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Summary

1. The hypothalamic arcuate nucleus (Arc) is a key integrative centre of the central nervous
system (CNS) involved in the control and maintenance of energy balance. Whole-cell patch
clamp recording techniques were utilised, in isolated hypothalamic brain slice preparations, to
investigate the electrophysiological and morphological properties of Arc neurones. Differential
expression of subthreshold active conductances were identified and used to functionally
classify Arc neurones into 8 electrophysiological clusters. This classification was based
based upon differential expression of the following conductances: anomalous inward
rectification (Ian); hyperpolarisation-activated non-selective cation conductance (Ih); transient
outward rectification (Ia); T-type-like calcium conductance. Morphological analysis of recorded
neurones, revealed retrospectively with biocytin staining, showed four populations based upon
the orientation and number of primary dendrites. There were no obvious direct correlations
between morphology and electrophysiological properties, suggesting considerable functional
diversity of neurones and their associated circuits at the level of the Arc.

2. The physiological levels of glucose to which the brain is exposed are believed to be around
1-2.5 mM, and glucose-sensing neurones have been identified in the Arc. However, in vitro
slice studies routinely use glucose around 10 mM in aCSF. The impact of this high level of
glucose on fundamental properties and operation of hypothalamic circuits remains unclear.
Here the effect of different ambient glucose levels (10 mM, hyperglycaemic and 2 mM,
euglycaemic) on electrophysiological properties of Arc neurones was compared. Significant
differences in passive and active subthreshold membrane properties of Arc neurones were
observed, including: changes in neuronal input resistance, spontaneous activity and
magnitude of Ih and Ia. Data from this study suggests a need to re-evaluate studies previously
conducted in non-physiological levels of glucose.

3. The effects of noradrenaline (NA) on the neuronal excitability of hypothalamic Arc neurones
were studied. Application of NA induced a membrane depolarisation and increase in electrical
excitability in 51% of Arc neurones, including orexigenic NPY/AgRP neurones, a response
that persisted in the presence of TTX indicating a direct effect. NA-induced depolarisation was
mediated through α1-ARs, in particular through α1A-ARs, and associated with multiple ionic
mechanisms including: closure of a potassium conductance, activation of a non-selective
cation conductance, or a combination of the two.

4. NA also induced a membrane hyperpolarisation in a sub-population of Arc neurones (15%)
including 4/9 putative anorexigenic CART-expressing neurones, the remaining CART
neurones responded with a NA-induced excitation. NA-induced hyperpolarisation, mediated
via α2-ARs and activation of one or more potassium conductances, persisted in the presence
of TTX indicating a direct effect on Arc neurones. 7.5% of neurones responded to NA with
biphasic inhibitory/excitatory responses. Taken together, these data suggest that NA, at least
in part, excites a subpopulation of NPY/AgRP neurones and inhibits a population of CART
expressing neurones which may serve an orexigenic role at the level of the Arc.

5. Histamine induced membrane depolarisation in a population of Arc neurones (65%), most
likely through H1 receptors, via a direct effect on the postsysnaptic membrane. Histamine
induced depolarisation through multiple ionic mechanisms, including closure of a potassium
conductance or activation of an electrogenic pump.
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1.1 The autonomic nervous system

The autonomic nervous system (ANS) acts as a control system that provides a steady

homeostatic state for the internal environment of the individual. Often termed the visceral

nervous system, it is this part of the central nervous system (CNS) that innervates virtually all

internal organs with the exception of skeletal muscle to provide a constant environment. The

ANS can be divided into three principal divisions; the enteric nervous system, the

parasympathetic nervous system (PNS) and the sympathetic nervous system (SNS). The

SNS and the PNS function in a complementary manner controlling most internal organs. The

enteric nervous system however independently regulates gastrointestinal motility secretions

by innervating the gastrointestinal tract (GT), the pancreas and gall bladder. The SNS and

PNS exert control through two sets of neurones; preganglionic neurones originating in the

CNS that synapse with postganglionic neurones situated within the periphery. Both branches

of the ANS use acetylcholine as a neurotransmitter at the pre-post ganglionic synapse. There

are however anatomical differences between the PNS and the SNS in terms of the location of

the preganglionic neurones in the CNS and the neurotransmitters released from

postganglionic neurones. Parasympathetic preganglionic neurones originate in brainstem

nuclei or in the sacral spinal cord whereas the somata of sympathetic preganglionic neurones

(SPNs) are located in the thoracic and lumbar regions of the spinal cord (Loewy, 1991). The

parasympathetic postganglionic neurones release acetylcholine in contrast to the sympathetic

postganglionic neurones which release noradrenaline (NA) from their terminals. The ANS is a

complex system that maintains and establishes homeostasis with a number of feedback loops

i.e. sensory feedback neurones signal information back to the CNS regarding the state of the

target tissue. A major component of this feedback loop is the hypothalamus which is heavily
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involved in the central control of a large number of autonomic processes, including energy

homeostasis.

1.2 Energy homeostasis

Energy homeostasis is defined as the balance and the precise regulation of food

intake in order to sustain a stable and constant internal environment, thus maintaining suitable

energy stores as a safeguard against food deficit or a change in metabolic demand. In reality,

caloric intake and energy expenditure are meticulously controlled parameters in that net

energy balances are maintained within 1% per day (Rink, 1994). From an evolutionary

perspective there is however an intrinsic bias towards positive energy balance as energy

deficit is most likely to compromise survival (Beales & Kopelman, 1996).

The hypothalamus and brainstem are reciprocally connected and play an important

role in the central control of energy homeostasis by assessing the metabolic status of the

body and engaging the ANS to produce an appropriate output. Peripheral signals regarding

the energy status of the body relay information directly via the vagal afferent pathway to the

brainstem or act directly on the hypothalamus. The involvement of the CNS and in particular

the involvement of the hypothalamus in integrating and processing information regarding the

energy status of the body has been known for decades. Previously, it was thought that

feeding was regulated by two core hypothalamic areas: the lateral hypothalamus (LH) and the

ventromedial hypothalamus (VMH; Hetherington & Ranson, 1940; Anand & Brobeck, 1951).

This was described as the ‘dual feeding centre’ hypothesis. A combination of electrolytic

lesion and electrical stimulation studies within the LH resulted in fatal anorexia and increased

food intake, respectively, thus it was considered the ‘feeding’ centre. The VMH was termed

the ‘satiety’ centre as lesions in this area resulted in obesity associated with hyperphagia
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(Hetherington & Ranson, 1940; Anand & Brobeck, 1951). Although it is now apparent that

other hypothalamic nuclei are involved in the regulation of energy homeostasis, these initial

rather rudimentary lesion experiments provided the foundations for the ‘lipostatic hypothesis’

and the ‘glucostatic hypothesis’ proposed in the 1950s, and for our knowledge and work today.

The ‘glucostatic hypothesis’ proposed by Mayer in 1955 suggested that glucose

serves as a physiological satiety factor, in that post-prandial increases in plasma glucose

cause meal termination and that eating is initiated when blood glucose of the brain is reduced

(Mayer, 1953, 1955). This theory however did not deal with the long-term regulation and

precision of body-weight control. The ‘lipostatic theory’ was proposed by Kennedy in 1953 and

it provided a better understanding of the long-term control of energy balance (Kennedy, 1953;

Schwartz et al., 2000). He proposed that (a) circulating signals generated in proportion to

body fat stores interacted with the hypothalamus to influence food intake and energy

expenditure in a coordinated manner to regulate body weight. Parabiosis experiments further

substantiated the idea that circulating factors could regulate food intake (Hervey, 1959). For

general reviews on the central control of energy homeostasis see Schwartz et al., 1999;

Schwartz et al., 2000; Gao & Horvath, 2007.

1.3 The hypothalamus

The hypothalamus, a small cone shaped structure, is situated in the middle of the

base of the brain and surrounds the third ventricle. It plays an essential role in coordinating

vital autonomic processes such as body temperature, blood pressure, fluid balance and

reproduction, amongst many others. It achieves homeostasis by core circuitry within the

hypothalamus interacting with key regions within the brainstem and spinal cord, as well as

integrating signals from the periphery and the external environment. Directly underneath the
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hypothalamus is the (anterior and posterior) pituitary gland that secretes protein hormones

into the circulation under the direct control of the hypothalamus.

The present study focuses on the central control of energy homeostasis and in this

case circulating leptin and insulin amongst others which provide peripheral signals, whilst

external signals include food availability and /or social cues to the hypothalamus.

Previous research has identified that nuclei within the hypothalamus have clusters of

neurones with specific functional roles within feeding. These discrete nuclei integrate a

number of chemical and electrical signals whilst interacting with each other. Key nuclei

implicated in the maintenance of energy homeostasis include the arcuate nucleus (Arc), LH,

paraventricular nucleus (PVN), ventral medial nucleus (VMN) and the dorsal medial

hypothalamus (DMH). These nuclei are under the control and influence of higher structures

such as the amygdala and orbitofrontal cortex as well as circulating factors (Rolls, 1984;

LeDoux et al., 1988). These higher centres bring in cognitive, motivational and emotional cues,

such as the desire for palatable food.

1.4 The arcuate nucleus

The Arc is considered to be the key integrative centre in regulating energy

homeostasis. This nucleus is an aggregation of densely packed cell bodies located at the

base of the hypothalamus surrounding the third ventricle (Chronwall, 1985; Schwartz et al.,

2000). It lies directly above the median eminence (ME) which is a neurohemal region

(Knowles & Bern, 1966) characterised by having a compromised blood brain barrier (BBB).

The ME is termed a circumventricular organ; therefore it has a higher rate of endocytosis,

pinocytosis and transcytosis due to a lack of tight junctions (Davson & Segal, 1996). The

close proximity of the Arc to the ME is thought to allow the Arc to sense and process
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peripheral factors concerning the body’s energy state. These peripheral factors include insulin,

leptin, ghrelin and glucose among others. It has been shown that both insulin and leptin

receptors are found abundantly within the Arc (van Houten et al., 1980; Baskin et al., 1988;

Mercer et al., 1996a; Cheung et al., 1997). Leptin appears to be transported into the CNS by a

saturable receptor mediated process (Banks et al., 1996). Leptin and insulin activate the long

form of the leptin receptor (Ob-Rb) and the insulin receptor, respectively, both of which are

expressed on the cellular membrane of Arc neurones and act to modulate electrical activity

(Mercer et al., 1996b; Spanswick et al., 1997; Elmquist et al., 1998; Spanswick et al., 2000;

Cowley et al., 2001; see section 1.9). Ghrelin released from the stomach increases appetite

and leads to hyperphagia. Its receptor, the growth hormone secretogue receptor (GHS-R) is

found in high levels within the Arc (Guan et al., 1997b). The apparatus for glucose sensing is

also found within the Arc (Ashford et al., 1990; Spanswick et al., 1997; Ibrahim et al., 2003;

van den Top et al., 2007), which further substantiates the importance of the Arc in the control

of energy homeostasis. See Figure 1.1 for an overview of the central control of energy

homeostasis.

The Arc is an extremely complex nucleus with heterogeneity of neuronal inputs,

targets and chemical phenotypes. It is innervated by other hypothalamic nuclei involved in

energy homeostasis, including the lateral hypothalamic area (LHA), suprachiasmatic nucleus

(SCN), and PVN (see Figure 1.2; Chronwall, 1985; Cone et al., 2001; Williams et al., 2001).

Neuropeptides and neurotransmitters contained in nerve terminals innervating the Arc include

orexin from the LH, serotonin and noradrenaline (NA) from the brainstem (Swanson &

Sawchenko, 1983; Sawchenko, 1998) and the fast neurotransmitters -aminobutyric acid

(GABA) and glutamate (Chronwall, 1985; Horvath et al., 1997). The efferent targets are just

as diverse and include outputs to the ME, PVN, nucleus tractus solitarius (NTS), and the LHA

(see Figure 1.2; Chronwall, 1985; Baker & Herkenham, 1995) which provide behavioural,
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neuroendocrine and autonomic outputs to ensure a homeostatic balance for ingestion, energy

expenditure and storage. Neuropeptidergic expression reveals that within the Arc there is an

extremely diverse chemical phenotype. Neuropeptide expression includes neuropeptide Y

(NPY), pro-opiomelanocortin (POMC), agouti-related peptide (AgRP), neuromedin U,

urocortin II, galanin, dopamine, prolactin and cocaine and amphetamine- related transcript

(CART; Chronwall, 1985; Howard et al., 2000; Reyes et al., 2001).

1.5 Leptin & insulin; long term signals relating to energy stores

Energy homeostasis is accomplished through a highly integrated neurohumoral

system that minimises the impact of short term fluctuations in energy balance on fat mass.

Critical elements of this meticulously controlled system are hormones secreted in proportion

to body adiposity, including leptin and insulin.

The lipostatic hypothesis gave rise to the idea of a circulating factor involved in

integrating peripheral signals indicating energy status, with integration of these signals at the

level of the hypothalamus in relation to satiation. Experiments, inspired by Hervey, undertaken

by Douglous Coleman included parabiosis experiments on naturally occurring obese mouse

models, obese (ob/ob) and diabetic (db/db), which subsequently identified the existence of a

satiety signal. These parabiotic experiments revealed that ob/ob mice were deficient in a

circulating factor and the resulting hyperphagia could be restored via blood circulation

originating from the normal mouse (Hausberger, 1959). In contrast parabiosis experiments

carried out between a db/db mouse and a lean control mouse resulted in feeding inhibition in

the normal mouse, but did not result in normalisation of body weight in the db/db mouse. Thus,

this suggested that the db/db mouse had high levels of Hervey’s ‘circulating satiety factor’ but

was defective in its ability to respond to it through a mutation preventing its correct

transduction (Coleman, 1973). However, despite these early studies supporting the idea of a
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satiation signal it was not until 1994 that the protein product of the Ob gene, leptin, was

discovered by the Friedman laboratory (Zhang et al., 1994). It was found that leptin deficient

animals were obese, and subsequently the administration of leptin both centrally and

periphery to these animals reversed their hyperphagia and their neuroendocrine abnormalities

(Friedman & Halaas, 1998). Leptin is predominately secreted from white adipose tissue in

proportion to the amount of body fat mass, thus as adipocytes increase in size due to a build

up of triglycerides they produce larger quantities of leptin, which gives an indication of the

body’s nutritional status (Bagdade et al., 1967). Leptin has been shown to signal via a single-

transmembrane domain receptor of the cytokine receptor family. Alternative mRNA splicing

and post-translational processing results in multiple isoforms of the receptor (Ob-R). It is the

long form Ob-Rb that is expressed widely within the hypothalamus and in particular the Arc,

PVN, DMH and the LHA (Tartaglia et al., 1995; Lee et al., 1996; Mercer et al., 1996b; Guan et

al., 1997a). This receptor possesses a long intracellular domain that binds to Janus- kinases

(JAK) and STAT 3 transcription factors resulting in signal transduction and leptin’s effects on

food intake (Tartaglia et al., 1995; Fruhbeck, 2006). Circulating leptin’s abiltity to cross the

BBB via a saturable process (Banks et al., 1996) means that it is able to provide the brain with

an indication of energy storage for the purpose of regulating appetite and metabolism. The

binding of leptin to its receptor within the hypothalamus initiates a signalling cascade that

results in the inhibition of several orexigenic peptides whilst stimulating several anorexigenic

peptides.

Since leptin’s discovery, it is now well known as a long-term adiposity signal that

regulates the activity of central neural elements and pathways which form the circuits

maintaining energy homeostasis (Schwartz et al., 1999). In addition to insulin's classical role

in the peripheral maintenance of glucose homeostasis, it is also a well known long-term

adiposity signal that works in tandem with leptin. Insulin is secreted from pancreatic β-cells in



Chapter 1

9

basal proportions that correlate with body adiposity, thus plasma insulin levels increase at

times of positive energy balance and decrease at times of negative energy balance (Woods et

al., 1974). The insulin receptor is composed of a disulphide-bonded dimer of an α subunit and

β subunit. Upon insulin binding to its receptor, it induces activation of an intrinsic tyrosine

kinase resulting in receptor autophosphorylation. This subsequently recruits one of a family of

insulin receptor substrate molecules (IRS) to the receptor where it becomes activated by

tyrosine phosphorylation. IRS consequently binds to and activates further downstream targets

such as the enzyme phosphatidylinositol 3- kinase (PI3K). IRS-2 is most abundantly

expressed within the Arc; its knockout is associated with increased food intake and increased

fat stores (Burks et al., 2000).

The long term adiposity hormones insulin and leptin exert their effects via actions on

specific neurones of the hypothalamus to produce an overall anorexigenic effect (discussed in

section 1.6). It has been suggested that these key hormones involved in energy homeostasis

share common intracellular pathways via IRS and PI3K resulting in downstream signal

transduction (Niswender et al., 2003; Niswender & Schwartz, 2003; Spanswick et al., 2000).

To be able to delineate key events in leptin and insulin signalling in brain areas such as the

Arc at the cellular level would be an advance in our understanding of how these peripheral

signals are involved in energy balance.

1.6 NPY/AgRP, POMC/CART neurones in the control of energy homeostasis

The chemical phenotype of the Arc is diverse; however in the maintenance of energy

homeostasis the main focus is on two neuronal populations differentially expressing NPY/

AgRP and POMC/CART, which are the best characterised metabolic sensing neurones.

Within the Arc they reside in discrete areas, with NPY/AgRP neurones predominately located
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in the ventromedial Arc (Chronwall, 1985; Allen et al., 1986) and POMC/CART located more

laterally (Bloch et al., 1978; Bloom et al., 1978). These two sets of neuronal populations are

anatomically adjacent and work in an antagonistic fashion as parallel but opposing pathways

to maintain a balanced energy state. They are differentially regulated by circulating factors

that ultimately determine the Arc outflow and hence change the overall energy status

(Schwartz et al., 2000).

NPY is a 36 amino acid potent orexigenic neuropeptide (Williams et al., 2000). It is

widely expressed throughout the brain (Adrian et al., 1983), with strong expression within the

Arc (Chronwall et al., 1984). NPY/AgRP has strong projections to the brain-stem, specifically

the NTS. Its orexigenic effects are mediated through G-coupled receptors, mainly Y1, Y2 and

Y5 (Gerald et al., 1996; Broberger et al., 1997). NPY however has 6 known receptors, Y6

being specific to mouse (Beck et al., 2001). NPY has not only a stimulatory effect on food

intake (Stanley et al., 1993) but it also decreases energy expenditure (Menendez et al., 1990)

subsequently favouring fat deposition. Hyperphagia is accompanied by inhibition of SNS

outflow to brown adipose tissue and other thermogenic tissues thus leading to a fall in energy

expenditure and favouring weight gain (Egawa et al., 1991). NPY mRNA within the Arc

increases in states of negative energy balance or food deprivation compared to that of

controls (Schwartz et al., 1991b; Guan et al., 1998a; Lin et al., 2000). Low body fat stores

activate the Arc-PVN NPY pathway which is integral to the control of energy balance (Sahu et

al., 1988). Central administration of NPY enhances food intake and increases body weight in

rodents, with repeated application resulting in obesity (Stanley et al., 1986; Billington et al.,

1994).

Within the Arc, Ob-Rb mRNA is expressed on neuronal groups expressing NPY

(Hakansson et al., 1996; Mercer et al., 1996a; van den Top et al., 2004). Leptin inhibits the

activity of NPY neurones and reduces its expression (Erickson et al., 1996; Smith et al., 1998;
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Stanley et al., 2005). Thus, in times of low circulating leptin, NPY expression is unregulated

which results in a shift towards equilibrium. Insulin, another adiposity signal, also inhibits

hypothalamic expression of NPY (Benoit et al., 2002). It has been reported that administration

of insulin during food deprivation in rats prevents the fasting-induced increase in NPY mRNA

within the Arc (Schwartz et al., 1992).

Co-expressed with NPY in the medial aspects of the Arc is Agouti- related protein

(AgRP), the agouti homolog in the brain. AgRP is exclusively expressed within the

hypothalamus and is secreted with NPY from the axonal terminals to hypothalamic and

extrahypothalamic areas (Broberger et al., 1998; Hahn et al., 1998) to increase feeding.

Ablation of AgRP neurones results in acute reduction of feeding showing that they are critical

in energy homeostasis (Gropp et al., 2005). The ablation of NPY/AgRP in adult mice but not

neonates results in starvation (Luquet et al., 2005). It is thought that the ability of neonates to

deal with such a loss is due to them lacking functional connections which thus promote

compensatory mechanisms (Luquet et al., 2007).

Leptin inhibits the release of AgRP (Hoggard et al., 2004a; Hoggard et al., 2004b). As

with NPY expression, AgRP is unregulated in leptin deficient rodents due to fasting or a

mutation (Hahn et al., 1998). AgRP administered intracerebroventricularly (I.C.V) increases

food intake with a single injection, showing its potent orexigenic effects over long periods of

time (Rossi et al., 1998). AgRP has also been found to act as an endogenous antagonist /

inverse agonist of the melanocortin 3 and 4 receptors (MC3-R and MC4-R) by competing with

α-melanocyte stimulating hormone (α-MSH), a natural agonist of the above receptors (Cowley

et al., 1999). Suppression of the activity of the MC4-R by ectopic agouti over expression in the

Ay mouse mutant (lethal yellow; a gain of function mutation in the agouti gene locus) leads to

obesity. These mice also display characteristic yellow fur due to the loss of MC1-R receptor

signalling (for review see Adan & Kas, 2003). α-MSH inhibits feeding and induces weight loss.
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The unique colocalisation of mRNA AgRP with NPY makes a distinctive subset of neurones

that are capable of increasing food intake via two different mechanisms; by increasing NPY

signalling and by decreasing melanocortin signalling.

Proopiomelanocortin (POMC) is a precursor polypeptide for the catabolic

melanocortins, which include adrenocorticotrophic hormone (ACTH) and α-MSH which has

the most apparent importance within feeding. Within the CNS, POMC and its derivatives are

located exclusively within the NTS and the Arc (Jacobowitz & O'Donohue, 1978; Watson &

Akil, 1979). Melanocortins mediate their effects through the G-protein coupled melanocortin

receptors (MC1R- MC5R). Two melanocortin receptors, MC4-R and MC3-R are widely

expressed within hypothalamic regions (Roselli-Rehfuss et al., 1993; Mountjoy et al., 1994)

including the Arc and ME (Harrold et al., 1999). The binding of the melanocortins to the above

receptors inhibits food intake and promotes weight loss (Cone, 1999). The injection of an α-

MSH homologue leads to suppression of food intake (Fan et al., 1997). Disruption in POMC

expression or in signalling of the POMC peptides leads to obesity in both mice and humans

(Spiegelman & Flier, 2001). Genetic deletion of MC4-R in mice and humans results in severe

hyperphagic obesity (Huszar et al., 1997; Coll et al., 2004). A common monogenic cause of

obesity within humans has been identified to be due to the disrupted MC4-R signalling (Yeo et

al., 1998). MC4-R-/- null mice are severely obese and have severe hyperphagia, an identical

phenotype of that seen in an agouti lethal yellow mutant (ectopic expression of the agouti

protein; a homologue of AgRP; Miller et al., 1993; Huszar et al., 1997). As discussed

previously, agouti has been shown to be a natural antagonist of the MC4-R; these studies

further substantiating the idea that POMC has an anorexigenic role within feeding.

The Ob-Rb receptor has been shown to be expressed by POMC neurones and they

have been shown to be directly activated by leptin via activation of a non-selective cation
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channel, involving a PI3K-dependent downstream signalling pathway (Elias et al., 2000;

Cowley et al., 2001; Hill et al., 2008; Rother et al., 2008). When neuronal input from leptin is

reduced, POMC neurones are inhibited resulting in positive energy balance (Cone, 1999).

Within the Arc, POMC is co-localised with CART, also an anorexigenic peptide (Elias et al.,

1998). CART neurones are also upregulated by leptin. CART mRNA levels decrease at times

of low leptin levels, such as starvation and reverse following administration of leptin

(Kristensen et al., 1998). Interestingly, insulin has been shown to hyperpolarise and decrease

the firing rate of a subset of Arc neurones (Spanswick et al., 2000). Insulin has been shown to

inhibit POMC neurones through the PI3K pathway (Hill et al., 2008).

There is also interplay between the two main opposing neuropeptides within the Arc.

The orexigenic NPYAgRP neurones innervate the anorexigenic POMC/CART neurones within

this nucleus. POMC/CART neurones receive spontaneous GABAergic inputs which partially

originate from NPY terminals synapsing on these neurones (Cowley et al., 2001). NPY has

been shown to inhibit POMC mRNA expression via the Y2 receptor (Garcia de Yebenes et al.,

1995) and has also been shown to directly hyperpolarise POMC neurones through the Y1

receptor, mediated via the activation of G-protein inwardly rectifying potassium (GIRK)

channels (Broberger et al., 1997; Roseberry et al., 2004). The neonatal ablation of NPY/AgRP

neurones results in an increase in ACTH/αMSH, as would be expected due to the loss of an

inhibitory input from NPY/AgRP neurones (Luquet et al., 2007).
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1.7 Other neuropeptides implicated in the control of energy balance

1.7.1 Orexin

The Arc receives extensive afferent and efferent projections. In particular POMC and

NPY neurones within the Arc project to the LH, the PVN and the DMH (Chronwall, 1985;

Bagnol et al., 1999) and these connections are reciprocal.

The LH contains neurones that express the orexins and melanin-concentrating

hormone (MCH) which are implicated heavily within feeding and act as downstream targets

for the Arc. Orexins A and B (also known as hypocretin 1 and 2) are exclusively located within

the LH in the CNS (Date et al., 1999) and are endogenous ligands for previous orphan G-

protein-coupled receptors, OX1R and OX2R (Sakurai et al., 1998).They project throughout the

neuronal axis including projections within the hypothalamus incorporating the Arc. The orexins

are essential to maintain an appropriate state of arousal, illustrated by the occurrence of

narcolepsy in the absence of orexin signalling (Hara et al., 2001; Taheri et al., 2002). The

injection of orexin into the hypothalamus stimulates feeding (Sakurai et al., 1998; Willie et al.,

2001) and thus suggests it to be important for appetite control. Their suggested role has been

to ensure that the body is alert at times when food resources are low and thus the need to

seek food is high (Willie et al., 2001; Sakurai, 2003). Arc NPY neurones express the orexin

receptors (OX1R and OX2R) and have been shown to mediate the induction of oscillations in a

subpopulation of Arc neurones which are functionally thought to be acting as conditional

pacemakers (van den Top et al., 2004). Orexin neurones have also been shown to indirectly

inhibit the activity of POMC neurones (Ma et al., 2007). In addition through the OX2R, orexin

directly decreases intracellular calcium through a pertussis toxin (PTX) sensitive pathway
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(Muroya et al., 2004). Leptin administration also decreases orexin expression further

suggesting that this peptide has an orexigenic role within feeding (Yamanaka et al., 2003).

1.7.2 Melanin-concentrating hormone

Melanin-concentrating hormone (MCH) has also been shown to have an orexigenic

role in feeding. It exerts its effects through two types of G-protein-coupled receptors, MCH-1

and MCH-2. Injection of MCH into the brain (lateral ventricles) increases food intake (Qu et al.,

1996) and mice lacking MCH are hypophagic and lean (Shimada et al., 1998). It also has a

role in arousal; decreasing energy expenditure and increasing food intake simultaneously

when injected intracerebroventrically (Cvetkovic et al., 2003). MCH is also involved in the

downstream effects of leptin, shown by increased expression of MCH within the hypothalamus

after 48 hour fasting (Kokkotou et al., 2001). Interestingly, MCH co-localises with CART within

the LH, therefore leading to a neuronal group which contains both anorexigenic and

orexigenic peptides (Broberger, 1999).

1.7.3 Corticotrophin releasing hormone

Second order neurones such as those found in the LH are also present within the

PVN; so called due to their indirect contact with peripheral satiety factors, the Arc neurones

being termed ‘first order’ neurones. The PVN is the main site for production of corticotrophin

releasing hormone (CRF) and thyrotrophin releasing hormone (TRH) which have been

implicated to have a role in feeding. CRF is best known as the regulator of ACTH release and

has a key role in integrating signals of energy status with the hypothalamic–pituitary-adrenal

axis (HPA; Neary et al., 2004). Injection of CRF into the brain decreases feeding and chronic
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administration causes anorexia and sustained weight loss (Levine et al., 1983; Krahn et al.,

1988). In contrast, administration of CRF antagonists within the hypothalamus enhances NPY

expression, thus suggesting that CRF has a role in tonically inhibiting an orexigenic signal

(Hanson & Dallman, 1995; Arora & Anubhuti, 2006).

1.8 Short-term signals regarding energy status originating from the periphery

To regulate food intake the brain must modulate satiety signals and this is achieved

by the regulation of the gut-brain axis. The hindbrain receives inputs from short-acting satiety

signals which are transmitted both neurally, through vagal afferents projecting to the NTS and

also hormonally, where gut peptides act directly either on the area postrema or the Arc.

Amongst inputs of central origin, the hypothalamus also receives afferent inputs from the

periphery; insulin and leptin which have already been mentioned but short term signals

regarding energy status are also implicated such as ghrelin and peptide YY3-36 (PYY3-36).

1.8.1 Ghrelin

Ghrelin is a potent orexigen released and synthesised by the oxyntic cells within the

stomach, and was initially identified as the endogenous ligand of the growth hormone

secretagogue receptor (GHS-R; Kojima et al., 1999). Its plasma concentration increases pre-

prandially and falls post-prandially thus proposing a function as a short-term signal initiating

feeding (Tschop et al., 2000; Cummings et al., 2001). Central continual administration of

ghrelin causes obesity in mice by increasing food consumption and reducing fat utilisation

(Tschop et al., 2000; Wren et al., 2001a; Wren et al., 2001b; Lawrence et al., 2002; Wang et

al., 2002; Faulconbridge et al., 2003; Currie et al., 2005). It also has the ability to abolish
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leptin-induced anorexia (Shintani et al., 2001). This gut peptide has the ability to cross the

BBB and thus has the ability to exert its actions upon the neurones of the Arc

Furthermore the vagal efferent pathway has also be shown to be an important route

for conveying peripheral orexigenic ghrelin signals to the hindbrain which in turn transmits

signals through the noradrenergic pathway to the Arc (Date et al., 2006). Arc neurones

express the GHS-R, and 94% of orexigenic NPY neurones express this receptor (Willesen et

al., 1999; Zigman et al., 2006). High levels of the receptor are also expressed within the VMN

and brainstem (Bennett et al., 1997; Guan et al., 1997b). Administration of ghrelin in the Arc

increases mRNA content, C-FOS and electrical activity of NPY neurones (Kamegai et al.,

2001; Nakazato et al., 2001). Antibodies of NPY and AgRP and NPY Y1 receptor antagonists

have all been shown to abolish ghrelin-induced feeding (Kamegai et al., 2000, 2001).

Furthermore ghrelin has also been shown to directly excite a subpopulation of NPY neurones

within the Arc that are directly inhibited by the anorexigen leptin (van den Top et al., 2004).

Neonatal ablation of NPY/AgRP reveals there is also a loss of ghrelin signalling, thus

indicating that NPY/AgRP neurones are critical for mediating the ghrelin response. It also

shows that there are no compensatory mechanisms to mediate this hormone’s effects (Luquet

et al., 2007). Thus, this substantiates that the Arc is a key intrinsic site of action for ghrelin and

its downstream effects within feeding, importantly acting on the orexigenic NPY/AgRP

neurones. For a general review on ghrelin see Kojima & Kangawa, 2005.

1.8.2 Peptide YY

Peptide YY (PYY) belongs to the pancreatic polypeptide family which includes NPY. It

is secreted postprandially from endocrine cells of the gut, in proportion to caloric intake

(Stanley et al, 2005). Two main forms of PYY are released into the circulation; PYY 1-36 and
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PYY 3-36 which bind with differential specificity to the Y- receptors. PYY 3-36 binds specifically

to the Y2 receptors (Keire et al., 2000; Batterham et al., 2002; Keire et al., 2002). Peripheral

administration of PYY 3-36 has been shown to delay gastric acid secretion and gastric

emptying and to reduce food intake and body weight (Batterham et al., 2002). Its proposed

action within the Arc involves acting on pre-synaptic Y2 receptors of NPY neurones to reduce

expression and therefore stop the tonic inhibition of POMC neurones which in turn reduces

feeding (Broberger et al., 1997; Batterham et al., 2002). However, peripheral administration of

PYY3-36 and its effects are in contrast to central administration of the peptide which stimulates

feeding in rats (Stanley et al., 1985; Hagan et al., 1998).

There are a plethora of neuropeptides and hormones implicated in the control of

energy homeostasis, several of which have been discussed so far. However, to discuss each

individual in detail would be beyond the scope of this project, and therefore for simplicity a

comprehensive list of these peptides is presented in Table 1.1.

Table 1.1 Neuropeptides and hormones implicated in the control of energy homeostasis

Orexigenic Anorexigenic

Agouti-related protein Adiponectin

Dynorphin α-Melancyte stimulating hormone

Galanin Amylin

Ghrelin Bombesin

Growth Hormone-Releasing Hormone Cholecystokinin

Melanin Concentrating Hormone Cocaine-amphetamine regulated transcript

Neuropeptide Y Cortciotrophin releasing factor

Orexin A/Hypocretin A Glucagon-like peptide 1



Chapter 1

19

Orexin B/Hypocretin B Insulin

Leptin

Neuromedin U

Oxyntomodulin

Oxytocin

Peptide YY 3-36

Pro-opiomelanocortin

Serotonin

Somatostatin

Thyrotropin releasing factor

Urocortin II

1.9 Glucose

Glucose, a monosaccharide, is a vitally important carbohydrate as it provides the

brain’s main fuel source. Its metabolism accounts for up to 50% of the total body’s glucose

utilisation (Owen et al., 1967). Glucose control is imperative as the brain becomes irreversibly

damaged even if deprived of glucose for a few minutes, and therefore the body maintains

glucose levels within a narrow range via both central and peripheral mechanisms. Blood

glucose concentrations directly control the release of the pancreatic hormone glucagon and

insulin. However, fluctuations in plasma glucose also cause the brain to initiate compensatory

responses by activating the SNS to maintain glucose homeostasis (Hoffman et al., 1999).

Thus the brain has developed the ability to mechanistically sense changes in plasma glucose

and restore homeostasis. If glucose levels fall in a healthy individual an endocrine response

occurs with increased levels of glucagon (released from α- cells of the pancreas), adrenaline,
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NA and cortisol, this release being under the control of the ANS. This hormonal increase in

combination with decreased glucose levels increases glucose production by the liver and

limits glucose utilization by the body’s tissues. Disruption of this intricate network occurs in

type 2 diabetes mellitus which commonly is a result of those who are obese. Circulating levels

of glucose are detected by both the periphery and the brain and work in synergy to regulate

homeostasis.

Signals regarding blood glucose levels are detected by specialised cells within the

mesenteric and hepatoportal veins termed enteric glucose sensors and are communicated to

the brain-stem via the vagus nerve (Adachi et al., 1984; Knauf et al., 2008). These signals

regarding blood glucose level changes are subsequently relayed to hypothalamic nuclei

(Adachi, 1981). The brain also detects circulating glucose levels directly. Within the brain the

neurones of the VMH which includes the VMN and the Arc, are well positioned to detect

circulating glucose levels due to being in close proximity to a vascularised structure and

fenestrated endothelial cells (Ganong, 2000). Neurones within this area use glucose (and

insulin and leptin) as a signalling molecule to regulate electrical excitability and consequently

neuronal firing (Anand et al., 1964; Oomura et al., 1964; Spanswick et al., 1997; Spanswick et

al., 2000). The addition of glucose to the VMH has been shown to increase the firing rate of

SNS nerves and to increase energy expenditure through the activation of brown adipose

tissue (Rothwell & Stock, 1978; Sakaguchi & Bray, 1987). Conversely ablation of this area

reduces sympathetic activity, including SNS innvervation of the pancreas, thus leading to a

decrease in insulin release and glucose utilisation.

It has been proposed that are two main groups of glucose-sensing neurones that

exist within the VMH; glucose responsive (GR) and glucose sensitive (GS). GR neurones are

those that increase their firing rate as brain glucose levels rise, also termed glucose excited

neurones (GE). Conversely, GS neurones decrease their firing rate as glucose levels rise,
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also termed glucose inhibited (GI) neurones. The physiological levels of glucose will be

discussed in detail in chapter 4. It has been shown that GR neurones sense changes in

glucose levels in a manner similar to that of a pancreatic β-cell to modulate membrane

potential i.e. use ATP- sensitive potassium channels (KATP) to sense glucose (Ashford et al.,

1990; Spanswick et al., 1997; Spanswick et al., 2000; Ashcroft, 2005). Glucose is thought to

enter the cell predominantly via the GLUT 2 or the GLUT 3 transporter within the neurones of

the pancreas and brain respectively (Pessin & Bell, 1992; Levin, 2001; Bady et al., 2006)

where it is phosphorylated by glucokinase and processed (glycolysis) resulting in an increase

in the cytosolic ATP/ADP ratio. This causes the KATP channel to close within the membrane

which raises intracellular potassium levels resulting in a membrane depolarisation and Ca2+

influx (Levin et al., 2001; Dunn-Meynell et al., 2002; Kang et al., 2004; Yang et al., 2007).

Within the pancreas this leads to an increase in the release of insulin and glucose utilisation.

Other mechanisms for how GR neurones sense glucose have been proposed which suggest

a KATP independent mechanism, involving a non-selective cationic conductance mediating a

depolarisation at high glucose levels (Fioramonti et al., 2004).

The mechanism by which GS neurones respond to changes in extracellular glucose is

less clear. Ideas suggest the activation of a hyperpolarising chloride current (Song et al., 2001;

Routh, 2002; Fioramonti et al., 2007) and a mechanism involving the reduction in the

depolarising activity of the electrogenic Na+/ K+ pump within the LH (Oomura et al., 1974).

KATP channels are octameric proteins (Shyng & Nichols, 1997) and are composed of

two distinct subunits: a pore forming subunit (Kir 6.2) for K+ (Trapp et al., 1997) and a

sulphonylurea binding site (SUR) that are arranged in a 4:4 stoichiometry. Predominately

within the hypothalamus, glucose sensing neurones sense changes in levels of glucose via a

Kir 6.2 SUR 1 mechanism (Ashford et al., 1990; Levin et al., 1996; van den Top et al., 2007).

However the expression of Kir 6.1 SUR 1 has also been reported within the VMH (Lee et al.,
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1999). Studies have shown however that Kir 6.2 deficient mice (Kir 6.2 -/-) have non-

functional KATP channels and GR neurones within the VMH. This therefore suggests that the

Kir 6.2 forms the pore of the KATP channel in hypothalamic GR neurones and is essential for

neuronal glucose sensing particularly for the stimulation of glucagon secretion and food intake

when brain glucose levels are low (Miki et al., 2001). These results are in accordance with

immunocytochemistry studies which show the VMH and the Arc display strong Kir 6.2

immunoreactivity only, again suggesting that Kir 6.2 is a critical subunit of the KATP channels

in GR neurones (Thomzig et al., 2005).

Approximately 70% of neurones in the Arc have been shown to express functional

KATP channels, including both opposing populations of neurones with the Arc; the anorexigenic

POMC/CART and orexigenic NPY/AgRP neurones (Ibrahim et al., 2003; van den Top et al.,

2007). KATP channels are also expressed by neurones that are sensitive to leptin and insulin.

High levels of insulin and leptin, and hypoglycaemia represent contrasting physiological states;

however both states inhibit Arc neurones through the opening of KATP channels. Thus, KATP

channels are expressed on functionally antagonistic populations within the Arc but how they

sense and signal changes in energy status in a functional context are unclear. It has been

suggested that the long-term anorectic effects of leptin may not be dependent on KATP, and

that KATP channels may only be involved in short-term regulation of food intake, by coupling

glucose levels to appetite (Miki et al., 2001).

Studies using 2-deoxy–glucose which produces glucoprivation show that NPY/AgRP

peptides are up regulated in states of energy deficiency (Akabayashi et al., 1993).

Furthermore studies using real-time quantitative PCR and in situ hybridization show that

peripheral administration of glucose significantly suppresses the expression of both NPY and

AgRP within the Arc (Chang et al., 2005). The role of POMC neurones in glucose sensing is

less clear. Fioramonti et al., 2007 mimicked a hyperglycaemic state within the Arc and found
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that POMC neurones were not activated, suggesting that POMC neurones are not directly

glucose sensitive and they are involved downstream in the regulation of glucose homeostasis.

On the contrary, Ibrahim found that POMC neurones are glucose responsive mediated by the

KATP channel (Ibrahim et al., 2003).

The phenomenon that there are functionally opposing populations of neurones within

the hypothalamus that respond differentially to glucose is not confined to the Arc. Within the

LH, MCH and orexin expressing neurones have been shown to be differentially regulated by

glucose. MCH neurones have been reported to be excited and increase their firing rate in

response to an increase in glucose concentration, conversely subpopulations of orexin

neurones are hyperpolarised with an increase in glucose (Burdakov et al., 2005). Functionally

this is advantageous as post-prandially (i.e. high glucose levels) MCH neurones will be

activated which promote rest and energy conservation. Conversely, in times of low glucose,

decreased excitability of MCH neurones suppresses the desire to sleep and promotes activity

which is advantageous when seeking for food (Burdakov & Alexopoulos, 2005; Burdakov et

al., 2005).

1.10 Noradrenaline

Noradrenaline (NA), a bioamine synthesised in a series of steps from tyrosine, is

released as a hormone from the adrenal medulla where it underlies the “fight or flight”

response in times of stress. It is however also a neurotransmitter within CNS where it plays a

large role in sleep, arousal, mood, appetite and autonomic outflow. Thus NA has multiple

roles within the body and the individual systems utilising NA react rapidly to environmental

changes. The receptors which recognise the chemical signals are distributed throughout both

the CNS and periphery.
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NA fibres in the brain arise from brainstem nuclei with the majority coming from NA-

containing neurones originating in the locus coeruleus (A6; Dahlstrom & Fuxe, 1964). NA-

containing fibres innervate all areas of the brain, including the hypothalamus which is

essential in controlling a variety of homeostatic responses (see Figure 1.3; Sawchenko &

Swanson, 1981). NA is believed to act upon hypothalamic alpha-adrenoceptors (α-ARs) to

stimulate food intake, by interacting closely with circulating hormones and nutrients, and

affecting metabolic processes, consequently serving a role within energy homeostasis.

Application of NA directly into the brain can either increase or decrease feeding depending on

the site of application (Leibowitz et al., 1983).

Neurones of the Arc are innervated by noradrenergic fibres originating from the NTS

(A2) and the locus coeruleus (A6; Sawchenko & Swanson, 1981). The PVN, another essential

hypothalamic nucleus implicated within feeding, is heavily innervated by noradrenergic

neurones and it is this interaction that has been most extensively studied.

Injection of NA into the hypothalamus specifically within the PVN has multiple effects.

These include changes in feeding behaviour, water intake (Leibowitz, 1978; Leibowitz &

Brown, 1980), energy metabolism (Siviy et al., 1989) and also the release of corticosterone

(CORT), vasopressin (Vp) and glucose (Benetos et al., 1986; Chafetz et al., 1986; Leibowitz

et al., 1988). The PVN, not only being a site for convergence of several neuronal pathways

concerned with feeding, also sends efferent projections to the ME, pituitary and caudal

brainstem (Swanson & Sawchenko, 1980). Thus, the effect of NA within this nucleus has a

crucial role in a number of homeostatic processes.

The injection of NA into the perifornical region of the anterior hypothalamus (most

specifically the PVN) elicits vigorous bouts of eating and drinking within satiated rats

(Leibowitz, 1978). This effect was antagonised by α- AR receptor blockers, thus suggesting

that α- ARs mediate the NA induced feeding response. The initial short period of intense
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eating is also accompanied by intense drinking; however even though the eating may

continue there is a long-term depression of drinking upon injection of NA. This has been

shown to be also mediated through α- ARs. Thus, the study showed that NA not only had an

effect on feeding but also water consumption which was dose-dependent and which effects

were reversed in the presence of α- AR antagonists (Leibowitz, 1978) This study also

concluded that β- AR in the PVN are not involved in NA induced feeding. The subtype of the

AR was later considered, and it was found that intra-PVN injection of clonidine, a selective

α2- AR agonist stimulated feeding (Leibowitz, 1988). Furthermore these effects were reversed

with pre-treatment with a selective α2- AR antagonist (Goldman et al., 1985).

α2- AR expression has been shown to peak at the onset of the nocturnal cycle within

the rat (Jhanwar-Uniyal et al., 1986; Stanley et al., 1989). It is at this time that the rats are

most active and their feeding behaviour is at its highest. This peak also coincides with the rise

in circulating CORT levels, and it has been shown that the depletion of hypothalamic NA

would also result in a loss of the circadian rhythms for CORT and ACTH (Szafarczyk et al.,

1985; Leibowitz et al., 1989). Thus NA has been shown to play an intricate role in the

hypothalamic- pituitary-adrenal (HPA) axis; stimulation of the PVN noradrenergic system

which exhibits a peak in its activity, simultaneous to the rise of CORT, acts through local CRF

neurones which ultimately stimulate pituitary release of ACTH (Leibowitz et al., 1988). The

effects of NA on CORT release is correlated with NA effects on vasopressin (Vp) release; an

antidiuretic hormone which presumably has a role in the secretion of ACTH (Leibowitz et al.,

1988).

Glucose levels decline after a period of food deprivation, which has been shown to be

correlated with the magnitude of compensatory feeding (Larue-Achagiotis & Le Magnen,

1983). Studies show that with the decline in blood glucose levels there is also a decline in the

expression of α2- AR which is reversed with a brief application of peripheral glucose or re-
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feeding (Jhanwar-Uniyal et al., 1988). Injection of NA within the PVN increases blood glucose

levels (Chafetz et al., 1986) through the ANS. The link between glucose and α2- AR

mechanisms is consistent with the findings that increases in blood glucose are prevented by

α- AR antagonists (Leibowitz, 1988; Steffens et al., 1988). This is further substantiated when

levels of CNS glucose are low; NA levels increase within the hypothalamus which

subsequently increases circulating blood glucose levels (McCaleb et al., 1979; Smythe et al.,

1984) via direct action of the ANS.

In many brain areas such as the VMH, activation of α1- ARs generally excites and

α2- AR activation inhibits neuronal firing (Kow & Pfaff, 1987). Both receptors can exist on the

same neurone but have opposing effects (Wellman et al., 1993). Thus the ratio of α2- AR to

α1- AR on a given neurone can determine its intrinsic response to NA.

NA is thought to increase feeding within the PVN by inhibiting descending satiety

signals through activation of α2- ARs. To summarise, PVN neurones are tonically active with

descending outputs to brainstem nuclei producing an overall inhibition of feeding. This tonic

activation is thought to be through the activation of the α1- AR by an endogenous α1- AR

agonist. The increase of NA at times when food is low and the increase of the α2- AR at the

onset of the dark phase suggests that the activation of the antagonistic α2- ARs inhibits the

neurone thereby inhibiting the satiety signal and increasing food intake (Levin & Planas, 1993;

Wellman et al., 1993; Levin et al., 1998).

Within the LH, NA has been shown to both directly increase and decrease the activity

of orexin-expressing neurones (Bayer et al., 2005; Li & van den Pol, 2005; Yamanaka et al.,

2006). Thus, NA again within hypothalamic nuclei has differential effects on populations of

neurones that express common transmitters (Nakamura et al., 1984).
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Leptin and insulin, two major long-term signals implicated in food intake, have also

been studied for their effects on NA signalling within the brain. Insulin has been shown to

down-regulate the expression of α2- AR. How this affects food intake is not yet known,

however, it is thought within the Arc, down-regulation of the receptor increases synaptic NA,

and has a role with NPY to alter feeding (Levin et al., 1998). Studies have shown that NPY

increases NA levels and thus, NPY may 'use' NA in facilitating its stimulatory role within

feeding (Hastings et al., 1997).

Leptin has been shown to inhibit depolarisation-induced NA release, thus leptin’s

anorectic effects may be partly though inhibiting NA fibres within the hypothalamus (Brunetti

et al., 1999).

The role of central NA and its link to the digestive tract has also been reported. The

effect of ghrelin, a potent orexigen released from the stomach, has been shown to have no

effect on the release of NA within the hypothalamus and thus does not modulate NA

stimulatory effects associated with feeding (Brunetti et al., 2002). This is contrary to a later

study which has found that ghrelin stimulates the noradrenergic pathways from the hindbrain

to the Arc (Date et al., 2006).

To date, there have been no studies on the effects of NA within the Arc and its role in

feeding. Thus, this study in part has attempted to address the issue of the effects of NA on the

electrical activity of Arc neurones.

1.10.1 Adrenergic receptors

The adrenergic receptors are part of the superfamily of G-protein coupled receptors

(GPCRs), which contain seven putative transmembrane spanning domains that bind the

endogenous agonists, NA and adrenaline (Cotecchia et al., 1998; Tanoue et al., 2002).
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Based on different responses to a variety of agonists, adrenergic receptors were initially

divided into two separate groups; α- AR and β- AR by Alquist in 1948 (Liggett & Raymond,

1993). He observed opposing effects of NA on smooth muscle cells and proposed that α ARs

were responsible for the excitatory actions and that β- ARs were responsible for inhibitory

actions. Subsequently, molecular cloning (Bylund et al., 1994) and advances in

pharmacological affinities for adrenergic agonists and antagonists (U'Prichard & Snyder, 1979)

has further classified these receptors. Presently there are nine adrenoceptors identified; three

α1- AR subtypes (α1a, α1b, α1d), three α2- AR subtypes (α2a, α2b, α2c), and finally three

β- AR subtypes (β1, β2, β3; Cotecchia et al., 1998). It was thought that there existed a fourth

α2- AR (α2d), but subsequent studies showed it to be a species variant of the α2a receptor

(Bylund et al., 1992).

α1- ARs are coupled to Gq/11- signalling pathways, which involve the activation of

phospholipase C (PLC), generation of the second messengers inositol triphosphate (IP3) and

diacylglycerol (DAG), and the mobilisation of intracellular calcium stores (Zhong & Minneman,

1999; Koshimizu et al., 2007). Of sympathetically innervated tissue, the cardiovascular system

is the most characterised with its effects and expression of the α1- AR. Stimulation of this

receptor has a major role in contraction and growth of vascular smooth muscle cells and the

regulation of basal blood pressure (Zhong & Minneman, 1999; Piascik & Perez, 2001). Little is

known of the contribution this receptor subtype makes within the CNS. It is however

abundantly found within the brain (Tanoue et al., 2002; Papay et al., 2006). The α1- AR

subtypes have also shown a differential distribution within the brain. For example, within the

Arc the α1a- ARs are the most abundant AR subtype, whereas the α1d- AR is undetectable, as

determined by in situ hybridisation studies (Day et al., 1997). Within the cerebral cortex the

activation of the α1- ARs can increase excitations mediated by glutamate (Mouradian et al.,

1991) and enhance neurotransmitter release from glutamatergic terminals (Marek &
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Aghajanian, 1999; Papay et al., 2006). Knock-out studies show the importance of these

receptors in the modulation of behaviour, attention and memory (Spreng et al., 2001; Drouin

et al., 2002).

α2- ARs are coupled to Gi/o signalling pathways, the activation of which leads to the

inhibition of adenylyl cyclase, thus resulting in decreased cAMP levels. It also is an important

regulator of neuronal function by inhibiting voltage-gated Ca2+ channels and activating GIRK

K+ channels (Rogawski & Aghajanian, 1982; Limbird, 1988; Hein, 2006). It was initially

thought that the discriminating factor between α1- AR and α2- AR were that α1- ARs were

located post-synaptically and α2- ARs were located pre-synaptically (Langer, 1974). However

this was later found to be incorrect, as α2- AR are located both pre- and post-synaptically.

Postsynaptic α2- ARs are generally inhibitory whereas presynaptic α2- AR provide negative

feedback which inhibits presynaptic release of NA (Rogawski & Aghajanian, 1982; Wellman et

al., 1993). It is the α2A- AR which is thought to be involved in the feedback regulation of NA

release (Altman et al., 1999). Non-neuronal functions of this receptor subtype include

modulation of insulin secretion from the pancreas and regulation of the cardiovascular system.

In regards to energy homeostasis, it has been shown that application of clonidine (a α2- AR

agonist) or NA, into the PVN elicits feeding. These receptors seem postsynaptic in nature,

since their sensitivity to noradrenergic stimulation is unaffected or even enhanced by drug

manipulations that destroy the presynaptic terminals or block neurotransmitter synthesis

(Goldman et al., 1985). Within the hypothalamus these receptors have been shown to be

involved in the release of growth hormone, prolactin release and cause bradycardia (Li et al.,

1996). Within the CNS, α2- ARs are also involved in the regulation of pain perception and

behaviour (Hunter et al., 1997; Hein, 2006). α2- ARs are also termed heteroreceptors, as they

have the ability to regulate other neurotransmitters, namely serotonin and dopamine, also

monoamines (Scheibner et al., 2001; Bucheler et al., 2002).



Chapter 1

30

It has been found that NA is less potent in activating β- ARs than adrenaline (Molinoff,

1984). β - ARs are classified in their responsiveness to the selective antagonist, propranolol,

which is clinically used today to treat migraines, glaucoma and most commonly hypertension

(Turner, 1984; Kostic, 1992). They are well known for their role in peripheral metabolic

functions, their role in mediating sympathetically-driven thermogenesis and their role in

cardiovascular functions (Lowell & Bachman, 2003; Hein, 2006). For summary, see Figure 1.4.

1.11 Histamine

The projections of the noradrenergic system represent only one of four aminergic

systems present within the mammalian brain. The others are the serotonergic, dopaminergic

and histaminergic systems. These systems are unique in that their projections cover the

majority of the brain and thus play a major role in modulating neuronal function (Brown et al.,

2001). Here, the histaminergic system is discussed.

The Arc receives direct histaminergic projections from the tuberomammillary nucleus

(TM). The TM comprises of approximately 2000 histamine containing neurones which reside

within the posterior hypothalamus (Haas et al., 1989; see Figure 1.5). The histaminergic TM

system is involved in arousal including hibernation (Kiyono et al., 1985), the control of energy

balance, fluid balance and cardiovascular regulation (Leibowitz, 1973; Sakata et al., 1988b;

Schwartz et al., 1991a; Wada et al., 1991).

The effect on feeding behaviour induced by histamine was first recognised by the use

of both antidepressants and antipsychotics which had side-effects in the form of weight gain

via appetite stimulation and acted directly on the histaminergic system (Kalucy, 1980). The

increase in food intake was determined to be through the antagonism of the H1 receptor (Hill &

Young, 1978) revealed by binding assays. The administration of histamine centrally has since
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been shown to reduce body-weight in both genetically obese mice and diet-induced obese

mice. This is by the alteration of energy expenditure, food intake and increase in lipolysis, with

a great reduction in visceral fat deposition most likely through the activation of the SNS

(Masaki et al., 2001a, b), thus showing the complexity of histamine’s neuronal actions.

Furthermore, obese Zucker rats have been shown to have lower histamine levels than their

lean litter mates (Sakata et al., 1991).

The H1 receptor has been implicated in histamine’s anorexigenic effects within the

control of energy homeostasis. Nuclei involved in food intake, such as the PVN and the VMH

have been shown to be rich in H1 receptors (Palacios et al., 1981) and injections of H1

antagonists into these sites has been shown to increase food intake (Ookuma et al., 1989).

H1 knock-out mice (H1 KO) show age-related obesity with increased fat deposition.

They interestingly also show an altered circadian rhythm (abnormal circadian feeding rhythms

have been linked to the onset of obesity; Murakami et al., 1995) which may contribute to the

obese phenotype, as scheduled feeding of an obese H1KO mouse attenuates an increase in

body mass (Masaki et al., 2004). Therefore, it is hypothesised that an altered circadian rhythm

in H1 receptor deficient mice affects their feeding behaviour and most probably alters their

energy expenditure resulting in development of obesity (Masaki & Yoshimatsu, 2006). Studies

also suggest that neuronal histamine modulates the feeding circadian rhythm within the

hypothalamus, with higher neuronal histamine levels in the early light period (when feeding is

low), and lower histamine levels at the early dark period (when feeding is high; Orr & Quay,

1975).

Leptin, has been suggested to have an effect on feeding behaviour through the

activation of the central histaminergic system and the H1 receptor (Morimoto et al., 1999).

Leptin has been shown to directly increase neuronal release of histamine, and thus the

histaminergic system may act as a downstream target for leptin-induced anorectic effects
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(Morimoto et al., 2000). However, it is not yet clear by which mechanism through which leptin

affects the histamine system (Morimoto et al., 2000). Studies carried out by Ishizuka and

colleagues considered the involvement of the histaminergic system and the control of

orexigenic peptides. They found that the injection of ghrelin had no effect on histamine

release, and ghrelin exerted its effects even in H1KO mice thus suggesting that ghrelin

increases food intake in a histamine-independent manner (Ishizuka et al., 2006). Furthermore

the effects of histamine on NPY have also been studied. Histamine has been shown to have

an inhibitory tone on NPY synthesis, as shown by the suppression of neuronal histamine by α-

fluoromethylhistidine (FMH); a specific and irreversible inhibitor of histidine decarboxylase

(HDC; Ookuma et al., 1990), which enhances NPY mRNA expression (Toftegaard et al.,

2003). It is suggested that the histaminergic system acts as a feedback signal downstream of

NPY, so that when feeding is high through NPY this is terminated by histamine (Ishizuka et al.,

2006). POMC neurones, which also like NPY form part of the leptin signalling pathway, do not

interact with the histaminergic system to reduce bodyweight (Yoshimatsu, 2006).

With the use of agouti yellow obese mice (Ay) which show suppression of the activity

of the MC4-R by ectopic agouti over expression, histamine H1-R signalling in regulating food

intake, energy expenditure and adiposity was shown to be through a pathway independent of

the POMC/AgRP MC4-R signalling pathway (Yoshimatsu, 2006).

Another orexigen that interacts with the histaminergic system is orexin. Orexin-

containing fibres innervate the TM (Peyron et al., 1998), and orexin receptors are present

within the TM (Eriksson et al., 2001; Marcus et al., 2001). Studies show that orexin (A)

increases histamine release (Huang et al., 2001; Ishizuka et al., 2006) which increases

wakefulness and locomotor activity which is dependent on the H1 receptor (Masaki et al.,

2004; Masaki & Yoshimatsu, 2006), but has no effect on food intake. Based on these findings

and as mentioned above both orexin and histamine are also involved in arousal (Kiyono et al.,
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1985; Hara et al., 2001; Taheri et al., 2002), and therefore it is unlikely that the activation of

the histaminergic system by orexin is involved directly in the control of feeding but plays a

larger part in wakefulness.

So far only the H1 receptor has been discussed within the role of feeding; however H2

and H3 have also been implicated. The H2 receptor is least involved within the regulation of

feeding. Unlike with the use of H1 agonists which decrease food intake (Sakata et al., 1988a),

H2 agonists have no effect (Lecklin et al., 1998) nor do H2 antagonists (Doi et al., 1994;

Lecklin & Tuomisto, 1998). This is in contrast to other reports that suggest H2 receptors are

involved in the regulation of food intake in the VMH (Magrani et al., 2004). Thus, the

involvement of the H2 receptor in energy homeostasis is unclear.

The H3 receptor is an autoreceptor that provides negative feedback to restrict

histamine synthesis and release. Thioperamide, an antagonist at the H3 receptor (which has

also been reported as an inverse agonist) has been shown to decrease both feeding and

drinking in spontaneous, fasted-induced and NPY induced-feeding due to the increase in

histamine release (Lecklin et al., 1998; Ito et al., 1999). Interesting H3 KO mice show

hyperphagia and late on-set obesity, similar to the phenotype of H1 KO mice (Takahashi et al.,

2002; Tokita et al., 2006). However, this is not what one would expect. The knockout of this

receptor would increase histamine release that ultimately decreases food intake and increase

energy expenditure. One theory for this paradoxical theory is that the lack of H3 receptor may

alter neural circuitry, or that the increase in histamine may desensitise/ down regulate both H1

and H2 receptors and thus block histamine-mediated effects (Takahashi et al., 2002; Tokita et

al., 2006).
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1.11.1 Signalling of the histamine receptors

Histamine exerts its effect through four GPCRs, designated H1, H2, H3, and H4

(Teuscher et al., 2007). Only three of the four identified histamine receptors (H1-H3) are

expressed in the CNS, whereas the fourth (H4) receptor is detected predominately within the

periphery, for example in bone marrow and leukocytes (Liu et al., 2001; Shin et al., 2002).

H1 receptor

The H1 receptor is widely distributed throughout the brain with highest receptor

concentrations in the limbic system, including the VMN, and areas involved in arousal such as

the thalamus and cortex (Palacios et al., 1981). Histamine binds to the H1 receptor and

activates Gq/11 and PLC which subsequently leads to the formation of two second messengers,

DAG and IP3. IP3 releases Ca2+ from internal stores that can go on to activate a number of

other processes. These include the opening of a cation channel, the activation of a Na+- Ca2+

exchanger, and a block of a leak potassium conductance, all of which cause a strong

depolarisation (Brown et al., 2001; Haas & Panula, 2003).

H2 receptor

The H2 receptor, like the H1 receptor has been shown to have high expression in the

spinal cord and parts of the brain. However, unlike the H1 receptor that has high expression in

the hypothalamus, the H2 receptor here is found in low densities (Brown et al., 2001). H2

receptors are coupled to GS and adenylyl cyclase and generally have excitatory actions on

neuronal membranes thus having similar physiological functions within the brain as H1 (Haas
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& Panula, 2003; Yanai & Tashiro, 2007). Histamine blocks a Ca2+ dependant K+ conductance

which causes a long lasting after-hyperpolarisation and a subsequent increase in firing.

H3 receptor

H3 receptors are found only moderately within the hypothalamus with high densities

found in the nucleus accumbens, olfactory and the substantia nigra. As previously mentioned

H3 receptors are auto-receptors and therefore they regulate the release and synthesis of

histamine (Arrang et al., 1983). They have also been termed heteroreceptors and have been

shown to inhibit the release of other transmitters such as GABA, glutamate, noradrenaline and

serotonin amongst others (Schlicker et al., 1988; Schlicker et al., 1989; Brown & Reymann,

1996; Garcia et al., 1997; Brown et al., 2001). The H3 receptor is coupled to Gi/ Go that inhibits

adenyl cyclase, and thus the production of cAMP is depressed. The activation of H3 receptors

on TM neurones leads to the inhibition of high-voltage activated calcium channels (HVACCs)

which within the presynaptic terminal results in the inhibition of transmitter release (Takeshita

et al., 1998; Brown et al., 2001).

Table 1.2 Summary of the characteristics of histamine receptors

Receptor Location Responses (Cellular and membrane
responses)

Histamine H1  Smooth muscle
 Endothelial cells
 Adrenal medulla
 Heart
 CNS

 Muscle contraction
 Stimulation of Nitric Oxide
 Endothelial cell contraction
 Stimulation of hormone release
 Depolarisation and increase in firing via

1) Calcium cation channel
2) Activation of a Na+- Ca2+

exchanger
3) A block of a leak K+ conductance

 IP3 hydrolysis leading to calcium
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mobilisation
 Phosphorylation of the glutamate NMDA

receptor by PKC-thus weaker Mg2+

block

Histamine H2  Gastric parietal
cells

 Vascular
smooth muscle

 Suppressor T-
cells

 Neutrophils
 CNS
 Heart

 Stimulation of gastric acid secretion
 Smooth muscle relaxation
 Block of Ca2+ dependent K+ conductance
 Block of slow AHP and accommodation of

firing
 cAMP dependent shift of activation

threshold of Ih
 Inhibition of lymphocyte function

Histamine H3  CNS
 Peripheral

nerves

 Inhibition of neurotransmitter release
 Inhibition of firing of TM neurones
 Increase in smooth muscle voltage-

dependent Ca2+ current

(Adapted from Hill et al., 1997; Brown et al., 2001)

1.12 Obesity

Disruption within the tightly controlled regulation of energy homeostasis can result in

a number of medical conditions, of which obesity is the most common. Obesity is fast

becoming a major health and economic burden in both developing and developed societies.

The increases in availability of high caloric food in combination with a decline in daily physical

activity are major factors leading to increased prevalence. The world health organisation

(WHO) estimates that by 2015 approximately 2.3 billion adults worldwide will be overweight

and more than 700 million will be obese. Generally people are considered to be obese if they

have a body mass index (BMI; weight (kg)/ height (m2)) that is greater than 30 kgm2. Obesity

occurs when there is an imbalance between calories consumed and exhausted and when

there is a bias towards positive energy balance, thus leading to excess body fat. Of great
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concern is the pathology related to obesity which can include the development of type 2

diabetes mellitus, cardiovascular disease, musculoskeletal disorders and the development of

certain forms of cancers. The risks of the above health consequences as result of obesity

increase as the BMI increases. The financial, political and social pressures of obesity are

evident in today’s society and thus it is imperative that a pharmaceutical intervention is found.

Currently, the most effective treatment for the obese, when a well balanced diet,

exercise and drug treatments are all options that have been exhausted, is bariatric surgery.

This involves the modification of the GT to reduce the uptake and absorption of nutrients and

increase satiety levels. However, this procedure is only carried out in extreme cases. Thus,

drug treatment is often important within those individuals where weight loss regimes are short-

lived.

Anti-obesity drugs currently used today include, sibutramine® and orlistat® (Rubio et

al., 2007) and until very recently, rimonabant®, which was recently withdrawn from the market

due to adverse side effects. The aminergic systems are often attractive drug targets for the

treatment of obesity. For example, sibutramine is a noradrenaline and serotonin reuptake

inhibitor which leads to enhanced satiety and decreased food intake (Jackson et al., 1997).

The H3 receptor is also attractive as a CNS drug target, as it has limited expression in the

periphery, it acts as an autoreceptor modulating its own release, and also is a

neurotransmitter which has a role within energy homeostasis (Esbenshade et al., 2006).

To be able to understand and delineate key pathways and ionic mechanisms that are

involved within the control of energy homeostasis within systems such as the central

aminergic system will help us develop an effective pharmacological intervention for obesity.
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1.13 Project aims

The aim of this study was to investigate the effects of noradrenaline, histamine and

differential concentrations of glucose on the electrophysiological properties, function and

operation of hypothalamic Arc neurones.

Accordingly, whole-cell patch-clamp recording techniques, biocytin staining and

immunohistochemistry were employed to record the electrical activity and record

morphological features, respectively, of neurones located within the Arc. Specific aims

included:

1. The identification of neuronal subpopulations within the Arc based on the expression

of subthreshold active conductances and morphological properties that identify

functionally distinct neuronal populations.

2. To describe the effects of differing concentrations of external glucose on the active

membrane conductances and functional operation of Arc neurones (mimicking either

a hyperglycaemic state or euglycemic state).

3. To investigate the effects of noradrenaline on the excitability of orexigenic and

anorexigenic Arc neurones and establish the receptors involved.

4. To investigate the effects of histamine on the excitability of Arc neurones and

determine the receptors involved.
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Figure 1.1 The central control of energy homeostasis

A: Leptin released from adipose tissue, insulin released from the pancreas, glucose from
the liver, and peptides such as ghrelin and PYY released from the gastrointestinal
tract (GT) regulate energy intake through the modulation of meal size. The NTS
receives peripheral vagal and sympathetic afferent inputs related to energy balance,
which integrate with descending hypothalamic inputs. Within the arcuate nucleus
(Arc), peripheral hormones differentially activate the anabolic or catabolic pathway;
neuropeptide Y (NPY) or pro-opiomelanocortin (POMC) neurones. These neurones
projects to second order neurones in the paraventricular nucleus (PVN) and the
lateral hypothalamus area (LHA), where they synapse with neurones that project to
the brainstem. The hypothalamus and brainstem contain reciprocal connections to
produce a coordinated response to bring about changes in feeding and energy
homeostasis
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Figure 1.2 Connective reciprocity between the Arc and other hypothalamic areas
involved in the control of energy homeostasis

A: Schematic drawing of the hypothalamus showing the location of the nuclei that are
involved in energy homeostasis. These include the arcuate nucleus (ARC) situated at
the base of the brain, the lateral hypothalamus (LH), ventromedial nucleus (VMN),
paraventricular nucleus (PVN), and the dorsomedial nucleus (DMH). There are
reciprocal connections between many of the nuclei that enable them to bring about a
coordinated response to energy homeostasis.
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Figure 1.3 The Noradrenergic system in the rat brain

A: A sagittal schematic of the noradrenaline system in the rat brain. Noradrenaline
containing neurones present within brainstem nuclei project to all parts of the brain
(blue arrow) and to the hypothalamic Arc (red arrow).

(Adapted from Guyton & Hall, 2006)



Chapter 1

44



Chapter 1

45

Figure 1.4 Signal transduction pathways of the adrenoceptors (ARs)

A: The AR family can be divided in to three main classes the α1, α2, and β1- AR. These
classes can be further subdivided. The α1- ARs signal through the Gq/11 pathway to
increase intracellular calcium. The α2- ARs signal through the Gi pathway to inhibit
adenyly cyclase. The β1- ARs signal though the Gs pathway to stimulate adenyly
cyclase. Thus each AR acts in a different G- protein to activate different second
messenger pathways.

(Adapted from Zhong & Minneman, 1999; Hein, 2006)
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Figure 1.5 The histaminergic system in the rat brain

A: A sagittal schematic of the histaminergic system in the rat brain. Histamine containing
neurones present within the TM project to all parts of the brain (red arrows) including
to the hypothalamic Arc (blue arrow).

(Adapted from Wada et al., 1991)
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Chapter 2

Experimental Procedures
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2.1 Whole-cell patch-clamp: The Arcuate Nucleus

2.1.1 Slice Preparation

Hypothalamic slice preparations containing the arcuate nucleus (Arc) were obtained

from male Wistar rats older than 5 weeks. Animals were housed under a 12/12 hour light/dark

cycle and food and water were provided ad libitum. Animals were decapitated following

cervical dislocation or were given a lethal dose of anaesthetic (isoflurane) in line with national

guidelines. Following decapitation the brain was immediately removed from the cranial cavity

and placed in freshly prepared oxygenated (95% O2, 5% CO2) ice cold (2°C - 4°C) artificial

cerebrospinal fluid (aCSF). The composition of aCSF is shown in table 2.1. For experiments

where 2 mM glucose-containing aCSF was used rather than 10 mM glucose-containing aCSF,

glucose was replaced in equimolar quantities by D-mannitol to maintain osmolarity. The brain

was trimmed to a hypothalamic block which was subsequently glued onto the tissue plate of a

vibratome (Intracel series 1000, Royston, UK or Leica VT1000S, Leica Microsystems

Nussloch GmbH, Nussloch, Germany) where transverse slices of 300 m-400 m thickness

were cut. Within the slices, the Arc was defined as the area directly above the median

eminance (ME) on both sides and directly adjacent to the 3rd ventricle. Slices were maintained

for at least one hour at room temperature in oxygenated aCSF prior to whole cell recording.
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2.1.2 Solutions

Experiments required the daily preparation of aCSF, of the following composition:

Table 2.1: aCSF composition

10mM glucose aCSF (mM) 2mM glucose aCSF (mM)

NaCL 127 127

KCL 1.9 1.9

KH2PO4 1.2 1.2

NaHCO3 26.0 26.0

Glucose 10 2

CaCl2 2.4 2.4

MgCl2 1.3 1.3

D-Mannitol 0 8

The osmolarity of the aCSF was 300-315 mOsm.kg-1 and pH 7.3- 7.4.

Pipette solution was prepared on the day of each experiment as a 1 ml volume, from stock

solutions. Solutions were prepared in advance as 10x stocks and kept at 4 °C with the

exception of biocytin and Na2-ATP which were stored at -20 °C.
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Table 2.2: Standard recording pipette Solution

(mM)

K-gluconate 140

Hepes 10

EGTA 1

KCL 10

Na2ATP 2

Biocytin 5

Alexa 633 0.1

The pH of the resulting solution was adjusted with KOH to 7.4. The osmolarity of the

pipette solution was within 5-10 mOsm kg-1 of the aSCF and was adjusted for hypo-osmolarity

with sucrose.

2.2 Drugs

The following drugs were used in the present study: tetrodotoxin (TTX) obtained from

Alomone Labs, Jerusalem, Israel. Bicuculline methochloride (BMC), 6-nitro-7-

sulphamoybenzo(f)- quinoxaline-2,3-dione (NBQX), prazosin hydrochloride, isoproterenol, L-

norepinephrine bitartate salt (monohydrate), R-phenylephrine hydrochloride, histamine-

trifluromethyl-toluidine (HTMT), dimaprit dihydrochloride and imetit dihydrobromide from

Tocris Cookson Ltd, UK. Idazoxan HCl, mepyramine maleate, RS100329 hydrochloride and

histamine were from Sigma Aldrich, UK. UK-14,304 was from Research Biochemical
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International (RBI), Ghrelin (rat) was obtained from Bachem, UK and 02484100 was a kind

donation from Eli-Lilly, UK.

Those drugs (NBQX, UK-14, 304 and prazosin) that were insoluble in water were

dissolved in 100% dimethylsulphoxide (DMSO) and then further diluted to the final

concentration in aCSF on the day of experimentation. Final DMSO concentrations did not

exceed 0.1% and appropriate vehicle controls were performed.

All drugs were bath applied to the slice by a gravity feed perfusion system from a

series of 60 ml syringes with manually operable three-way taps connected with the main

aCSF reservoir.

2.3 Recording procedure and data analysis

To conduct electrophysiological recordings, hypothalamic slices containing the Arc

were individually transferred to the recording chamber and secured between two nylon grids.

The system was constantly superfused through a gravity-fed system at a flow rate of 5-10

ml.minˉ1 with oxygenated aCSF. Recording electrodes were pulled using a horizontal puller

(P-97, Sutter Instrument Co, Novato, CA, USA) from borosilicate filamented thin-walled glass

capillaries (GC150TF-10, Harvard apparatus LTD, Edenbridge, Kent, UK) and had

resistances between 4-7 MΩ when filled with intracellular recording solution.

The ‘blind’ patch-clamp recording method was employed for whole-cell recordings

(both current-clamp and voltage–clamp) using an Axopatch-1D amplifier (Axon Instruments,

Foster City, CA, USA), in which recordings were obtained with series resistance in the range

of 8-20 MΩ. Series resistance compensation was carried out as appropriate. A digital

oscilloscope (Gould DS01602) was used to display the current traces online which were
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sampled at 5 kHZ and directly stored on Digital Audio Tapes (DAT, Biologic DTR-1205,

Intracel, Royston, UK).

In cases where current traces were directly recorded and stored on the computer they

were sampled at 10 kHz. For later offline analysis, pClamp 9 software (Axon Instruments) was

used where the signal was digitised at 20 kHz. Subsequently, current-voltage relationships

were produced with Clampex 9, sampled at 20 kHz. Data were filtered at 1-5 kHz for voltage-

clamp studies.

Clampfit 9 (Axon Instruments) was used off-line to establish the resting membrane

potential of silent and slowly active cells. In these cells there was a sufficient period of

quiescence where the accurate measurement of the neuronal resting membrane potential

could be obtained without interference of the activation of current associated with action

potential firing. However, for a minority of cells that were too active this was impossible and

therefore the low-pass readout of the recording amplifier was used (Axopatch 1D, Axon

Instruments). Input resistances were calculated at steady-state membrane potential using the

smallest negative current injection in the current-voltage protocol (step: amplitude 5-20 pA,

duration 1200 ms, 0.2 Hz), and was calculated using Ohm’s law, V=I R.

Membrane time-constants (tau) were calculated by performing a bi-exponential fit to

the first membrane voltage response to a negative current step. Care was taken to perform

the fits on steps in the linear portion of the current-voltage relationship.

2.4 Biocytin staining

Visualisation of whole-cell patched neurones filled with intracellular solution

containing 5 mM biocytin, required the hypothalamic slices to be fixed following recording for

1-3 hours in 4% paraformaldehyde (pH 7.4) in phosphate buffered saline (PBS). The
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composition of PBS is shown in table 2.3. Slices were then washed thoroughly to remove all

traces of the fixative in 0.05 Tris buffer with 1% triton (Tris-Triton) and stored in the buffer for

up to 2 weeks or until the day of processing. To analyse slices, they were first placed in a

solution comprised of 3 % H2O2, 10% methanol in Tris for 30 minutes. Slices were then

washed and rehydrated in Tris-Triton buffer. Consequently, the VECTASTAIN® ELITE® Avidin

and Biotinylated horseradish-peroxide macromolecular complex (ABC) system was used in

accordance with the manufacture’s guidelines (Vector Laboratories Ltd., Peterborough,

England).Staining was completed using 3,3-diaminobenzidine (DAB) and Nickel as a

chromogen/ peroxide substrate that gave a black appearance to the stained neurones,

according to the manufactures instructions. The slices were then dehydrated in progressive

ethanol concentrations (10, 30, 50, 70, 100%) prior to clearing in methyl salicylate for at least

2 hours (majority of times slices were left overnight) in glassware before visualization of

neurones. Visualisation was achieved under a microscope connected to a Zeiss AxioCam

MRc camera (Zeiss Axioskop, Carl Zeiss Ltd., Welwyn Garden City, UK) which was attached

to a computer running Axiovision 4.1 imaging software (Carl Zeiss Vision). Images were taken

of stained neurones with different magnification powers. Using the water 40x lens

photographs were taken in different focal planes and subsequently the neurones were

reconstructed using CorelDraw 11 and Corel Photo Paint 11 software to reveal the full

dendritic tree.

Table 2.3: Standard composition of Phosphate buffered saline

(mM)

NaCL 137

KCl 2.7

Na2HPO4 8.1

KH2PO4 1.5
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2.5 Double immunofluorescence staining for CART and Alexa 633

Recordings were obtained utilising an intracellular solution containing the fluorescent

dye Alexa 633 hydrazide (100 μM; Invitrogen LTD, Paisley, UK). Post-recording, slices were

fixed overnight in 0.1 M PBS containing 4% paraformaldehyde (pH 7.4) and were

consequently rinsed thoroughly in Tris-buffered saline containing 1% Triton X-100 (TBS-T).

Subsequently, slices were incubated in TBS-T and 4% normal goat serum (NGS; Stratech

Scientific Ltd. Suffolk, UK) for 1 h under agitation. Slices were incubated overnight at 4 °C in

rabbit anti-CART (55-102, Rat) serum, the primary antibody (Phoenix Pharmaceuticals,

1:1000 in TBS-T) in the presence of 2% NGS and rinsed prior to incubation in goat anti-rabbit

antibody conjugated to a fluorophore Cy2 (absorption peak 492mm, emission peak 510nm),

the secondary antibody (Jackson ImmunoResearch Laboratories 1:200). Finally, slices were

washed in TBS before being mounted and covered with Prolong® Antifade (Molecular

Probes). The sections were examined using a confocal laser scanning microscope (Leica SP2

linked to a Leica DM RE7 upright microscope).

The current antibodies have been previously been used, see Dun et al, 2000; van den

Top et al, 2007. The appropriate controls were carried out, omitting both primary and then

secondary antibodies. Lasers were switched off on each channel to exclude the possibility of

‘bleed’ through.

2.6 Statistical Analysis

Statistical analysis was performed using Excel 2003 (Microsoft) and Instat (Graphpad

Software Inc., San Diego, CA, USA) with all values being expressed as a mean  SEM.

Numbers of observations are stated as n values .Statistical significance was determined using
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either student’s two-tailed t-tests, paired or unpaired as appropriate or one-way ANOVA’s.

The post-hoc test performed was the Dunn test followed by the Friedman test which is a non-

parametrical statistical test.
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Chapter 3

The electrophysiological and
morphological properties of rat
hypothalamic arcuate nucleus

neurones in vitro
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3.1 Introduction

The hypothalamic arcuate nucleus (Arc) is an essential nucleus implicated in

forebrain pathways which regulate a variety of homeostatic circuits and neuroendocrine

functions (Beck et al., 2001; Bouret et al., 2004). These include the regulation of energy

metabolism (Williams et al., 2000; Cone et al., 2001; Williams et al., 2001), reproduction

(Gottsch et al., 2004) and the body’s adaptation to stress (Bell et al., 2000) amongst other

functions.

Neurones of the Arc are innervated by a number of afferent inputs from multiple

hypothalamic nuclei, including the suprachiasmatic nucleus (SCN), paraventricular nucleus

(PVN), lateral hypothalamic area (LHA) and dorsomedial nucleus (DMN; Chronwall, 1985).

Some of the neuropeptides and neurotransmitters contained in the nerve terminals innervating

the Arc include orexin, serotonin, -aminobutyric acid (GABA), glutamate and noradrenaline

(NA; Sawchenko & Swanson, 1981; Chronwall, 1985; Elias et al., 1998; Hentges et al., 2004;

Horvath et al., 2004). The efferent targets are equally as diverse and include outputs to the

median eminance (ME), PVN, nucleus of the tractus solitarius (NTS), and the LHA (Chronwall,

1985; Baker & Herkenham, 1995). Furthermore, neuropeptidergic expression within the Arc

reveals an extremely diverse chemical phenotype. Neuropeptides include neuropeptide Y

(NPY), pre-pro-opiomelanocortin (POMC), agouti-related peptide (AgRP), cocaine and

amphetamine regulated transcript (CART), urocortin, galanin and ghrelin, amongst others

(Chronwall, 1985; Melander et al., 1986; Koylu et al., 1997; Reyes et al., 2001; Lu et al., 2002).

The Arc, being situated directly above the ME, lies in close proximity to a

compromised blood brain barrier (BBB) and is therefore accessible to circulating peripheral

signals (Broadwell et al., 1983; Ganong, 2000) thus forming a site for convergence of both

central and peripheral signals (Cone et al., 2001). However, despite this knowledge of the
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functional organisation of the Arc, it is yet to be elucidated how the neuronal network at a

cellular level within the Arc functions to detect, integrate and generate appropriate output and

behavioural change to counteract perturbations in energy status, both in the short and long

term.

A study of Arc neurones and their biophysical mechanisms that ultimately control electrical

excitability and neurotransmitter/neuropeptide release is yet to be undertaken. Active and

passive membrane properties of a neurone shape its function, integration and computational

capability. Passive membrane properties of a neurone can be useful in indicating the size of a

neurone by studying its membrane time-constant (tau). Voltage-dependent conductances can

contribute to non-linearity in the current-voltage relation of neurones that strongly modify their

responsiveness with important functional consequences. It has been suggested that

subthreshold currents (i.e.currents with activation thresholds below that of the voltage-gated

Na+ channel) shape electrical activity, that is changes in spontaneous firing and the

membrane potential of individual neurones (Gulledge et al., 2005). Such a subthreshold active

conductance that contributes to the neuronal output is the hyperpolarisation-activated cation

conductance (Ih). This current has been suggested to be involved in establishing the resting

membrane potential of hypothalamic neurones (Akasu et al., 1993). It has also been shown to

act as a pacemaker potential to time action potential firing (Pape & McCormick, 1989) and

hence ultimately contribute to the neurone’s output. Evidently, examining and understanding

the expression of active (ionic) conductances expressed by Arc neurones would be a critical

step towards understanding the functional operation of its circuits.

Investigating the morphology of Arc neurones gives an indication of soma location,

size and dendritic number and length. Shapes and sizes of dendrites of different neurones

are extremely diverse (Ramon-Moliner, 1967). Arc neurones have been shown to have a

simple dendritic tree (Bodoky & Rethelyi, 1977; van den Pol & Cassidy, 1982). Dendritic
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arbores give an indication of the neurones receptive field and projection targets and ultimately

detect circulating factors and hence form the neurone’s inputs.

Examining both subthreshold active conductances and morphological features of Arc

neurones, this study has attempted to develop a functional classification of hypothalamic Arc

neurones which will ultimately be used as a basis for further studies exploring the functionality

of these neurones.

Several investigations (Tasker & Dudek, 1991; Armstrong, 1995; Pennartz et al.,

1998; Stern, 2001) have used electrophysiological recording techniques in an attempt to

characterise and hence classify neuronal populations in distinct and complex hypothalamic

nuclei including the SCN, PVN and the supraoptic nucleus (SON). In combination with

electrophysiology they have also studied the morphology of the neurones and their dendritic

configuration (Armstrong, 1995; Pennartz et al., 1998; Stern, 2001) in order to provide a more

comprehensive classification of the respective nuclei However, these classifications have

described a very limited number of neuronal populations, the functional significance of which

is unclear. One would assume that with the diversity of expression of neuropeptides and the

heterogeneity of inputs and outputs within the Arc that this could be reflected in diverse

electrophysiological characteristics. Thus, does neuropeptidergic heterogeneity imply

electrophysiological and/or morphological heterogeneity?

Burdakov has previously attempted to electrophysiologically classify the neurones of

the Arc within the mouse and described 3 distinct neuronal subtypes based solely on

electrophysiology (Burdakov & Ashcroft, 2002). Fioramonti et al., (2004), observed five

different electrophysiological cell types within the mouse and again did not correlate this with

morphological phenotypes.

This present study established the main subthreshold active conductances expressed

by Arc neurones and used these as criteria to group neurones. Electrophysiology is an
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important tool which will be used as a parameter to classify the heterogeneity of Arc neurones

based on their expression of subthreshold active conductances. The membrane

conductances that ultimately determine the pattern and level of activity in rat Arc neurons

have not yet been described. The release of neuropeptides from the Arc could be dependent

upon the electrical activity of these neurones as described for the release of vasopressin (Vp)

from hypothalamic magnocellular neurones (Dutton & Dyball, 1979). Arc neurones have also

been previously characterised according to their morphological appearances (Bodoky &

Rethelyi, 1977; van den Pol & Cassidy, 1982) and studies have analysed neurones based

upon their location and dendritic branching.

Heterogeneity of neuropeptidergic expression, inputs and outputs to and from the Arc

is to be expected. However, to-date, no study has been undertaken at the level of the Arc

where both electrophysiological and corresponding morphological properties have been

characterised and attempts made to correlate these fundamental properties in creating a

functional classification of rat hypothalamic Arc neurones. This project set out to address this

issue. This characterisation of Arc neurones builds on previous work carried out by van den

Top (2002).
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3.2 Results

3.2.1 General electrophysiological membrane properties

In the present study the electrophysiological properties of 254 Arc neurones were

obtained that were subsequently studied for their morphology with the use of biocytin labelling.

The nucleus of each individual neurone resided within the Arc which was confirmed by

morphological analysis. Figure 3.1Ai shows a schematic representation of the location of all

Arc neurones recorded. Evaluation of general properties of the Arc neurones included

analysing action potential spike threshold, amplitude and duration. How these properties were

calculated is described in Figure 3.1Bi. A summary of the basic membrane properties of all

254 neurones recorded are presented in Table 3.1. The corresponding frequency distribution

histograms are represented in Figure 3.2.

The mean resting membrane potential and input resistance were -46.7 ± 0.4 mV

(range -36 to -66 mV) and 1669 ± 52 MΩ (range 415 to 4667 MΩ) respectively (n=254). The

membrane time constant (tau) was calculated to be -48.5 ± 1.8 ms (range 7.3 to 142 ms). The

tau value was obtained by carrying out bi-exponential fits to the membrane voltage charging

curves induced by a hyperpolarising rectangular current step, with the use of Clampfit 9 (Axon

instruments). At first sight, the frequency histogram summarising the distribution of the

different time-constants skews to the right showing a large tail which may represent different

populations thus Arc neurones may not be homogeneous in their morphological properties.

The mean absolute action potential threshold and spike amplitude amounted to -29.9 ± 0.3

mV (range -17 to -46 mV) and 90.1 ± 0.9 mV (range 54 to 119 mV) respectively with an

average spike duration at threshold of 3.2 ± 0.0 ms (range 1.6 to 7 ms).
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Table 3.1: Membrane properties of Arc neurones: A Table summarising the general

electrophysiological membrane properties of the recorded neurones used within this study

Table 3.1 Passive and active membrane properties of Arcuate nucleus neurones

Parameter Mean ± SEM Max Min

Resting membrane potential (mV) -46.7±0.4 -36 -66

Input resistance (MΩ) 1669±52 4667 415

Membrane time constant (ms) 48.5±1.8 142 7.3

Action potential spike threshold * -29.9 ± 0.3 -17 -46

Action potential spike amplitude (mV) * 90.1 ± 0.9 119 54

Action potential spike duration (ms) * 3.2 ± 0.0 7 1.6

n= 254 ; * n=243

3.2.2 Subthreshold Active conductances expressed by Arc neurones

This study focused in detail on the expression of subthreshold active conductances to

characterise and thus classify Arc neurones. In order to explore the active conductances

expressed by Arc neurones, current-voltage relationships (I/V) were carried out on each

individual neurone. This was shown as superimposed traces of membrane responses to

hyperpolarising and depolarising current injections of constant increment. It became apparent

that Arc neurones expressed a range of active conductances, some expressing more than

one. In the absence of any subthreshold active conductance, the injection of hyperpolarising

current injection pulses induced membrane potential responses directly proportional to the

amount of current injected, thus showing a linear relationship. The identification,

characterisation and analysis of the active conductances of Arc neurones are described in

Figure 3.3.
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3.2.2.1 Ian - Anomalous inward rectification

118/254 (46%) of Arc neurones exhibited a decrease in membrane responses (Figure

3.3Ai) compared to those that expressed no active conductance and showed a linear

relationship. The decrease in input resistance at more negative membrane potentials was

shown by a decrease in the slope of the plot of the I/V relationship (Figure 3.4Aii) and was

shown to be instantaneous and non-inactivating. This active conductance has been described

previously in other neurones of the CNS (Constanti & Galvan, 1983; Tasker & Dudek, 1991)

and is called an anomalous inward rectification. These cells had a mean resting membrane

potential and input resistance of -46.6 ± 0.5 mV and 1827 ± 115 MΩ, respectively. At a mean

membrane potential of -99.4 ± 0.6 mV these cells displayed a reduction in input resistance of

32.3 ± 1.6 % relative to the input resistance near the mean resting membrane potential of -

46.6 ± 0.5 mV. The threshold for activation as estimated from current-voltage relationship

amounted to -84.4 ± 0.7 mV (range -63.5 to -97.5 mV).

3.2.2.2 Ih - Hyperpolarisation activated inward current

101/ 254 (40%) of Arc neurones displayed a voltage- and time-dependent inward

rectification, which presented as a depolarising ‘sag’ of the membrane potential response

when injected with negative current (figure 3.3Aii). This ‘sag’ becomes more prominent at

more negative potentials. This characteristic ‘sag’ of the inward rectification resembles the

previously described hyperpolarisation-activated non-selective cation channel or H–current

(Halliwell & Adams, 1982; Akasu et al., 1993; Pape, 1996). These cells had a mean

membrane potential and input resistance of -47.7 ± 0.7 mV and 1746 ± 121 MΩ, respectively.

To quantify the activation of Ih, the difference between instantaneous and steady state

membrane potential during the injection of a rectangular wave negative current step was used

(Figure 3.3Aii). At a mean membrane potential of -101.7 ± 1.4 mV the amplitude of the
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hyperpolarising sag amounted to 4.9 ± 0.4 mV resulting in a steady-state decrease in input

resistance of 11.3 ± 0.7 %. The mean threshold for activation, calculated by averaging the

membrane potential of the I/V plot in which the rectification was first apparent, was -69.6 ± 1.1

mV (range -52.0 to 99.9 mV, Figure 3.7Aii).

3.2.2.3 Ia- A-like transient outward rectifier

16/254 (6.3%) of cells displayed a conductance characterised by a delayed return to

the resting membrane potential upon termination of a negative current injection (Figure 3.3Aiii).

This conductance resembled the A-like transient outward rectifier noted in other neurones and

has been previously reported within the Arc (Connor & Stevens, 1971; Miyazaki et al., 1996;

van den Top et al., 2004). The magnitude of the membrane hyperpolarisation induced by

current injections determined the amplitude of the conductance with the amplitude increasing

at more negative membrane potentials. These cells had a mean membrane potential and

input resistance of -48.4 ± 1.1 mV and 1237 ± 108 MΩ, respectively. The average inactivation

time was 1106 ± 137 ms, measured from the termination of the negative current injection until

the return of the membrane potential to baseline/control levels. The amplitude of the

conductance was 5.8 ± 0.7 mV calculated at half-decay time.

3.2.2.4 T-type-like calcium conductance

180/254 (71%) of neurones exhibited a rebound depolarisation on termination of

negative current injection (Figure 3.3Aiiii). This rebound potential is similar to that described

before in the CNS mediated by T-type calcium channels (Llinas & Yarom, 1981). In order to

quantify this conductance the amplitude of the rebound depolarisation was measured. This

was carried out by calculating the difference in membrane potentials at the peak of the

rebound depolarisation and at rest. In some neurones the rebound spiking lasted the duration
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of the T-type activation induced depolarisation and were excluded from this study. From a

mean resting membrane potential of -49.2 ± 0.6 mV (n=130), the amplitude of the rebound

depolarisations amounted to 10.9 ± 0.4 mV (n=130). These cells had a mean membrane

potential and input resistance of -46.4 ± 0.5 mV and 1782 ± 82 MΩ, respectively.

3.2.3 Eight electrophysiological distinct neuronal clusters

The above described active conductances were used as parameters to separate and

distinguish between potentially different functional neuronal populations. These parameters

led to the identification of 8 distinct electrophysiological groups, expressing none or a

combination of, one to three, active conductances. The 8 electrophysiologically defined

populations were termed clusters (Pennartz et al., 1998). This term is often used to define a

group that possess the same or similar features gathered or occurring closely together. An

overview of the active conductances expressed by each defined neuronal cluster is shown in

Table 3.2.

3.2.3.1 Cluster 1

Cluster 1 neurones were identified by the expression of Ian and the absence of any

other active conductances used to classify neurones within the present study, resulting in a

non-linear I/V relationship (n=23; Figure 3.4). The mean membrane potential and input

resistance of the cluster 1 neurones was -47.8 ± 1.4 mV (range -39 to -64 mV) and 1802 ±

201 MΩ (range 556 to 4664 MΩ) respectively. Distribution histograms summarising the

passive membrane properties for cluster 1 is shown in Figure 3.4Bi-iii. The tau amounted to

54.4 ± 4.5 ms (range 11.9 to 82.4). All these values are expressed in Figure 3.12 for cluster 1

and all subsequent clusters for clarity and comparison. The membrane potential at which an

action potential was generated was termed the absolute spike threshold (Figure 3.1 Bi). In
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cluster 1 neurones this was on average -31.3 ± 1.2 mV (n=23). The mean amplitude and

duration of the action potential was 94.3 ± 2.4 mV and 2.9 ± 0.2 ms respectively (n=23). The

Ian accounted for a 29.6 ± 3.5 % reduction in input resistance at a membrane potential of -

100.2±1.1 mV relative to the input resistance calculated at rest. The threshold for activation

as estimated from current-voltage relationships amounted to -86.0 ± 1.1 mV (range -76.0 to -

97.5, Figure 3.4Aii).

3.2.3.2 Cluster 2

Cluster 2 neurones were identified as expressing a visible Ian and Ia – like conductance.

(n=16; Figure 3.5). This subgroup of neurones has been previously described as Arc

pacemaker neurones. They either spontaneously or in the presence of the orexigens

orexin/ghrelin show pacemaker activity and are inhibited by leptin, they have been identified

as NPY/AgRP neurones (van den Top et al., 2004). The expression of the active conductance

Ian resulted in a nonlinear I/V relationship (n=16, Figure 3.5Ai-ii). The mean membrane

potential and input resistance of the cluster 2 neurones was -47.8 ± 1.2 mV (range -42 to -56

mV) and 1172 ± 95 MΩ (range 590 to 1742 MΩ), respectively. The tau amounted to 38.4 ±

4.4 ms (range 11.9 - 82.4ms). Distribution histograms summarising the passive membrane

properties for cluster 2 is shown in Figure 3.5Bi-iii. The mean spike threshold, mean

amplitude and duration of the action potential were -30.5 ± 1.1 mV, 93.2 ± 2.7 mV and 3.1 ±

0.2 ms, (n=14), respectively (all values for general membrane properties are expressed in

Table 3.3 for cluster 2 and all other clusters). The Ian induced a 37.0 ± 4.3 % (n=14)

reduction in input resistance at a membrane potential of -93.9 ± 1.1 mV relative to the input

resistance calculated at rest. The mean estimated threshold for activation of Ian was -82.6 ±

1.7 mV (range -73.4 to -89.6 mV, Figure 3.5Aii,) estimated from the current-voltage

relationships. The expression of Ia resulted in a delayed return to baseline following
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termination of a negative current injection (Figure 3.3 Aiii). The average inactivation time was

1106 ± 137 ms (n=16), measured from the termination of negative current injection until the

return of the membrane potential to baseline/control levels. The amplitude of the conductance

was 5.8 ± 0.7 mV calculated at half decay-time as the difference in membrane potentials

during activation of the conductance and at rest.

3.2.3.3 Cluster 3

Cluster 3 neurones were characterized by the absence of any obvious subthreshold

active conductances (n=13; Figure 3.6Ai). The I/Vs of cluster 3 neurones were therefore linear,

showing a directly proportional relationship between injected current and membrane response

(Figure 3.6Aii). The mean membrane potential and input resistance of the cluster 3 neurones

was -48.9 ± 2.1 mV (range -39 to -61 mV) and 1587 ± 262 MΩ (range 665 to 3412 MΩ),

respectively (n=13). The value of tau was 27.3 ± 3.1 ms (range 14 to 49.5 ms; Figure 3.12).

The membrane potential at which an action potential was generated was (absolute spike

threshold) on average -31.2 ± 1.5 mV (n=13). The mean amplitude and duration of the action

potential was 90.5 ± 3.3 mV and 2.9 ± 0.1 ms respectively (Table 3.3).

3.2.3.4 Cluster 4

Neurones that expressed a time- and voltage-dependent inward rectification, visible

as a ‘sag’ (Ih) in the membrane in response to negative current steps were termed cluster 4

neurones (n=22; Figure 3.7). The expression of the Ih resulted in a decrease in the steady

state membrane response at negative holding potential resulting in a non-linear I/V

relationship relative to the membrane responses at instantaneous (Figure 3.7Aii). The mean

membrane potential and input resistance of these neurones was -48.8 ± 1.7 mV (range -38 to

-65 mV) and 1407 ± 159 MΩ (range 415 to 3350 MΩ), respectively. The membrane time-
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constant amounted to 38.1 ± 6.7 ms (range 11.9 to 138.8; see Figure 3.12). Distribution

histograms summarising the passive membrane properties for cluster 4 is shown in Figure

3.7Bi-iii. The mean spike-threshold, mean amplitude and duration of the action potential were

-28.4 ± 0.8 mV, 83.8 ± 3.5 mV and 2.9 ±0.1 ms, respectively (Table 3.3). At a mean

membrane potential of -104.1 ± 1.1 mV the amplitude of the hyperpolarising sag amounted to

7.4 ± 0.7 mV equivalent to a steady-state decrease in input resistance of 13.6 ± 1.2% (n=22).

The mean threshold for activation, calculated by averaging the membrane potential of the

current-voltage plot in which the rectification was first apparent, was -69.3 ± 3.1mV (range -

57.5 to 99.9 mV, Figure 3.7Aii,).

3.2.3.5 Cluster 5

Cluster 5 neurones were defined as expressing time- and voltage-dependent inward

rectification (Ih) and a T-type calcium-like conductance (n=45, Figure 3.8Ai). The mean input

resistance and resting membrane potential of these cells was 1767 ± 117 MΩ (range 593 to

4000 MΩ) and 47.1 ± 0.9 mV (range -39 to -66 mV), respectively. Charging of these neurones

resulted in a membrane time-constant of 49.9 ± 5.1 ms (range 12.4 to 142.3 ms; Figure 3.12;).

Distribution histograms summarising the passive membrane properties for cluster 5 is shown

in Figure 3.8Bi-Biii. The absolute threshold for action potential firing was -29.1 ± 0.8 mV with a

mean amplitude and duration of 83.3 ± 1.6 mV and 3.3 ± 0.1 ms, respectively (Table 3.3). At

a mean membrane potential of -104.8 ± 1.0 mV the amplitude of the hyperpolarising sag

amounted to 6.4 ± 0.5 mV equivalent to a steady-state decrease in input resistance of 11.5 ±

0.9 % (n=44). The mean threshold for activation, calculated by averaging the membrane

potential of the current-voltage plot in which the rectification was first apparent, was -70.0 ±

0.9 mV (range -52.0 to 86.9 mV, Figure 3.8Aii). The activation of the T-type calcium

conductance resulted in a mean membrane depolarisation of 11.7 ± 1.0 mV (range 3.7 to
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23.5.9 mV) following negative current injection from a membrane potential of -48.7 ± 1.2 mV

(n=35).

3.2.3.6 Cluster 6

Cluster 6 neurones only expressed the T-type like calcium conductance (n=56, Figure

3.9Ai). The average resting membrane potential and input resistance of these neurones was -

45.4 ± 0.8 mV (range -38 to -64 mV) and 1523 ± 101 MΩ (range 543 to 3433 MΩ; Figure

3.12). The membrane time-constant for this group of neurones had a mean value of 41.3 ±

3.3 ms (range 7.3 to 125 ms). Distribution histograms summarising the passive membrane

properties for cluster 6 is shown in Figure 3.9Bi-iii. The mean spike threshold, mean amplitude

and duration of the action potential were -29.9 ±0.6 mV, 87.4 ± 2.0 mV and 3.5 ±0.1 ms,

respectively (Table 3.3) The activation of the T-type like calcium conductance induced a mean

rebound membrane depolarisation of 9.5 ± 0.6 mV (range 23.1 to 4.1 mV) following the break

in negative current injection from a mean resting membrane potential of -49.6 ± 0.9 mV

(n=51).

3.2.3.7 Cluster 7

Cluster 7 neurones characteristically expressed the conductances Ian and the T-type

calcium-like conductance (n=45, Figure 3.10Ai). The average resting membrane potential and

input resistance of these neurones was -45.3 ± 0.7 mV (range -36 to -54 mV) and 2036 ±

148 MΩ (range 760 to 6350 MΩ), respectively (Figure 3.12). The mean membrane time-

constant for cluster 7 neurones amounted to 54.4 ± 3.6 ms. The threshold for action potential

firing was observed at -29.3.± 0.6 mV with an action potential amplitude and duration of 93.4

± 1.9 mV and 3.2 ± 0.1 ms, respectively (Table 3.3) The Ian –induced a 35% reduction in input

resistance at a holding potential of -98 ± 0.2 mV relative to the input resistance calculated at
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rest. The threshold for activation as estimated from current-voltage relationship amounted to -

83.6 ± 0.9 mV (Figure 3.10Aii, range -70.7 to -93.5).The activation of the T-type calcium

conductance resulted in a mean rebound membrane depolarisation of 11.4 ± 0.9 mV (range

3.5 to 24.8 mV) following negative current injection from a membrane potential of -50.1 ± 1.0

mV .

3.2.3.8 Cluster 8

The final cluster was characterised as expressing a time- and voltage-dependent

inward rectification that was visible as a ‘sag’ in the membrane in response to negative current

injections; (Ih) .and the presence of an anomalous inward rectifier (Ian) and a T-type-like

calcium conductance (n=34, Figure 3.11Ai). Values were taken instantaneously and not at

steady- state, thus to avoid contribution from other subthreshold active conductances. The

average resting membrane potential and input resistance of these neurones was -46.6 ± 1.2

mV (range -34 to -61 mV) and 1589 ± 146 MΩ (range 676 to 4667 MΩ, n=34,). The

membrane time-constant amounted to 66.3 ± 4.9 ms (Figure 3.12; range 24 to 137 ms). The

threshold for action potential firing was observed at -29.5 ± 0.8 mV with an action potential

amplitude and duration of 95.6 ± 2.3 mV and 2.9 ± 0.1 mV, respectively (Table 3.3). The Ian –

induced a 32% reduction in input resistance at a holding potential of -100.6 ± 1.1 mV relative

to the input resistance calculated at rest. The threshold for activation as estimated from

current-voltage relationship amounted to -85.1 ± 1.6 mV (Figure 3.11Aii, range -63.5 to -95.7).

At a mean membrane potential of -99.4 ± 1.0 mV the amplitude of the hyperpolarising sag

amounted to 3.4 ± 1.4 mV equivalent to a steady-state decrease in input resistance of 9.6 ±

0.9 %. The mean threshold for activation, calculated by averaging the membrane potential of

the current-voltage plot in which the rectification was first apparent, was -69.1 ± 2.1 mV

(Figure 3.11Aiii, range -52.5 to 94.2 mV). The activation of the T-type calcium-like
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conductance resulted in a mean rebound membrane depolarisation of 12.4 ± 1.7 mV (range

3.0 to 24.5 mV) following negative current injection from a membrane potential of -47.0 ± 1.3

mV (n=15). Distribution histograms summarising the passive membrane properties for cluster

8 neurones is shown in Figure 3.11Bi-iii

3.2.4 Statistical comparison of the general membrane properties of the different
classified clusters

ANOVAs were carried out to analyse the difference in membrane potentials, input

resistance and membrane time-constant between the differential clusters. (Means are shown

for each cluster; Figure 3.12). Between cluster 1 and all other clusters there was no significant

difference in membrane potential (P=0.2). Cluster 1 neurones varied in mean input resistance

significantly to the mean input resistance of cluster 2 neurones (P<0.05). The membrane time

constant observed for cluster 1 neurones did not differ significantly from other clusters.

Statistical differences between each cluster are summarised in Table 3.5.

Cluster 2 neurones did not differ significantly in mean membrane potentials from other

neurones; it did however differ in input resistance and the membrane time constant. Input

resistance for cluster 2 neurones differed from the mean input resistance for clusters 1 and 7

(P<0.05). The mean membrane time constant for cluster 2 neurones also varied significantly

from cluster 8 neurones (P <0.05).

Statistically significant differences were observed between cluster 3 and clusters 7

and 8. These differences were observed in the membrane time-constant value where clusters

7 and 8 had a significantly longer charging time (P<0.05 and P<0.001, respectively).

There was no significant difference in input resistance or membrane potential

between cluster 4 neurones and the other 7 groups of electrophysiological defined clusters.
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Cluster 4 neurones varied significantly from cluster 8 neurones in their mean membrane time-

constant (P<0.01), cluster 8 neurones having a significantly longer time-constant.

Cluster 6 neurones were significantly different to cluster 8 cells in their Tau value

(P<0.001). Cluster 8 neurones had a much longer charging time than cluster 6 cells. Cluster

6 did not vary significantly in its mean membrane potential or input resistance from any other

cluster.

Cluster 7 exhibited a significantly larger input resistance then cluster 2 neurones

(P<0.05). Cluster 7 neurones also displayed a significantly longer charging time than cluster 3

neurones (P< 0.05) hence giving a larger mean membrane time-constant value.

Statistically significant differences were observed between cluster 8 and clusters

2,3,4,6. The tau was significantly longer than that observed for cluster 2 (P<0.05), cluster 3

(P<0.001), cluster 4 (P<0.01) and cluster 6 (P<0.001).

3.2.5 Morphology- Four distinct morphological groups

A total of 254 Arc neurones were electrophysiologically recorded from the Arc and

subsequently processed and visualised for biocytin staining. Figure 3.1 Ai shows a schematic

representation of the location of all 254 neurones recorded within the Arc. The neurones were

recorded in all areas of the defined ‘barrier’ of the Arc. Neurones were pictured and analysed

for their general features, which included the size of the soma (width and length both

measured), origin, projection and length of primary (Figure 3.13). To access the direction in

which the Arc neurones were sending their projections (axons) would have been a great

insight into which and how Arc neurones interact with other hypothalamic nuclei. Unfortunately

this study was unable to reliably visualise axons and thus provide an appropriate functional
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context for the properties of axons; this was due to the absence of numbers for defined axons

and also axonal trajectory could not be seen clearly on each cell.

There was great variance in morphology of the Arc neurones, origin and direction of

projection of primary dendrites showed significant diversity. Some neurones also displayed

secondary dendrites. Given such complexity it was necessary to establish an overarching

classification. Thus, stained neurones were separated on the basis of the number and origin

of primary dendritic projections. Soma size and shape were not used as measures to separate

neurones, diversity in size was not significant enough between each neurone to be used as a

parameter to separate out neurones, and hence functionality. However in the overall analysis

it was noted that some clusters had greater mean membrane time-constants (tau) than others

which would theoretically equate to larger cell bodies (cluster 8). Dendritic orientation was

also excluded from this study. It was noted however that dendrites projected from the soma in

every direction throughout the Arc.

The criteria used resulted in the compilation of 4 distinct morphological groups.

Morphology group A, was made up of neurones with a single primary dendrite (Figure 3.17Aii).

Group B, included neurones displaying two primary dendrites originating from opposite sides

of the soma (bipolar; Figure 3.17Bii.) Group C was made up of neurones with 2 primary

dendrites not-originating from opposing sides of the cell body (Figure 3.18Aii). Finally,

morphology group D, was made up of neurones that displayed 3 or more primary dendrites

(Figure 3.18Bii).

With this criteria in place for each morphological subtype, 58/254 neurones (22.8%)

were categorised morphologically as group A (Figure 3.14). The mean width and length of the

soma of this group of neurones amounted to 12.4 ± 0.4 µm and 16.9 ± 0.4 µm respectively,

giving a mean surface area of 218 ± 14 µm2. The length of the single primary dendrite
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amounted to 202 ± 14 µm (n=58), and the most common site of projection was dorsally (n=35;

60%). Collating the general electrophysiological membrane properties of these neurones gave

a mean membrane time-constant, resting membrane potential and input resistance of 44.1 ±

3.3 ms, -46.2 ± 0.8 mV and 1683 ± 97 MΩ (n=58), respectively (summarised in Table 3.4).

The largest group morphologically was group B, comprising 41% (Figure 3.14) of

neurones (104/254). The mean soma width and length were 13.1 ± 0.3 µm and 17.7 ± 0.4

µm, respectively giving a mean soma surface area of 240.2 ± 9.6 µm2. The mean sum of the

total bipolar dendritic length amounted to 262 ± 15 µm (n=104). Total dendritic length refers

to the sum total of the entire primary dendritic tree, after reconstruction as a 3D image.

Neurones most commonly had the combination of dendrites projecting ventrally and dorsally

(58.6%). Analysing the passive membrane properties of these neurones gave a membrane

time-constant, resting membrane potential and input resistance of 46.9 ± 2.8 ms, -46.7 ± 0.6

mV and 1669 ± 95 MΩ respectively (n=104; Table 3.4).

50/254 neurones (20%) were categorised as group C thus having 2 primary dendrites

not projecting from opposite sides of the soma. This group had a mean total dendtric length of

280 ± 20 µm. The mean width and length of the cell bodies of these neurones was 12.8 ± 0.5

µm and 17.4 ± 0.7 µm respectively giving a mean surface area of 234.9 ± 18.2 µm2.

Neurones most commonly had the combination of dendrites projecting dorsally and laterally

(66%). The membrane time constant, resting membrane potential and input resistance

amounted to 54.9 ± 4.5 ms, -47.7 ± 0.9 mV and 1866 ± 134 MΩ, respectively (n=50; Table

3.4).

Group D neurones compromised 17% of neurones stained and analysed (43/254).

The mean width and length of the cell bodies amounted to 14.3 ± 0.6 µm and 18.6 ± 0.7 µm

respectively, a mean surface area of 276.7 ± 18.8 µm2. The mean sum of primary dendrites
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amounted to 343 ± 27 µm (n=43). The membrane time-constant, resting membrane potential

and input resistance amounted to 51.8 ± 4.2 ms, -46.5 ± 1.0 mV and 1463 ± 105 MΩ,

respectively (n=43; Table 3.4)

Performing ANOVAs shows that there was no significant difference in the general

properties of these different morphological defined groups. There is no significant difference in

membrane potential (P=0.74), membrane resistance (P=0.15) and the membrane time-

constant (P=0.20). Although not using soma size as a parameter to separate out neurones it

was noted that the mean surface area of those neurones classified as morphology group A

were significantly different to those classified as morphology group D (P<0.05). As would be

expected comparing the sum of primary dendrites shows that there is significant differences

between groups. The difference in monopolar neurones and multipolar neurones is

considered extremely significant (P<0.001).

3.2.6 Morphology and electrophysiology

At this point in the study 8 electrophysiological groups have been defined, along with

4 defined morphological groups. The next step was to combine the two sets of data and

analyse for any correlation between groups and clusters. Figure 3.15 shows each individual

morphology group and how it was made up relative to each electrophysiological cluster as a

percentage of all those patched. Figure 3.16 displays each cluster group and what

percentages of those neurones are defined in each morphological group. Thus, morphology

group A; neurones that were monopolar consisted of a majority of cluster 6 (31.0%) neurones

followed closely by cluster 5 (25.9%) neurones. Few cluster 1, (1.7%) or 2 (1.7%), neurones

were identified as being monopolar. Group B included all electrophysiological clusters and

was the biggest morphological group (n=104). Neurones that were bipolar were most

commonly defined as cluster 6/7 (18.4%) neurones. The least electrophysiological cluster
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contributing to this morphological group was clusters 2 and 3 (7.8%). Neurones that were

composed of 2 primary dendrites most commonly were defined as cluster 5 (24%) and cluster

7 (24%) neurones. There were no cluster 4 neurones making up this group. Group D;

multipolar neurones was made up of a majority of cluster 6 neurones (25.6%) and cluster 8

neurones (18.6%). No cluster 3 neurones were identified in this latter morphological group.

Electrophysiologically 8 distinct groups were identified with differential expression of

different subthreshold active conductances (Table 3.2). Cluster 1 neurones were

predominately made up of bipolar neurones (60.7%; see figure 3.16) thus displaying 2 primary

dendrites protruding from opposing ends of the soma. A large number of bipolar neurones

were located ventro-medially (Figure 3.19A). These neurones predominately had dendrites

projecting in a combination of either medial and lateral (21.4%) or dorsal and ventral (57.1%)

orientation (Figure 3.19Bi/Bii). 62.7% neurones were described as having an oval soma.

Cluster 1 neurones were also seen to be multipolar (30.4%) located more dorsally than those

neurones that were bipolar. Multipolar neurones were typically seen as displaying the primary

dendrites projecting dorsally and a third dendrite projecting ventrally, giving a characteristic

‘fork’ appearance (Figure 3.19Biii). Figure 3.16 shows each individual electrophysiological

defined cluster and how it was made up relative to each morphological group as a percentage

of all those recorded.

Cluster 2 neurones have been previously been suggested to be a functionally

homogenous population with its linear response to orexigens with spontaneous pacemaker-

like activity (van den Top et al., 2004). These neurones have predominantly 2 primary

dendrites either originating in a bipolar manner or non-bipolar manner. Neurones that had 2

primary dendrites (morphology group B and C) had a majority of dendrites projecting in the

combination of dorsally and ventrally (50%; Figure 3.20Bi). Cluster 2 neurones occasionally
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appeared multipolar with the most number of dendrites being 3. Despite cluster 2 neurones

having neurones in 3 distinct morphological groups (B, C, D) they showed distinct distribution

in location within the Arc (Figure 3.20A), all being located in the ventromedial region. As seen

in Figure 3.20Bi, these bipolar neurones often showed secondary dendrites (42.8%)

Cluster 3 neurones that display no active subthreshold conductances morphologically

showed predominately 2 primary dendrites, again being bipolar or non-bipolar. These

neurones typically had dendrites projecting dorsally and ventrally (58.3%) or dendrites

projecting medially and ventrally (25%; Figure 3.21Bi/Bii) 33.3% of neurones displayed

secondary dendrites. Cluster 3 neurones were not multipolar neurones.

Cluster 4 neurones did not form part of the morphology group C. Cluster 4 neurones

were mainly bipolar or monopolar, and were spread throughout the Arc with no distinctive

location (Figure 3.22A). Monopolar, cluster 4 neurones had dendrites that projected in 66.6%

of cases laterally (Figure 3.22Bi). Those neurones that were bipolar were seen to have at

least one dendrite projecting dorsally (Figure 3.22Bii).

Cluster 5 neurones were observed to have a complex morphology. Cluster 5

neurones were found to be monopolar, bipolar, display 2 primary dendrites and be multipolar,

and thus were observed in all morphological subgroups. Those cluster 5 neurones that were

multipolar were observed to have a relatively lateral location within the Arc, whereas the other

groups had no clear topographical differences within the populations. (Figure 3.23A)

Multipolar neurones tended to have a large number of branchlets relative to the other groups,

with dendrites projecting in every direction (Figure 3.23Biv). Most cluster 5 neurones were

observed to be monopolar (33.3%) with dendrites projecting in either a dorsal (53.8 or %)

lateral (30.8%) direction originating from primarily an oval soma (Figure 3.23Bi). Neurones

that were bipolar made up 31.1% of cluster 5 neurones. 47% of bipolar neurones had
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dendrites projecting ventrally and dorsally (Figure 3.23Bii). Neurones that formed part of

Group C that were present in cluster 5s showed dendrites commonly projecting dorsally and

laterally (61.5%). These neurones typically displayed short secondary dendrites (61.5%)

(Figure 3.23Biii).

Cluster 6 neurones were either bipolar (33.9%; Group B) or monopolar (32.1%; Group

A). Monopolar neurones exhibited either a single dendrite projecting dorsally (60%) or laterally

(40%) originating from an oval soma (70%; Figure 3.24Bi) Neurons that were bipolar were

located ventro-medially and all were classified as displaying oval cell bodies (Figure 3.24A).

Bipolar neurones commonly had dendrites projecting dorsally and ventrally (65.5%) and often

displayed short distal secondary dendrites (30%; Figure 3.24Bii). Cluster 6 neurones that

were multipolar were located laterally and displayed 3 primary dendrites (Figure 3.24A/Biv).

These neurones commonly had large round cell bodies (58.3%) which formed the origin for

multiple dendrites projecting in all directions of the Arc.

Cluster 7 neurones were once again observed in all morphological groups. Those

cluster 7 neurones that exhibited 2 primary dendrites were located distinctly medially within

the Arc, the other morphological subgroups showed no topographical distinction (Figure

3.25A). Cluster 7 neurones that were monopolar displayed a single dendrite projecting

dorsally (100%; Figure 3.25Bi). Bipolar neurones often displayed dendrites projecting either

ventrally and dorsally (37.5%) or projecting medially and laterally (41.2%) thus forming two

unique groups within cluster 7 bipolar neurones (Figure 3.25Bii). Neurones that displayed 2

primary dendrites often had dendrites projecting dorsally and laterally or medially thus forming

almost a right angle (Figure 3.25 Biii). 15.5% of cluster 7 neurones were identified has being

multipolar expressing 3 primary dendrites with predominately a round soma (62.5%; Figure

3.25Biv).
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Cluster 8 neurones were found to be part of all morphological groups, with

homogenous features. They were also dispersed in all areas of the Arc. Monopolar neurones

were located more medially (Figure 3.26A) than other groups and predominately had a single

dendrite projecting dorsally. These monopolar neurones often (75.0%) displayed secondary

dendrites, also projecting dorsally (Figure 3.26Bi). Bipolar neurones were observed to have an

oval soma (69.2%) with dendrites projecting commonly ventrally and dorsally (92.0%; Figure

3.26Bii). All cluster 8 cells that had 2 primary dendrites originating from relatively the same

side of the soma had their dendrites projecting dorsally and laterally (100%) again forming a

right-angle composition (Figure 3.2Biii). Cluster 8 neurones were also observed

morphologically as multipolar neurones, possessing 3-5 primary dendrites with often multiple

secondary dendrites (Figure 3.26Biv). These neurones were often found more laterally within

the Arc (Figure 3.26A).

3.3 Discussion

This study characterised the electrophysiological and morphological properties of

hypothalamic Arc neurones, in order to gain an understanding of the cellular properties

underlying the contributions to regulating the excitability of these neurones. The principle aim

of this study was to initiate the identification of functionally distinct neuronal populations in the

Arc by examining the electrophysiological and morphological characteristics, thus to elucidate

a link/ correlation between subthreshold active conductance characteristics of individual

neurones with their morphology which could be used as a signature ultimately for function.

Towards this aim this study combined biocytin labelling techniques with whole cell patch-

clamp recordings in hypothalamic slices. Slices containing the recorded neurones were

subsequently processed and individual neurones were visualised and where possible were

reconstructed in three-dimensions for morphometric analysis. An indication of morphology
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gives an idea of the number and level of modulation of synaptic inputs. The patch-clamp

technique enables the individual to be able to analyse their recording on-line and thus carry

out further experiments with an idea of the neurone recorded. In this study there were slight

correlations seen between electrical and morphological parameters within the neurones of the

Arc. This study reports heterogeneity in the expression of subthreshold conductances which

is what one would expect in regards to the vast expression of neuropeptides within the Arc

(Chronwall, 1985).

Focusing on the electrophysiological properties of Arc neurones, this study found the

expression of four different subthreshold active conductances that established 8 unique

groups (clusters) based on the differential expression of these conductances. These have

been previously described and pharmacologically identified with specific blockers for each

individual subthreshold active conductance (van den Top, 2002). The differences and the

unique properties of the voltage-gated currents were sufficient in identifying unambiguously

each cluster type on-line. Active conductances reflect and govern the type of input/output

relationship of a neurone as they shape the integration of synaptic inputs and control the

patterning of activity that represents the neurones output (Huguenard & Prince, 1994; Pape,

1996; Magee & Johnston, 2005). Thus, it is predicted differentiating neurones based on their

active conductances will be the first step in dividing neurones based on functionality and

pathways involved in different autonomic processes controlled by the Arc. The wide range of

functional properties displayed by CNS neurones largely stems from heterogeneous

expression and distribution of channel subtypes and the modulatory systems that regulate

them (Magee & Johnston, 2005). An example of where active conductances play a crucial role

in integrating an input and determining the patterning of output is within Arc pacemaker NPY/

AgRP neurones (van den Top et al., 2004). These neurones are orexigen sensitive and

display distinctive membrane potential oscillations which underlie pacemaker activity that is
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dependent on the expression of Ia and a T-type calcium conductance. van den Top et al.,

(2004) therefore showed that there exists a neuronal subpopulation within the Arc that has a

homogenous response to feeding signals related to its unique expression of electrical

properties thus functionally similar. Interestingly, here we describe differences in the

morphology of these neurones which may represent neurones with the same neuropeptidergic

expression and which are functionally similar may contribute to different parts of complex

autonomic processes whereby they receive different inputs and have different targets.

The differential expression of one or a combination of subthreshold active

conductances led to 8 electrophysiologically distinct groups. The active conductances

expressed within the Arc included an anomalous inward rectification (Ian), hyperpolarisation-

activated non-selective cation conductance (Ih), a transient outward rectification (Ia) and a T-

type- like calcium conductance. Morphological analysis revealed the existence of four different

populations based on the orientation and number of primary dendrites. Group A was

combined of neurones that displayed one primary dendrite. Group B was made up of

neurones that were bipolar. Group C was made up of neurones that had 2 primary dendrites

not projecting from opposite sides of the cell body. Group D was made up of neurones that

were multipolar. Combining both morphology with electrophysiology yielded 32 different

neuronal groups. However, the large number of groups precludes statistical analysis of the 32

populations as the power per group is not sufficient. It cannot be ruled out nonetheless that

these distinct cell groups are functionally divergent. Previously reported NPY/AgRP neurones

(cluster 2) in this study have been separated into three different morphological groups. Cluster

2 neurones are not the only NPY/AgRP neurones within the Arc but represent a small

population. At first sight these observations based on stereotypical responses to the orexigens,

orexin and ghrelin show that these morphological differences may not appear to indicate

differences in the physiological function of these neurones (van den Top et al., 2004).
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However, even though the previously described NPY/AgRP cells respond in being excited to

orexigens the degree and type of responses may vary (i.e. not all oscillate) thus although

these cells express NPY mRNA, responses may not be stereotypical and thus are not only

heterogeneous in response but also morphology as this study shows.

The different expression of subthreshold conductances is an indication of the

heterogeneity of neuronal cell types seen within the Arc.

T-type: This was the most common of conductances expressed in 180/254 (71%)

cells, and was observed in four separate clusters; 5, 6, 7 and 8. It is sensitive to external

nickel (van den Top, 2002). On termination of negative current injection this conductance is

characterised by a rebound depolarisation, similar to that described in cells activated

mediated by T-type calcium channels (Llinas & Yarom, 1981).T-type calcium channels are

strongly related to the generation of burst-like firing patterns in neurones of the CNS

(Huguenard & Prince, 1994). Indeed, T-type calcium channels are essential for the

pacemaker activity in NPY/AgRP pacemaker neurones (van den Top et al., 2004).

Ian: Ian was expressed by four different clusters, 1, 2, 7 and 8. This conductance is

sensitive to external barium (van den Top, 2002). This translated into 118/254 (46%) of cells

expressing this conductance and thus representing the second most common. As the name

suggests ‘rectification’ means change of conductance with voltage, and ‘anomalous’

suggests that this conductance works in the contrary direction to that predicted by the

Goldman-Hodgkin- Katz electro-diffusion equation (Goldman, 1943). This conductance is

characterised by an instantaneous decrease in input resistance at more negative membrane

potentials. Its function within neurones is unclear, it has been suggested to play a role in

maintaining the membrane potential of neurones within a functional range (van den Top &
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Spanswick, 2006). It may avoid neurones from becoming ‘too hyperpolarised’ and hence

prevent then from being within a readily excitable state (Wilson et al., 2002).

Ih: Clusters 4, 5 and 8 expressed Ih, a total of 101/254 (40%) neurones, that

manifested as a depolarising sag during the response to hyperpolarising current injections as

seen in other neurones (Halliwell & Adams, 1982; Pape, 1996). This conductance is sensitive

to external cesium (van den Top, 2002). It has been suggested that the time-dependent

inward rectification has a role in establishing the resting membrane potential of hypothalamic

neurones (Akasu et al., 1993). In addition the Ih current together with a T-type calcium

conductance work in tandem to generate rhythmic activity in thalamic relay neurones (for

review see Huguenard, 1996). It has been reported that this conductance is not found within

the Arc of mice which is contrary to this study in the rat (Burdakov & Ashcroft, 2002).

Ia: Ia was only expressed by a small proportion of Arc neurones; 16/254 (16%),

termed cluster 2 neurones. This conductance was characterised by a delayed return to the

resting membrane potential upon termination of the injection of a negative current and is

sensitive to external application of 4-aminopyridine (4-AP). A-like conductances are a

common feature of hypothalamic neurones (Bourque, 1988; Tasker & Dudek, 1991; Bouskila

& Dudek, 1995). Generally, these conductances are believed to influence spike repolarisation

and modulate the frequency of tonically firing neurones (Connor & Stevens, 1971; Kenyon &

Gibbons, 1979; Segal et al., 1984). Within NPY/AgRP neurones, Ia was found to be

modulating the interval of membrane potential oscillations (van den Top et al., 2004).

The morphology described within this study shows Arc neurones to have a simple

cytoarchitecture and dendritic tree, in comparison to other hypothalamic neurones such as the

PVN (Stern, 2001). In agreement with previous studies the Arc has generally a small dendritic

arborisation and 2 major types of neurones; small soma with 1-2 primary dendrites
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(morphology group 1-3) and the second type of neurone that has a slightly larger soma with a

greater number of primary dendrites and a greater number of secondary dendrites

(morphology group 4; Bodoky & Rethelyi, 1977). Rarely does primary dendritic branching

exceed that of 4. The greatest number of primary dendrites witnessed within the Arc was 5;

however multipolar neurones were the least prevalent. We might have underestimated their

prevalence though as a result of the nature of our experiments; working in vitro on

hypothalamic slices destroys some of the neurone’s projections. Coronal slices were used in

this study and therefore dendrites running rostral to caudal to the surface of the slice would

have been severed and thus not stained or were hard to see due to it travelling in the plane.

The simplicity of the dendritic tree of Arc neurones suggests that the previously described

affect of cytoarchitecture of complex and extensive dendritic trees determines the electrotonic

properties and consequently the propagation of distal synaptic inputs into the soma may not

be so relevant to Arc neurones (Rall, 1962; Stern, 2001; Gulledge et al., 2005; Magee &

Johnston, 2005). The sparsely branched dendritic trees of Arc neurones indicate a less

extensive membrane area for synaptic contact than in other brain regions such as the

cerebellum. However, a subpopulation of cluster 8 neurones were large and multipolar, this

also was the cluster that expressed the greater number of active conductances. It could be

that the number of active conductances represents to a degree a larger dendritic branching.

Multipolar neurones for cluster 5, 6 and 8 were found in the lateral parts of the Arc again in

line with previous studies (Bodoky & Rethelyi, 1977).

Although morphology between neuronal clusters and within clusters was seen to be

heterogeneous there are common features, for example the majority of monopolar neurones

that were identified as cluster 6 neurones projected dorsally. This was a common feature of

many monopolar neurones not only in cluster 6 but the whole study. Dendrites projecting

dorsally maybe neurones branching to the PVN, which is well known input for Arc neurones.
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The PVN and Arc are closely connected by bidirectional monosynaptic neural projections

(Tebbe et al., 2003). In particular NPY neurones of the Arc have been shown to have

projections to corticotrophin releasing factor neurones in the PVN (Toth & Palkovits, 1998)

involved in a number of physiological processes.

Within the clusters looking closely at the tau shows that for cluster 5, 6, 7 and 8 there

may well be heterogeneous populations with neurones in the same cluster having different

sizes of cell bodies. This may correlate with clusters being made up of a combination of

morphological features. The multipolar neurones that were found more laterally within the Arc

had an overall larger mean soma surface area than the monopolar neurones. This would give

a larger time-constant, in theory the membrane would be larger and hence take longer to

charge. This maybe the reason why the frequency histograms of the tau values show

heterogeneous populations. Indeed the membrane time constant between clusters does

significantly differ (Table 3.5). Cluster 8 neurones have a significantly greater tau then cluster

2,3,4 and 6. Cluster 8 neurones also been identified as large multipolar neurones which may

be represented in the large tau value.

In the past other studies have used different parameters to separate out neurones

electrophysiologically. For example Pennartz et al., (1998) used the amplitude and rising

slope of the spike after-hyperpolarisation potential (AHP) as a denominator for separation.

The current study did not look at suprathreshold conductances like the (AHP). The

mechanism underlying the AHP is critical for the general speed and efficiency of neuronal

processing as well as the more specific functions like controlling transmitter release and

repetitive firing. Unfortunately this study has not included the analysis of such conductances,

as the experimental design did not allow us to discriminate accurately between the different
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components of the AHP i.e. Pennartz et al., (1998) controlled the firing frequency of neurones

between a set range. Studying the AHP could be a possible extension of this study.

In summary, this study presents a detailed electrophysiological and morphological

characterisation of rat hypothalamic Arc neurons; the data suggests that the Arc is collection

of heterogeneous neurones with expression of a combination of subthreshold active

conductances. Neurones of the Arc have a complex morphology that does not directly

correlate with the neurone’s electrical properties.

At present, studies use green fluorescent protein/ immunocytochemistry /PCR to

determine the neuropeptidergic expression of neurones, however these all have their

limitations. What would be advantageous and a great prospect for the future would be to

identify functionally different neuronal subpopulations within the Arc on-line.

The present study provides a biophysical framework for further investigation into the

functional heterogeneity of Arc neurones. In order to progress this study future experiments

would need to be carried out to identify both the afferent and efferent projections to and from

Arc neurones respectively. This could be carried out by stimulation and track tracing

experiments to determine neuronal inputs. Determining the chemical phenotype of each

neurone and the responsiveness to a broad variety of physiologically relevant stimuli in

relation to the clusters would be the next step in progressing with this investigation.
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Table 3.2 Overview of the active conductances expressed by Arc neurones and
classified into clusters based on their expression of these
conductances.

Summarises the recognized conductances expressed by the electrophysiologically
characterised subtypes of Arc neurones (Cluster 1-8)

Table 3.2 Active conductances expressed by arcuate nucleus neurones

Cluster
1 2 3 4 5 6 7 8

Conductance
Ian x x x x
Ia x
Ih x x x

T-type x x x x
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Table 3.4 Overview of the general membrane properties of the morphologically categorised groups within the Arc
Parameter Group A Group B Group C Group D
Resting Membrane potential (mV) -46.0 ± 0.8 -46.7 ± 0.6 47.7 ± 0.9 46.5 ± 0.9
Input resistance (mΩ) 1646 ± 98 1668 ± 95 1876 ± 132 1402 ± 104
Membrane time constant (ms) 44.0 ± 3.3 46.9 ± 2.8 54.9 ± 4.6 51.8± 4.2
n 57 104 50 43

Whole cell recordings from 254 Arc neurones that were subsequently analysed for their morphology. Results are expressed as the mean ± SEM

Table 3.3 Overview of the general membrane properties of the electrophysiologically categorised clusters within the Arc
Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8
Resting Membrane potential (mV) -47.9 ± 1.5 -47.8 ± 1.2 -48.9 ± 2.1 -48.8 ± 1.7 47.1 ± 0.9 45.4 ± 0.8 45.3 ± 0.7 46.6 ± 1.2
Input resistance (mΩ) 2006 ± 231 1172 ± 95 1587 ± 262 1407 ± 159 1767 ± 117 1523 ± 101 2036 ± 148 1589 ± 146
Membrane time constant (ms) 54.4 ± 4.5 38.4 ± 4.4 27.3 ± 3.1 38.1 ± 6.7 49.9 ± 5.1 41.3 ± 3.3 54.4 ± 3.6 66.3 ± 4.9
n 23 16 13 22 45 56 45 34

Action potential spike threshold (mV) -31.3 ± 1.2 -30.5 ± 1.1 -31.2 ± 1.5 -28.4 ± 0.8 -29.1 ± 1.8 -29.9 ± 0.6 -29.3 ± 0.6 -29.5 ± 0.8
Action potential spike amplitude (mV) 94.3 ± 2.4 93.2 ± 2.7 90.5 ± 3.3 83.8 ± 3.5 83.3 ± 1.6 87.4 ± 2.0 93.4 ± 1.9 95.6± 2.3
Action potential spike duration (ms) 2.9 ± 0.2 3.1 ± 0.2 2.9 ± 0.1 2.9 ± 0.1 3.3 ± 0.1 3.5 ± 0.1 3.2 ± 0.1 2.9 ± 0.1
n 23 14 13 22 43 51 35 34

Whole cell recordings from Arc neurones. Results are expressed as the mean ± SEM
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Table 3.5 Overview of the statistical comparison of the general membrane properties of the different electrophysiologically classified clusters
in the Arc
ANOVAs were carried out to analyse the difference in membrane potentials, input resistance and membrane time constant between the
differential clusters. This graph shows the statistical differences in passive membrane properties of each cluster, for example cluster 1 neurones
varied in mean input resistance (as shown by the key) significantly to the mean input resistance of cluster 2 neurones (p<0.05).

↓Cluster→ 1 2 3 4 5 6 7 8
1 P < 0.05
2 P< 0.05
3 P< 0.05
4
5
6
7 P<0.05
8 P<0.05 P<0.001 P<0.01 P< 0.001

KEY: Input Resistance
tau
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Figure 3.1 Identification, characterisation and analysis of electrical properties of
Arc neurones

Ai: A schematic representation of the location of Arc neurones recorded and
subsequently processed for biocytin staining.

Bi: Action potential of an Arc neurone. The amplitude of the action potential was
calculated as the difference between the membrane potential measured at threshold
and the peak of the action potential. The duration of the action potential was
measured as the time difference between the crossing of spike threshold between the
rising and falling phase of the action potential.
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Figure 3.2 Frequency histograms summarising the distribution of the passive
membrane properties characteristic of Arc neurones.

A: The resting membrane potential of hypothalamic Arc neurones, ranging between -35
to -70 mV, with a distribution slightly skewed towards less negative membrane
potentials.

B: The input resistances of Arc neurones, ranging between 400-6000 MΩ, with a
distribution slightly skewed towards lower resistances.

C: A graph showing the distribution of the different membrane time-constants (Tau) of
Arc neurones. The membrane time-constant was estimated by fitting double
exponentials to the membrane voltage charging curves induced by injection of
hyperpolarising rectangular- wave current pulses (of variable amplitude and steps).
The range of Tau values was 0-150 ms, with a varied distribution, presenting the
possibility of 2-3 different populations.
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Figure 3.3 Identification, characterisation and analysis of electrophysiological
properties of Arc neurones

Ai: The activation of the anomalous inward rectifier (Ian) gave rise to a decrease in
membrane resistance at negative holding potentials. The arrows marked 1 and 2
indicate the amplitude of the membrane response to negative current injection with a
ratio of 1:2. Note the fast activation and the lack of inactivation of this conductance.

Aii: Activation of the H-conductance (Ih) induces a time- and voltage-dependent sag in the
membrane response to negative current injection. The amplitude of Ih was measured
by subtracting the membrane potential at the end of the negative current injection
(Upper dotted line, instantaneous) from the membrane potential following steady-
state charging of the cellular membrane (lower dotted line).

Aiii: The activation of an A-like conductance (Ia) resulted in a delayed return to baseline
following negative current injection. The duration of Ia was measured as the time
between the end of current injection (marked by the first vertical dotted line) and the
return of the membrane potential to the level prior to the current injection (marked by
the second vertical dotted line). The amplitude of the current was measured at half
the duration (line marked *).

Aiv: The activation of low threshold T-type like calcium conductance close to the resting
membrane potential resulted in the generation of a rebound depolarisation on
cessation of negative current injection. The lower dotted line marks the resting
membrane potential and the upper dotted line marks the peak of the rebound
depolarisation as observed as a plateau following the action potential. The difference
between these values was used to quantify the T-type conductance.
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Figure 3.4 Characteristic electrophysiological properties of Arc cluster 1 neurones

Ai: Characteristic current/voltage (I/V) relationship of a cluster 1 neurone. Superimposed
traces of the membrane responses to a range of hyperpolarizing and depolarising
rectangular-wave current steps of constant increment. The arrows (1) indicate the
decreased membrane response at more hyperpolarized membrane potentials
(downward arrow) relative to membrane potentials responses close to rest (upward
arrow) as a result of the activation of Ian.

Aii: Plot of the current-voltage relationship of the neurone shown in Ai. Note the
decreased slope of the plot towards more negative membrane potentials as a result
of the activation of Ian. The arrow (2) shows the point in the current-voltage
relationship at which the slope of the plot decreases used as an estimation for the
activation threshold for Ian.

Bi-Biii: Distribution histograms summarising the passive membrane properties; membrane
potential; input resistance; membrane time-constant respectively observed in cluster
1 Arc neurones.
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Figure 3.5 Characteristic electrophysiological properties of Arc cluster 2 neurones

Ai: Characteristic I/V relationship of a cluster 2 neurone. Arrow (1) indicates the decrease
in the peak amplitude of membrane response at negative holding potentials due to
activation of Ian whilst arrow (2) indicates the delayed return to baseline following
negative current injection as a result of Ia activation.

Aii: Plot of the current-voltage relationship of the neurone shown in Ai. The arrow (3)
shows the point in the current-voltage relationship at which the slope of the plot
decreases. The arrow (3) shows the point in the current-voltage relationship at which
the slope of the plot decreases used as an estimation for the activation threshold for
Ian.

Bi-Biii: Distribution histograms summarising the passive membrane properties; membrane
potential; input resistance; membrane time-constant respectively observed in cluster
2 Arc neurones.
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Figure 3.6 Characteristic electrophysiological properties of Arc cluster 3 neurones

Ai: Membrane responses of a typical cluster 3 neurone to a range of depolarising and
hyperpolarizing current steps of constant increment and rectangular waveform. Note
the lack of any distinctive subthreshold active membrane conductances and the fast
charging of the membrane consistent with a short membrane time-constant.

Aii: Plot of the current-voltage relationship of the neurone shown in Ci. Note the constant
slope of the plot as a result of the constant membrane resistance over the range of
membrane potentials tested.

Bi-iii Distribution histograms summarising the passive membrane properties; membrane
potential; input resistance; membrane time-constant respectively observed in cluster
3 Arc neurones.
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Figure 3.7 Characteristic electrophysiological properties of Arc cluster 4 neurones

Ai: Typical I/V relationship of a cluster 4 neurone. Note the sag in the membrane
response during negative current injection as a result of the activation of Ih. The
distance between the dotted horizontal lines indicates the amplitude of the
conductance induced as a result of the activation of Ih. Note the decrease in activation
latency (time difference between the two arrowheads) at more negative membrane
potentials. Also note the increased amplitude of the voltage sag at more negative
membrane potentials. Closed square and open circles mark the position of the traces
used to measure the instantaneous and steady-state membrane responses,
respectively (see Aii).

Aii: Plot of the instantaneous (closed square) and steady-state (open circle) membrane
responses of the neurone shown in Ai. The difference between the curves is
indicative of the activation of Ih, which decreases the steady-state membrane
response at negative holding potentials resulting in a non-linear current-voltage
relationship. The arrow marks the point used to estimate the activation threshold of Ih
in Arc neurones.

Bi-Biii: Distribution histograms summarising the passive membrane properties; membrane
potential; input resistance; membrane time-constant respectively, observed in cluster
4 Arc neurones.
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Figure 3.8 Characteristic electrophysiological properties of Arc cluster 5 neurones

Ai: Typical current-voltage relationship of a cluster 5 neurone. Note the sag in the
membrane response during negative current injection as a result of the activation of Ih.
The distance between the dotted horizontal lines indicates the amplitude of the
conductance induced as a result of the activation of Ih Rebound depolarisations were
induced following the release of current injection contributing to the activation of a T-
type like calcium conductance (arrow; T-type).

Aii: Plot of the instantaneous (closed square) and steady-state (open circle) membrane
responses of the neurone shown in Ai. The difference between the curves is
indicative of the activation of Ih, which decreases the steady-state membrane
response at negative holding potentials resulting in a non-linear current-voltage
relationship. The arrow marks the point used to estimate the activation threshold of Ih
in Arc neurones.

Bi-Biii: Distribution histograms summarising the passive membrane properties; membrane
potential; input resistance; membrane time-constant respectively observed in cluster
5 Arc neurones. Further inspection of the distribution graphs indicated the potential
for more than one population as indicated by the red dotted lines in this, and
subsequent figures.
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Figure 3.9 Characteristic electrophysiological properties of Arc cluster 6 neurones

Ai: Typical current-voltage relationship of a cluster 6 neurone Rebound depolarisations
were induced following the release of the hyperpolarising current injection due to the
activation of a T-type like calcium conductance (arrow; T-type).

Aii: Plot of the current-voltage relationship of the neurone shown in Ai. Note the linear
relationship between injected current and the resulting membrane response, thus the
absence of expression of any active conductances, such as Ih or Ian.

Bi-Biii: Distribution histograms summarising the passive membrane properties; membrane
potential; input resistance; membrane time-constant respectively observed in cluster
6 Arc neurones.
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Figure 3.10 Characteristic electrophysiological properties of Arc cluster 7 neurones

Ai: Characteristic I/V relationship of a cluster 7 neurone. The arrows (1) indicate the
decreased membrane response at more hyperpolarized membrane potentials
(downward arrow) relative to membrane potentials responses close to rest (upward
arrow) as a result of the activation of Ian. Cluster 7 also expresses a T-type like
calcium conductance. Rebound depolarisations were induced following the release of
the hyperpolarising current injection contributing to the activation of a T-type like
calcium conductance (arrow; T-type).

Aii: Plot of the current-voltage relationship of the neurone shown in Ai. Note the
decreased slope of the plot towards more negative membrane potentials as a result
of the activation of Ian. The arrow (2) shows the point in the current-voltage
relationship at which the slope of the plot decreases.

Bi-Biii: Distribution histograms summarising the passive membrane properties; membrane
potential; input resistance; membrane time-constant respectively observed in cluster
7 Arc neurones.
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Figure 3.11 Characteristic electrophysiological properties of Arc cluster 8 neurones

Ai: Characteristic I/V relationship of a cluster 8 neurone. The arrows (1) indicate the
decreased membrane response at more hyperpolarized membrane potentials
(downward arrow) relative to membrane potentials responses close to rest (upward
arrow) as a result of the activation of Ian. Note the sag in the membrane response
during negative current injection as a result of the activation of Ih. Cluster 8 also
expresses a T-type calcium like conductance that is seen as a rebound depolarisation
following the injection of negative current.

Aiii: Plot of the current-voltage relationship of the neurone shown in Ai. Note the
decreased slope of the plot towards more negative membrane potentials as a result
of the activation of Ian. The arrow (2) shows the point in the current-voltage
relationship at which the slope of the plot decreases.

Aii: Plot of the instantaneous (closed square ) and steady-state (open circle) membrane
responses of the neurone shown in Ai. The difference between the curves is
indicative of the activation of Ih, which decreases the steady-state membrane
response at negative holding potentials resulting in a non-linear current-voltage
relationship.

Bi-Biii: Distribution histograms summarising the passive membrane properties; membrane
potential; input resistance; membrane time-constant, respectively observed in cluster
8 Arc neurones.
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Figure 3.12 Distribution histograms summarising the distribution of the mean
passive membrane properties characteristic of Arc neurones for each
electrophysiologically defined cluster

Ai Distribution-histogram showing the mean membrane potential for each
electrophysiological cluster.

Aii Distribution-histogram showing the mean neuronal input resistance for each
electrophysiological defined cluster

Aiii Distribution-histogram showing the mean membrane time-constant for each
electrophysiological cluster

Note: A statistical comparison of the passive membrane properties of each
electrophysiological cluster is represented in table 3.5
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Figure 3.13A A schematic showing the guidelines used in this study in order to
classify the length, quantity and orientation of dendrite projection.

A: The neurone in this schematic was classified as a bipolar neurone with
dendrites projecting from an oval shaped soma in a dorsal and lateral
direction.

Figure 3.13B A schematic showing the guidelines used in this study in order to
calculate soma surface area and total primary dendritic length.

B: Schematic shows arrows to origin of primary dendrites from cell body. Here
the dendrites originate from opposite sides of the soma, thus this neurone is
classified as bipolar. Carl Zeiss vision, axiovision 4.1 programme was used to
measure total primary dendritic length online.
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Figure 3.14 A pie chart showing the % of neurones that fall into each morphological
group.

Morphology group A: Monopolar neurones
Morphology group B: Bipolar neurones
Morphology group C: 2 primary dendrites
Morphology group D: Multipolar neurones
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Figure 3.15 Frequency histograms summarising the electrophysiological make-up
of each morphological defined group

Ai: A frequency-histogram showing that Morphological Group A (monopolar neurones)
were primarily made up of clusters 5 and 6.

Aii: A frequency-histogram showing that Morphological Group B (bipolar neurones)
contained all clusters. Thus, all clusters morphologically had a percentage of
neurones that were bipolar.

Aiii. A frequency-histogram showing that Morphological Group C (2 primary dendrites) had
no cluster 4 neurones and few cluster 1 neurones.

Aiii. A frequency-histogram showing that Morphological Group D (multipolar neurones)
were primarily neurones electrophysiologically classified as cluster 6 neurones. No
cluster 3 neurones were mulitpolar.
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Figure 3.16 Shows each individual electrophysiological defined cluster and how it
was made up relative to each morphological group as a percentage of
all those cells recorded.
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Figure 3.17 Morphology of Arc nucleus neurones

Photomicrographs showing the biocytin labelled soma and proximal dendrites of two separate
neurones. Images in the higher magnification are made up as result of individual photographs
captured in different focal planes and pieced together in order to provide a comprehensive
overview of the individual neurone recorded. Orientation arrows are shown for individual
neurones. D; dorsal, V; ventral, L; lateral, M; medial

Ai: A representative morphology group A neurone shown at 10x magnification
depicting its location within the Arc nucleus. This neurone is located medially
within the Arc

Aii: 40x magnification of the neurone shown in Ai. A typical monopolar neurone
with its single primary dendrite projecting dorsally from an oval shaped soma.
This neurone also displays a short distal secondary dendrite. Note also the
faint projection projecting ventrally which is believed to be an axon.

Bi: A representative morphology group B neurone shown at 10x magnification
depicting its location within the Arc nucleus. This neurone is located in the
dorso-medial.

Bii: 40x magnification of the neurone shown in Bi. A typical bipolar neurone with
a single primary dendrite projecting dorsally and another ventro-laterally
(classified as ventral) from an oval shaped soma.
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Figure 3.18 Morphology of Arc nucleus neurones

Photomicrographs capturing the biocytin-labelled soma and proximal dendrites of two
separate neurones. Images in the higher magnification are made up as result of individual
photographs captured in different focal planes and pieced together in order to provide a
comprehensive overview of the individual neurone recorded. Orientation arrows are shown for
individual neurones. D; dorsal, V; ventral, L; lateral, M; medial

Ai: A representative morphology group C neurone shown at 10x magnification
depicting its location within the Arc nucleus. This neurone is located dorso-
medially within the Arc

Aii: 40x magnification of the neurone shown in Ai. A typical 2 primary dendrite
projecting neurone from different sides of the pyramidal shaped soma. Note
also the faint projection projecting ventrally which is believed to be an axon.

Bi: A representative morphology group D neurone shown at 10x magnification
depicting its location within the Arc nucleus. This neurone is located medially
with the Arc.

Bii: 40x magnification of the neurone shown in Bi. A typical mulitipolar neurone
with 3 primary dendrites originating from a round cell body. Dendrites are
projecting dorsally, laterally and ventrally and this neurone displays multiple
secondary dendrites.
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Figure 3.19 Schematic of the distribution of cluster 1 neurones throughout the Arc.
Schematic drawings of the morphology of cluster 1 neurones

A: Comparative distribution of cluster 1 neurones separated based on
morphological characteristics shown in schematic coronal planes depicting
the Arc. An overview of the location of all cluster 1 neurones recorded is
shown at the end (overview). The majority of cluster 1 neurones were bipolar
and multipolar distributed throughout the Arc with no clear differences based
on morphological features.

B: Drawings of biocytin labelled Arc neurones electrophysiologically
classified as cluster 1 neurones (not to scale)

i: Typical cluster 1 bipolar neurones with a single dendrite projecting medially
and another projecting laterally, from an oval shaped soma. These neurones
often displayed short distal secondary dendrites. Note the dotted dorsal
projection in the 2nd neurone which is thought to be an axon.

ii: Another group of cluster 1 bipolar neurones which displayed a different
dendrite orientation from the above. These bipolar neurones had a single
dendrite projecting dorsally and a second projecting ventrally, typically from
an oval shaped soma.

iii: Representative multipolar cluster 1 neurones displaying a characteristic ‘fork’
appearance. These neurones often displayed 2 primary dendrites projecting
dorsally and another single dendrite projecting ventrally, typically from a
round cell body.
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Figure 3.20 Schematic of the distribution of cluster 2 neurones in the Arc.
Schematic drawings of the morphology of cluster 2 neurones

A: Comparative distribution of cluster 2 neurones classified based on
morphological characteristics shown in a schematic representation of coronal
planes depicting the Arc. An overview of the location of all cluster 2 neurones
recorded is shown at the end (overview). The majority of cluster 2 neurones
were bipolar distributed closely to the 3rd ventrical and medially within the Arc.

B: Drawings of biocytin labelled Arc neurones electrophysiologically
classified as cluster 2 neurones (not to scale)

i: Typical cluster 2 bipolar neurones with a single primary dendrite projecting
dorsally and another projecting ventrally from an oval shaped soma. These
neurones often displayed short proximal secondary dendrites.

ii: Cluster 2 neurones were also monopolar. They displayed a single dendrite
projecting dorsally

iii: Representative multipolar cluster 2 neurones.
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Figure 3.21 Schematic of the distribution of cluster 3 neurones in the Arc.
Schematic drawings of the morphology of cluster 3 neurones

A: Comparative distribution of cluster 3 neurones classified based on
morphological characteristics shown in a schematic representation of coronal
planes depicting the Arc. An overview of the location of all cluster 3 neurones
recorded is shown at the end (overview). The majority of cluster 3 neurones
were bipolar distributed medially within the Arc and relatively close to the 3rd

ventricle. There were no multipolar cluster 3 neurones.

B: Drawings of biocytin labelled Arc neurones electrophysiologically
classified as cluster 3 neurones.

i: Typical cluster 3 bipolar neurones with a single dendrite projecting ventrally
and another projecting dorsally, from a round shaped soma. These neurones
often displayed short distal secondary dendrites originating from the primary
dendrite projecting dorsally.

ii: Another group of cluster 3 bipolar neurones which displayed a different
dendrite orientation from the above. These bipolar neurones had a single
dendrite projecting laterally and a second projecting medially, typically from
an oval shaped soma.
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Figure 3.22 Schematic of the distribution of cluster 4 neurones in the Arc.
Schematic drawings of the morphology of cluster 4 neurones

A: Comparative distribution of cluster 4 neurones separated out based on
morphological characteristics shown in a schematic representation of coronal
planes depicting the Arc. An overview of the location of all cluster 4 neurones
recorded is shown at the end. The majority of cluster 4 neurones were bipolar
distributed medially within the Arc and monopolar neurones located slightly
more laterally.

B: Drawings of biocytin labelled Arc neurones electrophysiologically
classified as cluster 4 neurones.

i: A representative cluster 4 monopolar neurone with a single dendrite
projecting laterally originating from a oval shaped soma

ii: Bipolar cluster 4 neurones displaying neurones originating medially and
laterally but then projecting dorsally. Note the dotted line which represents
what is thought to be an axon.
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Figure 3.23 Schematic of the distribution of cluster 5 neurones in the Arc.
Schematic drawings of the morphology of cluster 5 neurones

A: Comparative distribution of cluster 5 neurones separated out based on
morphological characteristics shown in a schematic representation of coronal
planes depicting the Arc. An overview of the location of all cluster 4 neurones
recorded is shown at the end. Cluster 5 neurones were monopolar, bipolar,
had 2 primary dendrites and were also multipolar. Multipolar neurones tended
to be located laterally within the Arc

B: Drawings of biocytin labelled Arc neurones electrophysiologically
classified as cluster 5 neurones.

i: A representative cluster 5 monopolar neurone with a single dendrite
projecting laterally or dorsally originating from an oval shaped soma

ii: Typical bipolar cluster 5 neurones displaying dendrites projecting dorsally
and ventrally from a pyramidal shaped soma.

iii: Characteristic cluster 5 neurone displaying 2 primary dendrites originating
from the same side of the soma. Dendrites typically projected to make a ‘right
angle’. Orientation of dendritic projection was commonly dorsal and lateral.
These neurones also frequently had distal short secondary dendrites.

iv: Cluster 5 neurones were also large multipolar neurones with 3-4 primary
dendrites projecting in all orientations throughout the Arc. These neurones
commonly had a number of secondary dendrites.
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Figure 3.24 Schematic of the distribution of cluster 6 neurones in the Arc.
Schematic drawings of the morphology of cluster 6 neurones

A: Comparative distribution of cluster 6 neurones separated out based on
morphological characteristics shown in a schematic representation of
coronal planes depicting the Arc. An overview of the location of all cluster 6
neurones recorded is shown at the end. Cluster 6 neurones were monopolar,
bipolar, had 2 primary dendrites and were also multipolar. Bipolar neurones
were distinctively found ‘clumped’ together dorsally within the Arc.

B: Drawings of biocytin labelled Arc neurones electrophysiologically
classified as cluster 6 neurones.

i: A representative cluster 6 monopolar neurone with a single dendrite
projecting laterally or dorsally originating from an oval shaped soma. These
neurones commonly had short axons projecting from the opposing side of the
soma.

ii: Typical bipolar cluster 6 neurones displaying dendrites projecting dorsally
and ventrally from a pyramidal shaped soma. These neurones also typically
displayed short distal secondary dendrites

iii. Characteristic cluster 6 neurone displaying 2 primary dendrites originating
from same sides of the soma.

iv. Cluster 6 neurones were also large multipolar neurones with 3 primary
dendrites projecting in all orientations throughout the Arc. These neurones
commonly had a number of secondary dendrites.
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Figure 3.25 Schematic of the distribution of cluster 7 neurones in the Arc.
Schematic drawings of the morphology of cluster 7 neurones

A: Comparative distribution of cluster 7 neurones separated out based on
morphological characteristics shown in a schematic representation of coronal
planes depicting the Arc. An overview of the location of all cluster 7 neurones
recorded is shown at the end. Cluster 7 neurones were monopolar, bipolar,
had 2 primary dendrites and were also multipolar. Neurones with 2 primary
dendrites were found dorso-medially within the Arc

B: Drawings of biocytin labelled Arc neurones electrophysiologically
classified as cluster 7 neurones.

i: A representative cluster 7 monopolar neurone with a single dendrite
projecting dorsally originating from an oval shaped soma. These neurones
commonly had short axons projecting ventrally and typically displayed distal
secondary dendrites also projecting dorsally.

ii: Typical bipolar cluster 7 neurones displaying dendrites projecting dorsally
and ventrally from an oval shaped soma. Another ‘group’ of bipolar neurones
had dendrites projecting laterally and medially.

iii. Characteristic cluster 7 neurone displaying 2 primary dendrites originating
from similar sides of the soma creating a right angle formation. Dendrites
commonly projected dorsally and laterally from a round cell body.

iv. Cluster 7 neurones were also multipolar with 3 primary dendrites that
projected in all directions in the Arc.
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Figure 3.26 Schematic of the distribution of cluster 8 neurones in the Arc.
Schematic drawings of the morphology of cluster 8 neurones

A: Comparative distribution of cluster 8 neurones separated out based on
morphological characteristics shown in a schematic representation of coronal
planes depicting the Arc. An overview of the location of all cluster 8 neurones
recorded is shown at the end. Cluster 8 neurones were monopolar, bipolar,
had 2 primary dendrites and were also multipolar. Monopolar neurones were
found lying close to the 3rd ventricle.

B: Drawings of biocytin labelled Arc neurones electrophysiologically
classified as cluster 8 neurones.

i: A representative cluster 8 monopolar neurone with a single dendrite
projecting dorsally originating from an oval/round shaped soma. These
neurones commonly had axons projecting ventrally and typically displayed
distal secondary dendrites also projecting dorsally.

ii: Typical bipolar cluster 8 neurones displaying dendrites projecting dorsally
and ventrally from an oval shaped soma.

iii Characteristic cluster 8 neurone displaying 2 primary dendrites originating
from the same sides of the soma creating a right angle formation. Dendrites
commonly projected dorsally and laterally from an oval cell body

iv Cluster 8 neurones were also multipolar with 4-5 primary dendrites that
projected in all orientations throughout the Arc from large round somas.
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Chapter 4
The effects of changes in ambient
extracellular glucose levels on the

neuronal activity of arcuate
neurones in vitro
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4.1 Introduction

Glucose is a vitally important carbohydrate that provides the brain with its primary fuel

source. It is essential for the brains correct functioning and survival (Ritter et al., 2006).

Glucose utilisation, storage and mobilisation are meticulously regulated by both neuronal and

hormonal mechanisms. The control of glucose by central mechanisms is essential and has

been recognised since the classical experiments carried out by Bernard in 1849 (Alquier &

Kahn, 2004).

It has been shown that there is direct reciprocal neuronal control from the

hypothalamus to the liver and pancreas (Buijs et al., 2001; Buijs et al., 2003). Retrograde

transneural viral tracing methods highlight hypothalamic nuclei, including the paraventricular

nucleus (PVN), and the lateral hypothalamus (LH) in the regulation of the liver and pancreas

via sympathetic and parasympathetic pathways. Furthermore, the PVN integrates information

from other hypothalamic nuclei, such as the Arc (Buijs et al., 2003), which is essential for the

control of energy homeostasis and initiates an appropriate autonomic control of both the liver

and pancreas.

In times of hypoglycaemia activation of the autonomic nervous system (ANS), in

particular the sympathetic nervous system (SNS), results in the mobilisation of glucose from

storage tissues hence increasing plasma glucose levels. SNS activation results in an increase

in neuronal and hormonal noradrenaline (NA) levels (McCaleb et al., 1979; Smythe et al.,

1984) and hormonal adrenaline that directly enhance hepatic glucose production by activating

both glycogenolysis and gluconeogenesis within the liver. The liver is also directly under the

control of hormonal signals such as insulin and glucagon which regulate the levels of glucose

within the blood. Thus, in times when blood glucose is high, activation of the parasympathetic

nervous system (PNS) leads to the conversion of glucose to glycogen within the liver. Insulin,
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released form the pancreas suppresses hepatic glucose production by inhibiting both

gluconeogensis and glycogenolysis which ultimately leads to lower plasma glucose levels.

Disruption of the tight control of glucose levels within an individual leads to syndromes such

as diabetes mellitus, due to defective insulin secretion, resistance to insulin secretion or both.

The pathologies related to diabetes include cognitive deficits, diabetic neuropathy and weight

loss amongst others (Biessels et al., 2002).

Plasma glucose levels can fluctuate between 4-7 mM within a healthy individual and

can become much higher in individuals with diabetes. The levels of glucose to which the brain

is exposed is less clear. With a plasma glucose range of 5-8 mM, brain glucose levels are

detected to be between 1-2.5 mM (Silver & Erecinska, 1994). With plasma glucose

concentrations ranging from pathophysiolological levels of 2-18 mM, the brain has been

suggested to detect levels between 0.2 to 4.5 mM, respectively (Silver & Erecinska, 1994).

Within the hypothalamus glucose basal levels have been shown to achieve concentrations of

around 1.4 mM (de Vries et al., 2003; Mayer et al., 2006). It has been suggested that brain

glucose levels range from approximately 10-30 % of blood levels (Silver & Erecinska, 1994;

de Vries et al., 2003). However, certain areas of the brain such as the arcuate nucleus (Arc)

are well positioned to detect circulating glucose levels due to its close proximity to the median

eminence (ME) where the blood-brain-barrier (BBB) is compromised due to its vascularised

structure and fenestrated endothelial cells (Ganong, 2000). Thus these areas may be

exposed to higher levels of glucose than other parts of the brain; however the exact

concentrations are still unknown.

Hypothalamic neurones within the Arc, LH and ventral medial nucleus (VMN) have been

identified to use glucose, in a concentration-dependent manner, as a signalling molecule to

regulate neuronal electrical excitability (Wang et al., 2004; Burdakov et al., 2005; Ma et al.,

2008). These glucose-sensing neurones have been termed glucose-responsive (GR) and
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glucose-sensitive (GS; Oomura et al., 1964). GR neurones are those that increase their firing

rate as brain glucose levels rise, also termed glucose excited neurones (GE). Conversely, GS

neurones decrease their firing rate as glucose levels rise, also termed glucose inhibited (GI)

neurones (Song et al., 2001; Wang et al., 2004).

Within the Arc reside two principal populations of neurones that are anatomically

adjacent and work in an antagonistic fashion as parallel but opposing pathways to maintain a

balanced energy state. Neuropeptide Y/ agouti related peptide (NPY/AgRP) neurones form

the main anabolic drive and pre-pro-opiomelanocortin /cocaine and amphetamine regulated

transcript (POMC/CART) neurones form the main catabolic drive (Schwartz et al., 1991; Guan

et al., 1998b; Lin et al., 2000). Populations of NPY/AgRP neurones are suggested to be GI

neurones (Muroya et al., 1999) that are also inhibited by leptin (van den Top et al., 2004), and

POMC/CART neurones are suggested to be GE neurones (Ibrahim et al., 2003) that are

excited by leptin (Cowley et al., 2001). Glucose sensing in POMC-mut-6.2 mice have

disrupted whole body glucose sensing, providing evidence that the ATP-sensitive potassium

channels are required for glucose excitation of POMC neurones (Parton et al, 2007). Both

subsets of neurones have been shown to express functional ATP-sensitive potassium channel

(KATP channels; Ibrahim et al., 2003; van den Top et al., 2007). KATP is an important ion

channel classically suggested to be involved in glucose-sensing. Furthermore, the functioning

of this ion channel in the central nervous system (CNS) has been shown to be pivotal for

glucose-sensing in the CNS by the use of knock-out studies and specific ion channel blockers

(Ashford et al., 1990; Rowe et al., 1996; Spanswick et al., 1997; Lee et al., 1999; Spanswick

et al., 2000; Miki et al., 2001). KATP channels are composed of two different components:

pore forming inward rectifier K+ channel (KIR) and sulfonylurea receptor (SUR) subunits

arranged in a 4:4 stoichiometry (Ashcroft & Gribble, 1999). Specifically GE neurons are

proposed to use functional KATP channels to sense glucose much like the pancreatic β-cells
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(Ashford et al., 1990; Yang et al., 1999; van den Top et al., 2007). In brief GLUT 3

transporters on the membrane surface of hypothalamic neurones permit glucose influx at a

rate dependent on extracellular plasma glucose concentration (Kang et al., 2004). Within the

cell glucose is phosphorylated by glucokinase (GK). This step is considered to be the rate-

limiting step for glucose metabolism in the pancreatic β cell and is the major mechanism for

glucose sensing (Dunn-Meynell et al., 2002). The metabolism of glucose increases the

intracellular ATP/ADP ratio causing the KATP channel to close leading to a membrane

depolarisation (Yang et al., 1999; Levin et al., 2001; Dunn-Meynell et al., 2002; Kang et al.,

2004). Hypothalamic KATP channels have also been shown to be crucial in the control of

hepatic glucose production whereby their activation lowers blood glucose by inhibiting glucose

production, specifically gluconeogenesis within the liver (Pocai et al., 2005). Thus, KATP

channels appear to be essential for integrating signals generated by glucose metabolism and

for signal transduction pathways activated via insulin and leptin receptors.

The mechanism by which GS neurones respond to changes in extracellular glucose is

unclear. The activation of a hyperpolarising chloride current (Song et al., 2001; Routh, 2002;

Fioramonti et al., 2007); and a mechanism involving the reduction in the depolarising activity

of the electrogenic Na+/ K+ pump within the LH (Oomura et al., 1974) has been suggested.

Together with findings that KATP channels are essential in the central control of

glucose homeostasis these results suggest a link between glucose responsiveness and

neurones involved in the control of energy homeostasis (Miki et al., 2001). Hence, glucose

responsiveness might be a useful tool to separate functional subsets of Arc neurones involved

in the control of specific aspects of energy balance from neurones controlling other aspects of

energy balance and autonomic processes.

Previous studies, electrophysiologically characterising the responsiveness of

hypothalamic neurones to glucose and other stimuli, have used non-physiological ranges of
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glucose; 0-20 mM (Anand et al., 1964; Oomura et al., 1964; Ashford et al., 1990; Spanswick

et al., 1997). Under normal physiological conditions neurones within the Arc would never be

exposed to 0 mM levels of glucose and rarely would they see glucose levels higher than 5 mM

(Silver & Erecinska, 1994) unless under pathological conditions. The levels of extracellular

glucose have been shown to be critical in the responsiveness of some neurones. Leptin can

either decrease the activity of POMC neurones or increase the activity of POMC neurones in

5 mM and 11 mM glucose, respectively (Ma et al., 2008). Thus, studies carried out under non-

physiological ranges of glucose, may need to be re-evaluated. Studies have now looked at

using a more physiological range of glucose when conducting experiments (Song et al., 2001;

Wang et al., 2004; Burdakov et al., 2005) but none have directly looked at and analysed the

differences in expression of subthreshold active conductances in physiological versus non-

physiological levels of glucose.

Active and passive membrane properties of a neurone shape its function, integration

and computational capability. Subthreshold conductances shape electrical activity, control

spontaneous firing and the membrane potential of individual neurones regulate synaptic

release of peptides (Dutton & Dyball, 1979; Gulledge et al., 2005; see chapter 3).

This study attempted to mimic two different sets of conditions where ambient levels of

extracellular glucose concentrations were maintained at different concentrations to determine

the impact of these glucose levels on the electrophysiological function and operation of Arc

neurones. Electrophysiological recordings were carried out in 10 mM glucose, thus mimicking

a putative hyperglycaemic state and 2 mM (30% of 6mM plasma glucose; Silver & Erecinska,

1994; de Vries et al., 2003) glucose imitating a putative euglycaemic state.

Electrophysiological recordings were therefore undertaken in the two differing glucose

concentrations and their active and passive membrane properties compared. This

electrophysiological comparison included an analysis of subthreshold active conductances,



Chapter 4

150

differentially expressed in Arc neurones, used as a basis of a functional classification of Arc

neurones (as described in chapter 3).

4.2 Results

Whole-cell recordings were obtained from a total of 538 neurones within the

hypothalamic Arc in vitro, defined as the area directly above the median eminence on both

sides of the 3rd ventricle. 313 were recorded in an extracellular glucose concentration of

2 mM (osmolarity was compensated with D-mannitol; see methods) and the remainder in a

glucose concentration of 10 mM (n=225). Differences in firing rate, passive and active

membrane conductances and expression of subthreshold active conductances were

compared and analysed in the two different glucose concentrations.

General membrane properties included the resting membrane potential, input

resistance and the firing rate of the neurone. Input resistances were calculated at steady-state

resting membrane potential from membrane responses to the smallest negative current

injection. The firing rate was established by counting the number of action potentials

discharged within a one minute period and the frequency of firing expressed in Hertz (Hz).

Other electrophysiological properties studied were current/voltage relations (I/V), membrane

time-constants (tau) and action potential wave-forms. I/V’s were carried out on each individual

neurone to explore the active conductances expressed by Arc neurones (See chapter 3).

Hypothalamic Arc neurones expressed a range of subthreshold active conductances.
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4.2.1 Passive membrane properties of neurones recorded in 10 mM and 2 mM

extracellular glucose

For all neurones recorded in 10 mM and 2 mM glucose aCSF, respectively, the

membrane potential, input resistance and firing rate were established. Spontaneous firing rate

could not be obtained for all neurones. An overall comparison is shown in Table 4.1. Bar

charts showing the mean, standard error of the mean and frequency histograms for each

passive membrane property in both glucose concentrations are shown in Figures 4.1 and 4.2

respectively.

4.2.1.1 Resting Membrane potential

The average resting membrane potential for neurones recorded in 10 mM glucose

and 2 mM glucose was -46.6 ± 0.4 mV (n=225; range -30 to -66 mV) and -45.9 ± 0.3 mV

(n=313; range -32 to -66 mV), respectively (Figure 4.1 A; Table 4.1). These data revealed no

significant difference between the resting membrane potentials of Arc neurones recorded in

10 and 2 mM extracellular glucose (P=0.13; two-tailed student's t-test). Frequency-

histograms plotted for both 10 mM and 2 mM glucose-containing aCSF followed a normal

distribution (Figure 4.2 A). However, the modes and therefore peaks of the distributions for

each concentration differed. The mode was taken as the bin containing the largest

percentage of neurones, -40 to -45 mV (28.9%) for neurones recorded in 10 mM as opposed

to - 45 to -50mV (30.4%) for 2 mM glucose. The median value was -46mV for both

concentrations of glucose.
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4.2.1.2 Neuronal input resistance

The mean neuronal input resistance of neurones recorded in 10 mM glucose was -

1643 ± 68 MΩ (n= 225; range 294 to 4682 MΩ) compared to that observed in 2 mM glucose

which amounted to 1493 ± 41 MΩ (n=313; range 170 to 4153 MΩ). There was a significant

difference in the neuronal input resistance observed in the two extracellular glucose

concentrations, input resistance being significantly higher in neurones recorded in 10 mM

glucose (p>0.05; Figure 4.1 B). Frequency histograms (Figure 4.2 B) plotted for both 10 mM

and 2 mM glucose-containing aCSF for the input resistance were skewed to the right. The

modes for each concentration were the same, with the largest percentage of neurones in 10

mM (25.4%) and 2 mM (23.1%) glucose falling within the range of 1200-1600 MΩ. The 

median values were 1450MΩ and 1347MΩ for 10 mM and 2 mM glucose-containing aCSF,

respectively. These data suggest that on average neurones recorded in 10 mM glucose aCSF

have a higher input resistance than those recorded in 2 mM glucose aCSF.

4.2.1.3 Firing rate

In neurones recorded in 10 mM extracellular glucose spontaneous action potential

firing rate was 1.1 ± 0.1 Hz (n= 105; range 0 to 7.5 Hz) and 1.6 ± 0.1 Hz (n= 267; range 0 to

9.7 Hz) in 2 mM glucose. Spontaneous firing rate was found to be significantly higher in 2 mM

compared to 10 mM extracellular glucose (P<0.01; see Figures 4.1C and 4.2C). Frequency

histograms revealed neurones recorded in 2 mM glucose-containing aCSF had a larger

proportion of neurones with a higher firing rate than those recorded in 10 mM. The modes for

each concentration were the same, with the largest percentage of neurones in 10 mM (27.6%)

and 2 mM (23.6%) glucose having a firing rate between 0-0.5 Hz. There was a also a greater
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proportion of neurones recorded in 10 mM aCSF (23.6%) that were silent, showing no

spontaneous suprathreshold activity than compared to those observed in 2 mM glucose-

containing aCSF (23.6%; see Figure 4.3). The median values were 0.43Hz and 0.8Hz for 10

mM and 2 mM glucose-containing aCSF, respectively, again highlighting the significantly

greater degree of spontaneous, suprathreshold activity in 2 mM extracellular glucose.

Table 4.1 General membrane properties of Arc neurones recorded in 2 mM and

10 mM extracellular glucose

4.2.2 The effects of different ambient extracellular glucose concentrations on

subthreshold active conductances expressed in Arc neurones.

In chapter 3 this study described 8 electrophysiologically distinct groups (termed

clusters) based on the expression of active conductances commonly observed within the Arc

namely, Ih, Ian, T-type like calcium conductance and Ia. These clusters were characterised

according to their differential expression of one or more of these active conductances. This

classification enabled the identification of a specific subset of orexigenic neurones (cluster 2),

All neurones

10 mM glucose 2 mM glucose Significance (P)

Membrane potential (mV) -46.6 ± 0.4

(n=225)

-45.9 ± 0.3

(n=313)

P=0.13 (ns)

Input Resistance (MΩ) 1643 ± 89

(n=225)

1493 ± 41

(n=313)

P < 0.05

Firing frequency (Hz) 1.1 ± 0.1

(n=104)

1.6 ± 0.1

(n=267)

P < 0.01
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that were subsequently identified as orexigen-sensitive NPY/AgRP-expressing conditional

pacemaker neurones (van den Top et al., 2004). Other clusters require further clarification of

their functional and operational significance. To determine the subthreshold active

conductances expressed by each individual neuron, I/V relationships were generated.

Hyperpolarising and depolarising current pulses of constant increment (step: amplitude 5-

20pA, duration 1200ms, 0.2Hz) were applied to each cell, and subsequent membrane

responses recorded.

4.2.2.1 Cluster 1

Cluster 1 neurones were defined as displaying anomalous inward rectification (Ian,

see chapter 3). The inward rectification was shown as a decrease in input resistance, as seen

by reduced voltage deflections to incremental negative current pulses, at hyperpolarised

membrane potentials, thus showing distinct membrane potential non-linearity.

The mean resting membrane potential of cluster 1 neurones recorded in 10 mM

glucose was -48.4. ± 1.4 mV (n=19; range -38 to -64 mV) and -45.2 ± 1.8 mV (n=21; range -

33 to -62 mV) in the presence of 2 mM glucose (Figure 4.4 Ai / Aii). Comparing the mean

resting membrane potentials of the two groups showed there was no significant difference

between cluster 1 neurones recorded in the presence of 10 mM or 2 mM glucose (P=0.2).

Frequency-histograms were (Figure 4.4 Ai) plotted for cluster 1 neurones recorded in 10 mM

and 2 mM glucose-containing aCSF. The modes for each concentration differed, with cluster 1

neurones recorded in 10 mM glucose having the highest percentage of neurones with resting

membrane potentials between -50 to -55mV (47.4%). In contrast in 2 mM glucose the highest

percentage of cluster 1 neurones had more depolarised resting membrane potentials falling

between -35 to -45mV. The median values for the resting membrane potentials were -50mV
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and -41mV for 10 mM and 2 mM glucose-containing aCSF, respectively. These findings

suggest more depolarised resting membrane potentials of cluster 1 neurones recorded in 2

mM glucose. However, increased numbers (n) would need to be obtained to confirm this.

The mean input resistance of cluster 1 neurones amounted to 2039 ± 277 MΩ (range 

556 to 4664 MΩ) in 10 mM glucose and 1691 ± 230 MΩ (range 589 to 4115 MΩ) in 2 mM 

glucose (P=0.3; Figure 3.4 Bi/Bii). The modes for each glucose concentration differed with the

largest percentage of neurones in 10 mM (33.3%) having an input resistance between 1200-

1600 MΩ and neurones in 2 mM (33.3%) commonly having a lower input resistance between 

800-1200 MΩ. The median values for the neuronal input resistance was 1626 MΩ and 1270

MΩ for 10 mM and 2 mM glucose-containing aCSF, respectively. Thus, although not

reaching statistical significance probably due to the insufficient numbers, the general trend

was that input resistance of cluster 1 neurones in 10 mM glucose was higher than that

observed in 2 mM glucose.

The firing rate of neurones in 10 mM glucose was 1.16 ± 0.36 Hz (range 0.02 to

2.6Hz; n=8) and in 2 mM a higher firing rate of 2.36 ± 0.53 (range 0 to 9.73 Hz; P=0.2; n=21

Figure 3.4 Ci/Cii). Neurones recorded in 10 mM glucose-containing aCSF had a higher

percentage of neurones (33.3%) with a firing rate between 0 to 0.5 Hz, compared to the

cluster 1 neurones recorded in 2 mM aCSF that had a mode of 1.5 to 2.0Hz (19.1%). Thus

again there appeared a trend towards a higher spontaneous firing rate in cluster 1 neurones

recorded in 2 mM glucose.

Membrane time-constants (tau) give an indication of the size of somatic and proximal

dendritic membrane surface area of a neurone. Membrane time-constants were taken from

the charging section (bi-exponential fit) of the voltage transient elicited by weak

hyperpolarising current pulses. The membrane time-constant of neurones recorded in 10 mM

extracellular glucose was 67.6 ± 8.7 ms and 64.1 ± 10.5 ms in 2 mM glucose, and were
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therefore not significantly different (P=0.8) suggesting cluster 1 neurones comprised of similar

populations of neurones in both concentrations of glucose tested. In the presence of 2 mM

glucose there was a slightly prolonged action potential duration (3.1 ± 0.2 ms) compared to

that observed in cluster 1 neurones in the presence of 10 mM glucose (2.8 ± 0.1 ms),

although this difference was not statistically significant (P=0.1). Closer inspection of the

anomalous inward rectification observed in cluster 1 neurones revealed no significant

differences in this active conductance in the two glucose concentrations. Neurones recorded

in 10 mM glucose had a mean relative rectification (input resistance at rest relative to input

resistance around -100mV) of 30.3 ± 4.1% at a mean holding potential of -100.4 ± 0.9. The

mean holding potential indicating the membrane potential to which the neurone was driven too

when carrying out the I/V relationship. Activation of Ian in 2 mM glucose amounted to a 31.0 ±

3.3% reduction in input resistance at a holding membrane potential of -100 ± 0.8 mV relative

to input resistance at rest. Thus there was no significant difference in the relative strength of

this conductance in either concentration of glucose (P=0.9).

In summary therefore cluster 1 neurones recorded in 2 mM extracellular glucose, on

average, had a lower input resistance and a higher firing rate than the corresponding cluster 1

neurones recorded in 10 mM extracellular glucose. Table 4.2 summarises all data obtained

for cluster 1 neurones.
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Table 4.2 Passive and active membrane properties of Cluster 1 neurones

4.2.2.2 Cluster 2

Cluster 2 neurones were defined as displaying an anomalous inward rectification (Ian)

and an A-like transient outward conductance (Ia) as described in chapter 3. The Ia manifests

as a delayed return to rest of the membrane response to hyperpolarisation following negative

current injections. The mean resting membrane potential of cluster 2 neurones recorded in 10

mM extracellular glucose was -45.3 ± 1.5 mV (range -35 to -50 mV; n=10) and -44 ± 1.9 mV

(range -35 to -55 mV; n=13) in 2 mM extracellular glucose (P=0.6; Figure 4.5 Ai/Aii).

Frequency-histograms were plotted for all cluster 2 neurones in both 10 mM and 2 mM

glucose-containing aCSF (Figure 4.5 Ai). The modes in each concentration differed, with

cluster 2 neurones recorded in 10 mM glucose having the highest percentage of neurones

occurring over a wide range of resting membrane potentials (-40 to -45mV, -45 to -50mV and -

50 to -55mV; 30%). In contrast in 2 mM glucose-containing aCSF, the highest percentage of

neurones were found with resting membrane potentials ranging between -35 to -40 mV

(38.4%), and were therefore more depolarised than the corresponding neurones in 10 mM

Cluster 1

10 mM glucose 2 mM glucose Significance (P)

Parameter

Membrane potential (mV) -48.4 ± 1.4 -45.2 ± 1.8 0.2

Input Resistance (MΩ) 2039 ± 277 1691 ± 230 0.3

Firing frequency (Hz) 1.16 ± 0.36 2.37 ± 0.53 0.2

Membrane time-constant (ms) 67.6 ± 8.7 64.1 ± 10.5 0.8

AP spike duration (ms) 2.8 ± 0.1 3.1 ± 0.2 0.1

Holding potential (mV) -100.4 ± 0.9 -100 ± 0.8 0.7

Ian (%) 30.3 ± 4.1 31.0 ± 3.3 0.9
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glucose. The median values for the resting membrane potential were -46mV and -43mV for 10

mM and 2 mM glucose-containing aCSF, respectively.

The mean input resistance of cluster 2 neurones amounted to 1835 ± 359 MΩ (range 

1012 to 4682 MΩ) in 10 mM glucose and 1593 ± 129 MΩ (range 1009 to 2671 MΩ) in 2 mM 

glucose. These differences in input resistance in the two concentrations of glucose were not

statistically significant (P=0.4; Figure 3.5 Bi/Bii). The mode for input resistance of cluster 2

neurones in both glucose concentrations were the same in 10 mM glucose (50%) and 2 mM

glucose (53.8%) having an input resistance ranging between 1200-1600 MΩ. The median

values for the neuronal input resistance were 1397 MΩ and 1506 MΩ for 10 mM and 2 mM 

glucose-containing aCSF, respectively.

The firing rate of cluster 2 neurones in 10 mM glucose was 1.9 ± 0.4 (range 0.1 to 3.7)

and in 2 mM a firing rate of 2.19 ± 0.3 Hz (range 0 to 6 Hz; P=0.7; Figure 3.5Ci/Cii) was

observed. For cluster 2 neurones recorded in both glucose concentrations the mode for firing

rate was 1.5-2.0 Hz. The median values for action potential discharge was 1.8 Hz and 1.9 Hz

for 10 mM and 2 mM glucose-containing aCSF, respectively.

The membrane time-constant of neurones recorded in 10 mM extracellular glucose

was 43.7 ± 7.0 ms and 43.9 ± 10.1 ms in 2 mM glucose, thus not significantly different

(P=0.9). There was no significant difference in action potential duration (P=0.8) at threshold in

the two different extracellular glucose concentrations.

Cluster 2 neurones express Ian which was relatively stronger in these neurones in 2

mM glucose. Neurones recorded in 10 mM glucose had a mean relative rectification (input

resistance change at rest relative to input resistance around -100mV) of 38.3 ± 4.6 % with the

corresponding value in 2 mM glucose being 45.5 ± 4.0 % (P=0.2). Thus a stronger

anomalous inward rectification was seen recorded in cluster 2 neurones in 2 mM glucose

aCSF, although this was not statistically significant (P=0.2). Properties of Ia were compared in



Chapter 4

159

the two different glucose concentrations, care being taken to compare properties of this

conductance at similar membrane potentials to avoid indirect errors reflecting differences in

membrane/holding potential. In 2 mM glucose Ia was slightly larger in amplitude indicated by

an increase in amplitude at 50% decay-time of 7.3 ± 0.6 mV, the corresponding value in 10

mM glucose-containing aCSF being 6.5 ± 0.6 mV. However this difference did not reach

statistical significance (P=0.4). The duration of activation of Ia was shorter in the presence of 2

mM (1304 ± 179ms) glucose than in 10 mM glucose (2373 ± 578ms). However, again, these

differences in the properties of this conductance did not reach statistical significance (P=0.07)

probably reflecting the low numbers recorded. Table 4.3 summarises all data obtained for

cluster 1 neurones.

Table 4.3 Passive and active membrane properties of Cluster 2 neurones

Cluster 2

10 mM glucose 2 mM glucose Significance (P)

Parameter

Membrane potential (mV) -45.3 ± 1.5 -44.0 ± 1.9 0.6

Input Resistance (MΩ) 1835 ± 359 1593 ± 129 0.4

Firing frequency (Hz) 1.94 ± 0.4 2.19 ± 0.4 0.7

Membrane time constant (ms) 43.4 ± 7.0 41.9 ± 9.3 0.9

AP spike duration (ms) 3.2 ± 0.1 3.3 ± 0.2 0.8

Holding potential (mV) -97.2 ± 1.6 -98.7 ± 0.3 0.3

Ian (%) 38.3 ± 4.6 45.5 ± 3.9 0.2

Ia ½ decay time (mV) 6.5 ± 0.5 7.3 ± 0.7 0.4

Ia duration 2372 ± 578 1304 ± 179 0.07
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4.2.2.3 Cluster 3

Cluster 3 neurones were identified on the basis that they expressed no obvious

subthreshold active conductances. These neurones in 10 mM glucose had a resting

membrane potential of -45.2 ± 3.9 mV (range -30 to -66 mV; n=9), and in 2 mM glucose, -44.0

± 1.9 mV (range -34 to -56 mV; n=13), thus not statistically significant in the two glucose

concentrations (P=0.76 Figure 4.6 Ai/Aii). The mode for cluster 3 neurones in both glucose

concentrations were the same with the majority of neurones in 10 mM glucose (33.3%) and 2

mM glucose (38.4%) having a resting membrane potential ranging between -35 to -40 mV.

The median values for the membrane potential were -42 mV and -39 mV for 10 mM and 2 mM

glucose-containing aCSF, respectively.

The mean input resistances of cluster 3 neurones in 10 mM and 2 mM glucose were

1700 ± 315 MΩ (range 694 to 3417 MΩ) and 1379 ± 151MΩ (range 671 to 2587 MΩ),

respectively. The input resistance modes for each glucose concentration differed with the

largest percentage of neurones in 10 mM glucose being divided equally and ranging between

800-1200 MΩ, 1200-1600 MΩ and 1600-2000 MΩ (22.2%; Figure 4.6 Bi/Bii). However, in 2

mM glucose aCSF, cluster 3 neurones with input resistance ranging between 800-1200 MΩ

formed the largest population (38.4%). The median values for the neuronal input resistances

of cluster 3 neurones were 1471 MΩ and 1287 MΩ in 10 mM and 2 mM glucose-containing

aCSF, respectively. Thus there was a trend for cluster 3 neurones to express a higher

neuronal input resistance when exposed to an ambient glucose concentration of 10 mM

compared to 2 mM.

The mean spontaneous firing frequency of cluster 3 neurones in 10 mM glucose-

containing aCSF was 1.26 ± 0.4 Hz (range 0 to 3.03 Hz) and in 2 mM glucose a slightly

higher average spontaneous firing rate of 2.0 ± 0.7 Hz (range 0 to 6.57 Hz) although this
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difference did not reach statistical significance (P=0.37; see Figures 4.6 Ci/Cii ). The majority

of neurones in both 2 mM and 10 mM glucose-containing aCSF exhibited firing rates between

0-0.5 Hz.

The membrane time-constant of neurones recorded in 10 mM extracellular glucose

was 31.5 ± 8.0 ms, the corresponding value in 2 mM extracellular glucose amounting to 28.1

± 4.2 ms in 2 mM (P=0.73). Action potential duration in 10 mM glucose was 3.4 ± 0.3ms with

no significant difference in 2 mM glucose which was associated with a mean duration of 3.3 ±

0.2 ms (P=0.84). Table 4.4 summarises all data obtained for cluster 3 neurones.

Table 4.4 Passive and active membrane properties of Cluster 3 neurones

4.2.2.4 Cluster 4

Cluster 4 neurones displayed a voltage- and time-dependent hyperpolarisation-

activated non-selective cation conductance (Ih), which presented as a depolarising ‘sag’ of the

membrane potential response when the cell was injected with negative current. This ‘sag’

became more prominent at more negative membrane potentials.

In 10 mM glucose, cluster 4 neurones had a mean resting membrane potential of -

48.3 ± 1.6 mV (range -38 to -65 mV; n=21) and in 2 mM glucose a value of -47.0 ± 1.7 mV

Cluster 3

10 mM glucose 2 mM glucose Significance (P)

Parameter

Membrane potential (mV) -45.2 ± 3.9 -44.0 ± 1.9 0.7

Input Resistance (MΩ) 1700 ± 315 1379 ± 151 0.3

Firing frequency (Hz) 1.26 ± 0.4 2.05 ± 0.7 0.3

Membrane time constant (ms) 31.5 ± 8.0 28.1 ± 4.2 0.7

AP spike duration (ms) 3.4 ± 0.3 3.3 ± 0.2 0.8
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(range -35 to -60 mV; n=19;) was observed, There was no significant difference in the

membrane potentials recorded in 10 mM versus 2 mM extracellular glucose (P=0.6; Figure

4.7 Ai/Aii). However the modes observed for each glucose concentration differed with the

largest percentage of neurones recorded in 10 mM glucose aCSF (38%) having a membrane

potential ranging between -40 to -45 mV. In contrast the mode for neurones recorded in 2 mM

glucose aCSF was -50 to -55 mV (26.3%). The median values for the resting membrane

potential were -46mV and -48mV in 10 mM and 2 mM glucose-containing aCSF, respectively.

Thus there was a trend for the resting membrane potential to sit at more negative values in 2

mM as opposed to 10 mM extracellular glucose.

The mean input resistances of cluster 4 neurones were 1397 ± 167 MΩ (range 294 

to 3010 MΩ) and 1684 ± 146 MΩ (range 854 to 2698 MΩ) in 10 mM and 2 mM glucose, 

respectively (P=0.2; Figure 4.7 Bi/Bii). The majority of neurones recorded in 10 mM and 2 mM

glucose had an input resistance ranging between 800-1200 MΩ (38% and 39/%, for 10 mM 

and 2 mM glucose, respectively). The median values for the neuronal input resistance were

1152 MΩ and 1693 MΩ for 10 mM and 2 mM glucose-containing aCSF, respectively.

The mean firing frequency of cluster 4 neurones in 10 mM glucose aCSF was 1.8 ±

0.6 Hz (range 0 to 5.3 Hz) and in 2 mM glucose a slightly lower average of 1.1 ± 0.3 Hz

(range 0 to 2.51 Hz) was observed. These differences in spontaneous firing rate were not

statistically significant (P=0.2; Figure 4.7 Ci/Cii). The majority of neurones in both 2 mM and

10 mM glucose-containing aCSF exhibited firing rates between 0 to 0.5 Hz with median

values of 0.8 Hz and 1.5 Hz, respectively.

The membrane time-constant of neurones recorded in 10 mM extracellular glucose

was 49.0 ± 10.0 ms and the corresponding value in 2 mM glucose amounting to 31.6 ± 7.7

ms. Thus there was a clear trend toward a reduced membrane time-constant for cluster 4

neurones in 2 mM glucose although this value did not quiet reach statistical significance
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(P=0.1). Action potential duration in 10 mM was 3.0 ± 0.1ms with no significant difference in 2

mM glucose which gave a mean duration of 3.1 ± 0.2 ms (P=0.19).

The change in membrane potential between instantaneous and steady-state responses was

used as a measure of the magnitude of Ih. In 10 mM extracellular glucose, the activation of Ih

gave rise to depolarising sag of amplitude 7.7 ± 0.7 mV at a mean membrane potential of -

102.9 ± 1.1 mV. This is equivalent to a decrease in input resistance of 14.3 % relative to peak

input resistance upon activation of Ih indicated in the table below as the input resistance ratio.

In contrast in 2 mM glucose the activation of Ih gave rise to a depolarising sag of amplitude

6.5 ± 1.9 mV at a mean membrane potential of -104.4 ± 0.8 mV. This is equivalent to a

decrease in input resistance of 24.7% upon activation of Ih. Thus the relative strength of Ih in

cluster 4 neurones appears stronger in an extracellular bathing medium of 2 mM.

In summary therefore cluster 4 neurones recorded in 2 mM extracellular glucose, on

average, express a higher neuronal input resistance and a lower firing rate than those

neurones recorded in 10 mM. Furthermore, in 2 mM glucose-containing aCSF, Ih appears to

be relatively 'stronger' although this may also reflect an indirect consequence of the trend for

cluster 4 neurones to express a higher neuronal input resistance. Table 4.5 summarises all

data obtained for cluster 4 neurones.
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Table 4.5 Passive and active membrane properties of Cluster 4 neurones

4.2.2.5 Cluster 5

Cluster 5 neurones were identified by the expression of a T-type calcium conductance

and Ih. In 10 mM glucose cluster 5 neurones had a mean resting membrane potential of -48.1

± 1.2 mV (range -32 to -66 mV; n=41) and in 2 mM glucose a value of -47.3 ± 0.7 mV was

observed (range -34 to -62 mV; n=66). No significant difference between the two glucose

concentrations was observed with regard to membrane potential (P=0.5; Figure 4.8 Ai/Aii).

Frequency histograms followed a normal distribution for all clusters 5 neurones in both 10 mM

and 2 mM glucose-containing aCSF. The majority of cluster 5 neurones in both glucose

concentrations had a resting membrane potential ranging between -45 to -50 mV. The median

Cluster 4

10 mM glucose 2 mM glucose Significance (P)

Parameter

Membrane potential (mV) -48.3 ± 1.6 -47.0 ± 1.7 0.6

Input Resistance (MΩ) 1397 ± 167 1684 ± 474 0.2

Firing frequency (Hz) 1.8 ± 0.6 1.1 ± 0.3 0.2

Membrane time constant (ms) 49.0 ± 10.0 31.6 ± 7.7 0.1

AP spike duration (ms) 3.0 ± 0.1 3.1 ± 0.2 0.8

Amplitude of Ih (mV) 7.7 ± 0.7 6.5 ± 1.9 0.5

Input resistance ratio (%) 14.3 ± 1.2 24.7 ± 10.0 0.29
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values for the resting membrane potential were -47mV and -47mV in 10 mM and 2 mM

glucose-containing aCSF, respectively.

The mean input resistance amounted to 1529 ± 96 MΩ (range 462 to 3582 MΩ) in 

10 mM glucose with a corresponding value of 1430 ± 94 MΩ (range 386 to 3466 MΩ) in 2 

mM glucose (P=0.4; Figure 4.8 Bi/Bii). The modes for each glucose concentration differed

with the largest percentage of cluster 5 neurones in 2 mM extracellular glucose ranging

between 400-1200 MΩ (22.7%). In 10 mM glucose-containing aCSF, the largest percentage

of cluster 5 neurones had input resistances ranging between 1200-1600 MΩ (37.7%). The 

median values for the neuronal input resistance were 1503 MΩ and 1263 MΩ for 10 mM and

2 mM glucose-containing aCSF, respectively. Thus, cluster 5 neurones displayed a tendency

towards higher neuronal input resistances when bathed in extracellular glucose

concentrations of 10 mM compared to 2 mM.

The mean spontaneous firing rate of neurones in 10 mM glucose was 0.7 ± 0.2 Hz

(n=18; range 0 to 4.4 Hz) with the corresponding value in 2 mM glucose amounting to 0.8 ±

0.2 Hz (n= 59; range 0 to 6.26 Hz), thus not statistically significant (P=0.80; Figure 4.8Ci/Cii).

The membrane time-constant of neurones recorded in 10 mM extracellular glucose

was 39.3 ± 2.9 ms and 35.2 ± 2.9 ms in 2 mM glucose, and were therefore not significantly

different (P=0.3).

Action potential duration in 10 mM extracellular glucose was 3.5 ± 0.3 ms with no significant

difference in 2 mM glucose, the latter having a mean duration of 3.1 ± 0.1 ms (P=0.1).

In 10 mM extracellular glucose, activation of Ih gave rise to a depolarising sag, in

response to hyperpolarising current injection, of amplitude 5.9±0.5 mV at a mean membrane

potential of -103.9 ± 0.9 mV. This is equivalent to a decrease in input resistance of 10.7 %

upon steady-state activation of Ih. In contrast in 2 mM glucose the activation of Ih gave rise to

a depolarising sag of amplitude 8.2 ± 0.4 mV at a mean membrane potential of -104.3 ± 0.6
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mV. This is equivalent to a decrease in input resistance of 14.5% upon activation of Ih. The

decreases in input resistance observed in the two concentrations of glucose-containing aCSF

were significantly different (p < 0.01). Thus cluster 5 neurones recorded in 2 mM glucose

aCSF appear to have a significantly stronger Ih (larger amplitude) than those cluster 5

neurones recorded in 10 mM glucose.

Cluster 5 neurones also exhibit a T-type calcium conductance. Activation of this

active conductance in 10 mM glucose gave an average membrane depolarisation of 10.0 ±

1.2mV when activated following hyperpolarisation from a membrane potential of -47.2 ±

1.3mV (n=37). In 2 mM extracellular glucose activation of the T-type conductance gave a

mean membrane depolarisation of 10.5 ± 0.7mV when activated by hyperpolarisation from a

membrane potential of -47.8 ± 0.7 (n=65). These values for the amplitude of the T-type

conductance were not significantly different between the two concentrations of glucose tested.

Table 4.6 summarises all data obtained for cluster 5 neurones.

Table 4.6 Passive and active membrane properties of Cluster 5 neurones

Cluster 5

10 mM glucose 2 mM glucose Significance (P)

Parameter

Membrane potential (mV) -48.1 ± 1.2 -47.3 ± 0.7 0.5

Input Resistance (MΩ) 1529 ± 96 1430 ± 94 0.4

Firing frequency (Hz) 0.75 ± 0.2 0.85 ± 0.2 0.8

Membrane time constant (ms) 39.3 ± 2.9 35.2 ± 2.9 0.3

AP spike duration (ms) 3.5 ± 0.3 3.1 ± 0.0 0.1

Amplitude of Ih (mV) 5.9 ± 0.5 8.2 ± 0.4 P < 0.01

Input resistance ratio (%) 10.7 ± 0.9 14.4. ± 0.7 P < 0.01

T-type amplitude (mV) 10.0 ± 1.2 10.5 ± 0.7 0.7
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4.2.2.6 Cluster 6

Cluster 6 neurones expressed only a T-type calcium conductance, exhibited as a

rebound depolarisation on termination of negative current injection. In 10 mM glucose cluster

6 neurones had a mean resting membrane potential of -44.9 ± 0.8 mV (n=59; range -30 to -60

mV) compared to a mean resting membrane potential of -44.7 ± 0.7 mV (n=75; range -32 to -

63 mV) for cluster 6 neurones exposed to an extracellular glucose concentration of 2mM.

These differences were not statistically significant (P=0.8; Figure 4.9 Ai/Aii). Frequency-

histograms followed a normal distribution for all clusters 6 neurones in both 10 mM and 2 mM

glucose-containing aCSF. The majority of neurones in both glucose concentrations had a

membrane potential ranging between -45 to -50mV. The median values for the resting

membrane potential for both populations was -45mV in 10 mM and 2 mM glucose-containing

aCSF, respectively for neurones identified as cluster 6.

The mean input resistance was 1404 ± 89 MΩ (range 435 to 3433 MΩ) and 1475 ± 

70 MΩ (range 170 to 3314 MΩ) in 10 mM and 2 mM glucose, respectively (P=0.5; Figure 4.9

Bi/Bii). Input resistances for cluster 6 neurones recorded in 10 mM glucose aCSF when

plotted as a frequency histogram were slightly skewed to the left. This indicated that there

was a greater proportion of neurones recorded in 10 mM glucose aCSF with a relatively lower

input resistance than those recorded in 2 mM glucose-containing aCSF. The greatest

proportion of neurones recorded in 10 mM glucose aCSF had an input resistance ranging

between 800-1200 MΩ (27.1%). In contrast the largest proportion of neurones recorded in 2

mM glucose-containing aCSF had an input resistance ranging between 1200-1600 MΩ

(22.5%). The median values for the neuronal input resistance were 1295 MΩ and 1468 MΩ for

10 mM and 2 mM glucose-containing aCSF, respectively for neurones identified as cluster 6.
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Spontaneous firing rates in the two concentrations varied significantly (p < 0.01). In

10 mM glucose the mean spontaneous firing rate was 0.39 ± 0.17 Hz (n=28; range 0 to 4.56

Hz). In contrast, in 2 mM glucose, spontaneous firing rate was 1.24 ± 0.19Hz (n= 59; 0 to

5.68 Hz; Figure 4.9 Ci/Cii). Plotting frequency histograms reveals that cluster 6 neurones

recorded in 2 mM extracellular glucose-containing aCSF tended to higher firing rates, as

shown by the ‘tail’ in the graph shown in Figure 4.9 Ci.

The membrane time-constant of neurones recorded in 10 mM extracellular glucose

was 37.9 ± 2.6 ms and 29.2 ± 2.2 ms in 2 mM extracellular glucose. There was a significant

difference in the membrane time-constant of these neurones in the two different extracellular

glucose concentrations (p < 0.05). Action potential duration in 10 mM glucose was 3.7 ± 0.1

ms and the corresponding value in 2 mM glucose of 3.3± 0.0 ms being significantly lower than

that observed in 10 mM (P < 0.05).

Activation of the T-type conductance gave a mean membrane depolarisation of 8.4 ±

0.7 mV and 9.2 ± 0.6 mV , following hyperpolarisation from a membrane potential of -47.2 ±

0.9 and -44 .2± 0.7 in 10 mM and 2 mM extracellular glucose, respectively. The differences in

the amplitude of the T-type calcium conductance in the two different concentrations of glucose

were not statistically significant (P =0.4). Table 4.7 summarises all data obtained for cluster 6

neurones.
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Table 4.7 Passive and active membrane properties of Cluster 6 neurones

4.2.2.7 Cluster 7

Cluster 7 neurones expressed Ian and a T-type calcium conductance. The mean

resting membrane potential of cluster 7 neurones recorded in 10 mM extracellular glucose

was -46.0 ± 0.9 mV (range -39 to -59 mV; n=29) and -45.8 ± 1.3mV (range -33 to -62 mV;

n=33; Figure 4.10 Ai/Aii) in the presence of 2 mM extracellular glucose (P=0.9). The majority

of neurones in both glucose concentrations had resting membrane potentials ranging between

-45 to -50 mV. The median values for the resting membrane potential were -45 mV and -45

mV in 10 mM and 2 mM glucose-containing aCSF, respectively for neurones identified as

cluster 7.

The mean input resistance amounted to 1781 ± 153 MΩ (range 623 to 3577 MΩ) in 

10 mM glucose and 1653 ± 121 MΩ (range 665 to 4323 MΩ) in 2 mM glucose, values that 

were not significantly different (P=0.5; Figure 4.10 Bi/Bii). The modes for each glucose

concentration were the same with the largest percentage of neurones in 2 mM and 10 mM

glucose-containing aCSF ranging between 1200-1600 MΩ accounting for 39% and 25% of 

the populations, respectively. The median values for the neuronal input resistance were 1595

Cluster 6

10 mM glucose 2 mM glucose Significance (P)

Parameter

Membrane potential (mV) -44.9 ± 0.8 -44.7 ± 0.7 0.8

Input Resistance (MΩ) 1404 ± 89 1475 ± 70 0.5

Firing frequency (Hz) 0.39 ± 0.17 1.24 ± 0.19 P < 0.01

Membrane time-constant (ms) 37.9 ± 2.9 29.2 ± 2.2 P < 0.05

AP spike duration (ms) 3.7 ± 0.1 3.3 ± 0.0 P < 0.05

T-type amplitude (mV) 8.4 ± 0.7 9.2 ± 0.6 0.4
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MΩ and 1488 MΩ in 10 mM and 2 mM glucose-containing aCSF, respectively for neurones

identified falling under cluster 7.

The spontaneous firing rate of neurones in 10 mM glucose-containing aCSF was 2.3

± 0.8Hz (n=10; range 0 to 7.5 Hz) and in 2 mM a lower firing rate of 1.87 ± 0.3 Hz (n=29; 0 to

6.5 Hz; Figure 4.10 Ci/Cii) although this difference did not reach statistical significance

(P=0.5).

The membrane time-constant of neurones recorded in 10 mM extracellular glucose

was 46.1 ± 3.0 ms with the corresponding value in 2 mM glucose amounting to 43.3 ± 3.2 ms

with no statistically significant difference between the two (P=0.5). Neurones recorded in 10

mM glucose had a mean relative rectification (input resistance at rest relative to input

resistance around -100 mV) of 23.2 ± 2.6 % with the corresponding value in 2 mM glucose-

containing aCSF being significantly higher at 30.6 ± 2.6% (p <0.05). Thus a stronger

rectification was seen in 2 mM glucose-containing aCSF. Activation of the T-type conductance

gave a mean membrane depolarisation of 9.7 ± 1.4mV and 9.6 ± 1.0 mV, following

hyperpolarisation from a resting membrane potential of -48.3 ± 1.1mV and -46.1 ± 1.3mV, in

10 mM and 2 mM glucose, respectively. Thus there were no statistically significant

differences between the amplitudes of T-type conductances recorded under the two different

glucose concentrations. Table 4.8 summarises all data obtained for cluster 7 neurones.
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Table 4.8 Passive and active membrane properties of Cluster 7 neurones

4.2.2.8 Cluster 8

Cluster 8 neurones were identified by the expression of a T-type calcium conductance,

Ih and Ian. The mean resting membrane potential of neurones recorded in 10 mM glucose was

-46.7 ± 1.4mV (n= 37; range -32 to -62 mV) and -46.6 ± 0.9 mV (n=67; range -32 to -66 mV)

in the presence of 2 mM extracellular glucose (Figure 4.11 Ai / Aii). Comparing the membrane

potentials of the two groups revealed no significant difference between the two populations of

neurones recorded in these concentrations of extracellular glucose (P=0.9). Frequency

histograms were plotted for cluster 8 neurones in both 10 mM and 2 mM glucose-containing

aCSF (see Figure 4.11 Ai). The modes for resting membrane potential for each population

exposed to these concentrations of glucose were the same, with all cluster 8 neurones

recorded in both 10 mM and 2 mM glucose-containing aCSF having the highest number of

neurones with resting membrane potentials ranging between -45 to -50 mV, accounting for

45.5% of the cluster 8 neurones observed in 10 mM extracellular glucose and 23.8% of the

population of cluster 8 neurones observed in 2 mM glucose. The median values for the resting

Cluster 7

10 mM glucose 2 mM glucose Significance (P)

Parameter

Membrane potential (mV) -46.0 ± 0.9 -45.8 ± 1.3 0.9

Input Resistance (MΩ) 1781 ± 153 1653 ± 121 0.5

Firing frequency (Hz) 2.3 ± 0.8 1.8 ± 0.3 0.5

Membrane time-constant (ms) 46.1 ± 3.0 43.3 ± 3.2 0.6

AP spike duration (ms) 3.5 ± 0.2 3.0 ± 0.1 0.1

Holding potential (mV) -100.7 ± 0.6 -100.8 ± 0.6 0.8

Ian (%) 23.2 ± 2.6 30.6 ± 2.6 P < 0.05

T-type amplitude (mV) 9.7 ± 1.4 9.6 ± 1.0 0.9
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membrane potentials were -46mV and -46mV for 10 mM and 2 mM glucose-containing aCSF,

respectively.

The mean input resistance amounted to 1651 ± 113 MΩ (range 500 to 3333 MΩ) in

10 mM glucose and 1385 ± 95 MΩ (range 288 to 3901 MΩ) in 2 mM glucose (P=0.08; Figure

4.11Bi/Bii). The median values for the neuronal input resistances were 1575 MΩ and 1220

MΩ in 10 mM and 2 mM glucose-containing aCSF, respectively for neurones identified as

cluster 8.

Spontaneous firing rates in the two concentrations varied significantly (P < 0.05). In

10 mM glucose the mean firing rate was 1.16 ± 0.3 Hz (range 0 to 5.7 Hz; n=28). In contrast

in 2 mM glucose firing rate was higher with a value of 2.2 ± 0.2Hz (0 to 7.5Hz; n= 59; see

Figure 4.11 Ci/Cii). Plotting frequency-histograms reveals that cluster 8 neurones recorded in

2 mM glucose aCSF tended to higher firing rates, as suggested by the ‘tail’ in the distribution

plot (Figure 4.11 Ci).

The membrane time-constant of neurones recorded in 10 mM extracellular glucose was 65.5

± 6.1 ms and 60.0 ± 4.0ms in 2 mM glucose, and were therefore not significantly different

(P=0.4). Action potential duration in 10 mM extracellular glucose was 3.1 ± 0.1 ms with no

significant difference in 2 mM glucose, (P=0.4) where the corresponding value amounted to

3.1 ± 0.0 ms.

The difference in peak amplitude between the instantaneous and steady-state membrane

potential responses to hyperpolarising current injection was used as a measure of the size of

Ih. In 10 mM extracellular glucose, activation of Ih gave rise to depolarising sag of amplitude

5.1 ± 0.4 mV at a mean membrane potential of -101.6 ± 0.8mV. This is equivalent to a

decrease in input resistance of 9.7 % upon activation of Ih. In contrast in 2 mM glucose the

activation of Ih gave rise to a depolarising sag of amplitude 9.2 ± 0.4 mV at a mean

membrane potential of -100.6 ± 0.4mV. This is equivalent to a decrease in input resistance of
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enhanced in cluster 8 neurones compared to Ih observed in these neurones in 2 mM glucose

(P <0.001).

Neurones recorded in 10 mM glucose had a mean rectification percentage (input

resistance at rest relative to input resistance around -100mV) of 34.1 ± 2.6% and in 2 mM

extracellular glucose a lower value of 24.8 ± 2.0% was recorded. Thus there was an

apparent enhancement of the anomalous inward rectification in the presence of 10 mM

compared to 2 mM extracellular glucose (P<0.001). Activation of the T-type conductance

gave mean rebound membrane depolarisations of 8.1 ± 1.2mV and 8.6 ± 0.8 mV, following

membrane hyperpolarisation from resting potentials of -48.7 ± 1.6mV and -47.0 ± 0.8mV in 10

mM and 2 mM glucose, respectively. Thus there was no significant difference in the

amplitude of the rebound depolarisation in these two different ambient extracellular glucose

concentrations. Table 4.9 summarises all data obtained for cluster 8 neurone

Table 4.9 Passive and active membrane properties of Cluster 8 neurones

Cluster 8

10 mM glucose 2 mM glucose Significance (P)

Parameter

Membrane potential (mV) -46.7 ± 1.0 -46.6 ± 0.9 0.9

Input Resistance (MΩ) 1651 ± 113 1385 ± 95 0.08

Firing frequency (Hz) 1.16 ± 0.3 2.26 ± 0.2 P < 0.05

Membrane time-constant (ms) 65.5 ± 6.1 60.0 ± 4.0 0.4

AP spike duration (ms) 3.1 ± 0.1 3.1 ± 0.0 0.9

Amplitude of Ih (mV) 5.1 ± 0.4 9.2 ± 0.4 P < 0.001
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Input resistance ratio (%) 9.7 ± 1.0 25.4 ± 1.7 P < 0.001

T-type amplitude (mV) 8.1 ± 1.2 8.59 ± 0.8 0.7

Holding potential (mV) -100.7 ± 0.8 -100.6 ± 0.4 0.18

Ian (%) 34.1 ± 2.6 24.8 ± 2.0 P < 0.001

Ih

Ian
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4.3 Discussion

The aim of the present study was to investigate the effects of physiologically- and

pathophysiologically-relevant glucose concentrations, on the passive and active subthreshold

electrophysiological properties of hypothalamic Arc neurones. 2 mM glucose aCSF was used

to mimic a putative euglycaemic state and 10 mM glucose aCSF was used to emulate a

putative hyperglycaemic state.

Hypothalamic slices were prepared and transferred to a recording chamber in either

10 mM or 2 mM glucose-containing aCSF where they were continually perfused with the

same glucose concentration as they were prepared in. The composition of aCSF in in vitro

slice preparations has been shown to be of fundamental importance as it dictates neuronal

excitability and affects protein synthesis (An et al., 2008). Neurones were recorded from the

Arc in prescribed euglycaemic (2mM glucose) and hyperglycaemic (10mM glucose) conditions

and fundamental electrophysiological properties of the neurones compared in these

extracellular glucose levels.

Glucose is essential for the correct functioning of many biological systems and

provides the brain with its primary energy source. Neurones within hypothalamic nuclei, in

particular the lateral hypothalamus (LH) and ventromedial nucleus (VMN), and more recently

the Arc, have been reported to use glucose as a signalling molecule to regulate electrical

excitability and neuronal firing (Anand et al., 1964; Oomura et al., 1964; Spanswick et al.,

1997; Muroya et al., 1999; Ibrahim et al., 2003; Burdakov et al., 2005). These function-specific

glucose-sensing neurones are thought to be crucial for the homeostatic control of glucose

levels, effectively forming neural circuits and key components of the counter-regulatory

feedback mechanisms and pathways responsible for maintaining glucose levels within narrow

limits.
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Glucose levels are tightly controlled by multiple homeostatic systems within the body

in order to avoid serious pathological conditions such as diabetes. Plasma glucose levels

peak and trough after and before meals and are under circadian control (La Fleur et al., 1999).

When plasma levels are in the euglycaemic range of 5-8 mM this corresponds to brain

glucose levels of 1-2.5 mM (Silver & Erecinska, 1994). In a hyperglycaemic state when

plasma levels rise to 15-17 mM, brain glucose levels have been suggested to rise in parallel

to as much as 4.5 to 5.5 mM (Silver & Erecinska, 1994). However, the absolute

concentrations of glucose that the Arc is exposed to remains unclear. With the hypothalamic

Arc being in close proximity to a compromised BBB it has long been suggested that this area

of the brain may be exposed too much higher concentrations of glucose than the majority of

the rest of the brain. Further work is needed to fully address this issue.

Classic experiments studying glucose-sensing neurones within the hypothalamus

used glucose levels outside of the normal physiological range (0-20 mM; Anand et al., 1964;

Oomura et al., 1964; Ashford et al., 1990; Spanswick et al., 1997). It has been shown that

changes in extracellular concentrations of glucose initiate changes in neuronal excitability of

some neurones and hence their functional output (Ma et al., 2008). Certain stimuli can either

excite or inhibit neurones depending on the concentration of extracellular glucose. For

example, leptin can either decrease or increase the activity of POMC neurones in 5 mM and

11 mM glucose, respectively (Ma et al., 2008).

Artificial CSF with a composition comprised of 10 mM glucose is routinely used in whole-cell

electrophysiological recordings from brain slice preparations including the hypothalamic Arc

(Spanswick et al., 1997; Ibrahim et al., 2003; van den Top et al., 2004). However, 10 mM may

be an excessive amount to expose Arc neurones to, and may even be interpreted as

mimicking a hyperglycaemic state (Routh, 2002; de Vries et al., 2003; Mayer et al., 2006).

Thus, this study set out to investigate whether there are differences in electrophysiological
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properties and the functional operation of Arc neurones and circuits under physiological

glucose concentrations (2 mM) versus a putative pathophysiological concentration (10 mM).

The major findings of this study revealed significant differences in some active and

passive membrane properties of neurones recorded in 2 mM glucose-containing aCSF and

10 mM glucose-containing aCSF. Specifically, the neuronal input resistance and the firing

frequency of neurones significantly differed in each glucose concentration. The neuronal

input resistance was significantly higher in Arc neurones recorded in 10 mM compared to 2

mM extracellular glucose whereas the spontaneous firing rate was higher in Arc neurones

exposed to 2 mM glucose compared to 10 mM glucose aCSF. However, there was no overall

significant change in the resting membrane potential of these neurones. Significant

differences in the expression of subthreshold active conductances were also observed,

particularly the magnitude of Ih was enhanced and the duration of the A-like transient outward

conductance was reduced in 2 mM glucose-containing aCSF compared to 10 mM. The major

findings of this study are summarised in Figure 4.11, which shows sample electrophysiological

recordings from 'typical' neurones recorded in 10 mM and 2 mM glucose-containing aCSF.

The resting membrane potential was similar for neurones recorded in 10 mM and 2

mM extracellular glucose. These observations are similar to those reported previously by

Claret et al., (2007). These investigators reported no significant changes in the resting

membrane potential when reducing the glucose concentration from 10 mM to 2 mM in mouse

hypothalamic slice preparations.

Neuronal input resistance was significantly different in neurones recorded in the two

extracellular glucose concentrations tested in this study. Neurones recorded in 2 mM glucose-

containing aCSF had a significantly lower neuronal input resistance than those neurones

recorded in 10 mM glucose. These results are in contrast to those found by Fioramonti et al.,
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(2004) showing that with a higher concentration of glucose (20 mM) there is reduction in input

resistance relative to neurones recorded in a more physiological glucose concentration (5

mM). This suggests that neurones recorded in 2 mM glucose may have one or more

conductances activated, or relatively more activated than those recorded in 10 mM glucose. A

possible ion channel candidate for this role is the KATP channel which has been strongly

implicated in glucose-sensing in the hypothalamus previously (Ashford et al., 1990; Rowe et

al., 1996; Spanswick et al., 1997; Lee et al., 1999; Spanswick et al., 2000; Miki et al., 2001).

Thus in theory in 2 mM glucose-containing aCSF a larger number of KATP channels may be

open than in 10 mM glucose where more may be closed. Raising levels of extracellular

glucose increases the intracellular ATP/ADP ratio causing the KATP channel to close leading to

membrane depolarisation (van den Top et al., 2007). For general review see (Nichols, 2006).

However, to fully elucidate if indeed this channel is involved, further work will need to be

carried out. For example, comparing the sensitivity of neurones to the sulphonylureas

tolbutamide or glibenclamide, both of which would be predicted more effective on neurones at

rest, in 2 mM glucose, compared to 10 mM. When looking closely at the

electrophysiologically defined clusters, all groups apart from clusters 4 and 6 had a mean

overall higher neuronal input resistance in 10 mM glucose compared to their counterparts in 2

mM glucose.

Other possible mechanisms that may be potentially responsible for the observed shift

in the input resistance in the two glucose concentrations involve a chloride conductance, and

tandem-pore domain, acid-sensitive potassium (TASK) channels (Song et al., 2001; Burdakov

et al., 2006; Fioramonti et al., 2007). An increase in extracellular glucose inhibits orexin

neurones in the LH through the activation of TASK channels (Burdakov et al., 2006). Another

mechanism suggested to be involved in glucose sensing is a chloride conductance whereby

elevated glucose levels activate chloride channels within the membrane leading to a
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membrane hyperpolarisation (Song et al., 2001; Fioramonti et al., 2007). Which mechanism or

combination of mechanisms, if any, relate to observations described here remains to be

elucidated and therefore requires further work.

Overall, the mean spontaneous firing rate of neurones recorded in 2 mM extracellular

glucose was significantly higher than the corresponding population recorded in 10 mM

glucose-containing aCSF. There was also a larger percentage of neurones recorded in 2 mM

glucose that were spontaneously active compared to those recorded in 10 mM glucose-

containing aCSF. These data are in contradiction to the data obtained for the neuronal input

resistance in the differing glucose concentrations. Indeed, a decrease in input resistance in

2mM glucose suggests that there are more ion channels open. However, it is unlikely that this

can be accounted for by opening of KATP channels as this would lead to a membrane

hyperpolarisation and a reduction in action potential firing of neurones recorded in 2mM. The

results here suggest that it is more than likely that the change in glucose concentrations alters

the firing rate and the neuronal input resistance through modulation of other ion channels

other than solely KATP or may involve changes in one or more electrogenic ion pumps or

exchangers. It must also been considered that the changes observed maybe due to indirect

effects on the cellular membrane, which were not studied in the present investigation.

When characterising neurones based on their expression of subthreshold active

conductances, all clusters apart from clusters 4 and 7 displayed an increase in neuronal firing

in 2 mM glucose-containing aCSF compared to those recorded in 10 mM glucose-containing

aCSF. Thus neurones with similar subthreshold active conductances may behave differently

in the presence of different glucose concentrations or under physiological euglycaemic and

pathophysiological hyperglycaemic conditions. Glucose-sensing neurones are specialised

cells that use glucose as a signalling molecule to alter their action potential frequency in

response to changes in ambient glucose levels (Anand et al., 1964; Oomura et al., 1964;
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Levin et al., 2004). Whether the neurones recorded within this study are directly glucose

sensing is unclear, but the level of suprathreshold spontaneous activity was certainly altered

with exposure to different glucose concentrations, with neurones generally being more active

when exposed to physiological levels of extracellular glucose. These data therefore cast

doubt on the validity of previous studies carried out in 10 mM glucose, a non-physiological or

pathophysiological level, and further suggest that a change in extracellular glucose from a

non-physiological to a physiological level can shape and change the activity of Arc neurones.

Furthermore, if such changes are paralleled at the signalling level, for example at the

receptor/transmitter expression level, previous published work undertaken in high levels of

extracellular glucose, may require a major re-evaluation.

Another passive membrane property that was considered was the membrane time-

constant (tau). Tau is given by the product of the membrane resistance and membrane

capacitance hence it reflects the size of the neuronal membrane surface area. For the

majority of neuronal clusters classified, the tau value did not dramatically change between the

two glucose concentrations. This data suggests that these recordings may have been taken

from a similar population of neurones and morphology did not significantly change. However,

neurones classified as cluster 4 and cluster 6 were two groups of neurones that were close to

or had significantly different tau values when compared between the two glucose

concentrations. In 2 mM glucose, clusters 4 and 6 had significantly smaller tau values in

comparison to the corresponding clusters recorded in 10mM glucose. These groups of

neurones were also the only neurones that exhibited an increase in neuronal input resistance

in 2 mM compared to 10 mM extracellular glucose. These results are in accordance with the

general consensus that neurones which have a smaller tau value and hence a smaller

membrane surface area would be associated with a higher neuronal input resistance,

reflecting a smaller sized neurone compared to a large neurone. A possible explanation for
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the change in tau values within these clusters is that the change in glucose concentrations

may alter the expression of intrinsic conductances to such an extent that they subsequently

classify to another cluster. For example extrinsic factors such as NA can activate subthreshold

active conductances (Ian; See chapter 6). Thus in the presence of NA, an instantaneous

inwardly rectifying potassium conductance is activated giving the appearance of a neurone

electrophysiologically defined as another cluster. Therefore, in 2 mM glucose where we see

a difference in tau values compared to the same electrophysiological phenotype in 10 mM

glucose, it may be that we actually recorded from a different population of neurones that

shifted or changed expression of active conductances in response to the extrinsic factor, in

this case, glucose. Another point to mention is that in chapter 3 we discussed the possibility

that clusters do not constitute a morphologically homogeneous group. It maybe that the tau

values appear different due to selective recording from a different subset of the same cluster

that exhibits different morphological features which is reflected in the tau value. Alternatively,

previous studies have suggested considerable synaptic plasticity within the Arc in the

regulation of energy homeostasis, and that under pathological conditions synaptic plasticity is

impaired (Pinto et al., 2004). The frequency of inputs of both EPSCs and IPSPs differs on

fundamental Arc neurones involved in the control of energy balance in leptin-deficient mice

(ob/ob) compared to their wild type litter mates. This altered synaptic profile in ob/ob mice is

shifted towards wild type values with subsequent administration of leptin (Pinto et al., 2004).

Therefore, leptin has the ability to rapidly affect the wiring of key Arc neurones with inputs

being suggested to be physically inserted and retracted depending on energy status. Thus,

the alteration in glucose levels may modulate synaptic inputs, whereby neurones can retract

and rewire in an apparent functional manner. The change in the number of projections and

synaptic inputs of a neurone may be reflected in the tau value, whereby for example an
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increase in synaptic inputs and projections of a neurone, increases membrane surface area,

equating to a larger tau value.

Unfortunately a direct comparison of the clusters in each glucose concentration could

not be made, as numbers were made up so to include similar numbers in each group.

Therefore a comparison in this case would not be useful as it would not indicate which cluster

we would observe more frequently in each concentration.

Neurones expressing Ih revealed an apparent enhancement of this conductance

when recorded in 2 mM as opposed to 10 mM extracellular glucose, as shown for clusters 4, 5,

and 8. This characteristic ‘sag’ typical of this time- and voltage-dependent inward rectification

resembles the previously described hyperpolarisation-activated non-selective cation

conductance or H–current (Halliwell & Adams, 1982; Akasu et al., 1993; Pape, 1996). This

apparent sag in the membrane response to hyperpolarising current injection was more

prominent in neurones recorded in 2 mM glucose-containing aCSF compared to those

recorded in 10 mM glucose. It has been suggested that the time-dependent inward

rectification has a role in establishing the resting membrane potential of hypothalamic

neurones (Akasu et al., 1993) and contributes to burst-like patterns of firing (van Welie et al.,

2006). The apparent enhancement of Ih in 2 mM extracellular glucose could have important

functional consequences for these neurones in terms of their ability to integrate synaptic

inputs. For example synaptic inputs such as those mediated by GABA can trigger rebound

excitations which are mediated through the activation of Ih (Huguenard & Prince, 1994;

Whyment et al., 2004). Ih also may have a role in shaping and modulating the output of these

neurones such as generating intrinsic oscillations and burst firing patterns of activity, the latter

being suggested key for neuropeptide release from neurones (Dutton & Dyball, 1979; Bicknell

& Leng, 1981; van Welie et al., 2006).



Chapter 4

182

Another subthreshold active conductance that appeared to change functionally was

the A-like transient outward conductance, expressed by cluster 2 neurones. This conductance

was characterised by a delayed return to the resting membrane potential following membrane

hyperpolarisation induced in response to injection of a negative current. A-like conductances

are a common feature of hypothalamic neurones (Bourque, 1988; Tasker & Dudek, 1991;

Bouskila & Dudek, 1995). Generally, these conductances are believed to influence spike

repolarisation and modulate the frequency of tonically firing neurones (Connor & Stevens,

1971; Kenyon & Gibbons, 1979; Segal et al., 1984). The size and the duration of the A-like

conductance were shown to be larger in amplitude and shorter in duration in 2 mM glucose-

containing aCSF. These particular neurones have a unique expression of subthreshold active

conductances within the Arc and have been previously characterised as NPY/AgRP

conditional pacemakers that exhibit burst firing patterns of activity (van den Top et al., 2004).

The release of neuropeptides from the Arc could be dependent upon the pattern and

properties of the electrical activity of these neurones as described for the release of

vasopressin from hypothalamic magnocellular neurones (Dutton & Dyball, 1979). A shorter

duration A-current, as observed in 2 mM glucose, could increase the frequency of burst firing

in these neurones and thus modulate neuropeptide release. In contrast, in 10 mM glucose, a

longer duration A-current could lead to a decrease in burst firing and to differential

neuropeptide release compared to that observed in lower glucose levels. Although this study

did not directly report the occurrence of burst firing, cluster 2 neurones did exhibit an increase

in firing frequency in 2 mM glucose-containing aCSF although not reaching statistical

significance, consistent with a shorter duration A-like conductance. The lack of apparent burst

firing patterns of activity may reflect the need for the presence of an orexigenic signal,

previous work suggesting cluster 2 neurones to be conditional pacemaker neurons requiring

an orexigen such as ghrelin for initiation of pacemaker activity (van den Top et al., 2004).
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Further work using detailed voltage-clamp recordings are required to clarify exactly what

properties of this conductance are changed in the different glucose concentrations.

Ian was also expressed by Arc neurones, namely those classified into clusters 1, 2, 7

and 8. This conductance is characterised by an instantaneous decrease in input resistance at

more negative membrane potentials. Its function is unclear but its suggested role is to

maintain neurones within a functional range to prevent them from becoming ‘too’

hyperpolarised (Wilson et al., 2002; van den Top & Spanswick, 2006). There was a stronger

rectification seen in clusters 1, 2 and 7 in 2mM glucose which may reflect opening of KATP

channels in this lower glucose concentration compared to 10mM glucose, as KATP-mediated

conductances are well documented as weak inward rectifiers (Nichols, 2006). Therefore KATP

channels may contribute to the difference in strength of Ian under the different glucose

concentrations. However further studies utilising blockers of this channel (such as

tolbutamide) are needed to clarify this. One exception to this rule was cluster 8 neurones

which exhibited a weaker Ian in 2mM glucose than in 10mM glucose. This may be due to the

fact that cluster 8 neurones also express Ih, which was significantly stronger in 2mM glucose

and may have countered or masked the true effect on the instantaneous rectification, as both

conductances were apparent over similar membrane potential ranges.

In summary, observations described in this chapter strongly suggest that there is a

need for us to re-evaluate studies that have conducted experiments in non-physiological

levels of glucose. The significant alterations in both passive and active subthreshold

electrophysiological properties seen in physiological compared to non-physiological glucose

suggests that whole networks may behave differently in these two different levels of glucose.

The type and properties of these active conductances can change depending on the

extracellular glucose concentration ultimately dictating the final integrative properties of Arc

neurones. Thus, clusters are not defined and discrete, but show considerable plasticity and
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therefore the classification of Arc neurones represent the spectrum of electrophysiological

neuronal populations present within this nucleus. The differences in expression of ion

channels and neuronal activity have been shown to change in physiological and

pathophysiological states which may also be reflected in alterations in receptor, transmitter

and peptide expression, the latter requiring investigation. Possible extensions to this project

are changing glucose concentrations from 2 mM to 10 mM online whilst recording from the

same neurone. This will give us a clearer idea of the plasticity of the Arc on exposure to

differing glucose concentrations and how easily the neuronal system can be manipulated. Is it

possible for there to be a transition from one cluster to another on exposure to different

concentrations of glucose? Chapter 5/6 has shown that NA can active an anomalous inward

rectifying conductance, thus changing fundamental properties. If differing glucose

concentrations can manipulate the electrophysiological expression of Arc neurones then one

must be also aware of other factors that may change the expression of active conductances;

such as the time of day of recording and temperature which have been shown to alter protein

synthesis and receptor expression.
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Figure 4.1 Mean passive membrane properties of neurones recorded in 2 mM and
10 mM glucose containing aCSF

A: A Bar-chart comparing the mean membrane potentials of neurones recorded in 10
mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar). A total of 225 neurones were recorded in 10 mM glucose aCSF and 313
neurones were recorded in 2 mM glucose aCSF.

B: A Bar-chart comparing the mean input resistance of neurones recorded in 10 mM
glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar). The * denotes that the mean input resistances recorded in each glucose
concentration are significantly different. Neurones recorded in 2 mM glucose aCSF
had a significantly lower input resistance than those neurones recorded in 10 mM
glucose aCSF.

C: A Bar-chart comparing the mean firing frequency of neurones recorded in 10 mM
glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar). The * denotes that the mean firing frequencies recorded in each glucose
concentration are significantly different. Neurones recorded in 2 mM glucose aCSF
had a significantly higher firing rate than those neurones recorded in 10 mM
glucose aCSF at the resting membrane potential.
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Figure 4.2 Frequency histograms comparing the passive membrane properties of
neurones recorded in 2 mM and 10 mM glucose containing aCSF

A: Frequency distribution plots comparing the membrane potentials of neurones
recorded in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-
containing aCSF (Black bars). A total of 225 neurones were recorded in 10 mM
glucose aCSF and 313 neurones were recorded in 2 mM glucose aCSF, and were
placed in each appropriate bin size and plotted as a percentage of the totals. The
median and mode for both groups of neurones in each glucose concentration is
indicated above the frequency distributions, in this figure and subsequent figures.

B: Frequency distribution plots comparing the input resistances of neurones recorded in
10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars). A total of 225 neurones were recorded in 10 mM glucose aCSF and 313
neurones were recorded in 2 mM glucose aCSF, and were placed in each appropriate
bin size for their neuronal input resistance and plotted as a percentage of the totals.

C: Frequency distribution plots comparing the firing rates of neurones recorded in 10 mM
glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars). A total of 105 neurones were recorded in 10 mM glucose aCSF and 267
neurones were recorded in 2 mM glucose aCSF, and were placed in each appropriate
bin size for their neuronal input resistance and plotted as a percentage of the totals.
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Figure 4.3 A comparison of the percentage of spontaneously active and silent
neurones recorded in 10 mM and 2 mM glucose aCSF.

A: A Bar-chart comparing the proportion of active and silent neurones recorded in 10
mM glucose aCSF and 2 mM glucose-containing aCSF. Note the increase in the
proportion of spontaneously active cells in 2 mM glucose aCSF compared to those
recorded in 10 mM glucose aCSF.
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Figure 4.4 Mean passive membrane properties and frequency distribution plots of
Cluster 1 neurones recorded in 2 mM and 10 mM glucose containing
aCSF

Ai: Frequency distribution plots comparing the membrane potentials of neurones
characterised as cluster 1 neurones recorded in 10 mM glucose-containing aCSF
(Green bars) and 2 mM glucose-containing aCSF (Black bars). A total of 19
neurones were recorded in 10 mM glucose aCSF and 21 neurones were recorded in
2 mM glucose aCSF, and were placed in each appropriate bin size and plotted as a
percentage of the totals. The median and mode (most common bin size) for both
groups of neurones in each glucose concentration is indicated above the frequency
distributions, in this figure and subsequent figures

Aii: A Bar-chart comparing the mean membrane potentials of cluster 1 neurones recorded
in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).

Bi: Frequency distribution plots comparing the input resistances of neurones recorded in
10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars). A total of 19 neurones were recorded in 10 mM glucose aCSF and 21
neurones were recorded in 2 mM glucose aCSF, and were placed in each appropriate
bin size for their neuronal input resistance and plotted as a percentage of the totals.

Bii: A Bar-chart comparing the mean neuronal input resistance of cluster 1 neurones
recorded in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-
containing aCSF (Black bar).

Ci: Frequency distribution plots comparing the firing rates of cluster 1 neurones recorded
in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars). A total of 8 neurones were recorded in 10 mM glucose aCSF and 21
neurones were recorded in 2 mM glucose aCSF, and were placed in each appropriate
bin size for their firing frequency and plotted as a percentage of the totals.

Cii: A Bar-chart comparing the mean firing frequency of cluster 1 neurones recorded in
10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).
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Figure 4.5 Mean passive membrane properties and frequency distribution plots of
Cluster 2 neurones recorded in 2 mM and 10 mM glucose containing
aCSF

Ai: Frequency distribution plots comparing the membrane potentials of neurones
characterised as cluster 2 neurones recorded in 10 mM glucose-containing aCSF
(Green bars) and 2 mM glucose-containing aCSF (Black bars). A total of 10
neurones were recorded in 10 mM glucose aCSF and 13 neurones were recorded in
2 mM glucose aCSF, and were placed in each appropriate bin size and plotted as a
percentage of the totals. The median and mode (most common bin size) for both
groups of neurones in each glucose concentration is indicated above the frequency
distributions, in this figure and subsequent figures

Aii: A Bar-chart comparing the mean membrane potentials of cluster 2 neurones recorded
in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).

Bi: Frequency distribution plots comparing the input resistances of cluster 2 neurones
recorded in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-
containing aCSF (Black bars). A total of 10 neurones were recorded in 10 mM
glucose aCSF and 13 neurones were recorded in 2 mM glucose aCSF, and were
placed in each appropriate bin size for their neuronal input resistance and plotted as
a percentage of the totals.

Bii: A Bar-chart comparing the mean neuronal input resistance of cluster 2 neurones
recorded in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-
containing aCSF (Black bar).

Ci: Frequency distribution plots comparing the firing rates of cluster 2 neurones recorded
in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars). A total of 10 neurones were recorded in 10 mM glucose aCSF and 13
neurones were recorded in 2 mM glucose aCSF, and were placed in each appropriate
bin size for their firing frequency and plotted as a percentage of the totals.

Cii: A Bar-chart comparing the mean firing frequency of cluster 2 neurones recorded in
10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).
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Figure 4.6 Mean passive membrane properties and frequency distribution plots of
Cluster 3 neurones recorded in 2 mM and 10 mM glucose containing
aCSF

Ai: Frequency distribution plots comparing the membrane potentials of neurones
characterised as cluster 3 neurones recorded in 10 mM glucose-containing aCSF
(Green bars) and 2 mM glucose-containing aCSF (Black bars). A total of 9
neurones were recorded in 10 mM glucose aCSF and 13 neurones were recorded in
2 mM glucose aCSF, and were placed in each appropriate bin size and plotted as a
percentage of the totals. The median and mode (most common bin size) for both
groups of neurones in each glucose concentration is indicated above the frequency
distributions, in this figure and subsequent figures.

Aii: A Bar-chart comparing the mean membrane potentials of cluster 3 neurones recorded
in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).

Bi: Frequency distribution plots comparing the input resistances of cluster 3 neurones
recorded in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-
containing aCSF (Black bars). Neurones were recorded in 2 mM glucose aCSF, and
were placed in each appropriate bin size for their neuronal input resistance and
plotted as a percentage of the totals.

Bii: A Bar-chart comparing the mean neuronal input resistance of cluster 3 neurones
recorded in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-
containing aCSF (Black bar).

Ci: Frequency distribution plots comparing the firing rates of cluster 3 neurones recorded
in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars). A total of 9 neurones were recorded in 10 mM glucose aCSF and 13
neurones were recorded in 2 mM glucose aCSF, and were placed in each appropriate
bin size for their firing frequency and plotted as a percentage of the totals.

Cii: A Bar-chart comparing the mean firing frequency of cluster 3 neurones recorded in
10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).
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Figure 4.7 Mean passive membrane properties and frequency distribution plots of
Cluster 4 neurones recorded in 2 mM and 10 mM glucose containing
aCSF

Ai: Frequency distribution plots comparing the membrane potentials of neurones
characterised as cluster 4 neurones recorded in 10 mM glucose-containing aCSF
(Green bars) and 2 mM glucose-containing aCSF (Black bars). A total of 21
neurones were recorded in 10 mM glucose aCSF and 19 neurones were
recorded in 2 mM glucose aCSF, and were placed in each appropriate bin size and
plotted as a percentage of the totals. The median and mode (most common bin size)
for both groups of neurones in each glucose concentration is indicated above the
frequency distributions, in this figure and subsequent figures

Aii: A Bar-chart comparing the mean membrane potentials of cluster 4 neurones recorded
in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).

Bi: Frequency distribution plots comparing the input resistances of cluster 4 neurones
recorded in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-
containing aCSF (Black bars). Neurones were recorded in 2 mM glucose aCSF, and
were placed in each appropriate bin size for their neuronal input resistance and
plotted as a percentage of the totals.

Bii: A Bar-chart comparing the mean neuronal input resistance of cluster 4 neurones
recorded in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-
containing aCSF (Black bar).

Ci: Frequency distribution plots comparing the firing rates of cluster 4 neurones recorded
in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars).Neurones were recorded in 2 mM glucose aCSF, and were placed in
each appropriate bin size for their firing frequency and plotted as a percentage of the
totals.

Cii: A Bar-chart comparing the mean firing frequency of cluster 4 neurones recorded in
10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).



Chapter 4

198



Chapter 4

199

Figure 4.8 Mean passive membrane properties and frequency distribution plots of
Cluster 5 neurones recorded in 2 mM and 10 mM glucose containing
aCSF

Ai: Frequency distribution plots comparing the membrane potentials of neurones
characterised as cluster 5 neurones recorded in 10 mM glucose-containing aCSF
(Green bars) and 2 mM glucose-containing aCSF (Black bars). A total of 41
neurones were recorded in 10 mM glucose aCSF and 66 neurones were recorded in
2 mM glucose aCSF, and were placed in each appropriate bin size and plotted as a
percentage of the totals. The median and mode (most common bin size) for both
groups of neurones in each glucose concentration is indicated above the frequency
distributions, in this figure and subsequent figures

Aii: A Bar-chart comparing the mean membrane potentials of cluster 5 neurones recorded
in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).

Bi: Frequency distribution plots comparing the input resistances of cluster 5 neurones
recorded in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-
containing aCSF (Black bars). Neurones were recorded in 2 mM glucose aCSF, and
were placed in each appropriate bin size for their neuronal input resistance and
plotted as a percentage of the totals.

Bii: A Bar-chart comparing the mean neuronal input resistance of cluster 5 neurones
recorded in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-
containing aCSF (Black bar).

Ci: Frequency distribution plots comparing the firing rates of cluster 5 neurones recorded
in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars). A total of 18 neurones were recorded in 10 mM glucose aCSF and 56
neurones were recorded in 2 mM glucose aCSF, and were placed in each appropriate
bin size for their firing frequency and plotted as a percentage of the totals.

Cii: A Bar-chart comparing the mean firing frequency of cluster 5 neurones recorded in
10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).
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Figure 4.9 Mean passive membrane properties and frequency distribution plots of
Cluster 6 neurones recorded in 2 mM and 10 mM glucose containing
aCSF

Ai: Frequency distribution plots comparing the membrane potentials of neurones
characterised as cluster 6 neurones recorded in 10 mM glucose-containing aCSF
(Green bars) and 2 mM glucose-containing aCSF (Black bars). A total of 59
neurones were recorded in 10 mM glucose aCSF and 75 neurones were recorded in
2 mM glucose aCSF, and were placed in each appropriate bin size and plotted as a
percentage of the totals. The median and mode (most common bin size) for
both groups of neurones in each glucose concentration is indicated above the
frequency distributions, in this figure and subsequent figures

Aii: A Bar-chart comparing the mean membrane potentials of cluster 6 neurones recorded
in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).

Bi: Frequency distribution plots comparing the input resistances of cluster 6 neurones
recorded in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-
containing aCSF (Black bars). Neurones were recorded in 2 mM glucose aCSF, and
were placed in each appropriate bin size for their neuronal input resistance and
plotted as a percentage of the totals.

Bii: A Bar-chart comparing the mean neuronal input resistance of cluster 6 neurones
recorded in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-
containing aCSF (Black bar).

Ci: Frequency distribution plots comparing the firing rates of cluster 6 neurones recorded
in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars). A total of 28 neurones were recorded in 10 mM glucose aCSF and 59
neurones were recorded in 2 mM glucose aCSF, and were placed in each appropriate
bin size for their firing frequency and plotted as a percentage of the totals.

Cii: A Bar-chart comparing the mean firing frequency of cluster 6 neurones recorded in
10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar). The * denotes that the mean firing frequencies recorded in each glucose
concentration are significantly different. Neurones recorded in 2 mM glucose aCSF
had a significantly higher firing rate than those neurones recorded in 10 mM
glucose aCSF at the resting membrane potential.
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Figure 4.10 Mean passive membrane properties and frequency distribution plots of
Cluster 7 neurones recorded in 2 mM and 10 mM glucose containing
aCSF

Ai: Frequency distribution plots comparing the membrane potentials of neurones
characterised as cluster 7 neurones recorded in 10 mM glucose-containing aCSF
(Green bars) and 2 mM glucose-containing aCSF (Black bars). A total of 29
neurones were recorded in 10 mM glucose aCSF and 33 neurones were recorded in
2 mM glucose aCSF, and were placed in each appropriate bin size and plotted as a
percentage of the totals. The median and mode (most common bin size) for
both groups of neurones in each glucose concentration is indicated above the
frequency distributions, in this figure and subsequent figures

Aii: A Bar-chart comparing the mean membrane potentials of cluster 7 neurones recorded
in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).

Bi: Frequency distribution plots comparing the input resistances of cluster 7 neurones
recorded in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-
containing aCSF (Black bars). Neurones were recorded in 2 mM glucose aCSF, and
were placed in each appropriate bin size for their neuronal input resistance and
plotted as a percentage of the totals.

Bii: A Bar-chart comparing the mean neuronal input resistance of cluster 7 neurones
recorded in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-
containing aCSF (Black bar).

Ci: Frequency distribution plots comparing the firing rates of cluster 7 neurones recorded
in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars). A total of 10 neurones were recorded in 10 mM glucose aCSF and 29
neurones were recorded in 2 mM glucose aCSF, and were placed in each appropriate
bin size for their firing frequency and plotted as a percentage of the totals.

Cii: A Bar-chart comparing the mean firing frequency of cluster 7 neurones recorded in
10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).
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Figure 4.11 Mean passive membrane properties and frequency distribution plots of
Cluster 8 neurones recorded in 2 mM and 10 mM glucose containing
aCSF

Ai: Frequency distribution plots comparing the membrane potentials of neurones
characterised as cluster 8 neurones recorded in 10 mM glucose-containing aCSF
(Green bars) and 2 mM glucose-containing aCSF (Black bars). A total of 37
neurones were recorded in 10 mM glucose aCSF and 67 neurones were recorded in
2 mM glucose aCSF, and were placed in each appropriate bin size and plotted as a
percentage of the totals. The median and mode (most common bin size) for
both groups of neurones in each glucose concentration is indicated above the
frequency distributions, in this figure and subsequent figures

Aii: A Bar-chart comparing the mean membrane potentials of cluster 8 neurones recorded
in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar).

Bi: Frequency distribution plots comparing the input resistances of cluster 8 neurones
recorded in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-
containing aCSF (Black bars). Neurones were recorded in 2 mM glucose aCSF, and
were placed in each appropriate bin size for their neuronal input resistance and
plotted as a percentage of the totals.

Bii: A Bar-chart comparing the mean neuronal input resistance of cluster 8 neurones
recorded in 10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-
containing aCSF (Black bar).

Ci: Frequency distribution plots comparing the firing rates of cluster neurones recorded
in 10 mM glucose-containing aCSF (Green bars) and 2 mM glucose-containing aCSF
(Black bars). A total of 28 neurones were recorded in 10 mM glucose aCSF and 59
neurones were recorded in 2 mM glucose aCSF, and were placed in each appropriate
bin size for their firing frequency and plotted as a percentage of the totals.

Cii: A Bar-chart comparing the mean firing frequency of cluster 8 neurones recorded in
10 mM glucose-containing aCSF (Green bar) and 2 mM glucose-containing aCSF
(Black bar). The * denotes that the mean firing frequencies recorded in each glucose
concentration are significantly different. Neurones recorded in 2 mM glucose aCSF
had a significantly higher firing rate than those neurones recorded in 10 mM
glucose aCSF at the resting membrane potential.
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Figure 4.12 Typical electrophysiological differences of neurones recorded in 10 mM
and 2 mM glucose containing aCSF

A: Continuous current clamp recordings of two separate neurones recorded in 10 mM
and 2 mM glucose containing aCSF, respectively. Note the increase in firing rate of
the neurone recorded in 2 mM glucose compared to the neurones recorded in 10 mM
containing aCSF.

B: The activation of an A-like conductance (Ia) resulted in a delayed return to baseline
following negative current injection. The duration of Ia was measured as the time
between the end of current injection (marked by the first vertical dotted line) and the
return of the membrane potential to the level prior to the current injection (marked by
the second vertical dotted line). The amplitude of the current was measured at half
the duration (line marked *). Note in 2 mM glucose the activation of the A-like
conductance was shorter in duration than in 10 mM glucose aCSF.

C: Activation of the H-conductance (Ih) induces a time- and voltage-dependent sag in the
membrane response to negative current injection. The amplitude of Ih was measured
by subtracting the membrane potential at the end of the negative current injection
(Upper dotted line) from the membrane potential following steady-state charging of
the cellular membrane (lower dotted line). Note in 2 mM glucose Ih increased in
amplitude compared to the activation of Ih in 10 mM glucose aCSF.
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Chapter 5

The excitatory effects of
noradrenaline on rat hypothalamic
arcuate nucleus neurones in vitro
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5.1 Introduction

The noradrenergic system represents one of four major aminergic systems within the

mammalian brain. These systems are unique in that their projections cover the majority of the

brain and thus play an important role in modulating numerous aspects of neuronal function

including higher functions and autonomic and neuroendocrine modes of homeostatic control

(Sawchenko & Swanson, 1981; Brown et al., 2001). Noradrenergic cell bodies, present within

brain-stem nuclei are predominately found in the locus coeruleus (LC; A6); a bilateral pontine

structure with a uniquely wide-spread terminal network reaching throughout the neuroaxis

(Svensson, 1987). These neurones play a major part in a number of physiological processes,

including the control of energy homeostasis, arousal and mood (Leibowitz et al., 1983a;

Svensson, 1984; Berridge, 2008).

The use of noradrenaline (NA) reuptake inhibitors, and serotonin reuptake inhibitors,

such as sibutramine are commonly used today as anti-obesity drugs, thus demonstrating the

importance of this neurotransmitter in the control of energy homeostasis. Sibutramine has

been shown to reduce food intake and increase thermogenesis, effects that are completely or

partially reversed with pre-treatment of NA antagonists (Heal et al., 1998). Prazosin, a

selective α1-adrenoceptor (AR) antagonist, has been shown to block the decrease in food

intake induced by sibutramine (Jackson et al., 1997).

Noradrenergic receptors are found differentially expressed throughout the brain with

an abundance of α- AR subtypes expressed in diverse areas (Young & Kuhar, 1979). The

hypothalamus, and in particular the paraventicular nucleus (PVN), has been found to be an

important nucleus involved in the control of energy balance, and is a target for NA. Central

injections of NA directly into the PVN have resulted in stimulation of feeding in fully satiated

rats (Grossman, 1962; Leibowitz, 1978). NA is thought to increase feeding within the PVN by

disinhibiting descending satiety signals through activation of α2- ARs (Goldman et al., 1985;
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Wellman et al., 1993). Conversely, activation of the α1- ARs induces excitatory effects, which

may inhibit food intake.

NA application at the level of the rat lateral perifornical hypothalamus (PFA) has

suppressive effects on feeding behaviour (Margules, 1970; Leibowitz et al., 1983b), thus

showing the complexity of this catecholamine in the control of energy homeostasis. NA has

the ability to either increase or decrease feeding/consumption depending on the site of

application within the brain.

NA infusions at the level of the hypothalamus not only increases feeding but also

affects other physiological and metabolic processes. It is suggested that NA’s stimulatory

effect on feeding within the hypothalamus is secondary to autonomic influences on the viscera.

NA infusions into the hypothalamus have been shown to increase vasodilation (Carmona &

Slangen, 1976), gastric acid secretion (Carmona & Slangen, 1973), insulin secretion (Moltz &

McDonald, 1985) and bradycardia (Li et al., 1996). These processes are thought to be

activated partly through the vagus nerve, as complete vagotomy eliminates eating elicited by

noradrenergic stimulation of the hypothalamus (Sawchenko et al., 1981). Futhermore the

vagal efferent pathway has also be shown to be an important route for conveying peripheral

orexigenic ghrelin signals to the hindbrain which in turn transmits signals through the

noradrenergic pathway to the hypothalamus, in particular to the arcuate nucleus (Arc; Date et

al., 2006).

The Arc of the hypothalamus is a heterogeneous structure comprising of an array of

different neuronal populations (Chronwall, 1985) and forms the site for convergence of central

and peripheral signals indicating the status of energy stores (Cone et al., 2001). Within the

Arc these neurones work together to maintain energy balance between narrow limits. Inputs

to and outputs from the Arc are complex and multiple (Chronwall, 1985). The Arc receives

afferent inputs from the periphery, brain-stem and other hypothalamic nuclei (Horvath et al.,
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2004). Neurones of the hypothalamic Arc are innervated by noradrenergic fibres originating in

the nucleus tractus solitarius (NTS; A2) and the LC (Sawchenko & Swanson, 1981). It has

been shown that NPY neurones of the Arc are impinged upon by noradrenergic neurones

arising from the hindbrain (Date et al., 2006). NPY neurones are colocalised with AgRP and

are powerful stimulators of food intake (Hahn et al., 1998). It has been suggested that ghrelin

induces c-fos expression in NPY/AgRP neurones in a NA-dependent manner through the

activation of α1 and β ARs (Date et al., 2006), although central ghrelin does also act through it

own receptor, the growth hormone secretagogue receptor in the Arc (GHS-R; Kojima &

Kangawa, 2005). This data suggests NA excites NPY neurones within the hypothalamic

arcuate nucleus.

5.1.1 α1 –Adrenoceptors

NA is an endogenous ligand for the G- protein coupled adrenoceptors- α1, α2, β1, β2

(Hein, 2006). None of these receptors constitute homogenous groups, and therefore can be

further divided into subtypes.

After the first pharmacological differentiation of the adrenoceptors by Alquist in 1948

(Nicholas et al., 1993), it was not until the mid/late 1980s that the α1- AR subgroup was

divided into subtypes (α1A/1C,α1B and α1d) isolated by molecular cloning techniques (Voigt et al.,

1990; Lomasney et al., 1991; Perez et al., 1994). A non-selective agonist and antagonist,

phenylephrine and prazosin, respectively, are now commonly used to probe for the α1-AR

(Langer, 1998), as all 3 subtypes exhibit similar affinity for these compounds.

The signal transduction mechanisms involved in the activation of the α1- ARs involves

the release of internal calcium stores. α1- ARs are coupled to the Gq/11- signalling pathway,

which involves the activation of phospholipase C (PLC), generation of the second messengers
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inositol triphosphate (IP3) and diacylglycerol (DAG), and thus the mobilisation of intracellular

calcium stores (Zhong & Minneman, 1999; Koshimizu et al., 2007).

Within the Arc, light microscopic studies have shown the presence of α1-ARs and their

differential distribution compared to that of the α2- ARs (Young & Kuhar, 1979). α1- ARs have

been shown to be located more laterally than α2- ARs within the hypothalamus. The α1- AR

subtypes have also show a differential distribution within the brain. For example, the α1a- AR in

the Arc is the most abundant AR subtype, whereas the α1d- AR is undetectable in the Arc, as

determined by in situ hybridization studies (Day et al., 1997).

The α1- ARs are the most abundant ARs in the brain, and are thought to be

postsynaptic and stimulatory in character; and like other postsynaptic receptors in the brain

they can cause the release of neurotransmitters (Tanoue et al., 2002). α1- ARs are also

present in glial cells and therefore may affect brain functions by means of non-neuronal

mechanisms.

It has been shown that tissue that contains both the α1- AR and α2- AR subtypes can

show an antagonistic organisation, in which activation of one subtype results in a particular

physiological effect, whereas the activation of the other subtype results in the opposite

physiological effect (Wellman, 2000). This has been characterised in the PVN where the

activation of the α1- AR results in a reduction in feeding and the activation of the α2- ARs

results in an increase in feeding (Wellman et al., 1993). Thus, even within a single

hypothalamic nucleus the effect of NA on functional output is complex.

NA has multiple effects in regards to feeding within the CNS; however its effects at

the cellular level in the Arc of the hypothalamus remain poorly understood. Infusion of NA

within different nuclei of the hypothalamus produces differential results. At present the role of

NA within the Arc has not yet been explored for its effects involved in the central control of

food intake and energy homeostasis.
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In the present study, the aim was to investigate the cellular mechanisms by which NA

regulates neuronal excitability within the Arc using whole-cell patch clamp recording

techniques in isolated hypothalamic slice preparations.

5.2 Results

In the present study the effects of NA (1-2 minutes; 40 µM) on the

electrophysiological activity of 172 Arc neurones in slice preparations were studied using

whole-cell patch recordings in vitro. The mean resting membrane potential of these neurones

was -48.6 ± 0.6 mV associated with a mean input resistance of 1397 ± 51 MΩ (n=172).

5.2.1 NA- depolarises hypothalamic Arc neurones

88/172 (51.2%) neurones exposed to 40 µm NA responded with an excitation,

observed as an increase in suprathreshold activity. Bath application of NA to the slice by

superfusion for 60-120 s induced an increase in mean spontaneous firing rate from a control

level of 0.5 ± 0.1 Hz to 2.1 ± 0.2 Hz (339%; P < 0.001; n=88), effects that were reversible with

a return to a firing rate of 0.4 ± 0.1 Hz following the wash of NA from the bath (Figure 5.1A).

The excitation was associated with a reversible membrane depolarisation which

returned to resting levels approximately 15 minutes following the wash of NA from the bath.

NA application induced a membrane depolarisation from a mean resting membrane potential

of -48.9 ± 0.9 mV (n=88) to -41.6 ± 0.8 mV, resulting in a mean peak membrane

depolarisation of 7.2 ± 0.6 mV (n=88). Performing an ANOVA revealed a highly significant

difference in the membrane potential between the control and the neurone in the presence of

NA (P < 0.001) and no significant difference between the control and wash (P = 0.97).
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In voltage-clamp at a holding potential of -50 mV, application of NA in the presence of

tetrodotoxin (TTX) to the slice by superfusion for 60-120 s (40 M, n=12) induced an inward

current, with a mean peak amplitude of 16.1  1.6 pA (Figure 5.4 A).

Bath application of NA resulted in a 17.8 ± 2.8% (P=0.38) increase in neuronal input

resistance from 1292 ± 68 MΩ at rest to 1500 ± 84 MΩ in the presence of NA returning to 

1210 ± 61.0 MΩ (n=88) following the wash of NA from the bath.

TTX was used to block activity-dependent synaptic transmission and hence

investigate whether NA-induced excitation was mediated via a direct post-synaptic

mechanism on the recorded neurones. NA-induced membrane depolarisation and associated

increase in input resistance persisted in the presence of 1 µm TTX (Figure 5.2 A), thus

indicating a direct post-synaptic effect on Arc neurones. NA application in the presence of

TTX induced a membrane depolarisation from a resting membrane potential of

-46.7 ± 2.5 mV to -35.4 ± 2.3 mV resulting in a mean peak membrane depolarisation of

11.3 ± 1.5 mV (n=12). Following wash of NA the membrane potential returned to

-46.4 ± 3.3 mV, near to control values. The membrane depolarisation in the presence of TTX

was associated with an increase in input resistance of 8.0 ± 2.5 % (n= 12), from a mean

resting input resistance of 1250 ± 149 MΩ to 1325 ± 212 MΩ.

5.2.2 Ionic mechanism underlying the NA-induced depolarisation

To determine the ionic mechanism underlying the NA-induced excitation, current-

voltage (I/V) relationships were obtained in control conditions and at the peak of the

NA-induced depolarisation in 24 neurones. Plotting I/V relations revealed more than one

mechanism/ component contributing to the NA-induced excitation. NA induced depolarisation
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was associated with either an increase (n=7), decrease (n=5) or no change in input resistance

(n=10).

10/22 neurones displayed no significant change in neuronal input resistance in

response to NA. These neurones had mean neuronal input resistance of 1118 ± 168 MΩ at

rest and 1154 ± 183 MΩ in the presence of NA. I/V relationships plotted for this group

displayed a parallel shift (Figure 5.1B/C). The parallel shift suggests the NA-induced excitation

may in part be mediated through modulation of electrogenic ion pumps or an ion exchanger

mechanism. However, a slight change in the slope of the I/V indicates the activation/inhibition

of a conductance, thus the parallel shift may indicate a combination of multiple conductances

activated by NA that effectively offset each other.

7/22 neurones displayed a clear reversal potential amounting to -84.1 ± 5.3 mV

(Figure 5.2B/C), close to the predicted reversal potential for potassium under our recording

conditions. The reversal potential was taken from the point at which the plots of the two I/V

relations intersected. These neurones showed an increase in input resistance of 33.8 ± 8.2 %,

increasing from 1104 ± 157 MΩ at rest to 1511 ± 292 MΩ in NA in the presence of NA. The

mean peak membrane depolarisation of these neurones was 11.1 ± 2.7 mV from a mean

membrane potential of -54.7 ± 3.5 mV in control to -43.5 ± 2.5 mV in the presence of NA. This

suggests that the NA-induced excitation in these neurones is mediated through the closure of

one or more resting potassium conductances.

22.8% of neurones revealed the extrapolated point of intersection of the two I/V

curves (control and response) amounted to -24.3 ± 2.9 mV suggesting the activation of a non-

selective cation channel (NSCC) underlies the NA-induced excitation in some hypothalamic

arcuate neurones (Figure 5.3 B/C). These neurones showed a significant decrease in input

resistance of -22.6 ± 1.7 %, from 1300 ± 310 MΩ at rest to 1029 ± 301 MΩ in the presence of

NA.
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Voltage-clamp ramps from -130 to 30mV / -110 to -30 at a rate of 10 mV.s-1, were

applied in control conditions and at the peak of the NA-induced response in TTX to further

investigate the ionic mechanism underlying the NA-induced current. Again plotting the ramps

revealed that more than one mechanism contributed to the NA-induced excitation.

Predominately when plotting the NA ramps there was no change in neuronal input

resistance in the presence of NA thus currents were presented as parallel shifts (n=8; Figure

5.4B). NA-induced inward currents that did show a change in resistance had a mean reversal

potential of -88 ± 9 mV (n=2; Figure 5.4 C), close to the reversal potential for potassium under

our recording conditions.

5.2.3 NA- induced indirect effects on hypothalamic Arc neurones

NA application resulted in an increase or induction of spontaneous synaptic events

including both excitatory post-synaptic potentials (EPSPs; n=6) and inhibitory post-synaptic

currents (IPSCs; n=4). Spontaneous EPSPs at rest were observed at a frequency of

0.1 ± 0.0 Hz, increasing to 0.8 ± 0.1 Hz (n=6) in the presence of NA before returning close to

control levels (0.1 ± 0.0 Hz; n=3) following wash. Thus the frequency of EPSPs in the

presence of NA increased by 236.0 ± 63.5 % (P<0.01; Figure 5.5) and returned to around

9.2 ± 5.1 % of control after washout of NA. To establish that these spontaneous synaptic

events induced in response to NA were indeed EPSPs, the effects of the glutamatergic non-

NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione

(NBQX; 10 µM) were tested. NA-induced EPSPs were completely blocked in the presence of

this antagonist (n=4).

NA-induced or increased the frequency of spontaneous inhibitory post-synaptic

potentials (IPSCs) in a subset of Arc neurones. The mean frequency of spontaneous IPSCs at
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rest was 0.2 ± 0.0 Hz and increased to 0.5 ± 0.0 Hz (n=4) in the presence of NA, returning to

0.1 ± 0.0 Hz (n=3) following washout of the drug. Thus the frequency of IPSCs increased by

165.5 ± 65.3% (p<0.05) in the presence of NA. The polarity of these IPSCs were reversed

between -60 to -70 mV suggesting the involvement of GABAA channels (Figure 5.6A). Indeed

the NA-induced IPSCs were completely blocked in the presence of the GABAA receptor

antagonist bicuculline (10 µM; Figure 5.6B).

Both the frequency of EPSPs and IPSPs increased in the presence of NA, thus

suggesting that the catecholamine modulates neuronal excitability at the level of the Arc, at

least in part, via both post- and pre-synaptic sites of action.

5.2.4 NA-induced membrane potential oscillations

5 neurones exposed to 40 M NA displayed a significant membrane depolarisation

which when injected with negative current to clamp the membrane potential close to the pre-

NA resting value revealed a burst-firing pattern of activity (Figure 5.7Ai). NA-induced

membrane potential oscillations consisted of a biphasic waveform, which presented itself as a

rapid depolarising phase with regular bursts of action potential firing followed by a slower

hyperpolarising component (Figure 5.7Aii). The mean peak amplitude of the membrane

potential oscillations amounted to 18.3 ± 5.7 mV (n=5). The mean number of action potentials

per burst was 21.6 ± 5.8 giving a mean peak frequency of 2.0 ± 0.7 Hz.
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5.2.5 The effects of NA receptor agonists on Arc neurones

To determine the noradrenergic receptor subtype involved in mediating the NA-

induced depolarisation a range of agonists and antagonists were subsequently tested.

Phenylephrine (10 M), a selective α1 AR agonist was bath applied for 1-2 minutes to

a total of 20 neurones, 13 of which had previously been exposed to NA (40 M). 14 neurones

responded to the application of phenylephrine with a membrane depolarisation and/or

increase in spontaneous action potential firing (Figure 5.8A) and/or an increase in

spontaneous synaptic events. Application of phenylephrine induced a reversible membrane

depolarisation (n= 12) from a mean resting potential of -46.3 ± 1.5 mV to -42.7 ± 1.5 mV in

the presence of NA, amounting to a mean peak membrane depolarisation of 3.6 ± 0.7mV.

The phenylephrine-induced depolarisation was associated with an increase in neuronal input

resistance from a mean resting input resistance of 1036 ± 107 MΩ to 1245 ± 152 MΩ in the

presence of NA (n=12). In the presence of 1µm TTX, phenylephrine-induced membrane

depolarisation and associated increase in neuronal input resistance persisted, indicating a

direct effect of the agonist on the recorded neurone (n=4; Figure 5.8A).

5.2.6 Ionic mechanism underlying the phenylephrine-induced depolarisation

It was possible to gain I/V relationships for 5 hypothalamic arcuate neurones in the

presence and absence of phenylephrine. Phenylephrine induced an increase in neuronal

input resistance from a mean resting input resistance of 1005 ±111 MΩ to 1104 ± 130 MΩ

(n=5) in the presence of phenylephrine, amounting to a 12.5 ± 13.2 % in input resistance in

the presence of this agonist. The response was associated with a mean peak membrane

potential depolarisation of 5.8 ± 1.7 mV, from a mean resting membrane potential of -44.2 ±
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2.1 mV to -38.4 ± 2.0 mV in the presence of phenylephrine. Plotting the I/V relations before

and during the application of phenylephrine (4/5) including in the presence of TTX (3/5)

revealed a parallel shift (Figure 5.8 B/C). This suggests that the phenylephrine induced

excitation in part, is mediated through modulation of one or more ion pumps. However the

slight change in input resistance suggests that the phenylephrine excitation could involve the

combination of multiple conductances being activated and thus offset each other.

5.2.7 The effects of adrenoceptor antagonists on Arc neurones

In order to further clarify and determine the AR subtype (s) mediating the NA- induced

excitation, the effects of prazosin, a selective α1- AR antagonist, were tested on NA-induced

excitation. Prazosin blocked the NA- induced excitation in a concentration-dependent manner

(Figures 5.9C).

Application of NA (40 µM), for 60 to 120s, in the absence of prazosin induced a

membrane depolarisation and an increase in spontaneous action potential firing frequency, an

effect that was reversible on washout of NA (Figure 5.9A). Neurones were subsequently

exposed to the α1-AR antagonist, prazosin for 240-300 s, a time-course of application

sufficient to ensure saturation of the recording chamber with the required concentration of

antagonist. The NA-induced depolarisation was blocked in a concentration-dependent manner

with prazosin (Figure 5.9C). In the presence of 300 nM prazosin, NA failed to induce a

membrane depolarisation and increase in spontaneous action potential firing, thus completely

abolishing the NA-induced excitation. The complete block of NA-induced excitation with

prazosin suggests that α1-ARs mediate the depolarisation induced by NA.

NA in the presence of the α1- AR antagonist (300 nM) in 18.8% of neurones that

responded with an excitation blocked the NA-induced excitation and revealed an NA-induced
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hyperpolarisation of the membrane potential. NA, in the presence of prazosin, induced a

hyperpolarisation of the membrane potential from a mean of -50.3 ± 4.6 mV to -56.2 ± 5.1 mV

in the presence of the agonist and decreased the firing frequency by 51.8 ± 19.4 % (Figure

5.9 B). The block of one receptor mediating the NA-induced excitation therefore unmasked a

NA-induced hyperpolarisation. Thus NA is capable of inducing differential cellular membrane

effects on the same Arc neurone.

5.2.8 NA-induced depolarisation is mediated differentially through α1A ARs and α1B

ARs

As NA-induced excitation appeared mediated through α1-ARs, this study

subsequently followed on to determine the α1- AR subtype(s) involved in mediating NA-

induced excitation. To achieve this, the α1A -AR antagonist RS100329 hydrochloride and the

α1B- AR antagonist 02484100, were tested on NA-induced excitation.

Application of NA (40 µM), for 60 to 120 s, alone induced a membrane depolarisation

and an increase in spontaneous action potential firing, a response that was partially reduced

in the presence of RS100329 (10 nM). In the presence of RS100329 hydrochloride (10 nM;

240-300 s), the peak amplitude of the NA-induced membrane depolarisation was reduced to

5.6 ± 1.6 mV from a peak amplitude 9.5 ± 1.3 mV in NA alone, amounting to a 40.3%

decrease in the response to NA in the presence of 10 nM RS100329.

The effects of higher concentrations of RS100329 were subsequently tested. In the

presence of 100 nM RS100329 hydrochloride, the peak amplitude of the membrane

depolarisation induced by NA was reduced to 3.4 ± 0.8 mV from a peak amplitude of

9.1 ± 1.0 mV, in NA alone, amounting to a 62.5% decrease in the response to NA in the

presence of 100 nM RS100329. The NA-induced increase in firing was reduced by 89% in
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the presence of 100 nM RS100329 hydrochloride thus suggesting that the α1A- AR is in part

responsible for the NA-induced depolarisation observed in Arc neurones (Figure 5.10A/B).

The application of a selective α1A- AR antagonist did not fully block the NA-induced

depolarisation, and therefore this study also investigated the effects of a selective α1B- AR

antagonist, 02484100 (Figure 5.11). In the presence 100 nM 02484100 (n=5) the mean peak

amplitude of the depolarisation induced by NA was 7.8 ± 1.0 mV compared to a control peak

amplitude of 7.1 ± 1.0 mV, in NA alone, amounting to a 11.4% increase in the response to NA

in the presence of this antagonist (P=0.2). Although 02484100 had little effect on the

amplitude of the NA-induced depolarisation, it did have an effect on the NA-induced increase

in spontaneous firing rate. Spontaneous firing rate decreased in the presence of 100 nM

02484100. NA alone induced an increase in firing rate of 2.1 ± 0.5 Hz relative to control levels,

whereas in the presence of 02484100, NA caused an increase in firing rate of only 0.8 ± 0.3

Hz, amounting to a 61.6% decrease in NA-induced increases in firing rate in the presence of

this selective α1B- AR antagonist, thus suggesting that the α1B- AR also plays a part in

mediating NA-induced excitation.

5.2.9 β-adrenoceptor agonist has no effect on NA-induced excitation of hypothalamic Arc

neurones

It has been shown previously that both β- and α1- AR receptors mediate mainly

excitatory effects within the CNS (Kang et al, 2000). Therefore the possible involvement of the

β AR was investigated. Application of isoproterenol (10 µM; β AR agonist) for 60 to 120 s to

hypothalamic slices did not affect the membrane potential of all Arc neurones tested (n=3).

Isoproterenol had no significant effect on membrane potential (P=0.18) or input resistance
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(P=0.26). This preliminary data suggests that the NA-induced excitation of Arc neurones is not

mediated through β- ARs.

5.2.10 NA- induced depolarisation in NPY/AgRP pacemaker neurones

We have subsequently shown that NA directly excites a subpopulation of Arc

neurones through α1-ARs. However the chemical phenotype of these neurones and putative

function remains unclear. Previously we have used electrophysiological recording techniques

in combination with single-cell RT-PCR to characterise a subpopulation of Arc NPY/AgRP

neurones (van den Top et al., 2004). These neurones are identified electrophysiologically

upon their unique expression of active conductances (anomalous inward rectification and a

transient outward rectifying conductance; van den Top et al., 2004). In the present study a

total of 9 neurones were characterised as Arc NPY/AgRP pacemaker neurones. Bath

application of NA (40 M), for 60-120 s, induced a reversible membrane depolarisation in all

NPY/AgRP neurones tested (n=9). NA-induced depolarisation in these neurones from a

resting membrane potential of 47.1 ± 2.4 mV with a mean peak amplitude of 5.9 ± 1.3 mV

(Figure 5.12A). The response was associated with an increase in neuronal input resistance

from a resting input resistance of 1474 ± 195 MΩ to 1763 ± 308 MΩ in the presence of NA 

(n=9; Figure 5.12C/D). This amounted to a 19.1± 9.2 % increase in neuronal input resistance

in the presence of NA. With the NA-induced membrane depolarisation there was a

concomitant increase in mean spontaneous firing rate from 0.49 ± 0.2 Hz to 2 ± 0.6 Hz in the

presence of NA (P<0.05;n=6; student's t-test), returning to a firing rate of 0.3 ± 0.1 Hz

following wash of NA (n=6). This amounted to a 410% increase in firing rate in NPY/AgRP

neurones in the presence of NA. The NA-induced membrane depolarisation and increase in
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neuronal input resistance persisted in the presence of 1 µm TTX (Figure 5.12B; n=3),

indicating a postsynaptic effect of NA on the NPY/AgRP Arc neurones.

5.2.11 NA differentially regulates excitability of CART-expressing neurones

CART is an anorexigenic peptide that co-localises with POMC (Elias et al., 1998).

Thus to test if NA-induced responses were mediated through anorexigenic neurones, a

double-labelling technique with a dye (Alexa 633; 100 µM) introduced from the recording

electrode combined with subsequent immunohistochemistal labelling for CART 55-102, was

undertaken to identify anorexigenic CART-expressing neurones. Alexa 633 (100 µM) was

introduced to the intracellular solution, which diffuses into the neurone and allows the

recorded neurone to be visualised retrospectively. Subsequently slices were stained for CART

to enable double-labelling of recorded neurones and CART expression. NA-induced an

excitation in 5/12 recorded neurones that were also co-stained for CART (Figure 5.13). 4/12

neurones responded in a NA-induced inhibition (see chapter 6). 1 neurone responded in a

biphasic response and the remaining 2 CART positive neurones did not respond to bath

application of NA. 12/26 neurones that were CART negative responded to NA with an

increase in spontaneous firing rate and a depolarisation of the membrane (Figure 5.14).

5.3 Discussion

The correct functioning of a number of hypothalamic neuronal networks, including

those for the release of corticosterone, vasopressin (Vp) and glucose (Benetos et al., 1986;

Chafetz et al., 1986) require essential noradrenergic inputs from the brain-stem. However,

how NA modulates these and other neuronal networks remains at present unclear. Little is

known about the central effects of NA on hypothalamic Arc neuronal activity. In the present
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study, whole-cell patch-clamp recording techniques were employed to investigate the role of

NA within the Arc and more specifically, in neurones involved in the maintenance of energy

homeostasis.

NA had an effect on the neuronal excitability of 74% of Arc neurones recorded, in

excess of 50% of which responded with an increase in firing rate and/or membrane

depolarisation. The remaining responded with a membrane hyperpolarisation and a decrease

in firing rate to bath application of NA (22.7%; see chapter 6). NA-induced an excitation in a

subpopulation of hypothalamic Arc neurones that was associated with an increase, decrease

or no change in input resistance mediated through the α1- ARs. NA's excitatory effects were

directly post-synaptic as shown in this study by the persistence of the response in TTX and in

other studies following lowering extracellular Ca2+ (Kang et al., 2000). In addition NA also

produced indirect effects on Arc neurones as shown by the induction or increase in

spontaneous excitatory or inhibitory synaptic events.

This study used 40μM NA and saturated the whole slice when carrying out

electrophysiological recordings. NA is subject to reuptake and therefore a slightly higher dose

of NA was used then produced the maximum response. Limitations with the technique in

reference to the dose response curve means that one can not be aware of the exact

concentration of ligand that saturates the slice at any one time, and in particular what

concentration is reaching our recorded neurone. This study also assumed that once the

response was recovered to the resting membrane potential before the drug was applied the

drug was washed off and had left the bath. There may be potential problems with not knowing

the exact time course of the drug action. This may lead to false responses due to receptor

desensitisation. Thus, there are limitations in the frequency of drug application.

The Arc is a complex nucleus. With its heterogeneity of neuronal inputs, targets and

chemical phenotypes, it forms a series of function-specific intricate neuronal networks. It has a
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major role in the central neuronal responses to changes in energy balance. Within the Arc

there are subpopulations of neurones containing neuropeptide Y (NPY) and agouti-related

protein (AgRP), a subpopulation of which are reported conditional pacemakers. These are

activated by orexigens (orexin) and inhibited by the anorexigens such as leptin (van den Top

et al., 2004). This subpopulation of NPY/AgRP neurones can be identified

electrophysiologically on the basis of their expression of a unique combination of subthreshold

active conductances; an anomalous inward rectification (Ian) and a transient outward rectifying

conductance (Ia; van den Top et al., 2004). This subpopulation of NPY/AgRP neurones upon

exposure to NA responded with a membrane depolarisation and an increase in firing rate,

suggesting an orexigenic role for NA at the level of the Arc NPY/AgRP pacemaker neurone.

NPY neurones have been shown to be stimulated in states of energy deficit and fat loss

(Williams et al., 2001), and therefore NA may play a part in exciting these neurones to

promote food intake and fat conservation. However, these conclusions may not apply to every

Npy/AgRP neurone. This study showed that the NA-induced excitation is mediated through α1-

ARs. Therefore NA excites a subpopulation of NPY/AgRP neurones via α1- ARs. These results

suggest an opposing role for NA in the Arc to those observed in the PVN. NA reduces food

intake following activation of α1-ARs (Wellman et al., 1993) and increases food intake through

the activation of α2-ARs (Leibowitz, 1988) within the PVN.

Firing patterns of single neurones have been shown to be important in the differential

release of neurotransmitters and neuropeptides (Dutton & Dyball, 1979; Bicknell & Leng,

1981). Interestingly burst firing was not induced by application of NA in the previously

described NPY/AgRP pacemaker neurones. An explanation for the observations seen in this

study may be the difference in extracellular glucose used. This study has conducted

experiments in 2 mM aCSF, a physiological range of glucose (see chapter 4), unlike the

experiments carried out by van den Top et al., (2004) that had carried out their recording in 10
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mM glucose (a non-physiological concentration of glucose). Chapter 4 described that with the

change in extracellular glucose levels there are significant changes in both passive and

subthreshold active conductances. This may be a factor contributing to the identified

NPY/AgRP neurones not bursting. The change in the patterning of firing may result in the

release of other peptides/ neurotransmitters expressed by the same population of neurones.

NA did induce burst firing in a subpopulation of Arc neurones of which the phenotype

is unknown. Bursts of action potentials were accompanied by membrane potential oscillations,

a pattern of activity that has previously been shown associated with the regulation and release

of neuropeptides from neurones (Dutton & Dyball, 1979; Bicknell & Leng, 1981). This has

been shown in magnocellular neurones where burst-firing-like activity and action potential

discharge facilitates the release of Vp. Further work needs to be carried out to establish the

functional significance of the NA-induced burst firing in the Arc.

To further investigate the role of NA and its role in Arc neural circuits and control of

energy homeostasis, immunohistochemical studies were carried out that labelled CART-

containing neurones, used as an indicator for anorexigenic POMC/CART neurones. NA

excited or inhibited (see chapter 6) subpopulations of CART-containing neurones, suggesting

that NA may have multiple effects within the Arc at the level of these neurones. The NA-

induced excitation of CART-containing neurones suggests an anorexigenic role within the Arc

whilst their inhibition suggests an orexigenic role (see chapter 6). Consequently we have

identified NA to play both a putative orexigenic and anorexigenic role within the Arc at the

level of POMC/CART neurones. The overall net effect of NA within the Arc in relation to

feeding requires further clarification. However, POMC neurones do not constitute a

functionally homogenous group. POMC neurones form the precursor for a number of peptides,

including adrenocorticotrophic hormone (ACTH), α- melanocyte stimulating hormone (α-MSH)

and β-endorphin which are implicated in a number of physiological functions including the
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control of metabolic homeostasis, heart rate, blood pressure, growth hormone release and

fluid balance (Li et al., 1996; Mountjoy & Wong, 1997; Ibrahim et al., 2003; Raffin-Sanson et

al., 2003). Thus NA may excite POMC neurones that function in roles independent of those

associated with the control of energy homeostasis, but may be involved in other physiological

processes at the level of the Arc. NA also excited neurones that were CART negative and

were not identified as NPY/AgRP neurones. These neurones may be other subpopulations of

NPY/AgRP neurones or of another chemical phenotype such as dopamine, somatostatin-,

galanin- or dynorphin-containing neurones, all of which are found localised with origins in the

Arc.

The NA-induced depolarisation was suggested to be attributable to a number of

neuronal mechanisms. 31.8% of neurones that were excited by application of NA responded

with an increase in input resistance. I/V relationships revealed a reversal potential of -84.1 ±

5.3 mV suggestive of the closure of one or more resting potassium conductances in the

neuronal membrane. 22.7% of neurones responded with a decrease in input resistance with a

mean extrapolated reversal potential of -24.3 ± 2.9 mV suggesting that the NA induced

depolarisation is in part mediated through activation of one or more non-selective cation

channels. 45.5% of neurones responded with no change in neuronal input resistance

suggestive of the activation of one or more membrane ion pumps or the combination of

closure of one or more potassium conductances and the activation of a non-selective cation

conductance.

The majority of studies have commonly reported a decrease in potassium

conductance for the ionic mechanism underlying the NA-induced depolarisation (Freedman &

Aghajanian, 1987; McCormick & Prince, 1988; Inokuchi et al., 1992; Akasu et al., 1993; Pan

et al., 1994) but there are reports of NA acting on various other conductances (Pan et al.,

1994). Yamanaka et al., (2006) found with the use of electrophysiological experiments, that
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NA activated non-selective cation channels mediated by α1 -ARs in orexin-expressing

neurones. Results presented here suggest that both of these cellular signal-transduction

mechanisms may operate at the level of the Arc. The difference in ionic mechanisms

underlying the excitation seen by NA may also reflect the extent of dialysis of the neurone with

the recording solution, which may significantly alter the electrophysiological characteristics of

the neurone over the recording period (Velumian et al., 1997) hence the time from going

whole-cell and application of NA may be crucial. With the whole-cell recording there is a

possibility of wash-out or wash-in of a factor that may prevent the observation of a reversal

potential (Pan et al., 1994). Maybe an alternative method of patch-clamp should be

considered such as perforated patch-clamp. This method of patch-clamping has advantages

in reducing dialysis of the cell. Further work using selective pump and ion exchanger inhibitors

and ion substitution experiments are required to fully clarify the mechanisms underlying these

differential effects of NA on Arc neurones.

Bath application of NA also induced indirect effects on Arc neurones. Similar indirect

effects of NA through changes in spontaneous synaptic transmission have been shown to

occur on orexin-expressing neurones in the lateral hypothalamus (Li & van den Pol, 2005;

Yamanaka et al., 2006). NA-induced a significant increase in the frequency of EPSPs, an

effect subsequently blocked by NBQX. This is indicative of NA stimulating glutamatergic

neurones presynaptic to the recorded neurone (Daftary et al., 2000). NA was also found to

induce or increase the frequency of spontaneous IPSPs, an effect reversed on wash out of

NA. The IPSPs reversed around -65 mV and were sensitive to bicuculline showing them to be

mediated through the activation of GABAA channels. This response is indicative of NA

activating on GABAergic neurones presynaptic to the recorded neurone. Han et al., (2002)

found that NA excites and inhibits GABAergic transmission in parvocellular neurones of the rat

hypothalamus through modulation of α1- AR and the α2- ARs, respectively. To further this study
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the next step would be to investigate NA effects on miniature EPSPs and IPSPs in order to

address whether NA increases excitability of presynaptic glutamatergic and GABAergic

neurones at the level of the presynaptic terminal or elsewhere on the presynaptic cell.

Furthermore, stimulation studies with stimulating electrodes located in other hypothalamic

areas such as the LH, which directly innervates Arc neurones, may help to clarify the nature of

the origins of these synaptic inputs.

Phenylephrine, a α1- AR agonist mimicked the NA-induced depolarisation, and

prazosin, a α1- AR antagonist, blocked the response, suggesting NA-induced excitation

through activation of α1- ARs. NA-induced excitation through activation of α1- ARs has been

previously reported in other areas of the CNS (Lewis & Coote, 1990; Pan et al., 1994; Daftary

et al., 2000; Yamanaka et al., 2006).

Subsequent studies to clarify further the subtypes of α1- ARs involved were

undertaken. The results suggest that the α1A- AR has a significant role to play in the NA-

induced depolarisation and increase in firing rate with a smaller contribution from α1B- ARs.

This is in accordance with studies using in situ hybridisation to examine the expression of α1-

AR subtypes in the CNS. These studies revealed expression of α1B- ARs was extremely low

compared to low/ moderate levels of α1A- AR expression at the level of the Arc (Day et al.,

1997). The differential expression of these α1- AR subtypes could also explain the variation in

ionic mechanisms observed underlying NA-induced depolarisation in Arc neurones. The

different α1- AR subtypes could be associated with the different cellular mechanisms found

within this study i.e. the subtypes differentially link up with potassium channels, non-selective

cation channels or pump in the cellular membrane. Further studies investigating ionic

mechanisms underlying NA-induced depolarisation in the presence of selective antagonists

are required to clarify this possibility.
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In contrast to previous studies we did not find a role for β ARs in mediating an

excitation within the Arc (Kang et al., 2000). Application of the β-agonist, isoproterenol, had no

affect on hypothalamic Arc neurones. However, our data is only preliminary and therefore we

would need a larger (n) number to clarify these results. We also carried out recordings in 2

mM glucose. This is in contrast to Kang et al, 2000 who carried out extracellular recordings in

10 mM glucose. The differences observed between the two studies could potentially be due to

the change in glucose. The current study has previously described (chapter 4) that changes in

extracellular glucose can significantly change subthreshold active conductances which are

ultimately involved in synaptic integration and forming the neurone's output.

In studies described here, application of NA in the presence of the antagonist,

prazosin, blocked the NA-induced depolarisation in a concentration dependent manner,

revealing NA-induced hyperpolarisation. A similar but opposing set of observations were

made with the α2- AR antagonist Idazoxan, which blocked the NA-induced α2- AR-mediated

hyperpolarisation and uncovered a NA-induced depolarisation and increase in spontaneous

firing (see chapter 6; Nakamura et al., 1984; Yamanaka et al., 2006). This suggests that Arc

neurones express multiple receptors that mediate opposing effects. In this case α1- ARs

mediate an excitation and α2- AR mediate inhibition (Nakamura et al., 1984; Yamanaka et al.,

2006). The antagonist therefore unmasks hitherto hidden effects. These differential effects

might reflect differential expression of these receptors, the type of response to NA being

dependant on the relative density and distribution of AR subtypes present on the postsynaptic

membrane. The NA-induced depolarisation may dominate in neurones where α1- ARs are

present in high densities proximal to the recording site at the soma or proximal dendrites, and

α2- ARs are expressed distal. Whereas the inverse may be true in neurones where block of

inhibition uncovers NA-induced excitation, the latter scenario reflecting a higher level of

expression of α2- ARs proximal to the recording site. Such an arrangement of receptors may
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have functional significance whereby pathway- and function-specific noradrenergic inputs are

differentially activated at different times and / or under different physiological circumstances.

Orexin neurones, exclusively located in the lateral hypothalamus (LH), are implicated

in the regulation of sleep and energy homeostasis and have been found to have complex

responses to NA (Li & van den Pol, 2005). Orexin neurons project to all parts of the brain

including the Arc. They are orexigenic and have been found to be inhibited by NA, thus

suggesting that NA may be anorexigenic at the level of the LH (Li & van den Pol, 2005).

However, Bayer et al., (2005) has reported that orexin neurones can be excited by NA within

the LH thus indicating that NA can have differential effects on orexin neurones within the LH.

Furthermore, orexin neurones are activated by NA but inhibited when rats are sleep deprived,

supporting the notion of a function-specific organisation and plasticity associated with

noradrenergic inputs to hypothalamic neurones (Yamanaka et al., 2006). Whether NA

responsiveness of Arc neurones changes depending on levels of arousal or energy status

requires further study and clarification.

5.3.1 Future studies

To further this study, c-fos experiments combined with CART staining would be an

efficient and productive way to clarify the role of NA and anorexigenic circuits in regulating

excitability of Arc neurones and their role in controlling energy homeostasis.

Further double-labelling experiments would be an efficient method to characterise

other peptide-expressing Arc neurones present within the Arc. This study could be extended

to incorporate NA effects within the Arc in other homeostatic processes other than energy

homeostasis.
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Further pharmacological and ion substitution experiments could be carried out in

order to identify the specific ionic mechanism underlying the NA-induced depolarisation. It

would be of interest also to determine if each of the different ionic mechanisms mediating the

NA-induced depolarisation is mediated through different α1- AR subtypes.

5.3.2 Conclusion

This study has shown that NA excites hypothalamic Arc neurones through the activation

of α1- ARs, partially through α1A- ARs and to a lesser extent through α1B- ARs. This includes a

subpopulation of orexigenic NPY/AgRP-expressing neurones and a subpopulation of

identified putative anorexigenic CART-expressing neurones. Multiple mechanisms are

involved in mediating the NA-induced depolarisation including: the inhibition of one or more

resting potassium conductances, activation of one or more non-selective cation conductances

or a combination of the two, or possibly through activation of an electrogenic pump within the

membrane. In the presence of α1- AR antagonists, NA induced a hyperpolarisation suggesting

multiple receptor subtypes are localised to the same neurone but producing opposite effects.

Further studies are required to clarify the functional significance of these differential NA inputs.
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Figure 5.1 NA-induced a depolarisation in hypothalamic Arc neurones

A: A continuous current- clamp recording of an Arc neurone showing the effect 40 M
NA bath applied for approximately 1 minute. The line above the recording indicates
the application time and duration of NA. The / / indicates a break within the trace of
approximately 2 minutes, during which time a current/ voltage relationship (I/V) was
generated. The regular negative membrane potential responses are evoked as a
result of rectangular- wave negative current injections (5-20 pA, 1.2s, 1/5Hz),
enabling the input resistance to be monitored. Application of NA induced a membrane
potential depolarisation and increased firing rate, which the effects were reversible
within approximately 15 minutes from the time of wash out of NA.

B: I/V relationships obtained from a different neurone than that shown in (A) in the
absence and presence of NA respectively. The traces shown are superimposed
samples of a continuous whole-cell current- clamp recording showing membrane
responses to a series of hyperpolarising and depolarising current injections of
constant increment.

C: A graph plotting the current- voltage relationship obtained from the traces shown in
(B), obtained by plotting the current injected into the cell (x-axis) against the resulting
membrane holding potentials (y-axis). The symbols and  indicate the current-
voltage relationships in the absence and presence of NA, respectively. Note the
parallel shift which maybe indicative of the activation of an electrogenic pump within
the membrane, or the activation of multiple conductances that off-set each other.
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Figure 5.2 NA excites hypothalamic arcuate neurones in the presence of TTX

A: A trace from a continuous current- clamp recording of an Arc neurone in the presence
of 1 M TTX showing the direct action of NA on ARC neurones. The regular negative
membrane potential responses are evoked as a result of rectangular- wave negative
current injections (5-20 pA, 1.2 s, 1/5 Hz), enabling the input resistance to be
monitored. The / / indicates a break within the trace of approximately 2 minutes
where an I/V relationship was generated. The line above the recording marked NA
indicates the time course of application of 40 M NA. * denotes the manual injection
of negative current in order to clamp back the membrane to the resting membrane in
order to monitor the input resistance in the presence of NA excluding the activation of
other active conductances. In this case NA causes an increase in input resistance.
Application of NA induced a membrane depolarisation was reversible within
approximately 15 minutes following the wash of NA from the bath.

B: IV relationships obtained from a different neurone than that shown in (A) in the
presence of TTX (1 M). Recordings were taken before and during the application of
NA (40 M).The traces shown are superimposed samples of a continuous whole-cell
current- clamp recording showing membrane responses to a series of hyperpolarising
and depolarising current injections of constant increment. Note the activation of a
rebound depolarisation spike in the presence of NA

C: A plot of the current-voltage relationship of the neurone shown in B. The symbols
and ○ indicate the current- voltage relationships in the absence and presence of NA,
respectively. Note the increase in slope of the I/V relationship in the presence of NA
which is suggesting an increase in neuronal input resistance. The two lines intersect
around -100 mV which indicates a reversal potential close to that of potassium under
our recording conditions.
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Figure 5.3 NA-induces a depolarisation through the activation of a Non selective
cat-ion channel

A: A trace from a continuous current-clamp recording of a NA responsive arcuate
neurone. The regular negative membrane potential responses are evoked as a result
of rectangular-wave current injections in order to monitor the input resistance. The
line above the recording marked NA indicates the time course of application of 40 µM
NA. The application of NA induced a membrane depolarisation and an increase in
firing that was seen to be reversible within approximately 15 minutes following the
wash of NA from the bath. The // in the recording marks a break of approximately 3
minutes in which an I/V relationship was generated.

B: IV relationships obtained from the neurone shown in (A) before and during the
application of NA. The traces shown are superimposed samples of a continuous
whole-cell current-clamp recording showing the membrane responses to a series of
hyperpolarising and depolarising current injections of constant increment.

C: A graph plotting the current-voltage relationship obtained from the traces shown in B,
obtained by plotting the current injected into the cell (x-axis) against the resulting
membrane holding potentials (y-axis). The symbols ▪ and ○ indicate the current-
voltage relationships in the absence and presence of NA, respectively. Note, that the
IV lines have been extrapolated to determine point of intersection. In this case they
cross at approximately -25 mV suggesting the activation of a non-selective cation
(NSCC).
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Figure 5.4 NA-induces an inward current in Arc neurones

A: Trace showing a continuous recording from an Arc neurone in Voltage clamp mode.
Application NA (40 µM) at a holding potential of -50 mV induced a reversible inward
current.

B: Current responses obtained in voltage-clamp in the presence (green trace) and
absence (black trace) of NA. The currents were obtained from ramp protocols that
drove the holding potential from -100 mV to -30 mV, at a rate of 10 mV per second.
These responses are mostly parallel.

C: Current response obtained in voltage-clamp in the presence (green trace) and
absence (black trace) of NA, from a separate neurone from that shown in A and B.
The currents were obtained from a ramp protocol that drove the holding potential from
-130 mV to -30 mV, at a rate of 10 mV per second. The resulting graph showed a
reversal potential for the NA-induced current close to the K+ reversal potential under
our recording conditions.
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Figure 5.5 NA- induced indirect effects on hypothalamic Arc neurones

A: 3 samples of a continuous current clamp, showing before, during and after the
application of NA respectively. Application of NA (40 μM) induces an increase in
spontaneous synaptic (excitatory postsynaptic potentials, EPSPs) transmission in
addition to a membrane depolarisation. The third section shows the neurone in the
presence of NBQX (10 μM) a blocker of non-NMDA glutamatergic synaptic
transmission, thus confirming the synaptics to be EPSPs. Below are further sections
that have then been shown at a faster time base thus showing a minor proportion of
the recording in more detail. The resting membrane of this neurone is at -48 mV, and
was slightly active.
.
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Figure 5.6 Application of NA on hypothalamic Arc neurones IPSCs

A: A continuous voltage-clamp recording showing the effects of changing the holding
potential on IPSCs. Below, sections are shown on a faster time-scale showing the
polarity of IPSCs reversed at membrane potential more negative than -70 mV.

B: A continuous voltage-clamp recording of a single Arc neurone exposed to NA (40 Μm)
that induces a slight outward current and induces IPSCs. IPSCs are subsequently
blocked with 10 µM bicuculline, a selective GABAA antagonist.
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Figure 5.7 NA induces membrane potential oscillations and burst-like pattern of
firing in a population of Arc neurones

Ai: Sample of a continuous whole-cell current-clamp recording from an Arc neurone
showing a NA-induced depolarisation (40 μM). With a holding current of -16 pA,
bursting of action potentials and membrane oscillations are seen.

Aii: Expanded region from the neurone shown in Ai at a faster time scale, showing
membrane potential oscillations with associated bursts of action potentials.
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Figure 5.8 α1 AR agonist depolarises hypothalamic Arc neurones

A: A trace from a continuous current- clamp recording from an Arc neurone exposed to
10 M phenylephrine. The regular downward deflections are constant negative
current injections of constant amplitude enabling the input resistance to be monitored
(5-20 pA, 1.2 s, 1/5 Hz). The / / indicates a break within the recording of
approximately 2 minutes, this is in order to carry out a current/ voltage relationship.
The line above the recording marked phenylephrine indicates the time course of
application of 10 M phenylephrine in the presence of TTX (1 μM) also shown in the
figure. The application of phenylephrine caused a pronounced membrane
depolarisation that was reversible within approximately 4 minutes following the wash
of phenylephrine from the bath.

B: IV relationships obtained from the neurone shown in (A) in the presence of TTX
(1 M). Recordings were taken before and during the application of phenylephrine
(10 M).The traces shown are superimposed samples of a continuous whole-cell
current- clamp recording showing membrane responses to a series of hyperpolarising
and depolarising current injections of constant increment. Note again the activation of
a rebound depolarisation spike in the presence of NA

C: A graph plotting the current- voltage relationship obtained from the traces shown in B
obtained by plotting the current injected into the cell (x-axis) against the resulting
membrane holding potentials (y-axis). The symbols and ○ indicate the current-
voltage relationships in the absence and presence of phenylephrine, respectively.
Note the parallel shift which maybe indicative of a pump within the membrane, or the
activation of multiple conductances that off-set each other.
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Figure 5.9 NA-induced excitation is blocked by a α1- AR antagonist in a
concentration dependant manner

A: Samples of a continuous current- clamp recording from an Arc neurone showing
exposure to 40 µM NA, which induced a reversible membrane depolarisation and
increase in action potential firing. The application of the α1-AR antagonist, prazosin at
300 nM blocked the NA induced response. The regular negative membrane potential
responses are the result of evoked rectangular- wave negative current injections
enabling the input resistance to be monitored (5-20 pA, 1.2 s, 1/5 Hz). The lines
above the recording indicates the time course to NA and prazosin.

B: A trace from a neurone (different to the neurone shown in A) that has been exposed
to 40 µM NA that has also induced a membrane depolarisation and increase in firing
rate. Application of 300 nM prazosin blocked the NA induced depolarisation, and
revealed a NA induced inhibition.

C: A dose response curve, showing the effects of differential concentrations of prazosin
in blocking the NA induced response.
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Figure 5.10 NA induced excitation is (partially) blocked by a α1A- AR antagonist

A: A trace from a neurone that has been exposed to 40 µM NA that has also induced a
membrane depolarisation and increase in firing rate. Application of 10 nM RS100329
HCL does not completely abolish the NA induced excitation, however the response
lasts a shorter period of time. Application of NA in the presence of 100 nM RS100329
blocks the NA-induced increase in firing rate. On wash out of the α1A-AR antagonist,
further application of NA induces an increase in firing rate and a larger depolarisation
of the membrane, thus suggesting that there is little receptor desensitisation to NA
application and that the α1A-AR contributes partially to the NA-induced excitation. The
regular negative membrane potential responses are the result of evoked rectangular-
wave negative current injections enabling the input resistance to be monitored (5-20
pA, 1.2 s, 1/5 Hz).The lines above the recording indicates the time course to NA and
RS100329 HCL. // represent breaks within the recording to carry out I/V relationships.

B: Sample of a continuous current-clamp recording from an Arc neurone showing
exposure to 40 µM NA, which induced a reversible membrane depolarisation and
increase in action potential firing The application of the α1A-AR antagonist; RS100329
HCL at 100 nM blocked the NA induced response. The regular negative membrane
potential responses are the result of evoked rectangular- wave negative current
injections enabling the input resistance to be monitored (5-20 pA, 1.2 s, 1/5 Hz). The
lines above the recording indicates the time course of NA and RS100329 HCL.
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Figure 5.11 NA induced excitation is (partially) blocked by the α1b- AR antagonist-
02484100

A: Samples of a continuous current-clamp recording from an Arc neurone showing
exposure to 40 µM NA, which induced a reversible membrane depolarisation and
increase in action potential firing. The application of the α1b-AR antagonist; 02484100
at 100 nM partially blocks the NA- induced response. NA still induced a depolarisation
of the membrane but fails to induce a significant increase in firing rate in the presence
of the antagonist. The regular negative membrane potential responses are the result
of evoked rectangular- wave negative current injections enabling the input resistance
to be monitored (5-20 pA, 1.2 s, 1/5 Hz). The lines above the recording indicate the
time course to NA and 02484100.
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Figure 5.12 NPY/AgRP pacemaker neurones are excited by NA

A: A continuous current clamp recording of a NPY/AgRP neurone exposed to 40 µM NA.
The regular negative membrane potential responses are evoked as a result of
rectangular- wave negative current injections enabling the input resistance to be
monitored (5-20 pA, 1.2 s, 1/5 Hz). The / / indicates a break within the recording of
approximately 2 minutes, during which time a current/ voltage relationship (I/V) was
generated. The line above the recording marked NA indicated the time application of
this drug. Application of NA induced a reversible membrane depolarisation and a
reversible increase in firing rate.

B: A continuous current clamp recording of a NPY/AgRP neurone exposed to NA in the
presence of TTX. In the presence of TTX, NA still induced a membrane depolarisation,
thus showing that NA acts directly upon the NPY/AgRP arcuate neurone.

C: IV relationships obtained from a neurone in the presence and absence of NA and
TTX. The traces shown are superimposed samples of a continuous whole-cell current
clamp recording showing membrane responses to a series of hyperpolarising and
depolarising current injections of constant increment.

D: A graph plotting the current/voltage relationship obtained from the traces shown in C,
obtained from plotting the current injected to the cell (x-axis) against the resulting
membrane holding potentials (y-axis). The symbols ▪ and ○ indicate the current 
voltage relationships in the absence and presence of NA, respectively. Note, the point
of intersection between to the I/V curves, that is close to the reversal potential of
potassium under our recording conditions.
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Figure 5.13 NA-induced an excitation in CART positive neurones

Ai: Confocal images showing the staining of CART within the Arc (Green). Aii: A single
neurone labelled with Alexa (633) during recording that was shown to be excited by
NA. Aiii. Shows the two images in Ai, Aii superimposed, and subsequently confirming
that the neurone recorded from was a CART-expressing neurone.
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Figure 5.14 NA-induced an excitation in CART negative neurons

Ai: Confocal images showing the staining of CART within the Arc (Green). Aii: A single
neurone labelled with Alexa (633) during recording that was shown to be excited by
NA. Aiii. Shows the two images in Ai, Aii superimposed, and subsequently confirming
that the neurone recorded from was not a CART-expressing neurone.
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Chapter 6

The inhibitory effects of
noradrenaline on rat hypothalamic
arcuate nucleus neurones in vitro
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6.1 Introduction

The arcuate nucleus (Arc) plays a fundamental role in a variety of circuits functionally

dedicated to controlling autonomic processes, and is crucial for the regulation of energy

homeostasis. It forms a key site for the integration of peripheral and central signals regarding

the energy stores of the body (Beck et al., 2001; Williams et al., 2001). It receives a number of

afferent inputs and is equally diverse with regards to its target efferents. Of particular interest

to this study is the noradrenergic input Arc neurones receive from brainstem nuclei

(Sawchenko & Swanson, 1981).

The endogenous catecholamine, noradrenaline (NA) activates a family of G-protein-

coupled receptors (GPCRs) to transmit signals across the plasma membrane (Hein, 2006).

The adrenergic receptors can be divided into two different classes, the α-adrenoceptors (ARs)

and the β- ARs, which are distributed differentially within the CNS (Nicholas et al., 1993; Day

et al., 1997) and throughout the periphery (Zhong & Minneman, 1999). The α- AR subfamily

can be further subdivided into the α1- AR and α2- AR, which have both been reported to be

widely distributed within the hypothalamus (Young & Kuhar, 1980). α2- ARs have been found

to be abundant in the Arc and the paraventricular nucleus (PVN), whereas α1- ARs are found

more laterally within these nuclei (Young & Kuhar, 1980; Unnerstall et al., 1984).

α2- ARs can be divided into 3 separate subtypes; 2A, 2B and 2C. All three subtypes

appear to couple to the same signalling systems, the Gi-mediated pathway, which involves

inhibition of adenylyl cyclase, activation of receptor-operated potassium channels and

inhibition of voltage-gated Ca2+ channels (Rogawski & Aghajanian, 1982; Limbird, 1988). α2-

AR are located both pre- and post-synaptically. Postsynaptic α2- ARs are directly inhibitory or

presynaptic α2- AR provide negative feedback which inhibits presynaptic release of NA
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(Rogawski & Aghajanian, 1982; Wellman et al., 1993) and thus function as inhibitory

autoreceptors.

The functioning of the noradrenergic system on Arc neurones has previously been

described in POMC neurones, which are abundant within the Arc and are implicated in the

control of energy homeostasis, and mediate anorexigenic effects. α2- ARs present on POMC

neurones have been shown to cause bradycardia and hypotension (Li et al., 1996) thus

showing the complexity of the roles of these receptors in multiple cellular functions that have

not yet been fully explored.

Application of the α2- AR agonist clonidine, or NA, into the PVN elicits feeding. These

receptors seem postsynaptic in nature, since their sensitivity to noradrenergic stimulation is

unaffected or even enhanced by drug manipulations that destroy the presynaptic terminals or

block neurotransmitter synthesis (Goldman et al., 1985).

Insulin, a well known long-term adiposity signal exerts its effects, in part, via actions

on specific neurones of the hypothalamus to produce an overall anorexigenic effect (Benoit et

al., 2002). Brain α- ARs exhibit considerable plasticity in situations where plasma insulin

levels fluctuate as a function of diet and obesity (Levin & Hamm, 1994). Insulin importantly

has been reported to directly regulate noradrenergic responsive neurones within the Arc via

effects mediated through the α2- AR (Levin et al., 1998). Thus, studies suggest that the

noradrenergic system is involved in the central control of energy homeostasis. However, the

precise role of NA in regulating energy balance at the level of the hypothalamic Arc remains

unclear.

The previous chapter has focused on the excitatory effects of NA within the Arc. Bath

application of NA depolarises a population of Arc neurones through the activation of α1- ARs.

In the present study, the aim was to investigate the cellular mechanisms by which NA induced

an inhibition and hyperpolarisation of Arc neurones and to determine the AR and the neuronal
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cell type associated with mediating these effects, using whole-cell patch clamp recording

techniques and immunohistochemistry in hypothalamic slice preparations.

6.2 Results

Whole-cell patch clamp recordings in vitro were obtained from a total of 172 neurones

that were exposed to bath application of NA (40 µm; 1-2 minutes). These neurones exhibited

a mean resting membrane potential of -48.6 ± 0.6 mV, associated with a mean neuronal input

resistance of 1397 ± 51 MΩ. Neurones responded to NA with either a depolarisation (51.2%),

hyperpolarisation (22.7%) or no response (26.1%) to the membrane.

6.2.1 NA-induced a hyperpolarisation of hypothalamic Arc neurones

39/172 (22.7%) neurones exposed to 40 µM NA responded with an inhibition,

observed as a decrease in suprathreshold activity and hyperpolarisation of the membrane

potential. Bath application of NA induced a decrease in spontaneous firing rate from a control

level of 1.1 ± 0.2 Hz to 0.0 ± 0.0 Hz (P < 0.001; student's t-test), the effects of which were

reversible following the wash of NA from the bath, spontaneous firing rate recovering to 1.3 ±

0.2 Hz (n=25; Figure 6.1A).

The NA-induced inhibition was associated with a reversible membrane

hyperpolarisation. The membrane potential recovered to control levels within approximately 5-

7 minutes following the wash of NA from the bath. NA application induced a membrane

hyperpolarisation from a mean resting membrane potential of -45.9 ± 1.2 mV to -59.9 ± 1.7

mV (P < 0.001 for control versus NA; ANOVA), amounting to a mean peak membrane

hyperpolarisation amplitude of 14.1 ± 1.2 mV (n=39). Performing an ANOVA revealed a highly
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significant difference in the membrane potential between the control and the neurone in

presence of NA. The membrane potential returned to a mean resting potential of -44.3 ± 1.4

mV on washout of NA from the bath (P=0.38; control compared to wash). Neurones that were

silent at rest, displaying no suprathreshold activity, were also inhibited by NA indicating that

NA-induced hyperpolarisation was not exclusive to ‘active’ cells (see Figure 6.1B).

The NA- induced membrane hyperpolarisation was associated with a decrease in

neuronal input resistance from a mean resting neuronal input resistance of 1467 ± 119 MΩ to

1023 ± 81 MΩ (P<0.001; student's t-test) in the presence of NA, amounting to a mean 23.2 ±

5.2 % decrease in neuronal input resistance in the presence of NA. The effects were

reversible following the wash of NA from the bath, with the input resistance recovering to 1545

± 234 MΩ.

NA-induced hyperpolarisation and decrease in neuronal input resistance persisted in

the presence of TTX (1 M, n=3; see Figure 6.2 A), thus indicating a direct post-synaptic

effect of NA on Arc neurones. NA application in the presence of TTX induced a membrane

hyperpolarisation from a mean resting membrane potential of -49.7 ± 3.0 mV to -65.7 ± 2.0

mV amounting to a mean peak membrane hyperpolarisation amplitude of 16.0 ± 5.0 mV (n=3).

This response to NA, in the presence of TTX, was associated with a decrease in input

resistance of 50.0 ± 10.4 %, from a mean resting input resistance of 1965 ± 624 MΩ to 888 ±

114 MΩ in NA (n=3).

In voltage-clamp at a holding potential of -50 mV, application of NA (40 M, n=10) in

the presence of TTX, induced an outward current, with a mean peak amplitude of 14.1  1.4

pA (Figure 6.3A).
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6.2.2 NA-induced hyperpolarisation was concentration-dependent.

The magnitude of the NA-induced hyperpolarisation was dependent upon the

concentration of NA applied (see Figure 6.4). NA at a concentration of 0.1 M (1-2 minutes)

had no effect on the membrane potential of the neurone; 40 M induced a maximal

membrane hyperpolarisation. The higher concentrations of NA induced membrane

hyperpolarisations that were more prolonged in time-course. All NA-induced

hyperpolarisations were reversible within approximately 5 minutes of washing the drug from

the bath.

6.2.3 Ionic mechanism underlying the NA-induced hyperpolarisation.

The NA-induced hyperpolarisation was associated with a decrease in neuronal input

resistance or an increase in membrane conductance. To determine the ionic mechanism

underlying the NA-induced hyperpolarisation, current-voltage (I/V) relationships were obtained

in control conditions and at the peak of the NA-induced hyperpolarisation in 13 neurones

(Figure 6.1 C/D). In 13/13 neurones it was possible to determine a clear mechanism

underlying the hyperpolarisation. The NA-induced inhibition revealed a clear reversible

potential amounting to -82.6 ± 1.6 mV, close to the predicted reversible potential for

potassium under our recording conditions. The reversal potential was taken from the point at

which the plots of the two I/V relations intersected. These neurones showed a decrease in

input resistance from 1269 ± 103 MΩ at rest to 794 ± 69 MΩ in NA with a mean peak

amplitude membrane hyperpolarisation of 17.6 ± 2.0 mV. This indicates that the NA-induced

hyperpolarisation is at least in part mediated through the opening of one or more potassium

conductances.
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In voltage-clamp at a holding potential of -50 mV, application of NA (n=10) induced an

outward current, with a mean peak amplitude of 14.1 ± 1.4 pA .Voltage-clamp ramps from -

110 to -30 mV at a rate of 10 mVs-1 were applied in control conditions and at the peak of the

NA-induced response to investigate the ionic mechanism and reversal potential of the NA-

induced current. NA-induced outward currents had a mean reversal potential of -93.6  2.2

mV, close to the reversal potential of potassium under our recording conditions (n=6; Figure

6.3B)

A further feature of the NA-induced hyperpolarisation was an apparent

“transformation” of the current-voltage relations characterised by the presence of an inwardly

rectifying conductance observed at more negative membrane potentials in the presence of NA.

The conductance was similar in characteristics to the inwardly rectifying potassium

conductance described in chapters 3 and 4.

6.2.4 NA activates an inwardly rectifying potassium channel

Hypothalamic Arc neurones express a number of subthreshold active conductances

(see Chapter 3). A population of neurones express an anomalous inward rectifying channel

(Ian;Figure 6.5). As the name suggests ‘rectification’ means change of conductance with

voltage, and ‘anomalous’ suggests that this conductance works in the contrary direction to

that predicted by the Goldman-Hodgkin- Katz electro-diffusion equation (Goldman, 1943).

This conductance is characterised by an instantaneous decrease in input resistance at more

negative membrane potentials. The NA induced membrane hyperpolarisation was associated

with the enhancement or appearance of inward rectification at negative membrane potentials.

Thus there was a notable enhanced decrease in input resistance at more negative membrane

potentials in the presence of NA. The expression of this inward rectification amounted to a
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30.9 ± 4.0 % (n=7) reduction in input resistance at a membrane potential of -99.2 ± 1.5 mV

relative to the steady-state input resistance calculated at rest in the absence of NA. In contrast,

I/V relationships carried out in the presence of NA revealed a 40.9 ± 5.7 % (n=7) reduction in

input resistance at a membrane potential of -100.4 ± 4.5 mV, amounting to an overall 10.1 ±

5.7 % increase in inward rectification in the presence of NA.

6.2.5 The effects of Ba2+ on NA-induced hyperpolarisation and activation of inward

rectification.

Barium (applied in these studies as the chloride salt; BaCl2) is a non-selective

potassium channel blocker; frequently used as a blocker Ian at a concentration around 100 M

(Rudy, 1988; van den Top et al., 2004). Thus Ba2+ was used to further characterise the inward

rectification associated with NA-induced hyperpolarisation. Bath application of BaCl2 (300 µM,

n=5) significantly blocked the NA induced hyperpolarisation (Figure 6.6). Upon wash of BaCl2

subsequent application of NA induced a response similar to the NA-induced hyperpolarisation

of the membrane observed in the absence of the blocker. Thus this data suggests the

involvement of one or more barium-sensitive potassium conductances in mediating the NA-

induced hyperpolarisation.

6.2.6 The pharmacological profile of receptors mediating NA-induced inhibition:

effects of adrenoceptor agonists on Arc neurones

UK-14,304 (10 µM; 1-2 minutes), a specific α2- AR agonist, was bath applied to a total

of 12 hypothalamic Arc neurones, 7 of which had previously been exposed to NA (40 µM). A

total of 9 (75%) neurones responded with a hyperpolarisation of the membrane potential and
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a decrease in input resistance in the presence of UK-14, 304. Application of UK-14, 304

induced a reversible membrane hyperpolarisation from a mean resting potential of -46.6 ± 2.2

mV to -54.4 ± 2.6 mV, a mean peak membrane hyperpolarisation of 7.9 ±1.1 mV (n=9; Figure

6.7A). Neuronal input resistance decreased overall, giving a percentage decrease of 14.6 ±

8.1% from a mean input resistance at rest of 1296 ± 159 MΩ to 1092 ± 176 MΩ in the

presence of the α2- AR agonist (n=9). Firing frequency also decreased by 91.7 ± 4.2% in the

presence of the α2- AR agonist, from a mean spontaneous firing frequency of 0.9 ± 0.2 Hz in

control to 0.0 ± 0.0 Hz in the presence of UK-14,304 (n=6). UK-14,304 was also applied to

neurones in the presence of TTX (n=4). The UK-14,304 -induced hyperpolarisation persisted

in the presence of TTX thus indicating a direct post-synaptic effect on Arc neurones.

6.2.7 Ionic mechanism underlying the UK-14, 304 induced hyperpolarisation

The α2- AR agonist, UK-14,304 mimicked the hyperpolarisation induced by NA. To

deduce the ionic mechanism underlying the decrease in membrane potential, I/V relationships

were taken in control conditions and at the peak of the UK-14, 304-induced hyperpolarisation

in 4 neurones. 75% of neurones displayed a clear reversal potential amounting to -83.3 ±

7.3mV (Figure 6.7 B/C) close to the predicated reversible potential for potassium ions under

our recording conditions. The point of intersection indicated the reversal potential. Thus, NA

and UK-14, 304 induce hyperpolarisation of hypothalamic Arc neurones through similar

mechanisms, specifically via opening of one or more potassium conductances. Again in the

presence of UK- 14,304 there was a stronger Ian than in the absence of (see Figure 6.7 C)

suggesting that UK-14,304 activates an inward rectifying potassium channel(s).
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6.2.8 The pharmacological profile of receptors mediating NA-induced inhibition:

effects of adrenoceptor antagonists on Arc neurones

In order to further determine the AR mediating the NA- induced inhibition, the effects

of NA in the presence of the α2- AR antagonist, Idazoxan, were examined under current-clamp

conditions.

Application of 40 µM NA alone caused a membrane hyperpolarisation and a

reduction in action potential firing, a response that was partially blocked (n=2) or completely

abolished by pre-treatment of the slice with 200 nM Idazoxan (n=2). Overall, in the presence

of Idazoxan, the mean peak amplitude of the hyperpolarisation induced by NA was reduced to

6.0 ± 4.6 mV from 17.2 ±3.2mV, in NA alone, amounting to a 187 % decrease in

responsiveness to NA in the presence of Idazoxan. This data suggests that α2 ARs are at

least partially responsible for mediating the inhibition induced by NA (Figure 6.8).

Furthermore, in the presence of Idazoxan, application of NA revealed a NA-induced

depolarisation in some neurones and an associated increase in action potential firing

frequency from 0.8 ± 0.2 Hz at rest (in presence of Idazoxan) to 2.9 ± 0.7 Hz in response to

NA in the presence of idazoxan (n=3 ;Figure 6.8). NA in the presence of Idazoxan

depolarised the membrane potential from a mean of -50.0 ± 2.5 mV to -44.0 ± 2.8 mV. This

data suggests that block of α2- ARs with Idazoxan suppresses NA–induced hyperpolarisation

of the membrane potential, and reveals a NA-induced excitation. Thus, hypothalamic Arc

neurones are capable of expressing more than one type of AR which mediate differential

responses. A hyperpolarisation followed by a return to the resting membrane potential and

then a subsequent depolarisation and increase in firing rate was observed in 13/39 neurones.

This was termed a biphasic response and further substantiated the concept that Arc neurones

can express both α1- ARs and α2-ARs (see Figure 6.9). NA induced a hyperpolarisation of the
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membrane potential, a response that was blocked by idazoxan and revealed a depolarisation

of the membrane potential. To determine whether the depolarisation was via a direct

postsynaptic site of action, the effects of TTX were investigated on NA-induced responses in

the presence of idazoxan. In the presence of TTX and idazoxan, the NA-induced

depolarisation persisted, thus indicating that NA acts directly on the recorded neurone. To

clarify the potential involvement of α1 ARs in mediating this effect, actions of phenylephrine

were tested (see chapter 4). Application of phenylephrine similarly induced a membrane

depolarisation, thus further suggesting that both α1 ARs and α2 ARs receptors can be

functionally expressed in the same neurone and yield opposing effects.

Application of idazoxan alone induced an increase in firing rate suggesting that Arc

neurones may be under tonic inhibition by endogenous α2- AR ligands (n=2; Figure 6.10).

6.2.9 NA differentially regulates excitability of CART-expressing neurones

In order to address the functional significance of these differential responses to NA,

the effects of NA were tested on neurones in which the chemical phenotype was determined.

Alexa 633 (100 µM) was used in the recording pipette to allow for the identification of the

recorded neurones, retrospectively. Slices were subsequently processed

immunohistochemically for CART 55-102, using a high affinity antibody. CART has been

recognised as an anorectic peptide that co-localises with POMC within the Arc and that is

directly up-regulated by leptin (Elias et al., 2001). Thus CART immunohistochemistry was

used as a marker to identify anorexigenic neurones and double-labelling with Alexa 633 used

to confirm that recordings were made from CART-expressing neurones. 4/12 CART positive

neurones responded to NA with membrane hyperpolarisation (Figure 6.11). One neurone

identified as a CART-positive cell responded with a biphasic response to application of NA.
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NA induced firstly a relatively rapid hyperpolarisation of the membrane potential followed by a

depolarisation associated with an increase in action potential firing. 5/12 CART- positive

neurones responded in a NA-induced excitation. 8/26 neurones that were CART-negative

responded to NA with an inhibition of spontaneous firing and a hyperpolarisation of the

membrane potential (Figure 6.12).

6.2.10 The effects of NA on neurones classified according to electrophysiological

phenotype.

Chapter 3 in this study classified neurones based on their differential expression of

subthreshold active conductances and were subsequently termed clusters. This classification

was formed as a basis for further experiments to be carried out in order to identify neurones,

based upon their electrophysiological characteristics. The hypothesis driving this initiative is

that neurones with different electrophysiological conductances within the Arc are elements

controlling different pathways and functional processes. Differential responses to NA over the

clusters are to be expected if they form functionally distinct populations. Here the effects of

NA were tested on the different electrophysiological subtypes. Figure 6.13 shows a summary

histogram showing the responsiveness of each cluster to NA; separated into excitation,

inhibition or no response to NA.

Neurones identified as cluster 1 (expressed Ian) responded to NA with membrane

depolarisation in 53% of neurones; membrane hyperpolarisation in 20% of neurones and did

not respond in 27% of cluster 1 neurones (n=15).

Cluster 2 neurones (expressed Ian and Ia – like conductance) responded to NA with

membrane potential depolarisation in all neurones tested (n=9; 100%). These neurones have

previously been identified as Arc NPY/AgRP pacemaker neurones (van den Top et al., 2004).
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Thus NA induced excitation of a subpopulation of NPY/AgRP neurones suggesting a potential

orexigenic role for NA at the level of the Arc.

Cluster 3 neurones (express no obvious sub-threshold active conductances; n=8)

responded to NA with membrane depolarisation (50%) or NA failed to have any significant

effect (50%).

The majority (66.6%) of cluster 4 neurones (express a time- and voltage-dependent

inward rectification; Ih) failed to respond to NA, this lack of effect being the greatest number

across clusters (n=9).

Cluster 5 neurones (express Ih and a T-type-like calcium conductance) responded to

application of NA with membrane potential depolarisation in 54% of neurones. 26% of

neurones did not respond to NA, the remaining cluster 5 neurones responding in a membrane

hyperpolarisation (n=35).

Cluster 6 neurones (express T-type-like calcium conductance) responded to NA with

membrane depolarisation in 47% of neurones. No response was obtained to NA in 31% and

NA induced a membrane potential hyperpolarisation in 22% of cluster 6 neurones (n=36).

Cluster 7 neurones (express Ian and a T-type-like calcium conductance; n=19)

responded to application of NA with membrane depolarisation (42%), membrane

hyperpolarisation (32%) or no effect (26%).

Finally cluster 8 neurones (express Ih, Ian and a T-type-like calcium conductance;

n=41) were the group that were most responsive to application of NA with a total of 80% of

neurones responding to bath application of NA. Cluster 8 neurones responded to application

of NA with membrane depolarisation (51%), hyperpolarisation (23%) or no effects (26%).
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6.2.11 Indirect effects of NA on electrophysiologically -defined cell types.

22.7% of neurones responded with a hyperpolarisation of the membrane potential in

the presence of NA. 20.5 % (n=8) of neurones that responded with an inhibition to NA also

responded with an induction of spontaneous EPSPs (Figure 6.14A). Both the frequency and

amplitude of EPSPs/EPSCs increased in the presence of NA. EPSCs increased in frequency

from a mean of 0.1 ± 0.0 Hz at rest to 1.6 ± 0.4 Hz in the presence of NA amounting to a 741

± 351 % increase in frequency of EPSCs in the presence of NA. NA-induced EPSCs, were

completely blocked in the presence of NBQX (10M), a glutamatergic non-NMDA receptor

antagonist (n=4; see Figure 6.15). These indirect effects of NA on Arc neurones through

glutamatergic synaptic transmission were restricted to specific electrophysiologically defined

clusters: 6/8 responding neurones were defined as cluster 8 (Figure 6.14B) and 2/8 neurones

were identified as cluster 5 neurones.

NA also induced/increased the frequency of spontaneously evoked IPSPs in a subset

of Arc neurones. The frequency of IPSPs increased from a mean of 0.2 ± 0.0 Hz at rest to 0.4

± 0.0 Hz in the presence of NA amounting to a 165.5 ± 65.3 % (p<0.05; n=4) increase in

frequency of IPSPs in the presence of NA (Figure 6.16 A). NA-induced IPSPs and IPSCs

were completely blocked by the GABAA antagonist, bicuculline (10μM).

In a further subset of neurones, application of NA suppressed spontaneously evoked

IPSPs (n=3), an effect reversible upon washout of NA. These neurones were all subsequently

identified as cluster 5 neurones (Figure 6.16 B).
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6.3 Discussion

Little is known of the central effects of NA on hypothalamic Arc neurones. This study

was carried out to characterise the electrophysiological actions of NA on Arc neurones and

the cellular mechanisms underlying these responses. NA induced differential effects on

neuronal excitability of Arc neurones including depolarisation (51.2%; see chapter 4) and

hyperpolarisation in 22.7% of neurones recorded.

NA-induced a direct hyperpolarisation in a population of CART-expressing neurones

mediated most likely through α2- ARs through activation of one or more potassium

conductances. Staining for the anorexigenic peptide CART was carried out to identify the

chemical phenotype of the neurone and correlated with the electrophysiological properties

and responsiveness to NA. NA inhibited a population of Arc neurones that expressed CART,

suggesting that NA has an orexigenic role at the level of the Arc. However, as stated earlier

(see also chapter 4) POMC/CART-expressing neurones are heterogeneous in function and

therefore it cannot be assumed that NA’s only function within the Arc is restricted to effects

related to energy balance. The overall net effect of NA in relation to feeding therefore

requires further work. However, observations described here of NA inducing inhibition of Arc

neurones, together with results described in the previous chapter of NA inducing excitation of

identified pacemaker NPY/AgRP neurones, are consistent with an orexigenic, anabolic role for

NA at the level of the Arc.

NA induced a direct hyperpolarisation of Arc neurones, as revealed by the

persistence of the response in TTX, indicating NA acts postsynaptically to inhibit some Arc

neurones. This hyperpolarisation was mimicked by the α2- AR agonist, UK-14,304, and

blocked by the α2- AR antagonist, Idazoxan, thus verifying that the NA hyperpolarisation is

most likely mediated through α2- ARs, observations consistent with other studies in the CNS
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showing an inhibitory role for these receptors (Nakamura et al., 1984; Akasu et al., 1985;

Arima et al., 1998; Li & van den Pol, 2005; Yamanaka et al., 2006). The significance of NA

inducing a membrane hyperpolarisation through α2- AR reported here is in contradiction to

previous studies in the Arc. Kang et al., (2000) reported that there was no α2- AR within the

Arc, and that Arc neurones only responded with an excitation on application of NA through the

α1- AR and the β receptor. They reported that the NA-induced inhibition observed was indirect

and was completely abolished by low Ca2+- high Mg2+.–containing bathing medium. The

inhibition seen in the study by Kang et al., (2000) may be due to the activation of α1 and/or β

ARs on local inhibitory interneurons, leading to Ca2+ dependent release of an inhibitory

transmitter such as GABA which then acts to inhibit the recorded neurone. Indeed we do find

an increase in IPSPs in a subpopulation of neurones. However this affect does not mediate

the NA-induced inhibition. The results of this study contradict observations see by Kang et al.,

(2000) and clearly demonstrates a direct post-synaptic site of action for NA.

The mechanism mediating the NA-induced hyperpolarisation was a consequence of

activating one or more potassium conductances, established as a result of plotting I/V

relationships before and in the presence of the NA, revealing a reversal potential around

-83 mV in current clamp and -93 mV from voltage-clamp ramp data. This value is near the

equilibrium potential for potassium under our recording conditions. The NA-induced

hyperpolarisation was associated with a decrease in neuronal input resistance thus the

activation of α2- ARs resulted in the opening of one or more potassium conductances, a notion

further supported by the block of NA-induced inhibition with the potassium channel blocker

barium (Akasu et al., 1985; Li & van den Pol, 2005).

UK-14,304, the selective α2- AR agonist induced a membrane hyperpolarisation

associated with a decrease in neuronal input resistance that exhibited a reversal potential
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close to the reversal potential for potassium under our recording conditions. This is consistent

with effects being mediated by the opening of one or more potassium-selective conductances.

In the presence of idazoxan, the application of NA induced a depolarisation and

increase in firing frequency. Interestingly, in the absence of NA, idazoxan alone increased

firing frequency in some neurones, suggesting that Arc neurones may be under the control of

a tonic inhibition by endogenous α2- AR ligands such as NA (Li & van den Pol, 2005).

Idazoxan blocked the α2- AR induced hyperpolarisation and unmasked a NA-induced

depolarisation. This suggests the presence of other adrenergic receptors mediating other

responses previously masked by activation of the α2- ARs (Nakamura et al., 1984; Yamanaka

et al., 2006). It has previously been shown that neurones can express more than one subtype

of the α-AR and can have opposing actions (Nakamura et al., 1984; Yamanaka et al., 2006).

Depending on the receptor subtype expressed, NA has the capacity to either stimulate or

depress neuronal activity. The ratio of α2- AR/ α1- AR expressed in any given neurone at a

given time can determine its intrinsic responsiveness to NA. The relative levels of expression

of α2 –AR numbers have the ability to change with the circadian cycle so that expression has

been shown to peak at the onset of the nocturnal cycle in the rat (Jhanwar-Uniyal et al., 1986;

Stanley et al., 1989). It is at this time that these rodents are most active and their feeding

behaviour is at its highest, levels decreasing in the light phase when feeding is at its lowest

level of activity (Date et al., 2006). The prevalence of NA inducing a depolarisation of the

membrane was more than twice that of NA-induced inhibition. This study has concluded that

NA excites Arc neurones through activation of α1- ARs and induces a hyperpolaristion though

activation of α2- AR. As mentioned above the α2- AR density /expression increases at the

beginning of the dark phase when activity and feeding behaviour is at its highest in rats

(Jhanwar-Uniyal et al., 1986; Stanley et al., 1989). We began conducting our experiments on

average at 10.00am GMT which is during the early light phase and when rats are less active
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and feeding is low. The frequency of inhibition seen could relate to the fact that α2- AR

expression is at its lowest. In order to determine if the light/dark cycle has an effect on NA

responsiveness of Arc neurones further studies are required on slices in the “dark-phase” to

determine if responsiveness to NA shifts.

Arc neurones have been shown to express a variety of active conductances

(Burdakov & Ashcroft, 2002), one such conductance being an ‘anomalous inward rectification’

Ian (Tasker & Dudek, 1991). These neurones show a decrease in the membrane response

relative to the predicted responses in the absence of active conductances. It shows a

decrease in input resistance at more negative membrane potentials. In the presence of NA,

cells previously either devoid of Ian or displaying Ian, exhibited this conductance or an

enhanced expression of inward rectification in the presence of NA. Thus the mechanism of

action of NA-induced inhibition appears, at least in part, to be mediated through activation of

an inward rectifying K+ (IRK) current as shown previously in other areas of the brain by NA

(Jeong & Ikeda, 1998; Ishimatsu et al., 2002; Li & van den Pol, 2005). Thus this study has

shown that NA activates potassium conductances, including inwardly rectifying conductances.

Further work is required to determine the type of α2- AR that mediates the response. It has

been shown that α2- AR are coupled to Gi/o- signalling pathways thus it is tempting to

speculate here that NA activates G-protein inward rectifying K+ (GIRK) currents. GIRK

channels are distributed in the pancreas, heart and brain and play a crucial role in controlling

insulin release, neuronal signalling and membrane excitability (Sadja et al., 2003). To further

investigate if GIRK channels mediate the NA-induced hyperpolarisation described here,

further work will need to be carried out. For example, the effects of tertiapin Q, which

selectively blocks GIRK channels (Kanjhan et al., 2005), should be investigated. This study

does not address whether the NA activation of the inwardly rectifying K+ conductance is

through a second messenger pathway, i.e. the inhibition of adenylate cyclase and thus the
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reduction of cAMP. Previous studies by Aghajanian & Wang, (1986) found with the use of

pertussis toxin and cAMP analogues, that within the locus coeruleus α2- AR agonists

hyperpolarise the membrane potential by inhibiting adenylate cyclase through a guanine

nucleotide regulatory protein (Gi). This is in contrast to the findings of Arima et al., (1998) who

found, that membrane permeant dibutyryl-cAMP analogues and other compounds acting on

the second messenger pathway, failed to have any effect on the inward rectifying K+ current.

These investigators indicated a direct interaction between the G-protein-coupled receptor and

ion channel and not through cytoplasmic diffusible second messengers. The study described

here is yet to elucidate which of these, if any, are relevant to α2- AR-mediated signalling in the

Arc.

Arc neurones have been shown to receive both glutamatergic and GABAergic inputs,

the origins of which have not been fully determined (Kiss et al., 2005). NA has been shown to

increase the activity of spontaneous EPSPs in a subpopulation of neurones that express a

unique combination of active conductances (see chapter 3). Synaptic integration in an

individual neurone is critically affected by how active conductances are distributed over the

dendrites (Takashima & Takahata, 2008). In these neurones NA directly inhibits the neurone

and stimulates a presynaptic glutamatergic neurone, resulting in glutamate release acting on

the recorded neurone. A possible glutamatergic input could be from the LH and specifically

orexin-containing neurones where reciprocal connection to and from the Arc have been

revealed and in which NA directly excites orexin neurones (Chronwall, 1985; Cone et al., 2001;

Williams et al., 2001; Rosin et al., 2003; Bayer et al., 2005). Another possible glutamatergic

source could be from the VMH, whereby a strong excitatory synaptic input from the medial

VMH to the POMC neurones of the Arc have been reported (Sternson et al., 2005). A possible

GABAergic input could be from nearby NPY/AgRP neurones present within the Arc which

have been shown to co-exist with the amino acid transmitter GABA (Horvath et al., 1997).
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Interactions such as this have previously been reported within the Arc, where POMC

neurones receive a GABAergic input from NPY neurones (Cowley et al., 2001). Thus, it is

possible that when we are recording from a POMC neurone the application of NA activates

NPY neurones to increase GABA release on to the POMC neurones thereby inhibiting it.

Further work is required to fully elucidate the origins of these glutamatergic and GABAergic

synaptic inputs.

NA has also been shown to markedly reduce the frequency of IPSPs in a subset of

Arc neurones. This implies that the neurones recorded from received a tonic input from

GABAergic presynaptic neurones, which NA subsequently suppressed. As these experiments

were not undertaken in TTX, the precise location of these adrenoceptors mediating

presynaptic inhibition is uncertain. It may be that presynaptic GABAergic neurones are

directly inhibited by NA at the level of the soma or dendrites, thus suppressing release.

Alternatively this may reflect activation of presynaptic ARs acting to suppress neurotransmitter

release. In relation to this, NA has been shown previously in a number of studies to act via

presynaptic α2- ARs to suppress neurotransmitter release. For example, NA has been shown

to have similar effects in rat supraoptic neurones (SON) through the modulation of presynaptic

α2- ARs (Wang et al., 1998).

6.3.1 Conclusion and future studies

NA has been shown to inhibit spontaneous action potential firing and induces

hyperpolarisation of the membrane potential. This effect may be mediated through a

mechanism involving the activation of a GIRK current via α2- ARs. To investigate the potential

involvement of GIRK channels further experiments need to be carried out. For example, using

GTP-γ-S (a nonhydrolyzable GTP analog) to clarify the activation of a G-protein underlies NA-
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mediated effects and the use of second-messenger inhibitors, for example adenylyl cyclase

inhibitors, to identify the role of signal transduction mechanism in mediating the response.

It has been suggested that α2- AR are located on POMC neurones within the Arc (Li et

al., 1996). Results shown here support this notion and the fact that identified pacemaker

NPY/AgRP neurones that represent a subpopulation of NPY/AgRP neurones are excited by

NA further indicates a possible orexigenic and anabolic role for NA at the level of the Arc.

Studies have shown that ghrelin, an orexigenic peptide whose plasma concentrations

increase in response to fasting and fall after meal consumption, signal via the vagus nerve

and act on noradrenergic neurones present within brainstem nuclei, which in turn increases

NA release in the Arc to stimulate feeding through α1- ARs (Date et al., 2006). It may be that in

a fasted state there would be a greater release of ghrelin and thus a greater release of NA at

the level of the Arc (Date et al., 2006). Also, the ratio of α1/α2 may also be subject to

modulation, as discussed earlier. Thus it would be of interest to study the extent of

involvement of the circadian cycle and fasted versus fed states in regulating the

responsiveness of Arc neurones to NA and the regulation of ARs.

Of interest also would be to determine the specific subtype of α2- ARs involved in

mediating the NA-induced inhibition, this could be carried out with the use of more specific

agonists and antagonists, single-cell RT-PCR and in situ hybridisation techniques.
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Figure 6.1 NA-induced a hyperpolarisation in hypothalamic Arc neurones

A: A continuous current clamp recording of a NA (40 μM) sensitive neurone. The line
above the recording indicates the application time and duration of NA. The regular
negative membrane potential responses are the result of evoked rectangular- wave
negative current injections (5-20 pA, 1.2s, 1/5 Hz), enabling the input resistance to be
monitored. Application of NA on the active neurone induced a membrane potential
hyperpolarisation and decreased activity/ firing. The effects were reversible within
approximately 4 minutes from the time of wash out of NA.

B: A trace of a current clamp recording showing the effects of 40 µM NA. Again,
hyperpolarising current was injected to monitor input resistance (5-20 pA, 1.2s, 1/5
Hz). The larger downward deflections are a result of injecting increasing amounts of
hyperpolarising currents to obtain a current-voltage (I/V) relationship. Application of
NA to a silent cell induced a membrane potential hyperpolarisation, again the effects
were reversible and the cell returned to its resting membrane potential on washout of
NA from the bath. The arrows on the diagram within the recording show expanded
regions of the trace shown below which indicate changes in synaptic activity. The first
enlargement shows the presence of IPSPs before the application of NA. The second
expanded section enlarges the trace in the presence of NA that hyperpolarises the
membrane and, and reduces the amplitude and reverses the inhibitory post-synaptic
potentials (IPSPs).

C: I/V relationships obtained from the neurone shown in (B) in the absence and
presence of NA respectively. The traces shown are superimposed samples of a
continuous whole-cell current- clamp recording showing membrane responses to a
series of hyperpolarising and depolarising current injections of constant increment.

D: Plot of the I/V relationship of the neurone shown in C. The symbols ▪  and ○ indicate 
the current- voltage relationships in the absence and presence of NA, respectively.
Note the slight decrease in slope of the I/V relationship in the presence of NA which is
indicating a decrease in neuronal input resistance. The two lines intersect just above
-100 mV which indicates a reversal potential close to the reversal potential of

potassium under our recording conditions. Note the decreased slope of the plot
towards more negative membrane potentials in the presence of NA as a result of the
activation of an inward rectifier.
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Figure 6.2 NA inhibits hypothalamic arcuate neurones in the presence of TTX

A: A trace from a continuous current clamp recording of an Arc neurone in the presence
of 1M TTX showing the direct inhibitory action of NA (1-2 minutes; 40 µM) on Arc
neurones. The regular negative membrane potential responses are the result of
evoked rectangular- wave negative current injections to monitor the changes in input
resistance (5-20 pA, 1.2 s, 1/5 Hz). Application of NA induced a membrane
hyperpolarisation that was shown to be reversible upon wash of NA from the bath.

B: I/V relationships obtained from a different neurone than that shown in (A) in the
presence of TTX (1 M). Recordings were taken before and during the application of
NA (40 M).The traces shown are superimposed samples of a continuous whole-cell
current- clamp recording showing membrane responses to a series of hyperpolarising
and depolarising current injections of constant increment.

C: A plot of the current-voltage relationship of the neurone shown in B. The symbols
and ○ indicate the current- voltage relationships in the absence and presence of NA,
respectively. Note the decrease in slope of the I/V relationship in the presence of NA
which is indicating a decrease in neuronal input resistance. The two lines intersect
above -85 mV which indicates a reversal potential close to that of potassium under
our recording conditions.



Chapter 6

286



Chapter 6

287

Figure 6. 3 NA induces an outward current in Arc neurones

A: Trace showing samples of a continuous recording of an Arc neurone in voltage-clamp
mode at a holding potential of -50 mV. Application NA (40 µM) induced a reversible
outward current. The / / indicates a break within the trace of approximately 2 minutes,
during which time voltage ramp was generated.

B: Current response obtained in voltage-clamp in the presence (green trace) and
absence (black trace) of NA, from a separate neurone from that shown in A. The
currents were obtained from a ramp protocol that drove the holding potential from -
130 mV to -30 mV, at a rate of 10 mV per second. The resulting graph showed a
reversal potential for the NA-induced current close to the K+ reversal potential under
our recording conditions.
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Figure 6.4 Concentration dependence of NA-induced hyperpolarisation

A: A trace from a continuous current clamp recording of a single Arc neurone exposed to
increasing concentrations of NA that induce significant hyperpolarisations of the
membrane. 40 µM induces a maximal hyperpolarisation.
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Figure 6.5 NA activates an inwardly rectifying potassium channel

A: I/V relationships obtained from a neurone in the absence and presence of NA (40 μM)
respectively. The traces shown are superimposed samples of a continuous whole-cell
current- clamp recording showing membrane responses to a series of hyperpolarising
and depolarising current injections of constant increment. With application of NA the
neurone was hyperpolarised and when carrying out a I/V relationship it is apparent
that NA activated an inwardly rectifying channel ( steps are seen closer together).
The arrows (1) indicate the decreased membrane response at more hyperpolarized
membrane potentials (downward arrow) relative to membrane potentials responses
close to rest (upward arrow) as a result of the activation of a anomalous inward
rectification (Ian)

B: A plot of the current-voltage relationship of the neurone shown in A. The symbols ▪     
and ○ indicate the current- voltage relationships in the absence and presence of NA,
respectively. Note the decrease in slope of the I/V relationship in the presence of NA
which is indicating a decrease in neuronal input resistance and the activation of Ian .
The two lines intersect just above -100 mV which indicates a reversal potential close
to the reversal potential of potassium under our recording conditions.
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Figure 6.6 NA induced hyperpolarisation, in part, is barium sensitive

A Trace from a continuous current clamp recording of a single Arc neurone exposed to
40 M NA (1-2 minutes) that induces a significant hyperpolarisation of the membrane
with a reduction in firing. Application of barium significantly reduces the NA induced
hyperpolarisation and reduction in firing rate. Upon wash of barium a further
application of NA revealed a response similar to the control response.
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Figure 6.7 α2- AR agonist hyperpolarises hypothalamic Arc neurones

A: A trace from a continuous current clamp recording of an Arc neurone superfused with
10 M UK-13,304 for 1-2 minutes. The regular negative membrane potential
responses are the result of evoked rectangular- wave negative current injections (5-
20 pA, 1.2 s, 1/5 Hz), enabling the input resistance to be monitored. The / / indicates
a break within the recording of approximately 2 minutes, this is in order to generate a
I/V relationship. The line above the recording marked UK-13,304 indicates the time
course of application of 10 M UK-13,304 which induced a pronounced membrane
hyperpolarisation that was reversible in approximately 4 minutes from wash out of the
agonist from the bath.

B: I/V relationships obtained from the neurone shown in (A) .Recordings were taken
before and during the application of UK-13,304 (10 M).The traces shown are
superimposed samples of a continuous whole-cell current- clamp recording showing
membrane responses to a series of hyperpolarising and depolarising current
injections of constant increment.

C: A graph plotting the current- voltage relationship obtained from the traces shown in Bi,
obtained by plotting the current injected into the cell (x-axis) against the resulting
membrane holding potentials (y-axis). The symbols and ○ indicate the I/V
relationships in the absence and presence of UK-13,304, respectively. Note the
decrease in slope of the I/V relationship in the presence of NA which is indicating a
decrease in neuronal input resistance. The two lines intersect just above -90 mV
which indicates a reversal potential close to that of potassium under our recording
conditions.
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Figure 6.8 NA induced inhibition is blocked by the α2- AR antagonist; Idazoxan in a concentration dependent manner

A: A trace from a continuous current clamp recording of an Arc neurone superfused with
40 m NA for 1-2 minutes induces a reversible membrane hyperpolarisation and a reversible decrease in action potential firing. The regular negative
membrane potential responses are the result of evoked rectangular wave negative injection to monitor the input resistance (5-20 pA, 1.2 s, 1/5 Hz). The
lines above the recording indicate the time course of NA.

B: Same neurones as above exposed to 200 nM Idazoxan. Application of 40 µM NA blocked the NA induced hyperpolarisation and revealed a slight NA-
induced membrane potential depolarisation with a increase in firing. This has been shown more clearly with the expanded sections beneath the
recording.
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Figure 6.9 Arcuate nucleus neurones express both α1- AR and α2- ARs

A: Samples of a continuous current clamp recording of a neurone exposed to bath
application of 40 M NA (1-2 minutes) that induced initially a hyperpolarisation of the
membrane. The red dotted line shows that the membrane comes back to the original
membrane potential, but becomes more depolarised than before suggesting multiple
effects of NA.
Application of idazoxan blocks the NA induced hyperpolarisation revealing a NA-
induced depolarisation of the membrane which is shown to be direct with the
subsequent application of TTX. Application of phenylephrine to the neurone induces a
depolarisation of the membrane suggesting that NA acts through α1- ARs to induce
this effect. This experiment suggests that Arc neurones can express both α1 and α2-

ARs that have opposing effects on the membrane potential.
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Figure 6.10 Idazoxan, a α2- AR antagonist induces an increase in firing

A: A trace from a continuous current clamp recording of an Arc neurone superfused with 200 nM Idazoxan. Application of idazoxan only induces an
increase in action potential firing. This has been shown more clearly with the expanded sections beneath the recording. These data suggest that Arc
neurones undergo tonic inhibition by endogenous α2- AR ligands.
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Figure 6.11 NA-induced an inhibition in CART positive neurones

Ai: Confocal images showing the staining of CART within the Arc (Green). Aii: A single
neurone labelled with Alexa (633) during recording that was shown to be inhibited by
NA. Aiii. Shows the two images in Ai, Aii superimposed, and subsequently confirms
that the neurone recorded from was a CART-expressing neurone.
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Figure 6.12 NA-induced an inhibition in CART negative neurones

Ai: Confocal images showing the staining of CART within the Arc (Green). Aii: A single
neurone labelled with Alexa (633) during recording that was shown to be inhibited by
NA. Aiii. Shows the two images in Ai, Aii superimposed, and subsequently confirms
that the neurone recorded from was not a CART-expressing neurone.
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Figure 6.13 Electrophysiological classification of Arc neurones and their
responsiveness to NA

A: A histogram showing the responsiveness of electrophysiologically defined groups of
neurones within the Arc (See chapter 3).
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Figure 6.14 NA induces a hyperpolarisation with a simultaneous increase in EPSPs
in neurones predominately termed cluster 8s.

A: Samples of a continuous current clamp recording of an Arc neurone exposed to 40
M NA that induced a hyperpolarisation of the membrane and a significant increase
in spontaneous EPSPS. Below sections of the current clamp recording are shown on
a faster time base, to illustrate the induction of EPSPs more clearly. The regular
negative membrane potential responses are the result of evoked rectangular wave
negative injection to monitor the input resistance. These were ceased in the middle of
the recording in order to monitor the induction of EPSPs more clearly.

B: IV relationships obtained from the neuron shown in (A) before and during the
application of NA. The traces shown are superimposed samples of a continuous
whole-cell current-clamp recording showing the membrane responses to a series of
hyperpolarising and depolarising current injections of constant increment. The
neurone is termed a cluster 8 neurones (see chapter 3) based on it expression of Ih.,

Ian, and a T-type like calcium conductance.
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Figure 6.15 NA induces an outward current with a simultaneous increase in EPSCs

A: Trace showing a continuous recording of an Arc neurone in Voltage clamp mode at a
holding potential of -50 mV. Application NA (40 µM) induced a small reversible
outward current with an increase in frequency and amplitude of EPSCs. EPSCs were
subsequently blocked with application of NBQX. Below sections are expanded at a
faster time base, to illustrate the induction of EPSCs more clearly.
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Figure 6.16 NA induces IPSPs/IPSCs

A: Trace showing a continuous recording of an Arc neurone in Voltage clamp mode at a
holding potential of -50 mV. Application NA (40 µM) induced an increase in frequency
and amplitude of IPSCs. IPSCs were subsequently blocked with application of
Bicuculline (10 μM). This neurone was termed a cluster 5 neurone due to its
expression of time- and voltage-dependent inward rectification (Ih) and a T-type like
calcium-like conductance

B: A trace from a continuous current clamp recording of an Arc neurone exposed to 40
M NA that induces a significant decrease/ block in spontaneous IPSPS. Below
sections of the current clamp recording are shown on a faster time base, to illustrate
the decrease in IPSPs more clearly.
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Chapter 7

The effects of histamine on rat
hypothalamic arcuate nucleus

neurones in vitro
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7.1 Introduction

Histamine (β-imidazolylethylamine) is an endogenous biogenic amine that is

synthesised in the brain from L-histidine by the enzyme L-histidine decarboxylase (HDC). The

central histaminergic system has been reported to regulate numerous physiological functions,

including energy homeostasis (Ookuma et al., 1993), the sleep-wake cycle (Haas & Panula,

2003) and memory (Brown et al., 2001). Histamine is widely distributed throughout the CNS in

both neurones and mast cells (Garbarg et al., 1976). In 1984, the origins and projections of

the brain neuronal histaminergic system were identified (Panula et al., 1984; Watanabe et al.,

1984). These studies revealed histamine neurones to be restricted to the tubermammillary

nucleus (TM) of the posterior hypothalamus, from which efferent fibres project and terminate

to almost all parts of the brain, including the hypothalamic Arc (Haas et al., 1989).

Histamine exerts its effects through four G-protein-coupled receptors designated

histamine receptor H1, H2, H3, and H4 (Parsons & Ganellin, 2006). Three of the four identified

histamine receptors (H1-H3) are expressed in the CNS, whereas the fourth (H4) receptor is

detected predominately within the periphery, for example in bone marrow and leukocytes (Liu

et al., 2001; Oda & Matsumoto, 2001; Shin et al., 2002).

The H1 receptor is associated with the Gq/11 GTP hydrolysing protein which when

activated stimulates activity of phospholipase C, and ultimately the release of calcium from

internal calcium stores. Electrophysiological studies have shown that stimulation of the H1

receptor results in depolarisation and an increase in firing (McCormick & Williamson, 1991;

Reiner & Kamondi, 1994; Whyment et al., 2006; Haas, 1992) through a mechanism involving

inhibition of a leak potassium conductance. H1-knockout mice have been shown to develop

diet-induced and aging-related obesity (Masaki et al., 2001; Masaki et al., 2004). Infusion of

H1 antagonists significantly increases feeding (Sakata et al., 1988) thus leading to the
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hypothesis that hypothalamic neuronal histamine is important in the control of energy

homeostasis and may tonically suppress food intake through the histamine H1 receptor.

H2 receptors are coupled to the G-protein GS and adenylyl cyclase and generally

have excitatory actions on neuronal membranes and have similar physiological functions

within the brain as H1 (Yanai & Tashiro, 2007). H3 receptors are thought to be auto-receptors

that regulate the release and synthesis of histamine. They act in an inhibitory manner at the

presynaptic terminal and are coupled to Gi/o and ultimately high voltage-activated Ca2+

channels (Haas & Panula, 2003). In relation to feeding, the application of the H3 antagonist

thioperamide suppresses feeding (Cohn et al., 1973; Machidori et al., 1992; Lecklin et al.,

1998). The signal transduction pathways of the recently cloned H4 receptor (Nakamura et al.,

2000; Nguyen et al., 2001) are as yet unclear, although, like the H3 receptor, the H4 receptor

seems to couple to Gi/o (Hough, 2001).

It has been previously reported that neuronal histamine has a physiological role in the

regulation of food intake, specifically acting to suppress feeding through H1 receptors in the

VMH and the PVN, two hypothalamic nuclei that are known to be involved in the control of

feeding (Sakata et al., 1990). The Arc, also within the hypothalamus, is an essential

component of the central neural aspects dedicated to controlling energy homeostasis, and

consists of a heterogeneous population of neurones that synthesise numerous

neurotransmitters and neuropeptides (Chronwall, 1985; Schwartz et al., 2000).

In the present study, the aim was to undertake a preliminary investigation of the

cellular mechanisms by which histamine regulates the neuronal excitability of key

hypothalamic neurones in the Arc using whole-cell patch clamp recording techniques in

isolated slice preparations.
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7.2 Results

In the present study the effects of bath application of histamine (10 μM; 1-2 minutes)

on the electrophysiological properties and activity of single hypothalamic Arc neurones in a

slice preparation were studied using whole-cell patch clamp recording techniques in vitro. A

total of 46 neurones were included in this study. The mean resting membrane potential of

these neurones was -50.7 ± 1.3 mV and the corresponding input resistance of these

neurones was 1320 ± 101 MΩ.

7.2.1 Histamine depolarises hypothalamic Arc neurones

30/46 (65%) neurones exposed to a brief application of histamine (10 μM, 1-2

minutes) responded with an excitation, observed as membrane potential depolarisation

and/or an increase in suprathreshold electrical activity. Bath application of histamine to the

slice by superfusion for 1-2 minutes induced an increase in mean firing rate from a control

level of 0.09 ± 0.05 Hz to 1.13 ± 0.22 Hz (190%; P<0.001; n=18). These effects of histamine

were reversible within around 10 minutes following the wash of histamine from the bath

(Figure 7.1A).

Histamine induced a significant membrane depolarisation from a mean resting

membrane potential of -51.8 ± 1.6 mV (n=30) to -43.5 ± 1.5 mV, resulting in a mean peak

membrane depolarisation amplitude of 8.3 ± 0.9 mV (n=30; paired students T-test; P<0.001;

Figure 7.1A).

The histamine-induced depolarisation was also seen in a subpopulation of NPY/AgRP

neurones (n=2; van den Top et al., 2004). However, these data are as yet preliminary and

further work will need to be carried out (results not shown).
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Bath application of histamine induced a non-significant (P=0.24) increase in neuronal

input resistance (n=30). Application of the monoamine increased neuronal input resistance

from a mean of 1331 ± 116 MΩ at rest to 1473 ± 134 MΩ in the presence of histamine,

amounting to a 10.6 % increase in neuronal input resistance in the presence of histamine.

Application of histamine (n= 5) in the presence of 1 µm TTX (Figure 7.1B) induced a

membrane depolarisation, thus indicating a direct post-synaptic effect on Arc neurones.

Histamine induced a depolarisation in the presence of TTX, from a mean resting membrane

potential of -54.8 ± 3.1 mV to -40.6 ± 3.6 mV amounting to a mean peak membrane

depolarisation amplitude of 14.2 ± 2.0 mV (n=5). The histamine-induced membrane

depolarisation in the presence of TTX was associated with a non-significant decrease in

neuronal input resistance of -2.9 % (P=0.7; n= 5), from a mean resting input resistance of

1346 ± 177 MΩ to 1300 ± 155 MΩ in histamine.

7.2.2 Ionic mechanism underlying histamine-induced depolarisation

In order to determine the ionic mechanism underlying the histamine-induced

membrane depolarisation and increase in firing rate, current-voltage (I/V) relationships were

acquired in the absence and at the peak of the histamine-induced response in 11 neurones.

I/V relationships were not clamped back to the resting membrane potential in the presence of

the drug which would have given us a clearer idea of the mechanism(s) involved.

Plots of these I/V relationships suggested more than one mechanism/component

contributing to the histamine-induced excitation (Figure 7.2). Histamine-induced depolarisation

was associated with either an increase or no change in input resistance, as indicated above.
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6/11 neurones displayed no change in neuronal input resistance in response to

histamine. These neurones had a mean neuronal input resistance of 1183 ± 180 MΩ at rest

and 1298 ± 114 MΩ in the presence of histamine, amounting to a 9.7 % increase, from a

resting membrane potential of -46.5 ± 3.5 mV to -37.2 ± 1.9 MΩ in the presence of histamine.

Plots of I/V relationships indicated a parallel shift (Figure 7.2B). The parallel shift suggests the

histamine-induced excitation may in part be mediated through modulation of electrogenic ion

pumps or an ion exchanger mechanism. However the slight increase in input resistance may

indicate the involvement of other ionic mechanisms, for example activation and inhibition of

two conductances leading to no net change in input resistance but a net membrane

depolarisation.

5/11 neurones displayed a clear reversal potential amounting to -83.4 ± 4.9 mV

(Figure 7.2D), close to the predicted reversal potential for potassium under our recording

conditions. The reversal potential was taken from the point at which the plots of the two

current-voltage relations intersected. These neurones showed an increase in input resistance

of 31.8 % (915 ± 114 MΩ at rest to 1207 ± 122 MΩ in histamine) in the presence of histamine

with a mean peak amplitude depolarisation of 10.2 ± 2.4 mV, from a resting membrane

potential of -48.0 ± 2.3 mV to -37.8 ± 2.8 MΩ in the presence of histamine. This indicates that

the histamine-induced excitation, at least in-part is mediated through the closure of one or

more potassium conductances.

In voltage-clamp at a holding potential of -50 mV, application of histamine (10 M,

n=6) for 1-2 minutes, in the presence of TTX, induced an outward current, with a mean peak

amplitude of 17.4  3.5 pA (Figure 7.3A).

Voltage ramps from -110 to -30 at a rate of 10 mVs-1 were applied in control

conditions and at the peak of the histamine-induced response, in TTX, to further investigate

the ionic mechanism underlying the histamine-induced current. These responses to voltage-
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clamp ramps revealed no obvious change in membrane conductance in the presence of

histamine, thus presented as parallel shifts (n=5; figure 7.3B)

7.2.3 The effects of histamine receptor agonists on Arc neurones

All three histaminergic receptor subtypes (H1, H2 & H3) have been shown to be

present within the hypothalamus (Brown et al., 2001; Schwartz et al., 1991) with high

densities of the H1 receptors within the Arc. To investigate the nature of the receptor(s)

mediating the observed histamine-induced effects, the effects of the H1 agonist, histamine

trifluoromethyl toluidide (HTMT;10 µM; 1-2 minutes), H2 agonist, dimiprit (10 µM; 1-2 minutes)

and the H3 agonist, imetit (10 µM; 1-2 minutes) were investigated. A total of 6 Arc neurones

were exposed to HTMT, of which only 2 responded with a relatively small increase in

suprathreshold activity (Figure 7.4). Firing rate increased from 0.7 ± 0.3 Hz to 0.8 ± 0.3 Hz in

the presence of HTMT. Application of HTMT induced a membrane depolarisation from a

resting membrane potential of -48.2 ± 7.6 mV to -47.0 ± 6.4 mV in the presence of the agonist.

Application of dimiprit (n=4) and imetit (n=3) had no significant effect on membrane potential

or input resistance. This data suggests that the histamine induced excitation of Arc neurones

is not mediated through the H2 or H3 receptor, but at least in part is mediated through the H1

receptor.

7.2.4 Histamine depolarises Arc neurones via an action at H1 receptors

In order to further characterise the likely receptor(s) mediating the histamine- induced

excitation, the effects of the H1 antagonist, mepyramine maleate (300 nm) were tested on

histamine-induced responses under current clamp conditions. Application of 10 µM histamine
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alone caused a membrane depolarisation and an increase in action potential firing, a

response that was partially blocked or completely abolished in the presence of 300 nM

mepyramine maleate (n=6). Application of 10 µm histamine alone induced a membrane

depolarisation from -51.6 ± 1.8 mV in control to 45.2 ± 1.8 mV in the presence of histamine, a

mean peak amplitude depolarisation of 6.4 ± 0.8 mV (n=8). It also induced an increase in

firing rate from 0.0 ± 0.0 Hz at control to 1.2 ± 0.3 Hz in the presence of histamine. In contrast,

histamine application in the presence of the H1-receptor antagonist was greatly reduced by up

to 82.5 %, the mean peak depolarisation amplitude response to histamine being reduced from

6.4 ± 0.8 mV in the absence to 1.1 ± 0.9 mV in the presence of the antagonist (n=8). The

histamine-induced increase in firing rate was also reduced by 86 %. These results suggest H1

receptors are likely to be responsible for mediating the histamine-induced excitation (Figure

7.5).

7.2.5 Histamine- induced indirect effects on hypothalamic Arc neurones

Preliminary observations suggest that histamine application induced an increase in

spontaneous IPSPs (n=4). The mean frequency of IPSPs increased from 0.1 ± 0.0 Hz at rest

to 1.3 ± 0.3 Hz in the presence of histamine (n=4). This equated to an increase in frequency

of IPSPs in the presence of histamine by 358 % (P<0.01; Figure 7.6). Further work will need

to be carried out in order to clarify the nature of these induced synaptics. The increase in

IPSP frequency in the presence of histamine suggests that the monoamine regulates activity

of Arc neurones at least in part via sites located pre-synaptic to Arc neurones.
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7.3 Discussion

The Arc is innervated by histamine-containing projections originating from the

tubermammillary (TM) nucleus of the posterior hypothalamic region (Panula et al., 1984). This

interaction provides Arc neurones with its major source of histamine although a second

source available to the Arc may exist in the form of histamine secreted by mast cells

originating within the median eminence (Pollard et al., 1976; Panula et al., 1984). This study

found that bath application of histamine induced a membrane depolarisation that was

associated with an increase or no change in neuronal input resistance in around 65 % of

neurones. Histamine-induced excitatory effects were directly post-synaptic within the Arc as

shown in this study by the persistence of the response in the presence of TTX and in other

studies with the use of low extracellular calcium and high magnesium-containing bathing

medium to reduce influence from indirect pre-synaptic sources (Jorgenson et al., 1989). Post-

synaptic actions of histamine have been reported in other areas of the brain and spinal cord

such as the suprachiasmatic nucleus (Stehle, 1991) and the supraoptic nucleus (Li & Hatton,

1996). In addition to direct postsynaptic effects of histamine on Arc neurones, histamine also

produced indirect effects manifest as the induction or modulation of spontaneous on-going

GABAergic synaptic activity. The histamine-induced excitation was mimicked, in-part, by the

highly selective H1 receptor agonist, HTMT and blocked by the potent and selective H1

antagonist, mepyramine maleate confirming the presence of functional, postsynaptic H1

receptors in some Arc neurones that most likely mediated the direct postsynaptic effects

observed here. This study reported very weak or no histamine receptor agonist responses.

Due to time constraints, higher doses of the agonists were not used, but this may be a

suggestion for future work for this project. Figure 7.4 shows the HTMT response which

induces a non-significant increase in firing frequency and depolarisation. Further analysis is
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required of these results which may require binning of spikes. It must also be noted that

Figure 7.5 that represents the histamine response being blocked by a selective H1 antagonist

may also require further work. The first application of histamine may induce desensitisation

and therefore the antagonist effect may be spurious. A longer wash-off and a repeated

application of histamine after the antagonist is required to clarify the involvement of the H1

receptor in the histamine induced depolarisation.

Preliminary data suggests that histamine may excite a subpopulation of Arc

NPY/AgRP neurones, previously characterised by this lab and readily identified based upon

their unique expression of subthreshold active conductances (van den Top et al., 2004).

However little can be concluded from these results due the lack of (n) numbers. Previous

studies have shown that histamine injected into the PVN and VMH reduced food intake and

injections of H1 antagonists into these sites has been shown to increase food intake (Ookuma

et al., 1989). The role of histamine at the level of the Arc in relation to feeding can not yet be

concluded from the results of this study.

H1 receptors mediated the histamine-induced excitation within the Arc, an effect

similar to that previously reported for histamine in the Arc, other hypothalamic areas and other

parts of the CNS (Haas & Wolf, 1977; Geller, 1981; Armstrong & Sladek, 1985; Jorgenson et

al., 1989; Bell et al., 2000; Whyment et al., 2006). H2 and H3 receptor agonists were without

effect on Arc neurones suggesting a lack of functional roles for these receptors at the level of

the Arc. Studies previously carried out on Arc and its responsiveness to histamine have also

observed and reported a role for H2 receptors in mediating the histamine-induced excitation

(Jorgenson et al., 1989). H2 receptors have been shown to mediate excitatory actions of

histamine on hippocampal pyramidal cells, dentate granule cells and brainstem medullary

neurones (Jones et al., 1985; Haas & Greene, 1986; Greene et al., 1989; Haas & Panula,

2003; Yanai & Tashiro, 2007). H2 receptors have also been shown to mediate histamine-
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induced neuronal inhibition in the CNS (Haas & Bucher, 1975; Haas & Wolf, 1977). This study

did not observe a histamine induced hyperpolarisation of the neuronal membrane or a

decrease in suprathreshold activity, observations consistent with those findings reported by

(Jorgenson et al., 1989) who found that only 1/177 neurones within the Arc responded to

histamine with an inhibition. This may reflect a lack of expression of functional H2 receptors in

the hypothalamus (Brown et al., 2001). However, an indirect inhibition of Arc neurones was

observed in a subpopulation of neurones where histamine induced the discharge or an

increase in spontaneous IPSPs. This data suggests histamine activates inhibitory neurones

located presynaptic to the recorded Arc neurones. Further work is required to identify the

receptors involved in this response mediating both the discharge of IPSPs, presumably

GABAergic, and the increased excitability of these neurones induced by histamine.

Furthermore, whether these histamine receptors are located on the presynaptic terminals to

modulate GABA release or elsewhere on the presynaptic neurones, such as the soma and/or

dendrites, to increase neuronal excitability requires further clarification.

Histamine-induced membrane depolarisation and associated increase in neuronal

input resistance, exhibited a reversal potential close to the reversal potential for potassium

ions under our recording conditions, consistent with the effect of histamine being mediated by

closure of one or more potassium-selective conductances. This data is similar to that reported

previously for effects of histamine in other parts of the CNS (McCormick & Williamson, 1991;

Reiner & Kamondi, 1994; Whyment et al., 2006).

Histamine binds to the H1 receptor leading to increased activity of phospholipase C

(PLC) through the activation of the Gq/11 G protein which subsequently leads to the formation

of two second messengers, diacylglycerol (DAG) and IP3. IP3 releases Ca2+ from internal

stores subsequently leading to activation of a number of other processes, which include not

only a block in leak potassium conductances (discussed above) but also includes the opening
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of a cation channel and the activation of a Na+- Ca2+ exchanger to induce a membrane

depolarisation (Gorelova & Reiner, 1996; Bell et al., 2000; Brown et al., 2001). It is the latter

that this study considers may also be involved in the histamine induced excitation in Arc

neurones. The histamine-induced membrane depolarisation was also associated with no

measurable change in neuronal input resistance, revealed from current-clamp and voltage-

clamp ramp studies. These results suggest that the histamine-induced excitation could be in

part mediated through modulation of electrogenic ion pumps or an ion exchanger mechanism.

Similar findings have been reported in cholinergic neurones of the rat striatum and medial

septum (Gorelova & Reiner, 1996; Bell et al., 2000) whereby multiple mechanisms are

involved in the histamine-induced excitation. To further clarify the involvement of an ion

exchanger mechanism mediating the histamine induced excitation further work will need to be

carried out with the use of specific blockers and ion substitution approaches.

In summary this study provides preliminary data observing the effects of histamine on

Arc neurones. Histamine excites a population of Arc neurones mediated through the H1

receptor coupled to the closure of one or more potassium conductances or via the activation

of a pump/exchanger within the membrane.

Further work will need to be carried out to determine the role of histamine in the

control of energy homeostasis which was the initial focus of this study. Preliminary data

suggests that histamine may have an orexigenic role within feeding, but further work will need

to be carried out which could involve the use of electrophysiological recordings to identify a

subpopulation of NPY/AgRP neurones. To extend this project further we should carry out

double labelling in order to identify CART expressing neurones. CART is a well known

anorexigenic peptide that could be an effective way of identifying the phenotype of histamine-

responsive neurones. Single-cell RT-PCR could also be used to determine histamine

responsive neurones within the Arc.
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Figure 7.1 Histamine directly excites hypothalamic Arc neurones

A: A continuous current- clamp recording of an Arc neurone showing the effects of
histamine (10 M) bath applied for approximately 2 minutes. The line above the
recording indicates the application time and duration of application of histamine.
Application of histamine induced a membrane potential depolarisation and induced
suprathreshold activity, effects that were reversible within approximately 10 minutes
from the time of wash out of histamine.

B: A trace from a continuous current- clamp recording of an Arc neurone in the presence
of 1 M TTX showing the persistence of the histamine-induced response in the
presence of the toxin, thus indicating a direct effect of histamine on these neurones.
The regular evoked negative membrane potential responses are the result
rectangular- wave negative current injections enabling the input resistance to be
monitored (5-20 pA, 1.2 s, 1/5 Hz). The / / indicates a break within the trace of
approximately 2 minutes where an I/V relationship was generated. The line above the
recording marked histamine indicates the time-course of application of 10 M
histamine. Application of histamine induced a membrane depolarisation, associated
with an increase in input resistance indicated by the increase in amplitude of the
induced electronic potential (downward deflections). The effect being reversible within
approximately 10 minutes following the wash of histamine from the bath.
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Figure 7.2 Ionic mechanism underlying the histamine-induced excitation

A: IV relationships obtained from a neurone before and during the application of
histamine (10 μM). The traces shown are superimposed samples of a continuous
whole-cell current-clamp recording showing the membrane responses to a series of
hyperpolarising and depolarising current injections of constant increment .

B: A graph plotting the current- voltage relationship obtained from the traces shown in
(A), obtained by plotting the current injected into the cell (x-axis) against the resulting
membrane potentials (y-axis). The symbols and  indicate the current- voltage
relationships in the absence and presence of histamine, respectively. Note the
parallel shift which maybe indicative of a pump within the membrane, or the activation
of multiple conductances that off-set each other.

C: IV relationships obtained from another neurone before and during the application of
histamine. The traces shown are superimposed samples of a continuous whole-cell
current-clamp recording showing the membrane responses to a series of
hyperpolarising and depolarising current injections of constant increment.

D: A plot of the current-voltage relationship of the neurone shown in C. The symbols
and ○ indicate the current- voltage relationships in the absence and presence of
histamine, respectively. Note the increase in slope of the IV relationship in the
presence of histamine which indicates an increase in neuronal input resistance. The
two lines intersect around -85 mV which indicates a reversal potential close to that of
potassium under our recording conditions.
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Figure 7.3 Histamine-induces an inward current in Arc neurones

A: Trace showing a continuous recording from an Arc neurone in Voltage clamp mode at
a holding potential of -50 mV. Application histamine (10 µM) induced a reversible
inward current.

B: Current responses obtained in voltage-clamp in the presence (green trace) and
absence (black trace) of histamine. The wash out of histamine is shown by the
orange trace. The currents were obtained from ramp protocols that drove the holding
potential from -110 mV to -30 mV, at a rate of 10 mV per second.
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Figure 7.4 The H1 agonist HTMT induced a depolarisation in hypothalamic Arc
neurones

A: A trace from a continuous current- clamp recording from an Arc neurone exposed to
10 M HTMT. The line above the recording marked HTMT indicates the time course
of application of 10 M HTMT. The application of HTMT caused a slight membrane
depolarisation and increase in firing rate; shown at a faster time base below (B). The
increase in firing rate was reversible within approximately 4 minutes following the
wash of HTMT from the bath.
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Figure 7.5 Histamine-induced excitation is blocked by a H1 antagonist
mepyramine maleate

A: Samples of a continuous current- clamp recording from an Arc neurone showing
exposure to histamine (10 µM) induced a reversible membrane depolarisation and
increase in action potential firing. The application of the H1 antagonist, mepyramine
maleate 300 nM blocked the histamine induced response. The regular negative
membrane potential responses are the result of evoked rectangular- wave negative
current injections enabling the input resistance to be monitored (5-20 pA, 1.2 s, 1/5
Hz).The lines above the recording indicates the time-course of application of
histamine and mepyramine maleate.
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Figure 7.6 Histamine induces indirect effects on hypothalamic Arc neurones

A: A sample of a continuous current clamp, showing the effects of bath application of
histamine (10 µM; 2 minutes). Application of histamine induces an increase in
spontaneous inhibitory postsynaptic potentials (IPSPs) in addition to an increase in
firing rate.

B: Samples of the current clamp recording of the neurone shown in A at a faster time
base, showing the induction of synaptic transmission, IPSPs, by histamine more
clearly.



Chapter 7

338



Chapter 8

339

Chapter 8
General Discussion
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Energy stores are regulated and maintained through a balance between food intake and

energy expenditure and requires co-operation and integration between interconnected central

and peripheral networks dedicated to maintaining energy status (Cone et al., 2001). The

hypothalamic Arcuate nucleus (Arc) is believed to be essential in the maintenance of energy

balance. The Arc, being situated close to a compromised blood brain barrier at the median

eminence, is susceptible to circulating factors relaying information regarding energy stores

and status from the periphery (Ganong, 2000). Receptors for all the main humoral and central

transmitters involved in the regulation of energy homeostasis are expressed in the Arc. The

Arc is innervated by multiple afferent and neurotransmitter inputs from hypothalamic,

brainstem and higher centres (Sawchenko & Swanson, 1981; Chronwall, 1985; Elias et al.,

1998; Hentges et al., 2004; Horvath et al., 2004). The Arc efferent outputs are equally as

diverse and neuropeptidergic expression within the Arc reflects multiple chemical phenotypes

(Chronwall, 1985; Baker & Herkenham, 1995; Melander et al., 1986; Koylu et al., 1997; Reyes

et al., 2001; Lu et al., 2002), the best described of which being the orexigenic NPY/AgRP and

anorexigenic POMC/CART expressing neurones. How communicating factors including

hormones, nutrients and transmitters of central origin are integrated at the level of the Arc,

transduced into electrical codes and electrical output generated to bring about appropriate

counterregulatory responses and behavioural change, remains to a large extent unclear. The

present study aimed to begin to address these issues by investigating intrinsic factors

regulating electrical excitability of Arc neurones and how electrical excitability is subject to

modification and modulation by extrinsic factors related to energy status, specifically glucose,

and factors of central origin, noradrenaline and histamine, implicated in regulating energy

homeostasis at the level of the Arc.
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8.1 The electrophysiological and morphological characterisation of Arc neurones

Active and passive electrophysiological membrane properties of a neurone are

fundamental to their functional processing, integrative and computational capability. Thus

recognising these properties along with their morphological characteristics is fundamental to

understanding the functional organisation and operation of Arc neurones and their associated

circuits. Thus, this study attempted to characterise Arc neurones based upon their

elecctrophysiological and morphological properties.

The main subthreshold active conductances expressed by Arc neurones were used

as criteria to classify neurones electrophysiologically with 8 groups (clusters) being identified

based on the differential expression of these conductances. The active conductances

expressed within the Arc used as parameters to classify neurones included an anomalous

inward rectification (Ian), hyperpolarisation-activated non-selective cation conductance (Ih), a

transient outward rectification (Ia) and a T-type- like calcium conductance. Cluster 1 neurones

were defined by expressing Ian; cluster 2 neurones expressed Ia and Ian; cluster 3 expressed

no obvious subthreshold active conductance; cluster 4 expressed Ih; cluster 5 expresses Ih

and T-type-like calcium conductance; cluster 6 expressed only a T-type-like calcium

conductance; cluster 7 expressed Ian and T-type conductance and finally cluster 8 neurones

expressed Ian, Ih and a T-type like conductance. The fact that 8 distinct electrophysiological

subtypes, based upon differential expression of active conductances is at odds with previous

electrophysiological studies in mice where 3 electrophysiological subtypes were proposed

based on differential expression of an A-like current (Type A and C) and a T-type calcium

current (Type B). Type A and C where distinguished from each other based on the differential

time- and voltage-dependence of the A-like current expressed (Burdakov & Ashcroft, 2002).

This classification was proposed to have functional significance based on the fact that orexin

only affected Type C cells (Burdakov et al., 2003). However, a more recent study in mice
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suggested 5 subtypes of neurones exist in the Arc based on their differential expression of

active conductances and at least 4 subtypes of neurone exist in the Arc based entirely on their

sensitivity to glucose (Fioramonti et al., 2004; Fioramonti et al., 2007). Fioramonti observed

the same 3 phenotypes as Burdakov & Ashcroft and identified two others that expressed Ih

and Ih and T-type like conductance. The Ih conductance that was previously reported not to be

expressed within the Arc (Burdakov & Ashcroft, 2002). One obvious explanation for the

discrepancies between these studies and data described here may simply be species

variation, rats being used in the present study as opposed to mice in the studies indicated

above (Burdakov et al., 2003; Fioramonti et al., 2004). However, given the diversity of

chemical and functional phenotype of neurones in the Arc and their diverse projections, it is

difficult to reconcile that only 3 electrophysiological phenotypes can have any functional

significance. Furthermore, recent studies on mice from our lab (Spanswick, van den Top and

Cowley, unpublished observations) suggest POMC neurones alone constitute a

morphologically and electrophysiologically diverse subgroup. Further work is required to fully

understand the functional significance of the 8 electrophysiological clusters described here.

Morphologically, neurones manifest as 4 distinct groups, separated based upon the

number of primary dendrites and their origin from the soma. Thus, group A neurones were

monopolar; group B neurones were bipolar; group C neurones displayed two primary

dendrites projecting from the same side of the soma; group D neurones were multipolar

neurones.

After combining both the electrophysiological and morphological properties of Arc

neurones this study could not correlate the two. There was considerable heterogeneity of

morphology between neuronal clusters and within clusters. Ultimately, further work will

now need to be carried out to identify the chemical phenotype of these neurones which is

as yet unknown, with the exception of neurones classified as cluster 2 neurones which are
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identified as a subpopulation of NPY/AgRP neurones (van den Top et al., 2004). This

study provides a framework on which to build a functional classification of Arc neurones.

Future work investigating both the afferent and efferent projections of Arc neurones will

give an insight in to their physiological function. Examining the receptor expression of Arc

neurones and their responsiveness to a variety of extrinsic factors (such as noradrenaline;

chapters 5 & 6) could potentially be a tool in order to separate functionally divergent

neuronal groups. In relation to this latter point, studies of the differential effects of NA on

Arc neurones revealed cluster-specific responses to this catecholamine. Thus, a response

to NA characterised by membrane hyperpolarisation and a concomitant increase in the

discharge of spontaneous EPSP's was almost exclusively observed in cluster 8 neurones.

Furthermore, NA induced inhibition of spontaneous IPSP’s was only observed in a subset

of cluster 5 neurones and cluster 2 neurones, previously identified as NPY/AgRP neurones

(van den Top et al., 2004), responded in all instances with excitation upon exposure to NA.

Taken together, these data suggest that the electrophysiological classification has

functional significance. However, at present it remains a framework in its infancy and

requires further investigation before its functional significance in relation to the operation of

Arc neural circuits and their role in controlling energy balance can be recognised.

8.2 Effect of glucose on electrophysiological properties of Arc neurones

Glucose provides the brain with its primary fuel source and is essential for the brains

correct functioning and survival (Ritter et al., 2006). Thus circulating and CSF glucose levels

are tightly controlled, failure to do so leading to serious pathological complications such as

diabetes. To achieve this, a complex homeostatic feedback system comprised of aspects of

the periphery and CNS, function to maintain glucose levels within narrow limits. Of the central
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effector pathways involved in maintaining glucose homeostasis, aspects of the hypothalamus

are crucial. Historically the ventromedial nucleus (VMN) and lateral hypothalamus have been

revealed as key glucose-sensing areas of the hypothalamus (Anand et al., 1964; Oomura et

al., 1974), but more recently aspects of the Arc have been implicated in glucose sensing and

glucose homeostasis. The glucose-sensing neurones can be separated into two groups

according to their responsiveness to changes in extracellular glucose (for review see Levin et

al., 2004). GE neurones are those that increase their firing rate as brain glucose levels rise.

Conversely, GI neurones decrease their firing rate as glucose levels rise (Oomura et al., 1964,

for review see Burdakov & Gonzalez, 2008). The physiological changes in glucose to which

the brain is exposed are as yet unclear. With a plasma glucose range of 5-8 mM, brain

glucose levels are detected to be between 1-2.5 mM (Silver & Erecinska, 1994) with baseline

hypothalamic glucose levels being shown to achieve concentrations of around 1.4 mM (de

Vries et al., 2003; Mayer et al., 2006).

Previous studies, attempting to characterise the responsiveness of hypothalamic

neurones to glucose and other stimuli, have used non-physiological ranges of glucose (0 - 20

mM; (Anand et al., 1964; Oomura et al., 1964; Ashford et al., 1990; Spanswick et al., 1997)

and glucose concentrations used generally for in vitro brain slice studies are of the order of 10

mM. Brain tissues, including the Arc, are never exposed to such extremes of glucose

concentrations. Thus, this study attempted to address this issue by comparing fundamental

electrophysiological properties of Arc neurones in physiological levels of glucose (2 mM) with

Arc neurones recorded in classic “in vitro” aCSF levels of glucose (10 mM), the latter more

likely to reflect a diabetic, hyperglycaemic state.

Key observations within this study included finding significant differences in both the

active and passive membrane properties of neurones recorded in euglycaemic (2 mM

glucose-containing aCSF) and hyperglycaemic (10 mM glucose-containing aCSF) conditions.
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The neuronal input resistance was significantly higher in Arc neurones recorded in 10 mM

compared to 2 mM extracellular glucose, suggesting that neurones recorded in 2 mM glucose

may have one or more conductances activated, or relatively more activated than those

recorded in 10 mM glucose. The observed increase in input resistance at higher glucose

concentrations may be attributable to the closure of KATP channels that have been shown to

be important in glucose-sensing networks in the hypothalamus, including the Arc (Ashford et

al., 1990; Rowe et al., 1996; Spanswick et al., 1997; Lee et al., 1999; Spanswick et al., 2000;

Miki et al., 2001).

Spontaneous firing rate was higher in Arc neurones exposed to 2 mM glucose compared to 10

mM glucose-containing aCSF, and the membrane time-constant (tau), used as measure of

the size of the neurone, dramatically changed in subpopulations of neurones. These changes

may reflect changes in expression of intrinsic conductances in different glucose

concentrations. This notion is supported by the fact that significant differences in the

expression of subthreshold active conductances were observed; particularly the apparent

magnitude of Ih was enhanced in neurones recorded in 2 mM glucose-containing aCSF. Ih

modulates the output of neurones such as generating oscillations and burst firing patterns of

activity, the latter being suggested to be important for neuropeptide release (Dutton & Dyball,

1979; Bicknell & Leng, 1981; Pape, 1996; van Welie et al., 2006). Furthermore, the duration of

the A-like transient outward conductance was reduced in 2 mM glucose-containing aCSF

compared to 10 mM. As these conductances are believed to influence spike repolarisation

and modulate the frequency of tonically firing neurones (Connor & Stevens, 1971; Kenyon &

Gibbons, 1979; Segal et al., 1984) the change in size of the A-like transient current may

potentially lead to differences in firing of these neurones. Taken together, these observations

suggest neurones with specific expression patterns of subthreshold active conductances

behave differently in different glucose concentrations.
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Overall the results from this study strongly suggest that there is a need for us to re-

evaluate past studies that have conducted experiments in non-physiological levels of glucose.

The significant difference in both passive and active subthreshold electrophysiological

properties seen in physiological and non-physiological glucose levels suggest that whole

networks may behave differently in these two different levels of glucose. Further work

investigating changes in expression of receptors, ion channels, and responsiveness to

extrinsic factors in hyperglycaemic and euglycaemic glucose concentrations should be

undertaken in glucose-sensing areas such as those of the hypothalamus. For example, when

levels of CNS glucose are low, NA levels increase within the hypothalamus which

subsequently increases circulating blood glucose levels (McCaleb et al., 1979; Smythe et al.,

1984) via direct action of the ANS enhancing glucose production through activation of

glycogenolysis and gluconeogenesis. Similar investigations should also be undertaken in

other areas of the CNS, such studies potentially shedding light on the need to re-evaluate

functional studies in in vitro preparations which almost without exception are undertaken in

non-physiological glucose concentrations.

8.3 The differential effects of NA on hypothalamic Arc neurones

The noradrenergic system originating from brainstem nuclei projects throughout the

neuroaxis and plays a major role in many physiological processes (Leibowitz et al., 1983;

Svensson, 1984; Berridge, 2008). The noradrenergic system has been heavily implicated in

the control of energy homeostasis (Wellman et al., 1993) and several noradrenergic agents

have been explored for the treatment of obesity (Jackson et al., 1997).

The effects of NA at the cellular level in the Arc of the hypothalamus remains poorly

understood. In the present study NA was shown to induce direct postsynaptic membrane
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depolarisation, hyperpolarisation or had no effect on the cellular membrane of Arc neurones.

NA-induced excitation was indicated to be mediated via closure of one or more resting

potassium conductances in a subpopulation of Arc neurones and via activation of a non-

selective cation conductance in a further subset of neurones. Neurones that responded with

no change in neuronal input resistance upon application of NA were suggestive of the

activation of one or more membrane ion pumps or differential effects on a combination of ionic

conductances. NA-induced depolarisation was mediated primarily through the α1A- AR, with a

smaller contribution from α1B- ARs. Further work will need to be carried out determine if a

particular α-AR subtype is associated with a specific ionic mechanism and different

downstream signalling pathways involved.

NA-induced hyperpolarisation and/or decrease in firing rate was mediated via α2- ARs

and associated with a concurrent decrease in neuronal input resistance likely to be mediated

by the activation of one or more potassium-selective conductances. Current-voltage

relationships in the presence of NA revealed an enhancement or appearance of an inward

rectifier therefore at least in part, the NA-induced inhibition is mediated through activation of

an inward rectifying K+ conductance (IRK). Further studies will need to be carried out to

investigate whether GIRK channels are involved in mediating the NA-induced

hyperpolarisation, utilising specific blockers for this channel (Kanjhan et al., 2005). A subset of

Arc neurones expressed more than one subtype of AR that mediated opposing actions on the

cellular membrane. This arrangement of receptors may have a functional significance

whereby pathway- and function-specific noradrenergic inputs are differentially activated at

different times and / or under different physiological circumstances. This is reflected in the

ability of α2- AR expression to change in numbers with the circadian cycle (Jhanwar-Uniyal et

al., 1986; Stanley et al., 1989). Thus, depending on the receptor subtype activated, NA has
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the capacity to either stimulate or depress neuronal activity on a given neurone (Nakamura et

al., 1984; Yamanaka et al., 2006).

The functional significance of these differential effects of NA on Arc neurones was

investigated further by correlating NA responsiveness with chemical phenotype. A

subpopulation of orexigenic NPY/AgRP neurones, identified by their expression of a unique

combination of active conductances (van den Top et al., 2004) were excited by NA whereas

anorexigenic POMC/CART expressing neurones were differentially regulated by NA being

both excited and inhibited. The differential effects of NA on POMC/CART neurones suggests

NA is involved in multiple functions, as POMC/CART neurones do not constitute a functionally

homogenous group. However, together with results that NA excites a subpopulation of

NPY/AgRP neurones and an inhibition of a population of POMC/CART neurones suggest a

primarily an orexigenic role for NA at the level of the Arc. Further work is now required in order

to clarify NA's net effect and role in the control of energy balance at the level of the Arc.

Additional immunohistochemistry, insitu hybridisation and single-cell RT-PCR could be

potentially utilised in order to identify NA's effects on other neuronal cell types within the Arc.

What would of also be of interest is it study the differential effects of NA under differing

glucose concentrations, which as been shown to be important in the expression of both the

passive and active conductances of Arc neurones. Figure 8.1 shows a schematic illustration

of the functional organisation of adrenoceptors at the level of the Arc.
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Figure 8.1: Hypothetical functional organisation of adrenoceptors at the level of the

Arc based on data generated in this project.

A schematic illustrating the proposed functional organisation of adrenoceptors on Arc

neurones. NA excites NPY/AgRP neurones via multiple mechanisms: closing of one or more

potassium conductances, through a pump-dependent mechanism within the membrane or the

activation of a non-selective cation conductance, mediated through α1- ARs. NA also inhibits

a subpopulation of POMC/CART through the opening of one or more potassium

conductances mediated through α2- ARs. Multiple subtypes of noradrenergic receptors can

also be present on the same neurone, this being true for a subpopulation of POMC neurones

where NA can either induce an excitation or inhibition.
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8.4 The effects of histamine on hypothalamic Arc neurones

Histamine has been previously reported to have a physiological role in the regulation

of food intake, whereby hypothalamic neuronal histamine may tonically suppress food intake

through the histamine H1 receptor (Sakata et al., 1988; Masaki et al., 2001; Masaki et al.,

2004). How histamine regulates the neuronal excitability of Arc neurones at the cellular level

however remains unclear. Here histamine was observed to induce a depolarisation and

increase in firing in a subpopulation of neurones which was associated with an increase or no

change in neuronal input resistance, the latter suggesting a mechanism mediated through

closure of one or more selective potassium conductances and/or the involvement of an

electrogenic pump. The pharmacological profile of the receptor mediating these effects was

consistent with a role for H1 receptors. However, due to time constraints this study reports

only preliminary findings. Further works will need to be carried out using higher concentrations

of both agonists and antagonists. Preliminary data does suggest that histamine may have an

orexigenic role at the level of the Arc, but further work will need to be carried out to clarify the

chemical phenotype(s) of neurones mediating these effects of histamine.

In summary therefore, the present study provides first evidence that hypothalamic Arc

neurones are heterogeneous in both their electrophysiological features and morphological

phenotype. The study provides a descriptive electrophysiological and morphological review of

Arc neurones and how extrinsic factors such as glucose, NA and histamine differentially

regulate Arc neurones and have the capacity to alter fundamental intrinsic electrophysiological

properties. This suggests that there is considerable plasticity within the Arc and that

electrophysiological clusters are not defined groups of neurones but may alter their intrinsic

properties in relation to exposure of different extrinsic circumstances.
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