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ABSTRACT

Context. TRACE observations (23/11/1998 06:35:57−06:48:43 UT) in the 171 Å bandpass of an active region are studied. Coronal
loop oscillations are observed after a violent disruption of the equilibrium.
Aims. The oscillation properties are studied to give seismological estimates of physical quantities, such as the density scale height.
Methods. A loop segment is traced during the oscillation, and the resulting time series is analysed for periodicities.
Results. In the loop segment displacement, two periods are found: 435.6 ± 4.5 s and 242.7 ± 6.4 s, consistent with the periods of the
fundamental and 2nd harmonic fast kink oscillation. The small uncertainties allow us to estimate the density scale height in the loop
to be 109 Mm, which is about double the estimated hydrostatical value of 50 Mm.
Because a loop segment is traced, the amplitude dependence along the loop is found for each of these oscillations. The obtained spatial
information is used as a seismological tool to give details about the geometry of the observed loop.
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1. Introduction

In the last decade, a wealth of oscillatory phenomena have been
discovered in the solar corona (for an overview, see Nakariakov
& Verwichte 2005). These oscillatory phenomena are a tool to
do MHD coronal seismology with (Roberts et al. 1984).

Of particular interest are transverse coronal loop oscillations,
i.e. rapidly damped oscillations of coronal loops displacing the
loop axis. In recent years, they have received a lot of attention
from observers and modellers alike. The oscillations are believed
to be fast magnetosonic kink modes, but the mechanism respon-
sible for their excitation and the rapid damping is still under
debate.

These oscillatory events were first observed by Aschwanden
et al. (1999); Nakariakov et al. (1999). Later on, oscillations in a
sample of 17 loops were studied and analysed by Schrijver et al.
(2002); Aschwanden et al. (2002). Recently, Verwichte et al.
(2004) found two events with signatures of 2 different periodici-
ties in a single loop in an arcade. Wang & Solanki (2004) found
oscillations with a vertical polarisation, and Li & Gan (2006)
observed oscillations in shrinking loops.

Fast magnetosonic kink oscillations were first studied ana-
lytically by Zaitsev & Stepanov (1975). The dispersion relation
for these modes was later independently derived by Edwin &
Roberts (1983). To explain the damping, several theories exist:
resonant absorption, wave leakage, phase mixing,. . .

Resonant absorption as a damping mechanism has re-
ceived the most attention: in this mechanism a resonance is
set up where the local Alfvén frequency matches the global
oscillation frequency. In this resonance, energy is converted
from the global mode to local Alfvén modes. Early analytical
work on this mechanism was done by Goossens et al. (1995);
Ruderman & Roberts (2002) and numerical modelling was done
by Van Doorsselaere et al. (2004a) to extend the standard loop

model to radially inhomogeneous loops. Loop curvature was
added by Van Doorsselaere et al. (2004b); Terradas et al. (2006),
and longitudinal density stratification was added by Andries
et al. (2005b).

Resonant absorption provides an efficient mechanism to con-
vert global oscillations into localized Alfvén modes. However,
observational signatures of the generated Alfvén modes, which
would confirm this hypothesis, are difficult to measure.

A statistical study was performed by Ofman & Aschwanden
(2002) in an attempt to pin down the damping mechanism. They
concluded that the oscillations are most likely damped by phase
mixing with anomalously high shear viscosity. It has not been
demonstrated how phase mixing as a damping mechanism of
waves in coronal loops as coherent structures would work. Also,
it has yet to be demonstrated how the mechanism would operate
in multi-stranded loop.

In the statistical study, however, some damping mechanisms
were treated improperly, e.g. resonant absorption by assuming
that the length and width of the loop are proportional to the in-
homogeneity scale, (Goossens et al. 2002) and the large error
bars on the observations do not currently allow to distinguish
between several damping mechanisms. A larger sample size and
more precise observations are needed to discriminate between
damping mechanisms.

Because of inherent problems with the observational study
of the solar corona (line-of-sight integration and the high den-
sity contrast with the photosphere), it is practically impossi-
ble to measure the coronal density and the coronal magnetic
field. Some attempts to measure the density were undertaken
(Aschwanden et al. 2003) and the average value of the magnetic
field was estimated by Lin et al. (2000, 2004), but the error bars
on the results are large.

It is, however, possible to measure the density and
magnetic field by doing coronal seismology (Uchida 1970;
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Fig. 1. Left panel: the starting frame of the studied time sequence. A indicates the oscillating loop studied in this paper. B points at the material
expelled by the triggering loop (C). Right panel: the 14th frame of the studied time sequence. A indicates the oscillating loop studied in this paper.
D shows another oscillating loop in the same loop complex.

Roberts et al. 1984). Coronal seismology can be achieved by
studying oscillations in the corona and comparing the observed
properties with models. By adjusting the model, restrictions on
physical quantities in the corona can be obtained.

The transverse oscillations are an excellent tool to do coronal
seismology with. The coronal dissipative coeffecients were esti-
mated by Nakariakov et al. (1999) and the local magnetic field
in the oscillating loop was calculated by Nakariakov & Ofman
(2001). Andries et al. (2005a) used the double periodicity mea-
sured by Verwichte et al. (2004) to measure the density scale
height in the corona. Verwichte et al. (2006b) determined the ra-
dial density structure in oscillation coronal loops, and Arregui
et al. (2007) found a lower bound for the internal Alfvén transit
time.

Since then, a lot of interest has gone out to multiple period-
icities in the same structure. The influence of the density stratifi-
cation in the corona on the ratio of the period of the fundamental
and the second harmonic was studied by McEwan et al. (2006);
Dymova & Ruderman (2006). Unfortunately, the only measure-
ment of such a double periodicity (Verwichte et al. 2004) had
very large errors and could not be used to confidently establish
the density scale height. More recently, De Moortel & Brady
(2007) observed a loop mainly oscillating as a 2nd harmonic,
but also showing a periodicity consistent with the fundamental
mode.

In this paper, we report on the high accuracy measurement of
a double periodicity in a single loop. The two periods, together
with the spatial structure of the oscillation, are used to determine
coronal loop parameters which are difficult to measure, such as
the density scale height in coronal loops.

2. Basic properties of the event

We use the 171 Å observations of the Transition Region
And Coronal Explorer (TRACE) satellite (Handy et al. 1999)
to study the oscillations in an active region on the 23rd of
November 1998, from 06:35:57 to 06:48:43 UT. The time series
has an average cadence time of 33 s.

In the images preceding the studied time series (and in Fig. 1,
left), it is observed that a low lying loop is violently disrupted

(indicated by C in Fig. 1, left). After this violent event, a cloud
of material is seen to escape the loop system (shown by B in
Fig. 1, left), pushing aside the overlying loops (A in Fig. 1, left).
Disturbed out of their equilibrium, the overlying loops start to
oscillate in the wake of the escaping material. The velocity per-
pendicular to the line of sight of the expelled material is es-
timated to be approximately 260 km s−1, which is compatible
with the values obtained by Wills-Davey & Thompson (1999);
Wills-Davey (2006).

2.1. Background loop D

The loops (indicated by D in Fig. 1, right) the furthest away from
the perturbation have their axis displaced during the oscillation.
Because no density oscillations are observed, this suggests that
they oscillate in the fundamental kink mode. The indicated loop
behaves as a simple damped harmonic oscillator (see Fig. 2) with
a period of 425 s and a damping time of 2300 s. The loop is
estimated to be 384 Mm long (the exact procedure is described
in the following paragraph).

2.2. Foreground loop A

Loop A is our main loop of interest. It has also been studied
by Aschwanden et al. (2002) (case 3a). They estimated the loop
length to be 390 Mm.

To estimate the length of the loop, we determine the location
of the loop footpoints. Then, we measure the distance between
the loop top and the mid point between the loop footpoins. We
assume that this distance is the major radius of a semi-circular
(toroidal) loop. The length is then π times the major radius. This
method for the determination of the length does not account for
non-circular shape of the loop. Moreover, it is very difficult to
determine the exact position of the loop footpoints. It is thus
likely that the error on the estimate of the length will be substan-
tial, up to 10%.

By following the above procedure, the length of loop A can
be estimated to be initially 440 Mm long. During the 24 frames
of the time sequence (765 s), the loop shortens significantly to
365 Mm. The shrinking of the observed loop is of the same
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Fig. 2. The vertical displacement of loop D in Fig. 1, right versus time.
The actual measurements are indicated with +s, while the fit is indicated
with a line. The fitted period is 425 s, the damping time is 2300 s and
the amplitude is 3.95 arcsec.

magnitude as in the report of Li & Gan (2006). The current loop
shrinks∼17% in 12 min, and the loop in Li & Gan (2006) shrinks
∼30% in 5 min. On the other hand, Li & Gan study a short, post-
flare loop, whereas the loop studied here is very long. The ap-
parent shrinking of the loop may also be caused by a change of
the inclination of the loop with respect to the solar surface, or a
more complicated change of the loop shape.

These measured lengths are compatible with the values
found by Aschwanden et al. (2002).

The loop exhibits a more involved oscillatory pattern than the
background loop D. During the oscillation, a “knot” is formed
near the loop top (see Fig. 1, right). If the oscillation would
be a fundamental mode, the form of the loop would be main-
tained (Schrijver et al. 2002). The deformation of the loop shape
clearly shows that higher harmonics must be involved. On the
other hand, the loop axis is still displaced, and no density os-
cillations are observed. This indicates that the fast kink mode is
observed, but that a combination of longitudinal mode numbers
is excited. The longitudinal structure of the oscillation suggests
that the 2nd harmonic kink oscillation is observed.

The brightening of the loop top by non-linear effects has
been studied by Terradas & Ofman (2004) and is not considered
in this paper in detail.

3. Analysis of the event

3.1. Determination of the oscillation characteristics

To facilitate the analysis, the images are rotated by 45◦ in
the anti-clockwise direction. By doing this, the loop is almost
aligned parallel with the X-axis (see Fig. 1). A disadvantage of
this rotation is that the resolution reduces by a factor of

√
2, be-

cause no interpolation is performed and only pixels with an even
sum of indices are retained.

For a fixed horizontal coordinate (x), the vertical position of
the loop (y) is estimated throughout the duration of the oscilla-
tion. This procedure is repeated for 60 positions along the loop
leg. The estimated perturbations y(x, t) are indicated by a blue
line in Fig. 1.

To analyse the perturbations, Gaussian noise with a standard
deviation of 1.41 arcsec (i.e. 2 pixels in the rotated image) is

Fig. 3. The distribution of the fitted period to the noisy signal at x =
150.6′′ . The mean is indicated with a + at the bottom, while the standard
deviation is shown by the horizontal error bars on the mean.

added to y(x, t). Then, for a fixed vertical slit (i.e. a fixed x posi-
tion), the resulting noisy data is fitted with the function

A sin

(
2πt
P
+ φ

)
exp (−t/τ) +C + Dt, (1)

where A is the amplitude of the oscillation, P the period, φ the
phase, τ the damping time and C and D describe the average
intercept and global shift of the loop. For each fixed x slit, a set
of {A, P, φ, τ,C,D} is obtained.

The above procedure is repeated 200 times with a varying
noise. For each slit, a statistical distribution of parameters is ob-
tained (e.g. Fig. 3 shows the distribution of the best-fitting period
for x = 150.6′′). From this distribution, the mean and the vari-
ance can be computed (both the values are indicated in Fig. 3).
We thus obtain the mean values and errors of {A, P, φ, τ,C,D} for
a fixed x value. The fitted signal with these mean parameters is
overplotted on the original data in the upper panel of Fig. 4, for
x = 150.6′′.

Figure 5 shows the dependency of the mean parameters and
their errors on x. It can be established from Fig. 5 that, for the
pixels lying higher up the loop (x ∈ [135.1′′, 156.3′′]), a con-
sistent value for the period and phase is obtained. This suggests
that the fitting identifies the same oscillation throughout that part
of the loop. By averaging over the top part of the loop, a more
precise estimate of the oscillation properties can be made. The
errors on the oscillation properties are reduced drastically by tak-
ing the mean over 31 points. For the considered interval, an aver-
age period of 435.6 ± 4.5 s is found (see the appendix for details
on the error analysis), and an average damping time of 2129 ±
280 s. The value of the period is compatible with the previous
estimates for this event (see Aschwanden et al. 2002, case 3a):
P = 522 s, the value for the damping time is almost double the
previously estimated value: τ = 1200 s.

As a next step in the analysis, for each x position, the best-
fitted function is subtracted from the original signal. As above,
the obtained residu and additional Gaussian noise is fitted with
Eq. (1). Again, a statistical ensemble is found for each x position.
Using the mean parameters, the fitted function is overplotted on
the residu in the middle panel of Fig. 4.

The dependence on x of the mean fitting parameters and their
errors in the residu signal is shown in Fig. 6. Again a consistent
oscillation is detected in the top part of the loop. The average pe-
riod found in the residu is 242.7± 6.4 s, and the average damping
time 872 ± 221 s.

We conclude that the analysed signal contains two oscil-
lations with different periods, most probably the fundamental
mode and the 2nd harmonic.
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Fig. 4. A typical signal of the transverse displacement of an oscillat-
ing loop segment of one-pixel width (+), with the mean fitted signal
overplotted (lines) and the trend line (dotted line). The upper panel
shows the original signal, while the middle panel shows the fit to the
residu. The bottom panel shows the original signal and overplots the
combined fits.

3.2. Coronal loop seismology

The ratio of periods of these two oscillations can be calculated
to be P1/P2 = 1.795 ± 0.051. This value significantly deviates
from 2, and thus rules out the possibility of a non-linearly excited
second harmonics, where the ratio has to be exactly equal to 2.

According to Nakariakov & Oraevsky (1995) the appearance
of a shorter periodicity in the signal can be connected with the
resonant 3-wave interaction of the longer period kink mode with
a shorter period kink mode and a sausage mode. In this case, the
frequency of the sausage mode would be a sum of the frequen-
cies of interacting kink modes. The sausage mode in the resonant
triplet would not be resolved with TRACE because of its short
period. However, it is not clear whether the resonant conditions
can be satisfied at all in the considered loop. Also, strictly speak-
ing, the theory developed in Nakariakov & Oraevsky (1995) is
only applicable to propagating waves and needs to be extended
to describe the interaction between standing modes. Thus, we
rule out this interpretation as theoretically undeveloped.

Long-wavelength kink modes of a magnetic cylinder are
known to be weakly dispersive (e.g. Nakariakov & Verwichte
2005). The P1/P2 ratio caused by the dispersion in an un-
stratified long loop is within a few percent of 2 (see Fig. 2

Fig. 5. From top to bottom: A, P, φ, τ, C, D for the fit of the original
signal of 60 pixels along the loop leg.

in McEwan et al. 2006). The observed deviation of P1/P2 from
2 is too large to be explained by dispersion only.

The effect of the vertical density stratification (ρ(z) =
ρ0 exp (−z/H)) on P1/P2 was studied by Andries et al. (2005a);
McEwan et al. (2006). Andries et al. assumed a vertical density
stratification in the solar corona, and projected this dependency
on a cylindrical loop. On the other hand, McEwan et al. took an
exponential density stratification in the loop itself. Yet another
approach was taken by Dymova & Ruderman (2006), who did
the calculations for non-semi-circular loops in a vertically strat-
ified atmosphere.

If it is assumed that the deviation of P1/P2 from 2 is solely
caused by the vertical density stratification, a range of values for
the relative density stratification L/πH can be found (L is the
loop length and H is the density scale height). Using the results
of Andries et al. (2005a), we find a value of L/πH = 1.17+0.28

−0.3 .
Similarly, using a slightly different longitudinal density profile,
McEwan et al. (2006) would find L/πH = 1.08 ± 0.28.

In the paper of Dymova & Ruderman (2006), the height
of the geometry centre of the loop ha is allowed to be shifted
above (ha < 0) or below the photosphere (ha > 0). Dymova &
Ruderman (2006) calculated the values for P1/P2 for different
elevations of the loop above the photosphere. Their results are
displayed in Fig. 7, the determined density scale height and the
errors are also shown.

Using the observed value for P1/P2 (without the errorbars),
a range of L/πH ∈ [0.97, 1.64] is found for a varying haπ/L ∈
[−0.5, 0.5] (full line on the horizontal axis). When the errorbars
are included in the analysis, a range of L/πH ∈ [0.73, 2.04] can
be established (dashed line on the horizontal axis).
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Fig. 6. From top to bottom: A, P, φ, τ, C, D for the fit of the residu
signal, obtained after subtraction of the fit in Fig. 5 from the original
signal.

To estimate the absolute value of the density scale height H,
an estimate of the length of the loop L is needed. Before the
event, the length of the loop is estimated to be 440 Mm. At the
end of the observations, the loop has shortened to approximately
365 Mm. To estimate the density scale height, an average loop
length of 400 Mm is assumed.

Using this average length, the estimated value L/πH =
1.17 yields a density scale height of H = 109+37

−21 Mm, us-
ing the results of Andries et al. (2005a). With the results of
McEwan et al. (2006), a density scale height H = 118+41

−24 Mm
is obtained. Taking into account a non-semi-circular geometry,
a value H = 109+22

−31 Mm is established. If the errorbars are in-
cluded, together with the effects of a non-semi-circular geome-
try, we find that H ∈ [62 Mm, 174 Mm]. These results are sum-
marized in Table 1.

The estimates of the density scale height do not take into
account the errors on the loop length. The errors on the loop
length may be as large as 10%. This results in an error on the
density scale height of up to 10%. For the currently estimated
value for H, this would be approximately 10 Mm. This error is
much less than the error induced by the uncertainties on the ratio
of the periods.

The seismologically estimated value for H = 109 Mm is
more than double the value of 50 Mm, expected in a hydrostati-
cally stratified plasma with a temperature of 1 MK, correspond-
ing to the observational bandpass 171 Å. This is not abnormal, as
the stratification inside coronal loops may exceed the hydrostat-
ical value by a factor of 4 (see Aschwanden et al. 2000, 2001).
Even stronger, Aschwanden et al. (2000) show in their Fig. 7 that
the ratio of the density scale heights in coronal loops and the
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Fig. 7. The results from Dymova & Ruderman (2006) plotted with a
dashed line (semi-circular loop, identical to Andries et al. 2005a), dot-
ted line (shortened loop with centre L/π2 below the photosphere), dash-
dotted line (longer loop with centre L/π2 above the photosphere). The
interval for P1/P2 introduced by the error bars is indicated on the ver-
tical axis with a fat dashed line. On the horizontal axis, the interval for
L/πH introduced by the non-semi-circularity is shown by a fat full line.
The range for L/πH obtained by using both the errors and the non-semi-
circularity is shown by a fat dashed line.

hydrostatic scale height exhibits an increasing trend for longer
loops.

Our estimate may point out that coronal loops have a higher
density scale height inside the loop when compared to the sur-
rounding corona.

3.3. Tests of damping mechanisms

In the previous subsection, we only considered the ratio P1/P2
and did not take into account the ratio of the damping times.
The ratio τ1/τ2 = 2.55 ± 0.73. This ratio is significantly higher
than P1/P2. This could point out that the damping mechanism in
coronal loops is dependent on the wave number.

For a more rigorous approach, we assume that the damping
time goes as Ckn, where C is a constant solely depending on the
equilibrium parameters of the loop and k is the longitudinal wave
number. We can then calculate that

2.55 ± 0.73 =
τ1

τ2
=

(
k1

k2

)n

=

(
1
2

)n

and thus deduce that n = −1.35+0.49
−0.36. This interval for n accomo-

dates the value n = −1.
Alternatively, the damping time can be rescaled to the period:

τ ∼ Pp. Since the scaling factor can be assumed to only depend
on loop parameters, it can be established that

τ1

τ2
=

(
P1

P2

)p

, and thus that p =
log

(
τ1
τ2

)
log

(
P1
P2

) ·
Using the observed values, we can estimate that p = 1.60 and,
taking the errors into account, has to be between 0.98 and 2.14.

These values and confidence intervals for n and p provide a
restriction on any proposed damping mechanism.

For resonant absorption, n = −1 and p = 1. This means that
resonant absorption can explain the currently observed damping
times.
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Table 1. A summary of the density scale heights in the oscillating loop, estimated using different methods. Models (1), (2) and (3) are taken from
Andries et al. (2005a); McEwan et al. (2006); Dymova & Ruderman (2006) respectivily.

Physical parameter Model (1) Model (2) Model (3)

H(Mm) 109+37
−21 118+41

−24 109+22
−31

(due to non-semi-circularity)

For lateral wave leakage, p is expected to be negative
(Verwichte et al. 2006a), i.e. for higher harmonics, the radial ex-
tent in smaller, less leakage is present and the damping time will
be longer. The observationally established interval for p does
not accomodate negative values. This means that, in this case,
the damping cannot be explained by lateral wave leakage.

3.4. Amplitude dependence on the vertical coordinate

For a stratified medium, the fundamental mode is essentially
coupled to the 3rd harmonic (see Andries et al. 2005b) without
assuming a damping mechanism. The eigenfunction will thus be
of the form

A(sin (θ) + a sin (3θ)), (2)

where A is the global amplitude of the fundamental harmonic, θ
is the arc length along the loop (θ ∈ [0, π]) and the coupling pa-
rameter a depends of the importance of the density stratification,
measured by L/πH. Ignoring the coupling effect on the second
harmonics, we expect the eigenfunction of the overtone to be

B sin (2θ), (3)

where B is the amplitude of the second harmonics, assumed to
be independent of A and solely determined by the form of the
original perturbation.

If it is assumed that the line of sight is parallel to the loop
baseline, the vertical height above the Sun z can be written as:

z = L/π sin θ, leading to θ = arcsin πz/L.

Substituting this formula in Eqs. (2)–(3), we find the expected
amplitude dependence on the vertical coordinate. For the funda-
mental mode, we obtain

A

(
(1 + 3a)

πz
L
− 4a

(πz
L

)3
)
,

and for the 2nd harmonics, we find

2B
πz
L

√
1 −

(
πz
L

)2
·

However, when fitting the function for the fundamental mode to
the top panel of Fig. 5, and the function for the 2nd harmonics
to the top panel of Fig. 6, no conclusive results are obtained. We
find A = 8.9 ± 3.5 px, a = 0.02 ± 0.36, B = −4.1 ± 0.5 px,
πz0/L = 0.81 ± 0.25, πz1/L = 0.56 ± 0.25, where z0 and z1 indi-
cate the position of the highest and lowest measured vertical slit,
respectively. The value of a yields a range for L/πH ∈ [0, 3.7]
and thus reveals no extra information.

We know that the distance between z0 and z1 is exactly
30 px = 15.3 Mm. We can thus calculate that L ≈ 192 Mm,
in a range of L ∈ [79 Mm,∞[. The observationally estimated
value for the length (≈400 Mm) is higher than this seismologi-
cal estimate, but lies within the exorbitant errorbars.

Using a more simple approach and neglecting all coupling
and higher harmonics (i.e. take B = 0 and a = 0), the top panel

of Fig. 5 can be fitted with a straight line. From this fit, it is found
that the amplitude will be 0 for x = 82.7 arcsec. However, from
the observations, it can be estimated that the footpoint is situated
approximately at x = 17.7 arcsec. These two values do not agree
at all.

Of course, this analysis did not include the effect of a non-
circular loop shape. In that case, it can be expected that a
fundamental mode can still be described as

A sin (θ) + correction terms,

and that the correction terms will be smaller than the fundamen-
tal mode. However, the correction terms may include a contribu-
tion from the 2nd harmonic (due to the geometry), which could
alter the analysis.

3.5. Alfvén speeds in the loop complex

If the measured periods in loops A and D belong to the fun-
damental kink mode, the kink phase speed can be estimated
in these loops. For loop A, we find a value Ck = 2L/P =
1800 km s−1. Loop D is slightly shorter, and has a slightly shorter
period, so that the kink phase speed is estimated to have the same
value as in loop A.

The number density is estimated to be 4.6 × 1014 m−3 and
6.8 × 1014 m−3 for, respectively, loop A and D. To measure the
values, we assumed that the emission in the loop was generated
in a layer of thickness 2R (the loop radius R is measured by fit-
ting the loop emission with a Gaussian) by a plasma with a fixed
temperature of 0.95 × 106 K, i.e. the peak temperature of the
TRACE 171 Å filter. If the temperature of the emitting volume
would be different, the plasma density would increase. As such,
these estimated densities are a lower limit to the actual density.
The density is then calculated by ρA =

√
(IA − Ie)/2χR, where

IA and Ie are the intensities in loop A and in the exterior plasma,
respectively, and χ is the TRACE 171 Å response function (taken
from SolarSoft). The values for the density were not corrected
for line of sight integration and are calculated in the assumption
that the emitting loop is perpendicular to the line of sight.

Taking into account that the measured phase speeds CkA and
CkD and lengths of loops A and D are approximately equal to
each other, we now can write down that:

1 =
CkA

CkD
=

BA

BD

√
ρe + ρD

ρe + ρA
≈ BA

BD

√
nD

nA
= 1.2

BA

BD
, (4)

where quantities with subscript A and D belong to the respec-
tive loop, ρe is the density outside the loops and is assumed
to be small with respect to the loop densities. This assump-
tion is not strictly valid for oscillating coronal loops (the inter-
nal density is between 1 and 5 times the external density, see
Aschwanden et al. 2003). In our case the value 1.2 is an upper
limit to

√
(ρe + ρD)/(ρe + ρA) and the lower limit would be 1.1

in the case of ρe = ρD.
Equation (4) can be used to estimate the ratio of the mag-

nitude of the magnetic field in the two coronal loops to be
BD/BA ≈ 1.2. This suggests that, for loops with a similar length,
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Table 2. A summary of periodicities, lengths and density scale heights for the events mentioned in this article. References. (1) Path C and D are
measured by Verwichte et al. (2004).

P1(s) P2(s) P1/P2 L/πH L(Mm) H(Mm)

Current event 435.6 ± 4.5 242.7 ± 6.4 1.795 ± 0.051 1.17+0.28
−0.30 400 109+37

−21
path C (1) 447.7 ± 15.8 246.5 ± 6.0 1.82 ± 0.08 1.02+0.46

−0.44 218 68+52
−21

path D (1) 387.4 ± 7.5 244.8 ± 7.7 1.58 ± 0.06 2.43+0.38
−0.36 228 30+5

−4

the magnetic field has roughly the same magnitude throughout
different loops in the same active region.

Considering the absolute value of the magnetic field, we can
state that:

10 × 10−4 T =

√
µρAC2

k

2
≤ BA ≤

√
µρAC2

k = 14 × 10−4 T,

where the two outer limits are obtained in the case of a loop
embedded in vacuum and a loop with density equal to the exter-
nal density, respectively. These values are compatible with the
value obtained by Nakariakov & Ofman (2001); Verwichte et al.
(2004). The outer limits obtained above do not take into account
the errors on the density measurement, and merely indicate the
errors introduced by the unknown density contrast between the
internal of the loop and the external plasma.

The results in this subsection have to be taken with caution:
the errors on both the density and, to a lesser extent, the length
are large. As such, the values found in this subsection are only an
indication of the order of magnitude of the physical quantities.

4. Verwichte et al. (2004) revisited

In the currently studied event, the measurement errors on the pe-
riods were drastically reduced by averaging the period over a
whole segment of the oscillating loop. A loop segment was also
studied by Verwichte et al. (2004), but a different averaging for-
mula was used, based on the standard deviation of the data cloud
rather than the averaging of the measurement errors. However,
when redoing the analysis and using Eqs. (A.1)–(A.2), a more
precise determination of the periods is obtained.

Their path C now has P1 = 447.7 ± 15.8 s and P2 = 246.5 ±
6.0 s, leading to P1/P2 = 1.82 ± 0.08. Using the model of
Andries et al. (2005a), we find L/πH = 1.02+0.46

−0.44. Using the
length L = 218 Mm of that loop, a density scale height H =
68+52
−21 Mm is obtained.
Similarly, their path D shows periodicities P1 = 387.4 ±

7.5 s and P2 = 244.8 ± 7.7 s, resulting in P1/P2 = 1.58 ± 0.06
and L/πH = 2.43+0.38

−0.36. Together with the estimated length L =
228 Mm, we find a density scale height H = 30+5

−4 Mm.
These values for the density scale height differ strongly from

the value we obtain in the currently studied event. This fact, how-
ever, is compatible with Fig. 7 in Aschwanden et al. (2000). That
graph shows that the scale height in shorter coronal loops (as is
the case in Verwichte et al. 2004) is expected to be lower than
for longer coronal loops (current event). Also, the loops studied
by Verwichte et al. (2004) are post-flare loops and may not have
settled into equilibrium.

A summary of all the periods, lengths and density scale
heights of the events studied in Verwichte et al. (2004) and the
current paper is given in Table 2.

5. Conclusions

In this article, TRACE 171 Å observations of an active region
were analysed. By tracing out a loop segment, two oscillation
periods could be detected with high confidence: 435.6 ± 4.5 s
and 242.7 ± 6.4 s. Using these periods, and interpreting them
as the fundamental and the 2nd harmonic oscillation, a value
P1/P2 = 1.795 ± 0.051 was found.

This value allowed us to establish L/πH = 1.17, and lead
to a density scale height of H = 109+37

−21 Mm. Such a value
for the density scale height in the loop is significantly higher
than the hydrostatically expected value (50 Mm). Our result thus
suggests that the density scale height in coronal loops is much
higher than that in the surrounding corona, a result also found by
Aschwanden et al. (2000).

We used the measurements for the damping times to study
the viability of different damping mechanisms. We were able to
find that the damping time must be approximately inversely pro-
portional to the wave number. By relating the ratio of damping
times and periods, we found that τ ∼ P1.60. Using the relations
between the damping time, the wave number and the period,
we have established that the observed damping times can be ex-
plained by resonant absorption and not by lateral wave leakage.

Furthermore, we estimated that the magnetic field in the ob-
served loop is between 10 and 14 G and thus in the same range
as Nakariakov & Ofman (2001). By comparing the observed os-
cillation with an oscillation in a neighbouring loop in the same
active region, we were able to establish that the ratio of the mag-
netic fields is between 1.1 and 1.2. This suggests that, for loops
with a similar length, the magnetic field remains almost constant
throughout an active region.

We used the eigenfunction to obtain geometrical properties
of the loop, but found that the observational errors are to large
to achieve this. A loop length L = 192 Mm in a range of
[75 Mm,∞[ was estimated. This value of L is not close to the
observed loop length, but lies within the errorbars.

Lastly, we revisited the results of Verwichte et al. (2004)
and used a different statistical method to reduce the errors on
the measurements of the periods. For those events, density scale
heights of H = 68+52

−21 Mm and H = 30+5
−4 Mm are thus found.

These values differ significantly from the value found in our
event. This fact, however, is compatible with the findings of
Aschwanden et al. (2000).
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Appendix A: Estimates of errors

To calculate the errors on the mean periods, it was assumed that
all fitted estimates of the period Pi = P(x = i) along the loop
were taken from a Gaussian distribution with a variance of (σi)2.
Statistical analysis states that the mean period P is calculated as:

P =

∑N−1
i=0 Pi/(σi)2∑N−1
i=0 1/(σi)2

· (A.1)
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The error on the mean can be calculated by:

σ2
P
=

1∑N−1
i=0 1/(σi)2

· (A.2)

The errors of P1/P2 can be calculated by:(
σP1/P2

P1/P2

)2

=

(
σP1

P1

)2

+

(
σP2

P2

)2

,

if it is assumed that the errors on P1 and P2 are uncorrelated.

References
Andries, J., Arregui, I., & Goossens, M. 2005a, ApJ, 624, L57
Andries, J., Goossens, M., Hollweg, J. V., Arregui, I., & Van Doorsselaere, T.

2005b, A&A, 430, 1109
Arregui, I., Andries, J., van Doorsselaere, T., Goossens, M., & Poedts, S. 2007,

A&A, 463, 333
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999, ApJ,

520, 880
Aschwanden, M. J., Nightingale, R. W., & Alexander, D. 2000, ApJ, 541, 1059
Aschwanden, M. J., Schrijver, C. J., & Alexander, D. 2001, ApJ, 550, 1036
Aschwanden, M. J., De Pontieu, B., Schrijver, C. J., & Title, A. M. 2002,

Sol. Phys., 206, 99
Aschwanden, M. J., Nightingale, R. W., Andries, J., Goossens, M., &

Van Doorsselaere, T. 2003, ApJ, 598, 1375
De Moortel, I., & Brady, C. S. 2007, ApJ, Accepted
Dymova, M. V., & Ruderman, M. S. 2006, A&A, 459, 241
Edwin, P. M., & Roberts, B. 1983, Sol. Phys., 88, 179

Goossens, M., Ruderman, M. S., & Hollweg, J. V. 1995, Sol. Phys., 157, 75
Goossens, M., Andries, J., & Aschwanden, M. J. 2002, A&A, 394, L39
Handy, B. N., Acton, L. W., Kankelborg, C. C., et al. 1999, Sol. Phys., 187, 229
Li, Y. P., & Gan, W. Q. 2006, ApJ, 644, L97
Lin, H., Penn, M. J., & Tomczyk, S. 2000, ApJ, 541, L83
Lin, H., Kuhn, J. R., & Coulter, R. 2004, ApJ, 613, L177
McEwan, M. P., Donnelly, G. R., Díaz, A. J., & Roberts, B. 2006, A&A, 460,

893
Nakariakov, V. M., & Ofman, L. 2001, A&A, 372, L53
Nakariakov, V. M., & Oraevsky, V. N. 1995, Sol. Phys., 160, 289
Nakariakov, V. M., & Verwichte, E. 2005, Living Rev. Sol. Phys., 2, 3
Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B., & Davila, J. M. 1999,

Science, 285, 862
Ofman, L., & Aschwanden, M. J. 2002, ApJ, 576, L153
Roberts, B., Edwin, P. M., & Benz, A. O. 1984, ApJ, 279, 857
Ruderman, M. S., & Roberts, B. 2002, ApJ, 577, 475
Schrijver, C. J., Aschwanden, M. J., & Title, A. M. 2002, Sol. Phys., 206, 69
Terradas, J., & Ofman, L. 2004, ApJ, 610, 523
Terradas, J., Oliver, R., & Ballester, J. L. 2006, ApJ, 642, 533
Uchida, Y. 1970, PASJ, 22, 341
Van Doorsselaere, T., Andries, J., Poedts, S., & Goossens, M. 2004a, ApJ, 606,

1223
Van Doorsselaere, T., Debosscher, A., Andries, J., & Poedts, S. 2004b, A&A,

424, 1065
Verwichte, E., Nakariakov, V. M., Ofman, L., & Deluca, E. E. 2004, Sol. Phys.,

223, 77
Verwichte, E., Foullon, C., & Nakariakov, V. M. 2006a, A&A, 449, 769
Verwichte, E., Foullon, C., & Nakariakov, V. M. 2006b, A&A, 452, 615
Wang, T. J., & Solanki, S. K. 2004, A&A, 421, L33
Wills-Davey, M. J. 2006, ApJ, 645, 757
Wills-Davey, M. J., & Thompson, B. J. 1999, Sol. Phys., 190, 467
Zaitsev, V. V., & Stepanov, A. V. 1975, Issled. Geomagn. Aeron. Fiz. Solntsa, 3


