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ABSTRACT

We present time-resolved spectroscopy and photometry of SDSS J100658.40+233724.4, which we have discovered to be an eclipsing
cataclysmic variable with an orbital period of 0.18591324 days (267.71507 min). The observed velocity amplitude of the secondary
star is 276 ± 7 km s−1, which an irradiation correction reduces to 258 ± 12 km s−1. Doppler tomography of emission lines from the
infrared calcium triplet supports this measurement. We have modelled the light curve using the lcurve code and Markov Chain
Monte Carlo simulations, finding a mass ratio of 0.51 ± 0.08. From the velocity amplitude and the light curve analysis we find the
mass of the white dwarf to be 0.78±0.12 M� and the masses and radii of the secondary star to be 0.40±0.10 M� and 0.466±0.036 R�,
respectively. The secondary component is less dense than a normal main sequence star but its properties are in good agreement with
the expected values for a CV of this orbital period. By modelling the spectral energy distribution of the system we find a distance of
676 ± 40 pc and estimate a white dwarf effective temperature of 16 500 ± 2000 K.

Key words. stars: novae, cataclysmic variables – stars: dwarf novae – stars: binaries: eclipsing – stars: binaries: spectroscopic –
stars: white dwarfs – stars: individual: SDSS J100658.40+233724

1. Introduction

Cataclysmic variables (CVs) are interacting binary systems con-
taining a low-mass secondary star losing material to a white
dwarf primary star. The Sloan Digital Sky Survey (SDSS) has
spectroscopically identified 252 of these objects, 204 of which
are new discoveries (see Szkody et al. 2009, and references
therein). This sample of SDSS CVs is valuable because of its
large size and homogeneity (Gänsicke et al. 2009) and we are
undertaking a project to characterise its constituent objects (see
Gänsicke et al. 2006; Dillon et al. 2008; Southworth et al. 2006,
2008a,b, and references therein). In the course of this work
we have discovered that SDSS J100658.40+233724.4 (hereafter
SDSS J1006) shows deep eclipses which are identifiable both
spectroscopically and photometrically. The presence of eclipses
allows us to determine the basic physical properties of the sys-
tem, information which is difficult or impossible to obtain for
the great majority of CVs (Smith & Dhillon 1998; Knigge 2006;
Littlefair et al. 2006).

SDSS J1006 was discovered to be a CV by Szkody et al.
(2007) on the basis of an SDSS spectrum which showed strong
and wide Balmer emission lines. The continuum is blue at
bluer wavelengths but clearly shows the spectral features of the
M-type secondary star at redder wavelengths. SDSS J1006 is one
of a select bunch of long-period CVs in which the eclipse of the

� Spectra are only available in electronic form at the CDS via
anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/507/929

white dwarf (WD) is directly visible in the light curve. In this
work we present and analyse time-resolved spectroscopy and
photometry of SDSS J1006, from which we measure the masses
and radii of the WD and secondary star.

2. Observations and data reduction

2.1. Spectroscopy

Spectroscopic observations were obtained in 2008 January, us-
ing the ISIS double-beam spectrograph on the William Herschel
Telescope (WHT) at La Palma (Table 1). For the red arm we
used the R316R grating and Marconi CCD binned by factors
of 2 (spectral) and 3 (spatial), giving a wavelength range of
6115–8840 Å at a reciprocal dispersion of 1.85 Å per binned
pixel. For the blue arm we used the R600B grating and EEV12
CCD with the same binning factors as for the Marconi CCD, giv-
ing a wavelength coverage of 3575–5155Å at 0.88 Å per binned
pixel. From measurements of the full widths at half maximum of
arc-lamp and night-sky spectral emission lines, we find that this
gave resolutions of 3.5 Å (red arm) and 1.8 Å (blue arm).

Data reduction was undertaken by optimal extraction (Horne
1986) as implemented in the pamela1 code (Marsh 1989),
which also uses the starlink2 packages figaro and kappa;

1 pamela and molly were written by TRM and can be obtained from
http://www.warwick.ac.uk/go/trmarsh
2 The Starlink software and documentation can be obtained from
http://starlink.jach.hawaii.edu/
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Table 1. Log of the observations presented in this work. The mean magnitudes are calculated excluding observations taken during eclipse.

Date Start time End time Telescope and Optical Number of Exposure Mean
(UT) (UT) instrument element observations time (s) magnitude

2008 01 04 00:11 01:49 WHT / ISIS R600B R316R gratings 10 600
2008 01 04 04:43 05:50 WHT / ISIS R600B R316R gratings 7 600
2008 01 05 00:48 06:46 WHT / ISIS R600B R316R gratings 62 300
2008 02 01 02:31 05:41 NOT /ALFOSC Wide-V filter 197 10–60 18.8
2008 03 14 00:06 03:07 CAHA 2.2 m/CAFOS unfiltered 235 20–30 18.5
2008 03 14 20:55 02:24 CAHA 2.2 m/CAFOS unfiltered 199 20–30 19.0
2008 03 15 22:56 02:18 CAHA 2.2 m/CAFOS unfiltered 312 20–30 18.4
2008 12 21 03:17 05:17 NOT /ALFOSC Wide-V filter 362 10 18.7

Fig. 1. Flux-calibrated average spectrum of SDSS J1006. Data from the blue arm of ISIS are shown in the left panel, and from the red arm in the
right panel. The most prominent emission and absorption features are labelled.

further details can be found in Southworth et al. (2007a,b).
Copper-neon and copper-argon arc lamp exposures were taken
every hour during our observations and the wavelength calibra-
tion for each science exposure was linearly interpolated from
the two arc observations bracketing it. We removed the telluric
lines and flux-calibrated the target spectra using observations of
Feige 110, treating each night separately.

The averaged WHT spectra are shown in Fig. 1. Trailed
greyscale plots of the phase-binned spectra are shown in Fig. 2,
for the Hα, He i 6678 Å and Ca ii 8662 Å emission lines, and
Na i 8183 and 8194 Å absorption lines, and will be discussed in
Sect. 3.

2.2. Photometry

Time-series photometry of SDSS J1006 was obtained in ser-
vice mode using two telescopes equipped with imaging spectro-
graphs: the Nordic Optical Telescope (NOT) with ALFOSC, and
the Calar Alto (CAHA) 2.2 m telescope with CAFOS. For the
NOT observations we used the No. 92 filter, which has a wide-V
passband with points of half transmission at approximately 4400
and 7000 Å. The CAHA observations were made unfiltered to
maximise throughput. The CCDs were mostly binned and win-
dowed to reduce readout time, and short exposure times were
used to maximise the cadence of the observations.

The 2008 December observations obtained with the NOT
were reduced with the pipeline described by Southworth et al.
(2009a,b), which uses an idl implementation of daophot to
perform aperture photometry. The remaining photometric data
were reduced using the pipeline described by Gänsicke et al.
(2004), which performs bias and flat-field corrections within

midas3 and aperture photometry with the SExtractor pack-
age (Bertin & Arnouts 1996). Instrumental differential magni-
tudes were converted into V-band apparent magnitudes, using
the SDSS ugriz apparent magnitudes of several comparison stars
and the transformation equations given by Lupton4.

The light curves are plotted in Fig. 3 with the measured
eclipse midpoints indicated. It is apparent from this plot that the
depth of the eclipse is dependent on the wavelength of observa-
tion: the Calar Alto data were unfiltered, so are more affected by
the light of the secondary star and thus show shallower eclipses.

3. Analysis

3.1. Orbital ephemeris

Our first observations of SDSS J1006 were spectroscopic. Radial
velocities (RVs) measured from the emission lines (see be-
low) clearly showed anomalies due to three eclipses, on an
unambiguous period of 267.9 min. The resulting preliminary
ephemeris was sufficiently accurate for us to photometrically
observe eclipses, on which more precise period measurements
could be based.

For each of the four eclipses, a mirror-image of the light
curve was shifted until the two representations of the central
parts of the eclipse were in the best possible agreement. The
time defining the axis of reflection was taken as the midpoint
and uncertainties were estimated based on how far this could be

3 http://www.eso.org/projects/esomidas/
4 The ugriz−BVRI transformation equations are attributed to “Lupton
(2005)” but appear to be unpublished. They can be found at http://
www.sdss.org/dr6/algorithms/sdssUBVRITransform.html

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=1
http://www.eso.org/projects/esomidas/
http://www.sdss.org/dr6/algorithms/sdssUBVRITransform.html
http://www.sdss.org/dr6/algorithms/sdssUBVRITransform.html
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Fig. 2. Greyscale plot of the continuum-normalised and phase-binned trailed spectra of SDSS J1006. From left to right the panels show Hα,
He i 6678 Å and Ca ii 8662 Å emission, and Na i 8183 and 8194 Å absorption. The plots for He i and Ca ii have been smoothed in wavelength with
a Savitsky-Golay filter for display purposes.

Table 2. Times of eclipse for SDSS J1006 and the residuals with respect
to the linear ephemeris given in Sect. 3.1.

Cycle Time of eclipse (HJD) Residual (d)
–231 2 454 497.6338± 0.0010 0.0001
0 2 454 540.5802± 0.0010 0.0005
5 2 454 541.5091± 0.0005 −0.0002
1512 2 454 821.6805± 0.0005 0.0000

shifted before the agreement was clearly poorer. We have fitted
a linear ephemeris to these times of minimum light, finding

Min I(HJD) = 2454540.57968(40)+ 0.18591324(42)× E

where E is the cycle number and the parenthesised quanti-
ties indicate the uncertainty in the last digit of the preceding
number. This corresponds to an orbital period of 267.71507 ±
0.00060 min. The measured times of minimum light and the ob-
served minus calculated values are given in Table 2. All phases
in this work are calculated using this ephemeris.

3.2. Emission-line radial velocities

The spectrum of SDSS J1006 (Fig. 1) shows strong emission at
the wavelengths of the hydrogen Balmer lines and some helium
lines. These emission lines are produced by the accretion disc
which surrounds the WD, so variations in their velocity hold in-
formation on the motion of the WD itself. However, spectro-
scopic studies of CVs often show a phase difference between
the RV variation of emission lines and the orbital phases mea-
sured using other methods (Thorstensen 2000; Thoroughgood
et al. 2005; Unda-Sanzana et al. 2006; Steeghs et al. 2007). This
casts doubt on whether emission lines are good indicators of the
motion of WDs in CVs, and due to this we did not use emission-
line RVs in calculating the physical properties of SDSS J1006.

We measured RVs from the Hα emission, which is the
strongest emission line, using the double-Gaussian method
(Schneider & Young 1980) as implemented in molly. The
full width half maximum of the Gaussian functions was set to
300 km s−1, which is a good compromise between resolving
emission-line features and minimising the random noise in the
RV measurements. The separation of the two Gaussians, ξ, was
varied from 800 to 3000 km s−1 in jumps of 100 km s−1. For
each value of ξ a spectroscopic orbit was fitted to the measured

Table 3. Best-fitting spectroscopic orbits found using sbop.

Orbital period (d) 0.18591324 (fixed)
Eccentricity 0.0 (fixed)
Emission-line radial velocities:
Reference time (HJD) 2454497.6411 ± 0.0023
Velocity amplitude K1 ( km s−1) 127.1 ± 4.6
Systemic velocity ( km s−1) −20.2 ± 6.0
σrms ( km s−1) 20.1
Absorption-line radial velocities:
Reference time (HJD) 2454497.63381 (fixed)
Measured K2 ( km s−1) 276 ± 7
Corrected KMD ( km s−1) 258 ± 12
Systemic velocity ( km s−1) −20 ± 10
σrms ( km s−1) 20.8

The reference times are time of maximum negative rate of change of RV.
The uncertainties include both random and systematic contributions.

RVs using the sbop5 code, which we find gives reliable error
estimates for the optimised parameters (Southworth et al. 2005).
The orbital period was fixed at the ephemeris value (Sect. 3.1),
a circular orbit was assumed, and the phase zeropoint was in-
cluded as a fitted parameter. RVs between phases 0.9 and 0.1
were rejected as they are affected by the eclipse of the accretion
disc by the secondary star.

We have constructed a diagnostic diagram (Shafter 1983;
Shafter et al. 1986) for SDSS J1006 (Fig. 4), which shows that
the properties of the spectroscopic orbit change only slowly for
ξ = 1600–2200 km s−1, and that the lowest scatters in the residu-
als (σrms) occurs for ξ = 1700–2000 km s−1. The offset between
the orbital phase and the phase of greatest negative change in
the RVs is only about 0.04 for these separations, which indicates
that the emission-line RVs might trace the motion of the WD
with reasonable accurately. We have adopted the spectroscopic
orbit for ξ = 1800 km s−1, which gives the lowestσrms, and these
quantities are given in Table 3. The RVs and best fit are shown in
Fig. 5. Our error estimates include the standard errors given by
sbop, plus a contribution to account for variations between the
solutions for ξ = 1500–2200 km s−1 (where the σrms values are
the lowest). We also calculated a diagnostic diagram for the Hβ
emission line, which yielded similar results but a greater scatter
due to the weaker emission-line flux.

5 Spectroscopic Binary Orbit Program, written by Etzel, http://
mintaka.sdsu.edu/faculty/etzel/

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=2
http://mintaka.sdsu.edu/faculty/etzel/
http://mintaka.sdsu.edu/faculty/etzel/
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Fig. 3. Plot of the four light curves obtained covering eclipses of
SDSS J1006. The eclipse midpoints have been aligned on the panels.

3.3. Absorption-line radial velocities

The secondary component of SDSS J1006 is clearly visible in
our red-arm WHT/ISIS spectra, but very few features can be seen
by the naked eye to vary in velocity, due to the modest signal-
to-noise ratio of individual spectra. This velocity variation plays
a vital role in constraining the properties of the system, so we
have used two methods to tease out the absorption-line velocity
amplitude.

Firstly, the observed spectra were augmented with a set
of template M dwarf spectra from the SDSS, then velocity-
binned and subjected to a cross-correlation analysis. The orbital
ephemeris was fixed to the numbers in Sect. 3.1 after verify-
ing that this does not cause a significant change in the results.
The cross-correlation functions were examined interactively and
measured for velocity if they contained a clear peak from the
secondary star, and the resulting RVs were fitted with a circular
orbit using sbop. We did this for many different spectral regions
and template spectra, finding that the resulting velocity ampli-
tudes were always in the interval 270–282 km s−1. For illustra-
tion, in Fig. 5 we plot the absorption-line RVs found using an

Fig. 4. Diagnostic diagram showing the variation of the best-fitting
spectroscopic orbital parameters for RVs measured with a range of sep-
arations using the double Gaussian function. σrms denotes the scatter of
the RV measurements around the fitted orbit.

M4 spectral template and the full red-arm wavelength interval
(with the Hα and helium emission lines masked out).

The second method is designed to cope well with spectra of
a low signal-to-noise ratio, and to target the strongest spectral
features observed to come from the secondary star. Using the
mgfit routine in molly we fitted a double Gaussian function
plus spectroscopic orbit to the sodium doublet at 8183.3 and
8194.8 Å. All 79 spectra were fitted simultaneously, yielding a
direct measurement of the velocity amplitude: K2 = 275.8 ±
3.6 km s−1. Figure 2 shows the phase-binned and trailed spectra
of SDSS J1006 in the region of the Na doublet. We have been un-
able to completely remove the effects of telluric absorption from
our spectra, so have also performed fits with extra Gaussians
added to account for the residual absorption. We find that our
K2 measurement is not significantly affected.

Given the good agreement between the two methods, we
adopt a value of K2 = 276 ± 7 km s−1, where the error estimate
accounts for both the random errors and the variation in results
from different analysis techniques (Table 3). The two methods
agree well on the value of K2 but produce slightly discrepant
systemic velocity measurements. This is likely due to difficul-
ties in placing the continuum, due to the complex spectrum of the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=4
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Fig. 5. The measured RVs (circles) and the spectroscopic orbits fitted to
them (solid curves). The emission-line RVs (filled circles) were calcu-
lated using ξ = 1800 km s−1. The measurements at phases 0.9–0.1 are
affected by the eclipse of the accretion disc and were not included in
the fit. The absorption-line RVs (open circles) were obtained by cross-
correlation against an M4 template spectrum, and include only those
spectra which yielded a reliable cross-correlation function.

secondary star. We adopt a value of Vγ = −20±10 km s−1, which
encompasses most of the systemic velocities found during our
analysis. A better measurement of Vγ will require further data.

3.3.1. K-correction for the absorption-line velocities

Our measured K2 cannot be assumed to represent the motion of
the centre of mass of the secondary star, KMD, due to irradia-
tion of the inner hemisphere by the WD and accretion disc. The
irradiated surface has a lower vertical temperature gradient and
thus weaker absorption lines. RV measurements from these lines
are therefore skewed towards the motion of the outward-facing
part of the star, causing K2 to overestimate KMD (Hessman et al.
1984; Wade & Horne 1988; Billington et al. 1996).

To estimate the correctionΔK = K2−KMD we have measured
the equivalent widths of absorption features arising from the sec-
ondary star, as a function of orbital phase. The wavelength scales
of the spectra were moved to shift out the motion of the star, and
the spectra were then rectified to a continuum level of 1 and
binned into twenty phase intervals. The resulting plots (Fig. 6)
show that the equivalent widths vary by approximately 30% out-
side eclipse. Extrapolating to the phase of secondary mid-eclipse
and considering the errors on this approach and on the equiva-
lent width measurements, we find a total variation in equivalent
width (and thus in the light from the secondary star) of 35±15%.

Wade & Horne (1988) obtained the expression

ΔK = f
RMD

aMD
KMD

where f is the size of the displacement as a fraction of RMD,
the radius of the secondary star, and aMD is the semimajor axis
of the orbit of this component. The light curve analysis (see

Fig. 6. Variation of the equivalent widths of the Na doublet and TiO
molecular band with orbital phase. The spectra were combined into
20 phase bins prior to measurement. The black filled circles represent
measurements outside primary and secondary eclipses, and the grey
open circles those within eclipse. The wavelength intervals over which
the equivalent widths were measured were 8180–8200 Å for Na and
7090–7345 Å for TiO.

below) gives a mass ratio of q = 0.51 ± 0.10, which results in
a secondary star radius of RMD = (0.49 ± 0.06)aMD. The largest
value of f is 4/3π ≈ 0.42 and occurs when the spectral lines
are totally quenched on the irradiated hemisphere of the star. We
therefore adopted f = 0.42× (0.35± 0.15) = 0.15± 0.06, result-
ing in a K-correction of ΔK = (0.07 ± 0.04)KMD. Armed with
this correction we have determined the velocity amplitude of the
centre of mass of the secondary star to be KMD = 258±12 km s−1

(Table 3).

3.4. Doppler tomography

To investigate the properties of the accretion disc of SDSS J1006
we have constructed Doppler maps of several of the emission
lines using the maximum entropy method (Marsh & Horne
1988). The maps are shown in Fig. 7 and phase-binned and
trailed plots of the emission lines are shown in Fig. 2. The
χ2 value for the Doppler maps were chosen to be marginally
larger than the values for which noise features start to be vis-
ible, and the orientation of the maps was specified using the
eclipse ephemeris. Overlaid on the Doppler maps are interpre-
tations of the system properties, adopting KWD = 127 km s−1

and KMD = 258 km s−1.
The Doppler maps for the Balmer emission lines (see the

Hα map in Fig. 7) have an unusual wide double-lobed structure.
The Hα map also shows emission attributable to the secondary
star, although this is oddly offset from the line of centres of the
system. The shape of the accretion disc and the offset of the sec-
ondary star emission may be artefacts of the breakdown of an
important assumption of Doppler tomography: that emitting re-
gions are optically thin.

Doppler maps of the He i emission lines show weak and dif-
fuse emission in the region of the bright spot, which is where
the accretion stream from secondary star encounters the edge

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=6
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Fig. 7. Doppler maps of Hα (left), He i 6678 Å (centre) and Ca ii 8662 Å (right). Assuming K1 = 127 km s−1 and K2 = 258 km s−1, the Roche lobe
of the secondary is shown with a solid line, the centres of mass of the system and of the two stars are shown by crosses, and the velocity of the
accretion stream and the Keplerian velocity of the accretion disc are indicated by dots with a constant spacing in position. The orientation of the
maps has been set using the eclipse ephemeris.

of the accretion disc. The bright spot is not a major source of
He i emission, but very little else is seen in the He i maps.

We have also constructed a Doppler map of the Ca ii 8662 Å
emission, which is the line of the calcium triplet which is
least affected by night-sky emission and telluric lines. The map
(Fig. 7) shows a circular accretion disc feature and clear emis-
sion arising from the secondary star. The latter emission can be
seen describing a S-wave in trailed spectra (Fig. 2), and its posi-
tion in the map supports our measurement of the velocity ampli-
tude of this star.

3.5. Light curve modelling

Our light curves show deep eclipses due to obscuration of
the WD and accretion disc by the secondary star. To obtain
constraints on the system properties, the best dataset (2008
December) was compared to synthetic light curves created us-
ing the lcurve code written by TRM (see Pyrzas et al. 2009).
This uses grids of points to model the WD as a sphere, the sec-
ondary star using Roche geometry, a flat circular accretion disc,
and an exponentially decreasing bright spot. The best fit to the
observed data was obtained with a combination of the down-
hill simplex and Levenberg-Marquardt algorithms (Press et al.
1992). The outside-eclipse data show strong stochastic varia-
tion (termed flickering; see Bruch 1992 and Bruch 2000) arising
from the mass-transfer process in SDSS J1006. We have down-
weighted data outside the phase interval [−0.07, 0.08] by a factor
of three, to limit their influence on the fit.

The small gap in the light curve at HJD 2454821.69 is unfor-
tunate, as the egress of the bright spot occurs somewhere during
this time. We find two main families of good fits to the light
curve corresponding to different WD radii and mass ratios: the
first family is in the region of RWD = 0.011a and q = 0.51 and
is our preferred solution. The second centres on RWD = 0.023a,
which is unphysically large, and q = 0.60. After extensive ex-
ploration of the parameter space we adopt the first solution but
increase the errorbars of the light curve parameters to include
the full range of plausible solutions which we found.

Internal parameter errors were determined by 105 Markov
Chain Monte Carlo (MCMC) simulations. For these simulations
we accepted a certain fraction of random jumps in parameter val-
ues and evaluated how they changed the quality of the fit. After

Table 4. Results of the light curve modelling process.

Quantity Value Formal Adopted
uncertainty uncertainty

Reference time (HJD) 2454821.68051 0.00002 0.0002
Orbital period (d) 0.18591324 (fixed)
Orbital inclination (◦) 81.3 0.8 2.0
Mass ratio 0.51 0.04 0.08
Disc radius (a) 0.189 0.015 0.05
White dwarf radius (a) 0.0110 0.0013 0.003
Secondary star radius (a) 0.322 0.006 0.010

The formal uncertainties come from the MCMC analysis and the
adoped uncertainties are increased to account for several additional
sources of uncertainty. Several parameters are given in units of a, the
orbital semimajor axis.

the simulations showed reasonable convergence, the errors and
covariances could be computed from examining the parameters
from the accepted jumps. We rejected typically the first 10% of
values to avoid a dependence on the initial parameter values.
This gives a more realistic view of the parameter uncertainties
compared to the values computed simply from the analytic er-
rors alone, an aspect which is particularly important given the
correlated noise due to flickering.

The results of the light curve modelling process are given
in Table 4 and the best-fitting model is compared to the data in
Fig. 8. The radii of the stars and accretion disc are given in units
of the orbital semimajor axis, a. The uncertainties yielded by the
MCMC analysis still do not fully take into account the flickering
or the range of plausible solutions we found. We have increased
the uncertainties to include the full range of reasonable trial solu-
tions we found (Table 4), and regard the results as conservative.
A substantial improvement will require high-speed photometry
of several eclipses of the SDSS J1006 system.

4. The physical properties of SDSS J1006

The spectroscopic and eclipsing characteristics of SDSS J1006
allow the determination of the masses and radii of the WD
and its low-mass companion. From measurements of the times
of mid-eclipse we have obtained an accurate orbital period of
0.18591324(41)d. From the infrared sodium doublet we have

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=7
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Fig. 8. Light curve of SDSS J1006 from the 2008 December observa-
tions (points) compared to the best fit found using lcurve (solid curve).
The residuals of the fit are plotted at the base of the figure.

Table 5. Physical properties of the stellar components of SDSS J1006.

Quantity White dwarf M dwarf
Semimajor axis (R�) 1.45 ± 0.10
Mass (M�) 0.78 ± 0.12 0.40 ± 0.10
Radius (R�) 0.016 ± 0.006 0.466 ± 0.036
log g [cm s−2] 7.93 ± 0.33 4.701 ± 0.079

measured the velocity amplitude K2 = 276 ± 7 km s−1. A cor-
rection for irradiation effects leads to the secondary star velocity
amplitude KMD = 258 ± 12 km s−1. From modelling the eclipse
morphology of SDSS J1006 we have found an orbital inclination
of i = 81.3◦ ± 2.0◦ and a mass ratio of q = 0.51 ± 0.08.

Combining these results yields the masses and radii of the
WD and secondary star in SDSS J1006 (Table 5). The mass of
the former, 0.78 M�, is higher than the average for single WDs,
in agreement with previous results for CVs (Smith & Dhillon
1998; Littlefair et al. 2008). Its radius is consistent (within its
large uncertainty) with the theoretical mass-radius relationship
for a Teff = 15 000 K WD (Bergeron et al. 1995).

The secondary star has a mass of 0.40 M� and a radius of
0.47 R�, which is distended compared to a normal object – a
mass-radius relation based on detached eclipsing binary star sys-
tems (Southworth 2009) predicts a radius of 0.41 R� – but is in
excellent agreement with the semi-empirical sequence for CV
secondary stars constructed by Knigge (2006). This is expected
because the mass transfer timescale becomes similar to the ther-
mal timescale for the secondary components of CVs above the
period gap, allowing continued mass transfer to drive the star out
of thermal equilibrium.

4.1. Distance and white dwarf temperature

The secondary star dominates the red end of the optical spec-
trum of SDSS J1006, exhibiting the strong TiO bandheads that
are characteristic of mid-to-late M dwarfs. We have obtained
the star’s spectral type using the M dwarf template library
that Rebassa-Mansergas et al. (2007) assembled from SDSS
spectroscopy, interpolated onto a finer grid spanning types M0
to M9 in steps of 0.2 subtypes. These templates were scaled
and subtracted from the SDSS spectrum of SDSS J1006 until

Fig. 9. Black line: the SDSS spectrum of SDSS J1006. Red line: an
M3.2 template spectrum scaled to match the strengths of the spectral
features of the companion star in SDSS J1006. Blue line: the resid-
ual spectrum obtained after subtracting the M-dwarf template from the
spectrum of SDSS J1006.

the smoothest residual spectrum was obtained, resulting in a
spectral type of M3.2± 0.2 (Fig. 9). We find a good agreement
with the relationship between spectral type and mass presented
by Rebassa-Mansergas et al. (2007). From the best-fit template,
we calculated fTiO, which is the flux difference between the
bands 7450–7550Å and 7140–7190Å, as defined by Beuermann
(2006). Using the polynomial expressions of Beuermann (2006),
we obtained the FTiO surface fluxes for secondary stars with
spectral types in the range M3.0 to M3.4. Taking R2 = 0.466 R�,
we find a distance of

d =

√
R2

2FTiO

fTiO
= 676 ± 40 pc

where the uncertainty in d is dominated by that in R2.
SDSS J1006 has also been detected in the ultraviolet (UV)

all-sky survey carried out by GALEX (Martin et al. 2005), from
which we can estimate the WD’s effective temperature, TWD.
The GALEX observations were obtained during the phase in-
terval 0.117–0.124, which is outside the WD eclipse to high
confidence. We adopt log g = 7.93 for the WD (Table 5), and
d = 676 pc. Under the assumption that the UV flux is entirely
due to the unobscured photospheric emission of the WD, the
only free parameter to reproduce the observed GALEX fluxes
is then TWD. The observed far-UV flux implies TWD ≈ 16 000 K,
or TWD ≈ 17 000 K if a maximum reddening of EB−V = 0.031
(Schlegel et al. 1998) is assumed (Fig. 10), with an uncertainty
of ±1500 K. We therefore adopt TWD = 16 500 ± 2000 K. This
value is only an estimate, because it is possible that the WD is
partially veiled by the accretion disc, and that the disc, bright
spot and boundary layer contribute to the observed UV fluxes.
A more reliable TWD measurement could be obtained from UV
spectroscopy.

This TWD is unusually low for a dwarf nova with Porb ∼ 4 h
(e.g. Urban & Sion 2006; Townsley & Gänsicke 2009) – by com-
parison the well-studied dwarf nova U Gem has overall proper-
ties which are very similar to SDSS J1006 but harbours a WD
with TWD ≈ 30 000 K (Sion et al. 1998; Long et al. 2006). Given
that SDSS J1006 is a high-inclination system, it might be possi-
ble that the WD is partially veiled by extended structures above

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=9


936 J. Southworth et al.: Orbital periods of cataclysmic variables identified by the SDSS

Fig. 10. Spectral energy distribution of SDSS J1006, showing the ob-
served (solid error bars) and dereddened (EB−V = 0.03; dashed error
bars) GALEX UV fluxes, the optical SDSS spectrum, and the 2MASS
near-IR fluxes (black triangles). Shown in gray are the M3.2 SDSS tem-
plate from Fig. 9, near-IR fluxes for an M3.2 star interpolated from
Sandy Leggett’s archive of M-dwarf spectra, and a log g = 7.93,
TWD = 16 500 K model spectrum scaled for RWD = 0.016 R� and
d = 676 pc.

the accretion disc, similar to those seen in OY Car (Horne et al.
1994). If veiling is not the cause of the low observed UV flux
(no veiling is observed in U Gem), the low TWD implies a sec-
ular mean accretion rate of a few 10−10 M� yr−1 (Townsley &
Gänsicke 2009), which is a factor of about three lower than in
U Gem.

4.2. Outburst characteristics

SDSS J1006 has been observed by the Catalina Sky Survey
(Drake et al. 2009), who obtained 209 unfiltered magnitude
measurements between 2005 April and 2008 April6. Most of
these observations found the object in the magnitude interval
17–18, but two dwarf nova outbursts have also been observed
(at JDs 2453678 and 2454259). The durations of these outbursts
are not known, but are constrained to be more than one day in
the first case.

We investigated the dwarf nova outburst frequency of
SDSS J1006, using Monte Carlo simulations and the times of
the Catalina observations. Assuming that each outburst is ob-
servable for a 10 d period (Ak et al. 2002), we obtained a de-
tection efficiency of 39% over the full time span of the Catalina
observations. If we further assume that the outbursts occur pe-
riodically, we can obtain the detection efficiency (and thus the
probable number of outbursts observed) as a function of outburst
frequency. The results of this calculation are shown in Fig. 11
and favour an outburst interval in the region of 400 d. This is a
very long interval for a 4–5 h period CV: Ak et al. (2002) find a
mean outburst interval of 62.0 d for U Gem-type systems.

Based on its photometric and spectroscopic properties,
SDSS J1006 can be classified as a dwarf nova of U Gem type,
for which two dwarf nova outbursts have been detected and the
outburst interval is long. Continued observations of this object
would be very useful in refining its outburst frequency.

6 See http://nesssi.cacr.caltech.edu/catalina/20050301/
SDSSCV.html#table77

Fig. 11. Outburst detection efficiency for the Catalina Sky Survey ob-
servations of SDSS J1006 (blue lower line) and the number of outbursts
which would have been detected for SDSS J1006 (black upper line), as
a function of the outburst period.

5. Summary and discussion

From the observations presented in this work we have discovered
that SDSS J1006 is an eclipsing CV, measured the orbital period,
and calculated the masses and radii of its component stars. This
was achieved through a parameteric model of its eclipses, com-
bined with a spectroscopic velocity amplitude for the secondary
star corrected for the effects of irradiation. Doppler maps of the
infrared calcium triplet reveal emission from the secondary star
and are in agreement with this KMD. From the spectral charac-
teristics of the system we have also found a WD effective tem-
perature of TWD = 16 500 ± 2000 K, a secondary star spectral
type of M3.2± 0.2, and a distance of d = 676 ± 40 pc. A dwarf
nova outburst interval of roughly 400 d agrees with the available
photometric observations of SDSS J1006.

We measured radial velocities for the WD from the Hα and
Hβ emission lines, finding a velocity amplitude K1 = 127.1 ±
4.2 km s−1. Despite using the diagnostic diagram approach, our
RVs still have a phase offset of 0.04 from the eclipse ephemeris.
We therefore could not assume that they represent the motion of
the WD, so did not use them in obtaining the physical properties
of SDSS J1006. Notwithstanding this, the K1 we measured turns
out to be in excellent agreement with the expected WD velocity
amplitude of 131.5 km s−1.

The mass of the WD is 0.78± 0.12 M�, and its radius is con-
sistent with theoretical expectations. The secondary star has a
mass and radius of 0.40±0.10 M� and 0.466±0.036 R�, respec-
tively, which is in excellent agreement with the semi-empirical
sequence for CV secondary stars constructed by Knigge (2006).
The uncertainties in the system parameters are dominated by the
moderate quality of the light curve, and an improved photomet-
ric study of this object is warranted.

In Table 6 we have assembled a list of the component masses
and radii of eclipsing CVs with long orbital periods (greater
than 3.0 h). We discount systems with uncertain properties or
whose analysis rests on emission-line RVs (not always reliable)
or mass-radius relations for the secondary star (to avoid circular
arguments). The list is worryingly short: only 10 systems (in-
cluding SDSS J1006) satisfy our criteria, of which one is mag-
netic (DQ Her). The weighted mean and standard deviation of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=10
SDSSCV.html#table77
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912885&pdf_id=11


J. Southworth et al.: Orbital periods of cataclysmic variables identified by the SDSS 937

Table 6. Eclipsing cataclysmic variables for which masses and radii of one or both components has been measured accurately and precisely.

Name Orbital Mass ratio White dwarf White dwarf Secondary Secondary References
period (d) mass (M�) radius (R�) mass (M�) radius (R�)

IP Peg 0.158206 0.48± 0.01 1.16± 0.02 0.0064± 0.0004 0.55± 0.02 0.47± 0.01 1, 2
GY Cnc 0.175442 0.387± 0.031 0.99± 0.12 0.38± 0.06 0.44 3, 4, 5
U Gem 0.176906 0.362± 0.010 1.14± 0.07 0.0067± 0.0008 0.41± 0.02 0.43± 0.06 6, 7, 8, 9
SDSS J1006+2337 0.185913 0.51± 0.08 0.78± 0.12 0.016± 0.006 0.40± 0.10 0.466± 0.036 This work
DQ Her 0.193621 0.62± 0.05 0.60± 0.07 0.40± 0.05 0.49± 0.02 10, 11
EX Dra 0.209937 0.75± 0.01 0.75± 0.02 0.013± 0.001 0.56± 0.02 0.57± 0.02 12, 13, 14
V347 Pup 0.231936 0.83± 0.05 0.63± 0.04 0.52± 0.06 0.60± 0.02 15
EM Cyg 0.290909 0.88± 0.05 1.13± 0.08 0.99± 0.12 0.87± 0.07 15
AC Cnc 0.300477 1.02± 0.04 0.76± 0.03 0.77± 0.05 0.83 16
V363 Aur 0.321242 1.17± 0.07 0.90± 0.06 1.06± 0.11 0.90 16

Those secondary radii without errorbars are not available from the original reference so have instead been calculated assuming Roche geometry.
References: (1) Ribeiro et al. (2007); (2) Copperwheat et al. in preparation; (3) Gänsicke et al. (2000); (4) Thorstensen (2000); (5) Feline et al.
(2005); (6) Marsh et al. (1990); (7) Long & Gilliland (1999); (8) Naylor et al. (2005); (9) Echevarría et al. (2007); (10) Horne et al. (1993);
(11) Wood et al. (2005); (12) Fiedler et al. (1997); (13) Baptista et al. (2000); (14) Baptista & Catalán (2001); (15) Thoroughgood et al. (2005);
(16) Thoroughgood et al. (2004).

the WD masses is 0.78 ± 0.19 M�. The masses and radii of the
secondary stars display a clear negative correlation with orbital
period, as expected by our current understanding of the evolution
of CVs. The WD masses display no correlation with orbital pe-
riod or with the secondary star masses, in agreement with stud-
ies which show that WDs in CVs do not undergo large overall
changes in mass (Prialnik & Kovetz 1995; Knigge 2006).
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