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ABSTRACT

Context. Collective oscillations of two or more coronal magnetic loops are observed very often.
Aims. We study the eigenmodes of oscillations of a system consisting of two parallel magnetic loops.
Methods. The linearised MHD equations for a cold plasma are solved analytically in bicylindrical coordinates using the long-
wavelength approximation. A dispersion equation determining the frequencies of eigenmodes is derived and solved analytically.
Results. Two solutions of the dispersion relation were found. The higher frequency corresponds to the antisymmetric mode polarised
in the direction parallel to the line connecting the loop centres, and the symmetric mode polarised in the perpendicular direction.
Depending on the polarisation of modes corresponding to the lower frequency, the systems of two parallel loops are classified as stan-
dard and anomalous. In standard systems the lower frequency corresponds to the symmetric mode polarised in the direction parallel
to the line connecting the loop centres, and the antisymmetric mode polarised in the perpendicular direction. In anomalous systems
the lower frequency corresponds to the antisymmetric mode polarised in the direction parallel to the line connecting the loop centres,
and the symmetric mode polarised in the perpendicular direction. The limiting case of two identical loops is studied. The results for
this case are compared with recent numerical results.
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1. Introduction

Since the first observation of transverse coronal loop oscilla-
tions by the Transition Region and Coronal Explorer (TRACE)
in 1998 (Aschwanden et al. 1999; Nakariakov et al. 1999),
this phenomenon is attracting ample attention from theorists.
Nakariakov et al. (1999) interpreted the transverse coronal loop
oscillations as fast kink oscillations of magnetic tubes. They
used the simplest model of a coronal loop, which is a straight
homogeneous magnetic tube. The theory of kink oscillations of
such a tube was first developed by Zaitsev & Stepanov (1975)
and Ryutov & Ryutova (1976), and then further extended by
many authors (see, e.g. Edwin & Roberts 1983). After the
pioneering work by Nakariakov et al. (1999), the theorist’s effort
was directed into developing more realistic models of trans-
verse coronal loop oscillations. Additional effects were incor-
porated in the model, e.g. the loop curvature (Van Doorsselaere
et al. 2004b; Terradas et al. 2006b), the density variation along
the loop (Andries et al. 2005b; Dymova & Ruderman 2006a;
Erdélyi & Verth 2007), magnetic field twist (Ruderman 2007),
and the non-circular loop cross-section (Ruderman 2003). The
damping of transverse coronal loop oscillations was also exten-
sively studied (Ruderman & Roberts 2002; Goossens et al. 2002;
Van Doorsselaere et al. 2004a; Andries et al. 2005b; Arregui
et al. 2005; Dymova & Ruderman 2006a; Terradas et al. 2006a;
Terradas et al. 2006b).

The ultimate goal of building better models is to further
coronal seismology and develop a tool to do remote diagnostics
of physical quantities in the corona. It has been demonstrated
that coronal seismology can measure the magnetic field in the
corona (Nakariakov & Ofman 2001). Recently, the presence

of multiple periods in a single loop (Verwichte et al. 2004)
was used to determine the density scale height (Andries et al.
2005a). This has sparked much interest, resulting in theoretical
(Dymova & Ruderman 2006a,b; McEwan et al. 2008) and ob-
servational (De Moortel & Brady 2007; Van Doorsselaere et al.
2007) achievements.

Only last year, omnipresent wave power has been discov-
ered in the corona (Tomczyk et al. 2007). Currently, a de-
bate is being conducted on the interpretation of these waves
(Van Doorsselaere et al. 2008; Erdélyi & Fedun 2007) in terms
of Alfvén or kink waves. When the issue will have been resolved,
potentially it will be possible to use these waves for constructing
magnetic field maps using coronal seismology.

Very often it is observed that not a single loop, but a whole
array of loops oscillates after being perturbed by, e.g., a solar
flare. Moreover, it has been suggested (see e.g. Aschwanden
et al. 2000) that the loops as we see them actually consist of a
multitude of individual loop strands. These considerations put on
the agenda studying collective oscillations of an array of coronal
loops. A natural first step in this study is the investigation of col-
lective oscillations of a system of two coronal loops. Recently
such an investigation has been carried out numerically by Luna
et al. (2008). These authors considered oscillations of two iden-
tical homogeneous parallel magnetic tubes with fixed ends. They
studied both the eigenmodes of oscillations of this system, and
solved the initial value problem.

In this paper we aim to study the eigenmodes of a system
consisting of two parallel homogeneous magnetic tubes with
fixed ends. In contrast to Luna et al. (2008) we do not as-
sume that the tubes are identical: they can have different radii
and different plasma densities inside. We study the problem
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Fig. 1. Sketch of the equilibrium configuration.

analytically. To make analytical progress, we use the asymptotic
theory with the ratio of the characteristic transverse scale of the
system to the loop length as a small parameter. Hence, our ap-
proach is similar to the one used by Dymova & Ruderman (2005)
to derive an equation describing the transverse oscillations of a
long stratified magnetic tube. The paper is organised as follows.
In the next section we formulate the problem and describe bi-
cylindrical coordinates used to study the problem. In Sect. 3 we
derive the dispersion equation determining the frequencies of the
eigenmodes in the long wavelength approximation and investi-
gate the properties of the eigenmodes. In Sect. 4 we consider a
particular case when the two tubes are identical. Section 5 con-
tains the summary of the results and our conclusions.

2. Problem formulation

We study the eigenmodes of transverse oscillations of two par-
allel homogeneous magnetic loops. The loops are modelled by
straight magnetic tubes of radii RL and RR. The plasma densities
inside the tubes are ρL and ρR, respectively. The plasma den-
sity outside the tubes is ρe, and it is assumed that ρe < ρL, ρR.
The distance between the tube axes is equal to d > RL + RR.
The length of the tubes is L. It is assumed that the foot points
of the magnetic loops are frozen in the dense immovable pho-
tospheric plasma, which implies that the ends of the tubes are
fixed. In what follows we use Cartesian coordinates x, y, z with
the z-axis parallel to the tube axes, and the xy-plane cutting each
of the tubes in two equal parts. The centres of the tube cross-
sections are on the x-axis. The magnetic field is assumed to be
in the z-direction and to have constant magnitude. The equilib-
rium configuration is shown in Fig. 1.

We use the cold plasma approximation. This removes the
slow magneto-acoustic waves from the analysis. The approx-
imation is very good for studying fast magneto-acoustic and
Alfvénic plasma oscillations in the solar corona. In this approx-
imation the linearised MHD equations take the form

∂2ξ

∂t2
=

1
μ0ρ

(∇ × b) × B, (1)

b = ∇ × (ξ × B), (2)

where ξ is the plasma displacement, b is the magnetic field
perturbation, μ0 is the magnetic permeability of free space,

Fig. 2. Bicylindrical coordinates used in this paper. The thick circles
show the tube boundaries. All coordinate lines σ = const pass through
the point x = ±a, y = 0. Coordinate lines τ = const are embedded
circles around those points.

and ρ and B are the equilibrium density and magnetic field,
respectively.

To make analytical progress we use bicylindrical coordi-
nates τ, σ, z, where τ varies from −∞ to +∞, and σ from 0
to 2π (e.g., (Korn & Korn 1961). The circular coordinate lines
τ = const and σ = const in the xy-plane are shown in Fig. 2.
All coordinate lines σ = const pass through the points x = ±a
on the x-axis. The magnetic tube boundaries are shown by thick
lines in Fig. 2. The relation between Cartesian and bicylindrical
coordinates is given by

x =
a sinh τ

cosh τ − cosσ
, y =

a sinσ
cosh τ − cosσ

· (3)

The equations of the tube boundaries are τ = −τL and τ = τR.
The quantities τL and τR are related to the tube radii by

RL =
a

sinh τL
, RR =

a
sinh τR

· (4)

The inequalities τ < −τL and τ > τR determine the interiors of
the left and right loop respectively, while the inequality −τL <
τ < τR determines the external region. The coordinates of the
loop axes are xL = −a coth τL and xR = a coth τR, so that

d = a(coth τL + coth τR). (5)

The free geometrical parameters of the problem are RL, RR
and d. The quantities τL, τR and a are parameters of the coor-
dinate system. It is useful to express the parameters of the coor-
dinate system in terms of the geometrical parameters. A straight-
forward calculation results in

cosh τL =
1 + q2(1 − s2)

2q
, cosh τR =

1 − q2(1 − s2)
2qs

, (6)

where

q =
RL

d
, s =

RR

RL
· (7)
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We can always choose the coordinate system in such a way that
RR ≤ RL, so that s ≤ 1. It follows from an obvious inequality
RL + RR < d that q(1 + s) < 1. It is easy to show that the right-
hand sides of the two equations in (6) are larger than unity, so
that we can always find τL and τR satisfying these equations.

The parameter a can be determined by using these expres-
sions for τR,L and Eq. (4).

In what follows we also use the expressions for the gradient
and the Laplace operator,

∇ f =
cosh τ − cosσ

a

(
eτ
∂ f
∂τ
+ eσ
∂ f
∂σ

)
+ ez
∂ f
∂z
, (8)

∇2 f =
(cosh τ − cosσ)2

a2

(
∂2 f
∂τ2
+
∂2 f
∂σ2

)
+
∂2 f
∂z2
, (9)

where f is an arbitrary function, and eτ, eσ and ez are the unit
vectors in the τ, σ and z-direction respectively.

It follows from Eq. (3) that x → −a and y → 0 as τ → −∞,
and x → a and y → 0 as τ → ∞. These relations imply that the
solution to the system of Eqs. (1) and (2) has to be bounded as
τ→ ±∞.

Let us introduce r =
√

x2 + y2. It is straightforward to show
that τ→ 0 and σ→ 0 as r → ∞.

The condition that the magnetic field lines are frozen in the
dense plasma at the ends of the magnetic tubes reads

ξ = 0, at z = ±L/2. (10)

The magnetic pressure, P, and the normal component of the dis-
placement, ξτ, has to be continuous at the tube boundaries. Let
us introduce the jump of function f (τ) across the tube boundary,

[ f ] = lim
ε→+0
{ f (τ0 + ε) − f (τ0 − ε)},

where either τ0 = −τL, or τ0 = τR. Then the boundary conditions
at the tube boundaries are written as

[P] = 0, [ξτ] = 0, at τ = −τL, τR. (11)

In addition, the solution has to vanish at infinity, i.e. as r → ∞.
The system of Eqs. (1) and (2) together with the boundary

conditions (11), conditions of regularity as τ → ±∞, and the
vanishing conditions at infinity will be used in the next section
to study the eigenmodes of the two-tube system.

3. Eigenmodes

In this section we are looking for the eigenmodes of the two-
tube system. For this we first derive from Eqs. (1) and (2) the
system of equations for P and ξ. It follows from (1) that ξz = 0.
In the linear approximation the magnetic pressure is given by
P = Bbz/μ0. Equation (2) can be rewritten as

b = B
∂ξ

∂z
− ezB∇ · ξ. (12)

It follows from this equation that

P = −ρV2
A∇ · ξ, (13)

where the square of the Alfvén speed is given by

V2
A =

B2

μ0ρ
· (14)

Now we substitute (12) in (1) and use (13) to obtain

∂2ξ

∂t2
= V2

A
∂2ξ

∂z2
− 1
ρ
∇⊥P, (15)

where ∇⊥ f is given by

∇⊥ f = ∇ f − ez
∂ f
∂z
. (16)

Eliminating ξ from (13) and (15) we obtain the wave equation
for P,

∂2P
∂t2
− V2

A∇2P = 0. (17)

Writing Eq. (15) in components yields

∂2ξτ

∂t2
− V2

A
∂2ξτ

∂z2
= −cosh τ − cosσ

aρ
∂P
∂τ
, (18)

∂2ξσ

∂t2
− V2

A
∂2ξσ

∂z2
= −cosh τ − cosσ

aρ
∂P
∂σ
· (19)

Now we look for the solution to the system of Eqs. (17)–(19)
and the boundary conditions (11) in the form of eigenmodes,
so that we take all the variables proportional to exp(−iωt). To
satisfy the boundary conditions (10) we take ξ proportional to
cos(πz/L). Then it follows from (13) that P is also proportional
to cos(πz/L). After that Eqs. (17)–(19) reduce to

(ω2 − V2
Ak2)P + V2

A∇2
⊥P = 0, (20)

(ω2 − V2
Ak2)ξτ =

cosh τ − cosσ
aρ

∂P
∂τ
, (21)

(ω2 − V2
Ak2)ξσ =

cosh τ − cosσ
aρ

∂P
∂σ
, (22)

where

k =
π

L
, ∇2

⊥ =
(cosh τ − cosσ)2

a2

(
∂2

∂τ2
+
∂2

∂σ2

)
· (23)

Now we assume that the loop length is much larger than the size
of the system in the transverse direction. This condition can be
written as ε = d/L � 1. It follows from Eq. (5) that a < d.
However, we do not assume that a and d are of the same order.
Our method works both for a ∼ d and for a � d. We can thus see
that ka � ε. In what follows we are looking for eigenmodes with
the frequencies of the order of kVA. This implies thatωa/VA � ε,
so that the ratio of the first term in Eq. (20) to the second one is of
the order of ε2. In what follows we are looking for the solution
to the problem in the lowest order approximation with respect
to ε. Then we can neglect the first term in Eq. (20) and rewrite it
in a simplified form as

∂2P
∂τ2
+
∂2P
∂σ2
= 0. (24)

By separation of variables, we find a solution of the form

P = Φ(τ) cos[m(σ − σ0)] −Φ(0) cos(mσ0), (25)

where the separation constant m is a positive integer and σ0 is an
integration constant. The second term in this expression is added
to ensure that P → 0 as r → ∞, which is equivalent to τ → 0
and σ→ 0. Substituting Eq. (25) in Eq. (24) we obtain

Φ = C1emτ +C2e−mτ, (26)
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where C1 and C2 are arbitrary integration constants. Taking into
account the regularity conditions at τ→ ±∞ yields

Φ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
CLemτ, τ < −τL,
C1emτ +C2e−mτ, −τL < τ < τR,
CRe−mτ, τ > τR,

(27)

where once again CL and CR are arbitrary constants. Using
Eq. (21) we obtain ξτ = ξ̂τ cos[m(σ − σ0)], where

ξ̂τ =
m(cosh τ − cosσ)

a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CLemτ

ρL(ω2 − V2
ALk2)

, τ < −τL,

C1emτ − C2e−mτ

ρe(ω2 − V2
Aek2)

, −τL < τ < τR,

−CRe−mτ

ρR(ω2 − V2
ARk2)

, τ > τR.

(28)

Substituting Eqs. (27)–(28) in Eq. (11) gives the system of linear
homogeneous algebraic equations for C1, C2, CL and CR,

C1e−mτL +C2emτL = CLe−mτL ,
C1emτR +C2e−mτR = CRe−mτR ,

C1e−mτL −C2emτL

ρe(ω2 − V2
Aek2)

=
CLe−mτL

ρL(ω2 − V2
ALk2)

,

C1emτR −C2e−mτR

ρe(ω2 − V2
Aek

2)
=

−CRe−mτR

ρR(ω2 − V2
ARk2)

·

(29)

This system of equations has a non-trivial solution only when
its determinant is zero. This condition results in the dispersion
equation,[
(ρL + ρe)ω2 − 2ρV2

Ak2
][

(ρR + ρe)ω2 − 2ρV2
Ak2

]

− ω4(ρL − ρe)(ρR − ρe)E2 = 0, (30)

where ρV2
A = ρLV2

AL = ρRV2
AR = ρeV2

Ae = B2/μ0, and E =
exp[−m(τL + τR)]. The solutions to this dispersion equation are

ω2
± =

V2
Aek2

(ζL + 1)(ζR + 1) − (ζL − 1)(ζR − 1)E2

×
{
ζL + ζR + 2 ±

√
(ζL − ζR)2 + 4(ζL − 1)(ζR − 1)E2

}
, (31)

where

ζL =
ρL

ρe
, ζR =

ρR

ρe
· (32)

In the case of one vanishing loop, we take ρL = ρe. In that case,
Eq. (31) reduces to

ω2 =
2ρV2

Ak2

ρe + ρR
and ω2 = V2

Aek2,

correctly recovering the kink frequency for the right loop.
We can immediately notice one difference between the

double-tube system and a single tube. The eigenfrequencies ω±
depend on m, while in the case of a single tube the eigenfrequen-
cies are equal to ωk = ckk for all m > 0 in the long-wavelength
limit, where ck is the kink speed.

Let us now study the eigenmode polarisation. For this we
calculate the x and y-component of the plasma displacement, ξx

and ξy. We start our analysis from expressing the unit vectors of
bicylindrical coordinates, eτ and eσ, in terms of the unit vectors
of Cartesian coordinates, ex and ey. Let us introduce the position

vector r = xex+yey. We know that eτ is parallel to ∂r/∂τ, and eσ
is parallel to ∂r/∂σ. Using this fact we easily obtain

eτ =
ex(1 − cosh τ cosσ) − ey sinh τ sinσ

cosh τ − cosσ
,

eσ = −ex sinh τ sinσ + ey(1 − cosh τ cosσ)

cosh τ − cosσ
·

(33)

The next step is to find the expressions for ξτ and ξσ. Using
Eqs. (21), (22) and (25) yields

ξτ =
(cosh τ − cosσ) cos[m(σ − σ0)]

aρ(ω2 − V2
Ak2)

Φ′(τ),

ξσ = −m(cosh τ − cosσ) sin[m(σ − σ0)]

aρ(ω2 − V2
Ak2)

Φ(τ),
(34)

where the prime indicates the derivative. It follows from Eq. (33)
that

ξx =
ξτ(1 − cosh τ cosσ) − ξσ sinh τ sinσ

cosh τ − cosσ
,

ξy = −ξτ sinh τ sinσ + ξσ(1 − cosh τ cosσ)
cosh τ − cosσ

·
(35)

Substituting Eq. (34) in Eq. (35) we arrive at

ξx =
1

aρ(ω2 − V2
Ak2)
{Φ′(1 − cosh τ cosσ) cos[m(σ − σ0)]

+ mΦ sinh τ sinσ sin[m(σ − σ0)]}, (36)

ξy = − 1

aρ(ω2 − V2
Ak2)
{Φ′ sinh τ sinσ cos[m(σ − σ0)]

− mΦ(1 − cosh τ cosσ) sin[m(σ − σ0)]}. (37)

In what follows, we concentrate on the cases σ0 = 0 and
σ0 = π/2. As will be shown, the value of σ0 determines the
polarisation of oscillation. The two cases σ0 = 0 and σ0 = π/2
are the two extremes, and have a polarisation perpendicular to
each other. Any other value of σ0 is intermediate between these
two extremes.

It follows from Eqs. (36) and (37) that ξx is an even and ξy
an odd function of σ when σ0 = 0, which implies that the dis-
placement is symmetric with respect to the x-axis. In particular,
the displacement of points at the x-axis, corresponding to σ = 0,
is in the x-direction. When m = 1, these wave modes correspond
to the S x and Ax modes found numerically by Luna et al. (2008),
where S and A stand for symmetric and antisymmetric, and the
subscript indicates the direction of polarisation.

When σ0 = π/2 and m is odd, ξx is an odd and ξy an even
function of σ. For the system of two identical loops (RL = RR)
this implies that the displacement is symmetric with respect to
the y-axis. When m = 1, these wave modes correspond to the S y
and Ay modes found numerically by Luna et al. (2008).

The expressions for the displacement components become
especially simple when τ→ −∞ or τ→ ∞, which correspond to
y = 0 and x = ±a. Using Eqs. (27) and (36) it is straightforward
to obtain

ξxL =
−CL cosσ0

2aρL(ω2 − V2
ALk2)

, ξyL =
CL sinσ0

2aρL(ω2 − V2
ALk2)

, (38)

ξxR =
CR cosσ0

2aρR(ω2 − V2
ARk2)

, ξyR =
CR sinσ0

2aρR(ω2 − V2
ARk2)

, (39)
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when m = 1, while

ξxL = ξyL = ξxR = ξyR = 0 (40)

when m > 1, where ξx,yL = limτ→−∞ ξx,y and ξx,yR = limτ→∞ ξx,y.
Eq. (40) implies that the modes with m > 1 do not displace the
points x = ±a. This property is similar to the property of fluting
modes in a single magnetic tube which do not displace the tube
axes, although we have to note that the points x = ±a are close to
the tube axes only when the tubes are sufficiently far from each
other, i.e. when d � RL + RR.

Using the first two equations in Eq. (29) to express C1 and C2
in terms of CL and CR, substituting the results in the third equa-
tion in Eq. (29), and using the dispersion equation, Eq. (30), we
obtain that the ratio of CL and CR is given by

CR

CL
= e2mτR

(ζL + 1)ω2 − 2V2
Aek

2

(ζR − 1)ω2

ζRω
2 − V2

Aek2

ζLω2 − V2
Aek2

· (41)

In what follows we concentrate on the case of m = 1. This is
the only case for which the axes of the tubes are displaced (see
Eq. (39), (40)), and in that respect they resemble the kink modes
of the classical cylindrical model.

Let us introduce the function

f (X)= [(ζL+1)X−2][(ζR+1)X−2]− (ζL−1)(ζR−1)X2E2. (42)

This function is equal to the left-hand side of Eq. (30) divided by(
ρV2

Ak2
)2

, and with X substituted for ω2/V2
Aek

2. Function f (X)
is a quadratic polynomial with the first coefficient positive. Its
zeros are X± = ω2±/V2

Aek2. Since f (2(ζL,R + 1)−1) < 0, it follows
that X− < 2(ζL,R + 1)−1 < X+. This implies that the following
two inequalities are satisfied,

(ζL,R + 1)ω2
+ − 2V2

Aek
2 > 0, (43)

(ζL,R + 1)ω2
− − 2V2

Aek
2 < 0. (44)

Since 2ζL,Rω2
+ > (ζL,R + 1)ω2

+, it follows from Eq. (43) that

ζLω
2
+ − V2

Aek2 > 0, ζRω
2
+ − V2

Aek2 > 0. (45)

Equations (43) and (45) together with Eq. (41) imply that CR
and CL have the same sign when ω = ω+. Then it follows from
Eqs. (38) and (39) that, when ω = ω+, the two tubes are dis-
placed in opposite directions parallel to the x-axis when σ0 = 0,
while they are displaced in the same directions parallel to the
y-axis when σ0 = π/2. This means that ω+ is the frequency of
the Ax and S y modes. This result is in qualitative agreement with
the numerical results by Luna et al. (2008) who found that the
frequencies of the Ax and S y modes are larger than the frequen-
cies of the S x and Ay modes.

The situation with the low-frequency modes is more com-
plicated. To study the properties of these modes we first note
that, in accordance with Eq. (45), ζ−1

L,R < X+. Then it follows that
ζ−1

L > X− or, what is the same, ζLω2− − V2
Aek2 > 0, if f (ζ−1

L ) < 0.
This condition can be written as

2ζL < ζR + 1 + (ζR − 1)E2. (46)

Similarly we obtain that ζRω2− − V2
Aek2 > 0 if

2ζR < ζL + 1 + (ζL − 1)E2. (47)

Hence, if both inequalities, Eqs. (46) and (47), are not satisfied,
then ζL,Rω2− − V2

Aek2 < 0. This result together with Eqs. (41)

1

α

α

ζR

1 ζL

Fig. 3. The regions corresponding to standard and anomalous systems in
the ζLζR-plane for a fixed value of E. The two shaded sectors correspond
to systems with the anomalous behaviour, while the non-shaded sector
to systems with the standard behaviour (recall that the admissible region
of parameters is ζL > 1, ζR > 1). The inequality (46) is satisfied in the
upper shaded region, and the inequality (47) is satisfied in the lower
shaded region.

and (44) implies that CR and CL have opposite signs when
ω = ω−. This means that ω− is the frequency of the S x and
Ay modes. Once again this result is in qualitative agreement with
the numerical results by Luna et al. (2008) who found that the
frequencies of the S x and Ay modes are lower than the frequen-
cies of the Ax and S y modes. In what follows we will call systems
with such properties of the low-frequency kink modes standard,
or systems with standard behaviour.

Let us now assume that one of the two inequalities, Eqs. (46)
and (47), is satisfied (it is easy to see that they cannot be satisfied
simultaneously). In this case ζLω2− − V2

Aek
2 and ζRω2− − V2

Aek
2

have opposite signs. Together with Eqs. (41) and (44) this result
implies that CR and CL have the same sign when ω = ω−. This
means that ω− is the frequency of the Ax and S y modes. We
see that now there are two Ax modes, high- and low-frequency,
and also two S y modes, high- and low-frequency, while there
are no S x and Ay modes. In what follows we will call systems
with such properties of the kink modes anomalous, or systems
with anomalous behaviour. In Fig. 3 the regions in the ζLζR-
plane corresponding to systems with standard and anomalous
behaviour are shown for a fixed value of E (or, what is the same,
for a fixed value of τL + τR). The angle α in Fig. 3 is given by

α = arctan
1 + E2

2
<
π

4
· (48)

We see that the line ζL = ζR is always inside the region cor-
responding to the standard behaviour. Since Luna et al. (2008)
studied oscillations of a system of two identical loops, it is not
surprising that they did not find the anomalous behaviour.

We see that the properties of standard systems are qualita-
tively in agreement with the numerical results by Luna et al.
(2008). Quantitatively, however, we found that the frequencies
of the Ax and S y modes are equal, and the same is true for S x
and Ay modes. Luna et al. (2008) found that the frequency of the
Ax mode is larger than the frequency of the S y mode, while the
frequency of the Ay mode is larger than the frequency of the S x
mode, although the difference between the two latter frequencies
is very small. We discuss this difference between the analytical
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Fig. 4. The eigenfrequencies for ζL = 2 and ζR = 2.9 versus the sepa-
ration between loops (dashed lines). The internal (ωAL,R) and external
(ωAe) cut-off frequencies are plotted with full lines. The kink frequen-
cies of the separate tubes (ωkL,R) are plotted with dotted lines.

and numerical results in more detail in Sect. 4 where we consider
a particular case of two identical tubes.

Let us now calculate the limiting values of ω+ and ω− when
the separation between the loops is large. To do this we formally
consider the limits as d → ∞, or, which is same a → ∞. Then
it follows from equation (4) that τL, τR → ∞, so that E → 0.
After that we obtain from Eq. (31) that

ω+ → ω0+ = max(ckLk, ckRk),

ω− → ω0− = min(ckLk, ckRk),
(49)

where ckL and ckR are the kink speeds of the left and right tubes
determined by

c2
kL =

2ρV2
A

ρe + ρL
, c2

kR =
2ρV2

A

ρe + ρR
· (50)

In particular, when the two tubes are identical, both ω+ and ω−
tend to the common kink frequency of the two tubes, ωk = ckk =
ckLk = ckRk. This result is in an excellent agreement with Luna
et al. (2008) who found that the frequencies of the four modes,
S x, Ax, S y and Ay, tend to ωk as d → ∞.

It is now possible to gain a physical understanding of anoma-
lous systems. To do that we look at the internal cut-off frequen-
cies for the left (ωAL) and right tube (ωAR) separately, the ex-
ternal cut-off frequency (ωAe), and the kink frequencies of each
tube serarately (ωkL,R). For simplicity, we take τL = τR = τ0.
A plot of the eigenfrequencies of the system with ζL = 2 and
ζR = 2.9 is presented in Fig. 4. We see that, as d/R → ∞, the
eigenfrequencies tend to the separate kink frequencies. We also
see that, when d/R decreases,ω− drops below the internal cut-off
frequency. That is the point when the systems becomes anoma-
lous. The left tube cannot support the global, fast magnetosonic-
like oscillation, because the frequency of the collective oscilla-
tion is below its internal Alfvén frequency, which is a cut-off for
fast magnetosonic oscillations.

This can also be observed when looking at the eigenfunc-
tions (see Fig. 5). For this figure, we have taken the same

Fig. 5. The pressure eigenfunctions for ζL = 2, ζR = 2.9 and τL = τR =
ln 2. The top panel is for σ0 = π/2, whereas the bottom panel is for
σ0 = 0. The left tube does not respond to the oscillations of the right
tube in either case.

parameters as in Fig. 4 and have taken τ0 = ln 2. This corre-
sponds to an anomalous system: ω− < ωAL. From the figure it is
clear that the left tube does not respond to the oscillation of the
right tube.

It can be proven that for systems where ζL � ζR, a critical
separation between cylinders dc can always be found so that the
systems becomes anomalous for all d < dc.

4. Eigenmodes of a system of two identical tubes

In this section we consider a particular case when the two tubes
are identical, i.e. when they have the same radii and the same
internal plasma densities. We concentrate on m = 1 and once
again we simplify the notation by introducing R = RL = RR,
ρi = ρL = ρR, ζ = ζL = ζR, and τ0 = τL = τR. Since the line
ζL = ζR is in the non-shaded sector in Fig. 3, a system of two
identical loops always has the standard behaviour.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809841&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:200809841&pdf_id=5


T. Van Doorsselaere et al.: Oscillations of two parallel loops 855

Fig. 6. The frequency normalised to the kink frequency of a single loop
(ω/ωk) vs. the relative distance between the loops (d/R). The dashed
line shows ω+, while the dotted line shows ω−. The frequencies are
calculated for ζ = 10. The dash-dotted lines indicate the internal, ωAi,
and external, ωAe, Alfvén frequency, respectively.

The eigenmodes of the system of two identical tubes have
been studied numerically by Luna et al. (2008). Because they
used a different notation than ours, we fit the parameters that
they used with tildes in order to compare our results. The loop
radius in Luna et al. (2008) is ã, so that ã = R. Their parameter d̃
is defined as the distance between the loop centres, so that d̃ =
d = 2a coth τ0. Note a typographic error in their Eq. (3) where d̃
has been used instead of another parameter (a in our paper).

In the case of two identical tubes the dispersion relation (31)
reduces to a very simple form,

ω2
± =

2V2
Aek

2

ζ + 1 ∓ (ζ − 1)E
=

ω2
k(

1 ∓ ζ−1
ζ+1 E

) , (51)

where E = e−2τ0 . Recall that ωk is the kink frequency given by
ωk = ckk. It follows from Eqs. (4) and (5) that cosh τ0 = d/2R,
so that τ0 is a monotonically increasing and E a monotonically
decreasing function of the separation between the cylinders d.
Then it follows that ω+ is a monotonically decreasing and ω−
a monotonically increasing function of d/2R. This is in good
agreement with the results reported by Luna et al. (2008).

A plot of the frequencies is shown in Fig. 6. The figure has
been made with exactly the same parameters as Fig. 3 in Luna
et al. (2008). As such, they can be directly compared to each
other.

In the case of identical loops, the dependence of eigenfunc-
tions on τ given by function Φ(τ) takes an extremely simple
form. For ω = ω−, we obtain an odd function of τ,

Φ−(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− sinh (mτ0)emτ for τ < −τ0,
e−mτ0 sinh (mτ) for − τ0 ≤ τ ≤ τ0,
sinh (mτ0)e−mτ for τ0 < τ.

For ω = ω+ the function Φ(τ) is even,

Φ+(τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cosh (mτ0)emτ for τ < −τ0,
e−mτ0 cosh (mτ) for − τ0 ≤ τ ≤ τ0,
cosh (mτ0)e−mτ for τ0 < τ.

In Fig. 7 the pressure perturbation of the four eigenfunctions
corresponding to kink oscillations of two identical loops is dis-
played. The displacement is calculated as the gradient of the
pressure perturbation, so that Fig. 7 reproduces the kink mode
structures.

When d takes its minimum value, d = 2R, the cylinders touch
each other. In this case

ω2
+ =
ζ + 1

2
ω2

k = ω
2
Ae, ω

2
− =
ζ + 1

2ζ
ω2

k = ω
2
Ai, (52)

where ωAi,e = VAi,ek is the Alfvén frequency inside/outside the
loops. Once again these results agree very well with Luna et al.
(2008). It is clear from their Fig. 3 that the frequencies of the
S x and Ay modes are very close to ωAi for d = 2R = 2ã.
For the other branch, the limits are less clear. While the fre-
quency of Ax mode increases, probably to the external Alfvén
frequency, the frequency of S y remains below the expected value
for d = 2R = 2ã.

As it has already been mentioned in Sect. 3, the main dif-
ference between our results and those obtained by Luna et al.
(2008) is that, according to our analysis, the frequencies of
the S x and Ay modes coincide, and the same is true for the fre-
quencies of the S y and Ax modes. The first two frequencies are
equal to ω−, and the last two to ω+. The most probable cause
of this difference is that we neglected the wave dispersion re-
lated to the finite thickness of the system, so that, formally, our
results are only valid in the limit d/L → 0. In fact, the system
numerically studied by Luna et al. (2008) is not thin at all. The
largest differences between the frequencies of S y and Ax, and the
frequencies of the S x and Ay are observed for d̃/ã of the order
of 3. Since ã = 0.1L, the differences between the frequencies
take their maximum values for d̃/L of the order of 0.3, which
is not small. However, even for this relatively thick system the
difference between the frequencies of the S x and Ay modes is
smaller than 2%. The difference between the frequencies of S y
and Ax is bigger with its maximum value of the order of 10%.
If our conjecture that the frequency differences are related to the
wave dispersion is correct, then these differences should be very
small for realistic values of parameters, R = ã � 0.02L.

To conclude this section, we notice an interesting analogy
between the eigenmodes of the two-tube system and a single
tube with an elliptic cross-section studied by Ruderman (2003).
As we have already mentioned, when the separation distance
takes its minimum value, d = 2R, the two loops touch each
other. In this case, also formally the Ax eigenmode still exists,
it becomes unphysical because, to oscillate in anti-phase in the
x-direction, the loops have to penetrate each other. The three
other modes are still physical, but we concentrate on the S x

and S y modes. For these two modes the system can be consid-
ered as a single magnetic loop consisting of two parallel mag-
netic tubes attached to each other. The size of the system in the
x-direction is 4R, while it is 2R in the y-direction. As we have
seen, the oscillation frequency in the x-direction is lower than
in the y-direction, so that the system oscillates with a lower fre-
quency in the direction of its elongation. A similar result is valid
for an elliptic loop: its oscillation frequency in the direction of
the large axis is lower than that in the direction of the small axis.

5. Summary and conclusions

In this paper we have studied the eigenmodes of a system con-
sisting of two parallel magnetic tubes. The ratios of loop radii to
the separation distance and the ratios of the densities inside the
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Fig. 7. The pressure perturbation for the eigenfunctions corresponding to kink oscillations (m = 1). Top left: Ay (ω = ω−, σ0 = π/2), top right: S x

(ω = ω−, σ0 = 0), bottom left: S y (ω = ω+, σ0 = π/2), bottom right: Ax (ω = ω+, σ0 = 0). The eigenfunctions were calculated for τ0 = 2, which
corresponds to d/R = 7.52.

loops to the external density are free parameters. We obtained the
analytical expressions for the frequencies of two eigenmodes of
the system oscillating in the directions connecting the centres of
the tubes (x-direction in what follows), and also the frequencies
of two eigenmodes of the system oscillating in the perpendicular
direction (y-direction in what follows). We paid most attention to
kink modes, and in what follows we only discuss the properties
of these modes.

According to our analysis all kink eigenmodes can be di-
vided into high-frequency eigenmodes with the oscillation fre-
quency equal to ω+, and low-frequency eigenmodes with the os-
cillation frequency equal to ω−. There are two high- and two
low-frequency eigenmodes. The first high-frequency eigenmode
corresponds to antisymmetric oscillations in the x-direction, and
is called the Ax mode. The second high-frequency eigenmode
corresponds to symmetric oscillations in the y-direction, and is
called the S y mode.

Depending on the ratios of the densities in the left and right
loops to the external density, ζL and ζR, and the value of the
quantity τL + τR (see Eq. (4)), all systems can be divided in
standard and anomalous systems. Standard systems are systems

where the low frequency is above the internal Alfvén frequen-
cies of the separate tubes. In anomalous systems, one tube has
a higher Alfvén frequency than the eigenfrequency. In that case,
the tube with the higher Alfvén frequency cannot support the
collective oscillation.

In standard systems the first low-frequency eigenmode corre-
sponds to symmetric oscillations in the x-direction, and is called
the S x mode. The second low-frequency eigenmode corresponds
to antisymmetric oscillations in the y-direction, and is called the
Ay mode. Hence, in standard systems there is one symmetric,
S x, and one antisymmetric, Ax, eigenmode of oscillation in the
x-direction, and also one symmetric, S y, and one antisymmetric,
Ay, eigenmode of oscillation in the y-direction.

In anomalous systems the first low-frequency eigenmode
corresponds to antisymmetric oscillations in the x-direction, and
the second low-frequency eigenmode corresponds to symmetric
oscillations in the y-direction. Hence, in these systems there are
two Ax modes, one high- and one low-frequency, and also two
S y modes, one high- and one low-frequency. On the other hand
there are no S x and Ay modes.
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All systems of two identical tubes have a standard behaviour.
As we have already mentioned, the frequencies of the S x and
Ay modes in standard systems are lower than those of the Ax and
S y modes, which agrees with a similar result found numerically
by Luna et al. (2008).

We also found that the frequencies of the S x and Ay modes
in standard systems coincide, and the same is true for Ax

and S y modes. In anomalous systems the frequencies of high-
frequency Ax and S y modes coincide, and the same is true for
low-frequency Ax and S y modes. Since a linear combination of
two eigenmodes corresponding to the same eigenfrequency is
once again an eigenmode, this result implies that the system can
oscillate in an arbitrary direction with two different frequencies.
In this sense the system is degenerate. This result does not agree
with Luna et al. (2008) who found that all four modes, S x, S y,
Ax, and Ay, have different frequencies.

Our conjecture is that the system degeneration is related to
the long-wavelength approximation that we used in our analy-
sis. In this approximation we neglected the terms proportional
to the square of the ratio of the tube separation distance to the
tube length, (d/L). We hope that continuing to the next order
approximation with respect to the small parameter (d/L) will
remove the system degeneration. However, since (d/L) is very
small for realistic coronal structures, the difference between the
frequencies of the S x and Ay modes, and the frequencies of the
Ax, and S y modes in standard systems will be very small. We
also expect that the difference between the frequencies of the
high-frequency Ax and S y modes, and the frequencies of the low-
frequency Ax and S y modes in anomalous systems will be very
small.
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