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CONDITIONING AN ADDITIVE FUNCTIONAL OF A MARKOV
CHAIN TO STAY NON-NEGATIVE I:SURVIVAL FOR A LONG TIME 1

Saul D. Jacka, University of Warwick
Zorana Lazic, University of Warwick
Jon Warren, University of Warwick

Abstract

Let (Xt)t≥0 be a continuous-time irreducible Markov chain on a finite statespace E,
let v be a map v : E → R\{0} and let (ϕt)t≥0 be an additive functional defined by

ϕt =
∫ t

0
v(Xs)ds. We consider the cases where the process (ϕt)t≥0 is oscillating and where

(ϕt)t≥0 has a negative drift. In each of the cases we condition the process (Xt, ϕt)t≥0 on
the event that (ϕt)t≥0 stays non-negative until time T and prove weak convergence of
the conditioned process as T →∞.

1 Introduction

The problem of conditioning a stochastic process to stay forever in a certain region has
been extensively studied in the literature. Many authors have addressed essentially the
same problem by conditioning a process with a possibly finite lifetime to live forever.
An interesting case is when the event that the process remains in some region is of zero
probability, or in terms of the lifetime of the process restricted to the region, when the
process has a finite lifetime with probability one. In that case the process cannot be
conditioned to stay in the region forever in the standard way. Instead, this condtioning
can be approximated by conditioning the process to stay in the region for a large time.

There are many well-known examples of such conditionings in which weak conver-
gence of the approximating process occurs. For instance, Knight (1969) showed that
the standard Brownian motion conditioned not to cross zero for a large time converges
weakly to a three-dimensional Bessel process; Iglehart (1974) considered a general ran-
dom walk conditioned to stay non-negative for a large time and showed that it converges
weakly; Pinsky (1985) showed that under certain conditions, a homogeneous diffusion
on Rd conditioned to remain in an open connected bounded region for a large time

1MSC Classification: Primary 60J27, Secondary 60B10
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converges weakly to a homogeneous diffusion; Jacka and Roberts (1988) proved weak
convergence of an Ito diffusion conditioned to remain in an interval (a, b) until a large
time.

However, weak convergence of the approximations does not always occur. There are
counterexamples in which a process conditioned to stay in a region for a large time does
not converge at all or it does converge but to a dishonest limit. Bertoin and Doney
(1994) and Jacka and Warren (2002) gave examples of such processes.

This paper is concerned with another example of conditioning a process to stay in
a region. We consider a finite statespace continuous time Markov chain (Xt)t≥0 and an
associated fluctuating additive functional (ϕt)t≥0. The aim is to condition the Markov
process (Xt, ϕt)t≥0 on the event that the fluctuating functional stays non-negative.

There are three possible cases of the behaviour of the process (ϕt)t≥0, in two of which,
when it oscillates and when it drifts to −∞, the event that it stays non-negative is of
zero probability. We are interested in performing conditioning in these two cases.

A similar question has been discussed in Bertoin and Doney (1994) for a real-valued
random walk. It has been shown there that, under certain conditions, an oscillating
random walk or a random walk with a negative drift, conditioned to stay non-negative
for large time converges weakly to an honest limit which is an h-transform of the original
random walk killed when it hits zero. This work presents the analogous result for the
process (Xt, ϕt)t≥0.

The organisation of the paper is as follows: the exact formulation of the problem
and the main results are given in Section 2, the notation and preliminary results used
in the proofs of the main theorems are given in Section 3, the proof of the result in the
oscillating case is given is Section 4 and the proof of the result in the negative drift case
is given in Section 5.

2 The problem and main results

Let (Xt)t≥0 be an irreducible honest Markov chain on a finite statespace E. Let v be a
map v : E → R\{0} and suppose that both E+ = v−1(0,∞) and E− = v−1(−∞, 0) are
non-empty.

Define the process (ϕt)t≥0 by

ϕt = ϕ +

∫ t

0

v(Xs)ds, ϕ ∈ R.

Let, for any y ∈ R, E+
y = (E × (y, +∞))

⋃
(E+ × {y}) and let H0 = inf{t > 0 :

ϕt < 0}. The aim is to condition the process (Xt, ϕt)t≥0 starting in E+
0 on the event

{H0 = +∞}.
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There are three possible cases depending on the behavoiur of the process (ϕt)t≥0.
When the process (ϕt)t≥0 drifts to +∞, the event {H0 = +∞} is of positive probablity
which implies that conditioning the process (Xt, ϕt)t≥0 on it can be performed in the
standard way. However, when the process (ϕt)t≥0 oscillates or drifts to −∞, the event
{H0 = +∞} is of zero probability and conditioning (Xt, ϕt)t≥0 on it cannot be performed
in the standard way. We concentrate on these two latter cases and define conditioning
(Xt, ϕt)t≥0 on {H0 = +∞} as the limit as T →∞ of conditioning (Xt, ϕt)t≥0 on {H0 >
t}.

Let P(e,ϕ) denote the law of the process (Xt, ϕt)t≥0 starting at (e, ϕ) and let E(e,ϕ)

denote the expectation operator associated with P(e,ϕ). Let P
(T )
(e,ϕ), T > 0, denote the

law of the process (Xt, ϕt)t≥0, starting at (e, ϕ) ∈ E+
0 , conditioned on {H0 > T}, and let

P
(T )
(e,ϕ)|Ft , t ≥ 0, be the restriction of P

(T )
(e,ϕ) to Ft, where (Ft)t≥0 is the natural filtration

of (Xt)t≥0. We are interested in weak convergence of (P
(T )
(e,ϕ)|Ft)T≥0 as T → +∞.

Let Q denote the conservative irreducible Q-matrix of the process (Xt)t≥0 and let
V be the diagonal matrix diag(v(e)). Let V −1QΓ = ΓG be the unique Wiener-Hopf
factorisation of the matrix V −1Q (see Barlow et al. (1980) or refer to Lemma 3.4
below). Let J , J1 and J2 be the matrices

J =

(
I 0
0 −I

)
J1 =

(
I 0
0 0

)
J2 =

(
0 0
0 1

)
and let a matrix Γ2 be given by Γ2 = JΓJ .

Now we state our main result in the oscillating case.

Theorem 2.1 Suppose that the process (ϕt)t≥0 oscillates. Then, for fixed (e, ϕ) ∈ E+
0

and t ≥ 0, the measures (P
(T )
(e,ϕ)|Ft)T≥0 converge weakly as T → ∞ to a probability

measure P hr

(e,ϕ)|Ft defined by

P hr

(e,ϕ)(A) =
E(e,ϕ)

(
I(A)hr(Xt, ϕt)I{t < H0}

)
hr(e, ϕ)

, t ≥ 0, A ∈ Ft,

where hr(e, y) is a positive harmonic function for the process (Xt, ϕt)t≥0 given by
hr(e, y) = e−yV −1QJ1Γ2r(e), (e, y) ∈ E × R, and V −1Qr = 1.

Let β0 be the point at which the Perron-Frobenius eigenvalue α(β) of the matrix
(Q − βV ) attains its global minimum (see Lemma 3.9 below). Let α0 = α(β0) and g0

be the Perron-Frobenius eigenvalue and right eigenvector, respectively, of the matrix
(Q− β0V ) and let G0 be the diagonal matrix diag(g0(e)). Let Q0 be the E ×E matrix
with entries

Q0(e, e′) = G−1
0 (Q− α0I − β0V )G0(e, e

′), e, e′ ∈ E. (2.1)
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As we shall see later, the matrix Q0 is a conservative irreducible Q-matrix (see Lemma
3.11 below). Let (V −1Q)Γ0 = Γ0G0 be the unique Wiener-Hopf factorization of the
matrix V −1Q0 and let Γ0

2 = JΓ0J . Now we can state our main result in the negative
drift case.

Theorem 2.2 Suppose that the process (ϕt)t≥0 drifts to −∞. For fixed (e, ϕ), (e′, ϕ′) ∈
E+

0 and t ≥ 0, if all non-zero eigenvalues of the matrix V −1Q0 are simple and if

limT→+∞
P(e′,ϕ′)(H0>T−t)

P(e,ϕ)(H0>T )
exists, then the measures (P

(T )
(e,ϕ)|Ft)T≥0 converge weakly as T →

∞ to a probability measure P
hr0

(e,ϕ)|Ft which is defined by

P
hr0

(e,ϕ)(A) =
E(e,ϕ)

(
I(A)hr0(Xt, ϕt, t)I{t < H0}

)
hr0(e, ϕ, t)

, t ≥ 0, A ∈ Ft,

where the function hr0(e, y, t) is positive and space-time harmonic for the process
(Xt, ϕt)t≥0 and is given by hr0(e, y, t) = e−α0te−β0y G0 e−yV −1Q0

J1Γ
0
2r

0(e), (e, y, t) ∈
E × R× [0, +∞), and V −1Q0r0 = 1.

Note that P hr

(e,ϕ) and P
hr0

(e,ϕ) are h-transforms of the transition kernel for the process

(Xt, ϕt)t≥0 killed when the process (ϕt)t≥0 crosses zero.

3 Notation and preliminary results

The purpose of this section is to introduce notation and recall some results and prove
some others which are needed for the proofs in the subsequent two sections. The proofs
are fairly straightforward and are included for the sake of completeness.

Lemma 3.1 Let Q be an irreducible essentially non-negative matrix, V a diagonal mat-
rix and β ∈ R. Then the matrix (Q−βV ) is also an irreducible essentially non-negative
matrix.

Proof: The proof follows directly from the definition of an irreducible essentially non-
negative matrix (see Seneta (1981)). �

The following three lemmas were proved in Barlow et al. (1980). We state them
here in the notation we are going to use.

Lemma 3.2 For fixed α > 0, there exists a unique pair (Π+
α , Π−

α ), where Π+
α is an

E−×E+ matrix and Π−
α is an E+×E− matrix, and there exist Q-matrices G+

α and G−
α

on E+ × E+ and E− × E−, respectively, such that, if

Γα =

(
I Π−

α

Π+
α I

)
and Gα =

(
G+

α 0
0 −G−

α

)
,
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then Γα is invertible and Γ−1
α V −1(Q−αI) Γα = Gα. Moreover, Π+

α and Π−
α are strictly

substochastic.

We recall that the subspace E+
y , y ∈ R, is given by E+

y = (E×(y, +∞))
⋃

(E+×{y}).
Let E−

y , y ∈ R, be the subspace E−
y = (E× (−∞, y))

⋃
(E−×{y}). Let Hy, y ∈ R, be

the first crossing time of the level y by the process (ϕt)t≥0 defined by

Hy =

{
inf{t > 0 : ϕt < y} if (Xt, ϕt)t≥0 starts in E+

y

inf{t > 0 : ϕt > y} if (Xt, ϕt)t≥0 starts in E−
y .

Lemma 3.3 Let α > 0 be fixed. Then

E(e,0)(e
−αH0I{XH0 = e′}) = Π+

α (e, e′), (e, e′) ∈ E− × E+,
E(e,0)(e

−αH0I{XH0 = e′}) = Π−
α (e, e′), (e, e′) ∈ E+ × E−,

E(e,0)(e
−αHyI{XHy = e′}) = eyG+

α (e, e′), (e, e′) ∈ E+ × E+, y > 0,

E(e,0)(e
−αH−yI{XH−y = e′}) = eyG−

α (e, e′), (e, e′) ∈ E− × E−, y > 0.

Lemma 3.4 There exists a unique pair (Π+, Π−), where Π+ is an E−×E+ matrix and
Π− is an E+ × E− matrix, and there exist Q-matrices G+ on E+ × E+ and G− on
E− × E− such that

(V −1Q) Γ = Γ G, (3.2)

where

Γ =

(
I Π−

Π+ I

)
and G =

(
G+ 0
0 −G−

)
.

Moreover, Π+ and Π− are substochastic and

P(e,0)(XH0 = e′) = Π+(e, e′), (e, e′) ∈ E− × E+,
P(e,0)(XH0 = e′) = Π−(e, e′), (e, e′) ∈ E+ × E−,

P(e,0)(XHy = e′) = eyG+
(e, e′), (e, e′) ∈ E+ × E+, y ≥ 0,

P(e,0)(XH−y = e′) = eyG−
(e, e′), (e, e′) ∈ E− × E−, y ≥ 0.

Lemmas 3.2 and 3.4 are said to yield the Wiener-Hopf factorizations of the matrices
V −1(Q− αI), α > 0, and V −1Q, respectively.

The statements in the following lemma can easily be deduced from Lemmas 3.2 -
3.4, thus we omit their proofs.

Lemma 3.5 (i) The matrices Π+ and Π− are positive.

(ii) If at least one of the matrices Π+ and Π− is strictly substochastic then the matrices
(I − Π−Π+), (I − Π+Π−) and Γ are invertible and

Γ−1 =

(
(I − Π−Π+)−1 −Π−(I − Π+Π−)−1

−Π+(I − Π−Π+)−1 (I − Π+Π−)−1

)
.
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(iii) The matrices G+ and G− are irreducible Q-matrices.

(iv) G+ (G−) is conservative iff Π+ (Π−) is stochastic.

(v) limα→0 Γα = Γ.

(vi) For any y > 0 and (e, ϕ) ∈ E+
0 ∩ E−

y , or any y < 0 and (e, ϕ) ∈ E−
0 ∩ E+

y ,
P(e,ϕ)(XHy = e′, Hy < H0) > 0 and 0 < P(e,ϕ)(Hy < H0) < 1.

(vii) For any (e, ϕ) ∈ E+
0 and e′ ∈ E−, or any (e, ϕ) ∈ E−

0 and e′ ∈ E+, P(e,ϕ)(XH0 =
e′, H0 < +∞) > 0.

(viii) For any (e, ϕ) ∈ E × R and T > 0, P(e,ϕ)(H0 > T ) > 0.

We introduce vector notation that will be in use in the sequel. For any vector g
on E, let g+ and g− denote its restrictions to E+ and E− respectively. We write the

column vector g as g =

(
g+

g−

)
and the row vector µ as µ = ( µ+ µ− ).

It follows from Lemmas 3.2 - 3.4 (see Barlow et al. (1980)) that the matrix V −1(Q−
αI) cannot have strictly imaginary eigenvalues and there exists a basis B(α) in the space
of all vectors on E such that if g(α) is in B(α), then

(V −1(Q− αI)− λ(α) I)kg(α) = 0, (3.3)

for some eigenvalue λ(α) of V −1(Q − αI) and some k ∈ N. The number of vectors in
the basis B(α) associated with the same eigenvalue is equal to the algebraic multiplicity
of that eigenvalue. Let N (α) and P(α) be the sets of vectors g(α) ∈ B(α) associated
with eigenvalues with positive and with negative real parts, respectively.

Then,

g(α) ∈ N (α) ⇒ g(α) =

(
g+(α)

Π+
αg+(α)

)
, g(α) ∈ P(α) ⇒ g(α) =

(
Π−

αg−(α)
g−(α)

)
. (3.4)

The set N (α) (respectively P(α)) contains exactly |E+| (respectively E−) vectors
and the vectors g+(α) (respectively g−(α)) for all g(α) ∈ N (α) (respectively P(α))
form a basis in the space of all vectors on E+ (respectively E−). The eigenvalues of
V −1(Q − αI) with strictly negative (respectively positive) real part coincide with the
eigenvalues of G+

α (respectively −G−
α ).

The Wiener-Hopf factorization (3.2) of the matrix V −1Q implies that

G+f+ = αf+ iff V −1Q

(
f+

Π+f+

)
= α

(
f+

Π+f+

)
G−g− = −βg− iff V −1Q

(
Π−g−

g−

)
= β

(
Π−g−

g−

)
.

(3.5)
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Let αj, j = 1, . . . , n, be the eigenvalues (not necessarily distinct) of the matrix G+,
and −βk, k = 1, . . . ,m, be the eigenvalues (not necessarily distinct) of the matrix G−.
By Lemma 3.5 (iii) G+ and G− are irreducible Q-matrices, which implies that

αmax ≡ max
1≤j≤n

Re(αj) ≤ 0 and − βmin ≡ max
1≤k≤m

Re(−βk) = − min
1≤k≤m

Re(βk) ≤ 0

are simple eigenvalues of G+ and G−, respectively. Hence, it follows from (3.5) that
all eigenvalues of V −1Q with negative (respectively positive) real part coincide with the
eigenvalues of G+ (respectively −G−).

By Jordan normal form theory there exists a basis B in the space of all vectors on E
such that there exist exactly n = |E+| vectors {f1, f2, . . . , fn} in B such that each vector
fj, j = 1, . . . , n is associated with an eigenvalue αj of V −1Q for which Re(αj) ≤ 0, and
that there exist exactly m = |E−| vectors {g1, g2, . . . , gm} in B such that each vector
gk, k = 1, . . . ,m, is associated with an eigenvalue βk of V −1Q with Re(βk) ≥ 0. The
vectors {f+

1 , f+
2 , . . . , f+

n } form a basis N+ in the space of all vectors on E+. and the
vectors {g−1 , g−2 , . . . , g−m} form a basis P− in the space of all vectors on E−.

Let fmax and gmin be the eigenvectors of the matrix V −1Q associated with its eigen-
values αmax and βmin, respectively. Then, f+

max and g−min are the Perron-Frobenius
eigenvectors of the matrices G+ and G−, respectively.

Lemma 3.6 (i) The vectors fmax and gmin are the only positive eigenvectors of the
matrix V −1Q.

(ii) There are no non-negative vectors on E+ (E−) which are linearly independent of
the vector f+

max (g−min).

Proof: (i) Let f be a positive eigenvector of the matrix V −1Q. Then, by (3.5), either f+

is an eigenvector of G+ or f− is an eigenvector of G−. The only positive eigenvectors of
G+ and G− are f+

max and g−min, respectively. Hence,

f =

(
f+

max

Π+f+
max

)
= fmax or f =

(
Π−g−min

g−min

)
= gmin.

Since, by Lemma 3.5 (i), the matrices Π+ and Π− are positive, we have that fmax

and gmin are positive which completes the proof.
(ii) Let f+ be a non-negative vector on E+ independent of f+

max. Since N+ =
{f+

1 , f+
2 , . . . , f+

n } is a basis in the space of all vectors on E+, the vector f+ has a
decomposition

f+ =
∑

f+
j 6=f+

max

aj f+
j ,

for some coefficients aj, j = 1, . . . , n.
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Let f left,+
max be the left Perron-Frobenius eigenvector of G+. Then f left,+

max etG+
=

eαmaxtf left,+
max and f left,+

max f+
j = 0 for all f+

j 6= f+
max, j = 1, . . . , n. Thus, for any t ≥ 0,

f left,+
max etG+

f+ =
∑

f+
j 6=f+

max

aj f left,+
max etG+

f+
j =

∑
f+

j 6=f+
max

aj eαjtf left,+
max f+

j = 0,

but that is a contradiction because f+ and f left,+
max are non-negative and f left,+

max etG+
f+ =

eαmaxtf left,+
max f+ > 0. Therefore, the vectors f+ and f+

max are not linearly independent.

�
Let a matrix F (y), y ∈ R, be defined by

F (y) =

{
J1 eyG = eyG J1, y > 0
J2 eyG = eyG J2, y < 0.

Then

Lemma 3.7 For any e, e′ ∈ E,

P(e,ϕ)(XH0 = e′, H0 < +∞) = Γ F (−ϕ)(e, e′), ϕ 6= 0,

P(e,0)(XH0 = e′, H0 < +∞) = (I − Γ2)(e, e
′) =

(
0 Π−

Π+ 0

)
(e, e′).

Proof: The lemma follows directly from the definition of the matrices Γ, Γ2 and F (ϕ).

�
Let G be the infinitesimal generator of the process (Xt, ϕt)t≥0 and let DG denote its

domain. Let a function f(e, ϕ) on E × R be continuously differentiable in ϕ. Then
f ∈ DG and

Gf =
(
Q + V

∂

∂ϕ

)
f, (3.6)

where
Qf(e, ϕ, t) =

∑
e′∈E Q(e, e′)f(e′, ϕ)

V ∂f
∂ϕ

(e, ϕ, t) = V (e, e) ∂f
∂ϕ

(e, ϕ).

Similarly, let A be the infinitesimal generator of the process (Xt, ϕt, t)t≥0 and let
DA denote its domain. Let a function f(e, ϕ, t) on E × R × [0, +∞) be continuously
differentiable in ϕ and t. Then f ∈ DA and

Af =
(
Q + V

∂

∂ϕ
+

∂

∂t

)
f. (3.7)
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The behaviour of the process (ϕt)t≥0 is determined by the matrices Q and V . More
precisely,

(ϕt)t≥0 drifts to +∞ iff µV 1 > 0 iff G+ is conservative, G− is not conservative,
(ϕt)t≥0 oscillates iff µV 1 = 0 iff G+ and G− are conservative,

(ϕt)t≥0 drifts to −∞ iff µV 1 < 0 iff G− is conservative, G+ is not conservative.
(3.8)

Let f1 = fmax and g1 = gmin be the eigenvectors of V −1Q associated with the
eigenvalues αmax and βmin, respectively. Then, in the positive drift case, fmax = 1 6=
gmin, and in the negative drift case, gmin = 1 6= fmax, and in both cases the basis B
in the space of all vectors on E is equal to {fj, j = 1, . . . , n, gk, k = 1, . . . ,m}. In the
oscillating case, fmax = gmin = 1 and the equation V −1Qx = 1 has a solution. If r is a
solution, then, by Jordan normal form theory, r is linearly independent from the vectors
{fj, j = 1, . . . , n, gk, k = 1, . . . ,m} and B = {1, r, fj, j = 2, . . . , n, gk, k = 2, . . . ,m} is
a basis in the space of all vectors on E.

The following lemmas are concerned with the Perron-Frobenius eigenvalue of the
matrix (Q − βV ). For any β ∈ R, let α(β) be the Perron-Frobenius eigenvalue of
the matrix (Q − βV ) and let uleft(β) and uright(β) be the associated left and right
eigenvectors such that ‖uleft(β)‖ = ‖uright(β)‖ = 1 in some norm in the space RE. A
striking property of the eigenvalue α(β) is that it is a convex function of β.

Lemma 3.8 Let β ∈ R and let α(β) be the Perron-Frobenius eigenvalue of the matrix
(Q−βV ). Then, α(β) is a convex function of β and therefore continuous. It attains its
global minimum and has two zeros, αmax ≤ 0 and βmin ≥ 0, not necessarily distinct.

Proof: Let r(A) denote the Perron-Frobenius eigenvalue of an essentially non-negative
matrix A. Since Q is essentially non-negative it follows from Cohen (1981) that for any
x, y ∈ R and any t, 0 < t < 1,

r((1− t)(Q− xV ) + t(Q− yV )) ≤ (1− t) r(Q− xV ) + t r(Q− yV ). (3.9)

Hence, α(β) is a convex function and therefore continuous.
Let |β| be sufficiently large. Then some rows of (Q − βV ) are non-negative which

implies that there does not exists a positive vector f such that (Q− βV )f ≤ 0. Hence,
by the Perron-Frobenius theorem, α(β) > 0 for sufficiently large |β|.

Suppose that α(β) = 0. Then there exists a positive vector f such that (Q−βV )f =
0. Since, by Lemma 3.6 (i), there exist exactly two eigenvalues of V −1Q, αmax and βmin

(not necessarily distinct), whose associated eigenvectors are positive, it follows that αmax

and βmin are the only zeros of α(β).
Therefore, the function α(β) is continuous, for |β| sufficiently large it is positive and

it has either one or two zeros. All of these together imply that α(β) attains its minimum.
�
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Lemma 3.9 Let α(β) be the Perron-Frobenius eigenvalue and let uleft(β) and uright(β)
be the unit Perron-Frobenius left and right eigenvectors of the matrix (Q − βV ). Then
α(β) is a differentiable function of β and

dα

dβ
(β) = −uleft(β) V uright(β)

uleft(β) uright(β)
.

In addition, there is a unique β0 ∈ (αmax, βmin) such that dα
dβ

(β0) = 0 and α0 ≡ α(β0)

is the global minimum of the function α(β) and that

dα

dβ
(β)


< 0, if β < β0

= 0, if β = β0

> 0, if β > β0,

Proof: By multiplying the equality

(Q− βV ) uright(β + h)− h V uright(β + h)

= (α(β + h)− α(β)) uright(β + h) + α(β) uright(β + h),

by uleft(β)
h

and by letting h → 0, we obtain that α(β) is a differentiable function of β.
By Lemma 3.8 it is also convex and attains its minimum. Hence, there exists unique β0

such that α(β0) is the global minimum of α(β) and that dα
dβ

(β0) = 0. By Lemma 3.8,

α(β) has two zeros, αmax ≤ 0 and βmin ≥ 0. Hence, β0 ∈ (αmax, βmin) when αmax 6= βmin

and β0 = αmax = βmin when αmax = βmin.
It remains to show that α(β) is strictly monotone on (−∞, β0] and [β0, +∞), Let

α(β) be the Perron-Frobenius eigenvalue of the matrix (Q− βV ).
(i) Suppose that β0 = 0. Then α(β0) = 0 and therefore α(β) ≥ 0. By Lemma 3.6

(i), for α > 0, the only positive eigenvectors of V −1(Q − αI) are fmax(α) and gmin(α)
which are associated with the eigenvalues αmax(α) and βmin(α), respectively. Hence,
for fixed α ≥ α0, there exist only two values of β, αmax(α) and βmin(α), such that α is
the Perron-Frobenius eigenvalue of (Q − βV ). Since αmax(α) ≤ 0 and βmin(α) ≥ 0, it
follows that α(β) is strictly monotone on both intervals (−∞, 0] and [0, +∞).

(ii) Let now β0 ∈ R and let

Q0 = Q− β0V − α0I.

The matrix Q0 is essentially non-negative and, by Lemma 3.1, irreducible, and so is
the matrix (Q0 − βV ) for any β ∈ R. Let α0(β) be the Perron-Frobenius eigenvalue
of (Q0 − βV ). Then α0(β) = α(β + β0) − α0. Since α(β) attains its global minimum
at β = β0, it follows that α0(β) attains its global minimum zero at β = 0. Therefore,
by (i), α0(β) is strictly monotone on (−∞, 0] and [0, +∞), which implies that α(β) is
strictly monotone on (−∞, β0] and [β0, +∞). �
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The sign of the unique argument β0 of the global minimum of the function α(β),
whose existence has been proved in the previous lemma, is found to depend on the
behaviour of the process (ϕt)t≥0. Namely,

Lemma 3.10

In the positive drift case β0 > 0 and α0 < 0.
In the oscillating case β0 = 0 and α0 = 0.
In the negative drift case β0 < 0 and α0 < 0.

Proof: In the drift cases, αmax 6= βmin and therefore, by Lemma 3.9, β0 ∈ (αmax, βmin).
In the positive drift case, by (3.8), αmax = 0 and βmin > 0, and therefore β0 > 0. In
the negative drift case, by (3.8), βmin = 0 and αmax < 0, and therefore β0 < 0. Since in
both cases the function α(β) has two distinct zeros, its global minimum α0 is negative.

Finally, in the oscillating case, by (3.8), αmax = βmin = 0 and then β0 = 0. Thus,
the function α(β) has exactly one zero at β = 0 and, since by Lemma 3.8, it attains
a global minimum, it follows that α(β) attains its global minimum at β0 = 0 and that
α0 = α(β0) = 0. �

Lemma 3.11 The matrix Q0 given by (2.1) is a conservative irreducible Q-matrix. In
addition, if µ0 is a vector on E such that µ0Q0 = 0 then µ0V 1 = 0.

Proof: Since the matrices I and V are diagonal and the vector g0 is positive, the matrix
Q0 is essentially non-negative. In addition, Q01 = 0.

By Lemma 3.1, the matrix (Q − α0I − β0V ) is irreducible which implies that the
matrix et(Q−α0I−β0V ) is positive for all t > 0. Since the vector g0 is positive, it follows
from the definition of Q0 that etQ0

is positive for all t > 0 and that the matrix Q0 is
irreducible.

Let gleft
0 be the left Perron-Frobenius eigenvector of the matrix (Q − β0V ) and let

µ0 be a vector on E with entries µ0(e) = gleft
0 (e)g0(e), e ∈ E. Then µ0Q0 = 0 and by

Lemmas 3.9 and 3.10 µ0V 1 = 0. Since any vector v which satisfies vQ0 = 0 is a constant
multiple of µ0, the proof of the lemma is complete. �

We recall the matrix G0 = diag(g0). Since the vector g0 is positive, the matrix G0 is
invertible.

Lemma 3.12 For α > 0, let

V −1(Q− αI) Γα = Γα Gα and V −1(Q0 − αI) Γ0
α = Γ0

α G0
α,

be the Wiener-Hopf factorisations of V −1(Q−αI) and V −1(Q0−αI), respectively. Then,

G0
α−α0

= G−1
0 (Gα − β0I) G0, and Γ0

α−α0
= G−1

0 Γα G0, α > 0.
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Proof: By the definition of Q0 and by the Wiener-Hopf factorization of V −1(Q − αI),
α > 0, given in Lemma 3.2,

V −1(Q0 − (α− α0)I) = (G−1
0 ΓαG0) (G−1

0 (Gα − β0I)G0) (G−1
0 Γ−1

α G0). (3.10)

Let G+
0 (respectively G−

0 ) be the restriction of G0 to E+×E+ (respectively E−×E−).
Then,

G−1
0 (Gα − β0I)G0 =

(
(G+

0 )−1(G+
α − β0I)G+

0 0
0 −(G−

0 )−1(G−
α + β0I)G−

0

)
.

Suppose that (G+
0 )−1(G+

α −β0I)G+
0 and (G−

0 )−1(G−
α +β0I)G−

0 are Q-matrices. Then,
by Lemma 3.2, (3.10) is the the Wiener-Hopf factorization of V −1(Q0 − (α − α0)I) for
α > 0, and by the uniqueness of the Wiener-Hopf factorization

G0
α−α0

= G−1
0 (Gα − β0I) G0, Γ0

α−α0
= G−1

0 Γα G0, α > 0.

Therefore, all we have to prove is that (G+
0 )−1(G+

α − β0I)G+
0 and (G−

0 )−1(G−
α + β0I)G−

0

are Q-matrices.
Let the function h be defined by h(e, ϕ, t) = e−α0t e−β0ϕ g0(e). Then h is continuously

differentiable in ϕ and t, and, by (3.7), it is in the domain of the infinitesimal generatorA
of the process (Xt, ϕt, t)t≥0 and Ah = 0. It follows that the process (h(Xt∧Hy , ϕt∧Hy , t∧
Hy))t≥0 is a positive martingale. By Fatou’s lemma,

E(e,ϕ)

(
e−α0Hye−β0ϕHy g0(XHy)

)
≤ e−β0ϕ g0(e),

and because g0 is positive, for α > α0,

E(e,ϕ)

(
e−αHy g0(XHy)

)
≤ E(e,ϕ)

(
e−α0Hy g0(XHy)

)
≤ e−β0(ϕ−y) g0(e). (3.11)

By Lemma 3.3, for ϕ = 0 and y > 0,

e−β0y g0(e) ≥ E(e,0)

(
e−αHy g0(XHy)

)
=

(
eyG+

α g+
0

Π+
α eyG+

α g+
0

)
,

which implies that ey(G+
α−β0)g+

0 ≤ g+
0 . Hence, because

lim
y→0

ey(G+
α−β0)g+

0 − g+
0

y
= (G+

α − β0)g
+
0 ,

(G+
α − β0)g

+
0 ≤ 0 and therefore, because (G+

0 )−1 is positive,

(G+
0 )−1(G+

α − β0I)G+
0 1+ = (G+

0 )−1(G+
α − β0I)g+

0 ≤ 0

and (G+
0 )−1(G+

α − β0I)G+
0 is a Q-matrix. It can be proved in the same way that

(G−
0 )−1(Gα − β0I)G−

0 is a Q-matrix. �
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Theorem 3.1 For α ≥ 0, Let αmax(α) and βmin(α) be the eigenvalues of the matrix
V −1(Q − αI) with maximal negative and minimal positive real parts, respectively, and
let fmax(α) and gmin(α) be their associated eigenvectors, respectively.

Then, in the oscillating case, there exists ε > 0 such that, for 0 < α < ε, and some
constants dn, n = 2, 3, . . . and c > 0,

αmax(α) = − 1√
−µV r

α
1
2 + d2α + d3α

3
2 + . . . = − 1√

−µV r
α

1
2 + Θmax(α

1
2 )

βmin(α) =
1√
−µV r

α
1
2 + d2α− d3α

3
2 + . . . =

1√
−µV r

α
1
2 + Θmin(α

1
2 ),

and |Θmax(α
1
2 )| < c α and |Θmin(α

1
2 )| < c α.

The vectors fmax(α) and gmin(α) can be chosen to be

fmax(α) = 1− 1√
−µV r

α
1
2 r + α v2 + . . . = 1− 1√

−µV r
α

1
2 r + Ξmax(α

1
2 )

gmin(α) = 1 +
1√
−µV r

α
1
2 r + α w2 + . . . = 1 +

1√
−µV r

α
1
2 r + Ξmin(α

1
2 ),

where V −1Qr = 1, and |Ξmax(α
1
2 )| < α v and |Ξmin(α

1
2 )| < α w for some positive

vectors v and w on E.
In the negative drift case, there exists ε > 0 such that, for 0 < α < ε and some

constants an and bn, n ∈ N,

αmax(α) = αmax + a1α + a2α
2 + . . . and βmin(α) = b1α + b2α

2 + b3α
3 + . . . ,

and the vectors fmax(α) and gmin(α) can be chosen to be

fmax(α) = fmax + αv1 + α2v2 + . . . and gmin(α) = 1 + αw1 + α2w2 + . . . ,

where vn and wn, n ∈ N, are some constant vectors.
The analogous result follows in the positive drift case.

Proof: The eigenvalues of V −1(Q− αI) converge to the eigenvalues of V −1Q as α → 0.
Thus, αmax(α) → αmax and βmin(α) → βmin as α → 0.

In the drift cases, by (3.8), αmax 6= βmin. Hence, αmax and βmin are simple eigenvalues
of V −1Q which implies that, for sufficiently small α > 0, αmax(α) and βmin(α), and also
fmax(α) and gmin(α), can be represented by convergent power series (see Wilkinson
(1965)). In addition, in the positive drift case, αmax = 0 and fmax = 1 and in the
negative drift case βmin = 0 and gmin = 1. Therefore, the part of the theorem for the
drift cases is proved.
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In the oscillating case, by (3.8), zero is an eigenvalue of the matrix V −1Q with
algebraic multiplicity two. Hence, there exists ε > 0 such that for 0 < |α| < ε there
exist two eigenvalues of V −1(Q − αI) which converge to zero as α → 0, and those are
αmax(α) and βmin(α). In addition, one of the following is valid:

either
αmax(α) = a1α + a2α

2 + a3α
3 + . . .

βmin(α) = b1α + b2α
2 + b3α

3 + . . . ,
(3.12)

for some constants ak, bk, k ∈ N, or

αmax(α) = d1α
1
2 + d2α + d3α

3
2 + . . .

βmin(α) = −d1α
1
2 + d2α− d3α

3
2 + . . . ,

(3.13)

for some constants dk, k ∈ N. We shall show that (3.12) is not possible.
For any α > 0,

(Q− αmax(α)V )fmax(α) = αfmax(α). (3.14)

Since by Lemma 3.1, the matrix (Q − αmaxV ) is irreducible and essentially non-
negative and the vector fmax(α) is positive, it follows that α is the Perron-Frobenius
eigenvalue of (Q− αmax(α)V ). Similarly, α is the Perron-Frobenius eigenvalue of (Q−
βmin(α)V ).

Let β ∈ R and consider the matrix (Q − βV ) and its Perron-Frobenius eigenvalue
α(β) and eigenvector u(β). The eigenvalue α(β) is simple and it converges to a simple
eigenvalue of the matrix Q as β → 0. Thus, for |β| < δ,

α(β) = c0 + c1β + c2β
2 + . . .

u(β) = 1 + βv1 + β2v2 + . . . ,
(3.15)

for some constants ck, k ∈ N ∪ {0} and some vectors vk, k ∈ N, on E.
Suppose that the process (ϕt)t≥0 oscillates. By Lemmas 3.9 and 3.10 the eigenvalue

α(β) attains its global minimum 0 at β = 0. Hence, α(0) = dα
dβ

(0) = 0, which gives that
c0 = c1 = 0, and therefore

α(β) = c2β
2 + c3β

3 + c4β
4 + . . . . (3.16)

By substituting α(β) and u(β) into the equation

(Q− βV )u(β) = α(β)u(β)

and by equating terms in β and β2 on each side of the previous equation, we obtain

V −1Qv1 = 1 Qv2 − V v1 = c21. (3.17)

It follows that c2 6= 0 (if c2 = 0 then V −1Qv2 = v1 which is by Jordan matrix theory
not possible since 0 is the eigenvalue of V −1Q with algebraic multiplicity 2).
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Suppose that (3.12) is true. Then, it follows from (3.12) and (3.14) that, for |α| < ε,

α = α(αmax) = c2 α2
max(α) + c3 α3

max(α) + . . .

= c2(a1α + a2α
2 + . . .)2 + c3(a1α + a2α

2 + . . .)3 + . . .

= c2a
2
1α

2 + const.α3 + . . . ,

which is not possible for every |α| < ε. Hence, (3.12) is not true and thus (3.13) holds.
Substituting αmax(α) and βmin(α) from (3.13) into (3.16) gives d2

1 = 1
c2

. By Lemmas
3.9 and 3.10, α(0) = 0 is the minimum of the function α(β) which implies that α(β) > 0
for all β ∈ R, and, by (3.16), that c2 > 0. By multiplying second equality in (3.17)
by µ from the left, we obtain (because µ1 = 1), c2 = −µV v1

µ1
= −µV v1. Therefore, the

statement in the theorem follows from (3.13) and (3.15). �

4 The oscillating case: Proof of Theorem 2.1

We start by looking at limT→+∞ P
(T )
(e,ϕ)(A) for A ∈ Ft. By Lemma 3.5 (viii), the events

{H0 > T}, T > 0, are of positive probability. Thus, for 0 < t < T and A ∈ Ft,

P
(T )
(e,ϕ)(A) = P(e,ϕ)(A | H0 > T ) =

E(e,ϕ)

(
I(A)P(Xt,ϕt)(H0 > T − t)I{H0 > t}

)
P(e,ϕ)(H0 > T )

. (4.18)

First we show that limT→+∞
P(e′,ϕ′)(H0>T−t)

P(e,ϕ)(H0>T )
exists by looking at the asymptotic be-

haviour of the function t 7→ P(e,ϕ)(H0 > t).
In the oscillating case, by (3.8) and Lemma 3.5 (iv), zero is an eigenvalue of V −1Q

with algebraic multiplicity two and geometric multiplicity one. Therefore, there exists
a vector r such that V −1Qr = 1. Since the choice of such vector is not relevant in the
presented work, we shall always refer to it as if it was fixed.

Let µ be the invariant measure of the process (Xt)t≥0.

Lemma 4.1 For any (e, ϕ) ∈ E+
0 ,

(i) P(e,ϕ)(H0 > t) ∼ 1

π

1√
−µV r

t−
1
2 (−e−ϕV −1QJ1Γ2r(e)), t → +∞,

(ii) hr(e, ϕ) ≡ −e−ϕV −1QJ1Γ2r > 0.

Proof: (i) The statement is proved by applying Tauberian theorems to the Laplace

transform
1−E(e,ϕ)(e

−αH0 )

α
of P(e,ϕ)(H0 > t). By Lemmas 3.2 and 3.3, for α > 0 and

(e, ϕ) ∈ E+
0 ,

1− E(e,ϕ)(e
−αH0)

α
= e−ϕV −1Q 1− ΓαJ21

α
(e)− e−ϕV −1(Q−αI) − e−ϕV −1Q

α
ΓαJ21(e). (4.19)
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Let βmin(α) be the eigenvalue of V −1(Q − αI) with minimal positive real part and
let gmin(α) be its associated eigenvector. Then, by (3.4), Π−

αg−min(α) = g+
min(α) and by

substituting gmin(α) from Theorem 3.1 we obtain, for sufficiently small α

1+ − Π−
α 1−

α
= − 1√

−µV r
α−

1
2 (r+ − Π−r−) +

1√
−µV r

α−
1
2 (Π−

α − Π−)r−

+
1

α
Ξ+

min(α
1
2 ) +

1

α
Π−

α Ξ−min(α
1
2 ). (4.20)

By Theorem 3.1, 1
α

Ξ+
min(α

1
2 ) is bounded, and by Lemma 3.5 (v), Π−

α − Π− → 0 as
α → 0. Thus, it follows from (4.20) that

1+ − Π−
α 1−

α
∼ − 1√

−µV r
α−

1
2 (r+ − Π−r−), α → 0. (4.21)

Since
1− ΓαJ21

α
=

(
1+−Π−

α 1−

α

0

)
and J1Γ2r =

(
r+ − Π−r−

0

)
,

it follows that

e−ϕV −1Q 1− ΓαJ21

α
∼ − 1√

−µV r
α−

1
2 e−ϕV −1QJ1Γ2r, α → 0.

The function α 7→ e−ϕV −1(Q−αI) is analytic for all α and by Lemma 3.5 (v), Γα → Γ,
as α → 0. Hence, the second term on the right-hand side of (4.19) is bounded for small
α > 0. Therefore, for any (e, ϕ) ∈ E × (0, +∞),

1− E(e,ϕ)(e
−αH0)

α
∼ − 1√

−µV r
α−

1
2 e−ϕV −1QJ1Γ2r(e), α → 0.

The assertion in the lemma now follows from the Tauberian theorem (see Feller
(1971) part 2, XIII.5),

(ii) We give only the sketch of the proof. For the details see Najdanovic (2003) or
refer to Jacka et al. (2005).

For any y ∈ R, let the matrices Ay and Cy be the components of the matrix e−yV −1Q

given by

e−yV −1Q =

(
Ay By

Cy Dy

)
.

Then, for any ϕ ∈ R,

e−ϕV −1QJ1Γ2r =

(
Aϕ(r+ − Π−r−)
Cϕ(r+ − Π−r−)

)
.
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The proof of the lemma consists of showing first that the vector Aϕ(r+−Π−r−) has
a constant sign and that that the vector Cϕ(r+ − Π−r−) has the same constant sign,
which implies that the function hr has a constant sign. Then we deduce from (i) that
hr must be negative.

By ordinary matrix algebra and equalities eyV −1Qr = r + y1 and Π−1− = 1+, it can
be shown that, for any ϕ, y ∈ R, the vector Aϕ(r+ − Π−r−) satisfies the equality(

Aϕ(Ay − Π−Cy)
−1A−1

ϕ

)
Aϕ(r+ − Π−r−) = Aϕ(r+ − Π−r−).

In addition, it can be shown that the matrix Aϕ(Ay−Π−Cy)
−1A−1

ϕ , ϕ 6= y, is positive
and that its Perron-Frobenius eigenvalue is 1. Then, the last equality implies that the
vector Aϕ(r+−Π−r−) is its Perron-Frobenius eigenvector, and therefore has a constant
sign.

Furthermore, it can be shown that the matrix CϕA−1
ϕ is positive. Hence, because

Cϕ(r+ − Π−r−) = CϕA−1
ϕ Aϕ(r+ − Π−r−) and because Aϕ(r+ − Π−r−) has a constant

sign, we deduce that the vector Cϕ(r+ − Π−r−) has the same constant sign. Thus, the
function hr has a constant sign, and since P(e,ϕ)(H0 > t) > 0, it follows from (i) that
the function hr is negative. �

For the proof of Theorem 2.1 we need two more lemmas.

Lemma 4.2 (i) Let {fn, n ∈ N} and f be non-negative random variables on a probability
space (Ω,F , P ) such that Efn = Ef = 1, where expectation is taken with respect to the
probability measure P . If fn → f a.s. as n → +∞, then fn → f in L1(Ω,F , P ) as
n → +∞.
(ii) Let {Pn, n ∈ N} and P be probability measures on a measurable space (Ω,F) such
that, for any A ∈ F , Pn(A) → P (A) as n → +∞. Then the measures {Pn, n ∈ N}
converge weakly to P on F .

Proof: (i) Since {fn, n ∈ N} and f are non-negative and Efn = Ef = 1, the functions
{fn(ω), n ∈ N} and f(ω), ω ∈ Ω, are densities with respect to the measure P . In
addition, fn → f a.s. as n → +∞ and so fn → f in probability as n → +∞. Therefore,
by Theorem 2.2. from Jacka, Roberts (1997), fn → f in L1(Ω,F , P ) as n → +∞.
(ii) Let for any A ∈ F , Pn(A) → P (A) as n → +∞. Then, by the definition of strong
convergence in Jacka et.al (1997), the measures {Pn, n ∈ N} converge strongly to P
which, by Theorem 2.1. in Jacka et.al (1997), implies that the measures {Pn, n ∈ N}
converge weakly to P . �

Lemma 4.3 The function hr(e, ϕ) is harmonic for the process (Xt, ϕt)t≥0 and the process
{hr(Xt, ϕt)I{t < H0}, t ≥ 0} is a martingale under P(e,ϕ).
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Proof: The function hr is continuously differentiable in ϕ which by (3.6) implies that
hr is in the domain of the infinitesimal generator G of the process (Xt, ϕt)t≥0 and that
Ghr = 0. Hence, the function hr(e, ϕ) is harmonic for the process (Xt, ϕt)t≥0 and the
process (hr(Xt, ϕt))t≥0 is a local martingale under P(e,ϕ). It follows that the process
(hr(Xt∧H0 , ϕt∧H0) = hr(Xt, ϕt)I{t < H0})t≥0 is also a local martingale under P(e,ϕ) (the
equality of the processes is valid because hr(XH0 , ϕH0) = 0 if the process (Xt, ϕt)t≥0

starts in E+
0 ). Since the process {hr(Xt, ϕt)I{t < H0}, t ≥ 0} is bounded on every finite

interval, it follows that it is a martingale under P(e,ϕ). �

Proof of Theorem 2.1: By Lemmas 4.1 (ii) and 4.3, the function hr(e, ϕ) is positive
and harmonic for the process (Xt, ϕt)t≥0. Therefore, the measure P hr

(e,ϕ) is well-defined.

For fixed (e, ϕ) ∈ E+
0 and t ≥ 0, and any T ≥ 0, let ZT be a random variable defined

by

ZT =
P(Xt,ϕt)(H0 > T − t)

P(e,ϕ)(H0 > T )
I{t<H0}.

Then, by Lemmas 4.1, 4.2 and 4.3 the random variables ZT converge in L1(Ω,F , P(e,ϕ))

as T → +∞ to the random variable hr(Xt,ϕt)
hr(e,ϕ)

I{t<H0} . Therefore, by (4.18), for fixed
t ≥ 0 and A ∈ Ft,

lim
T→+∞

P
(T )
(e,ϕ)(A) = lim

T→+∞
E(e,ϕ)

(
I(A) ZT

)
= E(e,ϕ)

(
I(A)

hr(Xt, ϕt)

hr(e, ϕ)
I{t < H0}

)
= P hr

(e,ϕ)(A),

which, by Lemma 4.2 (ii), implies that the measures (P
(T )
(e,ϕ)|Ft)y≥0 converge weakly to

P hr

(e,ϕ)|Ft as T →∞. �

5 The negative drift case: Proof of Theorem 2.2

We start again by looking at limT→+∞ P
(T )
(e,ϕ)(A) for A ∈ Ft. As in the oscillating case,

we need to find limT→+∞
P(e′,ϕ′)(H0>T−t)

P(e,ϕ)(H0>T )
.

We recall that β0 denotes the point at which the Perron-Frobenius eigenvalue α(β)
of the matrix (Q − βV ) attains its global minimum (see Lemma 3.9), that α0 = α(β0)
and g0 denote the Perron-Frobenius eigenvalue and right eigenvector, respectively, of
the matrix (Q − β0V ) and that G0 denotes the diagonal matrix diag(g0(e)). We recall
the E × E matrix Q0 is given by (2.1) as

Q0(e, e′) = G−1
0 (Q− α0I − β0V )G0(e, e

′).
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By Lemma 3.11 the matrix Q0 is a conservative irreducible Q-matrix. Let (V −1Q)Γ0 =
Γ0G0 be the unique Wiener-Hopf factorization of the matrix V −1Q0 and let Γ0

2 = JΓ0J .
Our aim is to prove

Lemma 5.1

(i) hr0(e, ϕ, t) ≡ −e−α0t e−β0ϕ G0e
−ϕV −1Q0

J1Γ
0
2r

0(e) > 0, (e, ϕ, t) ∈ E+
0 × [0, +∞),

(ii) if limT→+∞
P(e′,ϕ′)(H0>T−t)

P(e,ϕ)(H0>T )
exists it is equal to

hr0 (e′,ϕ′,t)

hr0 (e,ϕ,0)
.

For the proof of the lemma we will need some auxiliary lemmas. For α > 0
let V −1(Q0 − αI)Γ0

α = Γ0
αG0

α be the unique Wiener-Hopf factorisation of the matrix
V −1(Q0 − αI) and for fixed (e, ϕ) ∈ E × R, let a function L(e,ϕ)(α), α ≥ α0, be defined
by

L(e,ϕ)(α) =
1− e−β0ϕ G0 e−ϕV −1(Q0−(α−α0)I) Γ0

α−α0
G−1

0 J21

α
(e). (5.22)

By Lemmas 3.3 and 3.12, for α > 0,

L(e,ϕ)(α) =
1− e−ϕV −1(Q−αI)ΓαJ21

α
=

1− E(e,ϕ)(e
−αH0)

α
=

∫ ∞

0

e−αtP(e,ϕ)(H0 > t) dt.

(5.23)

Lemma 5.2 For any (e, ϕ) ∈ E+
0 , the function L(e,ϕ)(α) is analytic for Re(α) > α0.

Proof: By the definition in Lemma 3.3, the matrices Π+
α and Π−

α are analytic for Re(α) >
0. Hence, the matrix Γα is analytic for Re(α) > 0 and therefore, by Lemma 3.12 the
matrix Γ0

α−α0
is analytic for Re(α) > α0. It follows that the numerator of L(e,ϕ)(α) in

(5.22) is analytic for Re(α) > α0 and since

e−β0ϕG0e
−ϕV −1(Q0+α0I)Γ0

−α0
G−1

0 J21 = e−ϕV −1QΓJ21 = 1,

the numerator of L(e,ϕ)(α) is equal to zero for α = 0. Therefore, L(e,ϕ)(α) is analytic for
Re(α) > α0. �

We note that the objects (e.g. vectors and matrices) with the superscript 0 are
associated with the matrix Q0 and are defined in the same way as their counterparts
associated with the matrix Q.

Lemma 5.3 Let all non-zero eigenvalues of the matrix V −1Q0 be simple. Then, for
some non-zero constant c,

(i) (Γ0
α−α0

− Γ0) G−1
0 J21 ∼ c (α− α0)

1
2 J1Γ

0
2r

0, α → α0,

(ii) L(e,ϕ)(α)− L(e,ϕ)(α0) ∼ c (α− α0)
1
2 e−β0ϕG0 e−ϕV −1Q0

J1Γ
0
2r

0(e), α → α0.
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Proof: (i) Let g− be a non-negative vector on E−. Then

g− =
m∑

k=1

ak g0,−
k

for some constants ak, k = 1, . . . m, where the vectors g0,−
k , k = 1, . . . m, form a basis

in the space of all vectors on E− and are associated with the eigenvalues of the matrix
G0,−. By Lemma 3.6 (ii), the constant amin which corresponds to g0,−

min = 1− in the
previous linear combination is not zero. Thus,

Π0,−
α g− = amin Π0,−

α 1− +
∑

g0,−
k 6=g0,−

min

ak Π0,−
α g0,−

k . (5.24)

By (3.8) and Lemma 3.11, the matrices Q0 and V define the oscillating case. There-
fore, by (4.21),

1+ − Π0,−
α 1− ∼ − 1√

−µ0V r0
α

1
2 (r0,+ − Π0,−r0,−), α → 0. (5.25)

We also need the behaviour of Π0,−
α g0,−

k , k = 1, . . . m, g0,−
k 6= g0,−

min. Since by as-
sumption all non-zero eigenvalues of the matrix V −1Q0 are simple, it can be shown (see
Wilkinson (1965)) that there exist vectors vk,n, n ∈ N, on E such that

Π0,−
α g0,−

k − Π0,−g0,−
k =

∞∑
n=1

αn (v+
k,n − Π0,−

α v−k,n) (5.26)

From (5.24), (5.25) and (5.26), and because by Lemma 3.5 (v), Π0,−
α → Π0,− as

α → 0,

Π0,−
α g− − Π0,−g− ∼ − amin√

−µ0V r0
α

1
2 (r0,+ − Π0,−r0,−), α → 0,

which proves (i).
(ii) By the definition of L(e,ϕ)(α),

L(e,ϕ)(α)− L(e,ϕ)(α0)

= − (α− α0)(1− e−β0ϕG0 e−ϕV −1Q0
Γ0G−1

0 J21)

α α0

− α0(e
−β0ϕG0 (e−ϕV −1(Q0−(α−α0)) − e−ϕV −1Q0

)Γ0G−1
0 J21)

α α0

−
e−β0ϕG0 e−ϕV −1Q0

(Γ0
α−α0

− Γ0)G−1
0 J21

α

−
e−β0ϕG0 (e−ϕV −1(Q0−(α−α0)) − e−ϕV −1Q0

)(Γ0
α−α0

− Γ0)G−1
0 J21

α
.
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The function α 7→ e−ϕV −1(Q0−(α−α0)) is analytic for all α which implies that
e−ϕV −1(Q0−(α−α0)) − e−ϕV −1Q0

tends to zero as α → α0. Hence, by (i) and the last
equality, (ii) is valid. �

Lemma 5.4 For fixed (e, ϕ) ∈ E+
0 , the function L(e,ϕ)(α + α0), α > 0, is the Laplace

transform of e−α0tP(e,ϕ)(H0 > t).

Proof: By (5.23) L(e,ϕ)(α), α > 0, is a Laplace transform and therefore, by Theorem
1a in Feller (1971) part 2, XIII.4, completely monotone for α ≥ 0. In addition, by
Lemma 5.2, L(e,ϕ)(α) is analytic for α > α0. Since the analytic continuation of a com-
pletely monotone function is completely monotone, it follows that L(e,ϕ)(α) is completely
monotone for α > α0 and therefore it is a Laplace transform of some measure on [0, +∞).
By the uniqueness of the inverse of the Laplace transform it follows from (5.23) that
L(e,ϕ)(α + α0) for α > 0 is the Laplace transform of e−α0tP(e,ϕ)(H0 > t). �

Proof of Lemma 5.1: (i) By Lemma 4.1 (i), the vector −e−ϕV −1Q0
J1Γ

0
2r

0 is positive
for any ϕ ∈ R. Since the matrix G0 is positive by its definition, it follows that the
function hr0(e, ϕ, t) is positive for any (e, ϕ, t) ∈ E+

0 × [0, +∞).

(ii) By Lemma 5.4,
L(e,ϕ)(α+α0)

α
− L(e,ϕ)(α0)

α
is the Laplace transform of the monotone

function

t 7→
∫ t

0

e−α0sP(e,ϕ)(H0 > s) ds− L(e,ϕ)(α0).

Therefore, by the Tauberian theorem (see Feller (1971) part 2, XIII.5),∫ t

0

e−α0sP(e,ϕ)(H0 > s) ds− L(e,ϕ)(α0) ∼
c

Γ(1
2
)

t−
1
2 e−β0ϕG0 e−ϕV −1Q0

J1Γ
0
2r

0(e),

as t → +∞. Then, for fixed (e, ϕ), (e′, ϕ′) ∈ E+
0 ,

lim
T→+∞

∫ T−t

0
e−α0sP(e′,ϕ′)(H0 > s) ds− L(e′,ϕ′)(α0)∫ T

0
e−α0sP(e,ϕ)(H0 > s) ds− L(e,ϕ)(α0)

=
e−β0ϕ′G0 e−ϕ′V −1Q0

J1Γ
0
2r

0(e′)

e−β0ϕG0 e−ϕV −1Q0J1Γ0
2r

0(e)
.

The statement in the lemma is now proved since, by L’Hôpital’s rule,

lim
T→+∞

∫ T−t

0
e−α0sP(e′,ϕ′)(H0 > s) ds− L(e′,ϕ′)(α0)∫ T

0
e−α0sP(e,ϕ)(H0 > s) ds− L(e,ϕ)(α0)

= eα0t lim
T→+∞

P(e′,ϕ′)(H0 > T − t)

P(e,ϕ)(H0 > T )
,

if the latter limit exists. �

Lemma 5.5 The function hr0 is space-time harmonic for the process (Xt, ϕt)t≥0 and
the process {hr0(Xt, ϕt, t)I{t < H0}, t ≥ 0} is a martingale under P(e,ϕ).
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Proof: The function hr0 is continuously differentiable in ϕ and t which by (3.7) implies
that it is in the domain of the infinitesimal generator A of the process (Xt, ϕt)t≥0 and
that Ahr0 = 0. Hence, the function hr0(e, ϕ, t) is space-time harmonic for the process
(Xt, ϕt)t≥0 and the process (hr0(Xt, ϕt, t))t≥0 is a local martingale under P(e,ϕ). It follows
that the process (hr0(Xt∧H0 , ϕt∧H0 , t ∧ H0) = hr0(Xt, ϕt, t)I{t < H0})t≥0 is also a local
martingale under P(e,ϕ). Since the process hr0(Xt, ϕt, t)I{t < H0})t≥0 is bounded on
every finite interval, it follows that it is a martingale under P(e,ϕ). �

Proof of Theorem 2.2: By Lemmas 5.1 (i) and 5.5, the function hr0(e, ϕ, t) is
positive and space-time harmonic for the process (Xt, ϕt)t≥0. Therefore, the measure

P
hr0

(e,ϕ) is well-defined.

For fixed (e, ϕ) ∈ E+
0 and t ≥ 0 and any T ≥ 0, let ZT be a random variable defined

by

ZT =
P(Xt,ϕt)(H0 > T − t)

P(e,ϕ)(H0 > T )
I{t<H0}.

Then, by Lemmas 5.1, 4.2 (i) and 5.5 the random variables ZT converge to
hr0 (Xt,ϕt)

hr0 (e,ϕ)
I{t<

H0} in L1(Ω,F , P(e,ϕ)) as T → +∞. Therefore, by (4.18), for fixed t ≥ 0 and A ∈ Ft,

lim
T→+∞

P
(T )
(e,ϕ)(A) = lim

T→+∞
E(e,ϕ)

(
I(A) ZT

)
= P

hr0

(e,ϕ)(A),

which, by Lemma 4.2 (ii), implies that the measures (P
(T )
(e,ϕ)|Ft)y≥0 converge weakly to

P
hr0

(e,ϕ)|Ft as T →∞. �
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