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ABSTRACT

Context. The new generation of extreme-ultraviolet (EUV) imagers onboard missions such as the Solar Dynamics Observatory (SDO)
and Solar Orbiter (SO) will provide the most accurate spatial measurements of post-flare coronal loop oscillations yet. The amplitude
profiles of these loop oscillations contain important information about plasma fine structure in the corona.
Aims. We show that the position of the anti-nodes of the amplitude profile of the first harmonic of the standing fast kink wave of a
coronal loop relate to the plasma density stratification of that loop.
Methods. The MHD kink transversal waves of coronal loops are modelled both numerically and analytically. The numerical model
implements the implicit finite element code pollux. Dispersion relations are derived and solved analytically. The results of the two
methods are compared and verified.
Results. Density stratification causes the anti-nodes of the first harmonic to shift towards the loop footpoints. The greater the density
stratification, the larger the shift. The anti-node shift of the first harmonic of a semi-circular coronal loop with a density scale height
H = 50 Mm and loop half length L = 100 Mm is approximately 5.6 Mm. Shifts in the Mm range are measureable quantities providing
valuable information about the subresolution structure of coronal loops.
Conclusions. The measurement of the anti-node shift of the first harmonic of the standing fast kink wave of coronal loops is potentially
a new tool in the field of solar magneto-seismology, providing a novel complementary method of probing plasma fine structure in the
corona.
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1. Introduction

Post-flare transversal coronal loop oscillations have been ob-
served many times using the high-resolution EUV imager on-
board the Transition Region And Coronal Explorer (TRACE)
(see e.g., Aschwanden et al. 1999a, 2002; Nakariakov et al.
1999; Verwichte et al. 2004). These oscillations were identified
as the fundamental mode of the standing fast-kink wave from
MHD wave theory developed by e.g., Edwin & Roberts (1983).
The theory used models a coronal loop as a straight magnetic
cylinder with different external and internal plasma densities,
both of which are taken to be constants.

However, it is now clear from EUV observations using, e.g,
EIT (Extreme-ultraviolet Imaging Telescope) onboard SOHO
(SOlar and Heliospheric Observatory) and TRACE, that even
in “static” active region coronal loops, the spatial and temporal
behaviour of plasma is far more complex. Using emission mea-
sures, there is observational evidence that there is density strat-
ification in coronal loops. In younger active regions there have
been measurements of “super-hydrostatic” density scale heights

that are up to four times higher than expected (Aschwanden
et al. 2000, 2001). On the other hand, loops have been observed
in older active regions that are close to hydrostatic equilibrium
(Aschwanden et al. 1999b) with density scale heights that can be
explained by gravitational stratification. To complicate matters
further, significant dynamical behaviour has also been observed
in “static” loops, e.g., flows (Brekke et al. 1997; Winebarger
et al. 2001, 2002) and cooling events (Winebarger et al. 2003;
Schrijver 2001).

In light of these observations, a more realistic theory of
fast kink waves has been developed in the past five years to
model oscillating coronal loops with inhomogeneous plasma
density equilibria. Firstly, spatial variation of density in the ra-
dial direction has been included in the analysis leading to a
change in period and damping of the MHD waves (Ruderman
& Roberts 2002; Goossens et al. 2002; Aschwanden et al. 2003;
Van Doorsselaere et al. 2004; Arregui et al. 2007). Secondly,
spatial variation of density in the longitudinal direction has been
included in the analysis leading to changes in the ratios of the
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periods of the overtone modes to that of the fundamental mode
and to deviations of the eigenfunctions from a single sine term in
the longitudinal direction (Díaz et al. 2002; Goossens et al. 2006;
Andries et al. 2005b; Dymova & Ruderman 2005; Arregui et al.
2006; McEwan et al. 2006; Erdélyi & Verth 2007, EV07 here-
after; Verth & Erdélyi 2007; Verth 2007). It is expected that this
theory can be used in solar magneto-seismology, particularly in
applications to the corona, to determine more detailed informa-
tion about plasma fine structures than was previously possible.

In their paper, EV07 proposed the novel diagnostic method
of spatial magneto-seismology (SMS). In relation to standing
fast kink waves in the corona, SMS requires measurement of the
variance in maximum amplitude as a function of position along
a loop. EV07 showed that for the fundamental mode, changes in
amplitude caused by the density stratification in the corona are
likely to be too small to observe at present. Correspondingly, in
the frequency domain, it was shown by Andries et al. (2005a)
that, for the expected range of plasma density scale heights in
the corona, the frequency of fundamental mode is practically
invariant.

However, theoretically it is predicted that the frequencies
(e.g., Andries et al. 2005a) and amplitude profiles (e.g., Verth
& Erdélyi 2007; Verth 2007) of higher harmonics have a much
stronger dependence on density stratification. Since the first har-
monic may already have been detected in TRACE data (see
Verwichte et al. 2004), this is potentially the most useful higher
harmonic to study for the purpose of obtaining more detailed
plasma diagnostics of the corona. Therefore, as a continuation of
the initial exploratory studies by EV07 regarding the fundamen-
tal mode, the dependence of the amplitude profile of the first har-
monic on density stratification will be investigated. Importantly,
the results will show that the spatial observational signatures of
stratification can be used as a new seismological tool. SMS has
great potential in light of the improved spatial resolution ground-
based (e.g., the Advanced Technology Solar Telescope [ATST])
or space-borne observations (e.g., Hinode, the Solar Dynamics
Observatory [SDO] and the Solar Orbiter [SO]).

2. Numerical results

In both the numerical investigation in this section and the analyt-
ical study in Sect. 3, coronal loops will be modelled as straight
magnetic cylinders with length 2L and radius R. With cylindri-
cal cooridinates (r, φ, z), the plasma densities both outside (ρe)
and inside (ρi) the tube are allowed to be arbitrary functions of z
and the magnetic field, B is constant and parallel to the cylinder
axis (see Fig. 1). The effects of varying the equilibrium density
in the radial direction are neglected here to focus on the effects
of the longitudinal variation on the eigenfunctions of the first
harmonic. For standing fast kink modes, the amplitude profile,
denoted by ψn(z), is proportional to the eigenmode of the radial
velocity component and is unique up to a constant scaling factor
(subscript n = 1, 2, 3, . . . is mode number). To find the eigen-
frequencies, denoted by ωn and radial velocity eigenmodes of
the employed coronal loop model, the numerical code pollux
is used, originally developed by Van der Linden (1991). pollux
was recently utilised to compute the frequencies of the funda-
mental kink oscillations (n = 1) in coronal loops (Arregui et al.
2005).

The code discretizes the radial direction (r) with finite el-
ements, and the longitudinal direction (z) with Fourier compo-
nents. It calculates the eigenvalues and eigenmodes of the lin-
earized, resistive MHD equations by using a shooting method.

Fig. 1. The equilibrium configuration of a magnetic cylinder with lon-
gitudinally varying density.

To investigate the possible effects of density stratification
on the amplitude profile of kink oscillations, a reasonable
physical form of ρi(z) in the corona must be assumed. It is impor-
tant to stress at this point that only the effect of a stratified plasma
in static equilibrium will be addressed in the present paper. For
completeness, a theory must also be developed that quantifies
the effects of observed dynamical processes, such as flows on
fast kink oscillations. In semi-circular coronal loops where the
plasma is close to hydrostatic equilibrium, a reasonable assump-
tion for the density profile is

ρi(z) = ρf exp

⎡⎢⎢⎢⎢⎢⎣ − 2L
πH

cos

⎛⎜⎜⎜⎜⎜⎝ πz
2L

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦, (1)

where ρf is the footpoint density of the loop and H the density
scale height. The external density ρe(z) is taken to be directly
proportional to ρi(z),

ρe(z) = χ ρi(z) where χ ∈ (0, 1). (2)

It is observationally well-established that R � L. In the simula-
tions for the present paper, parameter R/L is fixed at 0.006. All
the other physical parameters such as ρf , L/H, B, and χ are free.

Equilibrium quantities, as explained before, are Fourier-
analysed in the z-direction in pollux. Therefore, deviations oc-
cur between the imposed density profile and the actual profile
used in the computations. These deviations become larger for a
stronger stratification. However, Arregui et al. (2005) compared
the numerically calculated eigenfrequences to the analytically
established frequencies (Andries et al. 2005b). They found that
the differences in the frequencies introduced by deviations in the
longitudinal density profile are negligible.

In the case of constant longitudinal density, the amplitude
profile of the first harmonic (n = 2) is simply the first sine term
in the Fourier series. However, longitudinal density stratification
causes a different coupling between different longitudinal wave
numbers. This means that the 1st sine term (with one node at the
loop top) couples to the 3rd sine term (with three nodes along
the loop). The superposition of these sine terms causes a distor-
tion in the shape of the eigenfunction of the first harmonic. In
fact, longitudinal density stratification causes the anti-nodes of
the first harmonic to shift towards the footpoints of the loop, as
also pointed out by Verth & Erdélyi (2007) and Verth (2007).
This property is illustrated in Fig. 2 for the numerically calcu-
lated normalised eigenfunctions ψ2/ψ2 max for different values
of L/H. The size of the shift is greater for stronger stratification.
Interestingly, it will be shown in Sect. 3 that the anti-node shift,
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Fig. 2. Comparison of different levels of stratification. Normalised am-
plitude profiles ψ2/ψ2 max are plotted against z/L for various values
of L/H.

Fig. 3. Normalised anti-node shift, ∆zAN/L against L/H.

∆zAN/L (normalised to L) is only a function of L/H. This sim-
ple one-to-one relationship derived from the numerical simulta-
tions is shown in Fig. 3. For realistic coronal values of L/H, the
relationship is linear to a very good approximation and can be
calculated that

∆zAN

L
= 0.028

L
H
· (3)

Although the constant of proportionality in Eq. (3) is relatively
small, this can still lead to a significant spatial shift in the anti-
nodes, since by their nature, coronal loops are very long. For a
semi-circular loop with plausible coronal values of L = 100 Mm
and H = 50 Mm, the anti-node shift would be 5.6 Mm. This is
well within the resolution capabilities of current observational
facilities; hence, this property can be used as a new seismologi-
cal tool to measure density scale height in the corona.

3. Analytical results

For analytical analysis of the anti-node shift, the equilibrium
model of coronal loops is the same as for the numerical investi-
gation in Sect. 2 (see Fig. 1). The coronal plasma is considered
to be cold and ideal, and the loop is assumed to have footpoints
fixed somewhere in the lower solar atmosphere. As mentioned

−L −d 0   d L
0  

z 

ρ i(z
)

ρ
a

ρ
f

Fig. 4. Comparison of step density profile (7) to exponential profile (1).

previously in Sect. 2, coronal loops have R � L, so the thin
flux tube approximation will be applied. This approximation has
been used before by Dymova & Ruderman (2005) and EV07 to
model fast kink waves in loops with an arbitrary, longitudinal
density profile. In addition to being physically relevant, it has
the advantage of making the MHD equations more tractable for
obtaining analytical solutions for a first insight.

With these valid assumptions, Dymova & Ruderman (2005)
show that the MHD equations can be linearised, and a sim-
ple second order ordinary differential equation can be derived,
which describes the standing fast kink modes of the loop in terms
of the maximum radial velocity at the tube boundary r = R. This
equation can easily be re-written in terms of the maximum am-
plitude as a function of position z along a loop (see EV07),

d2ψn

dz2
+ (αωn)2 ρi(z)ψn = 0, (4)

with boundary conditions

ψn = 0 at z = ±L. (5)

The α term in Eq. (4) contains all the physical constants of the
model such that

α =
1
B

√
µ(χ + 1)

2
, (6)

where B is the magnetic field strength, µ the magnetic permeabil-
ity, and χ the ratio of ρe(z)/ρi(z) previously defined in Eq. (2).

We have no knowledge of an analytical solution for Eq. (4)
when ρi(z) is described by profile (1). However, useful analyti-
cal insight into the behaviour of the solution can be gained by
applying appropriate approximations to (1). In Sect. 3.1, density
profile (1) will first be approximated by step functions, and then
in Sect. 3.2 a much more refined approximation to density pro-
file (1) will be made using a rational function.

3.1. Step density profile

A simple approximation to density profile (1) can be made using
step functions (see Fig. 4) as follows

ρi(z) =

{
ρa, z ∈ [−d, d]
ρf , z ∈ [−L,−d) ∪ (d, L], (7)

where ρf is the footpoint density, ρa the apex density, and
both are constants. This approximation most clearly shows how
the shifts of anti-nodes are caused by the density contrast be-
tween the footpoints and apex of a given loop. EV07 previously
solved (4) and (5) with density profile (7) for the odd integer
modes (n = 1, 3, 5, . . .), since in the first place, these authors
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wanted to illustrate the effect of density stratification on the fun-
damental mode (n = 1). Here, a similar mathematical approach
is used to study the first harmonic, which is an even integer
mode (n = 2). Density profile (7) gives contact discontinuities
at z = ±d; therefore, the following boundary conditions have to
be satisfied (see EV07 for details),

[
ψ2

]
= 0,

[
dψ2

dz

]
= 0, (8)

where the square brackets indicate the jump of a quantity at
z = ±d.

Along with boundary conditions (5), the symmetry of den-
sity profile (7) about z = 0, implies that the first harmonic must
also have

ψ2(0) = 0, (9)
dψ2

dz
(0) = A2, (10)

where A2 is the arbitrary gradient of the amplitude at the loop
apex. Solving (4) locally in each region of z and matching the
solutions together at the density discontinuity so that ψ2(z) and
its derivative are continuous, in accordance with (8), gives the
solution for the amplitude of the first harmonic as

ψ2(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A2 sin(αω2

√
ρaz), z ∈ [−d, d]

sgn(z) B2 cos(αω2
√
ρfz)

+C2 sin(αω2
√
ρfz), z ∈ [−L,−d) ∪ (d, L],

(11)

where

B2 =
A2√
ρf

⎧⎪⎪⎨⎪⎪⎩
√
ρf cos(αω2

√
ρfd) sin(αω2

√
ρad)

−√ρa sin(αω2
√
ρfd) cos(αω2

√
ρad)

⎫⎪⎪⎬⎪⎪⎭, (12)

and

C2 =
A2√
ρf

⎧⎪⎪⎨⎪⎪⎩
√
ρf sin(αω2

√
ρfd) sin(αω2

√
ρad)

+
√
ρa cos(αω2

√
ρfd) cos(αω2

√
ρad)

⎫⎪⎪⎬⎪⎪⎭, (13)

only if the following equation is satisfied (because of the bound-
ary conditions [5]),

tan(αω2
√
ρfL) =

−
√
ρf tan(αω2

√
ρad) − √ρa tan(αω2

√
ρfd)√

ρf tan(αω2
√
ρfd) tan(αω2

√
ρad) +

√
ρa
· (14)

In the specific case of ρa = ρf , (ρi(z) = ρc, say), the RHS of
Eq. (14) is zero, giving

αω2
√
ρcL = π (15)

and solution (11) simplifies to

ψ2(z) = A sin(αω2
√
ρcz), z ∈ [−L, L]. (16)

To find the position of the anti-nodes, zAN ∈ [−L, L], one has to
solve

dψ2

dz
(zAN) = 0. (17)

Trivially for case (16), zAN = ±L/2 and there is no anti-node
shift. To find an analytical expression for the anti-node shift
when ρa � ρf , weak stratification is assumed where ρa ≈ ρf ≈ ρc
and the small parameter ε � 1 is introduced,

ε =
L − d

L
· (18)

The parameter ε, given by Eq. (18), is, therefore, the fraction
of loop half length L at the footpoints where the plasma has
a higher density. Weak stratification gives zAN ≈ ±L/2, so the
small parameter ε ensures that zAN ∈ [−d, d]. Only zAN ∈ [0, d]
is considered here, since by the symmetry of density profile (7)
the magnitude of the shift is the same in both [−d, 0] and [0, d].
Solution (11), with condition (17) means that the position of
zAN ∈ [0, d] is the first positive root of

cos(αω2
√
ρazAN) = 0. (19)

The anti-node shift, normalised to L, is then

∆zAN

L
=

1
2

(
π

γ
− 1

)
, (20)

where

γ = αω2
√
ρaL. (21)

With notation,

κ =

√
ρa

ρf
, (22)

transcendental Eq. (14) can be rewritten as

[
tan(γ) − tan(γε)

]
+ κ

[
tan

(
γε

κ

)

+ tan(γ) tan(γε) tan
(
γε

κ

)]
= 0. (23)

Since ρa ≈ ρf ≈ ρc, it follows that γ ≈ π and κ ≈ 1. The follow-
ing series approximations can then be made:

tan(γ) ≈ γ − π, (24)

tan(γε) ≈ γε + 1
3

(γε)3 (25)

and

tan
(
γε

κ

)
≈ γε

κ
+

1
3

(
γε

κ

)3
· (26)

Approximations (25) and (26) are required to the third order
to obtain the first nonvanishing terms. Using Eqs. (24)–(26) in
Eq. (23) and neglecting terms of higher order than ε3, the fol-
lowing cubic equation for γ is derived,

ε2

[
1
3
ε
(
1 − κ2

)
+ κ2

]
γ3 − π (εκ)2 γ2 + κ2γ − κ2π = 0. (27)

Interestingly, it can be seen from Eq. (27) that γ, and therefore
the anti-node shift (20) is only dependent on the parameters ε
and κ, which define the density profile (7). The shift of the anti-
node is therefore totally independent of frequency, ω2, and α
(defined in Eq. (6)), which contains the magnetic field strength B
and the external and internal density contrast term χ.

There are various well-known elementary methods that can
be used for solving cubic equations (see e.g., Abramowitz &
Stegun 1965). It is found that there is one real root of Eq. (27)
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Fig. 5. Step density profile (7): anti-node shift ∆zAN/L against ε when
ρa/ρf = 0.6, 0.7, 0.8, 0.9 (from top to bottom). The asymptotic solu-
tion and numerical solutions are shown by the dashed and solid lines,
respectively.

and a pair of complex conjugate roots. The physical solution
corresponds to the real root of Eq. (27), which is

γ =
(2κ)

2
3

2ε f1

(
f1

√
f2 + επ f3

)− 1
3

⎧⎪⎪⎨⎪⎪⎩
(
f1

√
f2 + επ f3

) 2
3

+ (2κ)
2
3 f4 + επκ

[
2κ

(
f1

√
f2 + επ f3

)] 1
3

⎫⎪⎪⎬⎪⎪⎭, (28)

where

f1 = −(ε − 3)κ2 + ε, (29)

f2 =
{
ε
[
3π2ε

(
ε2

(
3 + 4π2

)
− 4 (3ε − 2)

)
− 4

]
+ 12

}
κ4,

−2ε
[
(3πε)2 (ε − 2) − 2

]
κ2 + (3π)2 ε4, (30)

f3 =
[
ε2

(
3 + 2π2

)
− 3(5ε − 6)

]
κ4 − 3ε(2ε − 5)κ2 + 3ε2, (31)

and

f4 =
[
ε
(
π2ε + 1

)
− 3

]
κ2 − ε. (32)

Since it was required to find the root of cubic Eq. (27), the
explicit expression for γ shown in (28) is rather complicated.
However, the basic behaviour can be understood by inspecting
the first few terms of the power-series expansion of (28),

γ = π − π
3

3

(
1
κ2
− 1

)
ε + O(ε5). (33)

Combining Eqs. (33) and (20) to first order in ε,

∆zAN

L
≈ επ2

6

(
ρf

ρa
− 1

)
. (34)

In Eq. (34) describing the anti-node shift, definition (22) has
been used to give κ in terms of ρa/ρf . It can be seen from Eq. (34)
that the anti-node shift, ∆zAN/L, increases as ε increases or ρa/ρf
decreases, i.e., anti-node shift increases as the higher-density
footpoint segment of the loop increases in length or as the den-
sity contrast becomes greater between the loop footpoints and
apex.

These two separate contributions to anti-node shift are il-
lustrated in Figs. 5 and 6, where the asymptotic and numeri-
cal solutions of (17) are both plotted for comparison. In deriv-
ing the asymptotic solution (28), it was assumed that ρa and
ρf were approximately equal, but as can be seen from Figs. 5
and 6, when ε <≈ 0.1, the solution still works very well for

0 0.2 0.4 0.6
0

0.002

0.004

0.006

0.008
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1 − ρ
a
  / ρ

f

∆ 
z AN

 / 
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Fig. 6. Step density profile (7): anti-node shift ∆zAN/L against 1− ρa/ρf

when ε = 0.05, 0.1, 0.15, 0.2 (from bottom to top).

−L 0   L
0 

z

ρ i(z
)

ρ
a

ρ
f

Fig. 7. Comparison of smooth density profile (35) with exponential
profile (1) shown by the dashed and solid lines, respectively.

much more pronounced stratification. Considering the case when
ε = 0.1, for relatively weak stratification, ρa/ρf = 0.9, the dif-
ference between the asymptotic and numerical solution is 3%,
as would be expected. However, for a much lower density ratio,
e.g., ρa/ρf = 0.4, the difference in solutions is still only 10%.

The density ratio, ρa/ρf , required to produce observable
shifts, i.e., >≈1 Mm in a L = 100 Mm loop depends on the
value of ε. If a loop has a relatively large footpoint region with
ε = 0.2 (equivalent to 20 Mm), then one must have ρa/ρf <≈ 0.5.
However, if the footpoint region is much smaller, e.g., ε = 0.05
(equivalent to 5 Mm), there must be a much greater density con-
trast with ρa/ρf <≈ 0.03.

From Figs. 5 and 6, it is also important to note that differ-
ent values of ε can result in the same anti-node shift depending
on the value of ρa/ρf . That completely different density profiles
can result in the same anti-node shift is important. Although
the generic exponential profile (1) was chosen for the numeri-
cal study in Sect. 2, there may also physical conditions in ac-
tive region post-flare coronal loops where this does not apply. To
use the anti-node shift to determine accurate information about
plasma density stratification in a loop, one must know the appro-
priate functional form of ρi(z).

3.2. Smooth density profile

To make a more refined approximation to (1), the rational
function

ρi(z) =
ρa[

1 − (1 − κ)
(

z
L

)2
]2

(35)

is an appropriate choice since it gives a smooth density pro-
file (see Fig. 7) and Eq. (4) with boundary conditions (5)
can be easily solved using only elementary functions (see
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Polyanin & Zaitsev 2003). The amplitude of the first harmonic,
when the density profile is modelled by Eq. (35), is given by

ψ2(z) = A2

√
1 − (1 − κ)

( z
L

)2
sin

{
1
2
η ln

[
ξ(z)

]}
, (36)

where

η =

√
γ2

1 − κ − 1 (37)

and

ξ(z) =
1 + z

L

√
1 − κ

1 − z
L

√
1 − κ · (38)

Equation (36) satisfying boundary condition (5) means that
Eq. (37) can also be written as

η = 2π ln−1

⎛⎜⎜⎜⎜⎝1 +
√

1 − κ
1 − √1 − κ

⎞⎟⎟⎟⎟⎠ · (39)

Hence the solution (36) is only dependent on two parameters,
κ and L. To find the position of the anti-nodes zAN (as shown
in Sect. 3.1), it is required to solve Eq. (17). By the symmetry
of density profile (35), only zAN ∈ [0, L] will be considered.
Amplitude profile (36) with condition (17) means that zAN is the
first positive root of

zAN

L
tan

[
1
2
η ln(ξAN)

]
=

η√
1 − κ , (40)

where ξAN ≡ ξ(zAN). To solve transcendental Eq. (40), weak
stratification is again assumed. For κ ≈ 1, it follows that

ξAN ≈ 1. (41)

Using L’Hôpital’s rule, it can also be shown that

1
2
η ln(ξAN) ≈ π

2
· (42)

Therefore, the following series approximations are made,

ln (ξAN) ≈ (ξAN − 1) − 1
2

(ξAN − 1)2 +
1
3

(ξAN − 1)3 (43)

and

tan

[
1
2
η ln(ξAN)

]
≈ 2
π − η ln(ξAN)

· (44)

By using (43) and (44), Eq. (40) can be approximated by the
following cubic equation[
3 + η

(
10
3
η − 1

2
π

)]
ζ3 − 3

[
1 + η

(
η +

1
2
π

)]
ζ2

+

[
1 + η

(
η +

3
2
π

)]
ζ − 1

2
πη = 0, (45)

where

ζ =
zAN

L

√
1 − κ. (46)

From Eq. (46) and by the fact that zAN/L → 1/2 as κ → 1, the
anti-node shift, normalised to L, is given by

∆zAN

L
=

ζ√
1 − κ −

1
2
, (47)
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Fig. 8. Smooth density profile (35): anti-node shift ∆zAN/L against
1 − ρa/ρf . The asymptotic and numerical solutions shown by the dashed
and solid lines, respectively.

where ζ (defined by Eq. (46)) is a root of cubic Eq. (45). It is
found that Eq. (45) has one real root and a pair of complex con-
jugate roots. The required root is

ζ =
1
g1

[(
g1
√
g2 − 3g3g4

) 1
3

− 2ηg5
(
g1
√
g2 − 3g3g4

)− 1
3 + 3g6

]
, (48)

where

g1 = 20η2 − 3πη + 18, (49)

g2 = 52η8 − 168πη7 + 252π2η6 − 4π(117 + 54π)η5

+
[
264 + π2(432 + 81π2)

]
η4 − 2π(81π2 + 216)η3

+(160 + 189π2)η2 − 132πη + 36, (50)

g3 = 8η2 − 9π + 6, (51)

g4 = 6η4 − 4πη3 + 3(4 + π2)η2 − 3πη + 6, (52)

g5 = 2η3 + 9πη2 + (2 − 9π2)η + 6π, (53)

and

g6 = 2η2 + πη + 2. (54)

Hence, using the expression for ζ given by (48) in Eq. (47), one
has an explicit solution for an anti-node shift when there is weak
stratification. The asymptotic and numerical anti-node shifts are
plotted in Fig. 8 as functions of 1−ρa/ρf . The difference between
the asymptotic and numerical anti-node shifts is 6% for ρa/ρf =
0.9 and 11% for ρa/ρf = 0.8.

The power-series expansion of the asymptotic anti-node shift
(47) is a convergent Laurent series with a singularity at κ = 1.
Therefore, one cannot obtain a simple first-order expression for
the anti-node shift (equivalent to Eq. (34) for the step density
profile), since we need a very large number of terms for the se-
ries approximation to obtain a reasonable accuracy near the sin-
gularity at κ = 1. However, as can be seen from Fig. 8, the anti-
node shift can be more easily approximated as a linear function
of 1 − ρa/ρf . For ρa/ρf >≈ 0.7,

∆zAN

L
≈ 0.04

(
1 − ρa

ρf

)
· (55)

Equation (55) now shows the relatively simple relationship be-
tween anti-node shift and the density ratio ρa/ρf , i.e., anti-node
shift increases as the density contrast becomes greater. This is in
qualitative agreement with the previous numerical result (3) and
the results for the step profile (34).
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Since the difference between the exponential profile (1) and
the smooth profile (35) is not large (see Fig. 7), the difference
in anti-node shifts should also be small. Assuming that ρa/ρf is
defined by exponential profile (1), i.e.,

ρa

ρf
= exp

(
− 2L
πH

)
, (56)

then for low values of L/H,

ρa

ρf
≈ 1 − 2L

πH
· (57)

Substituting (57) into (55) gives the linear relationship

∆zAN

L
≈ 0.025

L
H
· (58)

The anti-node shift as a function of L/H given by (58) is
within 11% of the numerical result given by (3). Considering
the smooth density profile (35) used as an approximation of the
exponential profile (1), this is a satisfactory result. For a coronal
loop with H = 50 Mm and L = 100 Mm, approximation (58)
gives an error on the amount of anti-node shift of 600 km, which
is 1.5 pixels at the resolution of TRACE.

4. Conclusions

To measure plasma density stratification directly in the solar at-
mosphere using e.g., spectroscopy, one must know precise ele-
mental abundances and at what height and temperature the spec-
tral lines are formed. However, these values may have large
uncertainties. Furthermore, direct methods ideally need simulta-
neous measurements from different lines of sight. Unfortunately,
for all the current and near future missions (apart from the Solar
TErrestrial Relations Observatory [STEREO]), this will not be
possible. Therefore, it is crucial that we have alternative meth-
ods for verifying the accuracy of direct measurements. Magneto-
seismological methods such as the one proposed in this paper
could prove to be invaluable in this regard.

The improved time cadence of the next generation of EUV
imagers onboard SDO and SO will provide the best chance yet
of observing higher harmonics in post-flare loop oscillations.
Therefore, the SMS method proposed in this paper for measuring
the anti-node shift of the first harmonic of transversal loop oscil-
lations so as to determine density stratification, offers a promis-
ing complementary method of getting information regarding the
plasma fine structure in the solar corona. Since anti-node shifts
due to density stratification can be expected in the Mm range,
resolution should not be a problem.

However, since the EUV imagers can only provide 2D spa-
tial data, uncertainties in shift measurments may be introduced
by projection effects. Therefore, one would ideally need an ac-
curate 3D reconstruction of a loop’s geometry to correct for this.
Much progress has been made recently in developing techniques
of reconstructing coronal 2D images in 3D. Some of the most
successful approaches so far use stereoscopic methods, mag-
netic field extrapolation constraints, and loop curvature radius
constraints (see Aschwanden 2005, for a detailed discussion).
Although the two EUV imagers used in the STEREO mission
do not have the time cadence or spatial resolution required for
SMS, the quasi-3D images they are capable of producing can
only help increase our understanding of the solar corona’s com-
plex and fascinating 3D structure.

Uncertainties may also be introduced from a number of dif-
ferent physical processes in active regions. Since plasma fine

structure can be changed by dynamic phenomena such as flow
or heating/cooling, this may cause a shift in the anti-node.
Furthermore, a shift may occur due to a change in loop length
caused by emerging magnetic flux or a flaring event. Hence, fur-
ther theoretical investigation is required to quantify how these
different physical processes affect the standing fast kink mode in
coronal loops.

The effect of magnetic stratification on the standing fast kink
mode must also be addressed. It is physically reasonable to as-
sume that the magnetic field strength decreases with height in
the solar corona. Since the kink speed is proportional to the
magnetic field strength, this may play a significant role in the
anti-node shift. To our current knowledge, there is no analytical
model yet that describes the standing fast kink mode of a mag-
netic cylinder that has an inhomogeneous magnetic field along
its axis, except a work in progress by ourselves. In the past
five years, there have been 3D numerical studies of the inter-
action between fast magnetoacoustic waves and potential/linear
force-free magnetic fields extrapolated from magnetogram data
(Ofman & Thompson 2002; Terradas & Ofman 2004b; Ofman
2005). Further numerical investigations of this type should prove
invaluable in understanding the properties of oscillations in more
realistic magnetic field structures.

Since not all the observed oscillations can be considered to
be in the linear regime, an even greater theoretical challenge
is to understand the properties of nonlinear fast kink waves in
magnetic cylinders. Some progess has been made in this area by
Terradas & Ofman (2004a) using a 3D MHD numerical simu-
lation. They find that nonlinear kink waves may actually cause
a density enhancement at coronal loop tops. Their result could
explain emission measure enhancements in oscillating loops ob-
served after a flaring event on 1998 July 14 using TRACE data.

Acknowledgements. The authors thank M. Ruderman for a number of useful
discussions. R.E. acknowledges M. Kéray for patient encouragement. The au-
thors are also grateful to NSF, Hungary (OTKA, Ref. No. TO43741), and the
Engineering and Physical Sciences Research Council (EPSRC), UK, for the fi-
nancial support they received.

References

Abramowitz, M., & Stegun, I. A. 1965, Handbook of Mathematical Functions,
(New York: Dover Publications)

Andries, J., Arregui, I., & Goossens, M. 2005a, ApJ, 624, L57
Andries, J., Goossens, M., Hollweg, J. V., Arregui, I., & Van Doorsselaere, T.

2005b, A&A, 430, 1109
Arregui, I., Van Doorsselaere, T., Andries, J., Goossens, M., & Kimpe, D. 2005,

A&A, 441, 361
Arregui, I., Van Doorsselaere, T., Andries, J., Goossens, M., & Kimpe, D. 2006,

Phil. Trans. R. Soc. A, 384, 529
Arregui, I., Andries, J., Van Doorsselaere, T., Goossens, M., & Poedts, S. 2007,

A&A, 463, 333
Aschwanden, M. J. 2004, Physics of the Solar Corona: An Introduction (Berlin:

Springer-Verlag)
Aschwanden, M. J. 2005, Sol. Phys., 228, 339
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999a, ApJ,

520, 880
Aschwanden, M. J., Newmark, J. S., Delaboudinière, J., et al. 1999b, ApJ, 515,

842
Aschwanden, M. J., Nightingale, R. W., & Alexander, D. 2000, ApJ, 541, 1059
Aschwanden, M. J., Schrijver, C. J., & Alexander, D. 2001, ApJ, 550, 1036
Aschwanden, M. J., De Pontieu, B., Schrijver, C. J., & Title, A. M. 2002,

Sol. Phys., 206, 99
Aschwanden, M. J., Nightingale, R. W., Andries, J., Goossens, M., &

Van Doorsselaere, T. 2003, ApJ, 598, 1375



348 G. Verth et al.: Spatial magneto-seismology

Brekke, P., Kjeldseth-Moe, O., & Harrison, R. A. 1997, Sol. Phys., 175, 511
Díaz, A. J., Oliver, R., & Ballester, J. L. 2002, ApJ, 580, 550
Dymova, M. V., & Ruderman, M. S. 2005, Sol. Phys., 229, 79
Edwin, P. M., & Roberts, B. 1983, Sol. Phys., 88, 179
Goossens, M., Andries, J., & Aschwanden, M. J. 2002, A&A, 394, L39-42
Goossens, M., Arregui, I., & Andries, J. 2006, Phil. Trans. R. Soc. A., 364, 433
Erdélyi, R., & Verth, G. 2007 A&A, 462, 743
McEwan, M. P., Donnelly, G. R., Díaz, A. J., & Roberts, B. 2006, A&A, 460,

893
Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B., & Davila, J. M. 1999,

Science, 285, 862
Ofman, L. 2005, AdSpR, 36, 1572
Ofman, L., & Thompson, B. J. 2002, ApJ, 574, 440
Polyanin, A. D., & Zaitsev, V. F. 2003, Handbook of Exact Solutions for

Ordinary Differential Equations (Boca Raton: Chapman & Hall)
Roberts, B., Edwin, P. M., & Benz, A. O. 1984, ApJ, 279, 857
Ruderman, M. S., & Roberts, B. 2002, ApJ, 577, 475

Schrijver, C. J. 2001, Sol. Phys., 198, 325
Terradas, J., & Ofman, L. 2004a, ApJ, 610, 523
Terradas, J., & Ofman, L. 2004b, SOHO 13 – Waves, Oscillations and Small-

Scale Transient Events in the Solar Atmosphere: A Joint View from SOHO
and TRACE, ESA SP-547, 469

Van der Linden, R. A. M. 1991, Ph.D. Thesis, K.U. Leuven
Van Doorsselaere, T., Andries, J., Poedts, S., & Goossens, M. 2004, ApJ, 606,

1223
Verwichte, E., Nakariakov, V. M., Ofman, L., & Deluca, E. E. 2004, Sol. Phys.,

223, 77
Verth, G. 2007, Astron. Nachr., in press
Verth, G., & Erdélyi, R. 2007, The 2nd Solar Orbiter Workshop, ed. E. Marsch,

K. Tsinganos, R. Marsden, & L. Conroy, ESA SP-641
Winebarger, A. R., DeLuca, E. E., & Golub, L. 2001, ApJ, 553, L81
Winebarger, A. R., Warren, H., van Ballegooijen, A., DeLuca, E. E., & Golub,

L. 2002, ApJ, 567, L89
Winebarger, A. R., Warren, H. P., & Seaton, D. B. 2003, ApJ, 593, 1164


