
http://wrap.warwick.ac.uk/

Original citation:
Yau, Jane Yin-Kim and Joy, Mike (2004) Introducing Java : the case for fundamentals-
first. In: International Conference on Education and Information Systems - Technologies
and Application, Orlando, FL, 21-25 Jul 2004. Published in: International Conference on
Education and Information Systems, Technologies and Applications (EISTA 2004),
Volume 2 pp. 229-234.

Permanent WRAP url:
http://wrap.warwick.ac.uk/34153

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.For more information, please contact the WRAP Team at:
publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/34153
mailto:publications@warwick.ac.uk

Introducing Java: the Case for Fundamentals-first

Jane Y YAU
Department of Computer Science, University of Warwick

Coventry, CV4 7AL, UK
janeyau@dcs.warwick.ac.uk

Mike JOY
Department of Computer Science, University of Warwick

Coventry, CV4 7AL, UK

ABSTRACT
Java has increasingly become the language of choice
for teaching introductory programming. In this paper,
we examine the different approaches to teaching Java
(Objects-first, Fundamentals-first and GUI-first) to
ascertain whether there exists an agreed ordering of
topics and difficulty levels between nine relatively
basic Java topics. The results of our literature survey
and student questionnaire suggests that the
Fundamentals-first approach may have benefits from
the student's point of view and an agreed ordering of
the Java topics accompanying this approach has been
established.

Keywords: Teaching Programming, Java,
Fundamentals-first and Objects-first.

1. INTRODUCTION

In recent years, Java has become the language of
choice for introductory programming courses in many
university computing departments. There are three
principal approaches to teaching Java. The Objects-
first approach advocates that objects should be taught
right from the beginning and the establishment of
object-oriented thinking is the primary focus [1]. The
Fundamentals-first approach concentrates initially on
basic concepts, before any language-specific
programming, such as the object-orientation aspects of
Java, in order to build students’ confidence in
learning, by introducing them to easier topics first [2].
Finally, the GUI-first approach commences by
introducing students to graphical user interfaces
(typically using Applets) to introduce object-oriented
programming before fundamental procedural
concepts. In each case, the ordering of topics
presented to the student is important; simple topics
should be taught before more complex topics for
which they are prerequisites [3].

As part of on-going work in computer-assisted
learning technologies [4], we are interested in the
order in which topics in the Java programming
language should be taught and their relative difficulty
levels. The ordering is particularly significant in a
computerized adaptive testing environment – adaptive
pre-tests are a way of assessing students in minimal
time to ascertain their level of understanding and to
locate them at the appropriate level of instruction [5].

This paper reviews and evaluates the different
approaches to teaching Java, in order to ascertain
whether there exists an agreed ordering of topics and
difficulty levels. To assist with this process, an
investigation was carried out by conducting a
literature survey and a student questionnaire. Nine
relatively basic Java topics were studied: Comments,
Assignment (including Variables and Primitive Data
Types), Expressions (including Arithmetic Operators),
If-Statements (including If-Else-Statements), For-
Loops, Arrays, Classes (and Objects), Methods and
I/O (Input & Output). Comments are an important part
of any well-documented program; whilst Assignment,
Expressions, If-Statements, For-Loops and Arrays are
essential elements of both structured and object-
oriented programming. Classes are the essence of
object-oriented programming; Methods are the
underlying building blocks of programs and I/O
permits reading in and printing or outputting values.

2. APPROACHES TO TEACHING JAVA

There are three widely used approaches for teaching
an object-oriented programming language such as
Java; Objects-first, Fundamentals-first and GUI-first.

Objects-first
This approach concentrates on object-oriented
programming principles and focuses on objects and
inheritance before introducing any of the procedural
elements; these procedural elements are in any case
always kept in the context of an object-oriented
design. Students are required to learn about Classes
and Methods immediately, and then proceed to study
basic procedural topics such as Assignment, whilst still
trying to grasp the complexity of the previous topics
being introduced. Objects-first is a challenging
approach for learning introductory programming,
since the students also have to deal with the
technicalities of the syntax of the language. This
approach is also contrary to the classic instruction
methodology used for introductory programming,
which allows a gentle learning curve by starting with a
simple program and steadily moving onto more
complex programming, thus allowing time for the
learner to grasp each concept and incrementally build
up their knowledge [1].

Object-oriented thinking, as the primary focus for the
Objects-first approach, can also be established by

using the Unified Modeling Language (UML) to
develop a visual and intuitive model of objects and
their relationships, which will then be translated into
code afterwards. Proponents of the Objects-first
approach argue that object-oriented programming is a
new programming paradigm which requires a new
accompanying teaching approach [6].

Object-orientation is arguably not new, as its
underlying concepts also existed in the general-
purpose programming language Simula, developed
between 1962 and 1967, which used modern object-
oriented concepts such as classes, subclasses, and
polymorphic functions. Although a procedural design
does not use the same terms, notations and
relationships as an object-oriented design, the
underlying concepts and goals are nonetheless
essentially the same, and object-orientation and
procedural concepts are not mutually exclusive [7].

Fundamentals-first
Smolarski [2] maintains that students should grasp all
the introductory concepts of programming before
moving onto the specific technical features of the
language, in this case, the object-oriented aspects of
Java. An advantage of this approach is the gain of
applicable foundational knowledge which will equip
the students with the ability to shift to a new
programming language and/or paradigm, if necessary,
as they would have been “well-grounded in language-
independent fundamentals”. This approach is used by
professional educators where the fundamental
principles are taught first and when mastered students
progress to design and problem solving [8].

This approach appears to be consistent with Anderson
et al.’s A Revision of Bloom’s Taxonomy [9], its
revised framework having two dimensions which are
Cognitive Process and Knowledge. The Cognitive
Process dimension consists of six categories in
ascending order of cognitive complexity: Remember,
Understand, Apply, Analyze, Evaluate and Create. The
Knowledge dimension consists of four categories:
Factual, Conceptual, Procedural and Metacognitive;
where the categories lie on a scale from concrete
(Factual) which is an easier-to-attain low-level skill
and abstract (Metacognitive) which is a harder-to-
master high-level skill [8]. When comparing a basic
Java topic such as Assignment with a topic related to
design and problem solving such as Classes,
Assignment is cognitively simpler and the knowledge
in the topic seems to be more concrete; whereas
Classes appear more cognitively complex, requiring
more abstract and analytical thinking skills. This
suggests that Assignment should be taught before
Classes.

Burton et al. [6] point out that students who have
experience in the procedural paradigm will learn
object-oriented programming much more capably and
effectively because the procedural paradigm consists
of two main components which are algorithmic

thinking and structured programming. Algorithmic
thinking is also considered as a paradigm in its own
right, as an algorithm can possibly consist of elements
such as selection and repetition. It is argued that
having a firm understanding of algorithms and
structured programming before learning the object-
oriented paradigm is beneficial for the students as
essentially the object-oriented paradigm mainly
involves modeling structure and relationships that are
present in the procedural paradigm. “An object
consists of a collection of variables (attributes) and
procedures (behaviors) bundled permanently together
(encapsulated) as a unit”, hence, procedural
programming must precede object-oriented
programming.

GUI-first
Authors adopting this approach illustrate the
properties common to all Java classes by using Java
Applets and Graphical User Interfaces (GUIs) [10].
Students are taught how to develop GUI programs
from the beginning to help them understand the
functions of Classes and their components, and
thereafter, object-oriented programming and
fundamental procedural elements are introduced. This
approach may lead students to think that there is more
hands-on programming in their course than pure
abstract theory, whether this is the case or not, and
may be helpful for recruitment [11]. Students may also
be more motivated and will gain more satisfaction if
they can see that their running program is displaying
in the form of a GUI as opposed to a static textual
alternative. However, the lack of emphasis on
algorithmic thinking, structured programming and
object-oriented design, may deter academic staff from
adopting this approach, and it has been argued that
students must visualize the concepts from an object-
oriented point of view from the very beginning before
they do any hands-on programming [12].

3. LITERATURE SURVEY

In our first investigation we sought to discover the
popularity of the three approaches, and to ascertain
whether there is any agreement on the ordering of
topics within Java, and 30 recently published
academic Java programming books currently in print
were selected. An advantage of surveying published
books is that the apparent approach and the direction
of the learning curve in each book can be determined
quite easily because of the linear nature inherent in
printed works. This linear structure also gives an
indication of the relative difficulty levels of topics
within it; hence an ordering of topics can be identified.
Published works have all gone through a reviewing
process, and many of them are recommended
textbooks, and we therefore have confidence in their
quality.

The books exhibit many differences in the ordering of
topics, dictated either by prerequisite requirements or

the author’s teaching style and preferences. Most of
the books surveyed are aimed at students with no
programming experience and are an introductory
textbook, and the remainder is aimed at students who
are familiar with basic programming concepts and
programming, with no prior knowledge of Java.

Fundamentals-first vs. Objects-first
Of the texts surveyed, 18 adopt the Fundamentals-first
approach, 7 are Objects-first and 5 are GUI-first,
suggesting that Fundamentals-first is most likely to be
adopted. The books have been divided into the three
categories and investigated further. Figure 1 illustrates
the two most popular approaches – Fundamentals-first
and Objects-first – and their accompanying ordering
of topics. The topics can be divided into five groups:
Concepts of Object-oriented Programming, Primitive
Topics (Comments and Output), Advanced (Input),
Procedural Constructs (Assignment, Expressions, If-
Statements, For-Loops and Arrays) and Object-
Orientation (Classes and Methods).

Figure 1. Fundamentals-first and Objects-first
approaches are represented by the left and right flow

of events respectively.

Concepts of Object-Oriented Programming
A common feature revealed amongst these different
categories of book was that the most of them (86%)
introduced Concepts of Object-Oriented Programming
at the very beginning. This is a good indication that
the students should commence with learning the basic
concepts before any detailed fundamentals of
programming and object-oriented programming [2].
Meisalo et al. [13] performed a study (referred to as
Study A below) on how difficult students found the
various Java topics and none of the students surveyed
found the following introductory topics difficult:
Algorithms and Basics of Java. These Object-Oriented
Concepts include the notion of identifying “things”
(Objects), creating them as instances of “categories of
things” (Classes), setting up operations for them

(Methods) and representing information about them
(Attributes) [14].

Primitive (Comments and Output), Advanced (Input)
Following the Concepts of Object-Oriented
Programming, the topics chosen by most of the
authors were Comments and Output, whereas Input is
introduced last. Comments and Output require easier-
to-attain low-level skills since commenting only
requires factual knowledge, and outputting only
requires a single simple statement:
System.out.println()allowing many different
primitive data types in Java to be displayed.

However, input is much more complex, and there is a
collection of input methods which read in different
data types such as read(), readString(),
readDouble(), which read in bytes, strings and
doubles, respectively. Standard output is
comparatively straightforward whilst several
declarations and conversion methods are required to
set up to read numeric values for input, hence, novice
students often find this complex [7]. Input also
requires the student to be aware of more complex
topics such as packages, abstract classes, subclasses,
constructor parameters, creating and passing objects,
and handling exceptions. This is because the
java.io package must be imported; System.in
belongs to the abstract class InputStream; and in
order to input, an object must be created by supplying
System.in as a constructor parameter to a subclass
InputStreamReader; and then this object is
passed to another class called BufferedReader as
the keyboard input works best when it is buffered; as
well as ensuring all IOExceptions are caught [15].
Hong reports encountering problems whilst attempting
to teach Input in Java as an introductory programming
language, mainly due to the syntax and the vast
amount of complex details within it [16]. A study
performed by Sayers et al. [17] (referred to as Study
B below) shows that the students rated Input to be
much more difficult than Output. Given these reasons,
it has been decided that I/O should not be grouped
together as one topic since one is much more complex
than the other.

Procedural Constructs
After Concepts of OOP and Primitive Topics, 87% of
the books introduced the Procedural Constructs
followed by Object-Orientation (the Fundamentals-
first approach), whilst the remaining 13% progress to
Object-Orientation first before the Procedural
Constructs (using the Objects-first approach).
However, there is a common agreed ordering of
Procedural Constructs for both approaches, which was
revealed in the survey. 73% taught the same following
linear order of topics: Assignment, Expressions, If-
Statements, For-Loops and Arrays, as shown in Figure
2.

PROCEDURAL
CONSTRUCTS

OBJECT-
ORIENTATION

OBJECT-
ORIENTATION

PROCEDURAL
CONSTRUCTS

ADVANCED

CONCEPTS OF
OOP & PRIMITIVE

TOPICS

Figure 2. The Most Common Ordering of Procedural Constructs.

This ordering of topics has been supported by both
Studies A and B. Study A shows the 24% of students
surveyed found Variables difficult, a result mirrored
by Study B, which reported that the students surveyed
considered Variables & Data Types to be the easiest
topic. Furthermore, Smolarski [2] suggests that the
topic Data Types is simple enough to be covered early
on in an introductory programming course.

The use of both an If-Statement and a For-Loop
involves conditions, which are formed by Arithmetic
Operators. These conditions are pre-determined by
assigned variable values with a specific type declared.
Assignments are also used by Arrays to store values.
This suggests that Assignment and Expressions are
prerequisite topics for If-Statements, For-Loops and
Arrays. In addition, an If-Statement usually has one or
more conditions which need to be satisfied; whereas a
For-Loop is more complex, having a start and a stop
condition and an update-part, which suggests that a
For-Loop is more difficult than an If-Statement. Study
B also indicates that the students rated If-Statements to
be easier than For-Loops. However, in Study A, 48%
of the students considered If-Statements and Logical
Operations to be a difficult topic whereas only 24%
had the same opinion regarding Loops. A possible
reason that these students considered If-Statements to
be a more complex topic than Loops may be due to the
fact that their If-Statements topic included relatively
more complex Logical Operations concepts such as
AND, OR, XOR and NOT.

Both Studies A and B highlighted that the majority of
the students surveyed found Arrays the most difficult
topic out of the Procedural Constructs; in Study A, the
highest percentage of students (72%) found Arrays the
most difficult. Jenkins [18] emphasized the fact that
students always seem to experience difficulties with
Arrays; it was suggested that one of the possible
reasons may be because they were described as
“Variables that can hold multiple values”, which is
not very self-explanatory.

Object-Orientation (Classes and Methods)
In the Objects-first approach, Object-Orientation
precedes Procedural Constructs; whereas it is the
reverse order in the Fundamentals-first approach.
Classes also precedes Methods in the majority of the
books which adopt the Objects-First approach;
whereas this order was taken in only 60% of the books
which adopt the Fundamentals-first and the GUI-first
approaches and it was the reverse order in the
remaining 40%. In Study A, 60% rated Methods to be
difficult, the second highest percentage after Arrays
(72%); whereas out of all the topics surveyed in Study
B, students found Methods to be the most difficult,

and more difficult than Arrays. These contradictory
results found in the two studies may mean that there is
no definite difficulty ordering between Methods and
Arrays; however because Classes contains a special
kind of Method called a Constructor, arguments can
be made for teaching Methods either before or after
Classes.

4. STUDENT QUESTIONNAIRE

The primary objective of the questionnaire was to
compare the professionals’ apparent ordering of topics
in the published books with students’ perceptions of
the difficulty levels of these topics. Undergraduate
students of various computing courses and years of
study were given questionnaires to complete. The
students were asked to provide details of their course,
gender, age, what computing background they had,
their understanding of basic concepts and
programming prior to entering university, what
programming and scripting languages they have
studied and an indication of their perceived difficulty
levels for each of the nine topics surveyed (on a scale
of 1 to 10, where 1 is the least difficult and 10 is the
most difficult).

Difficulty of Learning Java as the First
Programming Language
Preliminary results from the survey indicate that some
students who have studied an advanced computer-
related subject at school, and have learnt a visual or
procedural programming language before they entered
university, rated the Java topics to be easier than those
students who do not have previous understanding of
basic concepts of programming and/or programming
experience.

Hadjerrouit [12] remarks that Java is difficult for
students to learn as their first programming language
because the object-oriented paradigm is presented
much more abstractly than the procedural one. This is
also supported by Weisert [19] and Burton et al. [6]
who argue that procedural programming must be
undertaken first for students with no programming
experience because many concepts which exist in both
procedural and object-oriented paradigms such as
algorithms, interconnected components and clean
interfaces are much easier to understand if written
procedurally. In contrast, critics argue that novices are
able to learn the object-oriented approach much more
easily than procedurally-experienced programmers, as
the transition between the two paradigms is a barrier
[12]. However, there is no evidence from the
preliminary results of the survey to indicate that
students who have studied procedural languages
previously to rate the Java topics to be more difficult
than the students who have not studied them.

ASSIGNMENT EXPRESSIONS IF-STATEMENTS FOR-LOOPS ARRAY

0

10

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

S

T
U

D
E

N
T

S

(

%

)

C o mme n t s A s s i g n me n t E x p r e s s i o n s I f -

St a t e me n t s

F o r - L o o p s A r r a y s C l a s s e s M e t h o d s I / O

TOP I CS

V ery Easy Easy Average Hard V ery Hard

0

1

2

3

4

5

6

L

E

V

E

L

Comments Assi gnments Expr essi ons I f -Statements I / O For -Loops Ar r ays Methods Cl asses

T O P I C S

Students' Perceived Difficulty of the Java Topics
Figure 3 shows the students' perceived difficulty levels
of the various Java topics, and figure 4 shows the
arithmetic mean of each Java topic, calculated from

each of the students' ratings of each of the topic on the
scale of 1 to 10 (where 1 is easy and 10 is hard). This
mean is sorted to show a linear order of the students'
perceived difficulty levels.

Figure 3. Students' Ratings on the Java Topics.

Figure 4. The Mean of Students' Perceived Difficulty Levels.

As shown in Figures 3 and 4, Classes were perceived
to be the most difficult topic. It seems that the
Fundamentals-first approach is a more encouraging
teaching approach for the students as it starts off with
the basics first and increase difficulty gradually
towards Classes. Study A also revealed that 13% of
the students enrolled on a first year computer science
distance learning course had discontinued their
studies, because they found the exercises or the theory
too difficult or had failed their retakes. The
Fundamentals-first approach will motivate students to
pursue their course further if they are faced with easier
topics to begin with and their confidence can be built
up in this way.

The students’ perception of the order of difficulty of
the Java topics is consistent with the topic ordering in
the Fundamentals-first Java textbooks surveyed.
Comments are perceived to be the least difficult which
suggests that these should be taught first. The
perceived difficulty levels of Assignment, Expressions
and If-Statements are the similar, suggesting there

may not be a definite difficulty ordering between
them. However, Expressions should be preceded by If-
Statements because of the prerequisite requirement.
Arrays are perceived to be more difficult than For-
Loops which are perceived to be more difficult than
If-Statements, hence achieving the consistency with
the results gained from the literature survey.

Methods and Classes are perceived to be the two most
difficult topics with Classes to be the most difficult of
all, suggesting that Classes should be taught last. The
perceived difficulty of I/O is not consistent with the
results obtained from the literature survey possibly
because Input and Output were grouped together
therefore students were rating these two topics as a
whole. The reason that the students might not perceive
Input to be very difficult might be due to the way that
they were taught. One of the teaching approaches for
Input is to provide the students with a class or
template with all the necessary declarations to set up
the InputStreamReader and the BufferedReader so that
the students are only expected to ‘fill in the gaps’ [7].

5. CONCLUSION

We have discussed the advantages and disadvantages
of the Fundamentals-first and Objects-first approaches
for teaching Java, and suggest that Objects-first
approach is a more challenging strategy both for the
teachers to teach and for the students to learn. The
Fundamentals-first approach, which is consistent with
the classic instruction methodology for teaching
introductory programming and the levels of cognitive
ability categorized in Bloom's Taxonomy, is arguably
more favorable from the student's point of view,
especially for students learning programming for the
first time. We have considered the possible order in
which topics in introductory Java programming might
be presented, assuming a Fundamentals-first approach.
A survey of Java textbooks, supported by a survey of
students’ perceptions of the difficulty of various
topics, has yielded an ordering of those topics, from
the least difficult to the most difficult, as follows:
Comments, Output, Assignment, Expressions, If-
Statements, For-Loops, Arrays, Methods, Classes and
Input.

6. REFERENCES

[1] S. Cooper, W. Dann and R. Pausch, "Teaching

Objects First in Introductory Computer Science",
SIGCSE Technical Symposium on Computer
Science Education, 2003, pp. 191-195.

[2] D.C. Smolarski, "A First Course in Computer
Science: Languages and Goals", University of
Debrecen, 2003.

[3] D. Callear, "Teaching Programming: Some
Lessons from Prolog", LTSN Centre for
Information and Computer Science, 2000.

[4] M. Joy, B. Muzykantskii, S. Rawles and M.
Evans, "An Infrastructure for Web-based
Computer-Assisted Learning". ACM Journal on
Educational Resources in Computing, Vol. 2,
Issue 4, 2002, pp.1-19.

[5] I. Arroyo, R. Conejo, E. Guzman and B.P. Woolf,
"An Adaptive Web-based Component for
Cognitive Ability Estimation", University of
Massachusetts, 2001.

[6] P.J. Burton and R.E. Bruhn, "Teaching
Programming in the OOP Era". ACM SIGCSE
Bulletin, Vol. 35, 2003, pp.111-115.

[7] J. Lewis, "Myths about Object-Orientation and
Its Pedagogy", SIGCSE Technical Symposium
on Computer science education, 2000, pp. 245-
249.

[8] I. Sanders and C. Mueller, "A Fundamentals-
based Curriculum for First Year Computer
Science", SIGCSE Technical Symposium on
Computer Science Education, 2000, pp. 227-
231.

[9] L.W. Anderson et al, A Taxonomy for
Learning, Teaching, and Assessing - A
Revision of Bloom's Taxonomy of Educational
Objectives, Addison Wesley Longman, Inc.,
2001.

[10] Rick Decker and Stuart Hirshfield,
Programming.Java - An Introduction to
Programming Using Java, Brooks/Cole, 2000.

[11] T.E. Gibbons, "Using Graphics in the First Year
of Programming with C++", College of St.
Scholastica, 2002.

[12] S. Hadjerrouit, "Java as First Programming
Language: A Critical Evaluation". ACM
SIGCSE Bulletin, Vol. 30,1998, pp.43-47.

[13] V. Meisalo, S. Torvinen, J. Suhonen and E.
Sutinen, "Formative Evaluation Scheme for a
Web-based Course Design", Innovation and
Technology in Computer Science Education,
2002, pp. 130-134.

[14] Roger Garside and John Mariani, Java: First
Contact, Course Technology, 1998.

[15] Judy Bishop, Java Gently Programming
Principles Explained, Addison Wesley, 1998.

[16] J. Hong, "The Use of Java as an Introductory
Programming Language", ACM Electronic
Publication,http://www.acm.org/crossroads/xrds
4-4/introjava.html, 1998.

[17] H.M. Sayers, M.A. Nicell and S.J. Hagan,
"Teaching Java Programming: Determining the
Needs of First Year Students", LTSN Centre for
Information and Computer Science, 2003, pp.
106-110.

[18] T. Jenkins, "A Participative Approach to
Teaching Programming", Integrating
Technology into Computer Science Education,
1998, pp. 125-129.

[19] C. Weisert, "Learning to Program: It Starts with
Procedural", Information Disciplines, Inc.,
1997.

