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Natural computation relies on the biophysical substrate of the brain and the rich reper-

toire of dynamical behaviour that it can support. This dynamics is manifest at a range

of spatial and temporal scales covering the trafficking of membrane receptors at the level

of a single synapse (underlying synaptic plasticity) up to the level of travelling waves of

activity as observed in whole brain electroencephalogram (EEG) and functional magnetic

resonance imaging (fMRI) data. Such phenomena are likely to be described using nonlin-

ear systems. However, in contrast to the case for more established fields, such as that of

fluid dynamics, the development of fundamental mathematical models and the appropriate

framework for understanding complex neural systems is still in its infancy. This is not to

say that success stories in this area do not exist. Indeed this is far from the case and one

only has to mention the work of Hodgkin and Huxley on modelling the action potential,

Rall on the dendritic tree, and Wilson, Cowan and Amari on cortical tissue models to high-

light the important steps that have already been made. We refer the reader less familiar

with these examples to the short survey in [1]. Interestingly all these models are written

using the language of differential equations so familiar to the Physica D audience, and

which have been thoroughly analysed with the tools for describing many other physical,

chemical and biological systems including bifurcation theory, pattern formation, dynamics

in non-equilibrium systems, asymptotic analysis, numerical analysis, and other mathemat-

ical methods for treating nonlinear and complex systems.This provides us with a solid set

of exemplars with which to define the field of Mathematical Neuroscience, a new branch

of applied mathematics that coalesces mathematics with neuroscience to provide a frame-

work for understanding the organisational principles and emergent dynamics of complex

neural systems found in nature. Some more recent examples from this field include the

use of symmetric bifurcation theory in an (integro-differential) neural tissue model to show

that visual hallucinations can be accounted for in terms of certain symmetry properties of

the anisotropic synaptic connections in visual cortex [2] and the discovery of dissipative

solitons in a generalised model with physiologically motivated slow state-dependent mod-

ulation [3].

With the increased activity in Mathematical Neuroscience, and the publication of the

recent book by Ermentrout and Terman entitled “Foundations of Mathematical Neuro-

science” [4] it is timely for Physica D to put forward a special issue in this area. Indeed
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now that this field has moved on from its early beginnings in the biophysical modelling

of single cells it is a challenge to pick from the many possible topics that researchers

could contribute on, such as bursting patterns [5], coupled oscillator networks [6], large-

scale neural dynamics [7, 8], waves and patterns [9], delay effects in brain dynamics [10],

stochastic methods in neuroscience [11], or indeed novel techniques for analysis, includ-

ing Evans functions [12], heteroclinic cycling [13], geometric singular perturbation theory

[14], amplitude equations [15] and information geometry [16]. To provide a focus for this

special issue we have therefore chosen to cover some of the topics recently discussed at

the conferences in Edinburgh on Mathematical Neuroscience in 2008 and 2009 (with the

next meeting in April 2010 www.icms.org.uk/workshops/neuro2010). These were run

under the auspices of the UK Mathematical Neuroscience Network (mathneuronet.org.uk)

and addressed the current state of research in mathematical approaches to neuroscience,

covering developmental neuroscience, synaptic integration, synaptic depression, stochas-

tic point process models of spiking activity, canards, microcircuit modelling and mean-

field analysis, synchrony in cerebellar networks, population coding, spatial correlations in

strongly coupled networks, cell assemblies, electrorhythmogenesis, thalamocortical net-

works, models of sleep/wake cycles, dimension reduction of network models and large-

scale models of the ultra-slow resting brain state.

This special issue begins with a paper by Mortimer et al. [17] on neuronal development

concerning the guidance of neurite fibres by molecular concentration gradients. This is a

theoretical study of how fibre tips can best detect local concentration gradients. The next

paper by Nowacki et al. [18] examines conditions for the onset of plateau like oscillations

in a three-dimensional somatotroph cell model through a conditional slow-fast decom-

position, emphasising the role of calcium-activated potassium (BK) channels. Travelling

waves in realistic dendritic morphologies with excitable hot-spots are treated in the paper

by Timofeeva [19], using novel techniques from mathematical physics including a “sum-

over-trips” approach. Mixed-mode oscillations are investigated by Curtu [20] in a model of

two neural populations and linked to the presence of a singular Hopf bifurcation. Further

use of dynamical systems techniques is made by Ahn et al. [21] in order to understand the

collective neuronal network behaviour of excitatory-inhibitory networks of conductance

based spiking neurons, via a discrete time model for the effects of excitation/inhibition.
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A novel model for binocular rivalry based on winnerless competition is introduced by

Ashwin and Lavric [22] and shown to reproduce a large number of experimental results.

Moving up to the scale of neural tissue, Elvin et al. [23] show how to exploit an underly-

ing Hamiltonian structure to explain the disappearance of spatially localised (bump) states

(for working memory) in favour of travelling fronts in a model of the prefrontal cortex.

Kilpatrick and Bressloff [24] pursue extensions of such neural field models to include the

effects of synaptic depression and more natural forms of spike-frequency adaptation and

obtain analytical results on existence and stability of waves, bumps and oscillations for

Heaviside and piecewise linear nonlinearities. The final paper by Faye and Faugeras [25]

treats models with space-dependent delays representing axonal communication lags and

makes use of techniques from functional analysis to establish existence and uniqueness of

solutions for smooth nonlinearities, as well performing a Lyapunov analysis to determine

asymptotic stability.

From the discussion in each of these original papers it is clear that there are many future

challenges in the field of Mathematical Neuroscience, especially those that relate to space,

noise, delays, feedback and plasticity in shaping the dynamic states of biological neural

networks. These are very much in tune with the broader remit of Physica D and we hope

that this collection of articles will spark the readers interest in working in this new field of

applied mathematics.
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