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ABSTRACT

Context. TRACE 171 A observations of transverse loop oscillations on May 13, 2001 have been studied by De Moortel & Brady

(2007). They found hints of 3 periodicities present in this event.

Aims. The aim of this article is to improve the analysis, and measure the periodicities more accurately in order to do coronal seismol-

ogy.

Methods. We create multiple (x, )-slices across the loop, and determine the oscillatory parameters within those slices. We then use
statistical methods to reduce the errors on the measured oscillations parameters.

Results. We find two populations with a clearly distinct period. The population at the loop top has a period of 895 + 2 s, while the
population in the loop leg has a period of 452 + 1 s. The fact that the ratio of these two periods is roughly 2 and the geometry of the
problem suggests that two harmonics are observed. In the residues, we confirm the presence of a 3rd harmonic with period 309 + 15 s
using two separate data analysis techniques. The three periods are then used to do a seismological estimate of the loop expansion and

the density scale height.
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1. Introduction

Transverse loop oscillations were first observed by the
Transition Region And Coronal Explorer (TRACE)
(Aschwanden et al. 1999; Nakariakov et al. 1999). They
are manifested as large amplitude oscillations of active region
loops with a horizontal polarisation, usually after the occurance
of a coronal mass ejection (CME) (Nakariakov et al. 2009).
Recently, small amplitude transverse coronal loop oscilla-
tions have been observed using the Coronal Multi-channel
Polarimeter (CoMP) instrument (Tomczyk et al. 2007), which
were interpreted as running kink waves by Van Doorsselaere
et al. (2008a). The detection of these small amplitude waves
was confirmed with observations using the EUV Imaging
Spectrometer (EIS) onboard Hinode (Van Doorsselaere et al.
2008b). With the use of STEREO, the 3D appearance and
physics of these waves can now be assessed (Verwichte et al.
2009).

The transverse loop oscillations are perhaps the most stud-
ied oscillations in the solar corona. They are the prime target
for theoretical (e.g. Ruderman & Roberts 2002; Andries et al.
2005b; Van Doorsselaere et al. 2008c, 2009) and numerical (e.g.
Arregui et al. 2005; Terradas et al. 2006a,b, 2008) modelling ef-
forts and doing coronal seismology (e.g. Nakariakov & Ofman
2001; Andries et al. 2005a; Arregui et al. 2007). The current ob-
servational sample size of such oscillations is very limited, with
up to 30 known events (Aschwanden et al. 2002). Because of
the high interest, and the limited sample size it is necessary to
increase the number of known events, and analyse them with
standard techniques.

A few of the events reported in Aschwanden et al. (2002)
have been re-analysed with new data analysis techniques:
Verwichte et al. (2004); Van Doorsselaecre et al. (2007);
De Moortel & Brady (2007). In all of these events, higher
harmonics were detected, which were used to determine the

vertical structuring in the corona (see Andries et al. 2009, for
areview).

In this work, we will re-analyse the loop oscillation studied
in De Moortel & Brady (2007). This event is unique, because
the loop oscillation can visually be identified as the 2nd har-
monic. This is in contrast with other observational examples,
where the fundamental mode dominates the oscillatory signa-
ture. The analysis of this unique event could shed a light on the
excitation mechanism for these oscillations, which is not well
understood.

One popular belief is that these large amplitude kink oscil-
lations are excited by a blast wave emitted by the nearby flare.
Such a blast wave has been modelled and proves rather ineffi-
cient in exciting the standing oscillation (Terradas et al. 2007).
Additionally, this scenario does not explain several key observa-
tional features: (1) why is the fundamental mode predominantly
excited? (2) What causes the selectivity of the oscillations, so
that only a few loops are oscillating? Recently, it has been sug-
gested that vortex shedding caused by an upflow from a CME
around the loop could play a role (Nakariakov et al. 2009).

We will analyse the oscillation using the technique employed
in Van Doorsselaere et al. (2007). Instead of determining the dis-
placement in a few slices across the loop, we will use all the
available information. We will determine the displacements in
many slices. This allows to push down the errors on the mea-
surements of the periods, when averaging over the many slits
using statistical methods.

Additionally, re-analysing this event allows us to compare
the outcomes of different data analysis techniques.

2. Data analysis

We study TRACE (Handy et al. 1999) 171 A data from 02:50 UT
until 04:30 UT on the 13th of May 2001. An overview of the
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Fig. 1. Overview of the observed loop oscillation. The horizontal and
vertical axis are given in pixels (TRACE pixels are .5”). The position
of the flare is shown with an “F”. The studied loop is enclosed in a
box of solid white lines. The extent of the analysed segment of the loop
(160 px <y < 292 px) is indicated with white dash-dotted lines. Four
case studies y = 199,226,264,287 px are marked with purple, blue,
green and yellow dash-dotted lines, respectively.

event is given in Fig. 1. In an animation, it can be observed that
a flare disrupts the observed active region. The location of the
flare is indicated with an “F” in Fig. 1. This flare perturbs the
loops in the left hand corner of the image, and oscillations are
excited. The loop that will be studied in this article is enclosed
in rectangular box of solid white lines. The same loop was also
studied by De Moortel & Brady (2007).

From the previous study and the time series, it can be estab-
lished that higher harmonics are present in the loop oscillation.
The part of the loop below the bottom dashed line in Fig. 1 os-
cillates in anti-phase with the part above that line. This clearly
shows that the loop oscillation is mainly the second harmonic
kink mode, as this mode has a velocity node at the loop top.

Other interpretations of the oscillatory phenomenon cannot
be excluded. The observed oscillation could be caused by peri-
odic overlapping of optically thin threads. However, such a sce-
nario seems rather unlikely, because the strands would need to be
arranged and moving in a specific way (i.e. strands periodically
compressing or overlapping) in order to reproduce an apparent
period.

The data is pre-processed using trace_prep with the de-
fault options. During the observation the field of view is changed
a few times. We have removed this jitter by moving the individ-
ual frames by the difference in X and Y alignment and a refer-
ence point. This is done by looking at the xcen and ycen po-
sitions included in the observations header. Only data positions
present in all frames are retained for further analysis. We have
not corrected the observations for the solar rotation.

Furthermore, the images are rotated over an angle of 18° in
the clockwise direction. This ensures that the line between the
loop footpoints is co-aligned with the new y-axis. The main aim
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of this rotation is to have the transverse displacement of the os-
cillation mainly in the x-direction.

To analyse the loop oscillation, the procedure presented in
Van Doorsselaere et al. (2007) is followed. The loop oscillation
is traced out in multiple (x,f)-slices perpendicular to the loop
axes and parallel to the transverse motion. This is done by using
a semi-automated method for each frame and slice. The user in-
puts a manual approximation for the position of the loop. This
input is taken as the centre of a fitting window in the slice of
20 pixels wide. A Gaussian curve is fitted to the intensity profile
across the loop in the slit. The centroid of the Gaussian is used as
the position of the loop. This is repeated for many slices. The ex-
tent of the loop covered with slices is indicated with horizontal,
white, dash-dotted lines in Fig. 1.

For each (x, r)-slice, the tracing of the loop results in the
transverse position of the loop as a function of time (x,, t,,). Four
examples of such a traced out loop are shown in Fig. 2, at the
positions indicated with coloured dash-dotted lines in Fig. 1.

To find the oscillation parameters, a Monte-Carlo simulation
is performed. Gaussian noise with a standard deviation of 1 px
is added to the measured data points. After that, the noisy signal
is fitted with a damped sine wave:

2nt, ta
Xy :Asin(%+¢)exp(——)+B+Ctn, @))
T

where A is the amplitude of the wave, P the period, ¢ the phase,
7 the damping time, B the average x-position, and C the trend of
the loop motion.

To fit the data, we use the fitting routine mp£it (Markwardt
2009), which uses a Levenberg-Marquardt least-squares fit. It is
well known that this fitting routine is very sensitive to the initial
estimates. For the period we use 500 s as initial value, and restrict
it between 0 s and 2000 s. When the fitting results in a boundary
value, we reject the fit.

This fitting procedure is performed 1000 times for different
noise. For each fitting procedure, a different value of the fitting
parameters is obtained, which will result in an ensemble of 1000
values for e.g. the period. The mean of this ensemble is then
taken as the best fitting period of the data, and the standard devi-
ation is taken as the error in the period. This gives us a confident
estimate of the oscillation parameters, and their respective er-
rors.

The fitted curves are displayed in Fig. 3, for the four cases
indicated with dash-dotted lines in Fig. 1 and shown in Fig. 2. It
is clear that the fitting method returns satisfactory fits. The only
exception is the bad fit for y = 287 px (bottom right panel in
Fig. 3), for which the fitting function (Eq. (1)) does not fit the
data for any choice of the parameters.

3. Results

The results of the curve fitting to the data are presented in Fig. 4,
where we plot the relevant fitting parameters and their errors as
a function of the slit number y.

First we concentrate on the period (shown in the top right
panel of Fig. 4). It is clearly visible that two values for the pe-
riod are obtained. In the region 170 px < y < 190 px, a period
of the order of 900 s is measured. This region corresponds to the
apparent loop top. In the rest of the loop, a different period is
measured: approximately 500 s. We have coloured the oscilla-
tion parameter measurements according to value of the period,;
high period measurements are shown with a red *, and the lower
period measurements are shown with a green X.
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Fig. 2. (x, t)-slices at 4 positions in the loop: y = 199 px (purple dash-dotted line in Fig. 1), y = 226 px (blue dash-dotted line in Fig. 1), y = 264 px
(green dash-dotted line in Fig. 1), y = 287 px (yellow dash-dotted line in Fig. 1). The collected points (x,, #,) are overplotted with white crosses.
The vertical axis is time (seconds), while the horizontal axis is TRACE pixels.
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Fig. 3. Fitting curves for the oscillations at the positions shown in Fig. 1 (also shown in Fig. 2). Top left: y = 199 px (purple dash-dotted line in
Fig. 1), top right: y = 226 px (blue dash-dotted line in Fig. 1), bottom left: y = 264 px (green dash-dotted line in Fig. 1), bottom right: y = 287 px
(yellow dash-dotted line in Fig. 1). Original data points are shown with a cross (same as in Fig. 2), and the fitted curves are overplotted with a solid

line.

The magnitude and location of the two measured periods are
indicative of the presence of the fundamental mode and the first
overtone. The ratio of the periods is approximately two. The first
overtone is observed in the loop legs. The fundamental mode is
observed near the loop top, and lower down the loop legs, where
it has a higher amplitude than the first overtone. As mentioned
before, we use a constant initial value (500 s) for the period dur-
ing the fitting. In the loop leg, the fitting routine converges to
the first overtone, with a period near the initial value. In the loop
top, the fitting routine converges to a much higher period, which
means that the lower period is absent near the loop top. The fact
that the long period is not detected in the loop leg is caused by
the selection of the initial value for the fitting routine. If a higher
initial period were chosen, the long period would come out in
the loop leg as well.

We use the method mentioned in Van Doorsselaere et al.
(2007) to calculate the value of the two periods (their Egs. (A.1)
and (A.2)). For the higher period we obtain P; = 895 + 2 s, and
for the lower period P, = 452 + 1 s. These values of the mea-
sured error contain all physical effects. The only effect not in-
cluded is the shape of the fitting function (Eq. (1)). If a different
form would be chosen (e.g. no damping term, time-dependent
period), different periods and uncertainties would be obtained.

The ratio of these periods is P1/P, = 1.980 +0.002. Andries
et al. (2005a) showed that the ratio of the periods depends upon
the vertical density stratification. The stronger the stratification,
the larger the deviation of the ratio from two. On the other hand,
the magnetic expansion acts in the opposite direction (Verth &
Erdélyi 2008): the larger the expansion, the higher the period
ratio.
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Fig. 4. The results for the fitting parameters in Eq. (1) for each slit (top left: A, top right: P, bottom left: T, bottom right: C). The results are coloured
by their value of the period: red stars have periods over 650 s, while green crosses have a period under 650 s.

The length of this loop has been estimated as 228 Mm by
De Moortel & Brady (2007). This means that the loop extends
in the corona up to a height that is comparable to the gravita-
tional density scale height (approximately 50 Mm for the ob-
served wavelength). This tells us that the density variation along
the loop can not be neglected. Since the period ratio is almost
2, however, we can say that the magnetic field expansion will be
strong enough to counteract the density stratification. There is
no observational evidence of the loop expansion in this data-set.

The damping times are measured to be 7; = 521 + 8 s and
7, = 473 £ 6 s. These damping times are very low compared to
the period. This means that the values for the period are mainly
determined by the data points at the start of the time series.

From the diagrams with the results for the amplitude (Fig. 4,
top left), it can be seen that the red points have a higher ampli-
tude around the loop top (160 px < y < 200 px), which then
drops off further down the loop leg (y > 260 px). This amplitude
profile is consistent with the fundamental mode. Halfway up the
loop leg (200 px < y < 260 px), the second harmonic is discov-
ered, even though it has a lower amplitude than the fundamental
mode. The fitting procedure converges to this period, because of
the choice of the initial values.

We will now search for periodicities in the residues. The
residues are obtained by subtracting the fitted curve (solid line
in Fig. 3) from the original data points (crosses in Fig. 3). The
same fitting procedure as before is used: Gaussian noise is added

Table 1. The oscillation parameters for the fits to the residue.

Slit No. (px) A (px) P (s) 7 (S)
199 09+03 288+24 1300 + 700
226 3.+4. 248 £92 375+ 1000
264 0.7+£1.6 269+80 1200 + 1000
287 2.7+0.7 328+20 600 + 600

to the data, and the fitting function (Eq. (1)) is used. This is re-
peated 1000 times, to yield average fitting parameters and their
standard deviations. The results can be found in Table 1, and the
residue together with the fitting function is shown in Fig. 5. The
displayed fits seem rather bad, especially in the top and bottom
left panels. However, the period which can be visually identified
in the data is captured quite well in the first half of the time se-
ries. This is particularly the case for the fits in the top left and
bottom right panel. In the later half of the observation the fits
deteriorate.

Table 1 shows that the fitted periods are all in the same range.
If we assume that these periods are a sign of the same oscilla-
tion, we can again use the statistical average of the four mea-
surements. We obtain P3 = 309 + 15 s. As period ratio we obtain
P3/P; = 2.90 = 0.14. This period ratio is very close to 3. This
suggests that the observed oscillation in the residue is a third
harmonic.
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Fig. 5. Fitting curves for the residues at the positions shown in Fig. 1 (also shown in Fig. 2). Top left: y = 199 px (purple dash-dotted line in Fig. 1),
top right: y = 226 px (blue dash-dotted line in Fig. 1), bottom left: y = 264 px (green dash-dotted line in Fig. 1), bottom right: y = 287 px (yellow
dash-dotted line in Fig. 1). The residues are shown with crosses, and the fitted curves are overplotted with a solid line.

It has been suggested (Verth 2007) that using both ratios
P,/Py and P3/P; it is possible to determine both the density
scale height and the magnetic field variation along the loop.
However, quantitative models were not available yet.

Additional indications for the three periods may be found
in Scargle periodograms. In the left panel of Fig. 6 we display
the Scargle periodogram for the oscillation signal in pixel 199
(purple dash-dotted line in Fig. 1). A broad peak is visible, with
pronounced side lobes. To establish that the three spectral peaks
are significant, we use a filtration method. We take the highest
peak in the left panel, and filter the data for the wave power in
that peak (with a spectral window indicated by a dashed line).
The filtered signal is then subtracted from the data. The residue
is then used to construct the periodogram shown in the middle
panel of Fig. 6. Again we use the same filtration method to de-
cide that all three peaks are statistically meaningful.

To construct the periodograms, we interpolated the (x,, f,)-
data at pixel 199 to an evenly spaced time sequence. The reason
for this is that we use a Fourier transform based frequency filtra-
tion method.

From the periodogram, we find periods of P} = 700 s (range
550 s-83 s), P}, = 460 s (range 370 s-550 s) and P} = 310 s
(range 290 s—340 s). These periods have large error bars associ-
ated with the width of the spectral peak. Even though the error
ranges on these spectral measurements are large, they do not ac-
commodate the values for P; measured with the fitting method.
This is not unexpected. The results from the periodograms in fact
represent a single measurement in the top right panel of Fig. 4. In
that figure, other measurements with large error bars, similar to
the ones in the periodogram, are present, which do not necessar-
ily accommodate the eventual ensemble average for the periods
(P], Pz, and P’;)

The fact that the periods from the fitting are recovered with
an entirely unrelated technique (periodograms) is a good indica-
tion that they are indeed present in the data. This confirmation is

Table 2. Results for the periods obtained by De Moortel & Brady
(2007).

Upper 1 1806 577 301
Upper2 1620 606 295
Central 2484 672 346
Lower 1038 660 250

especially needed for the third period, which was detected in the
residuals.

4. Discussion
4.1. Comparison with De Moortel & Brady (2007)

As discussed before, the studied loop oscillation has been anal-
ysed before by De Moortel & Brady (2007). In their work,
De Moortel & Brady restrict their analysis to 4 slits across the
loop. Two above the perceived node in the displacement, one
below and one around the node. As in this work, they manually
trace out the position of the loop in an (x, 7)-diagram. After that,
they fit the (x,,f,) points with a fitting function. In contrast to
the present work, the fitting function contains 3 harmonics right
from the start.

With this method, De Moortel & Brady find 3 periods in the
data, which are given in Table 2 for the different slits they anal-
ysed. They interpret the smaller two periods (P; and Py;) as the
second harmonic and a higher overtone (possibly the 3rd, 4th or
5th harmonic). We can cross-identify the second harmonic pe-
riods, P, in our measurements and P;; in the measurements of
De Moortel & Brady (2007). From such a comparison, it is clear
that there is a mismatch in the period of about 30%. The reason
for this could be the same as the reason for the discrepancy be-
tween the fitting method P, and the periodogram method P, (see
previous section), i.e. that the P;-value is only a single measure-
ment of the ensemble used to calculate P;.
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dotted lines show the interval where P;/P, lies between the observa-
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Our measurement of P3 agrees very well with the measure-
ment of P;; by De Moortel & Brady (2007). Due to the magni-
tude of the period, and how it compares with the other periods,
we have identified this period as the 3rd harmonic.

The value for P, differs more than 50% with P;. The reason
for this is unknown. A possible cause is that the period is compa-
rable to the length of the time interval. This means we can only
measure one or two periods, and introduces large error bars on
this period.

4.2. Coronal seismology

As mentioned before, it has been suggested that the detection
of three periods may be used to determine the vertical coronal
structuring and disentangle the effect of the density stratification
and the magnetic field stratification. In this subsection, we will
do an attempt to estimate both the loop expansion and the density
scale height, using the measured values for P,/P; and P3/P;.
As a theoretical model, we use the model by Ruderman et al.
(2008), more specifically their equations (67) and (70, corrected
for the typo). This model considers a monolithic cylinder as
a model for the oscillating loop. However, the observed loop
seems to be multi-stranded, with different strands having differ-
ent phases. Numerically a multi-stranded loop has been consid-
ered by Terradas et al. (2008), where they conclude that the loop
still shows the same behaviour as a monolithic structure. In the

presence of a collection of loops, models were made by Luna
et al. (2008); Van Doorsselaere et al. (2008c); Luna et al. (2009)
obtaining similar results.

The current model assumes a exponential stratification of
the density with a density scale height H. Additionally, it as-
sumes the thin tube limit, i.e. that the small radius of the loop
is small compared to the loop length. The model allows an ex-
pansion of the loop with height, described by the parameter
A = Riop/Rigotpoine Which is assumed to be greater than 1.

We use the NAG library (d02kef) to numerically solve the
Sturm-Liouville problem as described in their paper (Ruderman
et al. 2008), for the first three eigenvalues. We repeat this for a
parameter range of 1 <A <3and0 < L/nH <5.

We compute the period ratios over the entire parameter do-
main, and determine where the numerical period ratios equal the
observed period ratios. The result can be found as the thick solid
line (P,/P; matches) and thick dashed line (P53/P; matches) in
Fig. 7. The two observational period ratios can only be repro-
duced (in this model) when the two lines cross, i.e. for 4 = 2.8
and L/7nH = 4.5 (or H = 16 Mm). This scale height is extremely
small when compared to the commonly believed value of 50 Mm
for this temperature range. Moreover, in the observations, no sig-
nificant expansion of the loop is observed, especially not a factor
of (almost) 3.

When the uncertainty estimates on the period ratios are taken
into account, a much better picture is obtained. The region of the
parameter space where a period ratio P3/P; is obtained within
the observational uncertainty, is outlined with dotted lines. The
same is done for P,/P;, but the error on that measurement is
so small that they visually coincide with the thick solid line.
The region where both these uncertainty intervals overlap gives
a range of parameters with models that reproduce the observed
period ratios. Unfortunately, in this case, the regions overlap ev-
erywhere within the dotted lines. This means that the simulta-
neous measurement of three periods does not help to constrain
equilibrium loop parameters in this case, because the uncertainty
on the ratio P3/P; is too high.

Note that a crossing for 4 < 0 is also possible. We have
not studied this, because it is unlikely to have loops that have a
smaller radius at the loop top.

We have proven that the measurement of three periods may
in theory be used to obtain seismological estimates of the density
and magnetic field stratification. From our results, it is clear that
the inversion problem is badly conditioned, and the moderate
uncertainties on the period ratios may lead to large ranges of
possible equilibrium loop parameters.

The fact that the equilibrium parameter solutions can actu-
ally be found, shows that the current observation cannot invali-
date the theoretical model.
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5. Conclusions

We have re-analysed the TRACE observation of coronal loop
transverse kink mode oscillations on the 13th of May 2001.
Visually, it can be established that the loop is oscillating as the
second harmonic kink mode. This event was previously analysed
by De Moortel & Brady (2007). In that work, the authors use a
fitting method to find 3 periods, 2 of which they attribute to the
second harmonic and a higher harmonic.

We analyse the transverse displacement in many slits across
the loop. A Monte-Carlo simulation is used to measure the os-
cillation parameters of the displacement. For the period, we find
two distinct values: a period of P; = 895 = 2 s clustered around
the loop top, and a lower period P, = 452 + 1 s in the loop legs.
The location of detection of these periods lets us identify them
as the fundamental mode and the second harmonic.

After subtraction of the best fit, we find a third period in the
residue: P3 = 309+ 15 s, which we interpret as the 3rd harmonic.
The presence of the third period is confirmed in the Scargle pe-
riodogram. This is the first time a 3rd harmonic is detected with
confidence.

The values of the periods measured in this work do not agree
very well with the results of De Moortel & Brady (2007), but
this may be caused by statistical properties.

We have proven the validity of the proposed method to use
the periods of three kink mode harmonics to estimate the den-
sity and magnetic field stratification in the corona. We have ob-
tained an expansion factor 4 = 2.8 and a density scale height
H = 17 Mm. These values do not match the observational fea-
tures of the loop or the commonly believed value for the density
scale height. We have shown that the large uncertainties on the
period ratios allow for a wide range of equilibrium models, more
compatible with the observation.

Acknowledgements. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement No. 220555.

1491

References

Andries, J., Arregui, I., & Goossens, M. 2005a, ApJ, 624, L57

Andries, J., Goossens, M., Hollweg, J. V., Arregui, 1., & Van Doorsselaere, T.
2005b, A&A, 430, 1109

Andries, J., Van Doorsselaere, T., Roberts, B., et al. 2009, Space Sci. Rev.,
DOI: 10.1007/s11214-009-9561-2

Arregui, I., Van Doorsselaere, T., Andries, J., Goossens, M., & Kimpe, D. 2005,
A&A, 441, 361

Arregui, 1., Andries, J., Van Doorsselaere, T., Goossens, M., & Poedts, S. 2007,
A&A, 463, 333

Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999, ApJ,
520, 880

Aschwanden, M. J., De Pontieu, B., Schrijver, C. J., & Title, A. M. 2002,
Sol. Phys., 206, 99

De Moortel, 1., & Brady, C. S. 2007, ApJ, 664, 1210

Handy, B. N., Acton, L. W., Kankelborg, C. C., et al. 1999, Sol. Phys., 187, 229

Luna, M., Terradas, J., Oliver, R., & Ballester, J. L. 2008, ApJ, 676, 717

Luna, M., Terradas, J., Oliver, R., & Ballester, J. L. 2009, ApJ, 692, 1582

Markwardt, C. B. 2009, in ASP Conf. Ser., ed. D. A. Bohlender, D. Durand, &
P. Dowler, 411, 251

Nakariakov, V. M., & Ofman, L. 2001, A&A, 372, L53

Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B., & Davila, J. M. 1999,
Science, 285, 862

Nakariakov, V. M., Aschwanden, M. J., & Van Doorsselaere, T. 2009, A&A,
502, 661

Ruderman, M. S., & Roberts, B. 2002, ApJ, 577, 475

Ruderman, M. S., Verth, G., & Erdélyi, R. 2008, ApJ, 686, 694

Terradas, J., Oliver, R., & Ballester, J. L. 2006a, ApJ, 642, 533

Terradas, J., Oliver, R., & Ballester, J. L. 2006b, ApJ, 650, L91

Terradas, J., Andries, J., & Goossens, M. 2007, A&A, 469, 1135

Terradas, J., Arregui, 1., Oliver, R., et al. 2008, ApJ, 679, 1611

Tomcezyk, S., Mclntosh, S. W., Keil, S. L., et al. 2007, Science, 317, 1192

Van Doorsselaere, T., Nakariakov, V. M., & Verwichte, E. 2007, A&A, 473, 959

Van Doorsselaere, T., Nakariakov, V. M., & Verwichte, E. 2008a, ApJ, 676, L73

Van Doorsselaere, T., Nakariakov, V. M., Young, P. R., & Verwichte, E. 2008b,
A&A, 487, L17

Van Doorsselaere, T., Ruderman, M. S., & Robertson, D. 2008c, A&A, 485, 849

Van Doorsselaere, T., Verwichte, E., & Terradas, J. 2009, Space Sci. Rev.,
DOI: 10.1007/s11214-009-9530-9

Verth, G. 2007, Astron. Nachr., 328, 764

Verth, G., & Erdélyi, R. 2008, A&A, 486, 1015

Verwichte, E., Aschwanden, M. J., Van Doorsselaere, T., Foullon, C., &
Nakariakov, V. M. 2009, ApJ, 698, 397

Verwichte, E., Nakariakov, V. M., Ofman, L., & Deluca, E. E. 2004, Sol. Phys.,
223,77



	Introduction
	Data analysis
	Results
	Discussion
	Comparison with De Moortel & Brady (2007)
	Coronal seismology

	Conclusions
	References



