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ABSTRACT

Aims. To establish the dominant wave modes generated by an internal, m = 1 kink instability in a short coronal flux tube.
Methods. The 3D MHD numerical simulations are performed using Lare3d to model the kink instability and the subsequent wave
generation. The initial conditions are a straight, zero net current flux tube containing a twist higher than the kink instability threshold.
Results. It is shown that the kink instability initially sets up a 1st harmonic (1st overtone) that is converted through the rearrangement
of the magnetic field into two out-of-phase fundamental slow modes. These slow modes are in the two entwined flux tubes created
during the kink instability.
Conclusions. The long-lived oscillations established after a kink instability provide a possible way to identify whether sudden, short
coronal loop brightenings may have resulted from a confined kink instability. The mode oscillation structure changes from the 1st
harmonic to fundamental due to field line relaxation. The subsequent decay in the fundamental mode is comparable to observations
and is caused by shock dissipation. This result has important consequences for the damping of the slow mode oscillations observed
by SUMER.
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1. Introduction

There is observational evidence of standing slow mode oscilla-
tions in the solar corona (Kliem et al. 2002; Wang et al. 2002)
and Wang et al. (2003) also investigated a sample of 54 Doppler
shift oscillations and concluded that they were standing slow
modes. However, the generation of standing slow modes is an
area of ongoing research that puts most emphasis on impul-
sive flare generation. A high proportion of the previous work
on slow mode wave generation has been done in 1D loop codes
where the simulation domain is assumed to be along the mag-
netic field line. The wave generation mechanism in these cases
is the energy deposited by different flare models. For example,
Nakariakov et al. (2004) and Tsiklauri et al. (2004) studied the
generation of the slow mode 1st harmonic by loop apex heat-
ing. For clarity, the mode naming used throughout this paper is
that the 1st harmonic refers to the standing mode with a velocity
node at the midpoint, i.e. the 1st overtone. Selwa et al. (2005)
investigated the dependence of the generation of the fundamen-
tal and the 1st harmonic on the perturbation position within the
loop. Taroyan et al. (2005) looked both analytically and numer-
ically at the generation of the fundamental mode due to impul-
sive foot-point heating. All of these previous works used an arbi-
trarily imposed driver to generate the modes. However, here the
wave modes are established self consistently from the kink in-
stability. From the studies of Nakariakov et al. (2000), Ofman
& Wang (2002) and De Moortel & Hood (2003) it was con-
cluded that the dominant mechanism responsible for the damp-
ing of slow modes is thermal conduction. The 1D nature of the
previous wave generation works allowed the straightforward in-
clusion of non-ideal thermal transport terms. In this 3D work
the only non-ideal thermal term is current triggered, anomalous
resistivity leading to localised Ohmic heating.

Previous work on the kink instability has focused on the
properties of the kink instability and its evolution in both the
context of flares and coronal mass ejections (CMEs). For exam-
ple there has been much interest on the generation of the currents
(Baty & Heyvaerts 1996; Velli et al. 1997; Baty 1997; Lionello
et al. 1998; Arber et al. 1999; Baty 2000; Gerrard & Hood 2003)
and how they are affected by the twist (Gerrard et al. 2001,
2002). All of this work focused on the short, straight tube ap-
proximation. Work has also been done looking at the effects of
curvature on the stability of loops (Török & Kliem 2003; Török
et al. 2004; Aulanier et al. 2005; Birn et al. 2006) and the subse-
quent evolution of the field (Amari et al. 1996; Amari & Luciani
1999; Tokman & Bellan 2002; Török & Kliem 2003; Gerrard
et al. 2004; Fan 2005; Török & Kliem 2005).

Here we concentrate on the oscillatory mode development
after the kink instability has occurred in a short, hot, dense loop.
This is achieved by running a simulation equivalent to the one
in Arber et al. (1999) and Haynes & Arber (2007) but instead of
only running for the dynamic phase the simulation is extended to
establish any wave modes set up in the resulting magnetic struc-
ture. The kink instability studied is the non-eruptive, confined
kink instability in a loop which initially carries no net current.

2. Techniques

The simulations were run using the code Lare3d (Arber et al.
2001) which numerically integrates the resistive MHD equations
in normalised, Lagrangian form.

The normalisation used throughout this paper is the same as
that of Haynes & Arber (2007) and is summarised below. The
defined quantities are

L0 = 1 Mm

B0 = 2 × 10−3 T (20 G)
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ρ0 = 1.67 × 10−12 kg m−3

leading to the derived normalising quantities

vA = 1.38 × 106 m s−1

t0 = 1 s

T0 = 1 × 108 K.

In the MHD equations below the velocities are normalised to the
Alfvén speed v0 = B0/

√
µ0ρ0, the current density is normalised

to j0 = B0/(µ0L0), the resistivity to η0 = (µ0L0v0)−1 and the
pressure to P0 = B2

0/µ0.

Dρ
Dt
= −ρ∇ · u (1)

Du
Dt
=

1
ρ

(∇ × B) × B − 1
ρ
∇P (2)

DB
Dt
= (B · ∇)u − B(∇ · u) − ∇ × (η∇ × B) (3)

Dε
Dt
= −P
ρ
∇ · u + η

ρ
j2· (4)

Where D/Dt is the advective derivative, and the normalised cur-
rent density is defined as j = ∇ × B. ε is the specific internal
energy leading to the equation of state P = ρε(γ − 1), where
γ = 5/3 is the ratio of specific heats.

The resistivity model used is of the following form

η =

{
0 , | j| < 5
1 × 10−3 , | j| � 5. (5)

This ensures that the resistivity is only applied in regions of large
current density leading to a less diffuse solution than would have
been obtained using uniform resistivity (Arber et al. 1999).

3. Initial conditions

The initial conditions used in this paper are the same as those in
Arber et al. (1999) and Haynes & Arber (2007).

The computational domain has the normalised dimensions
−6 � x, y,� 6 and −5 � z � 5. The flux tube is initialised
as running along the z axis within a radius of 1 giving a tube
length of 10. The z boundary conditions are line-tied and the
x, y boundaries are set to zero gradient with a velocity damping
region of width 0.6 covering the region just inside the bound-
ary. The results presented here are from a simulation run using
256 × 256 × 128 grid points, the grid is stretched in the x and y
directions giving a minimum grid spacing of 0.03 in these direc-
tions over the central region |x, y| < 2. The z spacing is uniform
giving a minimum spacing of 0.08. The results were tested for
convergence using a grid of 512 × 512 × 256.

The initial plasma conditions are set to a uniform normalised
temperature of 0.01 (1×106 K) and a uniform normalised density
of 1 (1.67 × 10−12 kg m−3).

The initial magnetic field is set to a force-free, kink unstable
loop which carries no net current. The field is determined from
the condition that the loop carries no net current and that the
current is completely contained within r = 1∫ 1

0
r jz(r)dr = 0 (6)

which for jz of the form

jz = ji

(
1 − r2

b2
+ a

r3

b3

)
(7)

is satisfied if a = 5/63/2 and b = 1/61/2. The component Bθ is
then found from jz, which gives the x and y components of B.
Using Ampère’s law, Bz is found from the force-free condition

B2
z = B2

i − B2
θ − 2

∫ r

0

⎛⎜⎜⎜⎜⎝ B2
θ

r′

⎞⎟⎟⎟⎟⎠ dr′. (8)

This leaves the values of Bz and jz on the axis as free parameters;
these are chosen as Bi = 1.0 and ji = 4.3.

This choice of initial conditions places the average twist in
the loop above the kink instability threshold for the Gold-Hoyle
equilibrium of φcrit = 2.49π (Hood & Priest 1981). A small ve-
locity perturbation with the structure found from the linear anal-
ysis in Arber et al. (1999) is also applied to the loop to initialise
the onset of the instability.

4. Simulation evolution

The simulation was run until t = 1000 to allow any wave modes
present to establish. For reference the kink instability and asso-
ciated reconnection is completed by t = 200.

Figure 1 shows snapshots from the simulation both during
and after the kink instability. The simulation starts with a small
velocity perturbations initialising the kink instability. The first
two snapshots in Fig. 1 show the initial field configuration and
the subsequent onset of the kink instability.

The kink instability drives the axis of the flux tube into a
helix, this forces the twisted internal field against the straight
outer field. This compression of the field generates a current
sheet wrapped around the flux tube. This current sheet can be
clearly seen in the t = 20 snapshot in Fig. 1. The current sheet
magnitudes increases until | j| � 5 switching on the resistivity as
given in Eq. (5). This switching on of the resistivity marks the
end of the linear phase of the kink instability.

The resistivity now present in the current sheet allows recon-
nection between the twisted internal field and the external field.
The newly connected field lines therefore now have a straight
section outside the original tube and a twisted section inside the
tube. A field line with this configuration can be seen in Fig. 1
at t = 60. In front of the tube a straight blue field line can be
seen rising from the bottom of the domain then entering the tube
through the current sheet and becoming more twisted. Due to the
reconnection outflows the velocity along the straight portion of
this field line will be towards the bottom boundary, whereas the
flow in the twisted region will be towards the top. These flows
will tend to drive the 1st harmonic.

Figure 2 shows vz plotted against z for two different times.
The top plot is at t = 30, plotted along (x, y) = (0.875, 0)
which is the line passing through the strongest current region
at this time. The reconnection outflows are shown to be driv-
ing the 1st harmonic. The bottom plot is at t = 200, plotted
along (x, y) = (0,−0.875) and it shows a dominant fundamen-
tal. The line chosen for the bottom plot is different to the top
due to the line used for the top plot now passing through both
the red and blue flux tubes shown in the last snapshot of Fig.
1. The line is therefore moved to a position where it is almost
entirely contained in the blue tube. This second position could
not be used for the earlier plot due to it passing through multiple
reconnection sites and therefore showing predominantly higher
harmonics.

For the magnetic field the result of this reconnection is the
field lines having an uneven distribution of twist, i.e. the newly
reconnected field lines have a straight section external to the tube
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Fig. 1. Snapshots showing the evolution of the central region of the simulation. From left to right the snapshots are at t = 0, 20, 60, 100, 200.
The semi-transparent isosurfaces are where |J | = 3, shown in grey, and |J | = 5, shown in yellow. The magnetic field lines are traced from the z
boundaries starting within a radius of 0.5, the red field lines are traced from the bottom boundary and the blue lines from the top.

Fig. 2. Plots showing vz against z. Top at t = 30 along the line (x, y) =
(0.875, 0). Bottom at t = 200 along the line (x, y) = (0,−0.875).

and a twisted section inside the tube. This configuration will re-
distribute the twist evenly along the field line. Once all the re-
connection has finished and the field lines have relaxed, the final
state of the field lines is shown in the t = 100 snap shot in Fig. 1.
The field now consists of two twisted flux tubes, each one con-
necting the original ends of the flux tube to the external field
region at the opposite boundary. For example the blue flux tube
has one end inside the original flux tube at the top boundary but
connected to a region outside the flux tube at the bottom bound-
ary. The lower snaphot in Fig. 2 shows the field aligned velocity
once the field has settled into this final state. It can be seen that
the dominant wave mode is now the fundamental, although there
are still some higher harmonics present.

Figure 3 shows the field aligned velocity at the centre of the
two new structures as a function of time, showing the presence

Fig. 3. Plot of the field aligned velocity against time for the two separate
loops shown in the final snapshot in Fig. 1. The points used to measure
the velocity are (x, y, z) = (0,±1, 0), which were chosen so one point
was in the blue flux tube and the other in the red flux tube.

of out-of-phase, oscillating field aligned flows. The amplitude of
the waves differs because the position of the points used to mea-
sure the velocity are not at the same relative location inside the
two final tube structures. The structure of the flow along the field
line shown in Fig. 2 at t = 830 suggests that these flows are pre-
dominantly a fundamental compressible mode. Figure 4 shows
the amplitude of the frequency components of the velocity plots
in Fig. 3, the vertical dashed line shows the frequency of the
fundamental slow mode calculated from the average tube speed
in the flux tube. The average tube speed, c̄t = csva/

√
c2

s + v
2
a ,

over all z within r = 2 is c̄t = 0.15 ± 0.03. The error is taken
to be the standard deviation of the values used to calculate the
average. The two tubes are of length Lz = 10, this gives a



238 M. Haynes et al.: Coronal loop slow mode oscillations driven by the kink instability

Fig. 4. Plot of the amplitude of the Fourier components of the oscilla-
tions plotted in Fig. 3 with the same line styles as in Fig. 3. The Fourier
transform was taken over the time domain 300 � t � 1000 without win-
dowing. The error bar shows the frequency, and associated error, of the
fundamental slow mode predicted from the average tube speed.

fundamental frequency of 0.008 ± 0.002, or an oscillation pe-
riod of 130±25. The Fourier spectra of the two oscillations both
show strong peaks at the frequency corresponding to the funda-
mental slow mode. For comparison the fundamental frequency
calculated from the average and standard deviation of the Alfvén
speed is 0.023 ± 0.002.

5. Discussion

The results presented here raise a couple of interesting questions:
how does the 1st harmonic evolve into the fundamental and what
is damping the fundamental slow mode?

The proposed mechanism for the conversion of the 1st har-
monic into the fundamental is tied in with the post reconnection
field lines. The region with the strongest reconnection is half way
along the loop where the current sheet magnitude is highest. The
reconnection drives flows away from this point along the newly
reconnected field lines. As this driving point is predominantly
close to the centre of the flux tube it drives a 1st harmonic in
both flux tubes as a function of the z coordinate. While in the z
direction the velocity node is in the centre of the tube, and hence
appears as the 1st harmonic, this is not true along the fieldline co-
ordinate. The field line is composed of a straight section, external
to the original tube, and a twisted internal section. Therefore the
node in velocity along the fieldline is actually closer to the end
of the flux tube to which it is connected by the shorter, straight
section of the fieldline. The field line relaxes to a final state in
which the twist is uniformly distributed. In this process the ve-
locity node in z moves towards the boundary connected to the
originally straight field line section. When analysed as Fourier
modes in z this appears to be a decay of the 1st harmonic and
a growth of the fundamental mode. Figure 5 shows the ampli-
tude of the fundamental and 1st harmonic Fourier components,
obtained from the spatial Fourier transform of vz along the line
(x, y) = (0,−0.875) which is the same line used in the bottom
plot of Fig. 2. In Fig. 5 the black line shows the amplitude of
the fundamental component and the dotted line shows the am-
plitude of the 1st harmonic. It can be seen that initially the 1st
harmonic is generated, however this then decays rapidly leaving
the dominant fundamental component. The 1st harmonic decays

Fig. 5. Plot showing the time evolution of the amplitude of the fun-
damental and 1st harmonic Fourier components of vz, using a spatial
Fourier transform along the line (x, y) = (0,−0.875). The solid line
shows the fundamental component amplitude and the dotted line shows
the 1st harmonic. The inset plot shows the period from 0 � t � 60 to
clarify the initial growth.

on a similar time scale to the field relaxation, i.e. the Alfvén
transit time along Lz/2, which is approximately 5 in normalised
units. This provides circumstantial evidence for the decay being
caused by the straightening of the field lines.

It must be stressed however that this is a purely geometric
effect and to leading order the mode structure along a field line
coordinate doesn’t change. Because it is the twisted internal sec-
tion of the loop which expands to produce the fundamental it is
the phase of this half of the 1st harmonic which sets the phase
of the fundamental. The out flows from the reconnection region
are symmetric about the centre thus the opposite ends of the field
lines have opposite sign in velocity. As the central nodes in the
two flux tubes expand towards different ends this opposite sign
leads to the observed out phase behaviour of the fundamental
modes.

The damping of the fundamental seen in Figs. 3 and 5 can
be explained through shock damping. From Fig. 3, the slow
modes have an initial amplitude of a ∼ 0.02vA. In terms of
the local sound speed (cs) this gives an oscillation amplitude
of a ∼ 0.12cs. The wave number of the fundamental mode is
k = 2π/20. For harmonic slow waves the time to shock forma-
tion is given by ts = cs/ak so that the fundamental modes will
form shocks at t ∼ 26. Figure 3 shows the amplitude evolution
over a timescale ∼700 so that the slow modes will shock early
in this interval. Shock viscosity (see Arber et al. 2001) for sim-
ple compressive sound waves is applied by adding scalar viscos-
ity (q) to the pressure of the form q = υcs∆x|∇.v|, where ∆x is the
computational cell size and υ = 0.05, whenever ∇.v < 0. As the
resolution is increased this tends to zero for smooth solutions and
to a constant value of q = υcs∆v, where ∆v is the jump in veloc-
ity across the shock, at shock fronts. Thus for resolved solutions
doubling the resolution will not change this shock viscosity but
it will reduce numerical viscosity. This has been confirmed by
higher resolution convergence tests which give the same decay
rate as reported above. The choice of υ is from experiments at
lower resolution and standard shock tests and ensures there are
no false oscillations generated at shocks. The dissipation due to
shock formation is therefore a real physical process and not the
result of numerical dissipation.
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To investigate other possible contributions to the damping
of the fundamental modes the outward Poynting flux through a
closed domain surrounding the two entwined flux tubes was also
monitored. Poynting’s theorem was satisfied to 0.001% accuracy
in the code. For the simulations presented above there is signif-
icant wave activity resulting from the fast waves driven by the
initial kink instability. This dominates the outward fluxes and is
larger than the energy loss from the slow modes. The presence of
fast waves driven by the instability make it difficult to determine
if the slow mode is decaying due to a coupling to radiating fast
modes. To clarify, the code was run for longer, i.e. until t = 3000
at which time all oscillations had decayed to a level below that
of the fundamental mode observed at t = 400. The code was
then restarted from this relaxed state but with the parallel veloc-
ity from t = 400 added back. This then gave a clean start to the
fundamental modes with no oscillations left from the kink in-
stability. This fundamental decayed at the same rate as depicted
in Fig. 3 and this time there was no evidence of a net outward
Poynting flux comparable to the energy loss from the fundamen-
tal modes. For this simulation the total shock viscous heating
was also monitored and this matched the energy loss from the
fundamental slow mode oscillations. It is therefore concluded
that the damping of the fundamental slow modes is due to shock
dissipation with no significant contribution from mode coupling
to a radiating fast wave.

6. Conclusion

Numerical experiments were run to assertain the waves gener-
ated following the confined, m = 1 internal kink instability in a
short, hot coronal loop. These experiments have shown that ini-
tially 1st harmonic (1st overtone) slow mode are observed in
the two post-reconnection flux tubes. The velocity node is at
the mid-point of each flux tube. However, this does not match
the mid-point of the magnetic field line because of the magnetic
twist. As the twist along the fieldline becomes uniform the ve-
locity node moves to one of the footpoints, which is observed
as the damping of the 1st harmonic and the appearance of the
fundamental mode. This is purely due to the geometry of the
evolving field structure and does not actually involve a damp-
ing or excitation mechanism once the field aligned reconnection
driven flow is initiated. The period of the fundamentals gener-
ated is 125 ± 25 s in a loop 10 Mm long. These two entwined,
out-of-phase, fundamental slow mode loops would provide a di-
agnostic for post kink loops in the corona. Using this diagnostic
should therefore aid in the identification of post-kink loops once
the modes present have been established.

As can be seen from Fig. 3 once the oscillatory phase is es-
tablished the waves damp quickly. This damping rate is sim-
ilar to that seen from the inclusion of non-ideal terms (e.g.
Nakariakov et al. 2000; Ofman & Wang 2002; De Moortel &
Hood 2003). However, this damping is not due to the resistivity
as the currents present during this stage of the simulation remain
below the value required to trigger the resistivity. Likewise ther-
mal conduction, which has been shown to efficiently damp slow
modes, is not included. The damping has been shown to be due
to shock dissipation with no significant contribution from mode
coupling to a radiating fast wave. Shock dissipation is of partic-
ular relevance to the observed slow mode oscillations in coronal
loops by SUMER. Of the slow mode oscillations reported by
Wang et al. (2003) 74% have Mach numbers above 0.1 and 43%
have Mach numbers above 0.2. Hence, nonlinear effects can be
important. From shock dissipation in 1D acoustics, the oscilla-
tion is expected to damp over a time-scale proportional to the

wavelength and inversely proportional to the velocity amplitude.
Although future work is needed to accurately characterise the
shock behaviour of slow magnetoacoustic modes in structured
coronal loops, it is possible to give some estimates of what the
damping time may be for the range of loop lengths and veloc-
ity amplitudes observed by SUMER. The simulations show for
a slow mode with wavelength λ0 = 20 Mm and velocity ampli-
tude a = 0.12 Cs an e-folding damping time of τ0 ≈ 150–200 s.
An estimate for the damping time for arbitrary wavelength and
velocity amplitude is τ = τ0(λ/λ0)(a/a0)−1. For λ = 200 Mm
and a ∼ 0.2Cs, we find τ = 15–20 min. This time is compa-
rable to the observed damping times as well as to the thermal
conduction time-scale. Therefore, we conclude that the effect of
shock dissipation on the damping of SUMER slow mode oscil-
lations may be important, especially for shorter loops, and war-
rants further investigation (e.g. parameter studies of shocking
slow modes with varying loop lengths and velocity amplitudes).

The out-of-phase fundamental slow modes would provide a
useful diagnostic when looking for evidence of the kink instabil-
ity occurring in short, hot loops. This current work uses a straight
tube approximation therefore further work is under way to estab-
lish whether these results are still present when curved geometry
is used.
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