, and δ ∈ [0, b) will be specified later. Define the

probabilities pji by setting pji = 1
m for each i ∈ [n] and j ∈ [m]. These probabilities

define a Nash equilibrium, since all the expected costs cji have the same value.
Let us fix a server j. The probability that all the data streams are assigned to

server j is Πi p
j
i = m−n. In this case, the cost on server j is fb(b − δ), since we have

n streams, each of weight b−δ
n , and so their total weight is b−δ

n n = b− δ.
Therefore, with probability m−n, the cost on a particular server j is at least

fb(b − δ), and thus also maxj Cj is at least fb(b − δ) for j ∈ [m]. Additionally,
these events corresponding to different servers are pairwise disjoint. Using these
observations, we can estimate C = E [maxj Cj ] as

E

[
max

j
Cj

]
≥ m · fb(b − δ) ·m−n =

fb(b− δ)

mn−1
.

We want to show that if C ≤ OPTΓ, then Γ ≥ m. Assume toward a contradiction
that C ≤ OPTΓ and Γ < m. Then, we obtain

fb(b − δ)

mn−1
≤ OPTΓ ≤ fb/Γ

(
b− δ

n
· n

m

)
= fb/Γ

(
b− δ

m

)
,

where the last inequality follows by observing that the value of OPTΓ is at most the
value of a solution in which we assign n

m (we can assume that n
m is a positive integer)

data streams to each server, after slowing the server down by Γ. Then, by the last
inequality and by continuity of functions fb and fb/Γ, we have

lim
δ→0

fb(b − δ)

mn−1
≤ lim

δ→0
fb/Γ

(
b− δ

m

)
= fb/Γ

(
b

m

)
.

By our assumption the right-hand side is finite but the left-hand side is infinite by the
properties of the function fb. Therefore, there exists a small enough δ > 0 such that
fb(b−δ)
mn−1 > fb/Γ

(
b
m

) ≥ fb/Γ
(
b−δ
m

)
(by monotonicity), which is a contradiction.
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Proof of Theorem 6.4. Lemma 6.5 implies Rbw ≥ m. Therefore, we have to
show that C ≤ OPTm. Assume that bj, j ∈ [m], are the bandwidths of the servers.
Let Λ =

∑
i λi, and observe that we can assume Λ ≤ 1

m

∑
j bj. Otherwise, there is a

server, say, j, in the OPTm solution with load strictly greater than
bj
m , so OPTm = ∞,

and we are done. By this assumption, we see that
∑

i λi ≤ maxj bj. Therefore, we
can assign all the data streams (deterministically) to the fastest server, say, server 1,
and let B = b1 = maxj bj .

Using linearity of expectation, we have

C = E

[
max

j
Cj

]
≤ E

⎡
⎣∑

j

Cj

⎤
⎦ =

∑
j

E [Cj ] ≤ m ·max
j

E [Cj ] .

We now argue that maxj E [Cj ] ≤ fB(Λ). Assume toward a contradiction that there
is a server, say, j0, such that E [Cj0 ] > fB(Λ). Then there is a data stream, say,

i0, with pj0i0 > 0. Also, cj0i0 = E[Cj0 |xj0
i0

= 1] ≥ E [Cj0 ], which follows from the

fact that the random variable (Cj0 |xj0
i0

= 1) cannot assume smaller values than the

random variable Cj0 . Similarly, fB(Λ) ≥ c1i0 = E
[
C1|x1

i0 = 1
]
, since the value fB(Λ)

corresponds to the situation where all probabilities p1i = 1 for all i and pji = 0 for all

i and j �= 1 (recall that 1 is the fastest server). Thus, pj0i0 > 0 and cj0i0 > c1i0 , which is
a contradiction with the Nash equilibrium property. Therefore, we have

C ≤ m ·max
j

E [Cj ] ≤ m · fB(Λ).

By the superlinear scaling we obtain

C ≤ m · fB(Λ) ≤ fB/m

(
Λ

m

)
.

Let us now consider OPT frac
m , which is the cost of an optimum solution for the

fractional flow model in the system, where the bandwidths of all servers are reduced
by a factor of m. We claim that fB/m

(
Λ
m

) ≤ OPT frac
m . To show this, we first argue

that in the optimal fractional solution, the fastest server has the largest load. Let us
fix two servers with bandwidths b1, b2 such that b1 < b2, and let x1, x2 be the loads on
these servers in the optimal fractional solution. It is easy to see that fb1(x1) = fb2(x2),
and by the superlinear scaling, we obtain fb2(

b2
b1
x1) ≤ b1

b2
fb1(x1) < fb2(x2), which by

the monotonicity property yields x1 ≤ x2.
Now, by a simple averaging argument, there is a server in the optimal fractional

solution with load at least Λ
m . Using the fact we have just shown, we see that the

fastest server (with bandwidth B) must have load at least Λ
m . This shows fB/m

(
Λ
m

) ≤
OPT frac

m . We can finish the proof by observing the following inequality:

C ≤ fB/m

(
Λ

m

)
≤ OPT frac

m ≤ OPTm.

Let us emphasize that Theorem 6.4 gives tight results, among others, for expected
waiting time or system time in the queueing systems M/M/1, M/D/1, or for expected
waiting time in the general M/M/b system. This follows by the fact that one can
show that the respective cost functions of these queueing systems obey the superlinear
scaling.
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The cost function for M/M/1 expected system time is 1
b−λ , and the cost function

for M/M/1 waiting time is λ
b(b−λ) ; see, e.g., formulas (2.19) and (2.20) in [11] (note

that μ in those formulas corresponds to our b). Considering the M/D/1 queue, the
expected waiting time is given by λ

2b(b−λ) (see (3.16) in [11] with k → ∞), and the

system time is 2b−λ
2b(b−λ) ; see [11]. The superlinear scaling property is straightforward to

show for those four cost functions, and in fact it holds with equality. Thus, Theorem
6.4 implies the following result.

Corollary 6.6. Suppose we are given a server farm with m servers with a cost
function family being either the expected system time or the expected waiting time in
either the M/M/1 or M/D/1 queueing system. Then, Rbw = m.

We provide a proof of the superlinear scaling property for the complicated case,
i.e., the expected waiting time in the general M/M/b system. A server in this queueing
system has b ∈ N parallel channels, each operating at a fixed speed 1; therefore, μ,
as used in [11], is 1. The expected waiting time in the M/M/b system is given by
formula (2.27) in [11]:

(6.4)
λb

b! · b · (1− λ/b)2
·
(

b−1∑
i=0

λi

i!
+

λb

b! · (1− λ/b)

)−1

.

We defer a somehow technical proof of Lemma 6.7 to section 6.2.1.
Lemma 6.7. The cost function describing the expected waiting time in the M/M/b

system possesses the superlinear scaling property.
Thus, by applying Lemma 6.7 and Theorem 6.4, we obtain the following result.
Corollary 6.8. Consider a server farm with m servers with a cost function

being the expected waiting time in the M/M/b queueing system. Then, Rbw = m.

6.2.1. Superlinear scaling for the M/M/b queue. This section is devoted
to the proof of Lemma 6.7. Recall that the expected waiting time in the M/M/b
queue is given by formula (6.4). Since b in (6.4) denotes the number of channels, it
is sufficient to consider α ≥ 1 in the superlinear scaling property such that b/α ∈ N.
Let fb(λ) be given by (6.4), i.e.,

fb(λ) =
λb

b! · b · (1− λ/b)2
·
(

b−1∑
i=0

λi

i!
+

λb

b! · (1− λ/b)

)−1

.

We start with the following result.
Lemma 6.9. fb+1(λ) ≤ b

b+1 · fb( b
b+1 · λ) for any b ∈ N≥1 and λ ∈ [0, b+ 1).

Before we prove Lemma 6.9, we show how it implies the superlinear scaling prop-
erty, that is, Lemma 6.7 (Lemma 6.10 below is the precise statement of Lemma 6.7).

Lemma 6.10. Given any b ∈ N≥1, fb(λ) defined by formula (6.4), and α ≥ 1
such that b/α ∈ N, we have that fb(λ) ≤ 1

αfb/α(λ/α) for any λ ∈ [0, b).
Proof. Since we want that b/α ∈ N, α must be rational, i.e., there is a ∈ N≥1,

b ≥ a, such that α = b/a. Then, by using Lemma 6.9 multiple times we obtain

fb(λ) ≤ b− 1

b
· fb−1

(
b− 1

b
· λ

)
≤ b− 1

b
· b − 2

b − 1
· fb−2

(
b− 1

b
· b− 2

b− 1
· λ

)
≤ · · ·

≤ b− 1

b
· b− 2

b− 1
· · · · · a

a+ 1
· fa

(
b− 1

b
· b − 2

b − 1
· · · · · a

a+ 1
· λ

)
=

a

b
· fa

(a
b
· λ

)
.
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Thus, we have fb(λ) ≤ a
b · f a

b ·b
(
a
b · λ).

Proof of Lemma 6.9. We first rewrite formula (6.4) to get the following form
which we will use throughout the proof:

fb(λ) =
λb

b! · b · (1 − λ/b)2

(
b∑

i=0

λi

i!
+

λb+1

b! · b · (1− λ/b)

)−1

.

Observe now that we can equivalently replace λ ∈ [0, b + 1) with b+1
b λ in the

formula fb+1(λ) ≤ b
b+1fb(

b
b+1λ) to obtain b+1

b fb+1(
b+1
b λ) ≤ fb (λ), where now λ ∈

[0, b). In what follows, we will prove this latter, equivalent, formula.
Since fb (0) = 0, and fb (λ) > 0 if λ ∈ (0, b), when we assume λ > 0, the formula

we want to prove can be rewritten as

b+ 1

b
· 1

fb (λ)
≤ 1

fb+1

(
b+1
b λ

) ,
which is equivalent to

b+ 1

b
· b! · b · (1− λ/b)2

λb
·
(

b∑
i=0

λi

i!

)
+

b+ 1

b
· λ

(
1− λ

b

)

≤ (b + 1)! · (b+ 1) · (1− λ/b)2(
b+1
b · λ)b+1

·
(

b+1∑
i=0

(
b+1
b · λ)i
i!

)
+

b+ 1

b
· λ

(
1− λ

b

)
,

and thus we have to prove the following:

b+ 1

b
· b! · b · (1− λ/b)2

λb
·
(

b∑
i=0

λi

i!

)
≤ (b+ 1)! · (b+ 1) · (1− λ/b)2(

b+1
b · λ)b+1

·
(

b+1∑
i=0

(
b+1
b · λ)i
i!

)
.

Since λ < b, we can obtain the following equivalent inequality:

b∑
i=0

(
b+1
b

)b · λi+1

i!
≤ b ·

b+1∑
i=0

(
b+1
b

)i · λi

i!
.

Define now pi =
( b+1

b )b·λi+1

i! for i = 0, 1, . . . , b and qi =
( b+1

b )i·λi

i! for i = 0, 1, . . . , b+1.

We have to prove that
∑b

i=0 pi ≤ b ·∑b+1
i=0 qi. We will prove a stronger claim, namely,

the following.
Claim. pi ≤ b · qi+1 for each i = 0, 1, . . . , b. This claim is equivalent to(

b+ 1

b

)b

≤
(
b+ 1

b

)x+1

· b

x+ 1
for x = 0, 1, . . . , b.

Let us consider a function h(x) = ( b+1
b )x+1 · b

x+1 for x ∈ [0, b]. We will argue that

function h cannot assume values below ( b+1
b )b.

Observe first that h(b) = h(b − 1) = ( b+1
b )b. Suppose that b = 1; then h(1) =

h(0) = ( b+1
b )b, and so the claim holds. Assume that b ≥ 2, and consider the first

derivative of h,

h′(x) =
(
b+ 1

b

)x+1

· b

x+ 1
·
(
ln

(
b + 1

b

)
− 1

x+ 1

)
= h(x) ·

(
ln

(
b+ 1

b

)
− 1

x+ 1

)
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SELFISH TRAFFIC ALLOCATION FOR SERVER FARMS 1977

We will argue that the first derivative is negative when x ∈ [0, b− 1]. Since h(x) > 0
for any x ≥ 0, it suffices to show that ln

(
b+1
b

)− 1
x+1 < 0 when x ∈ [0, b−1]. This last

inequality will certainly be true if it is true when we replace x by x’s largest value,
i.e., b− 1. Then the inequality becomes

ln

(
b+ 1

b

)
− 1

b
< 0 ⇐⇒

(
1 +

1

b

)b

< e,

where the last inequality is known to hold for any b ∈ N≥1. We conclude that h′(x) < 0
when x ∈ [0, b− 1], and thus function h is decreasing in interval [0, b− 1]. Since b ≥ 2
and h(0) = b+1 > e > ( b+1

b )b, function h has its minimum at b− 1, and, as we know,

h(b − 1) = h(b) = ( b+1
b )b, which concludes the proof of the claim and at the same

time the proof of Lemma 6.9.

6.3. Queueing systems under heterogeneous traffic. Until now we implic-
itly assumed homogeneous traffic, that is, scenarios in which all streams have the same
(general) session length distribution. However, several practical studies show that In-
ternet traffic is far from being homogeneous [4, 7, 22]. Following these studies, one
has to take into account different session length distributions that are characteristic
of the heterogeneous traffic.

Let us investigate the consequences of heterogeneous traffic using a particular
instance of a cost function. The Pollaczek–Khinchin (P-K) formula (see, e.g., formula
(5.113) in [12]) describes the expected waiting time in M/G/1 queues. Observe that
this is a very general class of queueing systems that allows arbitrary service time
distributions. Before we proceed with our analysis, we first transform the P-K formula
into a family of cost functions describing the expected time on servers with bandwidth
b using only two parameters that specify the injected mix of streams into the server,
namely, the expectation λ and the variance V of the injected load.

6.3.1. Derivation of the P-K cost function family in aggregate form.
An M/G/1 server is a sequential server with a single service channel and an FCFS
queue for storing blocked requests as described in section 2.2. Requests for sessions
arrive at the server as a memoryless (i.e., Poisson) stream. Let r denote the injection
rate, i.e., the expected number of requests arriving per unit of time at the server. The
length of the session is described by a general probability distribution D. If T is the
length of a session (which is a random variable chosen according to D) and b denotes
the bandwidth of the server, then the server needs T/b units of time to process the
session. The P-K equation (see, e.g., formula (5.113) in [12]) states that the expected
waiting time (i.e., the time in the queue) at such server is described by the formula

W =
r · E [

T 2
]

2 · b · (b− r · E [T ])
.(6.5)

In the following, we rewrite this formula using different notation that will enable us
to aggregate streams in a linear fashion.

Let X be a random variable describing the load arriving at a server in a time unit,
i.e., the sum of arriving requests weighted with the corresponding session lengths. Let
us investigate how the expected load, E [X ], and the variance of the load, Var [X ],
are related to the injection rate r and the session length distribution D. Consider any
time interval of unit length. Let R denote the number of streams arriving during this
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interval and T1, . . . , TR the lengths of these sessions. Then

E [X ] = E

[
R∑
i=1

Ti

]
=

∑
k≥0

Pr[R = k] · E
[

R∑
i=1

Ti

∣∣∣∣∣R = k

]

=
∑
k≥0

Pr[R = k] · k ·E [T ] = rE [T ] ,

and

Var [X ] = E
[
X2

]−E [X ]
2

= E

⎡
⎣( R∑

i=1

Ti

)2
⎤
⎦− r2E [T ]

2

= E

⎡
⎣ R∑

i=1

E
[
T 2
i

]
+ 2

R∑
i=1

i−1∑
j=1

TiTj

⎤
⎦− r2E [T ]

2

= rE
[
T 2

]
+E [R(R− 1)] ·E [T ]

2 − r2E [T ]
2

= rE
[
T 2

]
,

where the last equation follows from E [R(R− 1)] = E
[
R2

] − E [R] = Var
[
R2

]
+

E [R]
2 − E [R] = r + r2 − r = r2. Hence, writing the P-K formula (6.5) in terms of

expectation and variance of load arriving per unit of time gives

W =
Var [X ]

2 · b · (b−E [X ])
.

Next we describe how different streams arriving at a server can be aggregated to a
single stream. For every stream i ∈ [n], λi is the expected load and Vi is the variance
of the load. Let xi ∈ [0, 1] be another parameter describing the fraction of stream i
that is directed to the considered server, where we assume that every single request
is directed to the considered server with probability xi. This way, the expected load
of stream i arriving at the considered server is xiλi, and the variance of the load
is xiVi because our above bounds show that the expectation and the variance of
the load are proportional to the injection rate. Furthermore, the stream obtained by
aggregating all streams in this way has expected load E [X ] =

∑
i∈[n] xiλi and variance

Var [X ] =
∑

i∈[n] xiVi, where the latter equation follows from the independence of
the load variables of different streams. Thus, the expected waiting time on the server
is

W =

∑
i∈[n] xiVi

2 · b · (b −∑
i∈[n] xiλi)

.(6.6)

For simplicity of notation, we drop the factor 1
2 and define the cost of the considered

server under the allocation x1, . . . , xn as 2W .

6.3.2. Fractional price of anarchy for the P-K cost function family. We
now study the heterogeneous traffic using the P-K formula describing the expected
waiting time in M/G/1 queues. Using our analysis from section 6.3.1, if every stream
i is characterized by two weights λi and Vi, then by (6.6), the P-K family of cost
functions can be defined as follows:

fb(x1, . . . , xn) =

∑n
i=1 Vi · xi

b · (b−∑n
i=1 λi · xi)

.
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The remarkable fact here is that both parameters, the expected load and the variance,
can be aggregated independently in a simple linear fashion. That is, the expected
load injected into the server is λ =

∑n
i=1 λi · xi, and the variance of this load is

V =
∑n

i=1 Vi · xi.
Observe that if we assume λi = Vi, then we are back in the homogeneous model

with identical session length distribution, and we obtain a monotone queueing function
with only one parameter, λ. Consequently, R = ∞, Rε = ∞, and R ≥ m for the
P-K cost function family. In the fractional flow model, however, we obtain different
results. Recall that R∗ = 1 under homogeneous traffic.

Theorem 6.11. The fractional price of anarchy R∗ for the P-K cost function
family is unbounded. If the ratio between the largest and smallest server bandwidth is
bounded by S, then the price of anarchy is R∗ = S.

We need some technical tools before we present the proof of Theorem 6.11.

6.3.3. The local exchange lemma. Consider the following problem. We are
given m servers, each with two positive parameters pj and qj , j ∈ [m]. We are also
given n data streams, each with two positive parameters vi and ei, i ∈ [n]. We study
the following linear program (without objective function), which we call LP:

n∑
i=1

(vipj + eiqj)xij ≤ 1 ∀j ∈ [m],(6.7)

m∑
j=1

xij = 1 ∀i ∈ [n],

xij ≥ 0 ∀i, j.
The value of variable xij represents a fraction of data stream i assigned to server

j. Let us assume that the LP is feasible and tight ; i.e., every feasible solution satisfies
all the constraints (6.7) with equality. We analyze the structure of feasible solutions
of this LP.

Lemma 6.12. Let j, j′ ∈ [m] such that
pj

qj
>

pj′
qj′

. In any feasible solution of LP,

if xij > 0 and xi′j′ > 0, then vi
ei

≤ vi′
ei′

.

Proof. Toward a contradiction, we assume that there is a feasible solution with
xij > 0, xi′j′ > 0, and vi

ei
> vi′

ei′
. Let ε be sufficiently small such that it is possible to

exchange pieces of streams as follows. Suppose we decrease xij by ε and increase xij′

by the same amount. Next we increase xi′j by some amount ε′ such that constraint
(6.7) for j becomes tight again. Besides, we decrease xi′j′ by ε′. We claim that this
transformation yields a feasible solution, but this solution is not tight with respect
to constraint (6.7) for server j′, contradicting our assumption that the LP is tight,
which implies vi

ei
≤ vi′

ei′
.

We need to show that constraint (6.7) for j′ is not tight after the transformation.
Since constraint (6.7) for j is tight after the transformation, it holds that

ε(vipj + eiqj) = ε′(vi′pj + ei′qj),

which gives

ε′ = ε
vipj + eiqj
vi′pj + ei′qj

.

The change in the assignment of i increases the left-hand side of constraint (6.7) by

ε · (vipj′ + eiqj′),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1980 ARTUR CZUMAJ, PIOTR KRYSTA, AND BERTHOLD VÖCKING

while the change in the assignment of i′ decreases this expression by

ε′ · (vi′pj′ + ei′qj′ ) = ε · (vi′pj′ + ei′qj′ )(vipj + eiqj)

vi′pj + ei′qj
.

Hence, we need to show

(vi′pj′ + ei′qj′)(vipj + eiqj) > (vipj′ + eiqj′ )(vi′pj + ei′qj),

which rewrites as

eivi′pj′qj + ei′vipjqj′ > eivi′pjqj′ + ei′vipj′qj .

The last inequality can be written as (pjqj′ − pj′qj)(ei′vi − eivi′) > 0, which by our
assumptions that vi

ei
> vi′

ei′
and

pj

qj
>

pj′
qj′

is obviously true.

Observe that the structure of the feasible solution allows us to compute such a
solution by a greedy algorithm: Sort the servers such that p1

q1
≥ p2

q2
≥ · · · ≥ pm

qm
. Sort

the data streams such that v1
e1

≤ v2
e2

≤ · · · ≤ vn
en
. For i = 1 to n, until stream i is

completely assigned, assign as much as possible of this stream to the machine with
smallest index not yet satisfying constraint (6.7) with equality.

6.3.4. LP characterization. Consider the heterogeneous model under the P-K
cost function. Then, the optimum solution in the fractional model can be character-
ized by the following program:

minimize z

subject to

∑n
i=1 Vix

j
i

bj(bj −
∑n

i=1 λix
j
i )

≤ z ∀j ∈ [m],

m∑
j=1

xij = 1 ∀i ∈ [n],

xij ≥ 0 ∀i, j.

This program can be equivalently rewritten as the following program, called P1:

minimize z

subject to

n∑
i=1

(
Vi

z b2j
+

λi

bj

)
xj
i ≤ 1 ∀j ∈ [m],

m∑
j=1

xij = 1 ∀i ∈ [n],

xij ≥ 0 ∀i, j.

Now assume that z is fixed to the smallest possible value such that P1 is feasible; then
we obtain a linear program that is very similar to linear program LP. This similarity
can be captured by defining vi = Vi and ei = λi for i ∈ [n], and pj = 1/(zb2j),
qj = 1/bj for j ∈ [m]. We observe that for any fixed value of z we can test feasibility
of the program P1 using the greedy assignment algorithm above. Finally, it can be
shown that we can use binary search for z to solve program P1. The order of the
servers is given by decreasing values of

pj

qj
= 1

zbj
, which means by increasing values
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of bandwidths bj. The order of data streams is given by increasing values of vi
ei

= Vi

λi
.

As we have chosen z to be the smallest possible value such that the constraints are
feasible, all feasible solutions of LP are tight.

Similar arguments show that in the worst-case Nash equilibrium, if we keep the
order of the servers by increasing values of bandwidths bj, then the order of data
streams is now given by decreasing values of vi

ei
= Vi

λi
. To show this property, we

observe that the costs on all servers in a fractional Nash equilibrium must be equal.
Using this observation, we can characterize the worst-case Nash fractional equilibrium
by the following program:

maximize z

subject to

∑n
i=1 Vix

j
i

bj(bj −
∑n

i=1 λix
j
i )

≥ z ∀j ∈ [m],

m∑
j=1

xij = 1 ∀i ∈ [n],

xij ≥ 0 ∀i, j.

This program is similar to program P1 above, and it can be turned in the same way
into a linear program almost equal to LP. The only difference is that the inequality ≤
in constraint (6.7) changes into ≥. Starting from this, one can prove the claim about
the structure of the worst-case Nash equilibrium by following the arguments in the
proof of Lemma 6.12 with reversed inequalities.

6.3.5. Proof of Theorem 6.11. Now we will use the LP characterization of
optimal solutions and the worst-case Nash equilibria from section 6.3.4 to prove The-
orem 6.11.

Proof of Theorem 6.11. An upper bound. Assume that the bandwidths of the
servers are such that b1 ≥ b2 ≥ · · · ≥ bm. We are given a set of data streams with
weights and variances λi, Vi, respectively, i ∈ [n]. We first consider a relaxation of the
problem by replacing each data stream λi, Vi by two new data streams 0, Vi and λi,
0. We also delete from the new problem instance all data streams of the form 0, 0.

The value C of the worst-case Nash equilibrium for the relaxed problem is ob-
viously not smaller than that for the original problem. Also, the value opt of the
optimum solution for the relaxed problem is not greater than that for the original
problem. Therefore, an upper bound on the price of anarchy R∗ for the relaxed prob-
lem implies the same upper bound for the original price of anarchy. From now on, we
work with the relaxed problem.

Define Λ =
∑

i∈[n] λi, V =
∑

i∈[n] Vi, S̃ =
∑

j∈[m] bj, and G = S̃ − Λ. We will

show that opt ≥ V
b1G

and C ≤ V
bmG , which implies R∗ ≤ b1/bm = S.

We use now the order of data streams in the opt solution. (Note that we can
extend the local exchange lemma for cases where λi = 0 for some data streams.) This
order implies that there exists a j′ such that opt maps all streams of the form λi, 0
to a subset of servers {j′, j′ +1, . . . ,m}. Assume that each server j ≥ j′ is filled with
λ(j) amount of data stream weights, and, therefore, server j ≥ j′ is filled up to a
“gap” of

gj = bj − λ(j).

Furthermore, the opt solution maps all streams of the form 0, Vi to the servers
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{1, 2, . . . , j′′} for some j′′. Let V (j) denote the “amount of variance” received by
server j ∈ {1, . . . ,m}.

We first observe that j′′ = m. Assume this is false; i.e., there is a server j1 ∈
{j′′+1, . . . ,m} with V (j1) = 0. Then, we can just move a fraction of some type 0, Vi

stream from a server j2 ∈ {1, 2, . . . , j′′} to server j1. The cost on server j1 was zero
before and after this operation increases marginally. But then, we can also reassign
type 0, Vi streams more evenly on the servers {1, 2, . . . , j′′} using the free space on
server j2. This decreases the cost of the solution and thus yields a contradiction with
the opt solution.

The cost on all servers {1, 2, . . . ,m} must be identical; that is,

V (1)

(b1)2
=

V (2)

(b2)2
= · · · =

V (j′ − 1)

(bj′−1)2
=

V (j′)
bj′ · gj′ =

V (j′ + 1)

bj′+1 · gj′+1
= · · · =

V (m)

bm · gm .

Consequently,

V (m) =
V · bm · gm∑j′−1

j=1 (bj)2 +
∑m

j=j′ bj · gj
.

Therefore, the waiting time at server m and, hence, the value of opt is

V (m)

bm · gm =
V∑j′−1

j=1 (bj)2 +
∑m

j=j′ bj · gj
≥ V

b1 ·
(∑j′−1

j=1 bj +
∑m

j=j′ gj

) =
V

b1 ·G.

Analogously, we can use the reverse order of the streams in the worst-case Nash
equilibrium, and we can argue that the variances must be split on all the servers
(otherwise, the Nash property would be violated). This, with an appropriate definition
of a “gap” gj and j′, shows that the value of Nash is

V∑j′
j=1 bj · gj +

∑m
j=j′+1(bj)

2
≤ V

bm ·
(∑j′

j=1 gj +
∑m

j=j′+1 bj

) =
V

bm ·G.

This completes the proof of the upper bound.
A lower bound. We show here a lower bound in Theorem 6.11, that is, R∗ ≥ S.

Assume we are given two servers with b1 = 1 and b2 = S and two data streams with
λ1 = 0, V1 = 1 and λ2 = S, V2 = 0. We can use now the local exchange lemma to
show that R∗ ≥ S, but we will show an analytical argument here.

Let λ(j) be the amount of stream 2 assigned to server j ∈ {1, 2}, and let V (j) be
the amount of stream 1 assigned to server j ∈ {1, 2}. We have that λ(1) + λ(2) = S
and V (1) + V (2) = 1. We know that in opt and in the Nash solutions, the costs are
the same on each server. Thus let us write that

V (1)

1− λ(1)
=

V (2)

S · (S − λ(2))
.

Now, we have that λ(2) = S−λ(1) and V (2) = 1−V (1). After plugging these values

in the condition above, we obtain V (1) = 1−λ(1)
(S−1)·λ(1)+1 . Consider now a function

f(λ(1)) =
V (1)

1− λ(1)
=

1−λ(1)
(S−1)·λ(1)+1

1− λ(1)
.
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It can be shown that f has a minimum when λ(1) → 1, equal to 1/S, and so opt ≤ 1/S
(we use here the l’Hôpital rule from Calculus to prove this fact). We can also easily
show that f has a maximum when λ(1) = 0, which gives that C ≥ 1. Therefore, we
obtain finally that R∗ = C/opt ≥ S, which completes the proof of Theorem 6.11.

In light of Theorem 6.11, we conclude that the optimality of fractional flow in Nash
equilibrium is a special property of homogeneous traffic on server farms, and hence
one must take into account the heterogeneous nature of Web traffic when studying
the price of selfish routing on the Internet.

6.4. Servers with parallel channels and rejection. Until now we assumed
that all requests are served, regardless of how long they have to wait for service.
In practice, however, Web servers can and have to reject requests when they are
overloaded. For simplicity, let us assume that a server rejects requests whenever all
service channels are occupied, and then these requests disappear from the system. In
this case, the fraction of rejected requests is completely independent of the service
time distribution. In other words, there is no difference between homogeneous and
heterogeneous traffic under this service model. In fact, the fraction of rejected requests
can be derived from the Erlang loss formula; see, e.g., [10, 11]. We obtain the following
cost function family FN>0 for servers that can open up to b channels simultaneously:

fb(x1, . . . , xn) =
λb/b!∑b

k=0 λ
k/k!

,

describing the fraction of rejected requests, where λ =
∑n

i=1 λi xi. To simplify nota-
tion, let us simply consider fb as a function of λ. Then it is easy to check that the
family of Erlang loss functions is monotone. Thus, Theorem 5.1 immediately implies
the following on the fractional price of anarchy.

Corollary 6.13. For the family FN>0 of the Erlang loss cost functions, R∗ = 1.
On first glance, the family of Erlang loss functions makes an innocent impression.

Indeed, these functions are continuous, convex, and monotonically increasing in λ and
f ′
b(λ) ≤ 1/b for every λ ≥ 0. Nevertheless, the criterion from Theorem 5.2 can be used
to show that the integral price of anarchy of the Erlang loss family is unbounded.

Theorem 6.14. For the family FN>0 of Erlang loss cost functions, R = ∞ and
R ≥ m.

Proof. We show that the cost increases by an unbounded factor around λ = b.
To see this, let us consider the family of functions FN>0 with Fb(x) = fb(b x), i.e., the
Erlang loss functions in terms of relative load. We claim that, for every x ≥ 0,

lim
b→∞

Fb(x) = max

{
0,

x− 1

x

}
.

As a consequence of this claim, for every x ∈ (0.5, 1] and every α ≥ 1, there exists
a sufficiently large b ≥ 1 such that Fb(2x)/Fb(x) > α. Consequently, there does not
exist α ≥ 1 satisfying the criterion from Theorem 5.2, which implies R = ∞. Applying
Theorem 5.7 yields R ≥ m.

It remains to prove the claim on limb→∞ Fb(x). Let us first consider the case
x ≤ 1. We have to show limb→∞ Fb(x) = 0. We have

1

fb(λ)
=

b∑
k=0

b!

λb−kk!
≥

b∑
k=b−�√b

(
b− �√b�+ 1

λ

)b−k

.
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Applying λ = xb ≤ b, we obtain

1

fb(λ)
≥

b∑
k=b−�√b

(
b−√

b

b

)√
b

≥
√
b

4
,

where the last inequality holds for b ≥ 4, as then ((b −√
b)/b)

√
b ≥ 1

4 . Consequently,

Fb(x) = fb(λ) ≤ 4/
√
b, and, hence, limb→∞ Fb(x) = 0.

Now assume x = λ/b > 1. On one hand, we obtain

1

fb(λ)
=

b∑
k=0

b!

λb−kk!
=

b∑
k=0

xk−b b!

bb−kk!
≤
∑
k≤b

xk−b =
x

x− 1
.

On the other hand, we get

1

fb(λ)
=

b∑
k=0

xk−b b!

bb−kk!
≥

b∑
k=b−�b1/3

xk−b

(
1− 1

b2/3

)b1/3

b→∞
=

x

x− 1
.

Consequently, limb→∞ Fb(x) = limb→∞ fb(xb) =
x−1
x .

In contrast to the monotone queueing functions from section 6.1, the source of
the troubles for the Erlang loss cost functions is not an ∞-pole, but the rapid increase
from tiny to small cost in the region around λ = b. One might thus hope that the
absolute cost of selfish routing under the Erlang loss cost function family is small. In
fact, this is confirmed by the following theorem.

Theorem 6.15. Let δ ≥ 2/ log2 m. Consider a server farm of m servers with
bandwidths b1 ≥ · · · ≥ bm and cost functions from the family FN>0 of Erlang loss cost
functions. Suppose

∑
i∈[n] λi ≤ 1

6e

∑
j∈[m] bj and maxi∈[n] λi ≤ bm

3δ log2 m . Then, any

Nash equilibrium has social cost at most m−δ+1 +m · 2−�bm/4.
Proof. Suppose that

∑
i∈[n] λi ≤ ∑

j∈[m] bj/6 e. Suppose the maximum weight

over all streams is W = bm/(3 δ logm) for some given δ > 0 with δ logm ≥ 2. We
have to show that for every Nash equilibrium C ≤ m−δ+1 +m · 2−�bm/4.

For j ∈ [m], let Xj be the random variable describing the injected load on server
j. A simple averaging argument shows the existence of a server q ∈ [m] with

E [Xq] =
∑
i∈[n]

pqi λi ≤ bq
6 e

.

This server has expected cost E [Cq] = E
[
fbq (Xq)

]
. Consider an arbitrary server

j ∈ [m]. Suppose there exists i ∈ [n] with pji > 0. Then the Nash equilibrium

property gives cji ≤ cqi so that

E [Cj ] ≤ E
[
Cj |xj

i = 1
]

= cji ≤ cqi = E [Cq|xq
i = 1] ≤ E

[
fbq (Xq +W )

]
.

If pji = 0 for every i ∈ [n], then E [Cj ] = 0 ≤ E
[
fbq (Xq +W )

]
as well. Furthermore,

observe that fbq (Xq +W ) ≤ 1 as the Erlang loss cost function describes the fraction
of rejected requests. Hence, for any server j ∈ [m] we have

E [Cj ] ≤ Pr

[
Xq ≤ bq

3

]
· fbq

(
bq
3

+W

)
+Pr

[
Xq >

bq
3

]
· 1

≤ fbq

(
bq
3

+W

)
+Pr

[
Xq >

bq
3

]
.
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Let us estimate these two terms as follows. Observe that W ≤ bm/6 ≤ bq/6. Conse-
quently,

fbq

(
bq
3

+W

)
≤ fbq

(
bq
2

)
≤

(
bq
2

)bq
/bq!∑bq

k=0

(
bq
2

)k

/k!

≤
(

bq
2

)�bq/2� ⌊ bq
2

⌋
!

bq!
,

where the last inequality follows by ignoring all additive terms in the denominator
except the one with index k = �bq/2�. Now observe that the last term can be rewritten
as

�bq/2�−1∏
i=0

bq
2

bq − i
or, alternatively,

�bq/2�−1∏
i=0

bq
2⌊

bq
2

⌋
+ 1 + i

.

Observe that the ith term in the first product corresponds to the (�bq/2� − 1 − i)th
term in the second one. Combining these products by selecting the first ��bq/2�/2�
terms from each of them, we get

fbq

(
bq
3

+W

)
≤
��bq/2�/2−1∏

i=0

(
bq
2

)2

(bq − i)
(⌊

bq
2

⌋
+ 1 + i

) ≤
��bq/2�/2−1∏

i=0

(
bq
2

)2

(bq)2

2 +
ibq
2 − i2

.

As i ≤ bq/2, this gives

fbq

(
bq
3

+W

)
≤
��bq/2�/2−1∏

i=0

(
bq
2

)2

(bq)2

2

≤ 2−�bq/4 ≤ 2−�bm/4.

Furthermore, using E [Xq] ≤ bq/(6e) and the upper bound for the maximum weight
over all streams of W , we can apply the standard Hoeffding bound (see, e.g., [5]) to
obtain

Pr

[
Xq >

bq
3

]
≤ 2−bq/3W ≤ m−δ

because bq ≥ bm and W = bm/(3 δ logm). Hence, we can conclude

C = E

[
max
j∈[m]

Cj

]
≤ m · max

j∈[m]
(E [Cj ]) ≤ m−δ+1 +m 2−�bm/4.

This completes the proof of Theorem 6.15.
In words, Theorem 6.15 says that if the total injected load is at most a con-

stant fraction of the total bandwidth and every stream has not too large a weight,
that is, streams are O( 1

logm )-small, then the fraction of rejected requests is at most

m−δ+1 +m 2−�bm/4, where δ denotes an arbitrary constant. Under the same condi-
tions, an optimal allocation would reject a fraction of at least 2−Ω(b1) packets. Taking
into account that typical Web servers can open several hundred TCP connections
simultaneously, so that bm can be assumed to be quite large, we conclude that the
cost of selfish routing is very small in absolute terms even though the price of anarchy
comparing these costs with the optimal cost is unbounded.
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7. Conclusions. Our results have important algorithmic consequences in that
the choice of the queueing discipline should take into account the possible performance
degradation due to selfish and uncoordinated behavior of network users.

We have shown that the price of anarchy for closed queueing systems is un-
bounded. The same is true for server farms that reject requests in case of overload.
However, there is a fundamental difference between these two kinds of queueing poli-
cies. Because of the infinity pole the delay under selfish routing in closed queueing
systems is in general unbounded. In fact, we have explicitly shown that selfish rout-
ing in closed queueing systems can lead to an arbitrary large delay even when the
total injected load can potentially be served by a single server. In contrast, the frac-
tion of rejected requests under selfish routing can be bounded above by a function
that is exponentially small in the number of TCP connections that can be opened
simultaneously.

We conclude that server farms that serve all requests, regardless of how long re-
quests have to wait, cannot give any reasonable guarantee on the quality of service
when selfish agents manage the traffic. However, if requests are allowed to be re-
jected, then it is possible to guarantee a high quality of service for every individual
request stream. Thus, the typical practice of rejecting requests in case of overload is
a necessary condition to ensure efficient service under game theoretic measures.
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