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QUASI-RANDOMNESS AND ALGORITHMIC REGULARITY FOR
GRAPHS WITH GENERAL DEGREE DISTRIBUTIONS∗

NOGA ALON†, AMIN COJA-OGHLAN‡ , HIÊP HÀN§ , MIHYUN KANG¶,
VOJTĚCH RÖDL‖, AND MATHIAS SCHACHT∗∗

Abstract. We deal with two intimately related subjects: quasi-randomness and regular par-
titions. The purpose of the concept of quasi-randomness is to express how much a given graph
“resembles” a random one. Moreover, a regular partition approximates a given graph by a bounded
number of quasi-random graphs. Regarding quasi-randomness, we present a new spectral charac-
terization of low discrepancy, which extends to sparse graphs. Concerning regular partitions, we
introduce a concept of regularity that takes into account vertex weights, and show that if G = (V, E)
satisfies a certain boundedness condition, then G admits a regular partition. In addition, building
on the work of Alon and Naor [Proceedings of the 36th ACM Symposium on Theory of Computing
(STOC), Chicago, IL, ACM, New York, 2004, pp. 72–80], we provide an algorithm that computes
a regular partition of a given (possibly sparse) graph G in polynomial time. As an application, we
present a polynomial time approximation scheme for MAX CUT on (sparse) graphs without “dense
spots.”
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1. Introduction and results. This paper deals with quasi-randomness and
regular partitions. Loosely speaking, a graph is quasi-random if the global distribution
of the edges resembles the expected edge distribution of a random graph. Furthermore,
a regular partition approximates a given graph by a constant number of quasi-random
graphs. Such partitions are of algorithmic importance, because a number of NP-
hard problems can be solved in polynomial time on graphs that come with regular
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partitions. In this section we present our main results and discuss related work. The
remaining sections contain the proofs and detailed descriptions of the algorithms.

1.1. Quasi-randomness: Discrepancy and eigenvalues. Random graphs
are well known to have a number of remarkable properties (e.g., excellent expansion).
Therefore, quantifying how much a given graph “resembles” a random one is an im-
portant problem, both from a structural and an algorithmic point of view. Providing
such measures is the purpose of the notion of quasi-randomness. While this concept is
rather well developed for dense graphs (i.e., graphs G = (V,E) with |E| = Ω(|V |2)),
less is known in the sparse case, which we deal with in the present work. In fact, we
shall actually deal with (sparse) graphs with general degree distributions, including
but not limited to the ubiquitous power-law degree distributions (cf. [1]).

We will mainly consider two types of quasi-random properties: low discrepancy
and eigenvalue separation. The low discrepancy property concerns the global edge
distribution and basically states that every set S of vertices approximately spans as
many edges as we would expect in a random graph with the same degree distribution.
More precisely, if G = (V,E) is a graph, then we let dv signify the degree of v ∈ V .
Furthermore, the volume of a set S ⊂ V is vol(S) =

∑
v∈S dv. In addition, if S, T ⊂ V

are disjoint sets, then e(S, T ) denotes the number of S-T -edges in G and e(S) is two
times the number of edges spanned by the set S. For not necessarily disjoint sets
S, T ⊂ V we let e(S, T ) = e(S \ T, T \ S) + e(S ∩ T ).

Definition 1: Disc(ε). We say that G has discrepancy at most ε (“G has
Disc(ε),” for short) if

(1) ∀S ⊂ V :

∣∣∣∣e(S)− vol(S)2

vol(V )

∣∣∣∣ < 2ε · vol(V ).

To explain (1), let d = (dv)v∈V , and let G(d) signify a random graph with
expected degree distribution d; that is, any two vertices v, w are adjacent with proba-
bility pvw = dvdw/vol(V ) independently. Then in G(d) the expected number of edges
inside of S ⊂ V equals 1

2

∑
(v,w)∈S2 pvw = 1

2vol(S)
2/vol(V ). Consequently, (1) just

says that for any set S the actual number of edges inside of S must not deviate from
what we expect in G(d) by more than an ε-fraction of the total volume.

An obvious problem with the bounded discrepancy property (1) is that it seems
quite difficult to check whether G = (V,E) satisfies this condition. This is because
apparently one would have to inspect an exponential number of subsets S ⊂ V .
Therefore, we consider a second property that refers to the eigenvalues of a certain
matrix representing G. More precisely, we will deal with the normalized Laplacian
L(G), whose entries (�vw)v,w∈V are defined as

�vw =

⎧⎨
⎩

1 if v = w and dv ≥ 1,

−(dvdw)
− 1

2 if v, w are adjacent,
0 otherwise.

Due to the normalization by the geometric mean
√
dvdw of the vertex degrees, L(G)

turns out to be appropriate for representing graphs with general degree distributions.
Moreover, L(G) is well known to be positive semidefinite, and the multiplicity of the
eigenvalue 0 equals the number of connected components of G (cf. [9]).

Definition 2: Eig(δ). Letting 0 = λ1 [L(G)] ≤ · · · ≤ λ|V | [L(G)] denote the
eigenvalues of L(G), we say that G has δ-eigenvalue separation (“G has Eig(δ)”) if
1− δ ≤ λ2 [L(G)] ≤ λ|V | [L(G)] ≤ 1 + δ.
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As the eigenvalues of L(G) can be computed in polynomial time (within arbitrary
numerical precision), we can essentially check efficiently whether G has Eig(δ) or not.

It is not difficult to see that Eig(δ) provides a sufficient condition for Disc(ε). That
is, for any ε > 0 there is a δ > 0 such that any graphG that has Eig(δ) also has Disc(ε).
However, while the converse implication is true if G is dense (i.e., vol(V ) = Ω(|V |2)), it
is false for sparse graphs. In fact, providing a necessary condition for Disc(ε) in terms
of eigenvalues has been an open problem in the area of sparse quasi-random graphs
since the work of Chung and Graham [11]. Concerning this problem, we basically
observe that the reason why Disc(ε) does not in general imply Eig(δ) is the existence
of a small set of “exceptional” vertices.

Definition 3: ess-Eig(δ). We say that G has essential δ-eigenvalue separation
(“G has ess-Eig(δ)”) if there is a set W ⊂ V of volume vol(W ) ≥ (1 − δ)vol(V )
such that the following is true. Let L(G)W = (�vw)v,w∈W denote the minor of L(G)
induced on W ×W , and let λ1 [L(G)W ] ≤ · · · ≤ λ|W | [L(G)W ] signify its eigenvalues.
Then we require that 1− δ < λ2 [L(G)W ] ≤ λ|W | [L(G)W ] < 1 + δ.

Theorem 1.1. There is a constant γ > 0 such that the following are true for all
graphs G = (V,E) and all ε > 0:

1. If G has ess-Eig(ε), then G satisfies Disc(10
√
ε).

2. If G has Disc(γε2), then G satisfies ess-Eig(ε).
The main contribution is the second implication. Its proof is based on Grothen-

dieck’s inequality and the duality theorem for semidefinite programs. In effect, the
proof actually provides us with an efficient algorithm that computes a set W as in
the definition of ess-Eig(ε). The second part of Theorem 1.1 is best possible, up to
the precise value of the constant γ (see section 6).

1.2. The algorithmic regularity lemma. Loosely speaking, a regular parti-
tion of a graphG = (V,E) is a partition of (V1, . . . , Vt) of V such that for “most” index
pairs 1 ≤ i < j ≤ t the bipartite subgraph spanned by Vi and Vj is quasi-random.
Thus, a regular partition approximates G by quasi-random graphs. Furthermore, the
number t of classes may depend on a parameter ε that rules the accuracy of the ap-
proximation, but it does not depend on the order of the graph G itself. Therefore, if
for some class of graphs we can compute regular partitions in polynomial time, then
this graph class will admit polynomial time algorithms for various problems that are
NP-hard in general.

In what follows, we introduce a new concept of regular partitions that takes into
account a given “ambient” weight distribution D = (Dv)v∈V , which is an arbitrary
sequence of rationals between 1 and n = |V |. We will see at the end of this section
how this relates to the notion of quasi-randomness discussed in the previous section.
Let G = (V,E) be a graph. For subsets X,Y ⊂ V we set

�(X,Y ) =
e(X,Y )

D(X)D(Y )
, where D(U) =

∑
u∈U

Du for any U ⊂ V .

Further, we say that for disjoint sets X,Y ⊂ V the pair (X,Y ) is (ε,D)-regular if for
all X ′ ⊂ X , Y ′ ⊂ Y satisfying D(X ′) ≥ εD(X), D(Y ′) ≥ εD(Y ) we have

(2) |e(X ′, Y ′)− �(X,Y )D(X ′)D(Y ′)| ≤ ε · D(X)D(Y )

D(V )
.

Roughly speaking, (2) states that the bipartite graph spanned by X and Y is “quasi-
random” with respect to the vertex weights D.
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In the present notation, Szemerédi’s original regularity lemma [23] states that
every graph G admits a regular partition with respect to the weight distribution
D(v) = n for all v ∈ V . However, if G is sparse (i.e., |E| 	 |V |2), then such a
regular partition is not helpful because the bound on the right-hand side (r.h.s.) of
(2) exceeds |E|. To obtain an appropriate bound, we would have to consider a weight
distribution such that D(v) 	 n for (at least) some v ∈ V . But with respect to such
weight distributions regular partitions do not necessarily exist. The basic obstacle is
the presence of large “dense spots” (X,Y ), where e(X,Y ) is far bigger than the term
D(X)D(Y )/D(V ) suggests. To rule these out, we consider the following notion.

Definition 4: (C, η,D)-boundedness. Let C ≥ 1 and η > 0. A graph G is
(C, η,D)-bounded if for all X,Y ⊂ V with D(X), D(Y ) ≥ ηD(V ) we have
�(X,Y )D(V ) ≤ C.

To illustrate the boundedness condition, consider a random graph G(D) with
expected degree sequence D such that D(V ) 
 n. Then for any two disjoint sets
X,Y ⊂ V we have E [e(X,Y )] = D(X)D(Y )/D(V ) + o(D(V )). Hence, Chernoff
bounds imply that for allX,Y simultaneously we have e(X,Y ) = D(X)D(Y )/D(V )+
o(D(V )) with probability 1 − o(1) as n → ∞. Therefore, for any fixed η > 0 the
random graph G(D) is (1 + o(1), η,D)-bounded with probability 1− o(1).

Now, we can state the following algorithmic regularity lemma for graphs with
general degree distributions, which ensures not only the existence of regular partitions,
but also that such a partition can be computed efficiently. We let 〈D〉 signify the
encoding length of a weight distribution D = (Dv)v∈V , i.e., the number of bits that
are needed to write down the rationals (Dv)v∈V . Observe that 〈D〉 ≥ n.

Theorem 1.2. For any two numbers C ≥ 1 and ε > 0 there exist η > 0 and
n0 > 0 such that for all n ≥ n0 and every sequence of rationals D = (Dv)v∈V with
|V | = n and 1 ≤ Dv ≤ n for all v ∈ V the following holds. If G = (V,E) is a (C, η,D)-
bounded graph and D(V ) ≥ η−1n, then there is a partition P = {Vi : 0 ≤ i ≤ t} of V
that satisfies the following two properties:

REG1.
(a) ηD(V ) ≤ D(Vi) ≤ εD(V ) for all i = 1, . . . , t,
(b) D(V0) ≤ εD(V ), and
(c) |D(Vi)−D(Vj)| < maxv∈V Dv for all 1 ≤ i < j ≤ t.

REG2. Let L be the set of all pairs (i, j) of indices 1 ≤ i < j ≤ t such that
(Vi, Vj) is not (ε,D)-regular. Then

∑
(i,j)∈L

D(Vi)D(Vj) ≤ εD(V )2.

Furthermore, for fixed C and ε the partition P can be computed in polynomial time.
More precisely, there exist a function f and a polynomial Π such that the partition P
can be computed in time f(C, ε) · Π(〈D〉).

Condition REG1 states that all of the classes V1, . . . , Vt have approximately the
same nonnegligible weight, while the “exceptional” class V0 has a “small” weight.
Also note that due to REG1(a) the number of classes t of the partition P is bounded
by 1/η, which depends only on C and ε but not on G, D, or n. Moreover, REG2
requires that the total weight of the irregular pairs (Vi, Vj) be small relative to the
total weight. Thus, a partition P that satisfies REG1 and REG2 approximates G by
a bounded number of bipartite quasi-random graphs.

We illustrate the use of Theorem 1.2 with the example of the MAX CUT problem.
While approximating MAX CUT within a ratio better than 16

17 is NP-hard on general
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graphs [19, 24], the following theorem provides a polynomial time approximation
scheme for (C, η,D)-bounded graphs.

Theorem 1.3. For any δ > 0 and C ≥ 1 there exist two numbers η > 0,
n0 > 0 and a polynomial time algorithm ApxMaxCut such that for all n ≥ n0 and
every sequence of rationals D = (Dv)v∈V with |V | = n and 1 ≤ Dv ≤ n for all v ∈ V
the following is true. If G = (V,E) is a (C, η,D)-bounded graph and D(V ) > η−1n,
then ApxMaxCut outputs a cut of G that approximates the maximum cut up to an
additive error of δ|D(V )|.

Finally, let us discuss a few examples and applications of the above results.
1. If we let D(v) = n for all v ∈ V , then Theorem 1.2 is just an algorithmic ver-

sion of Szemerédi’s regularity lemma. Such a result was established previously
in [3].

2. Suppose that D(v) = d̄ for some number d̄ = d̄(n) = o(n). Then the above
notions of regularity and boundedness coincide with those of the “sparse
regularity lemma” of Kohayakawa [21] and Rödl (unpublished). Hence, The-
orem 1.2 provides an algorithmic version of this regularity concept. This
result has not been published previously (although it may have been known
to experts in the area that this can be derived from Alon and Naor [4]—see,
e.g., [16]). Actually devising an algorithm for computing a sparse regular
partition is mentioned as an open problem in [21].

3. For a given graph G = (V,E) we could just use the degree sequence as a
weight distribution, i.e., D(v) = dv for all v ∈ V . Then D(U) = vol(U) for
all U ⊂ V . Hence, the notion of regularity (2) is closely related to the notion
of quasi-randomness from section 1.1. The resulting regularity concept is a
generalization of the “classical” sparse regularity lemma. The new concept
allows for graphs with highly irregular degree distributions.

1.3. Further related work. Quasi-random graphs with general degree distri-
butions were first studied by Chung and Graham [10]. They considered the properties
Disc(ε) and Eig(δ), and a number of further related ones (e.g., concerning weighted cy-
cles). Chung and Graham observed that Eig(δ) implies Disc(ε), and that the converse
is true in the case of dense graphs (i.e., vol(V ) = Ω(|V |2)).

Regarding the step from discrepancy to eigenvalue separation, Butler [8] proved
that any graph G such that for all sets X,Y ⊂ V the bound

(3) |e(X,Y )− vol(X)vol(Y )/vol(V )| ≤ ε
√
vol(X)vol(Y )

holds satisfies Eig(O(ε(1−ln ε))). His proof builds upon the work of Bilu and Linial [6],
who derived a similar result for regular graphs, and on the earlier related work of
Bollobás and Nikiforov [7].

Butler’s result relates to the second part of Theorem 1.1 as follows. The r.h.s.
of (3) refers to the volumes of the sets X and Y and may thus be significantly smaller
than εvol(V ). By comparison, the second part of Theorem 1.1 just requires that
the “original” discrepancy condition Disc(δ) be true; i.e., we just need to bound
|e(S) − vol(S)2/vol(V )| in terms of the total volume vol(V ). Hence, Butler shows
that the “original” eigenvalue separation condition Eig follows from a stronger ver-
sion of the discrepancy property. By contrast, Theorem 1.1 shows that the “origi-
nal” discrepancy condition Disc implies a weak form of eigenvalue separation ess-Eig,
thereby answering a question posed by Chung and Graham [10, 11]. Furthermore,
relying on Grothendieck’s inequality and semidefinite programming duality, the proof
of Theorem 1.1 employs quite different techniques than those used in [6, 7, 8].
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In the present work we consider a concept of quasi-randomness that takes into
account vertex degrees. Other concepts that do not refer to the degree sequence (and
are therefore restricted to approximately regular graphs) were studied by Chung, Gra-
ham, and Wilson [12] (dense graphs) and by Chung and Graham [11] (sparse graphs).
Also in this setting it has been an open problem to derive eigenvalue separation from
low discrepancy. Concerning this simpler concept of quasi-randomness, our techniques
yield a result similar to Theorem 1.1 as well. The proof is similar, and we omit the
details.

Szemerédi’s original regularity lemma [23] has become an important tool in various
areas, including extremal graph theory and property testing. Alon et al. [3] presented
an algorithmic version and showed how this lemma can be used to provide polynomial
time approximation schemes for dense instances of NP-hard problems (see also [22]
for a faster algorithm). Moreover, Frieze and Kannan [13] introduced a different
algorithmic regularity concept, which yields better efficiency in terms of the desired
approximation guarantee. Both [3] and [13] encompass Theorem 1.3 in the case that
D(v) = n for all v ∈ V . The sparse regularity lemma from Kohayakawa [21] and Rödl
(unpublished) is related to the notion of quasi-randomness from [11]. This concept
of regularity has proved very useful in the theory of random graphs; see Gerke and
Steger [15].

2. Preliminaries.

2.1. Notation. We let 1 denote the vector with all entries equal to one (in any
dimension). If S ⊂ V is a subset of some set V , then we let 1S ∈ RV denote the
vector whose entries are 1 on the components corresponding to elements of S, and 0
otherwise. More generally, if ξ ∈ RV is a vector, then ξS ∈ RV signifies the vector
obtained from ξ by replacing all components with indices in V \ S by 0. Moreover, if
A = (avw)v,w∈V is a matrix, then AS = (avw)v,w∈S denotes the minor of A induced
on S × S. Further, for a vector ξ ∈ RV we let ‖ξ‖ signify the �2-norm, and for a
matrix M ∈ RV×V we let

‖M || = max
0�=ξ∈RV

‖Mξ‖
‖ξ‖ = max

ξ,η∈RV \{0}
〈Mξ, η〉
‖ξ‖ · ‖η‖

denote the spectral norm.
If ξ = (ξv)v∈V is a vector, then diag(ξ) signifies the V × V matrix with diagonal

ξ and off-diagonal entries equal to 0. In particular, E = diag(1) denotes the identity
matrix (of any size). Moreover, if M is a ν × ν matrix, then diag(M) ∈ Rν signifies
the vector comprising the diagonal entries of M . If both A = (aij)1≤i,j≤ν , and
B = (bij)1≤i,j≤ν are ν × ν matrices, then we let 〈A,B〉 = ∑ν

i,j=1 aijbij .
If M is a symmetric ν × ν matrix, then

λ1 [M ] ≤ · · · ≤ λν [M ] = λmax [M ]

denotes the eigenvalues of M . We will occasionally need the Courant–Fischer charac-
terizations of λ2 and λmax, which read (see [5, Chapter 7])

λ2 [M ] = max
0�=ζ∈Rν

min
ξ⊥ζ,‖ξ‖=1

〈Mξ, ξ〉 , λmax [M ] = max
ζ∈Rν ,‖ζ‖=1

〈Mζ, ζ〉 .(4)

Recall that a symmetric matrix M is positive semidefinite if λ1 [M ] ≥ 0. In this case
we write M ≥ 0. Furthermore, M is positive definite if λ1 [M ] > 0, denoted as M > 0.
If M and M ′ are symmetric, then M ≥ M ′ (resp., M > M ′) denotes the fact that
M −M ′ ≥ 0 (resp., M −M ′ > 0).
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2.2. Grothendieck’s inequality. An important ingredient of our proofs and
algorithms is Grothendieck’s inequality. Let M = (mij)i,j∈I be a matrix. Then the
cut-norm of M is

‖M‖cut = max
I,J⊂I

∣∣∣∣∣∣
∑

(i,j)∈I×J

mij

∣∣∣∣∣∣ .
In addition, consider the following optimization problem:

SDP(M) = max
∑
i,j∈I

mij 〈xi, yj〉(5)

s.t. ∀i ∈ I : ‖xi‖ = ‖yi‖ = 1, xi, yi ∈ R2|I|.

This can be reformulated as a linear optimization problem over the cone of positive
semidefinite 2|I| × 2|I| matrices, i.e., as a semidefinite program (see Alizadeh [2]).

Lemma 2.1. For any symmetric ν × ν matrix M we have

SDP(M) =
1

2
max

〈(
0 1
1 0

)
⊗M,X

〉
(6)

s.t. diag(X) = 1, X ≥ 0, X ∈ R2ν×2ν .

Proof. Let x1, . . . , x2ν ∈ R2ν be a family of unit vectors such that SDP(M) =∑ν
i,j=1 mij 〈xi, xj+ν 〉. We obtain a positive semidefinite matrix X = (xi,j)1≤i,j≤2ν

by setting xi,j = 〈xi, xj〉. Since xi,i = ‖xi‖2 = 1 for all i, this matrix satisfies
diag(X) = 1. Moreover,

〈(
0 1
1 0

)
⊗M,X

〉
= 2

ν∑
i,j=1

mijxi,j+ν = 2

ν∑
i,j=1

mij 〈xi, xj+ν〉 .(7)

Hence, the optimization problem on the r.h.s. of (6) yields an upper bound on
SDP(M).

Conversely, if X = (xi,j) is a feasible solution to (6), then there exist vectors
x1, . . . , x2ν ∈ R2ν such that xi,j = 〈xi, xj〉, because X is positive semidefinite. More-
over, since diag(X) = 1, we have 1 = xi,i = ‖xi‖2. Thus, x1, . . . , x2ν is a feasible solu-
tion to (5), and (7) shows that the resulting objective function values coincide.

Grothendieck [17] established the following relation between SDP(M) and the
cut-norm ‖M‖cut.

Theorem 2.2. There is a constant θ > 1 such that for all matrices M we have
‖M‖cut ≤ SDP(M) ≤ θ · ‖M‖cut .

Since, by Lemma 2.1, SDP(M) can be stated as a semidefinite program, an opti-
mal solution to SDP(M) can be approximated in polynomial time within any numeri-
cal precision, e.g., via the ellipsoid method [18]. By applying an appropriate rounding
procedure to a near-optimal solution to SDP(M), Alon and Naor [4] obtained the
following algorithmic result.

Theorem 2.3. There are a constant θ′ > 0 and a polynomial time algorithm
ApxCutNorm that on input M computes two sets I, J ⊂ I such that

θ′ · ‖M‖cut ≤
∣∣∣∣∣∣

∑
i∈I,j∈J

mij

∣∣∣∣∣∣ .
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Alon and Naor presented a randomized algorithm that guarantees an approxi-
mation ratio θ′ > 0.56 and a deterministic one with θ′ ≥ 0.03. Finally, we need the
following dual characterization of SDP. The proof can be found in section 2.3.

Lemma 2.4. For any symmetric n× n matrix Q we have

SDP(Q) = n · min
z∈Rn, z⊥1

λmax

[(
0 1
1 0

)
⊗Q− diag

(
z

z

)]
.

2.3. Proof of Lemma 2.4. The proof of Lemma 2.4 relies on the duality theo-
rem for semidefinite programs. For a symmetric n×n matrix Q set Q = 1

2 (
0 1
1 0 )⊗Q.

Furthermore, let

DSDP(Q) = min 〈1, y〉 s.t. Q ≤ diag(y), y ∈ R2n.

Lemma 2.5. We have SDP(Q) = DSDP(Q).
Proof. By Lemma 2.1 we can rewrite the vector program SDP(Q) in the standard

form of a semidefinite program:

SDP(Q) = max 〈Q, X〉
s.t. diag(X) = 1, X ≥ 0, X ∈ R(2n)×(2n).

Since DSDP(Q) is the dual of SDP(Q), the lemma follows directly from the SDP
duality theorem as stated in [20, Corollary 2.2.6].

To infer Lemma 2.4, we shall simplify DSDP and reformulate this semidefinite
program as an eigenvalue minimization problem. First, we show that it suffices to
optimize over y′ ∈ Rn rather than y ∈ R2n.

Lemma 2.6. Let DSDP′(Q) = 2min 〈1, y′〉 s.t. Q ≤ diag(
(
1
1

) ⊗ y′), y′ ∈ Rn.
Then DSDP(Q) = DSDP′(Q).

Proof. Since for any feasible solution y′ to DSDP′(Q) the vector y =
(
1
1

) ⊗ y′ is
a feasible solution to DSDP(Q), we conclude that DSDP(Q) ≤ DSDP′(Q). Thus, we
just need to establish the converse inequality DSDP′(Q) ≤ DSDP(Q).

To this end, let F(Q) ⊂ R2n signify the set of all feasible solutions y to DSDP(Q).
We shall prove that F(Q) is closed under the linear operator

I : R2n → R2n, (y1, . . . , yn, yn+1, . . . , y2n) �→ (yn+1, . . . , y2n, y1, . . . , yn),

i.e., I(F(Q)) ⊂ F(Q); note that I just swaps the first and the last n entries of y.
To see that this implies the assertion, consider an optimal solution y = (yi)1≤i≤2n ∈
F(Q). Then 1

2 (y + Iy) ∈ F(Q), because F(Q) is convex. Now, let y′ = (y′i)1≤i≤n

be the projection of 1
2 (y + Iy) onto the first n coordinates. Since 1

2 (y + Iy) is a

fixed point of I, we have 1
2 (y + Iy) =

(
1
1

) ⊗ y′. Hence, the fact that 1
2 (y + Iy) is

feasible for DSDP(Q) implies that y′ is feasible for DSDP′(Q). Thus, we conclude
that DSDP′(Q) ≤ 2 〈1, y′〉 = 〈1, y〉 = DSDP(Q).

To show that F(Q) is closed under I, consider a vector y ∈ F(Q). Since diag(y)−
Q is positive semidefinite, we have

(8) ∀η ∈ R2n : 〈(diag(y)−Q)η, η〉 ≥ 0.

The objective is to show that diag(Iy)−Q is positive semidefinite, i.e.,

(9) ∀ξ ∈ R2n : 〈(diag(Iy)−Q)ξ, ξ〉 ≥ 0.
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To derive (9) from (8), we decompose y into its two halves y =
(
u
v

)
(u, v ∈ Rn). Then

Iy =
(
v
u

)
. Moreover, let ξ =

(
α
β

) ∈ R2n be any vector, and set η = Iξ =
(
β
α

)
. We

obtain

〈(diag(Iy)−Q)ξ, ξ〉 = 〈diag(v)α, α〉+ 〈diag(u)β, β〉 − 〈Qα, β〉+ 〈Qβ, α〉
2

= 〈(diag(y)−Q)η, η〉
(8)

≥0,

thereby proving (9).

Proof of Lemma 2.4. Let

DSDP′′(Q) = n · min
z∈Rn, z⊥1

λmax

[(
0 1
1 0

)
⊗Q+ diag

(
1

1

)
⊗ z

]
.

By Lemmas 2.5 and 2.6, it suffices to prove that DSDP′(Q) = DSDP′′(Q).

To see that DSDP′′(Q) ≤ DSDP′(Q), let y′ be an optimal solution to DSDP′(Q).
Let λ = n−1 〈1, y′〉 and z = 2(λ1 − y′). Then 〈z,1〉 = 2(nλ − 〈1, y′〉) = 0, whence
z is a feasible solution to DSDP′′(Q). Furthermore, as y′ is a feasible solution to
DSDP′(Q), we have

(
0 1
1 0

)
⊗Q = 2Q ≤ 2diag

(
1

1

)
⊗ y′ = 2λE − diag

(
1

1

)
⊗ z,

where E is the identity matrix. Hence, the matrix 2λE − ( 0 1
1 0 ) ⊗Q − diag

(
1
1

)⊗ z is

positive semidefinite. This implies that all eigenvalues of ( 0 1
1 0 )⊗Q+ diag

(
1
1

)⊗ z are

bounded by 2λ; i.e., λmax

[
( 0 1
1 0 )⊗Q+ diag

(
1
1

)⊗ z
] ≤ 2λ. As a consequence,

DSDP′′(Q) ≤ nλmax

[(
0 1
1 0

)
⊗Q+ diag

(
1

1

)
⊗ z

]
≤ 2nλ = 2 〈1, y′〉 = DSDP′(Q).

Conversely, consider an optimal solution z to DSDP′′(Q). Set

μ = λmax

[(
0 1
1 0

)
⊗Q+ diag

(
1

1

)
⊗ z

]
= n−1DSDP′′(Q), y′ =

1

2
(μ1− z).

Since all eigenvalues of ( 0 1
1 0 ) ⊗Q + diag

(
1
1

) ⊗ z are bounded by μ, the matrix μE −
( 0 1
1 0 ) ⊗ Q − diag

(
1
1

) ⊗ z is positive semidefinite; i.e., ( 0 1
1 0 ) ⊗ Q ≤ μE − diag

(
1
1

) ⊗ z.
Therefore,

Q =
1

2

(
0 1
1 0

)
⊗Q ≤ 1

2

(
μE − diag

(
1

1

)
⊗ z

)
= diag

(
1

1

)
⊗ y′.

Hence, y′ is a feasible solution to DSDP′(Q). Furthermore, since z ⊥ 1 we obtain

DSDP′(Q) ≤ 2 〈1, y′〉 = μn = DSDP′′(Q),

as desired.
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3. Quasi-randomness: Proof of Theorem 1.1.

3.1. From essential eigenvalue separation to low discrepancy. We prove
the first part of Theorem 1.1. Suppose that G = (V,E) is a graph that admits a set
W ⊂ V of volume vol(W ) ≥ (1− ε)vol(V ) such that the eigenvalues of the minor LW

of the normalized Laplacian satisfy

(10) 1− ε ≤ λ2 [LW ] ≤ λmax [LW ] ≤ 1 + ε.

We may assume without loss of generality that ε < 0.01. Our goal is to show that G
has Disc(10

√
ε).

Let Δ = (
√
dv)v∈W ∈ RW . Hence, Δ is a real vector indexed by the elements

of W . Moreover, let LW denote the matrix whose vwth entry is (dvdw)
− 1

2 if v, w
are adjacent, and 0 otherwise (v, w ∈ W ), so that LW = E − LW . Further, let
MW = vol(V )−1ΔΔT − LW . Then for all unit vectors ξ ⊥ Δ we have

(11) LW ξ − ξ = −LW ξ = MW ξ.

Moreover, for all S ⊂ W

(12) |〈MWΔS ,ΔS〉| =
∣∣∣∣vol(S)2vol(V )

− e(S)

∣∣∣∣ .
The key step of the proof is to derive the following bound on the spectral norm of
MW .

Lemma 3.1. We have ‖MW ‖ ≤ 10
√
ε.

If it were the case that W = V , then Lemma 3.1 would be immediate. For if
W = V , then Δ is an eigenvector of L = LW with eigenvalue 0. Hence, the definition
MW = ‖Δ‖−2ΔΔT − E + LW ensures that MWΔ = 0. Moreover, for all ξ ⊥ Δ
we have MW ξ = (LW − E)ξ, whence (10) implies that ‖MW‖ ≤ max{|λ2 [LW ] −
1|, |λmax [LW ]− 1|} ≤ ε.

But of course generallyW is a proper subset of V . In this case Δ is not necessarily
an eigenvector of LW . In fact, the smallest eigenvalue of LW may be strictly positive.
In order to prove Lemma 3.1 we will investigate the eigenvector ζ of LW with the
smallest eigenvalue λ1 [LW ] and show that it is “close” to Δ. Then, we will use (10)
to derive the desired bound on ‖MW ‖.

Proof of Lemma 3.1. Let ζ be a unit-length eigenvector of LW with eigenvalue
λ1 [LW ]. There is a decomposition Δ = ‖Δ‖ · (sζ + tχ), where s2 + t2 = 1 and
χ ⊥ ζ is a unit vector. Since 〈LWΔ,Δ〉 = e(W,V \W ) ≤ vol(V \W ) ≤ εvol(V ) and
‖Δ‖2 = vol(W ) ≥ (1 − ε)vol(V ) ≥ 0.99vol(V ), we have

2ε ≥ ‖Δ‖−2 〈LWΔ,Δ〉 = s2 〈LW ζ, ζ〉+ t2 〈LWχ, χ〉 .(13)

Because χ is perpendicular to the eigenvector ζ with eigenvalue λ1 [LW ], Courant–
Fischer (4) and (10) yield 〈LWχ, χ〉 ≥ λ2 [LW ] ≥ 1

2 . Hence, (13) implies 2ε ≥ t2/2.
Consequently,

(14) t2 ≤ 4ε and thus s2 ≥ 1− 4ε.

Now, let ξ ⊥ Δ be a unit vector, and decompose ξ = xζ + yη, where η ⊥ ζ
is a unit vector. Because ζ = s−1

(
Δ

‖Δ‖ − tχ
)
, we have x = 〈ζ, ξ〉 = s−1

〈
Δ

‖Δ‖ξ
〉 −

t
s 〈χ, ξ〉 = − t

s 〈χ, ξ〉 . Hence, (14) implies x2 ≤ 5ε and y2 ≥ 1 − 5ε. Combining



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2346 ALON, COJA-OGHLAN, HÀN, KANG, RÖDL, AND SCHACHT

these two estimates with (10) and (11), we conclude that ‖MW ξ‖ = ‖LW ξ − ξ‖ ≤
x(1 − λ1 [LW ]) + y‖LWη − η‖ ≤ 3

√
ε. Hence, we have established that

(15) sup
0�=ξ⊥Δ

‖MW ξ‖
‖ξ‖ ≤ 3

√
ε.

Furthermore, since ‖Δ‖2 = vol(W ), (12) implies

|〈MWΔ,Δ〉|
‖Δ‖2 =

∣∣∣∣vol(W )

vol(V )
− e(W )

vol(W )

∣∣∣∣
≤

∣∣∣∣vol(W )

vol(V )
− e(W )

vol(V )

∣∣∣∣+
∣∣∣∣ e(W )

vol(W )
− e(W )

vol(V )

∣∣∣∣
=

e(W,V \W )

vol(V )
+

e(W )(vol(V )− vol(W ))

vol(V )vol(W )

≤ e(W,V \W )

vol(V )
+

vol(V \W )

vol(V )
≤ 2vol(V \W )

vol(V )
.(16)

As we are assuming that vol(W ) ≥ (1 − ε)vol(V ), we obtain ‖Δ‖−2 |〈MWΔ,Δ〉| ≤
2ε. Finally, combining this last estimate with (15), we conclude that ‖MW ‖ ≤
10

√
ε.
Lemma 3.1 easily implies that G has Disc(10

√
ε). Let R ⊂ V be arbitrary, set

S = R∩W , and let T = R\W . Since ‖ΔS‖2 = vol(S) ≤ vol(V ), Lemma 3.1 and (12)
imply that

(17)

∣∣∣∣vol(S)2vol(V )
− e(S)

∣∣∣∣ ≤ ‖MW ‖ · ‖ΔS‖2 ≤ 10
√
εvol(V ).

Furthermore, as vol(W ) ≥ (1− ε)vol(V ),

e(R)− e(S) ≤ e(T ) + 2e(S, T ) ≤ 2vol(T ) ≤ 2vol(V \W ) ≤ 2εvol(V ),

vol(R)2 − vol(S)2

2vol(V )
≤ vol(T )2

2vol(V )
+

vol(S)vol(T )

vol(V )

≤ vol(V \W )2

2vol(V )
+ vol(V \W ) ≤ 2εvol(V ).

Combining these two estimates with (17), we see that
∣∣vol(R)2

vol(V ) − e(R)
∣∣ < 20

√
εvol(V );

i.e., G satisfies Disc(10
√
ε).

3.2. From low discrepancy to essential eigenvalue separation. In this
section we establish the second part of Theorem 1.1. Let θ denote the constant from
Theorem 2.2, and set γ = 10−6/θ. Assume that G = (V,E) is a graph that has
Disc(γε2) for some ε < 0.001. In addition, we may assume without loss of generality
that G has no isolated vertices. Let dv denote the degree of v ∈ V , let n = |V |, and
set d̄ = vol(V )/n =

∑
v∈V dv/n. Our goal is to show that G has ess-Eig(ε). To this

end, we introduce an additional property.
Definition 5: Cut(δ). We say that G has Cut(δ) if the matrix M = (mvw)v,w∈V

with entries

mvw =
dvdw
vol(V )

− e(v, w)
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has cut-norm ‖M‖cut < δ · vol(V ); here e(v, w) = 1 if {v, w} ∈ E, and e(v, w) = 0
otherwise.

Proposition 3.2. For any δ > 0 the following is true: if G satisfies Disc(0.01δ),
then G satisfies Cut(δ).

Proof. Suppose that G = (V,E) has Disc(0.01δ). We shall prove below that for
any two S, T ⊂ V

|〈M1S ,1T 〉| ≤ 0.03δvol(V ) if S ∩ T = ∅,(18)

|〈M1S ,1T 〉| ≤ 0.02δvol(V ) if S = T.(19)

To see that (18) and (19) imply the assertion, consider two arbitrary subsetsX,Y ⊂ V .
Letting Z = X ∩ Y and combining (18) and (19), we obtain

|〈M1X ,1Y 〉| ≤
∣∣〈M1X\Z ,1Y \Z

〉∣∣+ ∣∣〈M1Z ,1Y \Z
〉∣∣+ ∣∣〈M1Z ,1X\Z

〉∣∣+ 2 |〈M1Z ,1Z〉|
≤ δvol(V ).

Since this bound holds for any X,Y , we conclude that ‖M‖cut ≤ δvol(V ).
To prove (18), we note that Disc(0.01δ) implies for disjoint sets S and T∣∣∣∣e(S)− vol(S)2

vol(V )

∣∣∣∣ ≤ 0.02δvol(V ),

∣∣∣∣e(T )− vol(T )2

vol(V )

∣∣∣∣ ≤ 0.02δvol(V ),(20) ∣∣∣∣e(S ∪ T )− (vol(S) + vol(T ))2

vol(V )

∣∣∣∣ ≤ 0.02δvol(V ).(21)

If S and T are disjoint, (20)–(21) yield

| 〈M1S ,1T 〉 | =
∣∣∣∣e(S, T )− vol(S)vol(T )

vol(V )

∣∣∣∣
=

1

2

∣∣∣∣e(S ∪ T )− e(S)− e(T )− (vol(S) + vol(T ))2 − vol(S)2 − vol(T )2

vol(V )

∣∣∣∣
≤ 1

2

∣∣∣∣e(S)− vol(S)2

vol(V )

∣∣∣∣
+

1

2

∣∣∣∣e(T )− vol(T )2

vol(V )

∣∣∣∣+ 1

2

∣∣∣∣e(S ∪ T )− (vol(S) + vol(T ))2

vol(V )

∣∣∣∣
≤ 0.03δvol(V ),

whence (18) follows. Finally, as

| 〈M1S ,1S〉 | =
∣∣∣∣e(S)− vol(S)2

vol(V )

∣∣∣∣ ,
(19) follows from (20).

Let D = diag(dv)v∈V be the matrix with the vertex degrees on the diagonal. Let

M = D− 1
2MD− 1

2 . Then the vwth entry of M is
√
dvdw

vol(V ) − (dvdw)
−1/2 if v, w are

adjacent, and
√
dvdw

vol(V ) otherwise. Establishing the following lemma is the key step.

Lemma 3.3. Suppose that SDP(M) < ε2vol(V )/64. Then there exists a subset
W ⊂ V of volume vol(W ) ≥ (1 − ε) · vol(V ) such that ‖MW ‖ < ε.

Proof. Recall that d̄ = vol(V )/n. Lemma 2.4 implies that there is a vector
1 ⊥ z ∈ RV such that

(22) λmax

[(
0 1
1 0

)
⊗M − diag

(
z

z

)]
=

SDP(M)

n
<

ε2d̄

64
.
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Basically W is going to be the set of all v such that |zv| is small (and such that dv is
not too small). On the minor induced on W×W the diagonal matrix diag

(
z
z

)
has little

effect, and thus (22) will imply the desired bound on ‖MW ‖. To carry out the details
we need to define W precisely, bound ‖MW ‖, and prove that vol(W ) ≥ (1−ε)vol(V ).

Let y = D−1z and U = {v ∈ V : dv > εd̄/8}. Let y′ = (yv)v∈U and z′ = (zv)v∈U .
Since all entries of the restricted diagonal matrix DU exceed εd̄/8, we have

λmax

[(
0 1
1 0

)
⊗MU − diag

(
y′

y′

)]

=λmax

[(
1 0
0 1

)
⊗D

− 1
2

U ·
[(

0 1
1 0

)
⊗MU − diag

(
z′

z′

)]
·
(

1 0
0 1

)
⊗D

− 1
2

U

]

≤ 8
(
εd̄
)−1

λmax

[(
0 1
1 0

)
⊗MU − diag

(
z′

z′

)]

≤ 8(εd̄)−1λmax

[(
0 1
1 0

)
⊗M − diag

(
z

z

)]
(22)
<

ε

8
.

(23)

Let W = {v ∈ U : |yv| < ε/8}, and let y′′ = (yv)v∈W . Then ‖diag(y′′

y′′
)‖ < ε/8,

because the norm of a diagonal matrix equals the largest absolute value of an entry
on the diagonal. Therefore, (23) yields

λmax

[(
0 1
1 0

)
⊗MW

]
≤ λmax

[(
0 1
1 0

)
⊗MW − diag

(
y′′

y′′

)]
+

∥∥∥∥diag
(
y′′

y′′

)∥∥∥∥
≤ λmax

[(
0 1
1 0

)
⊗MU − diag

(
y′

y′

)]
+

∥∥∥∥diag
(
y′′

y′′

)∥∥∥∥
≤ ε/4.(24)

Further, (24) implies that ‖MW‖ < ε. To see this, consider a pair ξ, η ∈ RW of unit
vectors. Then (24) and Courant–Fischer (4) yield

ε

2
≥ 2λmax

[(
0 1
1 0

)
⊗MW

]
≥

〈(
0 1
1 0

)
⊗MW ·

(
ξ

η

)
,

(
ξ

η

)〉

=

〈(MW η

MW ξ

)
,

(
ξ

η

)〉
= 〈MW η, ξ〉+ 〈MW ξ, η〉

= 2 〈MW ξ, η〉 (because MW is symmetric).

Since this holds for any pair ξ, η, we conclude that ‖MW ‖ ≤ ε/4 < ε.
Finally, we need to show that vol(W ) is large. To this end, we consider the set

S = {v ∈ V : zv < 0}. Since vol(V ) = d̄n ≥ d̄|S|, we have

ε2vol(V )

32
≥ ε2d̄|S|

32
=

ε2d̄

64
·
∥∥∥∥
(
1S

1S

)∥∥∥∥
2

≥ λmax

[(
0 1
1 0

)
⊗M − diag

(
z

z

)]
·
∥∥∥∥
(
1S

1S

)∥∥∥∥
2

(due to (22))

≥
〈[(

0 1
1 0

)
⊗M − diag

(
z

z

)]
·
(
1S

1S

)
,

(
1S

1S

)〉
(by (4))

= 2 〈M1S ,1S〉 − 2
∑
v∈S

zv.(25)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUASI-RANDOMNESS AND REGULARITY 2349

Further, Theorem 2.2 implies | 〈M1S ,1S〉 | ≤ ‖M‖cut ≤ SDP(M) ≤ ε2vol(V )/64.
Inserting this into (25) and recalling that zv < 0 for all v ∈ S, we conclude that∑

v∈S |zv| ≤ ε2vol(V )/32. Since z ⊥ 1, this actually implies
∑

v∈V |zv| ≤ ε2vol(V )/16.
As z = Dy and |yv| > ε/8 for all v ∈ U \W , we obtain

(26) εvol(U \W )/8 ≤
∑

v∈U\W
dv|yv| =

∑
v∈U\W

|zv| ≤ ε2vol(V )/8.

Furthermore, by the definition of U we have

(27) vol(V \ U) ≤ εd̄n/8 ≤ εvol(V )/8.

Combining (26) and (27), we see that vol(V \W ) ≤ εvol(V ), which implies vol(W ) ≥
(1− ε)vol(V ).

Finally, we show how Lemma 3.3 implies that G has ess-Eig(ε). Assume that G
has Disc(γε2). By Proposition 3.2 this implies that G satisfies Cut(100γε2). Hence,
Theorem 2.2 shows SDP(M) ≤ βε2vol(V ) for some 0 < β ≤ 100θγ. Thus, by
Lemma 3.3 and our choice of γ there is a set W such that vol(W ) ≥ (1− ε/10)vol(V )
and ‖MW ‖ < ε/10. Furthermore, MW relates to the minor LW of the Laplacian
as follows. Let LW = E − LW be the matrix whose vwth entry is (dvdw)

−1/2 if
v, w ∈ W are adjacent, and 0 otherwise. Moreover, let Δ = (

√
dv)v∈W ∈ RW . Then

MW = vol(V )−1ΔΔT − LW . Therefore, for all unit vectors ξ ⊥ Δ we have

(28) |〈LW ξ, ξ〉 − 1| = |〈LW ξ, ξ〉| = |〈MW ξ, ξ〉| ≤ ‖MW ‖ < ε/10.

Combining (28) with Courant–Fischer equation (4), we obtain

λ2 [LW ] = max
0�=ζ∈RW

min
ξ⊥ζ, ‖ξ‖=1

〈LW ξ, ξ〉 ≥ min
ξ⊥Δ, ‖ξ‖=1

〈LW ξ, ξ〉 ≥ 1− ε.(29)

To bound λmax [LW ] as well, we need to compute ‖LWΔ‖2. To this end, recall that
the row of LW corresponding to a vertex v ∈ V contains a 1 at position v. For w �= v
the entry is −(dvdw)

− 1
2 if v and w are adjacent, and 0 otherwise. Hence, the v-entry

of the vector LWΔ equals

Δv −
∑

w∈W :{v,w}∈E

Δw√
dvdw

=
√
dv − e(v,W )√

dv
=

dv − e(v,W )√
dv

.

Since ‖Δ‖2 = ∑
v∈W dv = vol(W ) ≥ (1− ε/10)vol(V ), we obtain

‖LWΔ‖2
‖Δ‖2 =

∑
v∈W

(e(v,W )− dv)
2

dv · vol(W )

≤ 1

1− ε/10

∑
v∈W

dv − e(v,W )

vol(V )
≤ 2vol(V \W )

vol(V )
<

ε

5
.(30)

Further, decomposing any unit vector η ∈ RW as η = α‖Δ‖−1Δ + βξ with a unit
vector ξ ⊥ Δ and α2 + β2 = 1, we get

〈LW η, η〉 = 〈
LW

(
α‖Δ‖−1Δ+ βξ

)
, α‖Δ‖−1Δ+ βξ

〉
=

α2

‖Δ‖2 · 〈LWΔ,Δ〉+ αβ

‖Δ‖ · 〈LWΔ, ξ〉+ αβ

‖Δ‖ · 〈LW ξ,Δ〉+ β2 〈LW ξ, ξ〉

=
α2

‖Δ‖2 · 〈LWΔ,Δ〉+ 2αβ

‖Δ‖ · 〈LWΔ, ξ〉+ β2 〈LW ξ, ξ〉 ,
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where the last step follows from the fact that LW is symmetric. Hence, using (28)
and (30), we get

〈LW η, η〉 ≤ α2/‖Δ‖2 · ‖LWΔ‖ · ‖Δ‖+ 2αβ/‖Δ‖ · ‖LWΔ‖ · ‖ξ‖+ β2 〈LW ξ, ξ〉
≤ α2

√
ε/5 + 2αβ

√
ε/5 + β2(1 + | 〈LW ξ, ξ〉 − 1|)

≤
√
ε/5(α2 + 2αβ) + β2(1 + ε/10)

≤ 3
√
ε/5 · |α|+ (1− α2)(1 + ε/10).

Differentiating the last expression, we find that the maximum is attained at α =
3
2

√
ε/5/(1 + ε/10). Plugging this value in, we obtain 〈LW η, η〉 ≤ 1 + ε. Hence, by

Courant–Fischer equation (4), λmax [LW ] = max‖η‖=1 〈LW η, η〉 ≤ 1 + ε. Thus, (29)
shows that G has ess-Eig(ε).

4. The algorithmic regularity lemma: Proof of Theorem 1.2. In this
section we establish Theorem 1.2. The proof is conceptually similar to Szemerédi’s
original proof of the “dense” regularity lemma [23] and its adaptation for sparse graphs
due to Kohayakawa [21] and Rödl (unpublished). A new aspect here is that we deal
with a different (more general) notion of regularity; this requires various technical
modifications of the previous arguments. More importantly, we present an algorithm
for actually computing a regular partition of a sparse graph efficiently.

In order to find a regular partition efficiently, we crucially need an algorithm to
check for a given weight distribution D = (Dv)v∈V , a given graph G, and a pair
(A,B) of vertex sets whether (A,B) is (ε,D)-regular. While [3] features a (purely
combinatorial) algorithm for this problem in dense graphs, this approach does not
work in the sparse case. In section 4.1 we present an algorithm Witness that does. It
is based on Grothendieck’s inequality and the semidefinite relaxation of the cut-norm
(see Theorem 2.3). Then, in section 4.2 we will show how Witness can be used to
compute a regular partition to establish Theorem 1.2.

Throughout this section, we let 0 < ε < 10−7 be an arbitrarily small but fixed
number, and C ≥ 1 signifies an arbitrarily large but fixed number. In addition, we
define a sequence (tk)k≥1 by

(31) t1 = �1/ε2� and tk+1 = �22002C2t6k2
tk/ε4(k+1)�.

Note that due to that choice we have

(32) tk+1 ≥ 2200Ct2.5k .

Further, let

(33) k∗ = �106C2ε−3� and η = min

{
ε8k

∗

128002t6k∗C4
,
1

t2k∗

}
,

and choose n0 = n0(C, ε) > 0 big enough. We let G = (V,E) be a graph on n = |V | >
n0 vertices, and let D = (Dv)v∈V be a sequence of rationals with 1 ≤ Dv ≤ n for all
v ∈ V . We will always assume that G is (C, η,D)-bounded, and that D(V ) ≥ η−1n.

4.1. The procedure Witness. The subroutine Witness shown in Figure 4.1 is
given a graph G, a weight distribution D, vertex sets A, B, and a number ε > 0.
Witness either outputs “yes,” in which case (A,B) is (ε,D)-regular in G, or “no.”
In the latter case the algorithm also produces a “witness of irregularity,” i.e., a pair
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Algorithm 4.1. Witness(G,D, A,B, ε).
1. Set up the matrix M = (mvw)(v,w)∈A×B with entries

mvw =

{
1− �(A,B)DvDw if v, w are adjacent in G,
−�(A,B)DvDw otherwise.

Call ApxCutNorm(M) to compute sets X ⊂ A, Y ⊂ B such that
| 〈M1X ,1Y 〉 | ≥ 3

100 ‖M‖cut.
2. If | 〈M1X ,1Y 〉 | < 3ε

100
D(A)D(B)

D(V ) , then return “yes.”

3. If not, let X ′ = A \X .
• If D(X) ≥ 3ε

100D(A), then let X∗ = X .
• If D(X) < 3ε

100D(A) and |e(X ′, Y )− �(A,B)D(X ′)D(Y )| >
εD(A)D(B)
100D(V ) , set X∗ = X ′.

• Otherwise, set X∗ = X ∪X ′.
4. Let Y ′ = B \ Y .

• If D(Y ) ≥ ε
200D(B), then let Y ∗ = Y .

• If D(Y ) < ε
200D(B) and

|e(X∗, Y ′)− �(A,B)D(X∗)D(Y ′)| > εD(A)D(B)

200D(V )
,

let Y ∗ = Y ′.
• Otherwise, set Y ∗ = Y ∪ Y ′.

5. Answer “no” and output (X∗, Y ∗) as an (ε/200,D)-witness.

Fig. 4.1. The algorithm Witness.

of sets X∗ ⊂ A, Y ∗ ⊂ B for which the regularity condition (2) is violated with ε
replaced by ε/200. Witness employs the algorithm ApxCutNorm from Theorem 2.3.

Lemma 4.2. Suppose that A,B ⊂ V are disjoint.
1. If Witness(G,D, A,B, ε) answers yes, then the pair (A,B) is (ε,D)-regular.
2. If the answer is no, then (A,B) is not (ε/200,D)-regular. In this case

Witness outputs an (ε/200,D)-witness, i.e., a pair (X∗, Y ∗) of subsets X∗ ⊂
A, Y ∗ ⊂ B such that D(X∗) ≥ ε

200D(A), D(Y ∗) ≥ ε
200D(B), and

|e(X∗, Y ∗)− �(A,B)D(X∗)D(Y ∗)| > ε

200
· D(A)D(B)

D(V )
.

Moreover, there exist a function f and a polynomial Π such that the running time of
Witness is bounded by f(C, ε) · Π(〈D〉).

Proof. Note that for any two subsets S ⊂ A and T ⊂ B we have

〈M1S ,1T 〉 = e(S, T )− �(A,B)D(S)D(T ).

Therefore, if the sets X ⊂ A and Y ⊂ B computed by ApxCutNorm are such that

| 〈M1X ,1Y 〉 | < 3ε

100

D(A)D(B)

D(V )
,

then by Theorem 2.3 we have

|e(S, T )− �(A,B)D(S)D(T )| ≤ ‖M‖cut ≤
100

3
|〈M1X ,1Y 〉| < ε

D(A)D(B)

D(V )
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for all S ⊂ A and T ⊂ B. Thus, if Witness answers yes, then the pair (A,B) is
(ε,D)-regular.

On the other hand, if ApxCutNorm yields sets X , Y such that 〈M1X ,1Y 〉 ≥
3ε
100

D(A)D(B)
D(V ) , then Witness has to guarantee that the output pair (X∗, Y ∗) is an

(ε/200,D)-witness.
Indeed, if D(X) ≥ 3ε

100D(A) and D(Y ) ≥ ε
200D(B), then (X,Y ) actually is an

(ε/200,D)-witness. However, as ApxCutNorm does not guarantee any lower bound on
D(X) and D(Y ), let us assume first that D(X) < 3ε

100D(A) and D(Y ) ≥ ε
200D(B).

Then step 3 of Witness sets X ′ = A \X . We have D(X ′) ≥ 3
100D(A). If X ′ itself

satisfies |e(X ′, Y )− �(A,B)D(X ′)D(Y )| > εD(A)D(B)
100D(V ) , then (X ′, Y ) obviously is an

(ε/200,D)-witness. Otherwise, by the triangle inequality, we deduce∣∣∣∣e(X ∪X ′, Y )− e(A,B)
D(X ∪X ′)D(Y )

D(A)D(B)

∣∣∣∣ ≥ 2ε

100

D(A)D(B)

D(V )
,

and thus (X ∪X ′, Y ) is an (ε/200,D)-witness.
In the case D(X) < 3ε

100D(A) and D(Y ) < ε
200D(B) we simply repeat the argu-

ment for Y , and hence Witness outputs an (ε/200,D)-witness for (A,B).
The running time of Witness is dominated by step 1, i.e., the execution of

ApxCutNorm. By Theorem 2.3 the running time of ApxCutNorm is polynomial in the
encoding length of the input matrix. Moreover, the construction of M in step 1 shows
that its encoding length is of the form f(C, ε) · Π(〈D〉) for a certain function f and
polynomial Π, as claimed.

4.2. The algorithm Regularize. In order to compute the desired regular par-
tition of the input graph G, the algorithm Regularize starts with an arbitrary initial
partition P1 = {V 1

i : 0 ≤ i ≤ s1} such that each class V 1
i (1 ≤ i ≤ s1) has a

“decent” weight D(V 1
i ). In the subsequent steps, Regularize computes a sequence

(Pk) of partitions such that Pk+1 is a “more regular” refinement of Pk (k ≥ 1). The
algorithm halts as soon as it can verify that Pk satisfies both REG1 and REG2 of
Theorem 1.2. To this end Regularize applies the subroutine Witness to each pair
(V k

i , V k
j ) of the current partition Pk. By Lemma 4.2 this yields a set Lk of pairs (i, j)

such that all (V k
i , V k

j ) with (i, j) �∈ Lk are (ε,D)-regular. Hence, Pk satisfies REG2
as soon as

(34)
∑

(i,j)∈Lk

D(V k
i )D(V k

j ) < εD(V )2.

In this case the algorithm Regularize stops and outputs Pk. As we will see, all par-
titions Pk satisfy REG1 by construction. Consequently, once (34) holds, Regularize
has obtained the desired regular partition. Figure 4.2 shows the pseudocode.

Step 6 is the central step of the algorithm. In the first part of that step we
construct a joint refinement of the previous partition Pk and all the witnesses of
irregularity (Xk

ij , X
k
ji) discovered in step 4. As in the original proof of Szemerédi, it

will turn out that a bounded parameter (the so-called index defined below) of the
partition Ck increases by Ω(ε3) compared to Pk. Since Pk consists of sk classes and
for every i = 1, . . . , sk there are at most sk−1 witness sets Xij (j �= i), the refinement
Ck contains at most sk2

sk−1 < sk2
sk vertex classes. In the second part of step 6 we

split the classes of Ck into pieces of almost equal weight. Here for each class of Ck we
may get one class of leftover vertices V k

0,q of smaller weight, which together with V k
0



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

QUASI-RANDOMNESS AND REGULARITY 2353

Algorithm 4.3. Regularize(G,C,D, ε).
1. Fix an arbitrary partition P1 = {V 1

i : 0 ≤ i ≤ s1} for some s1 ≤ t1 with the
following properties:

• D(V )/t1 −maxv∈V Dv < D(V 1
i ) ≤ D(V )/t1 for all 1 ≤ i ≤ s1,

• D(V \ (⋃i∈[s1]
V 1
i )) ≤ D(V )/t1.

Set V 1
0 = V \⋃i∈[s1]

V 1
i and k∗ = �10002C2ε−3�.

2. For k = 1, 2, 3, . . . , k∗ do
3. Initially, let Lk = ∅.

For each pair (V k
i , V k

j ) (i < j) of classes of partition Pk

4. call the procedure Witness(G,D, V k
i , V k

j , ε).

If it answers “no” and hence outputs an (ε/200,D)-witness (Xk
ij , X

k
ji)

for (V k
i , V k

j ), then add (i, j) to Lk.
5. If

∑
(i,j)∈Lk D(V k

i )D(V k
j ) < ε(D(V ))2, then output the partition Pk

and halt.
6. Else construct a refinement Pk+1 of Pk as follows:

• First construct the unique minimal partition Ck of V \ V k
0 that

refines {Xk
ij, Vi \Xk

ij} for every i = 1, . . . , sk and every j �= i.

More precisely, we define the equivalence relation ≡k
i on Vi by

letting u ≡k
i v iff for all j such that (i, j) ∈ Lk it is true that

u ∈ Xk
ij ⇔ v ∈ Xk

ij and we let Ck be the set of all equivalence

classes of the relations ≡k
i (1 ≤ i ≤ sk).

• Set αk = ε4(k+1)/(22002C2t6k2
tk), and split each vertex

class of Ck into blocks with weight between αkD(V ) and
αkD(V ) + maxv∈V Dv and possibly one exceptional block of
smaller weight. More precisely, we construct a refinement
Ck∗ = {V k+1

0,1 , . . . , V k+1
0,rk

, V k+1
1 , . . . , V k+1

sk+1
} of Ck such that

– rk ≤ |Ck| ≤ sk2
sk ,

– D(V k+1
0,q ) < αkD(V ) for all q ∈ [rk], and

– αkD(V ) ≤ D(V k+1
i ) < αkD(V ) + maxv∈V Dv for all

i ∈ [sk+1].
• Let V k+1

0 = V k
0 ∪⋃

q∈[rk]
V k+1
0,q , and set Pk+1 = {V k+1

i : 0 ≤
i ≤ sk+1}.

Fig. 4.2. The algorithm Regularize.

form the new exceptional class V k+1
0 . Due to the construction in step 6, the bound

s1 ≤ t1, and (31), for any k ≥ 0 the partition Pk+1 consists of at most

sk+1 + 1 ≤ �22002C2t6k2
tk/ε4(k+1)� = tk+1

classes. Moreover, our choice (33) of η and the construction in step 1 ensure that

(35) ε2D(V ) ≥ D(V k+1
i ) ≥ √

ηD(V ) ∀ 1 ≤ i ≤ sk+1

for every k < k∗ (since in step 6 we put all vertex classes of “extremely small” weight
into the exceptional class). Furthermore, due to ri ≤ si2

si , si ≤ ti, and ε < 1/2 we
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have

D(V k+1
0 ) ≤ D(V 1

0 ) +

k+1∑
i=2

ri
ε4(i+1)

22002C2t6k2
tk
D(V )

≤ D(V )

t1
+D(V )

k+1∑
i=2

ε2i ≤ ε2

1− ε2
D(V ) ≤ εD(V ) .

In effect, Pk+1 always satisfies REG1, as REG1(c) is ensured by step 6.
Thus, to complete the proof of Theorem 1.2 it just remains to show that step 5

of Regularize will actually output a partition Pk for some k ≤ k∗. More pre-
cisely, we have to show that for every input graph G there exists a k ≤ k∗ such that∑

(i,j)∈Lk D(V k
i )D(V k

j ) < ε(D(V ))2. To show this, we use, as in the original proof

of Szemerédi [23], the concept of the index of a partition P = {Vi : 0 ≤ i ≤ s} and
define

ind(P) =
∑

1≤i<j≤s

�(Vi, Vj)
2D(Vi)D(Vj) =

∑
1≤i<j≤s

e(Vi, Vj)
2

D(Vi)D(Vj)
.

Note that we do not take into account the (exceptional) class V0 here. Using the
boundedness condition, we derive the following.

Proposition 4.4. If G = (V,E) is a (C, η,D)-bounded graph and P = {Vi : 0 ≤
1 ≤ t} is a partition of V with D(Vi) ≥ ηD(V ) for all i ∈ {1, . . . , t}, then 0 ≤
ind(P) ≤ C2.

Proof. Since D(Vi) ≥ ηD(V ) for all i ∈ {1, . . . , t} it follows from the (C, η,D)-
boundedness of G that

ind(P) =
∑

1≤i<j≤s

e(Vi, Vj)
2

D(Vi)D(Vj)
≤

∑
1≤i<j≤s

Ce(Vi, Vj)

D(V )
≤ C

e(V, V )

D(V )
≤ C2,

as claimed.
Proposition 4.4 and (35) imply that ind(Pk) ≤ C2 for all k. In addition, since

Regularize obtains Pk+1 by refining Pk according to the witnesses of irregularity
computed by Witness, the index of Pk+1 is actually considerably larger than the
index of Pk. More precisely, the following is true.

Lemma 4.5. If
∑

(i,j)∈Lk D(V k
i )D(V k

j ) ≥ ε(D(V ))2, then

ind(Pk+1) ≥ ind(Pk) + ε3/8.

The proof of Lemma 4.5 is deferred to section 4.3.
We close this section by pointing out that Proposition 4.4 and Lemma 4.5 readily

imply that Regularize will terminate and output a feasible partition Pk for some k ≤
k∗. Moreover, the dominant contribution to the running time of Regularize stems
from the execution of the subroutine Witness, which gets called at most O(k∗t2k∗)
times. By Lemma 4.2, each execution takes time f(C, ε)·Π(〈D〉) for a certain function
f and a polynomial Π. Hence, the total running time of Regularize is bounded by
f∗(C, ε) · Π(〈D〉), where f∗(C, ε) = O(k∗t2k∗) · f(C, ε).

4.3. Proof of Lemma 4.5. As mentioned before, the proof of Lemma 4.5 follows
the lines of the original proof of Szemerédi [23], with the main differences resulting
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from the somewhat different concept of regularity. We will use the following defect
form of the Cauchy–Schwarz inequality.

Lemma 4.6 (defect form of the Cauchy–Schwarz inequality). For all i ∈ I let
σi, di be positive real numbers satisfying

∑
i∈I σi = 1. Furthermore let J ⊂ I, � =∑

i∈I σi�i, and σJ =
∑

j∈J σj. If
∑

j∈J σj�j = σJ(�+ν), then
∑

i∈I σi�
2
i ≥ �2+ν2σJ .

Further, we will need the following technical proposition. Its proof is straightfor-
ward, and we omit it here.

Proposition 4.7. Let 1/5 > δ > 0, η > 0, C ≥ 1, and D = (Dv)v∈V be a
sequence of rationals with 1 ≤ Dv ≤ n for all v ∈ V . Let G = (V,E) be a (C, η,D)-
bounded graph and A,B ⊂ V be disjoint subsets of V with D(A), D(B) ≥ √

ηD(V ).
If A′ ⊂ A and B′ ⊂ B satisfy D(A \A′) < δD(A) and D(B \B′) < δD(B), then∣∣∣∣ e(A,B)

D(A)D(B)
− e(A′, B′)

D(A′)D(B′)

∣∣∣∣ ≤ (7δ + 4
√
η)C

D(V )
,∣∣∣∣ e2(A,B)

D(A)D(B)
− e2(A′, B′)

D(A′)D(B′)

∣∣∣∣ ≤ (21δ + 9
√
η)C2.

For two partitions P ′ = {V ′
j : 0 ≤ j ≤ s} and P = {Vi : 0 ≤ i ≤ t} we say P ′

almost refines P if for every j ∈ [s] there exists an i ∈ [t] such that V ′
j ⊂ Vi. Note that

an almost refinement may not be a refinement, since V ′
0 could be a proper superset

of V0.
Proposition 4.8. Let P ′ = {V ′

j : 0 ≤ j ≤ s} and P = {Vi : 0 ≤ i ≤ t} be two
partitions of V . If P ′ almost refines P, then ind(P ′) ≥ ind(P).

Proof. For Vi ∈ P , i ∈ [t], let Ii = {j : V ′
j ∈ P ′, V ′

j ⊂ Vi}. Then, using the
Cauchy–Schwarz inequality, we conclude

ind(P ′) =
∑

1≤i<j≤s

e2(V ′
i , V

′
j )

D(V ′
i )D(V ′

j )
≥

∑
1≤k<l≤t

∑
i∈Ik
j∈Il

e2(V ′
i , V

′
j )

D(V ′
i )D(V ′

j )

≥
∑

1≤k<l≤t

(∑
i∈Ik,j∈Il

e(V ′
i , V

′
j )
)2

∑
i∈Ik,j∈Il

D(V ′
i )D(V ′

j )
=

∑
1≤k<l≤t

e2(Vk, Vl)

D(Vk)D(Vl)
= ind(P),

as desired.
Proof of Lemma 4.5. Remember our assumption that ε < 10−7. Let K ⊂ V be

the union of the equivalence classes with negligible weight; more precisely, in view of
step 6 we set

K =
⋃

q∈[rk]

V k+1
0,q .

Note that due to rk ≤ sk2
sk and sk ≤ tk we have

(36) D(K) ≤ rk
ε4(k+1)

22002C2t6k2
tk
D(V ) ≤ ε4(k+1)

22002C2t5k
D(V ) .

Now let P ′ = {V ′
i : 0 ≤ i ≤ sk} be the partition given by

V ′
i =

{
V k
0 ∪K if i = 0,

V k
i \K otherwise.
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To show the index increment ind(Pk+1) ≥ ind(Pk) + ε3/10002 we will proceed in
two steps. In the first step we will compare the index of P ′ to the index of Pk.

Claim 4.9. |ind(Pk)− ind(P ′)| ≤ ε4.
The second step will reveal the index increment of Pk+1 compared to P ′.
Claim 4.10. ind(Pk+1) ≥ ind(P ′) + ε3/8002.
As ε < 10−7, this yields an index increment ind(Pk+1) ≥ ind(Pk)+ε3/10002.
Proof of Claim 4.9. Let (V k

i , V k
j ) be a pair of partition classes of Pk, and let

V ′
i = V k

i \K and V ′
j = V k

j \K. Note that due to D(V k
i ) ≥ ε4kD(V )/t3k and (36) we

have

D(V ′
i ) ≥ D(V k

i )−D(K) ≥
(
1− ε4

42C2t2k

)
D(V k

i ).

AnalogouslyD(V ′
j ) ≥

(
1− ε4/(42C2t2k)

)
D(V k

j ) holds. In effect, using Proposition 4.7,
we get ∣∣∣∣∣ e2(V ′

i , V
′
j )

D(V ′
i )D(V ′

j )
− e2(V k

i , V k
j )

D(V k
i )D(V k

j )

∣∣∣∣∣ ≤ ε4

2t2k
+ 9

√
ηC2

(33)

≤ ε4

t2k
.

Consequently

|ind(Pk)− ind(P ′)| ≤
∑

1≤i<j≤sk

∣∣∣∣∣ e2(V k
i , V k

j )

D(V k
i )D(V k

j )
− e2(V ′

i , V
′
j )

D(V ′
i )D(V ′

j )

∣∣∣∣∣ ≤ ε4.

Proof of Claim 4.10. Let (V k
i , V k

j ) be an irregular pair and (A,B) = (V k
i \K,V k

j \
K). Furthermore let (Xk

ij , X
k
ji) be an (ε/200,D)-witness. Then, for X = Xk

ij \K ⊂ A

and Y = Xk
ji \K ⊂ B, we have due to Proposition 4.7

∣∣∣∣ e(X,Y )

D(X)D(Y )
− e(A,B)

D(A)D(B)

∣∣∣∣ ≥ ε

200

D(A)D(B)

D(Xk
ij)D(Xk

ji)D(V )
−

7ε2

22002 + 7·200ε
22002 + 8

√
ηC

D(V )

≥ ε

400

D(A)D(B)

D(X)D(Y )D(V )
− ε

1600D(V )
− ε

1600D(V )

≥ ε

800

D(A)D(B)

D(X)D(Y )D(V )
.(37)

Thus, (X,Y ) “witnesses” that (A,B) is not (ε/800,D)-regular.
Now we will use Lemma 4.6 to prove ind(Pk+1) ≥ ind(P ′)+ε3/4. So let I = A×B,

and for all (u, v) ∈ I let

σuv =
DuDv

D(A)D(B)
and �uv = �(V k+1(u), V k+1(v)),

where V k+1(x) denotes the partition class V k+1
i ∈ Pk+1 such that x ∈ V k+1

i . Then∑
(u,v)∈I

σuv = 1 and

∑
(u,v)∈I

σuv�uv =
∑

(u,v)∈I

DuDv

D(A)D(B)

e(V k+1(u), V k+1(v))

D(V k+1(u))D(V k+1(v))
= �(A,B).
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Moreover, let J = X × Y and σJ =
∑

(u,v)∈J σuv = D(X)D(Y )
D(A)D(B) . Then we have

1

σJ

∑
(u,v)∈J

σuv�uv =
D(A)D(B)

D(X)D(Y )

∑
V k+1
i ⊂X

V k+1
j ⊂Y

∑
u∈V k+1

i

v∈V k+1
j

DuDv

D(A)D(B)
�(V k+1

i , V k+1
j )

=
e(X,Y )

D(X)D(Y )
= �(X,Y ) = �(A,B) + ν

for some |ν| ≥ εD(A)D(B)/(800D(X)D(Y )D(V )) due to (37).
Hence, from the Cauchy–Schwarz inequality (Lemma 4.6) we deduce

1

D(A)D(B)

∑
V k+1
i ⊂A

V k+1
j ⊂B

�2(V k+1
i , V k+1

j )D(V k+1
i )D(V k+1

j )

=
∑
u,v∈I

DuDv

D(A)D(B)
�2(V k+1(u), V k+1(v)) =

∑
(u,v)∈I

σuv�
2
uv

≥ �2(A,B) +

(
εD(A)D(B)

800D(X)D(Y )D(V )

)2
D(X)D(Y )

D(A)D(B)

≥ 1

D(A)D(B)

(
�2(A,B)D(A)D(B) +

ε2D(A)D(B)

8002D2(V )

)
.

From the last inequality we infer the amount of the index increment on the ir-
regular pair (A,B). So, in view of Proposition 4.8, after summing over all pairs, we
get

ind(Pk+1)− ind(P ′) ≥
∑

(i,j)∈Lk

ε2

8002
D(A)D(B)

D2(V )
≥ ε3

8002
.

5. An application: MAX CUT. As an application of Theorem 1.2 and, in
particular, the polynomial time algorithm Regularize for computing a regular par-
tition, we obtain the algorithm shown in Figure 5.1 for approximating the maximum
cut of a graph G = (V,E) that satisfies the assumptions of Theorem 1.3.

The basic insight behind ApxMaxCut is the following. If (Vi, Vj) is an (ε,D)-
regular pair of P , then for any subsets X,X ′ ⊂ Vi and Y, Y ′ ⊂ Vj such that D(X) =
D(X ′) and D(Y ) = D(Y ′) the condition REG2 ensures that |e(X,Y )− e(X ′, Y ′)| ≤
2εD(Vi)D(Vj)

D(V ) . That is, the difference between e(X,Y ) and e(X ′, Y ′) is negligible. In

other words, as far as the number of edges is concerned, subsets that have the same
weight are “interchangeable.”

Therefore, to compute a good cut (S, S̄) of G we just have to optimize the pro-
portion of weight of each Vi that is to be put into S or into S̄, but it does not matter
which subset of Vi of this weight we choose. However, determining the optimal fraction
of weight is still a somewhat involved (essentially continuous) optimization problem.
Hence, in order to discretize this problem, we chop each Vi into at most ε−1 chunks
of weight εD(Vi). Then, we just have to determine the number ci of chunks of each
Vi that we join to S. This is exactly the optimization problem detailed in step 2 of
ApxMaxCut.

Observe that the time required to solve this problem is independent of n; i.e.,
step 2 has a constant running time. The number t of classes of P is bounded by a
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Algorithm 5.1. ApxMaxCut(G,C,D, δ).
Input: A (C, η,D)-bounded graph G = (V,E) and δ > 0.
Output: A cut (S, S̄) of G.
1. Use Regularize to compute ε = δ

400C -regular partition P = {Vi : 0 ≤ i ≤ t}
of G.

2. Determine an optimal solution (c∗1, . . . , c∗t ) to the optimization problem

max
∑
i�=j

εci(1− εcj)e(Vi, Vj) s.t. ∀1 ≤ j ≤ t : 0 ≤ cj ≤ ε−1, cj ∈ Z.

3. For each 1 ≤ i ≤ t let Si ⊂ Vi be a subset such that |D(Si)− c∗i εD(Vi)| ≤
2εD(Vi). Output S =

⋃t
i=1 Si and S̄ = V \ S.

Fig. 5.1. The algorithm ApxMaxCut.

number independent of n, and the number �ε−1� + 1 of choices for each ci does not
depend on n either. In addition, step 3 can be implemented so that it runs in linear
time, because Si ⊂ Vi can be any subset that satisfies the condition stated in step 3.
Thus, the total running time of ApxMaxCut is polynomial.

To prove that ApxMaxCut does indeed guarantee an approximation within an
additive δD(V ), we compare the maximum cut of G with the optimal solution μ∗ of
the optimization problem from step 2, i.e.,

μ∗ = max
∑
i,j

εci(1− εcj)e(Vi, Vj)(38)

s.t. ∀1 ≤ j ≤ t : 0 ≤ cj ≤ ε−1, cj ∈ Z.

To this end, we say that a cut (T, T̄ ) of G is compatible with a feasible solution
(c1, . . . , ct) to the optimization problem (38) if |D(T ∩ Vi)− ciεD(Vi)| ≤ 2εD(Vi).

Lemma 5.2. Suppose that (T, T̄ ) is compatible with the feasible solution (ci)1≤i≤t

of (38). Moreover, let

μ =
∑
i,j

εci(1 − εcj)e(Vi, Vj)

be the objective function value corresponding to (c1, . . . , ct). Then |e(T, T̄ ) − μ| ≤
δ
8D(V ).

Proof. Set Ti = T ∩ Vi and T̄i = Vi \ Ti, so that e(T, T̄ ) =
∑

i�=j e(Ti, T̄j) +∑t
i=0 e(Ti, T̄i), and let μij = εci(1 − εcj)e(Vi, Vj) (1 ≤ i, j ≤ t). Moreover, let L be

the set of all pairs (i, j) such that the pair (Vi, Vj) is not (ε,D)-regular. Then REG2
and the (C, η,D)-boundedness of G imply that

∑
(i,j)∈L

μij ≤
∑

(i,j)∈L
e(Vi, Vj) ≤

∑
(i,j)∈L

CD(Vi)D(Vj)

D(V )
≤ CεD(V ) =

δ

400
D(V ),(39)

∑
(i,j)∈L

e(Ti, T̄j) ≤
∑

(i,j)∈L
e(Vi, Vj) ≤ δ

400
D(V ).

Furthermore, since D(V0) ≤ εD(V ) and C ≥ 1 we have

e(T0, T̄ ) + e(T̄0, T ) ≤ D(V0) ≤ εD(V ) ≤ δ

400
D(V ),
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and as D(Vi) ≤ εD(V ) for all i, the (C, η,D)-boundedness condition yields

t∑
i=1

e(Ti, T̄i) ≤
t∑

i=1

CD(Vi)
2

D(V )
≤ CεD(V ) =

δ

400
D(V ).

In addition, let

S = {(i, j) : i, j > 0, i �= j ∧ (i, j) �∈ L ∧ (D(Ti) < εD(Vi) ∨D(T̄j) < εD(Vj))}.
We shall prove below that for all (i, j) �∈ (L ∪ S), i, j > 0, i �= j,

∣∣μij − e(Ti, T̄j)
∣∣ < 5εe(Vi, Vj) + ε

D(Vi)D(Vj)

D(V )
,(40)

and that ∑
(i,j)∈S

μij + e(Ti, T̄j) < 6εD(V ).(41)

Combining (39)–(41), we thus obtain

∣∣e(T, T̄ )− μ
∣∣ ≤ ∑

(i,j) �∈(L∪S)
i,j>0, i�=j

∣∣μij − e(Ti, T̄j)
∣∣

+
∑

(i,j)∈(L∪S)

(μij + e(Ti, Tj)) + e(T0, T̄ ) + e(T̄0, T ) +

t∑
i=1

e(Ti, T̄i)

≤ 6εD(V ) +
δ

200
D(V ) + 6εD(V ) +

δ

400
D(V ) +

δ

400
D(V ) ≤ δ

8
D(V ),

as desired.
To establish (40), consider a pair (i, j) �∈ (L ∪ S), i �= j. Since D(Ti) ≥ εD(Vi)

and D(T̄j) ≥ εD(Vj) and (Vi, Vj) is (ε,D)-regular, we have

(42)

∣∣∣∣e(Ti, T̄j)− D(Ti)D(T̄j)

D(Vi)D(Vj)
e(Vi, Vj)

∣∣∣∣ < εD(Vi)D(Vj)

D(V )
.

Moreover, as (T, T̄ ) is compatible with (c1, . . . , ct),

(43)

∣∣∣∣D(Ti)

D(Vi)
− εci

∣∣∣∣ < 2ε,

∣∣∣∣D(T̄j)

D(Vj)
− (1− εcj)

∣∣∣∣ < 2ε,

and combining (42) and (43) yields (40).
Finally, to prove (41), consider an index i such that D(Ti) < εD(Vi). Then

t∑
j=1

e(Ti, T̄j) ≤ D(Ti) < εD(Vi).

Similarly, if D(T̄j) < εD(Vj), then
∑t

i=1 e(Ti, T̄j) < εD(Vj). Therefore,

(44)
∑

(i,j)∈S
e(Ti, T̄j) < 2εD(V ).
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Further, if D(Ti) < εD(Vi), then ci ≤ 2, because (T, T̄ ) is compatible with (c1, . . . , ct).
Thus

∑t
j=1 μij ≤ 2ε

∑
j e(Vi, Vj) ≤ 2εD(Vi). Analogously, if D(T̄j) < εD(Vj), then∑t

i=1 μij ≤ 2εD(Vj). Consequently,

(45)
∑

(i,j)∈S
μij < 4εD(V ).

Hence, (41) follows from (44) and (45).
Proof of Theorem 1.3. Step 3 of ApxMaxCut ensures that (S, S̄) is compatible with

(c∗1, . . . , c
∗
t ). Therefore, Lemma 5.2 yields

(46) e(S, S̄) ≥ μ∗ − δ

8
D(V ).

Further, let (T, T̄ ) be a maximum cut of G. Then we can construct a feasible solution
to (38) that is compatible with (T, T̄ ) by letting

ci =

⌊
D(T ∩ Vi)

εD(Vi)

⌋
(1 ≤ i ≤ t).

Let μ =
∑

i,j εci(1−εcj)e(Vi, Vj) be the corresponding objective function value. Then
Lemma 5.2 implies that

(47) e(T, T̄ ) ≤ μ+
δ

8
D(V ).

As μ∗ is the optimal value of (38), we have μ∗ ≥ μ, and thus (46) and (47) yield
e(S, S̄) ≥ e(T, T̄ ) − δ

4D(V ). Consequently, ApxMaxCut provides the desired approxi-
mation guarantee.

6. Conclusions.
1. Theorem 1.1 states that there is a constant γ > 0 such that Disc(γε2) implies

ess-Eig(ε). This statement is best possible, up to the precise value of γ. To
see this, we describe a (probabilistic) construction of a graph G = (V,E) on
n vertices that has Disc(10ε) but does not have ess-Eig(0.01

√
ε). Assume

that ε > 0 is a sufficiently small number, and choose n = n(ε) sufficiently
large. Moreover, let X = {1, . . . ,√εn} and X̄ = {√εn+ 1, . . . , n}. Further,
let d = n/2 and set

pX = 1, pXX̄ = pX̄X =
1− 2

√
ε

2− 2
√
ε
, pX̄ =

1− 2
√
ε+ 2ε

2(1−√
ε)2

.

Finally, let G be the random graph with vertex set V = {1, . . . , n} obtained
as follows: any two vertices in X are adjacent, any two vertices in X̄ are
connected with probability pX̄ independently, and each possible X-X̄ edge
is present with probability pXX̄ independently. Thus, the vertices X form a
clique. Moreover, the expected degree of each vertex is d. It easily seen that
G satisfies Disc(10ε). To see that G does not satisfy ess-Eig(

√
ε/2), let E be

the matrix with entries

Evw =

⎧⎨
⎩

1 if v, w ∈ X,
pXX̄ if (v, w) ∈ X × X̄ ∪ X̄ ×X ,
pX̄ if v, w ∈ X̄.
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This matrix just comprises the probabilities that v, w are adjacent. Results on
the eigenvalues of random matrices [14] imply that ‖E−L(G)−d−1E‖ = o(1).
Let W ⊂ {1, . . . , n} be an arbitrary set of size |W | ≥ (1 − 0.01ε)n. Then
‖E − L(G)W − d−1EW ‖ ≤ ‖E − L(G) − d−1E‖ = o(1). Therefore, in order
to show that λ2(L(G)W ) < 1 − 0.01

√
ε it suffices to prove that the matrix

E − d−1EW satisfies

(48) λ2(E − d−1EW ) ≤ 1−√
ε/2.

Let x = |X ∩ W | and x̄ = |X̄ ∩ W |. The matrix d−1EW has rank two,
and the eigenvectors with nonzero eigenvalues lie in the space spanned by
the vectors 1X∩W and 1X̄∩W . This implies that the nonzero eigenvalues of
d−1EW coincide with those of the 2× 2 matrix

E∗ = d−1 ·
(

x x̄ · pXX̄

x · pXX̄ x̄ · pX̄

)
,

which can be computed directly. The smaller eigenvalue is at least
√
ε/(1−√

ε)− ε ≥ √
ε/2. Hence, λ2(E − d−1EW ) ≤ 1−√

ε/2.
2. In the conference version of this paper we stated erroneously that the impli-

cation “Disc(γε3) ⇒ ess-Eig(ε)” is best possible.
3. The techniques presented in section 3 can be adapted easily to obtain a result

similar to Theorem 1.1 with respect to the concepts of discrepancy and eigen-
value separation from [11]. More precisely, let G = (V,E) be a graph on n
vertices, let p = 2|E|n−2 be the edge density ofG, and let γ > 0 denote a small
enough constant. If for any subset X ⊂ V we have |2e(X)−|X |2p| < γε2n2p,
then there exists a set W ⊂ V of size |W | ≥ (1 − ε)n such that the follow-
ing is true. Letting A = A(G) signify the adjacency matrix of G, we have
max{−λ1 [AW ] , λ|W |−1 [AW ]} ≤ εnp. That is, all eigenvalues of the minor
AW except for the largest are at most εnp in absolute value. The same exam-
ple as under point 1 shows that this result is best possible up to the precise
value of γ.
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[3] N. Alon, R. A. Duke, V. Rödl, and R. Yuster, The algorithmic aspects of the regularity
lemma, J. Algorithms, 16 (1994), pp. 80–109.

[4] N. Alon and A. Naor, Approximating the cut-norm via Grothendieck’s inequality, in Pro-
ceedings of the 36th ACM Symposium on Theory of Computing, Chicago, IL, ACM, New
York, 2004, pp. 72–80.

[5] R. Bellman, Introduction to Matrix Analysis, 2nd ed., Classics in Appl. Math. 19, SIAM,
Philadelphia, 1997.

[6] Y. Bilu and N. Linial, Lifts, discrepancy, and nearly optimal spectral gap, Combinatorica, 26
(2006), pp. 495–519.

[7] B. Bollobás and V. Nikiforov, Graphs and Hermitian matrices: Discrepancy and singular
values, Discrete Math., 285 (2004), pp. 17–32.

[8] S. Butler, Using discrepancy to control singular values for nonnegative matrices, Linear Al-
gebra Appl., 419 (2006), pp. 486–493.

[9] F. Chung, Spectral Graph Theory, American Mathematical Society, Providence, RI, 1997.
[10] F. Chung and R. Graham, Quasi-random graphs with given degree sequences, Random Struc-

tures Algorithms, 32 (2008), pp. 1–19.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2362 ALON, COJA-OGHLAN, HÀN, KANG, RÖDL, AND SCHACHT
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