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4.6 Average distance (Å) between the centre-of-mass of the residues and

respective fluctuation in the sequences B1-3, B1-4 and B1-13. . . . . . 129

4.7 Average and fluctuation of the distance (Å) between the aspartic acid
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tances (Å) for the H and O in the water–dimer and in the water–

CNT+OH system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.3 Absolute pair VDW and electrostatic energies (kcal/mol) and pair dis-
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Abstract

The aim of this thesis is to understand the interactions of peptides with graphitic surfaces such

as carbon nanotubes and graphite, in order to help establish guiding principles for the design of

peptide sequences with controllable affinity to graphitic surfaces. Atomistic molecular dynam-

ics (MD) simulations with our extended polarisable AMOEBAPRO force-field, which includes

parameters for graphitic surfaces is used throughout. The peptide sequences studied were iden-

tified by phage-display experiments for their strong affinity to CNTs, and are rich in tryptophan

and histidine residues [94]. The importance of the tryptophan residues on the binding affinity

to CNTs is investigated by mutating each tryptophan by either tyrosine and phenylalanine. In

addition, the effect of the surface curvature on the binding affinity is also explored. It is found

that sequences containing tryptophan residues have more affinity to graphitic surfaces than those

containing tyrosine or phenylalanine. Furthermore, it is suggested that these peptide sequences

were selected for interfacial shape, since in the case of graphite, a compromise between having

all the aromatic residues close to the surface and also allowing the non-aromatic residues to

approach the surface is found. Following this study, the interaction of peptide sequences with

CNTs is again studied, but this time with the aim to investigate the order of the residues, on

the binding affinity to CNTs. The influence of the peptide sequence on the binding affinity to

CNTs is studied by scrambling the sequence (HWKHPWGAWDTL). This study suggests that binding

affinity is strongly dependent on the order of the content of the peptide sequences and gives some

useful insights to the identification of principles that may help in the design of peptide sequences

with controllable binding affinity to CNTs. For instance, it is found that strong binding may be

due to the presence of isolated pairs of tryptophans, while weaker binding may be due to the

presence of two tryptophan residues intercalated by another residue. The interactions of water

with graphitic surfaces – CNTs, fullerenes and graphite – are also considered and it is found

that the water structuring at the interface is weak and that there are no more than tree layers

of structured water on the graphitic surfaces. Finally, the effect of the presence of OH defects

on CNTs on the binding affinity to peptides is investigated. The results show that the binding

affinity is not significantly affected by the presence of OH defects, but a general increase in the

peptide mobility is noticed, giving insights for the applications of real CNTs with peptides.

The work described in this thesis helps to understand what are the key residues involved in the in-

teraction with CNTs, why do these key residues bind better to CNTs and provide insights on the

mechanisms of peptided binding to CNTs, by demonstrating the role of peptide conformation.
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Glossary

This Glossary includes the notation used for peptides. Throughout the thesis

each peptide residue will be represented by a one-letter code. The codes are presented

in Table 1.

Table 1: One letter-code, polarity and charge at pH 7.0 for the standard amino acids.

Residue Code Polarity Charge at pH=7.0
Alanine A non-polar neutral
Arginine R polar positive
Asparagine N polar neutral
Aspartic acid D polar negative
Cysteine C polar neutral
Glutamic acid E polar negative
Glutamine Q polar neutral
Glycine G non-polar neutral
Histidine H polar neutral
Isoleucine I non-polar neutral
Leucine L non-polar neutral
Lysine K polar positive
Methionine M non-polar neutral
Phenylalanine F non-polar neutral
Proline P non-polar neutral
Serine S polar neutral
Threonine T polar neutral
Tryptophan W non-polar neutral
Tyrosine Y non-polar neutral
Valine V non-polar neutral

xxix



Figure 1: Schematic of the twenty amino acids. The structural formulas show the state
of ionisation that predominates at pH 7.0. (From [3].)
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Chapter 1

Introduction

1.1 General overview of the problem

In Nature, interactions of biomolecules such as peptides with inorganic materials exert a

remarkable level of control over the growth and nucleation of these materials [1]. Hard

tissues such as bones, dental tissues (dentine and enamel), spicules, spines, shells and

bacterial nanoparticles are all examples of biomaterials (Figure 1.1) [1]. The unique

structure of these biomaterials endow them with distinctive functions such as magnetic,

optical and mechanical. This ability to direct the assembly of nanoscale structures has

motivated the laboratory-based search for methods that mimic this behaviour found in

biological systems; the field of biomimetics. Biological tissues are synthesised under

genetic control, in aqueous environments and under mild physiological conditions us-

ing biomacromolecules (usually proteins but also carbohydrates and lipids), and as a

consequence the selection processes in biological systems give rise to specific molecular

recognition [2]. On the other hand, engineering (i.e. artificial) materials are synthe-

sised using a combination of approaches (such as melting or solidification processes) in
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Chapter 1. Introduction

Figure 1.1: A few examples of functional biological materials systems: (A) Magneto-
tactic bacteria, e.g. Aquaspirillum magnetotacticum. (B) Spicule (Rosella racovitzea.
(C) Mollusk Haliotis rufescens (D) Mammalian enamel comprises ∼100% hydroxyap-
atite(the right is an SEM image of the fractured surface and left is a schematic of the
woven structure). Taken from Ref. [24].

which the final product is directed by the kinetics and thermodynamics of the system.

The fundamental aspects of how peptides bind to inorganic materials as will be further

explained, constitutes a challenge. Understanding the mechanisms that govern peptide

binding and recognition to inorganic surfaces is crucial to the design of novel peptides

and to tailor the peptide binding and promises to revolutionise the fields of materials

science, bionanotechnology and medicine.

1.2 Peptides and proteins

Proteins are the most abundant biological molecules occurring in all living cells [3] and

have an extensive diversity of functions such as structural support, enzymatic catalysis,

2



1.3 Biomimetics

Figure 1.2: Schematic of a general structure of an amino acid (non-ionic and zwitterionic
forms). The zwitterionic form predominates at neutral pH. (From [3]).

binding, transport and storage, immune protection etc. Proteins are the molecular

pathways through which genetic information is expressed. Amino acids are the building

blocks of peptides and proteins. They have a carboxyl group and an amino group bonded

to the same carbon atom (the α carbon) (Figure 1.2). There are 20 naturally occurring

amino acids which differ from each other in their side-chains, or R groups, which vary in

structure, size, and electric charge, and which influence the solubility of the amino acids

in water. Peptides and proteins are dehydrated polymers of amino acids residues joined

by an amide linkage called the peptide bond. Such a linkage is formed by removing the

elements of water when two or more amino acids combine. What remains of each amino

acid is called an amino acid residue [3].

1.3 Biomimetics

The ability of biomolecules such as enzymes, nucleic acids and anti-bodies to recognise

target molecules has enabled the emerging of life [4]. Nature has developed objects and

materials with high performance functions that go from the macro-scale to the nanoscale.

These functions have inspired scientists to engineer nanomaterials, nanodevices and pro-
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Chapter 1. Introduction

cesses that mimic nature. A molecular understanding of these natural systems is required

in order to mimic and create artificial nano- and micro-structures whose complexity and

architecture is similar to those found in biology. Using biological inspiration to design

or adapt materials and devices from nature is referred to as “biomimetics” [1]. The

emerging field of molecular biomimetics is highly interdisciplinary since it draws on the

knowledge base of biological functions, structures and principles of various objects found

in nature by biologists, chemists, physicists and material scientists, and the design and

fabrication of various materials and devices by engineers, material scientists, chemists

and others. Molecular biomimetics combines biological molecular tools with synthetic

products for the development of new hybrid materials at the molecular scale, and for

this reason, it can be seen as a bio-synergetic engineering [5]. Molecular biomimetics

uses proteins and peptides in the control and synthesis of nanoscales devices and self-

assembly of functional nano-structures, by using their recognition properties. Peptides

and proteins hold a large information content and due to their specific recognition and

interactions with biomolecules, proteins are the “machinery” for innumerous functions,

such as spacer, builder assembler or growth promoter. Proteins provide three distinctive

advantages in the development of new materials and systems: molecular recognition,

self-assembly and the genetic manipulation of their composition and structure [6].

A genetically engineered polypeptide for inorganics (GEPI) is defined as a sequence of

amino acids that specifically and selectively binds to a target inorganic surface [1]. A

peptide that binds to a specific molecule is often called aptamer. During the last two

decades, combinatorial-peptide selection methods such as bacterial cell-surface display

and phage-display have been used to select for a variety of GEPIs. Hundreds of peptide

sequences specific to noble metals (Au [7; 1; 8; 9], Ag [10; 11], Pt [12] and Pd [9]),

oxides and semiconductors (Cu2O [13], GaAs [14], CdS, ZnSe [15], TiO2 [16; 17], and

4
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ZnO [18]), minerals (mica, hydroxyapatite [19], calcite) have been identified. In molec-

ular biomimetics the selection of peptide sequences is accomplished through a process

denoted herein as combinatorial mutagenesis. A brief overview of these combinatorial

biology methods is given in the next Section.

1.3.1 Selection of inorganic-binding peptides using combinatorial muta-

genesis

Throughout this thesis the terms “affinity” and “specificity” will be frequently men-

tioned. A peptide that binds strongly to an inorganic surface is denoted having high

“affinity”, while a peptide that binds to a specific surface and not other surfaces is

denoted as binding with “specificity”.

In combinatorial biology techniques, a large random peptide library (with a diver-

sity of typically 109-1011 sequences) with the same number of amino acids, but varying

compositions, is used to screen for sequences that strongly bind to a given inorganic

surface [7; 14; 20]. Bacterial cell-surface (BCS) and phage-display (PD) libraries are

commonly used to select for a variety of GEPIs. Typically, these libraries are generated

by inserting random nucleotides within genes encoded on phage (virus) genomes or on

bacterial plasmids (step 1 in Figure 1.3). This process leads to the display of a random

peptide sequence of desired length (typically 7-14 amino acids long) within a protein of

the host (the coat protein of a phage or an outer membrane or flagellar protein of a cell;

step 2). A different randomised peptide is, as a consequence, produced and displayed

by each cell or phage (step 3). The host library is then put in contact with the target

substrate (step 4). Weak or non-specific binders are removed by breaking the weak

interactions with several washing cycles, while phages with strong affinity to the surface

will remain bound to the surface during this process. Bound phages or cells are then
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eluted from the surface (step 6). In the case of PD, a second host (bacteriophage) is

required to re-infect the host for the amplification of the eluted phages, while in the

case of BCS display, cells are allowed to grow (steps 7 and 8). This entire process rep-

resents a round of biopanning. In order to refine the search for strong binders, three to

five cycles of biopanning are usually performed. The choice of elution buffers (solution

used to wash out weak binders) should be considered carefully since they can modify or

deteriorate the surface of the target substrate.

Figure 1.3: Schematic of phage-display and cell-surface display selection processes.
(Taken from Sarikaya et al. [1])

The sequences of the strongest binding peptides can be finally deduced (step

9) from the DNA codon sequencing. In these techniques peptides can be expressed in

two geometric configurations: either unconstrained (denoted herein as having a “linear”
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architecture) or constrained by the formation of a disulfide bond between cystein residues

(denoted herein as having a “cyclic” architecture). In PD, the peptide sequence linear

form comprises either 7 or 12 amino acids and the cyclic displays 7 amino acids [12;

19]. In BCS display, peptide sequences can vary from 7 to 15 residues in the linear

form and 12 residues in the constrained form [18]. Several peptide sequences can be

identified for a given inorganic surface with various degrees of binding strengths. These

peptide binders constitute the “first generation” peptides and serve as a starting point

for subsequent improvement and/or modification. In order to refine the results several

molecular-tailoring strategies can be used to further “tune” affinity and specificity of

these sequences.

1.3.2 Molecular characterisation of GEPIs

The combinatorial techniques described in Section 1.3.1 only provide an elementary

knowledge regarding the affinity of a peptide to a certain inorganic surface. In order to

use peptides in practical applications, it is necessary to have information regarding the

mechanisms and strength of binding, kinetics, and assembly behaviours of the GEPIs

with regard to a particular solid [1; 6; 21; 22]. Also important is the quantitative

evaluation of the degree of peptide specificity to a given material, as compared to non-

specific interactions with other substrates of similar chemical compositions or surface

structures (e.g., binding to gold versus platinum [23]). This evaluation could be assisted

by having a detailed understanding of the physical and chemical features of the material

as well as an understanding of the molecular structures of the GEPI and its recognition

mechanism on the solid. A fundamental routine of the screening protocol for affinity

and selectivity searching is the use of relatively simple techniques such as fluorescence

microscopy (FM) and enzyme-linked immunosorbent assay (ELISA) for quick monitoring
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of peptide adsorption and binding. FM is used to image large molecules and is based on

the phenomenon that certain molecules emit visible light when irradiated with light of

a specific wavelength. Molecules can be either fluorescents or non-fluorescents; in the

latter the molecule can be conjugated with a fluorescent dye. ELISA is used to detect

the presence of an antigen-antibody complex in a sample. In ELISA there is an amount

of antigen fixed to the surface which is not known. A specific antibody is applied by

washing over a surface, such that the antibody binds to the antigen. Exposure of light

of the appropriate wavelength, causes the fluorescence of the antigen-antibody, and the

amount of antigen can be determined from the magnitude of the fluorescence.

However, these two techniques yield only qualitative data about the binding.

Quantitative data can be obtained by determining thermodynamic and kinetic quanti-

ties involved in the binding process (such as change in free energy, ∆G, entropy, ∆S,

enthalpy, ∆H, adsorption rate, kads, desorption rate, kdes etc.) through the use of

modified surface plasmon resonance (SPR) spectroscopy (see below) [24; 25; 12; 8; 26].

Recent reports have coupled SPR studies with quartz-crystal microbalance (QCM) (see

below), because in the former adsorption is detected by changes of the refractive in-

dex of the interface while in QCM adsorption is detected by net mass changes [6].

One of the limitations associated with these techniques is the exclusive application to

small molecules. Another complementary approach is the use of various spectroscopy

techniques such as circular dichroism (CD), nuclear magnetic resonance (NMR) spec-

troscopy and molecular modelling to characterise the molecular structure of a strong

binder and peptide recognition mechanisms. Atomic force microscopy (AFM) can be

used to obtain quantitative imaging data at the molecular level, such as surface inter-

actions with proteins [27]. However, the resolution is limited to 5 nm, meaning that

for a 12 residue peptide it is not feasible. Therefore, other approaches must be used,

8
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for instance the triplication of the peptide sequence [27]. A brief description of these

quantitative techniques is given in the next Section.

1.3.2.1 Surface plasmon resonance (SPR)

SPR is used to measure rates of adsorption (kads) and desorption (kdes) of molecules

at the surface and thus enables the calculation of equilibrium constants (Keq), since at

equilibrium the rate of adsorption is equal to the rate of desorption:

Keq =
kads

kdes
(1.1)

SPR is an optical phenomenon which results from the excitation of surface plas-

mons by light. Surface plasmons are electron oscillations existent at the interface be-

tween metal and another material, that propagate parallel along the surface. These

oscillations are highly sensitive to any change of the metal surface such as the ad-

sorption of molecules. Surface plasmons can be excited by irradiating the sample with

p-polarised light (polarisation parallel to the plane of incidence) and can be detected by

measuring the changes in the index of refraction of the p-polarised light. By determin-

ing the resonance energy the concentration of adsorbed molecule can be inferred [6].

Adsorption and desorption rate constants (kads and kdes) are obtained by plotting the

observed rate constant (kobs) as a function of the molecule concentration.

1.3.2.2 Quartz crystal microbalance (QCM)

QCM is used to measure the amount of adsorbate at a surface by measuring the change

in frequency of a quartz crystal resonator. It uses a quartz crystal disk coated with an

electrode (typically gold) and the surface of interest. When disturbed by the adsorbate

the quartz crystal resonator changes its frequency. From this change in frequency the

amount of peptide adsorbed on the surface can be determined [6]. This technique
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is useful for measuring the affinity of peptides on a surface. One of the limitations

associated with the use of SPR and QCM is the need to deposit the material of interest

in a thin film. Sometimes this is not possible and modifications to the instrumentation

are required.

1.3.2.3 Atomic force microscopy (AFM)

AFM is used for imaging and manipulating atoms and structures on a variety of surfaces

[28]. This information is collected by scanning the surface with a mechanical probe

which consists of a cantilever (a beam supported on only one end) with a sharp tip

(probe) at its free end, which is used to scan the surface. When the tip is put near the

surface, forces between the tip and the sample cause a deflection of the cantilever which

can be measured. AFM is useful to spatially and temporally monitor surface interactions

with proteins giving an insight into the dynamics of the adsorption event.

1.3.3 Circular dichroism (CD)

CD is the difference in absorption of left- and right- circularly polarised light [29]. CD

is used to infer the structure of macromolecules, such as the secondary structure of

proteins, and therefore estimate the fraction of a molecule that is in the α-helix con-

formation, the β-turn conformation or random coil conformation [30]. Despite CD not

giving information about the conformation of peptides adsorbed on surfaces, it can pro-

vide information about the conformation of the peptide in solution, which can then be

used to help understand the peptide conformation on the surface.
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1.3.4 Implementation of solid-binding peptides in bio- and nanotechnol-

ogy

The control and assembly of biomolecules on inorganic surfaces is currently one of the

main objectives of bio-nanotechnology [24; 31]. A major ambition is to have a library of

well-characterised GEPIs, for use in a wide range of applications, from synthesis through

to the molecular and nanoscale assembly of solid materials. Through their recognition

properties, GEPIs offer a distinctive possibility for the self- and directed assembly of

molecules [32]. GEPIs may be used as molecular building blocks due to their specific

ability to synthesise, display and assemble. They can be used as a linker between two

nanomaterials and they could also be used as a ligand in a functional protein, where

the GEPI is genetically fused to the protein, creating a bi-functional molecule with

the ability to control the formation of inorganic nanostructures while still retaining the

functionality of the protein [33]. Another example is the usage of GEPIs as molecular

“displayers” in the directed self-assembly at specific locations of the solid, through their

linkage to enzymes [34]. In addition, a GEPI could also be chemically fused onto a

synthetic polymer, to create a structure with several functions [35]. These systems

are often called “hybrid structures”, which means the material contains a biomolecule

(such as a protein) and an inorganic substrate. In all cases, the role of the GEPI

is to provide an additional function to the hybrid structure. GEPIs can also be used

as electron (or proton) transporting molecular bridges [22], to study biomolecular and

cellular functions by building a communication interface between biological materials

and electronic components. Furthermore, studies on the material specificity of GEPIs

suggest their usage as specific binding agents and molecular “displayers” for a variety of

bionanotechnology applications ranging from biosensors to nanophotonic entities [23].

In the field of nanotechnology, the cooperation of inorganic nano-structures and
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designed peptides will enable the fabrication of distinctive materials with several func-

tionalities as well as optical and electronic properties. As an example, in a recent study a

strategy was developed to produce quantum dot nano-arrays mediated by GEPIs, which

gave rise to an improvement of up to 15-fold increase in surface-plasmon-enhanced fluo-

rescence [36]. A few examples of the applications of the GEPIs are given below in order

to demonstrate their potential usage.

1.3.4.1 Synthesis of nano-inorganics aided by GEPIs

Even though the mechanisms that influence the morphology of minerals upon binding

by GEPIs are not fully understood, it is believed that once accomplished it will have

great potential applications in tissue regeneration. An example of this is the use of

hydroxyapatite (HA) binding peptides on the biomineralisation of calcium phosphate

[19]. It was demonstrated that depending on the affinity of the HA binding peptides,

they could be used to control and regulate mineralisation creating crystals of different

sizes. These findings have a great impact since it shows that these GEPIs could be used

to finely select and synthesise minerals with desired properties. Another example is the

use of gold binding peptides to control the morphology and crystal of gold nanoparticles

[37; 1]. It was found that gold binding peptides could accelerate the rate of crystal

growth while changing the morphology of the gold nanoparticles from the usual shape

(cubo-octahedral) to flat, triangular or pseudo-hexagonal particles [37]. These findings

demonstrate that GEPIs can work as catalysts in the synthesis and morphogenesis of

inorganic nanomaterials.
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1.3.4.2 Directed and oriented self-immobilisation of nanoparticles and biomolecules

Patterning of biomolecules on selected substrates is essential for protein micro-arrays

used in proteomics and clinical assays, as well as for biosensors and microchips [38; 39;

40; 41]. The fabrication of these micro-arrays is possible if the protein is immobilised

on the inorganic surface. Recently, protein immobilisation became a key problem in

bio-nanotechnology. Immobilisation offers a physical support to the molecule while im-

proving the stability and activity and additionally, it helps to separate proteins from the

reaction mixture which enables its continuous use [42; 43]. Traditional approaches to

the immobilisation of biomolecules include the use of glass or metal substrates and usu-

ally requires surface functionalisation (via covalent bond formation) by self-assembled

monolayers (SAMs) of bi-functional molecules. Mostly are based on non specific adsorp-

tion such as intermolecular forces and hydrophobic or polar interactions. The problem

associated with these traditional functionalisations by bi-functional molecules is that

they can cause random orientation of the protein and require multi-step chemical re-

actions. These reactions often lead to the attachment of proteins on the surface. In

addition, the assembled monolayers can be unstable during the immobilisation. In or-

der to avoid these issues, peptides with specificity to the solid of interest can be used

to directly link the substrate and the protein. The advantages of using GEPIs in pro-

tein immobilisation is the high-inorganic binding affinity and specificity of the GEPIs

[35; 44]. For example, Kacar et al. proposed an application for quartz-binding peptides

as a linker for self-assembly and as an “ink” for micro-contact printing of photoactive

molecules immobilised on a quartz surface through quartz-binding peptides [44]. The

authors also demonstrated the dual functionality of the structures based on GEPIs such

as the surface-substrate binding ability and the ability to transport target molecules with

specific functions [44]. In addition, Kacar et al. used gold-binding peptides as a site-
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specific molecular linker genetically fused into an enzyme for its oriented immobilisation

while retaining the enzyme activity [34]. Moreover, Zin et al. [45] demonstrated that

micro-patterned gold-binding peptides are good linkers in the direct assembly of gold

nanoparticles . Alternatively, in a still new area, GEPIs could be used in the targeted

immobilisation of functional inorganic nanoparticles on biomolecular substrates, such as

designed proteins [46], viruses [47] and DNA [48].

1.3.5 Applications of solid-binding peptides in Medicine

The potential applications of GEPIs in medicine span a wide range of domains such

as tissue regeneration, molecular scaffolds (platforms) for tissue restoration, biosensors,

and drug delivery. A few recent examples of these applications are given below in order

to illustrate the usage of GEPIs in the field of medicine.

1.3.6 Regenerative medicine

The repair or replacement of hard tissues such as enamel, dentin, cementum, or bone

represents a major challenge in regenerative medicine [49]. As previously mentioned,

GEPIs might be able to control nucleation, growth and morphogenesis of HA nanopar-

ticles. In addition, a recent study demonstrated that specific titania-binding peptides

induced the precipitation of titania, but not silica [50], demonstrating the possibility of

inducing the formation of one oxide while lacking the ability to form a similar oxide.

These findings might have important implications in the applications to implants.

An exciting and revolutionary approach to regenerate tissues or organs consists

of combining both the cells of the patients and polymer hydrogels that can be injected

into the body [51]. For example, mineralisation could be controlled by the incorpora-

tion of GEPIs with hydrogels to provide this additional functionality [22]. Therefore,
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hydrogels are used as platforms (scaffolds) in the engineering of new tissues [52], and

the incorporation of GEPIs into peptide hydrogels present promising developments in

regeneration of hard and soft tissues.

1.3.6.1 Nanomaterial-based biosensors

A biosensor is an analytical device that combines a biological component with a detector

and therefore provides quantitative or semi-quantitative information. For example, a

very common commercial bionsensor is the blood glucose biosensor, which breaks blood

glucose down with the enzyme glucose oxidase. Biosensors rely on the affinity between

the probe molecule and the analyte, in particular the specifity of the probe to the analyte

is a key criteria for the design of efficient biosensors [53]. The advantage of nanomaterial-

based biosensors is the unique property of biological nanomaterials to recognise a target

molecule. These biosensors are generally, of fast response, high sensitivity and small size

when compared to other sensors and are used to detect diseases and monitor medical

therapies. Using GEPIs such as the Ag-binding peptide or the quartz-binding peptide

fused in a protein assembled on a specific material, might be the principle for creating

extremely sensitive biosensors [21].

1.3.6.2 Drug delivery

As mentioned before, a GEPI can have a dual functionality by simultaneously having a

binding affinity to an inorganic and organic surface. This property could be applied to

drug delivery by binding a GEPI to an inorganic nanoparticle with desirable functionality.

By immobilising a drug to a nanoparticle with the help of a linker peptide, it could be

delivered to the target tissue [6]. In addition, peptide hydrogels are also being studied

as potential molecular scaffolds to drug delivery [51].
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1.3.7 Using molecular simulation as a complementary tool

Used in conjugation with experimental approaches, simulation techniques will help to

characterise the peptide-inorganic interface and elucidate the modes of peptide-binding

affinity and specificity. Use of molecular simulation is imperative in the disentangling

of this complex interplay between composition, sequence and structure which govern

binding affinity and specificity [32]. It was already described in Section 1.3.2 how we

can obtain qualitative and quantitative data regarding the affinity of a GEPI to a given

substrate, such as the thermodynamic and kinetic properties. Information regarding the

peptide conformation in solution can also be obtained by experiment. Despite being

possible to obtain information on the conformation of a peptide adsorbed on a surface

as well as the key residues involved in the binding by experimental techniques [54], the

fundamental basis of how peptides recognise an inorganic surface and how this could

be manipulated to tailor binding affinity is not yet well understood. This is where

molecular simulation may help in understanding the mechanisms involved in the binding

of a peptide to a certain surface. Molecular simulations provide structural data such

as distances of the residues to the surface, orientational data such as the orientation

of the residues relative to the surface and backbone conformation as well as energetic

information of the peptide at a given surface. In addition, molecular simulation also can

provide thermodynamic quantities such as free energy differences, which are important

to understand binding affinity.

1.4 Carbon Nanotubes

The breakthrough in the field of nanothechnology arised with the discovery of fullerenes

in 1985 [55], the third allotropic form of carbon next to diamond and graphite. Even
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though carbon filaments had been observed in the 50’s, the official discovery of cylindrical

fullerenes was only in 1991, when Iijima reported for the first time the preparation of

multi-walled carbon nanotubes (MWCNTs) by arc-discharge of graphite electrodes [56].

Two years later, Iijima synthesised carbon nanotubes (CNTs) with only one layer, [57]

the so called single-walled carbon nanotubes (SWCNTs). Since then CNTs have been

the object of frenetic and intense research. Single-walled carbon nanotubes (SWCNTs)

are graphene sheets rolled-up into cylinders with carbon atoms bonded by sp2 hybrid

orbitals, closed at both ends by semi-spherical caps. Multi-walled carbon nanotubes

(MWCNTs) consist of sets of concentric graphite tubes that fit inside each other. The

lenght of SWCNTs can vary from several hundred nanometers to several micrometers

and the diameter can vary from 0.4 to 2 nm. In the case of MWCNTs the diameter

can vary from 2 to 100 nm. The atomic structure of a carbon nanotube is described

by the chiral indices (n,m), that specify the perimeter of the carbon nanotube on the

graphene sheet as shown schematically in Figure 1.4. Also, the way the graphene sheet

is wrapped gives rise to different indices (n,m) and different nanotubes. If m = 0, the

nanotubes are called ’zigzag’. If n = m, the nanotubes are called ’armchair’ and if they

are different, the nanotubes are called ’chiral’. Depending on diameter length, CNTs

can have conductor or semiconductor properties. If n = m or n −m is a multiple of

3, the nanotube is a semiconductor but the band gap is zero, and so we can use the

term “metallic”. Otherwise, it is a moderate semiconductor. Therefore, all armchair

(n = m) CNTs are metallic. This unique structure endows CNTs with an exceptional

thermal stability, as well as outstanding mechanical, thermal and electrical properties

that make them a good candidate for a wide variety of potential applications in the

fields of nanotechnology and medicine.

However, for biological and biomedical applications, the extreme hydrophobicity
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Figure 1.4: Schematic structure of a graphene with basis vector a1 and a2. The shad-
owed rectangle is the radial projection of carbon nanotube (7, 1) with perimeter A and
helical angle α.(Taken from reference [58].)

and lack of dispersion of CNTs constitutes a big limitation to the accomplishment of

these applications [59]. Solubility of SWCNTs in water can be improved by chemically

attaching various functional groups to the nanotubes. However, these modifications

can perturb the intrinsic properties of SWCNTs, such as the electrical properties [60;

61]. Therefore, alternative approaches to solubilise SWCNTs have been proposed and

investigated, such as the use of noncovalent [62] adsorption of surfactants [63], polymers

[64; 65] and biomolecules [66; 59; 67]. In addition, there is the concern that exposure

of CNTs may be toxic to humans [68]. CNT toxicity has been attributed to several

factors including length, concentration, type of functionalization, duration and method

of exposure [69]. Recent studies suggest that if CNTs below a given threshold (1 to 5

µm) [70] are wrapped with biomolecules such as peptides [71], they have limited toxicity.
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On the other hand, longer CNTs are potentially toxic since they can accumulate in the

intestine and kidneys. It is therefore important to study the interactions of peptides

with CNTs, in order to tailor the binding affinity for specific applications.

1.4.1 CNT biomedical applications

Many potential applications have been proposed for CNTs, in the fields of nanotechnol-

ogy, biology, and medicine. The increased interest in biomedical applications is due to

the combination of properties that make CNTs unique, such as ordered structure, high

aspect ratio, light weight, high mechanical strength and electrical and thermal conduc-

tivity [72]. CNTs have been explored as potential delivery vehicles for drugs [72; 73],

peptides [74], proteins [75; 76], DNA [76] and RNA [77]. The cargo can be carried either

on the outside of the CNT (attached to the side walls) or on the inside of the CNT. In

addition, studies suggest that CNTs may be used in cancer phototherapy [78], by inject-

ing multi-functionalised CNTs into the tumor and subsequently irradiating the tumor

with a laser. Furthermore, it was shown that CNTs functionalised with biomolecules

can localise the mitochondria of normal and cancerous cells and when irradiated with

infrared light could induce cell apoptosis (cell death) [79]. A recent study, showed that

CNTs can be used as antibacterial agents that attack the bacteria and degrade the cell

integrity, and therefore causing its death [80]. CNTs have also been studied as a suitable

substrate for the growth of cells for tissue regeneration [81]. In addition, CNTs can be

used to build nanomotors that can enter inside cells to treat diseases [82].

1.5 Literature review of inorganic-binding peptides

It was Stanley Brown [7] who pioneered the selection of peptides that could bind to

gold and chromium, out of 5 million different sequences by the phage-display technique.
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Following this important work, Belcher et al. [14] identified peptide sequences that

could bind to one inorganic surface over a range of others (e.g. binding specifically to

GaAs but not to Si). In addition, Belcher et al. showed that peptides could differentiate

between different crystallographic orientations of surfaces (e.g. binding to GaAs(001),

but not to GaAs(111)). Hundreds of similar experiments have been reported since the

publication of this influential work, mainly using the phage-display method to identify

peptide sequences with strong affinity for a wide range of inorganic materials [83; 10;

16; 1; 84; 11; 85; 86; 87] such as metals, oxides and semiconductors.

The degree of binding affinity of a peptide onto a surface has been studied

using techniques such as FM [14] and AFM [88; 89; 84; 90; 91; 27]. Hayashi et

al. [89] used AFM to elucidate the mechanism of binding between Ti-binding peptide

and the Ti surface. Furthermore, Goede et al. used AFM to study peptide adhesion on

semiconductors (GaAs, Si, InP, GaP and AlxGayAs). Recently, a number of studies have

quantified the adsorption kinetics of the peptides on a surface by QCM [23; 25] and

SPR [25; 12; 26]. Tamerler et al. [25] reported for the first time the kinetic parameters

(such as the equilibrium constant, Keq) and the binding energy by two different methods

(QCM and SPR). Quantitative information on the peptide conformation at the surface

has also been obtained by NMR experiments [54; 92] by characterising the secondary

structure of the peptides.

A number of studies have also used combinatorial mutagenesis to identify se-

quences that bind to graphitic surfaces such as CNTs [93; 94; 88; 95; 96; 97], fullerenes

[98] and nanohorns [99]. As mentioned in the previous Section, there is a significant

interest in the applications of peptide binding CNTs, in the fields of nanotechnology

[100] and medicine [61; 60]. Wang et al. [94] identified two peptide sequences (B1

HWKHPWGAWDTL and B3 HWSAWWIRSNQS) with strong affinity for CNTs by phage-display
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experiments. Their results demonstrated the important role of the aromatic content

in the sequences found. The histidine (H) and tryptophan (W) residues present in the

sequences were found to be a key factor for the strong binding to CNTs. Since this

paper was published [94], the importance of the aromatic content in the interaction

between peptides and CNTs has been highlighted [88; 101], with recent emphasis on

the tryptophan residue [90; 95; 102; 101]. Dieckmann et al. [88] showed that the

interactions between peptide-coated nanotubes can be manipulated by specifying the

amino acid content. The presence of aromatic residues such as phenylalanine (F), yields

an interaction with the nanotube surface similar to the interaction between pyrene and

CNTs [103], disfavouring peptide aggregation and promoting peptide-nanotube associ-

ation. Furthermore, Dieckmann et al. [104] systematically varied the electron density

of the aromatic residue phenylalanine by introducing an electron-donating (hydroxyl)

and an electron-withdrawing (nitro) group on the benzene ring of phenylalanine. AFM

measurements revealed that the ability to disperse CNTs increases with the increasing

electron density of the aromatic residue [104].

The question of binding affinity of different peptide sequences to CNTs is not

as straightforward as it seems. The nature of the peptide content and order of that

content is crucial [32], and it is currently proposed that the interplay between sequence,

structure and binding underpins the phenomena of binding affinity and specificity. Bioin-

formatic studies in combination with experiments [32] show that composition alone is

not adequate to represent peptide-inorganic affinity and specificity. It is the sequential

arrangement of the residues in a peptide together with the residue content that must

be responsible for affinity and specificity behaviours. We cannot decide which residue

yields greater binding to the CNT, because the binding energy is not necessarily the sum

of the individual binding energies for each residue.

21



Chapter 1. Introduction

Although there is considerable growth in the experimental study of peptide-

inorganic recognition, there are not as many modelling studies in this area. It is essential

to understand the nature of molecular recognition and the degree of affinity of a peptide

to a given surface, so that it can be rationalised, predicted and optimised in several

applications [105]. As explained in Section 1.3.7, molecular simulation can function as

a complementary tool along with the experimental characterisation methods in the real-

isation of this objective. Model approaches to describe protein-surface interactions have

been proposed [106; 87; 107] and vary from coarse-graining [106; 108; 109; 110; 111] to

atomistic descriptions [112; 113; 114; 115; 86; 112; 116; 9] and describe the non-bonded

interactions either solely with Lennard-Jones (LJ) terms, or at best in combination with

point-charge electrostatics. Molecular dynamics (MD) simulations of several phage-

display selected peptides with different levels of affinity to the Pt(100) surface [108]

were reported, showing good agreement with experimental data despite the fact that

this study was done in vacuum and using only van der Waals (VDW) terms to de-

scribe the non-bonded interactions. MD simulations of selected peptides interacting

with the Pt(111) surface in water was recently reported [112], and presented a rela-

tionship between sequence, structure and binding for metal binding peptides. Monte

Carlo simulations of peptides in bulk water at blank charged surfaces [109] emphasised

the important role of water in the conformational arrangement of the peptides at sur-

faces. Carravetta and Monti [113] suggested that MD simulations can capture the main

characteristics of peptide-TiO2 surface interactions in solution by comparison with ab

initio calculations. Interactions between a histidine-tagged peptide and several surfaces

Ni/Cu/Au were studied by MD simulations [115], and showed that peptides have differ-

ent affinities to different metal surfaces. Heinz et al. [9] modelled the binding affinity

of several short peptides to gold, palladium and palladium-gold bi-metal by MD sim-
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ulations. Their findings suggested that strongly binding peptides tend to adopt a flat

two-dimensional conformation in order to get most of the residues in close contact with

the metal surface. On the other hand, weakly binding peptides tend to preserve most

features of their three-dimenisonal conformation in solution, so that water molecules

can be present between the surface and the residues. Skelton et al. [117] studied the

adsorption of a hexapeptide at aqueous titania interface by MD simulations. Their re-

sults highlighted the important role of proline in the rigidity of the peptide backbone

and consequently its role on the peptide binding to the surface. They proposed that

a balance between peptide flexibility/rigity and the strength of the interaction between

the peptide and the surface should exist in order to be capable of finding and maintain

a good binding configuration. In our previous work [118] we performed MD simulations

of single-walled CNTs interacting with strong and weak binding peptides as identified

by Wang et al.. Our findings confirmed the experimental observations [94] of the dif-

ferences in binding affinity for the sequences studied. In this thesis, the interactions

between peptides and CNTs are studied; a review of peptides binding to CNTs along

with a discussion of the past modelling studies will be given in Chapter 3.

1.6 Objective and outline of the thesis

Using peptides as synthesisers and scaffolds in the design and assembly of functional

inorganic materials requires an understanding of the nature of the peptide recognition

and binding to the solid. Although the number of materials-specific peptide sequences

selected by combinatorial techniques keeps increasing, it is still not clear yet how peptides

recognise an inorganic surface and how this could be tailored to control the behaviour

of the material [1; 22]. Understanding how peptides interact with inorganic materials

will enable the identification of “rules” or “guiding principles” by which interactions are
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controlled and to explain and predict the behaviour. Molecular modelling of peptide-

solid surfaces have the potential to provide further insights into the mechanisms that

govern those interactions.

As mentioned in the previous Section, several studies have addressed the im-

portance of the aromatic content on the peptide-CNT binding affinity [94; 88; 104;

119; 102; 101; 96]. In line with these recent studies, the aim of the work described in

this thesis is to study the interaction between peptides and CNTs and other graphitic

materials by molecular dynamics (MD) simulation.

The outline of this thesis is as follows:

Chapter 2 covers the main theoretical methods used in Computational Chem-

istry. This chapter does not have the objective of giving an exhaustive overview but

rather to describe the main approaches employed in this work.

Chapter 3 is dedicated to the study of the influences of the aromatic content

and interfacial shape on the binding affinity of peptides for graphitic surfaces.

Chapter 4 discusses the influence of the peptide sequence on the binding affinity

to CNTs. The effects of the order of the residues in the peptide will be presented.

Chapter 5 focuses on the atomistic simulation of liquid water and graphitic

surfaces: carbon nanotubes, fullerenes and graphite with an extended polarisable force-

field. The study aims to demonstrate that the force-field is appropriate to use in future

simulations of graphitic surfaces, biomolecules and water.

24



1.6 Objective and outline of the thesis

Finally, Chapter 6 deals with the study of CNTs with defects and their impact

on the binding affinity of peptides to CNTs.

The main conclusions of this thesis are highlighted in the last ChapterConclusions

and Outlook.
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Chapter 2

Theoretical methods

In this project, in which the interaction of peptides with graphitic surfaces is studied,

atomistic molecular dynamics (MD) simulations were used throughout. In this chapter,

the available simulation techniques and their advantages and disadvantages are outlined.

2.1 Molecular Modelling: overview

Molecular simulation is concerned with solving problems related to representing the po-

tential energy landscape (PEL) of chemical systems, and exploring the relevant regions

of this landscape. This problem first demands a physically-reasonable inter-atomic po-

tential to describe the chemical system. Particularly, in the case of peptide-inorganic

interfaces a potential is required that simultaneously describes biomolecules and inor-

ganic surfaces with reasonable faithfulness. Even though very few potentials have been

designed to simultaneously describe both entities, some potentials have been specially

tailored to describe these interactions. In terms of exploring the PEL (the conforma-

tional sampling issue), so far no approach can guarantee an exhaustive exploration of the

PEL, and while a better approach to sample the PEL remains essential, there is growing
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evidence suggesting that the peptide-inorganic interface typically supports many dif-

ferent strong binding configurations [118; 117; 120]. Therefore decent conformational

sampling is critical as will be explained in Section 2.3.

2.2 Potential energy landscapes

The basis of potential energy landscapes (PEL) is the Born-Oppenheimer approxima-

tion, which proposes the separation of the electrons spatial distribution from the nuclear

positions due to the nuclear mass being much heavier than the electron mass, and there-

fore the electrons are able to rapidly adjust to any changes in the nuclei positions. The

consequence of this approximation is that the energy of a molecule in a given electronic

state can be treated as a parametric function of the nuclear coordinates. The PEL has

its origins in the fact that atoms and molecules are constantly moving. The absolute

positions of the atoms in a molecule and the molecule itself are continuously moving as

well as the relative positions of its bonds. Particular molecular conformations can be

considered as wells on a 3N − 6(5)-dimensional “surface’ called the potential energy

surface or PEL (sometimes called hypersurface) which relates the potential energy with

the geometry (i.e. spatial arrangement of the nuclei) of the molecule [121; 122]. The

PEL is incorporated in a (3N + 1 − 6(5))-dimensional space (3N − 5 and 3N − 6 for

linear non-linear molecules, respectively), where the extra dimension is the value of the

potential energy. The potential energy of each molecular geometry is represented in the

PEL by a single point on this hypersurface. The stable conformations of a molecule

correspond to local minima in the PEL (where the first derivative of the energy is zero

and and all second derivatives are positive). The points at which the potential energy

is at a minimum correspond to stable configurations of the molecule. The minimum

that corresponds to the most stable conformation has the lowest energy on the PEL
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and is called the global minimum. Molecules may have many minima on the PEL and

the pathway linking one minimum to another involves a transition to a point where

the potential energy is higher than either of the two minima, the maximum of which

is referred to as a saddle point. Minima and saddle points are also called stationary

points since the first derivative of the potential energy with respect to all coordinates

is zero. Transition states are first order saddle points. Figure 2.1 shows a schematic

representation of a PEL, illustrating the more relevant points of the landscape.

As will be explained in the next Section (2.3), a PEL can be constructed with

either quantum or molecular mechanics. In addition the motion of the nuclei can be

explored either with classical or quantum mechanics. Sections 2.4 and 2.5 describe two

techniques used to explore the most important regions of a PES.

Figure 2.1: Schematic representation of a PEL, showing minima, transition states and
saddle points. (From [123]).
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2.3 Statistical mechanics: linkage between microscopic to

macroscopic world

The aim of statistical mechanics is to provide a linkage between quantum mechanics and

thermodynamics by deducing macroscopic properties of a system from the properties of

molecules of the system. Macroscopic properties include entropy, internal energy, free

energy, surface tension, dielectric constant, viscosity, etc., while molecular properties

include molecular geometries, intra- and intermolecular forces [124; 125].

If we wish to measure a macroscopic property of an equilibrium system, we take

the average of the property over the time of measurement. This is called a time average.

Whereas if we wanted to calculate the value of that macroscopic property we would have

to average over the micro-states (the quantum state) of the system. However, a calcu-

lation of a time-average is not feasible since it is not accessible by molecular simulation

since the timescale is too short. Boltzmann and Gibbs developed Statistical Mechanics

in which a single system evolving in time is replaced by a hypothetical collection of non-

interacting replicas of the system. Each of these replicas is macroscopically identical,

despite being in different micro-states, since each macroscopic state supports a wide

variety of micro-states. This collection of identical systems is called an ensemble, and it

is postulated that the time average of a macroscopic property is, in the long time limit,

equal to the average of that property in the ensemble and is usually referred to as an

ensemble average. This enables the replacement of the complex calculation of a time

average by the calculation of an average over the ensemble.

For a given thermodynamic system of fixed composition N , volume V and tem-

perature T (canonical ensemble), the quantum states with the same energy have equal

probability of occurring. The probability pj , of each micro-state depends on the tem-
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perature T , and energy Ej :

pj = ae−βEj , (2.1)

where β = 1/kBT (being kB the Boltzmann constant) and a a function of N , T and V .

a can be obtained by normalisation:
∑

j pj = a
∑

j e
−βEj = 1 so equation 2.1 becomes:

pj =
e−βEj

∑
j e
−βEj

(2.2)

=
e−βEj

ZNV T
, (2.3)

where ZNV T is called the canonical partition function:

ZNV T =
∑

j

e−βEj , (2.4)

and is the sum over all possible quantum states of the system for a given composition and

volume. The partition function constitutes a bridge between the quantum mechanical

energy states of a macroscopic system and its thermodynamic properties [125]. Since

the quantum energy levels of a system with a large number of molecules are highly

degenerate i.e. different quantum states having the same energy, the probability of a

system having energy Ei is given by:

p(Ei) = Wie
−βEi/ZNV T , (2.5)

where Wi is the degeneracy, i.e., the number of states with energy Ei [124; 125].

The characteristic thermodynamic function for a canonical ensemble is the Helmholtz

free energy, A, in which the natural variables of A are N , T and V . A can be derived

in terms of Z by taking into account the fact that A = E−TS (where E is the internal

energy and S is the entropy of the system):

A = −kBT lnZNV T . (2.6)
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In the case of the isothermal-isobaric ensemble the corresponding thermodynamic func-

tion is dependent on the compositionN , pressure P , and temperature T , and is theGibbs

free energy, G:

G = −kBT lnZNPT , (2.7)

where ZNPT is the isothermal-isobaric partition function. The change in free energy ∆G

depends on the change in enthalpy, ∆H(H = E + PV) and on the change in entropy,

∆S according to:

∆G = ∆H − T∆S. (2.8)

The free energy difference between two macro-states tells us if it is favourable or not for

the system to move to another state. In other words, it tells us about the population of

both states at equilibrium.

Entropy is proportional to the number of states W , where W corresponds to the

total number of energy levels that have a considerable probability of being occupied:

S = kB lnW. (2.9)

Equation 2.9 is the Boltzmann principle and tell us that as the number of micro-states

increases, the entropy of the system increases. The entropy is therefore a measure of

how many states there are in a specific region of phase space.

If we wish to calculate entropy-related (“statistical”) quantities such as ∆A,

∆G or even ∆S we face some difficulties associated with the simulation techniques.

The problem is that these quantities are directly related with the partition function Z

and not with its derivatives. If we could sample all the phase space, we could find

the probabilities of all states and we would then be able to sum over all the possible

micro-states of the system and therefore obtain Z. In practice this is not possible,

since even for small systems the number of micro-states is huge. In order to reduce
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the amount of phase space that has to be sampled, simulation techniques only sample

the relatively low energy states, since these are the ones that have a big contribution

to the partition function Z. The high energy states do not contribute much to the

sum Z =
∑

j e
−βEj . The consequence of this is that entropic or thermal properties

(such as free energy, chemical potential, entropy) are difficult to determine accurately

by simulation without resorting to special techniques. This is why several techniques

have been specially developed to study these quantities as outlined in the next Section.

2.3.1 Free Energy calculations

Free energies are important if we wish to know the relative stability of several states

of a system. According to the second law of thermodynamics, the entropy S of a

closed system with energy E, volume V , and number of particles N , is maximum when

the system is in equilibrium. From this principle, it can be deduced the corresponding

equilibrium conditions for systems that can exchange heat, particles or volume with a

reservoir. For a system at fixed temperture T , volume V , and number of particles N

that is in contact with a heat bath, the Helmholtz free energy, A = E − TS, will be

at a minimum in equilibrium. Similarly, for a system of fixed N particles, pressure P

and T , the Gibbs free energy, G = A + PV , will be at a minimum. Hence, in order

to compare the stability of two phases at a given temperature we just need to compare

the free energies of the two phases. Unfortunately, in terms of simulation, this is not as

simple as it appears since as explained in Section 2.3, it is not possible to measure the

free energy (or entropy) directly in a simulation [126].

Before considering the problem of calculating free energies let us take a look at

the concept of phase space. A system containingN atoms requires 6N values to describe

its state (three coordinates per atom and three components of the momentum), where
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each set of 3N positions and 3N momenta define a point in the 6N -dimensional phase

space. Therefore, an ensemble is a collection of points in the phase space. It is impossible

to scan all the points of the phase space with molecular dynamics (MD) simulations

or the configurational space with Monte Carlo (MC) for anything but the most trivial

system (see Section 2.3). If it was possible, the trajectory would be called ergodic

and would be independent of the initial configuration. In addition, we would be able

to calculate the partition function just by adding the values of exp(−E/kBT ) (where

E is the potential energy, kB is the Boltzmann constant and T is the temperature)

as will be explained in Section 2.3. The fundamental assumption is that if the MD

simulation is sufficiently long so that representative conformations of the system have

been sampled, time averages give a good approximation to ensemble averages. Because

the phase space of the systems like the ones I have been studying in this project is

enormous, simulations only provide an approximation to the “true” energies, and in

order to improve the sampling of the phase space several simulations using different

starting configurations should be carried out.

One of the most important properties in thermodynamics is the free energy which

can be expressed as the Helmholtz function, A, or the Gibbs function, G. The Helmholtz

free energy is appropriate in systems with a constant number of particles, volume and

temperature (NVT), and the Gibbs free energy is appropriate in systems with a con-

stant number of particles, temperature and pressure (NPT). One of the limitations of

molecular modelling approaches such as MC and MD simulation is that these methods

only explore regions of relatively low energy and cannot necessarily access regions that

require large energetic barriers to be traversed. Since flexible macromolecules typically

support many minima separated by barriers [122], it is challenging to accurately calculate

the free energy in these systems, since naive implementation of MD or MC might not
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sufficiently sample the high energy regions. In addition, the related properties such as

changes in entropy and the chemical potential,µ, are also difficult to calculate for large

molecules. All energy calculations involve a difference between two states (in which the

reference state is explicit). Free energy differences is a problem that can be determined

with MD or MC. Several methods have been proposed to tackle the problem of cal-

culating free energy differences, such as thermodynamic perturbation, thermodynamic

integration and slow growth; a brief description of each of these techniques follows.

2.3.1.1 Thermodynamic Integration

The Gibbs free energy G, can be expressed by:

G = −kBT lnZ(N,P, T ) (2.10)

where kB is the Boltzmann constant and Z is the partition function. The derivative of

the potential energy, U , can be used to calculate the free energy difference. Thermody-

namic integration involves performing a series of simulations corresponding to discrete

values of λ between 0 and 1, where U(λ = 0) corresponds to the potential energy of

the reference state and U(λ = 1) corresponds to the potential energy of the state of

interest. The subsequent calculation of the area under the graph will give the free energy

change.

G(λ = 1)−G(λ = 0) =
∫ λ=1

λ=0
〈∂U(λ)
∂λ

〉λdλ, (2.11)

where λ is a parameter that characterises the path between the reference state and

the state of interest, ensuring that the path is reversible, i.e., the path in the opposite

direction is exactly the same. The accuracy of the calculated free energy change is

dependent on the number of λ values used, usually between 10 and 100 λ values are

used.
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2.3.1.2 Thermodynamic Perturbation

According to thermodynamic perturbation theory, the free energy difference in going

from the state A to the state B is simply GAB = GB−GA and this method is used when

the energy difference between the two states is much larger than kBT , and therefore

one of the states is poorly sampled. Since the free energy is a state function, it does not

depend on the path, i.e, the way the system achieved that state, and consequently an

intermediate state between A and B can be introduced in order to increase the overlap

in the phase space and thus increase the sampling:

∆G = G(B)−G(A) (2.12)

= (G(B)−G(1) + (G(1)−G(A)) (2.13)

= kBT ln
[
Z(B)
Z(1)

.
Z(1)
Z(A)

]
, (2.14)

where Z is the partition function. Since the intermediate term cancels out we can choose

as many intermediate states as we like in order to obtain good overlaps and reliable free

energy differences:

∆G = kBT ln
[
Z(B)
Z(X)

.
Z(X)

Z(X − 1)
.
Z(X − 1)
Z(X − 2)

· · · Z(2)
Z(1)

.
Z(1)
Z(A)

]
, (2.15)

where X is the number of intermediate states.

2.3.1.3 The Slow Growth method

The slow growth method is similar to the thermodynamic integration method, but in-

stead of λ being constant for a given trajectory, it changes by a small constant amount

at each step of the simulation. The free energy difference is thus given by:

∆G =
i=Nstep;λ=1∑

i=1;λ=0

(Ui+1 − Ui), (2.16)
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where Nstep is the number of steps in the simulation and Ui is the potential energy at

the timestep i.

In summary, for peptide-inorganic surface systems, all such calculations as out-

lined above are very challenging and no one yet has been able to properly calculate

genuine adsorption free energies, ∆Gads. One of the main reasons is, as mentioned be-

fore, the insufficient sampling of phase space. The massive phase space of biomolecules

makes a complete sampling of these landscapes impossible.

2.4 Monte Carlo simulations

In Monte Carlo (MC) simulations, a sequence of points in the configurational space is

created from an initial configuration, by making random changes to the coordinates of a

randomly chosen particle (molecule or atom), using a random number generator. These

random changes are also known as a “random kick” [127; 128; 122]. If the energy of

the new configuration is lower than the energy of the previous configuration, the new

configuration is accepted and a random kick is again applied. If the energy of the new

configuration is higher than the previous one, then the Boltzmann factor of the energy

difference exp(−∆U/kBT ) (where U is the potential energy and T is the temperature)

is calculated and compared to a random number in the interval between 0 and 1. If

the Boltzmann factor is greater than the random number, then the new configuration

is accepted, otherwise it is rejected and the previous configuration is used in the next

move. This Metropolis procedure can be summarised by the following relation:

rand(0, 1) ≤ exp(−∆U(r)/kBT ). (2.17)

The configurations in the ensemble are assured to obey a Boltzmann distribution by

this Metropolis procedure. States with low energy have a greater probability of being
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accepted than configurations with a higher energy. However, the opportunity to accept

configurations of higher energy gives MC methods the chance to explore the configu-

rational space by avoiding being stuck in a local minimum, and by permitting moves

to states of higher energy, i.e., giving a better coverage of the configurational space.

The desired properties are calculated for each accepted configuration and at the end of

the simulation the average 〈A〉 of these properties is determined by averaging over the

number of calculated values, M :

〈A〉 =
1
M

M∑

i=1

A(r). (2.18)

As opposed to molecular dynamics (MD) simulations (2.5), MC is a non-deterministic

method (stochastic method), since each configuration only depends on the previous one

and on random numbers and therefore two simulations starting with the same configura-

tion will not necessarily create the same sampling (since the generated random numbers

could be different). While MD simulations measure time averages in an ensemble, MC

simulations probe the canonical ensemble, yielding ensemble averages. An advantage of

MC is that it is does not require the forces on the atoms to be calculated, and thus it

is not always necessary to re-calculate the energy of the entire system but only the con-

tributions corresponding to the part of the system that were changed in that step. This

significantly reduces the computational time. Another advantage is that thermodynamic

properties calculated from a MC simulation usually converge rapidly [127]. MC methods

are better at exploring the translational and rotational space of small molecules since

for large molecules such as peptides, several simultaneous perturbations are required in

order to generate reasonable conformational changes. Such movements are difficult to

generate by random perturbations of either the Cartesian or internal coordinates since

even small movements may lead to a large energy increase. The consequence of this is

a slow configurational space coverage. Another disadvantage of MC is that this method
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is time-independent and therefore it is not appropriate for the study of time-dependent

properties.

So while MD is more appropriate to explore the local phase space, MC is more

effective for conformational changes because since it can go “uphill” in the potential

energy, it might end up in a different area of the configurational space [127]. In the

study of the interaction of peptides with graphitic surfaces, MD simulation was chosen

over MC due to its ease of use, since the generation of random “kicks” for big molecules

can be potentially difficult. Like in the case of MD simulations, MC simulation involves

two stages: an equilibration period and a production stage. During the equilibration

period, the thermodynamic properties and other parameters are monitored until stable

values are reached. After equilibration has been reached, the production period can

commence.

2.5 Molecular dynamics simulations

The basis of molecular dynamics (MD) simulations is the integration of Newton’s second

law, F = ma, to generate consecutive configurations of the system. This results in a

trajectory which describes the positions and velocities of the molecules in the system as

a function of time [122]. Taking into account that the forces and the derivatives of the

potential energy are related in the following way:

δUi(ri, t)
δri

= −Fi(ri, t) (2.19)

where the vector ri(xi, yi, zi) describes the position of the particle i and Ui is the

potential energy of the particle of mass mi at position ri. By solving the differential

form of Newton’s second law we obtain a trajectory of the particles as a function of

time:
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Fi = miai = mi
d2ri

dt2
(2.20)

and therefore,

−dUi

dri
= mi

d2ri

dt2
. (2.21)

2.5.1 Integration algorithms

Several methods exist to integrate the equations of motion. An ideal algorithm, as like

any other computer algorithm, should be efficient, require minimal memory and be easy

to program. However, the most important requirements in MD simulations are that

the integration algorithm should conserve energy and momentum, be time-reversible,

and should permit a long time step, δt, to be used [122]. All algorithms are based on

the approach of numerical integration of the equations of motion over the timestep δt.

During each step the total force on each particle is assumed to be constant. For each

particle and each step the total force Fi is calculated as the sum of the negative nuclear

derivatives of the contributions to the interaction energy Ui:

Fi = −
∑

j

∇Ui (2.22)

where Fi is the total force on each particle i, Ui =
∑

j 6=i Uj is the potential energy of

particle i and the gradient of Ui is given by ∇ = ∂Ui
∂x ex + ∂Ui

∂y ey + ∂Ui
∂z ez, where ex, ey,

ez are the unit vectors. Once the forces have been calculated by taking the derivatives

of the the potential energy, Newton second’s law is solved and the accelerations of the

particles can be determined. These can be used to calculate the positions and velocities

at time t, and can then be used to calculate the positions and velocities at a time t+δt.

Common to all the integration algorithms is the assumption that the positions

and dynamic properties (such as velocities and accelerations) can be described as a
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Taylor series expansion, meaning that for a given coordinate r it is possible to predict

the coordinates at a small time δt ahead of the current time, i.e., r(t+ δt):

r(t+ δt) = r(t) + δtv(t) +
1
2
δt2a(t) +

1
6
δt3b(t) + · · · (2.23)

v(t+ δt) = v(t) + δta(t) +
1
2
δt2b(t) +

1
6
δt3c(t) + · · · (2.24)

a(t+ δt) = a(t) + δtb(t) +
1
2
δt2c(t) + · · · (2.25)

b(t+ δt) = b(t) + δtc(t) + · · · (2.26)

where r are the positions, v is the velocity (the first derivative of the positions with

respect to time), a is the acceleration (the second derivative of the positions with

respect to time), b is the third derivative, · · ·and so on.

2.5.1.1 Verlet algorithm

The Verlet algorithm [129] was used in this study and is one of the most extensively

used method to integrate the equations of motion in MD simulations. In the Verlet

algorithm, the positions at t + δt [r(t + δt)] are calculated by using the positions and

accelerations at time t, and the positions from the former step r(t−δt). The relationship

can be derived from:

r(t+ δt) = r(t) + δtv(t) +
1
2
δt2a(t) + · · · (2.27)

r(t− δt) = r(t)− δtv(t) +
1
2
δt2a(t)− · · · (2.28)

The sum of these expressions gives:

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t). (2.29)

One of the drawbacks of this method is that the velocities cannot be calculated explicitly.

Despite the velocities not being necessary for the time evolution, they are required to
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the calculation of the kinetic energy K, which is necessary to test the conservation of

the total energy (E = K + U) and to calculate the temperature. However, there are

other ways to determine the velocities from these relations. For example, velocities can

be calculated at the half-step, t+ 1
2δt:

v(t+
1
2
δt) = [r(t+ δt)− r(t)]/δt. (2.30)

Other disadvantages are related with the loss of precision upon the calculation of the

positions r(t + δt), since we are adding a small term (δta(t)) to the difference of two

larger terms, 2r(t) and r(t − δt). In addition, since the velocities are not calculated

explicitly they are only available after the positions have been calculated in the next

step. The Verlet algorithm is unable to self-start, since the new positions r(t+ δt) are

obtained from r(t) and r(t− δt), and at t = 0 only one set of positions is available, and

therefore, the positions at r(t−δt) need to be determined by other means. On the other

hand, the Verlet algorithm is easy to implement, accurate and stable and has minimal

storage requirements since it only stores two sets of positions (r(t) and r(t − δt)) and

the accelerations a(t). It is time-reversible, force and momentum conservative, and it is

shown to conserve the energy properties even with long time steps [128].

2.5.2 Timesteps

The timestep in MD simulations is the interval δt in which the total force is assumed to

be constant. The timestep should be small enough to capture all the relevant information

about the system but not too small, otherwise the phase space would be poorly sampled.

An integration timestep of 1 fs was used in our simulations which is short enough to

cover the smallest possible molecular timescale (in this case the period of the X—H

bond vibration).
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2.5.3 Thermostats

The simulations performed in this study were carried out at room temperature since this

is the temperature at which most of the relevant experiments are carried out. Ther-

mostats are used to keep the temperature of a system constant. Before proceeding to

the description of the thermostat used in these simulations it is important to understand

the meaning of “constant temperature”. The instantaneous temperature of a particle

is related to its kinetic energy through the linear momentum p.

N∑

i=1

| p2
i |

2mi
=
kbT

2
(3N −Nc), (2.31)

where pi = mi.vi is the linear momentum of particle i with mass mi and 3N−Nc is the

total number of degrees of freedom, whereNc is the total number of independent internal

constraints (such as fixed bond lengths and angles). This is based on the principle of

equipartition of energy which states that each degree of freedom has an average energy

of kBT/2. Therefore, constant temperature does not mean the kinetic energy per

particle being constant, as we would not be simulating the true constant temperature

of the ensemble. In fact, the instantaneous kinetic temperature fluctuates while keeping

the average ensemble temperature constant [126]. The Nosé-Hoover thermostat was

used in our simulations to keep the temperature around an average room temperature.

The basic idea of this thermostat is the consideration of a heat bath as an integral

part of the system, by adding an additional degree of freedom s which represents that

reservoir and is associated with an artificial mass Q and a conjugated momentum ps

[128]. This extra degree of freedom has the effect of an external system on the system

of study, allowing the flow of the energy from the bath to the system and vice-versa.

The equations of motion can be re-written by replacing the scaled momentum ps with

a new “real” momentum p: [(ps/s) → p]. The new set of equations of motion are as
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follows:

dr
dt

= p/m (2.32)

dp
dt

= F− ps

Q
p (2.33)

where,

ds
dt

=
sps

Q
(2.34)

dps

dt
=

∑ [p2

m
− kBT

]
. (2.35)

The scaling parameter s can be completely ignored by writing the equations as follows

[130]:

dp
dt

= F− ξp (2.36)

where ξ is the friction coefficient (ξ ∝ ps) and is given by the first-order differential

equation:

dξ

dt
=

f
Q

(kBτ − kBT ), (2.37)

and Q is the thermal inertia parameter (thermostat degree of freedom) which controls

the rate of temperature fluctuations and can vary between 10-10000 kcal/mol ps2, f is

the number of degrees of freedom, T is the desired temperature and τ is the current

kinetic temperature at time t. τ is related to the kinetic energy K of the system by the

following relation:

K =
3N
2
kBT, (2.38)

where N is the number of molecules in the system. The Nosé-Hoover thermostat is

used to maintain a rigorous canonical ensemble.
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2.5.4 Barostats

In the simulations of graphitic surfaces in water, the pressure and temperature were

kept constant. In a MD simulation at constant pressure the volume is a dynamical

variable that is allowed to vary in order to keep the pressure constant. The pressure

was kept constant with the Nosé-Hoover barostat, which works in a similar way to the

Nosé-Hoover thermostat. In an (N,P, T ) ensemble both the temperature and pressure

are controlled by the combination of the Nosé-Hoover thermostat and barostat. The

equations of motion are as follows [128]:

dp
dt

= F− (χ+ ξ)p (2.39)

χ =
dV

dt
/3V (2.40)

dχ

dt
=

P0 − P

t2PkBT
V (2.41)

ξ

dt
= (

∑

i

| p2
i |m− fkBT )/Q (2.42)

where p is the momentum, χ is the volume scaling factor, tP is the relaxation time

for the pressure fluctuations and can vary from a few hundred ps to a few ns, V is

the volume of the system and P0 and P are the instantaneous and desired pressure,

respectively.

2.5.5 Periodic boundary conditions

In the study of graphitic surfaces in water we modelled an infinite CNT and an infinite

graphite surface which was accomplished by the use of periodic boundary conditions in

order to avoid edge effects and to enable the simulation of a relatively small number

of particles. When using periodic boundary conditions, an infinite lattice is formed by

the replication of the original simulation cell throughout space in three dimensions. In

this way, there is a periodic image of each molecule in the original (central) cell in each
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Figure 2.2: Schematic of a two-dimensional periodic system. As molecule 1 leaves the
box it is replaced by its image which moves from box G into the central box (Taken
from [128]).

of the neighbour cells in such a manner that as a molecule in the original cell moves,

its periodic image in each of the adjacent cells moves in the same way. If a molecule

leaves the central cell during the simulation, it is replaced by one of its periodic images

that enters through the opposite side of the cell, as schematically illustrated in Figure

2.2. This process enables the conservation of the number of molecules in the central

cell [128; 122]. Despite the cubic box being the easiest to visualise and implement,

other shapes are also used depending on what is more convenient for a given simulation.

However, one of the biggest limitations associated with the use of periodic boundary

conditions is the inability to simulate fluctuations of a system at a wavelength greater

than the length of the cell (e.g. of importance for simulation of a liquid close to the

gas-liquid critical point).
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2.5.5.1 Potential truncation and minimum image convention

The calculation of the non-bonded energies is one of the most time-consuming aspects

of molecular simulation. In principle, in the calculation of the non-bonded interactions,

all pairs of atoms in the system and corresponding images of the adjacent cells should

be considered. But in this case we would have an infinite number of terms. Since the

Lennard-Jones (LJ) potential falls off very quickly with distance, a non-bonded cutoff

can be applied together with the minimum image convention. In the minimum image

convention, the energy (or force) is calculated by considering each molecule at the centre

of a region which has the same size and shape as the basic unit cell. Each molecule

interacts with all the molecules whose centres lie within that region, that is the closest

molecule or periodic images of the other N − 1 molecules (where N is the number of

molecules in the system). The application of this convention assures that a given atom

does not interact with its own image or with the same molecule twice. When a cutoff is

appied, the interactions between all pairs of atoms that are further from the cutoff value

are set to zero. When periodic boundary conditions are applied, the cutoff distance

should not be greater than half the shortest length of the box. The drawback of this is

that by truncating the calculation we are no longer calculating the exact property but

an approximation, so cell size effects should be explored for the properties under study.

2.5.5.1.1 Ewald Summation Handling long-range interactions arising from, e.g.

charge-charge and dipole-dipole interactions, can be problematic due to their range

usually being greater than half the box length. The problems related with the sum of

the electrostatic interactions are the slow convergence and both the positive and negative

terms form a divergent series if added alone. In addition, the sum is dependent on the

order in which the terms are considered. The potential energy between the charges in
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the central box and all the periodic boxes can be written as:

Uelec =
1
2

∑
n

N∑

i=1

N∑

j=1

qiqj
4πε0 | rij + n | , (2.43)

where qi and qj are the partial charges on particles i and j, rij is the distance between

the particles i and j and ε0 the permittivity of free space. The sum over n is the sum

over all cubic lattice points, n = (nxL, nyL, nzL) with nx, ny, nz being integers and

L the size of the central box. The issue with truncating these interactions is that it

gives rise to considerable inaccuracies. Several methods exist to deal with the problem

of the long-range forces; the one that was used in this work is the Ewald summation.

The Ewald sum is a method to efficiently sum the interaction between an ion and all

its periodic images [128]. This is accomplished by surrounding each point charge with a

charge distribution of equal magnitude and opposite sign which spreads out the charge,

such as a Gaussian distribution. The effect of adding a Gaussian distribution is that it

acts like an ionic species, screening the interaction between the neighbouring charges.

The consequence of this is that the screened interactions are short-ranged and therefore

the total screened potential can be calculated by adding the interactions between all

molecules in the central box and all their images in the real space. Since a charge

distribution of the same magnitude and same sign as the original charge is also added, it

cancels the overall potential of the arrangement of screening charges. This distribution

of cancelling charges is summed in reciprocal space using Fourier transforms. The final

electrostatic energy is then the sum of the real space contribution and the reciprocal

space contribution minus the interaction of the cancelling distribution centred at ri with

itself. The sum can be expressed as follows:

ϕ(r) = ϕsr(r) + ϕlr(r) (2.44)
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where ϕsr(r) is the short-range term which is summed in real space and ϕlr(r) is the

long-range term which is added in reciprocal space.

2.5.6 Initial conditions

The initial configuration of a system should be carefully selected, since it can significantly

influence the progress of the simulation. It is usual to initiate the simulation with a

configuration similar to the state we intend to simulate, making sure that there are no

interactions of high energy, since this may trap the system in a high energy state or

lead to the system exploding (if in an NPT ensemble). In addition, simulations with

different initial configurations can be performed in order to improve the search for the

lowest energy geometries. Another important aspect in initialising a MD simulation is

the assignment of the initial velocities of the atoms. The initial atom velocities are

usually determined from a random distribution such that the overall linear momentum

is zero:

P =
N∑

i=1

miυi = 0, (2.45)

where the velocities υi are randomly selected from a Maxwell-Boltzmann distribution at

the temperature of interest, which describes the probability of an atom i of mass mi of

having velocity υi in the x direction at a temperature T :

p(υix) = (
mi

2πkBT
)

1
2 exp[−1

2
miυ

2
ix

kBT
] (2.46)

The temperature can be calculated from the velocities using the relation in 2.31. The

Maxwell-Boltzmann distribution is a Gaussian distribution and is created by a random

number generator between 0 and 1 [122; 128]. The generated random number is then

converted into a Gaussian distribution:

p(x) =
1√

2πσ2
exp[−(x− < x >)2

2σ2
], (2.47)
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where p(x) is the probability of generating a value from a Gaussian distribution with

mean < x > and variance σ2 =< (x− < x >)2 >. The same equations are applied to

the y and z components.

2.6 Construction and representation of the Potential Energy

Landscape (PEL)

As mentioned before, the Born-Oppenheimer approximation enables the separation of

the electronic from the nuclear motion. This enables solving the electronic Schrödinger

equation (described in Section 2.6.1) for a given spatial arrangement of the nuclei using

the nuclear positions as parameters. The PEL is defined as the set of the total potential

energies (e.g. as obtained by solving the Schrödinger equation in 2.48) for all possible

nuclear arrangements for a given electronic state. Solving the electronic Schrödinger

equation for a given set of nuclear coordinates is computationally expensive for large

systems. Quantum mechanics can be used to construct and explore a PEL, however, it

is currently impossible to construct a PEL for large molecules. In addition, the motion

of the nuclei on the PEL can be described with either classical or quantum dynamics.

However, quantum dynamics on a PEL is beyond the scope of this thesis.

Useful information can, however, be obtained by limiting the calculations to an

interesting part of the PEL, as for example the low-energy nuclear geometries. The PEL,

can be calculated with quantum mechanics “on-the-fly” (ab initio dynamics), however

quantum mechanical calculations for large molecules are prohibitively expensive. An

alternative, is the use of a parameterised potential which is a function of internal nuclear

coordinates only and is, in general, based on experimental data or quantum mechanical

data. Such a potential is called an empirical force-field; the term “force-field” has also
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been used by spectroscopists for the set of force constants [131]. Force-field methods

are also known as molecular mechanics (MM) methods, and a description will be given

in 2.6.2. Methods in which the objective is solving the electronic Schrödinger equation

are usually referred to as electronic structure calculations. A very brief review of these

main techniques is presented in the next Section (2.6.1). Another widely used quantum

mechanical method is density functional theory (DFT) in which the effect of electron

correlation is modelled as a function of the electron density, and the electron density

is (in principle) the major physical quantity and not the wavefunction. An abbreviated

outline of DFT is given in Section 2.6.1.2.

2.6.1 Electronic structure theory methods

Since electrons are very light particles they cannot be correctly described by classical

mechanics. Therefore, in order to describe the electron distribution in detail we need to

use quantum mechanics.

The time-independent form of the Schrödinger equation for a single particle (e.g.

an electron) of mass m, moving through space with a position vector r = xi + yj + zk

in an external field V (r) is given by:

{− h̄2

2m
∇2 + V (r)}Ψ(r) = EΨ(r), (2.48)

where Ψ is the wavefunction. It is the square of the modulus of Ψ that has a physical

meaning: ‖Ψ‖2 = Ψ.Ψ∗ gives the probability distribution of the particle, where Ψ∗ is

the complex conjugate of the wavefunction.

E is the total energy of the particle and ∇2 = ( ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ) is the Laplacian

operator. The left-hand side of equation 2.48 can be abbreviated to HΨ, where H is
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known as the Hamiltonian; this operator corresponds to the total energy of the system:

H = − h̄2

2m
∇2 + V. (2.49)

The Schrödinger equation for one particle is thereby symbolically written as:

HΨ = EΨ. (2.50)

The Schrödinger equation is an eigenvalue problem. It is not possible to solve exactly the

Schrödinger equation for molecular systems with more than one electron and thus solu-

tions for larger systems are only approximations to the real solution. The approximations

involved concern the Hamiltonian and/or its operand which can be the wavefunction

(ab-initio and semi-empirical methods) or the electron density distribution (DFT and

Kohn-Sham-DFT- methods). The Schrödinger equation in equation 2.50 yields an en-

ergy and a corresponding wavefunction for every possible electronic state (with a given

spin multiplicity). ab initio means “ from first principles”. In contrast to semi-empirical

models, ab initio models are derived without any recourse to experimental data (apart

from natural constants). On the other hand, semi-empirical models are in part informed

by experimental data (such as molecular energies and geometries). Despite these meth-

ods being computationally cheaper than ab initio methods, they are limited to systems

for which those parameters are known.

2.6.1.1 Hartree-Fock (HF) theory

HF is the simplest type of ab initio electronic structure theory. In the HF model elec-

trons interact through coulombic and exchange and the correlation energy is exactly

zero. Each electron can be described by a spin-orbital, a product of a spin-function and

a spatial function. The total wavefunction is given by the antisymmetrized product of
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all spin-orbitals, for example one or a fixed linear combination of several Slater determi-

nants [127]. This is because electrons are indistinguishable particles and therefore the

overall wavefunction must be antisymmetric, i.e., change sign upon exchanging any pair

of electrons.

Because HF only considers the average electron-electron interactions, the major limita-

tions of HF is the neglect of electron correlation. HF is a variational method since its

equations are derived from the variational principle, which states that the energy calcu-

lated with an approximation to the exact wavefunction will always be greater than or

equal to the exact energy. Therefore, the lower the energy, the closer the approximate

wavefunction will resemble the true wavefunction. The HF wavefunction is obtained

by imposing the condition that the energy should be stationary, i.e., the first deriva-

tive of the energy, δE, with respect to the spin orbitals is zero, under the constraint

of the orthonormality of the spin-orbitals. In addition, HF theory is a self-consistent

approach, which means that in the calculation the spin-orbitals are improved step-by-

step until the point where the electronic solutions that correspond to the total energy

are unchanged for all the electrons and the total energy cannot get any lower, i.e.,

self-consistency is achieved. The solutions of the HF equations, the HF orbitals, con-

stitute a starting point from where improvements or further assumptions can be added,

leading to post-Hartree-Fock methods and semi-empirical methods, respectively [127].

Post-Hartree-Fock methods have been developed to specifically treat electron correlation

[127]; Configuration-interaction (CI), Coupled-cluster (CC), Møller-Plesset (MP) per-

turbation theory are the most important methods that incorporate correlation effects.

The inclusion of further assumptions (i.e. neglect and/or parameterisation of integrals

in the HF equations) leads to the computationally cheaper (but less accurate) semi-

empirical methods (like AM1, PM3, etc). However, an overview of these approaches is
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beyond the scope of this thesis.

2.6.1.2 Density Functional Theory (DFT)

DFT is based on the fact that for a fixed arrangement of nuclei and a fixed number

of electrons the ground state electronic energy is entirely determined by the electron

density [122; 127]. It was first shown by Hohenberg and Kohn that the exact electron

density could describe the ground state as well as other properties of a system [132]

making the total electronic energy a functional (a functional maps a function onto a

number) of the electronic density distribution. It can be written as follows:

E[σ(r)] =
∫
Vext(r)σ(r)dr + F [σ(r)] (2.51)

where the first term describes the classical interaction between the electrons with the

external potential Vext(r) (the Coulomb interaction), σ(r) is the electron density and

F [σ(r)] represents the sum of the kinetic energy of the electrons and inter-electronic

interactions. In DFT there is a one-to-one correspondence between the electron density

and the electronic energy, however the universal functional which connects these two

properties is unknown. Therefore the objective of DFT is to find this functional that

connects the electron density with the energy.

DFT has a big limitation, which is the fact that it does not reliably capture dispersion

at all separations, and exchange is also an approximation (unlike in HF). In addition,

with this approach it is difficult to consistently improve the results.

2.6.2 Molecular mechanics (MM)

The main aim of molecular mechanics (MM) is to use the information derived from

other related molecules to predict the geometry of a new molecule. The basic idea
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behind MM is that empirical functions are based on the picture of atoms in molecules

as connected by balls and springs. In this sense MM is a method used to construct the

PEL and enable the calculation of optimised geometries of molecules. The force-field

potential is a sum of several contributions (intramolecular and intermolecular) and is

given by:

Utotal = Uelec + ULJ + Ustr + Ubend + Utorsion + Uimp (2.52)

where Utotal is the total energy, Uelec is the non-bonded electrostatic contribution, ULJ is

the non-bonded Lennard-Jones contribution, Ustr is the bonding contribution, Ubend the

angle-bending contribution, Utorsion the dihedral contribution and Uimp the improper

torsion contribution to the energy. A brief overview of each contribution as well as how

it is modelled is presented below.

2.6.2.1 Intermolecular interactions

The existence of intermolecular interactions is the reason why liquids and solids exist,

otherwise all matter would be in the gas phase. In MM the description of non-bonded

interactions is usually divided in two groups: the van der Waals (vdw) interactions and

the electrostatic interactions. The VDW interactions include dispersion and repulsion

interactions. The electrostatic interactions include the interaction between charges and

higher-order multipoles (e.g. dipole-dipole) in general, as well as related phenomena

such as induction interactions. In addition, the intermolecular interactions can be di-

vided into two main types: long-range, where the energy of interaction can usually be

expressed as an inverse power of distance r between the atoms, and can be of three

kinds: electrostatic, induction and dispersion; and short-range, where the interaction

energy decreases exponentially with distance [133]. A brief description of each of these

interactions will be given below.
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2.6.2.1.1 Dispersion The force arising from the long-range dispersion interaction is

also known as the London Force since London was the first to explain this dispersive

force by quantum mechanics. This interaction arises from the fact that electrons in an

atom or molecule are continuously moving which creates temporary dipole moments in

the charge density. These instantaneous dipoles can induce the formation of another

temporary dipole in a neighbouring atom or molecule. This gives rise to an attractive

interaction between the two particles that is always present at all separations. The

dispersion interaction is always attractive and therefore always lowers the interaction

energy. The larger the molecule or atom the stronger the dispersion interaction since

molecular polarisability increases with the number of electrons. The dispersion energy

between molecules is approximately given by:

Udisp = − 3α4h̄ω

4(4πε0)2r6
, (2.53)

where α is the polarisability, ω is the angular frequency and is related with the force

constant k by ω =
√
k/m, h̄ = h/2π, where h is the Planck constant, r is the distance

between the atoms and ε0 is the permittivity of free space. Equation 2.53 shows that

the long-range dispersion energy is proportional to r−6.

2.6.2.1.2 Repulsion Forces arising from repulsive interactions (also called exchange

forces or overlap forces) arise when two molecular species approach together such that

their electron clouds overlap, causing an increase in the energy. According to Pauli’s

exclusion principle, electrons in a system cannot have exactly the same set of quantum

numbers. The origin of this interaction is due to electrons of the same spin in close

proximity and therefore it is an exchange effect. This short-range interaction effectively

prohibits electrons of the same spin occupying the same internuclear region. At short

internuclear distances the interaction energy varies with 1/r, however at large separations
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the energy decays exponentially with exp(−2r/a0), where a0 is the Bohr radius.

2.6.2.1.3 Induction When a polar molecule approaches an apolar molecule it in-

duces a dipole moment in the apolar molecule. This phenomenon is also known as

polarisation and will be outlined in Section 2.6.2.4. Induction is non-additive and is al-

ways attractive, varying with r−3, r−4 or r−6. This interaction is often ignored in many

force-fields due to its small contribution to the potential energy. However, studies have

shown the importance of induction in the description of the molecular conformational

dependence when using multipoles to describe the electrostatic interactions [134].

2.6.2.2 Modelling Van der Waals (VDW) interactions

The VDW energy (Evdw) represents the repulsion and attraction between non-bonded

atoms and embodies approximations to both the dispersion and repulsion contributions

to the intermolecular interaction. Evdw is zero at an infinite interatomic distance and

is large and positive at short distances due to the short-ranged repulsion term. At

intermediate distances there is a minimum energy; the well-depth gives the equilibrium

VDW interaction between the two species. The most common function that describes

these behaviours is the Lennard-Jones 12-6 potential which has the following form:

ULJ = 4ε
[( σ

rij

)12 − (
σ

rij
)6

]
(2.54)

where ε is the well depth of the function, σ is the separation at which the energy is zero

and rij is the separation between the particles i and j.

However, in the case of the AMOEBAPRO force-field a buffered 14−7 functional

form is adopted [135]:

Uvdw(ij) = εij
( 1 + δ

ρij + δ

)(n−m)( 1 + γ

ρm
ij + γ

− 2
)
, (2.55)
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where εij is the potential well depth, ρij = Rij/R
0
ij with Rij as the i− j separation (in

angstroms) and R0
ij the minimum energy distance. δ and γ are buffering constants and

following Halgren [135], the fixed values n = 14, m = 7, σ = 0.07, and γ = 0.12 were

used. These constants were determined from fits to rare-gas data and are applied to all

interactions between the atoms i and j. For heterogeneous atoms pair, the combination

rules are as follows:

εij =
4εijεjj

(ε1/2
ii + ε

1/2
jj )2

, (2.56)

R0
ij =

(R0
ii)

3 + (R0
jj)

3

(R0
ii)2 + (R0

jj)2
. (2.57)

The terms involving the buffering constants, δ and γ, produce the repulsive

part of the potential (formal exponent n = 14), while the δ-buffered term and the

constant term, −2 describe the dispersion interactions (formal exponent n −m = 7).

The buffered terms keep the potential finite as Rij approaches zero, and thus avoids

the strong divergence that is found in the unbuffered LJ potential [135]. The use of

n − m > 6 allows a better description of the dispersion interaction in equation 2.53,

while the positive value of δ serves to damp the dispersion term at small Rij . In

addition, this buffered potential gives a softer repulsion region than the LJ potential,

and reaches the repulsion region at shorter ranges. It was found that this potential gave

better descriptions of liquid properties and noble gases than the LJ potential, providing

a better fit to gas phase ab initio results [135]. Figure 2.3 shows a schematic of the LJ,

Buckingham exp-6 and buffered 14-7 potentials.

2.6.2.3 Electrostatic Interactions

The long-range electrostatic interactions are the first to arise when two molecules start

approaching each other. They can be either attractive or repulsive and are strictly pair-
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Figure 2.3: Comparison of the Lennard-Jones 12-6 (solid line), the Buckingham exp-6
(dashed line), and the buffered 14-7 (dotted line) potentials. From [136].
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wise additive. This means that for instance, for three molecules A, B and C, the total

energy is the sum over the pair contributions UAB + UBC + UAC , where UAB is the

potential energy between the molecules A and B and is evaluated assuming molecule

C is not present, and so on.

2.6.2.3.1 Example: The dipole-dipole interaction The dipole-dipole interaction

arises from molecules with permanent dipole moments (polar molecules). The difference

in electronegativity of the atoms in a molecule moves the electron distribution near

the atom with higher electronegativity becoming more negatively charged and thus

making the other atom more positively charged. This very strong interaction (around

2.0 kcal/mol) arises when one charge in a molecule interacts with the other charge

of opposite sign of another molecule. The dipole-dipole interaction can be attractive

or repulsive depending on whether the molecules are in a favourable or unfavourable

orientation and is proportional to r−3 at long-range. The dipole-dipole interaction

energy has the form [133]:

Uµµ = − µAµB

4πε0r3
(2 cos θA cos θB − sin θA sin θB cosϕ), (2.58)

where µA and µB are dipoles of molecules A and B, respectively, and θA, θB and

ϕ = ϕA − ϕB are the polar angles of molecules A and B.

2.6.2.3.2 Modelling electrostatic interactions The uneven charge distribution in

a molecule arises from the difference in electronegativity between atoms in such a way

that the more electronegative atom attracts more electrons than the less electronegative

atoms. There are several ways of describing this charge distribution, the simplest being

the one that distributes partial charges over the atoms in the molecules. Coulomb’s

law is then used to calculate the classical interaction between pairs of point charges, as
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follows:

V =
NA∑

i=1

NB∑

j=1

qiqj
4πε0rij

, (2.59)

where NA and NB are the number of atoms in the two molecules A and B, respec-

tively. The major limitation of using partial atomic charges is the neglect of geometry

dependence. Alternatively, there is an approach to describe electrostatic interactions

called the distributed multipole approximation which is able to represent the anisotropic

behaviour of a molecular charge distribution. This approach focuses on the inclusion of

higher moments of the electronic multipole distribution: the charge, dipole, quadrupole,

and higher multipoles through the molecule, and are generally represented by q (charge),

µ (dipole), Θ (quadrupole) and Φ (octopole).

2.6.2.3.3 Point-charge model Point-charge electrostatic models are a simpler way

of describing the electrostatic interactions. In order to accurately describe the electro-

static properties of a molecule, it might be necessary to assign partial charges at sites

other than at the nuclei. For example, the nitrogen molecule has a dipole moment and

a total net charge of zero and therefore by using the atom partial charge model a zero

charge on each nucleus would be assigned. However, since the nitrogen molecule has

a quadrupole moment the “simplest” way of describing this is by adding a −q charge

at each nucleus and a “+2q” at the centre of mass. Alternatively, the electrostatic

interaction may be described by assigning bond dipole moments in the molecule and

the electrostatic energy is thereby given by the sum of dipole-dipole interaction energies

[122].

2.6.2.3.4 The Distributed multipole approximation In the distributed multipole

expansion the molecule is divided in specific regions which are described by each multi-

pole moment. This procedure enables a more accurate representation of the electrostatic
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interaction than the point charge model and enables a representation of the anisotropic

behaviour of the molecular charge distribution. In addition, the geometry dependence

can be corrected by modelling polarisation as explained in the next Section (2.6.2.4).

An exact method to expand the electrostatic potential in terms of multipole moments

distributed at several regions in a molecule was developed by A. Stone and is called the

Distributed Multipole Analysis (DMA) [137; 138]. In the DMA method the multipoles

are calculated from ab initio calculations in which the wavefunction is defined by Gaus-

sian basis functions. The permanent atomic multipoles are put at each atomic centre

and include the monopole (charge), dipole and quadrupole moments, written as a vector

M :

M = [qi, µix, µiy, µiz, Qixx, Qixy, Qixz · · · , Qizz]T , (2.60)

where qi is the point charge located at the centre of the atom i, µix is the x dipole

component of atom i, Qixx is the xx quadrupole component of atom i, Qixy is the

xy quadrupole component of atom i, and so on. One of the problems is that dipole

and quadrupole moments are dependent on the choice of origin [133]. The atomic

multipoles of a molecule obtained by DMA calculations can indeed be viewed as the

sum of the permanent electrostatic components with the contribution from the inter-

and intra-molecular polarisation [134]:

Mi = Mperm
i + Mind

i , (2.61)

where Mi is the resulting multipole on each atom and Mperm
i and Mind

i are the per-

manent and induced moments, respectively. As will be explained in the next Section

(2.6.2.4), this contribution (Mind
i ) must be removed from the multipoles in order to

avoid double counting upon the application of the polarisable force-field.
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2.6.2.4 Polarisation

In the previous Sections (2.6.2.3.4) we focused on the permanent electrostatic multipoles

of a molecule. However, changes in the charge distribution of a molecule or atom due

to the application of an external field also gives rise to electrostatic interactions. This

phenomenon is called polarisation and refers to the displacement of charge in a particle

as a result of the application of an electrostatic field [139]. At the microscopic level,

when an electric field E is applied to a molecule with a permanent dipole moment, the

field causes a re-distribution of the charges, polarising the molecule and originating an

induced dipole moment, µind. The induced dipole moment is proportional to the electric

field, E:

µind = µperm + αE, (2.62)

where µperm is the permanent dipole moment and α is the dipole polarisability of the

molecule. In the case of isolated atoms, the polarisability is isotropic which means that

it only depends on the direction of the electric field (because an atom is represented

as a sphere it looks the same in any orientation). However, in the case of molecules

it gets more complicated since the orientation of the induced dipole does not always

have the same direction as the electric field. This is why the polarisability of a molecule

is anisotropic. The polarisability of a molecule can therefore be modelled by adding

isotropic atomic polarisabilities. Several methods to include molecular polarisation have

been proposed. In the case of the AMOEBAPRO force-field, Thole’s interactive dipole

polarisability model is used, which is based on a damping interaction method [140].

While some polarisability methods do not model induction between atoms within the

same molecule, in Thole’s model, atoms are polarised by induced dipoles of atoms

belonging to the same molecule as well as atoms outside the molecule. In this way the
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field E of equation 2.62 is the sum of the fields created by the permanent multipoles

and induced dipoles:

µind
i,α = αi(

∑

{j}
T ij

α Mj +
∑

{j′}
T ij′

αβµ
ind
j′,β). (2.63)

Where µind
i,α is the induced dipole moment at each atomic site i, αi is the atomic

polarisability at atomic site i, T ij
α = [Tα, Tα1, Tα2, Tα3, · · ·] is the interaction matrix

between site i and j (the subscript α stands for {x, y, z}), Mj is the permanent atomic

multipoles given by equation 2.61, and µind
j′,β is the induced dipole at atomic site j′ (the

subscript β stands for {x, y, z}). The set {j} comprises all atomic sites outside the

molecule containing i, while the set {j′} includes all atomic sites except i. The first

term in equation 2.63 is what is called direct induction and is the induction caused by

permanent multipoles, while the second term is the mutual induction and corresponds

to the induction due to induced dipoles at other sites.

Amongst the proposed schemes, the one proposed by Thole provide several ad-

vantages. The main advantage is that it avoids the polarisation catastrophe at very

short-ranges due to the existence of polarisation between atoms from the same molecule.

This polarisation catastrophe is avoided by including a scheme that restrains one of the

atomic multipole moments in each pair of interactions, to a finite value as the separation

between the atoms approaches zero [140]. The charge distribution used in the AMOE-

BAPRO force-field to prevent this catastrophe is an exponential form and is usually

referred to as a smearing function:

σ(u) =
3a
4π
e−au3

, (2.64)

where u = rij/(αiαj)1/6 is the effective distance as a function linear separation rij and

atomic polarisabilities at sites i(αi) and j(αj) and a is a dimensionless width parameter

related to the charge distribution and that controls the damping strength. In addition,
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Thole’s model is capable of exhibiting anisotropic behaviour to an external field only by

using isotropic atomic polarisabilities and the atomic polarisabilities are transferable to

many molecular polarisabilities.

The resulting atomic multipoles Mi, obtained by ab initio calculations incorpo-

rate intra-molecular polarisation and must be subtracted from the Mi in order to obtain

the true permanent atomic multipoles:

M ind
i,α = αi(

∑

{j}
T ij

α (Mj −M ind
j ) +

∑

{j′}
T ij′

α M ind
{j′}). (2.65)

The second term in equation 2.65 is the same as in equation 2.63 but the induced dipole

was replaced by generalised induced moments. This equation can be solved iteratively

for all atomic sites at the same time.

2.6.2.5 Intramolecular interactions

The intramolecular interaction energy includes the contributions from bond stretching,

angle bending and torsional terms. A brief description of how these contributions are

modelled is given below.

2.6.2.5.1 Bond stretching The total molecular potential energy stored in a bond

where the atoms are separated by a distance l, can be descrived with an harmonic

potential given by:

Ustr =
1
2
KB(l − l0)2, (2.66)

where KB is the force constant, l is the bond distance and l0 is the equilibrium bond

distance. This function cannot describe bond dissociation. A typical value of KB is

around 300 − 700 kcal mol−1 Å−2. In addition, the forces between atoms are very

strong being typically in the range of 35− 225 kcal mol−1.
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In the case of the AMOEBAPRO force-field an anharmonicity term is included

by the use of a deviation from the ideal bond length (l0):

Ustr = KB(l − l0)2[1− 2.55(l − l0) + (7/12)2.55(l − l0)2]. (2.67)

l0 and KB are parameters that are obtained from the parametrisation of the force-field.

An overview about parametrisation is given in the last Section of this Chapter (2.8).

2.6.2.5.2 Angle Bending Hooke’s law (the harmonic potential) is used to describe

the angle bending potential (Ubend):

Ubend =
1
2
Kbend(θ − θ0)2 (2.68)

where Kbend is the force constant, θ is the angle and θ0 is the equilibrium angle. The

distortion of an angle typically requires less energy that stretching or compressing a bond

and therefore the force constants Kbend, are smaller than KB. Kbend values are typically

between 0.009−0.0120 kcal mol−1deg−1 and again, Kbend and θ0 are parameters derived

from the force-field parametrisation (Section 2.8).

In the AMOEBAPRO force-field higher order terms are included in order to

improve the accuracy [141]:

Ubend = Kbend(θ − θ0)2[1− 0.014(θ − θ0) + 5.6× 10−5(θ − θ0)2 (2.69)

−7.0× 10−7(θ − θ0)3 + 2.2× 10−8(θ − θ0)4].

2.6.2.5.3 Torsional motions In the case of bond-stretching and angle-bending a

considerable amount of energy is required in order to cause distortions from the equi-

librium values. Whereas the rotation about chemical bonds (torsion) is one of the main

terms responsible for variations in the geometry as well as the energy. Another impor-

tant cause for these variations is the non-bonded interactions, discussed earlier. Let us
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Figure 2.4: Schematic of a dihedral angle between four bonded atoms A, B, C, and D.

consider the dihedral angle ABCD between four bonded atoms A, B, C and D (Figure

2.4). It is usual to distinguish two types of dihedral angles, the proper dihedrals where

a full rotation about the B—C bond occurs, and improper (out-of-plane) dihedral angle

where the rotation around the same bond is limited [139; 122]. The rotation around

the C—C bond in ethane is an example of a proper torsion. The common form of the

dihedral angle potential, Utorsion is:

Utorsion =
Un

2
[1 + cos(nφ− φ0)], (2.70)

where UN is the barrier height, n is the multiplicity (integer) and gives the periodicity

of the potential in the interval [0,2π] and φ0 is the equilibrium dihedral angle. In Figure

2.5 a schematic of the variation of the torsional energy, Utorsion, as a function of the

torsion angle φ, is shown.

In the case of the AMOEBAPRO force-field a Fourier expansion is used to de-

scribe the torsional energies:

Utorsion =
∑
n

Knφ[1 + cos(nφ± δ)], (2.71)

where Knφ is the dihedral force constant, n is the multiplicity, φ is the dihedral angle

and δ is the phase factor which determines where the torsion angle passes through its

minimum value.
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Figure 2.5: Schematic of the variation of the torsional energy with the torsion angle.
(Reproduced from [122].)

2.6.2.6 Improper dihedral angle and out-of-plane bending motions

The geometry or chirality of atoms can be corrected by using improper dihedral angles.

For example, modelling cyclobutanone with a force-field that only treats bond-stretching

and bond-bending terms will incorrectly yield a geometry in which the oxygen is out of

the plane. To obtain the correct geometry an additional term must be included in the

force-field. The easiest way of doing this is by using an out-of-plane bending term. One

of the techniques to include the out-of-plane bending term is to consider an “improper”

torsion angle where the four atoms are not bonded in the sequence 1—2—3—4. The

torsional potential to this method is:

Uoo = Koo(1− cos2ω) (2.72)

where Koo is the out-of-plane bending constant and ω is the out-of-plane angle.

In the case of the AMOEBAPRO force-field a Wilson-Decius-Cross function is
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used to restrain the out-of-plane bending [141]:

Uoo = Kχχ
2, (2.73)

where χ is the out-of-plane angle.

2.6.2.7 Cross Terms

One of the consequences related with the decreasing of the angle bending is the stretch-

ing of the bond between adjacent atoms in order to reduce the interaction between

the atoms. This is an example of several important cross terms which are believed to

be necessary in some force-fields that aim to predict the vibrational spectra. In the

AMOEBAPRO force-field the coupling between stretching and bending is handled by

the inclusion of a cross term which has the following form:

Ubθ = Kbθ[(b− b0) + (b′ − b′0)](θ − θ0), (2.74)

where b and b′ are the bond lengths and θ and θ0 are the bond angles.

2.6.2.8 Amoeba vs standard force-fields

A reliable force-field is imperative when simulating biological molecules. The force-field

used in this work is an extension of the AMOEBAPRO force-field developed by Ponder

and co-workers [142; 143; 144] and has already been used in our preliminary studies

of peptide-CNT recognition [118]. There are three main features that distinguishes

AMOEBAPRO from the other force fields: the electrostatic interactions are described

with the distributed multipole approximation as described in Section 2.6.2.3.4 and intra-

and intermolecular polarisation is included to model induction effects and the confor-

mational dependence of the multipoles on each atom. The AMOEBAPRO force-field
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is designed to model peptides and proteins, and includes atomistic and continuum sol-

vation models. The force-field was extended to include parameters for the non-bonded

interactions between peptides and graphititic surfaces (carbon nanotubes [118], graphite

[145] and fullerenes) at the same level of approximation (distributed multipoles and po-

larisation effects) [118]. Most of the standard force-fields describe the electrostatics

with a simple point-charge distribution. If we had chosen to use such a force-field,

the non-bonded interactions would be reduced to the VDW terms only, since an ideal

carbon nanotube (CNT) carries little to no charge on each carbon atom. The use of

only VDW terms is a very poor approximation to the real intermolecular interactions.

A polarisable force-field allows the inclusion of multipolar electrostatic interactions for

flexible molecules, which is very important for describing the π-stacking interactions

between aromatic peptide side-groups and the nanotube. Therefore, we believe that

the expense of a polarisable force-field is justifiable, since the aromatic residues are the

dominant residues involved in the interaction with the graphitic surfaces. Therefore the

distributed multipoles and the inclusion of polarisation help in capturing conformational

changes due to ring orientation of the peptide relative to the CNT surface. In addition,

in our previous paper [118] we showed that the use of only VDW interactions does

not compare well with first-principle calculations. To give the reader an idea of how

expensive the AMOEBAPRO force-field is with respect to other “off-the-shelf” force-

fields, a MD simulation comprising a box of water with 522 water molecules was run

for 0.5 ns with the AMOEBAPRO force-field and with TIP3P water. In both cases, the

minimum image convention was applied (no spherical cutoff applied) and in the case of

the AMOEBAPRO force-field the induction threshold was set to 10−3 D (the default

is 10−6). On the same computer, with the TIP3P water, it took 30 hours, while with

the AMOEBAPRO it took 83 hours. This gives an estimate that the AMOEBAPRO
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force-field is around 2.7 times slower than a standard force-field. This extra expense is

due to the presence of multipoles and the polarisation. To understand where does this

extra computational expense come from let us consider a water dimer and let us count

the number of terms in the electrostatic interaction by using the point charge model

and by using multipoles. With point charges there is one interaction (charge-charge)

for each pair of atoms and since there are nine possible atom-pairs for a water dimer,

the electrostatic interaction has nine contributions, and can be calculated by summing

over the interaction of each pair of point charges using equation 2.59. In the case of

multipoles there are six interactions (charge-charge, charge-dipole, charge-quadrupole,

dipole-dipole, dipole-quadrupole and quadrupole-quadrupole) for each pair of atoms,

and therefore there are 36 terms contributing to the electrostatic interaction. However,

the description of the electrostatics with distributed multipoles is not just a mere sum

of all these terms. There is an additional expense which is related to the fact that the

dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions are dependent

on the choice of origin and therefore during an optimisation or dynamic simulation it is

necessary to keep track of the orientation and the position of each atom. Each molecule

is defined by a “global” coordinate frame which is defined by a set of Cartesian axes

fixed in space and a “local” coordinate frame which is bound to the molecule, moving

as the molecule moves. The atomic multipoles remain constant with respect to the

local frame as the molecule moves. The relation between the global and local frames is

described by a rotation and a translation: a rotation into the desired orientation and a

translation to the desired positions [133]. In order to calculate the multipole interaction

each local frame must be moved to the global frame by applying a rotation operation for

each multipole site in the molecule. The application of rotation operations (via matri-

ces) is a time-consuming operation leading to the extra computational time. The extra
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computational expense also arises from the calculation of the induction energy and is

related with the fact that the induction energy is calculated via an iterative procedure

until convergence is achieved. It took 48 hours to run the same box of water for 0.5 ns

with the AMOEBAPRO force-field but with the polarisation switched off.

2.7 Implicit solvation model

Implicit solvent models are used to represent the solvent without including explicitly

the solvent molecules (at the atomistic level). The advantage of this is a decrease

in the computational time, while still accounting for solvent effects, such as changes

in the properties or in the behaviour of the molecules. The disadvantage is that the

solvent ordering contribution to the binding free energy is neglected. In the study of the

graphitic surfaces with peptides the Atomic Solvation Parameters (ASP) model [146]

was used, which works by including an extra term in the force-field that is dependent

on the derivative of the free energy of solvation ∆Gs:

∆Gs =
∑

atoms,i

∆σiAi, (2.75)

where σi is the atomic solvation parameter for atom i, and Ai is the solvent accessible

area for each atom or group. The solvent interaction potential describes protein-water

interactions based only on the atomic solvation parameters (∆σi) and their solvent

accessible areas Ai. The atomic solvation parameters are derived from vacuum-to-

water free energies of transfer of amino acid side-chain analogs, which express the

hydrophobicity of each atom i and is based on the accessible surface area of atoms in

the protein. The solvent accessible area Ai, of a protein atom is defined as the area

covered by a spherical solvent (probe), as the probe rolls over the surface of the protein.
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The force Fi on atom i can be expressed as:

Fi = −δ(∆Gs)
δri

(2.76)

=
∑

atomsj 6=i

(
∆σi

δAi

δrj
−∆σj

δAj

δri

)
, (2.77)

where Fi is the force on atom i with position ri. Equation 2.76 describes solvation forces

in terms of derivatives of the accessible areas with respect to the atomic positions.

2.8 Parametrisation and Transferability

In addition to the form of the intermolecular potential, a force-field also comprises a set

of parameters (such as constants, KB, Kbend, σij , equilibrium bond lengths etc.) for

each type of atom or atom pair. For example, a force-field includes a distinct set of

parameters for an oxygen atom in different environments e.g. in a carbonyl group and

in a hydroxyl group. It is important to notice that the same functional form can be used

in two force-fields, however with completely different parameters. A force-field typically

contains a large number of parameters and therefore its parametrisation and validation

can be a very difficult and time-consuming task. A force-field should be parametrised

according to the properties we are aiming to determine and study. For example, if

we aim to study the structural properties of molecules, the geometries and energies

of key molecules should be included in the parametrisation [122]. Quantum mechanics

calculations can be used to provide the data for the parametrisations of force-fields, since

most of the time experimental data is hard to obtain or simply does not exist. Once one

has identified the data set for the parametrisation, several approaches can be applied to

obtain the parameters. The parameters can be tested by “trial and error”, in which an

iterative procedure is applied to fine-tune the parameters until consistency is reached.

Alternatively, the set of parameters can be obtained by applying least-squares fitting to
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determine the optimal fit to the data provided. Parameter sets and functional forms are

specified to perform together and therefore the parameters from one force-field should

not be used with a potential from another force-field without re-parametrisation.

One of the most important features of a force-field is the transferability. The

same set of parameters should be appropriate to model a number of related molecules,

without the need to define new parameters for each molecule. This ability to transfer

parameters from one molecule to another is crucial, otherwise parametrisation would

be impossible and the force-field would not have the ability to predict the properties of

other molecules. For example, the same set of parameters for a given force-field should

be suitable to model all n-alkanes [122]. This feature is very important if we want to use

a force-field to make predictions. To allow transferability, the same set of parameters

should be used for the maximum number of molecules as possible. For example, usually

the same set of VDW parameters can be used for all atoms of the same element (sp3,

sp2, sp, etc.).
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Chapter 3

Modelling the binding affinity of

peptides for graphitic surfaces by

mutation of the aromatic content

3.1 Abstract

In this Chapter we study the interactions between peptide sequences and graphitic sur-

faces — carbon nanotubes (CNTs) and graphene — using molecular dynamics (MD)

simulations with our polarisable force-field. It was observed that peptide sequences

with strong affinity to CNTs selected by phage-display [94] are rich in tryptophan (W)

and histidine (H) residues. The aim of this study is, therefore, to investigate the im-

portance of the tryptophan residue in the peptide sequences B1(HWKHPWGAWDTL) and

B3(HWSAWWIRSNQS) [94] by mutating each tryptophan by either tyrosine or phenylala-

nine. Another aspect of this project was to explore the effect of curvature on the binding
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affinity. Our findings demonstrate that sequences containing tryptophan residues have

more affinity for the graphitic surfaces than those containing tyrosine (Y) or phenylala-

nine (F). Our results also suggest that these peptide sequences were also selected for

interfacial shape. For the graphene surface our results suggest that there is a com-

promise between having all the aromatic residues close to the surface and allowing the

non-aromatic residues to also approach the surface.

3.2 Introduction

Due to their fascinating structure, properties and potential applications, CNTs have at-

tracted much attention in recent years [100]. Unfortunately, the extreme hydrophobicity

of CNTs presents a major obstacle to their usage in aqueous solutions; a problem for

biological or medicinal applications. In addition, due to the difficulty of purifying and

separating CNTs, it has been complicated to assemble CNTs into practical structures

in aqueous solution. As a result, dispersing CNTs in aqueous solution and increasing

their solubility in water, in order to control dispersions, has been the subject of extensive

research. Solubility of CNTs in water can be improved by covalently attaching func-

tional groups to the nanotube walls [147; 64]. However, these modifications of the CNT

sidewall can locally perturb the electronic (sp2) structure of the tube, and therefore can

compromise the electronic and optical properties that make CNTs unique. Therefore,

non-covalent functionalisation of CNTs is preferable for many applications. Non-covalent

functionalisation might not only increase the solubility of CNTs but also preserve its

electronic and mechanical properties. Several approaches for solubilising CNTs using

non-covalent adsorption of surfactants [148; 149], polymers [150; 65], and biomolecules

[151; 152; 153; 154; 155; 71; 156] have been proposed and tested. In the cases where

an interface between CNTs and biological systems is required (for example, biosensors),
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biomolecules such as DNA, RNA, and peptides are appropriate [151; 157]. Peptides

have particularly shown advantages over non-covalent functionalisation by detergents

because they are not necessarily toxic to mammalian cells. Furthermore, peptides are

well-known for their high specificity for other biomolecules and materials [22; 21] and

for their ability to self-assemble into a wide range of complex, functional structures such

as molecular linkers and erectors.

A number of peptide sequences with specific affinity for carbon nanotubes [93;

94; 95; 97], fullerenes [98] and nanohorns[99] have been reported. Common to all

of these sequences is the presence of aromatic residues. The importance of the aro-

matic content on the peptide-CNT binding affinity has been highlighted in several works

[94; 95; 88; 97]. In addition, a number of studies have also focused on the importance of

tryptophan in the peptide-CNT binding affinity [90; 104; 119; 102; 101; 96; 118; 120].

Experimental measurements of pyrene binding to CNTs [103] indicated that this interac-

tion is quite strong due to the highly aromatic nature of the π- stacking and therefore,

it is not surprising that aromatic residues also have an affinity to graphitic surfaces.

AFM measurements and optical absorption spectra suggested that the ability to dis-

perse single-walled carbon nanotubes (SWCNTs) may be increased by increasing the

electron density of the aromatic residue [104]. Furthermore, Li et al. [90] demon-

strated that proteins containing poly-tryptophan showed a stronger adhesion on CNTs

than those containing poly-lysine, by direct AFM measurements. Salzmann et al. [102]

demonstrated the importance of the balance between hydrophilic (charged) and aro-

matic residues in the dispersion of CNTs. Furthermore, measurements of the dispersion

effect of copolymers (a polymer formed by two or more different monomers) comprising

mixed sequences of lysine/tryptophan and lysine/tyrosine demonstrated a better solu-

bilization for the tryptophan-containing peptides. Additionally, Xie et al. [101] studied
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the interactions of three aromatic residues (tryptophan, phenylalanine, tyrosine) SWC-

NTs, by designing a range of surfactant peptides. Their findings suggested that the

sequence containing tryptophan supported the highest affinity for CNTs (both bundle

and SWCNTs) while the tyrosine was found to be more selective for individual SWCNTs

and phenylalanine the aromatic residue with the lowest affinity for CNTs. Honek et al

[119] investigated the nature of the π—π interactions between the tryptophan residue

and CNTs by single-point mutation and the incorporation of non-natural tryptophan

analogs to alter the properties of the peptide chain. These binding affinities to CNTs

were experimentally evaluated and further investigated by computational modelling.

Their results suggested that the π—π interaction between the tryptophan side chain

and the CNT depends on the orbital interactions between the highest occupied molecu-

lar orbital (HOMO) of the tryptophan indole ring and the lowest unoccupied molecular

orbital (LUMO) of the CNT. This implicates the sidewall of the CNT behaving as an

electron acceptor and the indole ring as an electron donor. However, previous studies

on the interactions of CNTs with anthracene derivatives reported by Zhang et al. [158]

suggested that the nanotube acted as the electron donor and the anthracene an electron

acceptor. Therefore, these studies indicate that CNTs can either act as electron donors

or acceptors in these specific interactions.

A number of modelling studies have attempted to understand the nature of

the peptide-CNT interaction [118; 120; 114; 159; 160; 161; 162; 163; 164]. Sev-

eral studies have used a variety of computational methods, such as MD simulations

[114; 159; 160; 118; 120] and DFT calculations [165; 163] in an attempt to gain insight

into the atomic scale mechanisms underlying the strong affinity of peptide sequences

identified by Wang et al. [94] to CNTs. Cheng et al. [114] reported binding free energies

for CNTs and those peptides sequences [94] based on a combined simulation method of
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MD with a continuum solvation model. The continuum water medium solvent was used

to calculate energetic contributions based on the thermodynamic theory. The authors

took into account both contributions of the solute and solvent, however, the entropic

change of the solute has been neglected. These authors did not calculate real binding

free energies, since they assumed that all the phase space had been covered and merely

substituted the calculated binding interaction energies by binding free energies. As ex-

plained in Section 2.3.1 of Chapter 2 the phase space of biomolecules, such as peptides,

is enormous and therefore it is challenging its complete exploration. Only if we were able

to sample the entire phase space we would we be able to make the assumption made by

these authors. More recently, Kyani et al. [159] proposed a model to calculate binding

free energies for the same peptide sequences using a linear interaction energy approach

in conjugation with MD simulations. This method is based on a linear fit of computed

interaction energies between the peptide and the CNT. Again, these authors have not

calculated real binding free energies but interaction energies for the peptide-CNT sys-

tem in the free and bound state. Both authors [114; 159] claimed good qualitatively

agreement with experimental observations and concluded that the strong affinity of the

aromatic residues for the CNT are driven by the van der Waals (VDW) interaction.

However, these authors used single-point charges to describe the electrostatic interac-

tions, and because carbon atoms on the CNT were modelled as uncharged particles, the

calculation of the non-bonded interactions was reduced to the evaluation of the VDW

terms only. Fan et al. [163] used a a DFT tight-binding method with an empirical VDW

force correction to study the same peptides adsorbed on CNTs with different chiralites

and different diameters. The authors performed single-point calculations with periodic

boundary conditions in two dimensions under the local density approximation (LDA).

Their results showed a competition between π-π and hydrogen-π stacking in the bind-
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ing to CNTs and demonstrated that peptides can be spontaneously attracted to the

sidewall of the CNTs. They did not observe any linear relationship between the binding

energy and the tube diameter, but despite the chirality dependence of the binding ener-

gies not being obvious, a general binding energy increase was noticed upon increasing

the tube diameter. Moreover, their calculations predicted that the CNT non-covalent

modification by peptides might increase the electron transfer capabilities of SWCNTs.

However, in this study the authors only considered one peptide configuration. Recently,

Gianese et al. [160] reported a study, which performed a comparative investigation of

the adsorption of a peptide sequence selected by Wang et al. [94] on two different

carbon surfaces - a graphene sheet and a CNT - by calculating free energies of folding

and binding based on a combination of solvation energy, formation of hydrogen bonds

and the amount of hydrophobic contact surface between the peptide and the surface.

In both cases tryptophan was found to be the most strongly bound residue and different

arrangements of the histidine and tryptophan residues enabled a multitude of different

bound configurations. Although in agreement with the experimental observations [94],

that tryptophans play a dominant role in the binding affinity to CNTs, the electrostatic

interactions were modelled by single-point charges and water was described by a simple

point charge (SPC) model. Chiu et al. [166] demonstrated with atomistic MD simula-

tions that for a designed α-helical peptide structure, the π-stacking interaction between

the aromatic groups of the peptide and the CNT surface is dominant. Recently, they

extended their work to explore the peptide-peptide interactions and peptide-CNT inter-

actions, by performing MD simulations of a six and five peptide bundle around a SWCNT

[161]. Their results strongly suggest that peptides wrapped around CNTs are good dis-

persal agents. Roman et al. [165] performed a study with DFT, using the generalised

gradient approximation (GGA) for the exchange and correlation energy, in partnership
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with periodic boundary conditions, on the adsorption of single amino acids glycine, cys-

teine, histidine and phenylalanine on CNTs and graphite. While histidine and cysteine

did not show considerable substrate dependence, glycine was shown to bind stronger

on the CNT than on the graphite whilst phenylalanine showed the opposite behaviour,

which seemed to be due to the weakening of π-stacking on CNT curvature. However,

the authors did not describe which functional they used. Recently, Wang and Ai [164]

used MPWB1K and MP2 methods to study the adsorption of tripeptides (GXG where

X is any residue and G is glycine) onto CNTs. Their results indicated that the hy-

drophobic residues yield a strong adsorption on CNTs and that the π · · ·π interaction

is likely to be the most important interaction. In addition, amongst the three aromatic

tripeptides, GWG exhibited the strongest adsorption in both gas and aqueous phase,

where the solvent effects were taken into account with an implicit model. Recent works

[167; 168] have used atomistic MD simulations to study reversible cyclic peptides [169]

and their binding to CNTs. In our previous work [118], we performed MD simulations

of SWCNTs interacting with ’strong-binder’ and ’weak-binder’ aptamers, as identified

by Wang et al, with our validated extension of the AMOEBAPRO force-field [134; 170],

which treats both the molecule and CNT as polarisable. Our results confirmed the

experimental observations [94] of the relative binding affinity for the systems studied.

In this study we also calculated adsorption energies of several residue analogs, includ-

ing aromatic residue analogs, with the extended force-field and compared them with

data from electronic structure theory. A similar study was recently published by Ra-

jesh et al. [162], which used quantum mechanical methods (DFT using the plane-wave

pseudopotential approach within GGA and MP2) to calculate the interaction energy

of aromatic residue analogs (histidine, phenylalanine, tyrosine and tryptophan) with a

planar graphene sheet and CNTs and found that tryptophan is the aromatic residue
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Table 3.1: Original and mutated peptide sequences and a weak-binder control peptide
sequence NB1 used in this study.

Original sequences

B1 HWKHPWGAWDTL
B3 HWSAWWIRSNQS

Mutated sequences

B1Y HYKHPYGAYDTL
B1F HFKHPFGAFDTL
B3Y HYSAYYIRSNQS
B3F HFSAFFIRSNQS

Control sequence

NB1 LPPSNASVADYS

with most affinity for CNTs. With the exception of our previous work, all simulation

studies used traditional force-fields that are based on a distributed charge model for the

electrostatics and do not include a description of polarisation effects.

Taking into account the importance of the aromatic content, the aim of this

project is to explore whether mutations of the experimentally determined ’strong binder’

sequences, HWKHPWGAWDTL (denoted B1) and HWSAWWIRSNQS (denoted B3),

can recover similar binding affinity to the CNTs. To this end MD simulations were per-

formed of B1 and B3, and the corresponding mutants B1Y, B1F, B3Y and B3F (where

in each case W was replaced by either Y or F), adsorbed on a carbon nanotube with

the aim of determining if there was any change to the binding affinity of the mutants.

For example, the B1Y mutant corresponds with the sequence HYKHPYGAYDTL. Table

3.1 shows the peptide sequences studied. In addition, experimental studies have indi-

cated that peptide selection can distinguish between sequences that bind to CNTs and

sequences that bind to graphite [94; 96]. To this end, we also ran similar simulations

of these peptides adsorbed on a graphene sheet. Because the chemical composition
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of graphene and CNTs is the same, we considered these two systems to be the ideal

test case for investigating the influence of the interfacial shape on the binding affinity of

peptides. Distances and angles between the aromatic residues and the graphitic surfaces

were calculated and compared with the original sequences. Our molecular simulations

provide a detailed examination of peptide-CNT/peptide-graphene interactions for a sys-

tem consisting of an (8,0) zigzag segment/graphene sheet and one of each of the six

aptamers (each with 12 residues).

3.3 Methods

We performed MD simulations of systems comprising one surface (CNT or graphene

sheet) and one each of the peptide sequences B1, B3, B1Y, B1F, B3Y, B3F and the

control weak-binder NB1(LPPSNASVADYS) [94], using our extended AMOEBAPRO force-

field [134; 170]. Details of the force-field extension for the description of CNTs [118]

and graphene [145], has previously been given and good agreement was obtained when

compared with results from electronic structure theory. Our previous results using the

CNT extension to the force-field also yielded excellent agreement with experimental

observations [94]. As explained in Section 2.6.2.8 the AMOEBAPRO force-field has

three main features that makes it distinct from a standard force field: the electrostatic

interactions are described with the multipole approximation [137; 138] instead of point-

charges and intra- and intermolecular polarisation is included to model induction effects

and conformational dependence of the multipoles on each atom. Since the aromatic

residues are the main ones involved in the interaction between graphitic surfaces and

peptides, we believe that the expense of a polarisable force-field is justifiable because we

are modelling graphitic surfaces which carry little to no charge, and therefore the use of

a standard force-field would implie the use of only VDW. Using distributed multipoles in
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this work enabled an appropriate description of the π—stacking interactions between the

aromatic groups and the surface. Furthermore, previous experimental work suggested

that there is a weak charge transfer interaction between aromatic groups and CNTs

[104]. This phenomenon can be approximated with this polarisable force-field.

In the case of the peptide-CNT systems, a hydrogen-terminated zigzag (8,0)

nanotube with 976 carbon atoms was used. This CNT was at least four times the

contour length of the peptide. In the case of the peptide-graphene interface a sheet

comprising 2772 carbon atoms was modelled. All simulations were carried out in the

canonical ensemble at room temperature. The Verlet [129] algorithm was used to solve

Newton’s equations of motion with an integration timestep of 1.0 fs and a cutoff of

8 Å applied to all non-bonded interactions. The systems were equilibrated for 1 ns,

followed by an additional 1 ns production run. In order to identify many different

binding configurations, six initial geometries were used for each aptamer. To achieve

this, several tactics were used, for instance, peptide configurations were constructed and

placed by hand near the surface. In this case, geometries varied from extended backbone

configurations aligned with the long axis of the nanotube, to helical geometries that

could wrap around the CNT by changing the backbone torsion angles. Simulations of

the peptide without the surface, in effective continuum solvent conditions, were also

run to create a variety of geometries which were then placed close to the CNT surface;

in addition, the peptide-nanotube geometries that yielded strong binding were used to

perform a number of “on the fly” mutations in both the forward (W to Y/F) and reverse

(Y/F to W) directions.

All simulations were performed using the TINKER [171] package. To account

for solvation effects, we used a continuum effective solvent (as described in Section 2.7

of Chapter 2), since the inclusion of water at the atomistic level would increase the
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simulation time by several orders of magnitude. The implicit solvent employed was the

ASP model [172; 146], used in conjunction with a modified background dielectric. This

approach was found to give physically reasonable behaviour when used previously [118].

Furthermore, a comparative study of the structural properties of a strong-binding B1-

nanotube configuration in both implicit and explicit solvent, has been done by Walsh

[120]. These data clearly showed that the peptide configuration has not changed signif-

icantly by the presence of explicit water, and that the trends of the properties, such as

the distances of the aromatic residues to the CNT surface and the relative orientation

of the aromatic rings with respect to the CNT normal had not changed substantially.

Due to these satisfactory results, in this case, this is a reasonable approximation. This

approximation seems to work due to the lack of solvent structuring at the nanotube

water-interface [173], as opposed to the strong water structuring at hydrophilic surfaces

such as the rutile TiO2 surface [174]. Furthermore, the conjecture of the water struc-

turing around the peptide and the surface not being so pronounced as it would be for a

hydrophilic surface is supported by evidence of the dynamics of water at a hydrophobic

surface being faster than that in bulk [175]. In addition, due to the high hydrophobic

content of these peptides sequences, it is expected that the structural changes if the

explicit solvation was accounted for would be minimum. Therefore, while in full under-

standing that the use of implicit solvation is not an ideal approach, we conclude in this

case it is acceptable.

To analyse our simulation data we used both structural and energetic metrics.

To quantify binding affinity, we calculated the normalised interaction energy, EN , (the

interaction energy between the peptide and surface, divided by the number of atoms in

the peptide); since each peptide contains a different number of atoms, the normalisation

enable us to make a fairer comparison between the systems. The interaction energy,
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Eint, was calculated within TINKER and is defined by the difference between the energy

of the peptide adsorbed at the CNT and the energy of the molecular fragments at infinite

separation, e.g.

Eint = Epeptide+CNT − (Epeptide + ECNT ). (3.1)

Two other ways of normalising the binding affinities were tested with the intention of

showing that the trend in the binding affinity did not change upon the use of several

normalisation schemes. For these alternatives, instead of assigning a weight of 1 to each

atom in the peptide as we did in the denominator in our calculation of EN , two other

weighting schemes were tried: in one of the methods a weight of 1 was assigned to

any peptide atom within 6 Å of the surface and a weight of zero for all peptide atoms

further from the surface; in the other scheme a weight of 1 was assigned to any atom

closer than 4 Å from the surface, and an exponentially decaying weight for all atoms

more distant (weight = exp[-a(x-4)]), where the decay constant a was set to 0.5. EN

was then calculated by dividing the interaction energy by the sum of the weight. These

data are presented in Section 3.4.2. Distribution profiles of the ring centre-of-mass to

the CNT suface distances for the aromatic residues were performed by calculating the

distance from the centre-of-mass of each aromatic ring to the surface. For the ring—

surface distances the data is presented as histograms averaged over the production

run trajectories. In addition, the ring-tilt angles with respect to the surface normal

were determined by calculating the angle between the aromatic ring normal vector and

the CNT normal vector. A schematic of a ring-tilt angle is illustrated in Figure 3.1.

Cumulative moving averages (CAi) of the ring-surface distance and of the interaction

energy for each peptide adsorbed on the CNT were calculated by averaging the sequence

of i values x1, · · ·, xi up to the current time:

CAi =
x1 + · · ·+ xi

i
. (3.2)
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Ring normal
Surface normal 

Figure 3.1: Schematic of the ring-tilt angle α. The ring-tilt angle is the angle between
the aromatic ring and the nanotube and was calculated by measuring the angle between
the aromatic ring normal and the nanotube normal.

3.4 Results

3.4.1 Equilibration checks

In order to determine if equilibration had been reached, structural and energetic criteria

were used during the equilibration runs, such as measuring the fluctuations in the av-

erage distance between the CNT surface and the aromatic ring centre-of-mass, and the

fluctuations in the average interaction energy between the peptide and the surface. A

typical plot of such properties during the equilibration period is shown in Figure 3.2 for

the B1Y-nanotube system. These data indicate that the properties are changing very

little with time and therefore after 1 ns equilibration has been reached. Furthermore,

the same properties in the post-equilibration (production) period were calculated. In

Table 3.2 are the fluctuations (calculated as the root mean square deviation) of the

cumulative moving averages of the ring-surface distance for each peptide adsorbed on

the CNT in the 1 ns post-equilibration period. The small fluctuations of the moving

averages indicate that this property is stable and as a result the ring-nanotube distances
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and the interaction energy are not changing dramatically with time. Therefore, these

data show that equilibration have been achieved.

Figure 3.2: Two properties of the B1Y-nanotube system, as a function of time during the
equilibration period of the simulation; interaction energy (left) and ring-surface distance
for (Y9) right. The red curve shows the cumulative moving average of the properties
with time.

3.4.2 Peptide—Nanotube Simulations

For each aptamer, the normalised interaction energy, EN , was averaged over the top four

distinct binding trajectories that resulted in the best binding affinities (i.e. the lowest

interaction energy). Profiles of EN from the “best” trajectory (i.e., the trajectory of

strongest affinity) of B1, B3, B3Y and NB1 interacting with the CNT are shown in

Figure 3.3. The best trajectories of B1Y, B1F and B3F are similar to B3Y, so are

omitted from Figure 3.3 for clarity. Normalised interaction energies (averaged over the

four best trajectories) for all cases are presented in Table 3.3, along with the standard

error of the mean (SEM), as defined by the standard deviation in the sample means.

The breakdown in EN for each of the four trajectories for each aptamer is presented

in Table 3.5. In addition, as mentioned in the Methods, EN was calculated using two
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Table 3.2: Root mean square deviation (RMSD) of the CAi of the ring-surface distances
(Å) and interaction energy (kcal/mol) (for each peptide adsorbed on the CNT) in the 1 ns
post-equilibration (production) period, showing stability of the CAi of these properties.
See Figure 3.2 for a typical plot of these CAi during the equilibration period. [120]

B3W RMSD
W2 0.005
W5 0.003
W6 0.009
Inter. Energy 0.0028
B1W RMSD
W2 0.011
W6 0.004
W9 0.002
Inter. Energy 0.146
B1Y RMSD
Y2 0.009
Y6 0.024
Y9 0.012
Inter. Energy 0.134
B1F RMSD
F2 0.006
F6 0.008
F9 0.047
Inter. Energy 0.103
B3Y RMSD
Y2 0.082
Y5 0.014
Y6 0.020
Inter. Energy 0.111
B3F RMSD
F2 0.054
F5 0.019
F6 0.010
Inter. Energy 0.915
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Figure 3.3: Normalised interaction energies as a function of time for original sequences
B1 and B3, a mutated sequence B3Y, and the weak-binder control NB1 interaction with
the nanotube, over the last 1ns of production run.

other different methods. Table 3.4 demonstrates that the trend in the binding affinity

does not change upon using different normalisation schemes.

We first draw attention to the differences between the strong-binder peptide

sequences B1 and B3, the mutant sequences B1Y, B1F, B3Y, B3F and the weak-binder

control NB1 interacting with the CNT. Table 3.3 demonstrates that the strong-binder

peptides B1 and B3 exhibit a slightly greater binding affinity than the mutant peptides.

Despite the gap between the normalised energies being small, if we take into account that

each peptide sequence has approximately 200 atoms, it is still a considerable difference

in the binding affinity. Furthermore, the differences in EN between the original and

mutant sequences are greater than the SEM associated with each case. The differences

among the binding affinities of the tyrosine and phenylalanine mutants is small as well.

In terms of the “best” trajectory for each aptamer (Table 3.5), the tyrosine mutants
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Figure 3.4: Distribution of the distance from the nanotube surface to the ring centre-
of-mass for all the aromatic residues H, W, Y and F for the peptide sequences (a) B1,
(b) B1Y, and (c) B1F.
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Table 3.3: Average normalised interaction energies, EN (kJ mol−1atom−1), and the
standard error of the mean (SEM) of EN , taken from the four distinct trajectories of
lowest energy for each aptamer, for the peptide—nanotube interface.

Aptamer EN SEM

B1 −1.32 0.04
B3 −1.29 0.03
B1Y −1.15 0.06
B3F −1.14 0.03
B3Y −1.12 0.07
B1F −1.07 0.08
NB1 −0.87 0.06

show slightly greater binding than the phenylalanine mutants. However, these effects

are very subtle and the ordering between the tyrosine and phenylalanine mutants might

change, e.g. if these simulations were carried out in explicit water.

It is proposed that the origin of these energetic differences lie in the differences

in binding geometry. In Figure 3.4 the distribution profile of the ring centre-of-mass

to CNT surface distances for H, W, Y and F for B1, B1Y and B1F is shown. These

data clearly show that all tryptophans [Figure 3.4(a)] spend more time closer to the

nanotube surface compared with the corresponding tyrosine and phenylalanine groups

[Figure 3.4 (b) and (c)]. This trend was found for all the configurations studied and

also for the other peptide sequences B3, B3Y and B3F (Figure 3.5). The best (lowest

energy) trajectories of B1 and B3 yielded binding geometries where all the aromatic

residues (tryptophans and histidines) were bound to the CNT, whereas in the case of

the mutant peptides, only two or three aromatic residues adopt binding configurations

reasonably close to the surface. In general, the spatial proximity of the histidine in the

first position was found to be more diffuse (as evidenced by broad peaks in Figure 3.4

and 3.5, even for B1 and B3), as it is at the extremity of the peptide chain.
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Figure 3.5: Distribution of the distance from the nanotube surface to the ring centre-
of-mass for all the aromatic residues H, W, Y and F for the peptide sequences (a) B3,
(b) B3Y, and (c) B3F.
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Figure 3.6: Example profiles of the ring-tilt angle (relative to the surface normal) at the
peptide nanotube-interface as a function of time for (a) W2 in both original sequences
B1 and B3 and (b) Y2 and F2 in B3Y and B3F, respectively.
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Table 3.4: Average normalised interaction energies EN (kJ mol−1), for the lowest-energy
trajectory of B1 and B3, the mutant sequences and the weak-binder NB1, interacting
with a CNT. EN was calculated using three different methods: dividing the interaction
energy by (a) the number of peptide atoms; (b) the number of atoms within 6 Å of
the surface, and (c) using a decay weighting function to any atom further than 4 Å(see
Section 3.3).

Aptamer EN (kJ mol−1)

(a) (b) (c)
B1 −1.35 −1.54 −1.72
B3 −1.32 −1.60 −1.79
B1Y −1.20 −1.45 −1.64
B3Y −1.20 −1.41 −1.60
B3F −1.17 −1.42 −1.61
B1F −1.17 −1.46 −1.63
NB1 −0.81 −1.37 −1.46

An orientational analysis of the ring-tilt angle with respect to the surface normal

was then undertaken to elucidate the origin of these differences in the ring-surface dis-

tances. An example of the profiles of the orientation with time of tryptophan in position

2 (W2) for both B1 and B3, contrasted with the same profiles for B3Y and B3F is

shown in Figure 3.6(a). For the original sequences B1 and B3, W2 remains steadily in a

predominantly flat orientation (such that the rings lie tangential to the surface plane),

while the mutants exhibit less orientational stability. Figure 3.6(b) helps to understand

the reasons for this instability; the example trajectory given for F2 in B3F yields instan-

taneous changes from 180 to 0◦ indicating ring-flipping events between flat orientations.

On the other hand, the example trajectory of Y2 in B3Y, shows a profile where the ring

fluctuates around an almost perpendicular orientation. These examples clearly illustrate

the differences in the ring orientational behaviour of the original and mutated sequences

and its subsequent effects on the binding affinity and do not necessarily suggest that Y
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Table 3.5: Breakdown of the normalised interaction energy, EN , (kJ mol−1 atom−1)
for each of the four distinct trajectories of lowest energy for each aptamer, for the
peptide—nanotube interface.

Aptamer EN

B1-1 −1.36
B1-2 −1.34
B1-3 −1.29
B1-4 −1.28
B3-1 −1.33
B3-2 −1.30
B3-3 −1.27
B3-4 −1.27
B1Y-1 −1.20
B1Y-2 −1.18
B1Y-3 −1.18
B1Y-4 −1.06
B3Y-1 −1.20
B3Y-2 −1.13
B3Y-3 −1.12
B3Y-4 −1.03
B1F-1 −1.17
B1F-2 −1.10
B1F-3 −1.03
B1F-4 −0.98
B3F-1 −1.17
B3F-2 −1.16
B3F-3 −1.16
B3F-4 −1.10
NB1-1 −0.95
NB1-2 −0.87
NB1-3 −0.86
NB1-4 −0.81
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Figure 3.7: Average and fluctuation of the ring-tilt angle (relative to surface normal)
at the peptide-nanotube interface for all aromatic residues in (a) the original sequence
B1 and the mutated sequences (b1) B1Y and (c) B1F. A value of approximately 0◦

indicates an orientation parallel with the surface.

mutations always oscillates and F mutations always yield ring-flips. Instead, these ex-

amples illustrate two different behaviours that contribute to the decrease of the binding

affinity of the mutated peptides. For instance, a ring that flips, such as in the case of

F2 in B3F, often puts its ring centre-of-mass further from the surface compared to a

ring that does not flip, giving rise to a lower affinity. Similarly, a ring being oriented

perpendicularly to the surface (such as Y2 in B3Y is) also unable to get the ring as close

to the surface as a ring that lies flat on the surface.
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a)

b)

c)

Figure 3.8: Average and fluctuation of the ring-tilt angle (relative to the surface normal)
at the peptide-nanotube interface for all aromatic residues in (a) the original sequence
B3 and the mutated sequences (b) B3Y and (c) B3F. A value of approximately 0◦

indicates an orientation parallel with the surface.
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It was found that all tryptophans in B1 and B3 and the non-terminal histidine in

B1 (H4), always adopted a flat orientation at the surface. This observation is supported

by the average ring-tilt angle and the fluctuation in this angle (calculated as the root-

mean-square deviation of the tilt angle), presented as a bar chart in Figures 3.7 and 3.8

for the best trajectories in each case. An average angle of around 0◦ indicates the ring

is oriented perfectly flat on the surface, whereas a tilt of 90◦ indicates a perpendicular

orientation of the ring. In addition, large fluctuations indicate that the side chain of

the aromatic residue is flexible and therefore that the aromatic ring is not so strongly

bound, such that the ring can adopt several orientations relative to the surface. Figure

3.7(a) indicates that tryptophans in B1 spend most of the time flat on the surface.

The corresponding fluctuation is very small for all rings except H1, suggesting that once

tryptophans bind to the CNT surface they remain stable with no significant changes

in orientation. On the other hand, in each of the mutated sequences, B1Y and B1F

[Figure 3.7 (b) and (c)], at least one of Y or F exhibits a large average tilt with a

greater corresponding fluctuation. These data provide evidence that in general, the

orientation of the rings in the tyrosine and phenylalanine side groups is more free than

is seen for the indole ring in tryptophan when interacting with the surface. The same

phenomenon was evidenced for the other configurations studied and also for the other

peptide sequences B3, B3Y and B3F (Figure 3.8), reinforcing our assertion that Y and

F are more mobile and bind less tightly at the interface compared to W. In the case

of H4 in B1, a small average tilt and a small fluctuation indicates that this residue is

also flat and stable on the nanotube surface. However, for the mutated sequences B1Y

and B1F, the corresponding H4 average tilt is around 90◦, with a greater fluctuation.

In each case, one of the nearby aromatic residues is also orientationally unstable (Y6 in

Figure 3.7 b) and F2 in Figure 3.7c)), which suggests that structural effects might affect
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the binding of these “key” residues (Y6 and F2). Additionally, in agreement with the

distance analysis, a general trend was also found for H1; in all configurations studied,

H1 yielded a large fluctuation in the tilt angle.

How our findings changed upon small modifications of the force-field were also

considered. Changing multipole moments on atomic sites without recalculating the

distributed multipoles on the entire molecular fragment is not appropriate [133]. But

examining how binding changed when we changed the polarisation of the carbon atoms

of the nanotube is valuable. Table 3.6 reveals that the trends in EN remain unchanged

upon employing a CNT carbon polarisability either lower or higher (2.0 and 5.0 Å3

respectively) than our original value (3.5 Å3).

Table 3.6: Average normalised interaction energies, EN (kJ mol−1atom−1), of the
“best” trajectories for each aptamer, calculated as a function of atomic polarisability
(Å3) of the CNT carbon atoms, for the peptide-nanotube interface. All results reported
in this work were obtained using an atomic polarisability of 3.5 Å3.

Polarisability 3.5 2.0 5.0
System EN

B1W −1.35 −1.34 −1.35
B1Y −1.20 −1.19 −1.20
B1F −1.17 −1.16 −1.17
B3Y −1.20 −1.19 −1.21
B3F −1.17 −1.16 −1.17
NB1 −0.81 −0.81 −0.82

These findings show that mutations of the tryptophan content by either tyrosine

or phenylalanine cause a decrease in the binding affinity to CNTs, however none of the

mutated sequences reaches the lower affinity of the weak-binder control NB1. In order

to investigate the influence of the interfacial shape, similar simulations were performed

with the same peptides adsorbed on a graphene sheet.
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3.4.3 Peptide—Graphene Simulations

Now let us focus our attention on the peptide sequences interacting with the graphene

sheet. Normalised interaction energies (averaged over the four best trajectories) for

each aptamer, and the corresponding SEM for the peptide-graphene interface are pre-

sented in Table 3.7. The breakdown in EN for each of the four trajectories for each

aptamer are given on Table 3.8. As found for the peptide-nanotube interface, these

data show that B1 and B3 have greater binding affinity to the graphene sheet compared

with the mutants; However, in this case, the spread of interaction energies (as shown in

Table 3.8), especially for the original sequences, is wider than for the peptide-nanotube

case. Therefore, there is not such a clear distinction in the normalised interaction ener-

gies between the original sequences and the mutant sequences at the peptide-graphene

interface. Again, the mutations for either phenylalanine or tyrosine do not bring the

binding affinity into the lower range supported by the NB1 weak binder control pep-

tide. However, a slight diminishing of the binding affinity was noted for the mutant

sequences. Again, the differences in EN amongst the mutants is very small. In the

case of the peptide-nanotube interface, the best trajectory for each aptamer (Table 3.5)

shows that the B1Y mutant binds slightly better than the B1F mutant, with the same

occurring for the B3 mutants. However, in the case of the peptide-graphene interface,

the B3F mutant binds slightly better than B3Y, with the opposite being true for the B1

mutants. Still, inclusion of explicit solvation might change this ordering.

The ring to surface distance data are similar to that of the CNT, since again the

original sequences maximise the ring-surface contact, compared with the mutants. In

Figures 3.9 and 3.10 is the distribution profile of the distance of the ring centre-of-mass

of the aromatic residues to the graphene sheet for the best trajectories of B1, B1Y and

B1F and B3, B3Y, and B3F, respectively. In contrast to the CNT case, all rings in
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Figure 3.9: Distribution of the distance from the graphene surface to the ring centre-
of-mass for all the aromatic residues H, W, Y and F for the peptide sequences (a) B1,
(b) B1Y, and (c) B1F.
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Figure 3.10: Distribution of the distance from the graphene surface to the ring centre-
of-mass for all the aromatic residues H, W, Y and F for the peptide sequences (a) B3,
(b) B3Y, and (c) B3F.
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Figure 3.11: Average and fluctuation of the ring-tilt angle (relative to the surface normal)
at the peptide-graphene interface for all aromatic residues in (a) the original sequence
B1 and the mutated sequences (b) B1Y and (c) B1F. A value of approximately 0◦

indicates an orientation parallel with the surface.
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Table 3.7: Normalised interaction energies, EN (kJ mol−1atom−1), and the standard
error of the mean (SEM) of EN , averaged over the four distinct trajectories of lowest
energy for each aptamer, for the peptide–graphene interface.

Aptamer EN SEM

B1 −2.01 0.18
B3 −1.93 0.22
B3F −1.88 0.07
B1Y −1.87 0.08
B3Y −1.84 0.07
B1F −1.83 0.11
NB1 −1.61 0.03

the B1 sequence, including H1, are very close to the surface, with distribution peaks

that are considerably less broad than noted for the nanotube interface. B1F also has

more rings in contact with the surface, with only H1 not binding to the surface. B1Y

shows unusual behaviour too; in this case the number of rings in very close contact

with the surface is lower than in the case of the CNT (decreased from three rings close

to the surface to two). Instead, this system supports two further rings with moderate

surface contact e.g., a separation of 4.3 Å to Y2 and 4.5 Å to Y6. Once more, the

corresponding orientational analysis highlights the increased structural stability of the

original sequences at the graphene surface. Figures 3.11 and 3.12 show the average

ring-tilt and corresponding fluctuation in each tilt angle for B1, B1Y, and B1F, and

B3, B3Y and B3F, respectively. These data are in good agreement with the distance

profiles, which show that all the rings of B1 have very flat orientations, while for B1F,

only the H1 ring exhibits a noticeable deviation from a flat orientation on average. For

B1Y [Figure 3.11(b)], these data show the end-point regions of the chain are bound to

the surface via the flat orientations of H1 and Y9, while the orientations of the central

rings in H4, Y2 and Y6 are considerably more floppy, being in agreement with the fact
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Table 3.8: Breakdown of the normalised interaction energy, EN , (kJ mol−1 atom−1)
for each of the four distinct trajectories of lowest energy for each aptamer, for the
peptide—graphene interface.

Aptamer EN

B1-1 −2.15
B1-2 −2.11
B1-3 −1.99
B1-4 −1.75
B3-1 −2.16
B3-2 −2.08
B3-3 −1.75
B3-4 −1.71
B1Y-1 −1.99
B1Y-2 −1.83
B1Y-3 −1.83
B1Y-4 −1.83
B3Y-1 −1.89
B3Y-2 −1.89
B3Y-3 −1.84
B3Y-4 −1.74
B3F-1 −1.96
B3F-2 −1.88
B3F-3 −1.87
B3F-4 −1.80
B1F-1 −1.92
B1F-2 −1.88
B1F-3 −1.82
B1F-4 −1.68
NB1-1 −1.66
NB1-2 −1.61
NB1-3 −1.60
NB1-4 −1.58
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Figure 3.12: Average and fluctuation of the ring-tilt angle (relative to the surface normal)
at the peptide-graphene interface for all aromatic residues in (a) the original sequence
B3 and the mutated sequences (b) B3Y and (c) B3F. A value of approximately 0◦

indicates an orientation parallel with the surface.

that these residues do not get close to the surface [Figure 3.9 (b)].

3.4.4 Discussion

As explained in our previous work [118], the objective of this extended force-field is not

to reproduce absolute binding energies, but rather to capture trends in binding. De-

spite the overestimate of the binding energies, our extended force-field yielded correct

trends [118] compared with first-principles calculations [176]. Therefore, it is possible
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that these calculated binding energies are an overestimate of the observed binding affini-

ties. However, it is maintained that these binding affinities exhibit realistic trends upon

mutation. According to the experiments of Wang et al. [94], all sequences, including

NB1, showed some degree of binding to CNTs, as also found with the simulations using

the AMOEBAPRO force-field. We believe that the expense in employing this force-

field is justifiable for this study, since we have evidence [118] that the structural and

orientational features of the aromatic rings play a key role in the binding affinity. The

multipole-based description of the electrostatic interactions and inclusion of polarisation

has been shown to be important in capturing changes in the binding energy related to the

ring orientation relative to the surface [118]. Our previous work demonstrates that non-

bonded interactions based only on VDW contributions do not necessarily compare well

with first-principles calculations, (with more pronounced effects for the indole and imida-

zolium rings), whereas our force-field gives a satisfactory performance [118]. Therefore,

it is argued that the use of this force-field is justified. However, for other peptide-CNT

systems, where the aromatic rings are not a key feature, it might be sufficient to use

the standard force-field.

By comparing the results obtained for aptamers interacting with a CNT or a

graphene sheet it is concluded that B1 and B3 are strong binders for both surfaces,

with the tyrosine and phenylalanine mutations yielding slightly less binding affinity. The

results also suggest that tryptophan has more affinity for the surfaces than tyrosine

and phenylalanine. These findings are in good agreement with the ranking in binding

affinities reported by experimental studies on similar systems [101; 102], emphasising the

importance of tryptophan in binding to carbon nanotubes [90; 119]. In our previous work

we concluded that the aromatic content of the sequences is the key factor for the strong

binding to CNTs. While tyrosine and phenylalanine are also aromatic, these residues

107



Chapter 3. Modelling the binding affinity of peptides for graphitic surfaces by
mutation of the aromatic content

Figure 3.13: Snapshots taken from two different strong-binding trajectories (with differ-
ent starting configurations) of the B1Y peptide interacting with the CNT. The backbone
and the tyrosine residues are highlighted.

Figure 3.14: Snapshot from the “second-best” trajectory for B1Y on the graphene
surface, illustrating the degree of backbone buckling at the interface.
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are smaller than tryptophan. The greater stability of tryptophan at the interface can

be attributed to the long aspect ratio of the indole group, which enables configurations

where all the atoms can interact with the surface. While tyrosine and phenylalanine,

despite binding with comparable strength (relative to tryptophan) on these graphitic

surfaces on an atom-for-atom basis, they lack the same degree of stabilisation conferred

by the indole group. Therefore, it is proposed it is this structural stability of the indole

group on the CNT surface that gives rise to the energetic stability of the tryptophan-

containing peptide sequences.

As in our previous work, the trajectories of B1, B3, and their mutants show

that strong binders support a multitude of different spatial and arrangements of the

aromatic groups on the nanotube/graphene surface, giving further evidence to support

our earlier hypothesis [118] that peptide affinity can be attributed, in part, to the notion

that “strong-binder” aptamers support a variety of strong binding configurations [118].

For illustration an example is shown in Figure 3.13, in which two different strong-binding

configurations taken from different trajectories of the B1Y peptide are interacting with

the CNT, emphasising the different possible strong-binding conformations of the peptide

backbone.

It was noted in the Results Section (3.4.3), that the best trajectory (strongest

binding) of the B1Y mutant on the graphene surface actually supported fewer rings in

close contact with the graphene sheet compared with the nanotube simulations. By

examining the normalised interaction energies of B1Y and B1F (Table 3.8) it is noted

that the two are indeed very close in binding affinity, despite the fact that B1F supports

a greater number of rings close to the surface. Actually, B1Y configurations with all five

aromatic residues bound on the sheet were found; however, in these cases, the binding

affinity was weaker. This apparent contradiction can be rationalised by examining the
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Figure 3.15: Number of peptide atoms within 6 Å of the surface as a function of time
for the B1 peptide, for both the peptide-nanotube and peptide-graphene interfaces.

remaining (non-aromatic) residues in the chain. In the case of the weaker-bound B1Y

configuration that supported more ring-surface interaction (denoted as the second best

trajectory), some of the non-aromatic residues in the peptide were pointing away from the

surface and therefore not contributing to the interaction with the surface, diminishing the

overall binding affinity. Figure 3.14 clearly shows a buckling of the peptide backbone in

the regions of the chain between the ring positions. This backbone buckling is proposed

to come from the fact that the presence of the aromatic rings close to the flat surface

does not allow the non-aromatic residues to also approach the surface. In the case of

the “best” trajectory, some of the rings (Y6, Y9) are maintained at a medium distance

away from the surface, and the peptide backbone is not buckled, which allows the

remaining residues to also approach the surface, giving rise to a competitive binding

affinity compared with B1F (see Table 3.8). This buckling behaviour was not noted

in any of the peptide—nanotube simulations. Based on these data it is proposed that
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these CNT binder sequences, have not only been selected to bind strongly to a graphitic

surface, but also to bind best at curved graphitic surfaces. As an example, the number

of peptide atoms within 6 Å of the surface in the case of the “best” B1 simulations

on both the CNT and graphene were calculated. Figure 3.15 clearly shows that more

peptide atoms are closer to the surface at the peptide-nanotube interface. It is likely that

the strongest graphite-binding peptides will contain residues in specific sequences that

allow closer contact at the surface for most atoms of the peptide chain. Furthermore,

the modes of binding at the graphene interface appear to be different from those seen

for the CNT interface.

3.5 Conclusions

The binding affinity of several peptide sequences adsorbed at two graphitic surfaces,

graphite and a carbon nanotube, was studied using MD simulations. Two tryptophan-

rich peptide sequences with strong affinity to CNTs were mutated by changing the

tryptophan residues by either tyrosine or phenylalanine. In agreement with recent ex-

perimental observations, it was found that none of the mutants could outperform the

original sequences in terms of binding affinity. In addition, none of the peptide mutants

reached the lower binding affinity supported by the weak-binder peptide. The relatively

greater structural stability of the indole ring in tryptophan appears to be the origin of

these differences. It was also found that the original sequences showed the strongest

binding to the graphitic surfaces regardless of the interfacial shape. However, these data

suggest that aromatic groups may be more abundant in peptides selected for binding to

curved graphitic surfaces rather than flat surfaces.
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Chapter 4

Modelling the effect of the

peptide sequence on the binding

affinity for carbon nanotubes

4.1 Abstract

In this Chapter we revisit the study of the interactions of peptide sequences with single

walled carbon nanotubes (SWCNTs) by molecular dynamics (MD) simulations. Recent

studies on the adsorption of peptides onto inorganic surfaces have pointed out the im-

portance of the conformational structure of the peptides on the binding affinity. The

purpose of this study is to better understand how the order of the residues of the pep-

tide sequences may affect interactions with a surface; in this case a carbon nanotube.

To achieve this, an experimentally-identified [94] peptide with strong affinity for carbon

nanotubes (CNTs) was used, namely B1, with sequence (HWKHPWGAWDTL). Fifteen pep-

tide sequences with the same residue content as the original sequence, but with these
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residues presented in a different order were created. Interestingly, one peptide sequence

with a stronger binding affinity than the original sequence (B1) was found. While none

of the scrambled sequences reach the lower binding affinity shown by a weak-binder

control peptide (as discussed in Chapter 3), some of the sequences studied here sup-

port a binding affinity comparable to those for mutant sequences (where the tryptophan

content was replaced by either tyrosine or phenylalanine). These findings show that

the binding affinity to CNTs is dependent on the order of the residue content; in other

words, that the peptide sequence matters. These observations draw some useful insights

into the possible mechanisms by which peptides bind to inorganic surfaces. In addition,

these findings also form a preliminary basis for identifying sequence motifs that may

lead to designed sequences with predictable binding affinities for CNTs. For instance,

it was found that weak binding may be due to the presence of two tryptophan (W)

residues intercalated by another residue (r) (WrW), while strong binding may be due to

the presence of two tryptophans together (WW).

4.2 Introduction

In Nature, the hierarchical structure and highly functional biological hard tissues are

accomplished in part via molecular recognition between solids and biological molecules

such as peptides [177; 14]. In the same way, the fabrication and utility of advanced

biomaterials, engineered tissues and therapeutic devices are dependent on the affinity

and selectivity of biomolecules at inorganic surfaces [1]. Consequently, combinatorial

selection methods such as phage-display and cell-surface display have become the ma-

jor techniques for the selection of a wide variety of peptides with strong affinity to a

given inorganic surface [7; 14; 10; 1; 18; 178; 179]. In addition, there has been a

growing interest in the use of inorganic-binding peptides for the synthesis and assembly
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of materials with controlled properties for applications in nanotechnology and medicine

[94; 6; 22]. While the number of inorganic-binding peptides reported in the literature

keeps increasing, there is still limited knowledge on the mechanisms underpinning the

basis of the peptide-inorganic surface recognition. As pointed out in Section 1.3.1 of

Chapter 1, a peptide that binds strongly to an inorganic surface is referred to as having

high “affinity”, while a peptide that binds to a specific surface and not to other surfaces

is denoted as binding with “specificity”. Due to the poor understanding of the complex

interaction between peptides and inorganic materials it has been difficult to identify a

priori a sequence that has a binding specificity to a desired target material [180; 87].

Understanding the nature of the molecular recognition and the degree of affinity of a

selected peptide to a given surface would enable tailoring the peptide binding affinity

and specificity towards a given target surface [21]. Several studies have aimed to under-

stand peptide-inorganic recognition, mainly by focusing on the amino acid composition

of the peptides [16; 94; 178; 181; 85; 181; 17]. However, recent studies have pointed

out the importance of not only the composition but also the order of the content (which

is the sequence), as being important for the binding affinity and specificity [84; 85].

For instance, Goede et al. [84] observed a siginificantly drop in binding affinity to silica

by randomising a peptide sequence. In addition, this randomised sequence also gave

rise to a loss of binding specificity (binding to both silica and GaAs, where the original

sequence did not bind well to GaAs). Simlarly, Belcher et al. [85] demonstrated the im-

portance of not just the composition but also the sequence in the modulation of binding

strength and observed differences in binding affinity to CdS, ZnS and Au by rearranging

the sequence (and maintaining the composition). In addition, Belcher et al. defined a

criterion for tuning peptide binding affinity and specificity to CdS, ZnS and Au, based on

the idea that certain residues are responsible for the direct binding to the target surface,
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while other residues locally modulate the environment in which the binding residues are

incorporated [85].

Another relevant work is the study of Choe et al. [13] which probed the influence

of the sequence and conformation on Cu2O binding affinity. The effect of peptide con-

formation was studied by using linear and cyclic versions of the peptide. Their results

suggested that in some cases, conformation may be more important than composition

itself, in determining peptide-inorganic affinity. Oren et al. [108] pointed out the na-

ture of the binding affinity as being an interplay between sequence, conformation and

binding, highlighting that the peptide composition is necessary but not sufficient for

identifying differences in affinity. Hayashi et al. [91] systematically modified the peptide

sequence in order to clarify the role of each residue in the interaction with TiO2 and

demonstrated that the strength of binding decreased upon shuffling the sequence. Their

results indicated that not only polar and charged residues play an important role in the

strength of the binding, but also the order of the residues was found to be relevant

[91]. In addition, the results of Hayashi et al. demonstrated that the peptide structure

determines the arrangement of charged residues and therefore affects significantly the

binding strength [91]. This Ti-binding peptide was studied in more detail by atomistic

molecular dynamics (MD) simulations [117] and the results suggested that not just the

electrostatic interactions were relevant for the binding but intra-peptide interactions

may also be important, again underscoring the importance of being able to control the

conformation of the peptide at the interface. A recent study of Oren et al. [182] gave

further evidence that the local molecular environment in which the key residues are in-

tegrated plays a major role in the peptide-inorganic binding. All of these studies lead

to the conjecture that the sequence plays an important role in affecting the binding

affinity of peptides adsorbed on inorganic surfaces. The work described herein aims to
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investigate the effect of the peptide sequence on the binding affinity to CNTs.

The extraordinary physical and mechanical properties of CNTs, with promising

applications in the fields of nanotechnology and medicine, have attracted the attention

of many researchers. Nevertheless, these potential applications face the problem that

CNTs do not disperse well in aqueous solution. As mentioned in Chapter 3, the ability

of biomolecules, such as peptides, to recognise different inorganic materials gives rise to

new expectations for the selective dispersion and controlled manipulation of CNTs. The

importance of the aromatic groups on the binding affinity to CNTs has been reported

previously [120; 97; 88], and tryptophan has been underlined as being particularly im-

portant for the peptide-nanotube interaction [120; 101; 90; 119; 102](see Chapter 3). A

complete literature review on peptides interacting with CNTs has been given in Chapter

3.

Table 4.1: Original sequence B1 and scrambled peptide sequences used in this study.

Aptamer Sequence
B1(original) HWKHPWGAWDTL
B1-1 WHPGLHTWKADW
B1-2 HKWWWHPGADTL
B1-3 KGHAWDPHWLWT
B1-4 LWKWGDAHHWTP
B1-5 HWKLDHWWTAGP
B1-6 HWWAPDKTGWHL
B1-7 PDHAWWKWTHLG
B1-8 HHWAGKPWDTLW
B1-9 WWLHHPGTKADW
B1-10 HWWHPADLTGWK
B1-11 WTPWKGWHADLH
B1-12 LWPWHDAGTWKH
B1-13 GHTAWDWHWPLK
B1-14 AWLKPHHWWDGT
B1-15 AWDHPHLKWGWT

Common to the use of combinatorial selection methods, such as phage-display
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and cell-surface display is the lack of prior knowledge about the interaction between

peptides and the target inorganic material [6; 183; 1]. It would be useful to understand

the influence of the residue sequence and conformational structure on the recognition

process at the inorganic interface. Understanding the relation between binding and struc-

ture would enable the tuning of the binding properties to a specific surface by choosing

the peptide sequence. Based on the importance of the aromatic content to the strong

affinity for CNTs, and on the recent studies which suggest that the sequence also plays

a role in determining binding affinity, the aim of this work is to study the influence of

the order of the amino acids on the experimentally determined strong binder sequence,

HWKHPWGAWDTL (denoted B1) selected by phage-display experiments. Herein the impor-

tance of the order of the content of a peptide sequence on the binding affinity to CNTs

is demonstrated, by scrambling B1. Fifteen peptide sequences with the same residue

content as B1, but in a different order, interacting with a CNT were studied by atomistic

MD simulations. In Table 4.1 the scrambled sequences and the original sequence B1

are presented. It is anticipated that, in terms of binding affinity, the sequences that

have the aromatic residues together (W and H), or even the three tryptophans together

may have a weaker binding affinity compared to the sequences that have the aromatic

content spread in the sequence. This is because the presence of aromatic residues close

together may give rise to steric effects between the aromatic rings which prevent the

non-aromatic residues from getting close to the CNT surface. On the other hand, having

the aromatic content spread throughout the sequence may avoid this effect. However,

it is kept in mind that other factors may also affect the affinity.
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4.3 Methods

MD simulations of systems consisting of one CNT and one each of the fifteen scrambled

peptide sequences were performed with our extended AMOEBAPRO [142; 170] force-

field. Most of the scrambled peptide sequences were created by mixing the amino acid

content of the strong binder B1 sequence (HWKHPWGAWDTL) [94], using a random number

generator, however three sequences were created by hand. In total, fifteen sequences

with the same amino acid content of B1 were generated.

A hydrogenated zigzag (8,0) CNT with 976 atoms was modelled; this was at

least four times the length of the extended peptide. All the simulations were carried out

in the canonical ensemble at room temperature. The simulation details were the same

as described in the Methods of Chapter 3. Depending on the equilibration period, each

simulation was run for 2-10 ns where the last 1 ns was used to analysed the trajectories.

To attempt to identify many different binding configurations, between 5 and 7 different

starting configurations were considered for each peptide, yielding a total of around 100

distinct peptide-CNT simulations. Several methods were used to create initial configura-

tions for these simulations. First, peptide configurations were constructed by hand and

placed near the CNT surface. The geometries ranged from simple extended backbone

configurations roughly aligned along the nanotube axis, through to configurations where

the backbone torsion angles were set to create a pseudo-helical peptide geometries that

wrapped the nanotube. Second, simulations of the peptide without the nanotube were

performed in implicit solvent and configurations from these simulations were used and

placed close to the CNT. Finally, the dihedral angles from the B1-CNT geometries that

yielded strong binding were taken and used to subsequently construct configurations for

the scrambled sequences.

Energetic and structural metrics were used to analyse the results. Binding affinity
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was measured, again in terms of interaction energy between the peptide and the CNT.

To analyse the structure at the interface the distance from the centre-of-mass of each

aromatic ring to the surface, and the orientation of each aromatic ring (with respect

to the surface normal) were calculated. In addition, the distance from the centre-of-

mass of the side chain of each residue adjacent to an aromatic residue to the CNT

surface was calculated. The distance between residues in the chain was also calculated

by averaging the centre-of-mass separation of the side-chains associated with these

residues. Furthermore, the number of peptide atoms and backbone atoms within 6.0

Å to the CNT surface along with the respective fluctuation were calculated for each

sequence. The average end-to-end peptide distance was calculated by determining the

distance between each carbon of each of the two terminal methyl groups (blocking

groups) and averaging this distance over the production run. The three closest peptide

atoms to the CNT were also indentified as a function of time for the three best binders

and the three worst binders. This was achieved by calculating the distance between all

the peptide atoms to the CNT surface and considering only the atoms that were within

the cutoff distance (8 Å). The frequency at which each peptide atom was the closest to

the surface was then determined by counting the number of times each atom was the

closest and dividing by the number of frames of the production run. It is emphasised

that due to the large number of peptide sequences, in some cases, data is shown only

for certain sequences in order to highlight any relevant change in the properties.

4.4 Results

As mentioned in the Methods, three of the fifteen sequences were made by hand while

the others were created with a random number generator. The sequences created by

hand were B1-1, B1-2 and B1-3. B1-1 was created with the intuit to study the effect of
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Table 4.2: Interaction Energies, Eint (kcal mol−1), and Normalised Interaction Energies,
EN (kJ mol−1atom−1), and the Standard Error of the Mean (SEM) of Eint, averaged
over the four and two distinct trajectories of lowest energy for each aptamer.

4 Best trajectories 2 Best trajectories
Aptamer Eint SEM EN Eint SEM EN

B1 (original)[120] 68.79 1.98 −1.32 −70.42 0.98 −1.35
B1-6 −69.95 2.67 −1.34 −72.05 1.80 −1.38
B1-5 −67.18 6.05 −1.29 −70.87 1.34 −1.36
B1-7 −66.54 3.53 −1.28 −68.78 3.98 −1.32
B1-9 −65.68 1.98 −1.26 −66.77 0.27 −1.28
B1-11 −65.66 5.11 −1.26 −69.97 0.57 −1.34
B1-1 −65.46 6.14 −1.26 −70.75 1.20 −1.36
B1-10 −64.65 2.69 −1.24 −66.47 1.17 −1.28
B1-8 −61.96 5.51 −1.19 −66.06 2.50 −1.27
B1-2 −61.41 5.70 −1.18 −65.21 1.71 −1.25
B1-3 −60.94 6.47 −1.17 −64.23 1.39 −1.24
B1-15 −60.60 1.00 −1.16 −61.45 0.01 −1.18
B1-4 −60.29 8.27 −1.16 −62.53 6.42 −1.20
B1-13 −59.79 5.62 −1.15 −64.35 1.43 −1.24
B1-12 −59.69 2.43 −1.14 −61.09 0.78 −1.17
B1-14 −59.19 1.02 −1.14 −59.93 0.04 −1.15
NB1 −36.50 2.40 −0.87 −38.03 2.50 −0.909

having tryptophan residues at the chain ends, while B1-2 was created to study the effect

of having all tryptophans and one histidine together. Prior to the simulations, it was

expected that B1-2 would bind weakly to the CNT due to steric effects of having three

tryptophans together (WWW), while B1-1 was expected to bind more strongly (but less

strongly than the original sequence) since it has one tryptophan at each end and another

tryptophan in the middle of the chain, and therefore could “anchor” the CNT. Similarly,

it was anticipated that B1-14 would bind weakly to the CNT due to the presence of two

histidines and two tryptophans together.

For each aptamer, the interaction energies, Eint, averaged over both the top two

and the top four distinct binding trajectories (that yielded the best binding affinities,
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i.e. the lowest interaction energy) are reported. The normalised interaction energies,

EN (interaction energy between peptide and surface, divided by the number of peptide

atoms) are also reported in order to make a comparison with the energies reported in

our previous work [120]. These data are presented in Table 4.2 along with the standard

error of the mean (SEM), as defined by the standard deviation in the sample means.

While none of the scrambled peptide sequences diminishes the binding affinity to a level

comparable with NB1 (the weak-binder control peptide), some peptide sequences exhibit

a reduction in the binding affinity comparable to the mutation of the tryptophan content

by either tyrosine or phenylalanine [120]. Furthermore, peptide sequences with different

affinities to the nanotube, including affinities higher than the original sequence B1, were

found. This suggests that the order of the residues, that is, the sequence, is important

to the binding affinity. For each sequence, the best trajectory was analysed and the

ranking obtained from the average over the four best trajectories was considered.

It is proposed that the origin of differences in the binding affinity is related to

differences in the conformational structure of the peptides. In an attempt to understand

the origin of these differences the scrambled peptide sequences are divided in two groups;

one group includes the sequences with the highest affinity to the CNT, (denoted as strong

binders herein) and the other group includes the sequences which affinity to the CNT

is comparable to the affinity of the tyrosine/phenylalanine mutants (denoted medium

binders) as found in our previous study [120]. Table 4.3 shows the peptide sequences

for each group. The strong binders group includes the original sequence B1 and all

the sequences with similar affinity. The line between strong and medium binders was

drawn at−65 kcal/mol, since the typical interaction energy of the tyrosine/phenylalanine

mutants are for energies greater than this value. In order to search for particular domains

responsible for stronger and/or weaker binding, we sought for common residue motifs
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Table 4.3: Scrambled peptide sequences divided in two groups; strong and medium
binders. Sequences are ordered from highest to lowest affinity to the CNT.

Aptamer Sequence

Strong binders (Comparable to B1)

B1-6 HWWAPDKTGWHL
B1(original) HWKHPWGAWDTL
B1-5 HWKLDHWWTAGP
B1-7 PDHAWWKWTHLG
B1-9 WWLHHPGTKADW
B1-11 WTPWKGWHADLH
B1-1 WHPGLHTWKADW
Medium binders (Comparable to Y/F mutations)

B1-10 HWWHPADLTGWK
B1-8 HHWAGKPWDTLW
B1-2 HKWWWHPGADTL
B1-3 KGHAWDPHWLWT
B1-15 AWDHPHLKWGWT
B1-4 LWKWGDAHHWTP
B1-13 GHTAWDWHWPLK
B1-12 LWPWHDAGTWKH
B1-14 AWLKPHHWWDGT

present in each group (either strong or medium). In Table 4.4 is presented the frequency

of each possible motif for both the strong and medium binder sequences. These data

show that strong binder sequences have predominantly WK, WW and LH as diad motifs,

whereas medium binders tend to feature WD, HH, PH, AW and LK. Both classes of binders

heavly feature HW, and moderately featured WH, HP and WT and thus cannot be attributed

to strong or weak binding affinity. In terms of triad motifs, with the exception of B1-

8, the medium binder sequences feature either two tryptophans separated by another

residue (W-r-W, where r is any residue)(B1-3, B1-4, B1-12, B1-13 and B1-15) or four

aromatic residues together, (denoted as quartet, ar-ar-ar-ar, where ar is an aromatic

residue)(B1-2, B1-10 and B1-14) or an aspartic acid and histidine residue separated by
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one (D-r-H) or two residues (D-r-r-H)(B1-3, B1-4, B1-10, B1-13, B1-14 and B1-15).

The strong binder sequences tend to have tryptophan residues assembled in pairs (B1-5,

B1-6, B1-7, B1-9); the medium binder sequences also have two tryptophans together,

however they are incorporated in a greater motif such as WWW, HWW or WWH and therefore

do not count. On the other hand, the medium binder sequences strongly feature two

tryptophan residues intercalated by any other residue (the W-r-W motif), which usually

pushes the intercalated residue further away from the tube surface – usually beyond

8 Å (B1-3, B1-4, B1-12, B1-13 in the medium binders). This is because the contact

between tryptophan residues and the CNT surface is always maximised.

Figures 4.1 and 4.2 show the distribution profiles of the centre-of-mass to CNT

surface distances for the aromatic residues H and W and for the residues that are

adjacent, for the strong and medium binder peptides, respectively. Figure 4.2 shows the

residues (r) in between two tryptophans (WrW) are found far away (beyond 8 Å) from

the nanotube surface, particularly L10 in B1-3 (8.36±0.81Å), P3 in B1-12 (7.30±0.33

Å), and D6 and H8 in B1-13 (9.74±0.41 Å and 10.05±0.61 Å, respectively). The

centre-of-mass average distance of these residues (L, P, D and H) to the CNT surface

when not in WrW is 4.53±0.36, 4.81±0.90, 7.71±1.19 and 4.80±1.64 Å, which is

significantly smaller than when in the motif WrW. Interestingly, the B1-7 sequence in

the strong binders also have two tryptophans separated by one residue (WKW). Figure

4.1 shows the two tryptophan residues in B1-7 (W6 and W8) in close contact with the

CNT surface, while lysine (K7) is far from the CNT surface. The difference compared

with the medium binders, is that in this case, K7 is still within the cutoff distance

(5.48±0.73 Å). A similar phenomenon is seen for a tryptophan and a histidine residue

separated by another residue (W-r-H or H-r-W, where r stands for any residue, Table

4.4), such as A4 and T9 in B1-7 in the strong binders (Figure 4.1) and D3 in B1-15 in
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B1−1 B1−5

B1−6 B1−7

B1−9 B1−11

Figure 4.1: Distribution profiles of the distance from the CNT surface to the ring centre-
of-mass for the aromatic residues, H and W, and for the nearby residues for the strong
binders.
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B1−3

B1−4 B1−8 

B1−10 B1−12

B1−2 

B1−13 B1−14

B1−15

WPW

HHW

WDW

WLW

WHW

Figure 4.2: Distribution profiles of the distance from the CNT surface to the ring centre-
of-mass for the aromatic residues, H and W, and for the nearby residues for the medium
binders.
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Table 4.4: Motifs featured in the peptide sequences along with their frequency in the
strong and medium binders, respectively. ar stands for any aromatic residue (H or W)
and r stands for any residue, including aromatic.

2aa Motif Strong binders Medium binders 3aa Motif Strong binders Medium binders
HW 4/7 6/9 HWW 2/7 2/9
WH 3/7 3/9 WWH — 2/9
HH 1/7 3/9 HHW — 3/9
WW 4/7 3/9 WWW — 1/9
HP 3/7 3/9 WKH 1/7 —
PH — 3/9 HKW — 1/9
HK — 1/9 HWK 2/7 —
KH 1/7 1/9 WrW 1/7 7/9
HL 2/7 1/9 ar-ar-ar 1/7 6/9
LH 3/7 — ar-r-ar 8/7 19/9
HT — 1/9 arKar 2/7 3/9
TH 1/7 — WKW 1/7 1/9
WK 5/7 2/9 WKH 1/7 1/9
KW — 3/9 D-r-H 1/7 2/9
WA 1/7 1/9 H-r-D 1/7 —
AW 1/7 4/9 4aa Motif Strong binders Medium binders
WP — 1/9 ar-ar-ar-ar — 3/9
PW 2/7 2/9 HHWW — 1/9
WD 1/7 5/9 HWWH — 1/9
DW 2/7 1/9 WWWH — 1/9
WT 3/7 3/9 D-r-r-H or
TW 1/7 1/9 H-r-r-D — 6/9
DK 1/7 — D-r-r-H — 2/9
KL 1/7 — H-r-r-D — 4/9
KL 1/7 —
LK — 3/9
KG 1/7 1/9
GK — 1/9
AD 2/7 1/9
DA — 2/9
AP 1/7 —
PA — 1/9
GD — 1/9
DG — 1/9
GP 1/7 —
PG 2/7 1/9
TA 1/7 1/9
TL 1/7 2/9
LT — 1/9
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the medium binders (Figure 4.2), however in this case the residue in between histidine

and tryptophan is positioned such that it is not as far away as in the case of WrW. An

exceptional case of a histidine and tryptophan separated by another residue (H-r-W) is

the motif HHW, found in the sequences B1-4 and B1-8 of the medium binders, where

the intermediate residue (r) is an histidine (Table 4.4). In both sequences, it is not

the residue in the middle of histidine and tryptophan that suffers the penalty of being

further away from the surface, but rather the histidine in the extremity. For instance,

in Figure 4.2 it is possible to see H8 in B1-4 and H1 in B1-8 far from the CNT surface.

However, this might be an exception because it is at the chain end. Another exceptional

case of a histidine and tryptophan separated by another residue is the motif WWH where

in this case, the intermediate residue is a tryptophan. This motif is featured in the

sequences B1-2 and B-10 and in both instances is incorporated in a quartet (ar-ar-ar-ar,

where ar stands for an aromatic residue, Table 4.4). Again, as shown in Figure 4.2, it

is not the intermediate residue (W in this case) that is far from the CNT surface, but

the extremal histidine (H6 in B1-2 and H4 in B1-10). In the case of the motif HWW, a

similar behaviour is found for W8 in B1-5 and H1 in B1-6 (Figure 4.1), i.e., the residue

in the extremity of the motif is further away from the CNT surface. However, in the

case of B1-10 and B1-14 in the medium binders, there is no evidence of such behaviour.

However, in these cases the motif HWW exists within a quartet (HWWH in B1-10 and HHWW

in B1-14); it is suggested that other factors might be contributing to the lower binding

affinity and it will be discussed later. Similarly, the motif WWW featured in B1-2 also

puts one of the tryptophans in the extremity (W5) further from the surface (Figure

4.2). But again, this motif is incorporated into a quartet and perhaps attributing this

behaviour to the presence of three aromatic residues together, per se, might not be

appropriate. A proline residue in between two histidines in B1-15 is also found to be
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considerably distant from the CNT surface (Figure 4.2). In general, it seems that two

aromatic residues separated by another residue (ar-r-ar) will place one of the residues

further from the surface. However, B1-4 features two tryptophans spaced by a lysine

residue (WKW), and none of the residues is very far from the CNT surface; however, the

binding affinity is low. This apparent inconsistency can be understood by examining the

remaining residues of the B1-4 peptide chain. One suggestion to explain this is a possible

weak interaction between H8 and W10, and H9 and T11, which seems to cause these

residues to be positioned further away, giving rise to a tryptophan ring-tilt angle higher

than that previously seen in Chapter 3 (Figure 3.7 in Chapter 3). Table 4.5 summarises

the average and fluctuation of the ring-tilt angle for the tryptophan residues in the top

three strongest binders and the four worst medium binders, and the average ring-CNT

distance and fluctuation for the best binder B1-6, and the medium binders B1-2, B1-

10 and B1-14. The ring-tilt average of W10 in B1-4 is 50.12◦, which is significantly

higher than in the other cases. These observations suggest that the presence of motifs

comprising two aromatic residues spaced by another residue, (ar-r-ar), is a characteristic

of weaker binder peptides and may help in the distinction of weak from strong binder

peptides.

Intra-peptide interactions in the chain similar to the interactions observed in B1-

4 (i.e. R1xR2, where R1/R2 is histidine) were also found in other sequences. Table 4.6

summarises the proposed relevant intra-peptide interactions. This evidence is only based

on distances and needs to be supported with energies. It is important to note that this

behaviour was only found for the medium binder peptides. Aspartic acid (D) is always, on

average, relatively far from the surface and in the case of B1-3, the histidine (H8) is far

from the surface in order to interact with D6. Figure 4.3 shows a snapshot of D6 in close

contact with H8 in the B1-3 sequence. In addition, W5 is slightly further away from the
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Table 4.5: Average and fluctuation of the distance (in Å) from the CNT surface to the
ring centre-of-mass for the tryptophan residues in the strongest binder B1-6 and the
medium binders B1-2, B1-10 and B1-14, and average and fluctuation of the ring-tilt
angle (relative to surface normal) (in degrees) for tryptophan residues in the top three
strongest binders and the four worst medium binders. Sequences are ordered from the
highest to the lowest affinity.

Distances
Aptamer Residue Average RMSD Residue Average RMSD Residue Average RMSD
B1-6 W2 3.36 0.18 W3 3.39 0.22 W10 3.34 0.17
B1-2 W3 3.36 0.26 W4 4.51 1.06 W5 5.16 1.05
B1-10 W2 3.40 0.21 W3 3.57 0.66 W11 3.39 0.20
B1-14 W2 3.40 0.24 W8 3.38 0.27 W9 3.46 0.38

Ring-tilt angles
Aptamer Residue Average RMSD Residue Average RMSD Residue Average RMSD
B1-6 W2 8.70 5.12 W3 10.68 6.96 W10 8.09 4.90
B1-orig. W2 9.54 5.58 W6 11.28 8.40 W9 12.28 6.30
B1-5 W2 38.59 10.40 W7 11.20 5.89 W8 30.53 18.06
B1-4 W2 20.02 19.76 W4 24.03 6.34 W10 50.12 10.97
B1-13 W5 9.89 6.67 W7 13.25 7.92 W9 10.14 6.39
B1-12 W2 8.65 4.91 W4 21.56 11.39 W10 8.36 5.18
B1-14 W2 73.10 30.88 W8 38.21 18.60 W9 71.31 28.07

Table 4.6: Average distance (Å) between the centre-of-mass of the residues and respec-
tive fluctuation in the sequences B1-3, B1-4 and B1-13.

Aptamer Residues Average RMSD

B1-3 D6 H8 6.77 0.85

B1-4 H8 W10 7.22 1.25
H9 T11 6.82 0.71

B1-13 D6 H8 7.17 0.61
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Figure 4.3: Snapshot taken from the best trajectory of the B1-3 peptide interacting with
a CNT showing the residues D6 and H8 (in yellow) in close contact and the distance
(4.4 Å) between two carbons in each of the residues. The backbone is highlighted.

surface, as evidenced by the broader peak in the distance distribution profiles in Figure

4.2, as a result of this interaction. Again, there might be a weak interaction between

the residues D6 and H8 in the B1-13 sequence; interestingly, these two residues are in

between two tryptophans. These observations suggest that aromatic residues separated

by any other single residue might either give rise to intra-peptide residue interactions

causing the residues to be distant from the CNT, or might cause the adjacent residues to

be directed away from the CNT surface and therefore be further from the surface. Both

situations give rise to a lower binding affinity due to the decreased number of atoms

interacting with the nanotube surface and should be taken into account if we wish to

design a peptide with controllable affinity to CNTs.

In the case of the peptide sequences containing a quartet (B1-2, B1-10 and

B1-14), at least one tryptophan is always further from the nanotube on average, as

evidenced by the broader peaks of the distribution profiles (Figure 4.2). However, in the
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Table 4.7: Average and fluctuation of the distance (Å) between the aspartic acid (D) and
lysine (K) side chain centre-of-mass to the CNT surface and the two adjacent residues
(motif). Sequences are ordered from the strongest to the weakest binder.

Strong binders
Aspartic Acid Lysine

Aptamer Average RMSD Motif Average RMSD Motif

B1-6 5.66 0.82 PDK 4.33 0.40 DKT
B1 (original) 6.35 0.83 WDT 4.54 0.89 WKH
B1-5 6.09 0.55 LDH 4.19 0.36 WKL
B1-7 8.96 0.77 PDH 5.48 0.73 WKW
B1-9 8.18 0.98 ADW 4.28 0.56 TKA
B1-11 6.91 2.03 ADL 5.39 0.90 WKG
B1-1 7.87 1.20 ADW 3.94 0.36 WKA

Medium binders
B1-10 8.80 1.14 ADL 5.11 0.90 WK
B1-8 9.73 0.31 WDT 4.01 0.27 GKP
B1-2 8.41 1.44 ADT 4.51 0.58 HKW
B1-3 7.17 0.32 WDP 4.73 1.17 KG
B1-15 6.59 2.00 WDH 7.87 2.09 LKW
B1-4 8.06 0.80 GDA 4.14 0.39 WKW
B1-13 9.74 0.41 WDW 4.59 0.54 LK
B1-12 7.51 1.98 HDA 4.45 0.48 WKH
B1-14 9.34 1.24 WDG 8.50 1.02 LKP
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case of B1-14 there is no such clear distinction in the distances of these residues from

the surface. But an examination of the ring-tilt of these tryptophan residues (Table

4.5) reveals that even though W8 and W9 are, on average, close to the CNT, they are

oriented almost perpendicular to the surface, as opposed to the flat orientation that

tryptophan typically adopts. In addition, the fluctuation of this average angle is also

greater than usually found for tryptophan. Even though B1-14 is the worst binder, the

aromatic residues are all, on average, considerably close to the CNT, which means that

there must be another factor playing a major role in dictating weak binding affinity.

From Figure 4.2 it is noticed that alanine (A1) and aspartic acid (D10) are further

from the surface (beyond 8 Å). But alanine is a small residue and therefore the loss for

not having this residue interacting with the CNT is not huge, and despite the aspartic

acid being slightly bigger, it is noted that it is rarely found close to the CNT. An

inspection of the other residues in the chain helps to understand the weak binding in

B1-14 phenomenon. In Table 4.7 is the average and fluctuation of the distance between

the centre-of-mass of the side-chains of aspartic acid (D) and lysine (K) respectively to

the CNT surface, along with the motif in which these residues are incorporated, for the

strong and medium binders. This table shows that not only D10 in B1-14 is very far

from the CNT, as previously concluded, but also K4. The lysine side-chain is long (with

four methylene spacers) and the consequence of not having this residue interacting with

the CNT is a lowering in the binding affinity. In the case of B1-2, it is clear from the

distribution profiles (Figure 4.2) that W4 and W5 are more distant from the CNT than

usual (4.51 Å and 5.16 Å, respectively, instead of around 3.4 in B1-6, Table 4.5). In

addition, from Table 4.7 it is clear that D10 is also very far from the CNT (8.41 Å). In

B1-10, all tryptophan residues are reasonably close to the CNT, but there is a histidine

(H4) (Figure 4.2) and the aspartic acid (D7) very far from the surface (Table 4.7).
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Table 4.8: Average number of peptide atoms (peptide) and average number of backbone
atoms (backbone) within 6.0 Å of the surface and respective root mean squared deviation
(RMSD) and the average peptide end-to-end distance and RMSD for the strong and
medium binders. Sequences are ordered from the highest to the lowest affinity.

Strong binders
Sequence Peptide RMSD Backbone RMSD End-end RMSD

B1-6 186.78 7.30 59.58 3.00 30.97 2.84
B1 (original)[120] 182.19 7.47 61.27 2.95 27.32 1.39
B1-5 189.12 7.73 61.03 2.95 28.62 2.63
B1-7 174.73 5.52 59.58 3.00 24.16 5.31
B1-9 176.78 7.56 55.28 3.25 26.69 4.04
B1-11 176.11 7.82 54.62 4.47 17.95 4.78
B1-1 176.51 13.06 52.63 5.21 25.78 3.18

Medium binders
Sequence Peptide RMSD Backbone RMSD End-end RMSD

B1-10 164.74 13.38 49.41 10.07 26.82 5.86
B1-8 171.04 5.08 42.77 3.10 30.12 1.80
B1-2 181.95 7.11 61.70 3.65 26.18 4.29
B1-3 163.31 8.37 52.19 4.27 25.09 3.50
B1-15 152.04 13.23 47.42 6.93 29.59 4.23
B1-4 179.22 6.09 60.55 2.29 25.27 2.00
B1-13 166.98 7.82 46.84 3.96 16.79 3.52
B1-12 159.74 10.09 52.83 6.39 14.44 2.42
B1-14 156.50 15.95 45.46 8.04 26.44 4.40
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To further rationalise the observed differences in the binding affinity, the average

number of peptide atoms and peptide backbone atoms within 6 Å to the CNT surface

were calculated. Table 4.8 presentes the average and fluctuation of the number of

peptide and peptide backbone atoms, respectively, for the strong and medium binders.

These data show that the strong binder sequences have considerably more atoms (both

peptide and peptide backbone) within 6 Å than the medium binder sequences. This

difference is accentuated for the three strongest binders and the three worst binders

(in bold in Table 4.8). A greater fluctuation is noticed in the case of the medium

binders. This result helps to reinforce the previous conjecture that sequences with

stronger affinity facilitate surface contact for more of the peptide atoms. Strong binders

do not necessarily have all the aromatic residues flat on the surface; instead, it is the

compromise between maintaining strong ring-surface interactions and also allowing the

other residues to approach the surface that govern the peptide-CNT binding affinity,

just like it was found for the peptide-graphite interface in Chapter 3. This idea will be

more carefully discussed in the next Section. Furthermore, in Table 4.8 the average and

fluctuation of the peptide end-to-end distances for both the strong and medium binders

is shown. With the exception of the worst binder B1-14, the second and the third worst

binders (in bold) support relatively smaller peptide end-to-end distances than in the case

of the three best binders (in bold). It is understandable that an extended peptide may

allow more atoms to interact with the CNT. However, it is suggested that this is not

necessarily a requirement for strong binding affinity, since the CNT is curved and certain

sequences may be able to wrap the CNT (as previously found), therefore supporting

smaller peptide end-to-end distances.

In addition, the three closest peptide atoms (within the 8.0 Å cutoff) to the CNT

for the three strongest binders (B1-6, B1-original and B1-5) and the three worst binders
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(B1-13, B1-12 and B1-14) were determined. Table 4.9 summarises the three closest

peptide atoms, the residue to which the atom belongs to, the type (backbone (B) or

side-chain (S)) and the frequency. It is evident from Table 4.9 that in the case of the

strongest binders all the closest atoms belong to the peptide backbone, while in the case

of the B1-12 and B1-14 (weakest binders) one of the atoms belongs to the peptide side-

chain. This suggests that strong binders have more peptide backbone atoms close to

the surface, and therefore more atoms overall close to the CNT, supporting the previous

results in Table 4.8, that strong binders have more peptide atoms (including backbone)

interacting with the CNT, while in the case of the worst binders the peptide backbone

cannot approach the surface so well. In addition, in the case of the three best binders,

many of the closest atoms belong to aromatic residues (W and H), while in the case

of the three worst binders the closest residues belong to other residues such as proline

(P5) in the case of B1-14, glycine (G8) in the case of B1-12 and alanine (A4) in the

case of B1-13.

4.5 Discussion

The data presented in this Chapter suggest that the peptide sequence is crucial in

determining the strength of the binding affinity to CNTs. This is because the order of

the residues in the chain, that is the sequence, determines the peptide conformation

which in turn can play a large role in facilitating binding to the surface. Hence, it

is proposed that not only the aromatic content (W and H) is essential for the strong

affinity to CNTs, but the local environment in which each of the aromatic residues is

incorporated may also play an important role. Furthermore, these findings form a basis

for further studies with the aim to identify dependencies and establish principles that

may help in the design of peptide sequences with controllable binding affinity to CNTs.
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Specifically, the weaker affinity of the medium binder sequences identified in this work, is

the result of an interplay between several motifs. The next step will be to systematically

disentangle these dependencies between the motifs.

The number of different permutations of 12 residues, where there are three in-

distinguishable tryptophan residues, and two indistinguishable histidine residues is given

by:

12!
3!2!

= 11! = 39, 916, 800. (4.1)

Even though the set of sequences studied in this work constitute only a small sample,

the data give a glimpse of how the order of the content may change the binding affinity

of peptides with respect to CNTs. The probability for each residue to be at a certain

position in the chain is not the same for all the residues, since there are three trypto-

phans and two histidines. For all the residues other than tryptophan and histidine, the

probability of being in a certain position in the chain is 1/12, however in the case of

tryptophan and histidine is 3/12 and 2/12, respectively. Even though, it is well known

that the aromatic residues bind well to CNTs, we should bear in mind that, in this

case, tryptophan and histidine are more likely to be present in the featured motifs (by

virtue of their relative abundance). However, the probability of finding the motifs in

the sequences can be calculated. For instance, the probability of finding just one HW,

P(1HW) in the sequences is given by the probability of finding at least one HW, minus

the probability of finding two HWs in the sequence (since in this case, it is possible to

have two HWs, but not more in the sequence):

P(1HW) = (
11!
2!
− 9!)/11! (4.2)

= 0.49 (4.3)

The P(1HW) is the same as the probability of finding just one WH, P(1WH). This
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probability tells us that there is almost a 50% chance of having one HW in any sequence

with this particular content (both strong and medium binders); our range of sequences

(Table 4.3) tallies with this. Similarly, the probability of finding just two tryptophans

together (WW) is:

P(WW) = (
11!
2
− P(WWW))/11! (4.4)

= (
11!
2
− 10!

2
)/11! (4.5)

= 0.45 (4.6)

where P(WWW) is the probability of finding three adjacent tryptophans. Again, this

value tells us that the probability of finding just one WW in the sequences is about

50%. However, this motif is underrepresented in the medium binders, while appearing

in roughly of the strong binders (see Table 4.3). This uneven distribution of the presence

of the WW motif suggests that WW may be a key feature in the strong binder sequences.

The data presented in this Chapter support the idea of previous studies that

binding affinity is the result of a complex interplay between structure, sequence and

binding [32]. In addition, in agreement with previous studies [184], these findings show

that the content primarily determines the relative strength of peptide binding to the

surface. However, the binding affinity is the product of not just the content but many

other factors, such as sequence and structure [13], and the environment in which the

residues directly bind to the surface also plays a major role [85; 182]. These data

show that by only mixing the peptide content of B1, the binding affinity drops to a

level comparable to the mutations of the tryptophan content by either tyrosine and

phenylalanine. Based on the differences in binding affinity observed in this work, it

would be interesting if these peptide sequences could be experimentally tested.

In agreement with our previous studies [118; 120], it was found that all sequences
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were able to bind at the CNT surface in a wide variety of configurations. An example is

illustrated in Figure 4.4, showing two different strong binding configurations taken from

two different trajectories of the B1-6 peptide interacting with the CNT, emphasising the

different strong binding conformations that the peptide backbone can adopt.

Figure 4.4: Two snapshots taken from two different strong binding trajectories (with
different starting configurations) of the B1-6 peptide interacting with the CNT. The
backbone is highlighted in green, the tryptophans in orange and the histidines in yellow.

As previously mentioned, these data suggest that there is a compromise between

maintaining strong ring-CNT interactions and also allowing the other residues to ap-

proach the surface, as evidenced for instance by the small tryptophan-CNT distances in

the case of B1-14 peptide (the worst binder) and the slightly greater distance of W8 in

B1-5 (Table 4.2). This is similar to what was found in Chapter 3 for the case of the
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a) b)

Figure 4.5: Schematic of the two different tryptophan configurations adopted in the
peptide-CNT simulations. a) all side-chain atoms parallel to the surface and b) the tail
of the side-chain which is connected to the backbone perpendicular to the surface.

peptide-graphite interface. However, in Chapter 3 we adjusted the interfacial shape to

the sequence, while here, we adjusted the sequences while keeping the shape of the CNT

fixed. Inspection of the trajectories revealed that the tryptophan side-chains can adopt

two different configurations at the surface; one in which all the tryptophan side-chain

(the indole ring and the methylene spacer) bind to the CNT, (referred to parallel herein),

and another one in which only the indole is close to the CNT and the methylene spacer

that connects the indole ring to the backbone is perpendicular to the CNT (referred

to perpendicular). Figure 4.5 illustrates these configurations. It was found that for the

best binders B1-6 and B1-5, two tryptophans adopted the parallel configuration and

one adopted the perpendicular orientation during the simulations, while in the case of

B1 one adopted the parallel orientation and one the perpendicular orientation, while the

other one adopted a mixture of both. However, in the case of the three worst binders it

was found that B1-14 (worst binder) supported the three tryptophans in a perpendicular

orientation, while B1-12 and B1-13 supported two tryptophans in perpendicular and one

in parallel. These findings may also help to rationalise why the worst binders have less

atoms interacting with the surface.
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Table 4.9: The three closest (on average) peptide atoms (within the 8.0 Å cutoff)
during the production run, for the three best strong binder sequences and the three
worst medium binders. B stands for peptide backbone atom and S stands for side-chain
atom. % is the frequency at which the atom is the closest.

Top 3 strongest binders
Pept. Atom Res. Type % Atom Res. Type % Atom Res. Type %
B1-6 H W10 B 18.2 H W2 B 15.2 H K7 B 8.0
B1-origi. H W9 B 21.0 H W9 B 9.4 H W2 B 9.1
B1-5 H H6 B 22.7 H W2 B 7.8 H W7 B 7.4

Top 3 weakest binders
B1-13 H A4 B 23.8 H H2 B 11.6 H K12 B 10.4
B1-12 H H12 S 19.2 H W10 B 16.1 H G8 B 7.2
B1-14 H P5 B 25.0 H H7 B 19.6 H W9 S 8.6

4.6 Summary and Outlook

The binding affinity between a CNT and a range of peptide sequences with the same

content as the B1 peptide (but in a different order) were investigated by molecular

dynamics simulations. Fifteen peptide sequences were created by mixing the amino acid

content of the strong binder sequence B1 (HWKHPWGAWDTL), using a random number

generator and by hand. Peptide sequences with different affinities to the CNT, including

affinities higher than the original sequence B1 were found. While none of the scrambled

peptide sequences diminished the binding affinity to a level comparable to the control

peptide NB1, some peptide sequences reduced the binding affinity to a level comparable

to the mutations of the tryptophan content by either tyrosine or phenylalanine (Chapter

3).

These findings suggest that the order of the amino acids, i.e. the sequence, plays

an important role on the binding affinity to CNTs. In order to further the understanding

of why certain peptide sequences have more binding affinity to the CNT than others,
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it would be interesting to study these peptides in water and determining the flexibility

of each of the sequences by calculating the peptide dihedral angles and determine how

much the angles change during the production run. A knowledge of the peptide flexibility

would give a further insight into the understanding of the peptide-CNT binding affinity.

In addition, it would be interesting to isolate the main motifs identified in the strong

and medium binders in order to establish the dependencies between the several motifs.

In other words, it would be interesting to design some strong and weak binders and test

them. The work presented in this Chapter represents a first step towards understanding

the design rules for peptide-inorganic interfaces for both the chemistry and the shape

of the interface. For instance, these findings suggest that strong binding may be due

to the presence of two tryptophans together (WW), while weak binding may be due to

two tryptophan residues intercalated by another residue (r) (WrW).
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Chapter 5

Simulation of liquid water on

graphitic surfaces using a

polarisable force-field

5.1 Abstract

The interactions of water with graphitic surfaces and biomolecules are of considerable

importance in the fields of bio- and nanotechnology [59]. Here, molecular dynamics

(MD) simulations of the interface between water and graphitic surfaces are reported.

An existing polarisable force-field that uses distributed multipoles up to and including

quadrupoles for the electrostatics is extended to include a description of the non-bonded

interactions between water and graphitic surfaces: carbon nanotubes, fullerenes and

graphite. The spatial and orientational distributions of water around the graphitic sur-

faces are shown to reproduce the hydration behaviour very well, when compared with

previous work.
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5.2 Introduction

The structure of water at an interface is different from the bulk phases and may play a

key role in biological systems [185; 186]. This deviation of the water properties at the

liquid-solid interface gives rise to multiple interesting behaviours. A deep understanding

of such behaviours would give insights into the potential applications of these materials.

The discovery of CNTs and fullerenes has led to a new era of nanoscience and

nanotechology [187; 188]. Due to their intriguing physical and chemical properties

[189; 190] these systems have been the subject of many experimental and theoretical

studies. The outstanding potential applications in the fields of biology, medicine [61]

and materials science [191] require an understanding of the behaviour of nanotubes in

aqueous solution. Many theoretical studies have addressed the interface between water

and graphitic surfaces (graphite [192; 175; 193; 194; 195; 196; 197; 198; 199; 200; 201],

nanotubes [202; 173; 203; 204] and fullerenes [205; 206; 207; 208]). In addition, several

authours have studied the adsorption of water clusters on bare [209] and functionalised

graphitic surfaces [210; 211; 212; 213; 214; 215; 216]. A review of these studies of

the interaction of water clusters with functionalised graphitic surfaces will be given in

Chapter 6.

The use of quantum chemistry calculations to study the interface between water

and graphitic surfaces is to date not practical, since for large systems these calculations

can be prohibitively expensive. On the other hand, MD simulations have given further

insight, and a wide range of intermolecular potentials for water and water-carbon have

been proposed to describe these interactions [217; 194; 198]. However, an issue common

to all of these potentials is their transferability between different systems. For example,

the molecular water-carbon potential used in Refs [173; 218] and [219], is based on

interaction parameters from the Bojan-Steele potential [220] who derived these param-
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eters from the adsorption of molecular oxygen on graphite, suggesting these authors

assumed that the oxygen atoms in water are similar to those in molecular oxygen. The

most popular model to describe water-carbon interactions is the simple point-charge

(SPC) (on water only) and Lennard-Jones (LJ) potential [217]. Similar models with

an additional quadrupole-quadrupole interaction between carbon atoms and water have

been proposed [173; 200; 194; 198]. Several studies have been done to optimise the

parameters for this interaction potential [194; 204] compared with experiment. A more

sophisticated model potential has been reported that includes point-charges (on water),

LJ interaction and tube polarisation [203].

Graphite is a hydrophobic surface, and CNTs and fullerenes also exhibit low sol-

ubility in water [221; 222; 223; 224; 225]. Grunze and Pertsin studied the behaviour

of the graphite interface in water [199; 226; 200]. They used grand canonical Monte

Carlo (GCMC) simulations to test three water-graphite model potentials to describe the

behaviour of water confined between two parallel graphite sheets [199] by reproducing

and comparing their results with the MP2 calculations of Feller and Jordan [227], later

revised by Karapetian and Jordan [228]. In this work of Karapetian and Jordan [228]

it was concluded that the binding energy of a water molecule on a single graphite layer

estimated in a previous work [227], was approximately twice as large in magnitude as

the one obtained from their model potential calculations. Reasons for this discrepancy

were pointed out as being the use of a very large correction for basis set superposi-

tion error (BSSE) [229]. Pertsin and Grunze [199] concluded that the thermodynamics

and structure of water at the graphite interface was extremely sensitive to the range

and orientation dependence of the model potential. These conclusions [199] were then

demonstrated to be valid for weaker water-graphite interactions by exploring the phase

and shear behaviour of water confined in graphitic slit pores of different widths with two
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orientation-dependent model potentials [200]. Gordillo et al. reported a MD simulation

of water confined between two graphite sheets with separations ranging from 7 to 15

Å [193]. They found two orientational distributions when water molecules are close to

the walls and the graphite sheets separated by 15 Å: one with a dangling bond pointing

towards the surface and other with both OH bonds parallel to it. However, their studies

have exclusively made use of a simple point charge (SPC) potential to describe the

water-water interactions and a Lennard-Jones potential to describe the water-graphite

interactions using the usual Lorentz-Berthelot mixing rules. The dependence of the con-

tact angle of water droplets on graphite with the water-carbon potential was studied by

Werder et al. [194] and were compared with experimental values. Unfortunately, the

reported experimental contact angles span a range of values from 30◦ to 86◦, and there-

fore it is not sensible to compare the contact angles obtained from MD simulations with

the experimental data. Several interaction potentials from the literature were used to

model graphite-water systems, where all were based on a pairwise additive LJ potential

between the oxygen atoms of the water and the carbon atoms. These data suggested

a linear relationship between the water contact angle and the water monomer binding

energy on graphite. The authors adjusted the interaction parameters for the LJ poten-

tial acting between the oxygen and carbon atoms such that the simulations recovered

a contact angle of 86◦. The rigid SPC/E model (which only includes a carbon-oxygen

LJ potential) was used because it has the lowest bulk energy and the contact angles

reported thus represented an upper bound to those that would be obtained with other

water models with weaker water-water interactions. This work was extended by Jaffe

and Werder [204] and new parameters for the water-carbon potential were presented in

order to reproduce the experimental macroscopic contact angle of 84-86◦. This study

included the variation of C-O LJ well depth with the contact angle and the effects of
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adding pairwise water hydrogen-carbon LJ terms to the potential and also the effects

of changing the long-range cut-off used in the truncation of the interactions. They also

presented a continuum model of the graphite in which the interaction energy depends

only on the surface-oxygen normal, reducing the computational time needed to calculate

the water surface interaction. Very recently, several works have reported use of electronic

structure theory to get better estimates of the strength of interaction between a single

water molecule and a graphene sheet [201; 197; 195]. Previous studies have shown that

the interaction energy between water and graphite is well described by using a single

graphite sheet as opposed to a many-layered model of graphite [227; 228; 199; 200].

Huff et al. [201] calculated the potential energy surface of a single water molecule over

a coronene (C24H12) molecule using DFT and MP2 calculations. These authors found

that both methods predicted a minimum energy structure for water with the hydrogens

facing the ring. In agreement with these findings is the work of Rubes et al. [197]

who used the density-functional/coupled-cluster (DFT/CC) level of theory to calcu-

late the interaction of water with graphene, also obtaining a water minimum structure

with both hydrogen atoms of water pointing toward the surface. Jenness and Jordan

[195] used density fitting-density functional theory-symmetry-adapted perturbation the-

ory (DF-DFT-SAPT) to calculate the individual contributions of the interaction between

a water molecule with various acenes and fitted the parameters in six water-graphite po-

tentials, including the AMOEBA potential. However, the authors did not mention which

atomic polarisabilities were used.

Various computational studies have also been performed to investigate the prop-

erties of fullerenes with water. Bedrov et al. studied the solvation of a single C60

fullerene molecule as well as pairs of C60 fullerenes [205] by using a LJ potential be-

tween carbon atoms and water and the TIP4P potential [230] to model water. These
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authors extended their study to SWCNTs and graphene sheets [206] and found a corre-

lation between water density and the extent of hydrogen bonding at the interface, with

the degree of the surface curvature. A reduction in the water density and extent of

hydrogen bonding was noticed upon increasing the radius of curvature of the nanotube.

Choudhury [208] proposed a coarse-grained model to study the solvation behaviour of

C60 in water, and compared this model with atomistic MD simulations. Their atomistic

data show that the water near the fullerene surface is densely packed relative to the bulk

and a disruption of the hydrogen bond network occurs in the regions near the fullerene.

OH bond orientation distributions show that water molecules show preferential orien-

tation with one OH bond pointing away from the surface while the other OH bond

is slightly inclined toward the surface. Distributions of the orientation of the plane of

the water molecules show that near the fullerene walls, the waters are mostly oriented

tangential to the fullerene surface [208].

In the case of the nanotubes, Walther et al. [173] studied the structural prop-

erties of water surrounding a (16,0) carbon nanotube by performing fully atomistic MD

simulations in water, with the objective of testing the influence of solvation on the vi-

brational modes of the nanotube. In this study the CNT was described as fully flexible,

and the water by the flexible SPC model of Teleman et al. [231] with partial charges.

The nonbonded interactions between the water molecules comprised an O-O LJ term

and the Coulomb potential. The carbon-water interaction was described with a C-O

LJ interaction, plus an interaction between quadrupoles on the carbon atoms and the

partial charges on the water atoms. Their results indicate that the presence of bulk

water has a negligible influence on the breathing frequency mode of the CNT. The

dominant orientation of the water molecules at the carbon-water interface was found to

have the HOH plane nearly tangential to the interface as for the graphite-water system
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[209], with a characteristic layering observed from the water radial density profiles. A

different model was proposed by Zhao and Johnson [198] who derived a potential that

incorporates polarisability and atomic quadrupoles on graphite and atomic quadrupoles

on water. These authors found that for weakly polar fluids the polarisation contributions

were negligible compared with the LJ interactions. However, for strongly polar fluids,

such as water, the contribution from the polar terms to the total potential energy was

found to be significant. The first MD simulation using a polarisable nanotube immersed

in liquid water was done by Moulin et al. [203], where they used a LJ term between the

carbon and oxygen and an electrostatic term between charges on water and the induced

dipoles on the polarisable nanotube, with the TIP4P potential [230] for water. Despite

the fact that CNTs have a very large polarisability, they concluded that the influence

of the nanotube polarisation was negligible on the arrangement of the water molecules

around the nanotube and on their adsorption energy. However, it is not surprising since

water is also polarisable and this contribution was neglected. Our work makes use for

the first time of a polarisable CNT and polarisable water by using an extended version of

the AMOEBAPRO force-field which has been modified to treat the interactions between

water and graphitic surfaces.

The aim of this study is to demonstrate that the polarisable force-field is suitable

for use in further simulations that include graphitic surfaces, biomolecules and water.

To this end, we have run MD simulations of these surfaces in water, using our novel

potential, and have analysed the interfacial structure, orientational order, water resi-

dence times in several regions of the interface and the average number of hydrogen

bonds. A clear understanding of the role that water plays in these systems is vital for

understanding future studies of mechanisms of biomolecules interacting with the aque-

ous interface of graphitic surfaces. In addition, MD simulations of a CNT with one OH
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Figure 5.1: CNT with an OH defect attached to exterior wall.

defect attached to the exterior wall of the CNT were performed in order to investigate

the structural properties of the water molecules surrounding the OH defect. This study

aims to complement the studies of the effect of the presence of defects on the binding

affinity to peptides presented in the next Chapter (Chapter 6). Furthermore, this is the

first simulation study of liquid water and a defective CNT. A CNT with one defect is

shown in Figure 5.1.

5.3 Methods

MD simulations of the graphitic surfaces in water were carried out using the Tinker

package [171]. In the case of the CNT, an (8,0) nanotube of 96 carbon atoms was

held rigid along the y-axis in a periodic cell of initial dimensions 26.65× 12.79× 26.65

Å with 279 water molecules. In the case of the fullerene, the C—C bonds were kept

rigid, and the fullerene was placed in the centre of a box of initial dimensions 28.00×
28.00× 28.00 Å with 676 water molecules. For the graphite, a cell of initial dimensions

12.782×14.76×47.0 Å was used, incorporating three graphene layers, each with 72

carbon atoms, and 210 water molecules.

The force-field developed in this work is an extension of the AMOEBAPRO

force-field [142; 143; 144]. The AMOEBAPRO force-field includes an atomistic model

to describe the water molecules. Our extension includes parameters for the non-bonded
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interaction between graphitic surfaces and water at the same level of approximation. The

atom-centred distributed multipoles up to and including the quadrupole were calculated

by T. R. Walsh with the GDMA program [232] with input wavefunctions calculated

using GAUSSIAN03 [233] at the HF/6-31G* level of theory. Atomic polarisabilities for

the graphite were taken from Zhao and Johnson [198].

Newton’s equations of motion were solved using the Verlet algorithm with an

integration step of 1.0 fs. In the case of the fullerene a cutoff of 8 Å applied to all

non-bonded interactions while in the case of the CNT and and graphite, the minimum

image convention was applied (no spherical cutoff applied). The Ewald summation was

used to handle the long-range electrostatic interactions. Coordinates were saved every

0.5 ps (500 steps). The first 1 ns of each simulation was used as an equilibration

period and removed before subsequent analysis. The simulations were carried out in

the isothermal-isobaric (NPT) ensemble with periodic boundary conditions applied in all

directions. The temperature of the system was coupled to 298 K by means of the Nosé

-Hoover thermostat. All simulations were carried out at a target pressure of 1 atm.

Anisotropic constant P simulations were used in the case of the CNT and graphite

systems. In these cases, the barostat was only applied in the dimensions not spanned

by C atoms (i.e. the barostat was only applied in the x and z direction in the case of

the CNT and only in the z direction in the case of graphite). Isotropic constant P was

applied to the fullerene system. To calculate water residence times in the first layer,

each simulation was extended by 300 ps and the coordinates were saved more frequently

(every 10 fs).

To analyse the results structural metrics were used. The oxygen and hydrogen

density profiles as a function of the distance from the surface were obtained by dividing

the simulation cell into slices (cylindrical, spherical and rectangular box, respectively for

150



5.4 Results

the CNT, fullerene and graphite), and by counting the number of oxygen and hydrogen

atoms (respectively) in each slice and averaging over time, and by normalising with

respect to the volume of the slice. In the Results Section it is described how the density

profile is used to divide the box into layers corresponding to the arrangement of water

relative to the surface. The orientational probability distributution of water within a

given layer, was determined by calculating the cos(θ) for all water molecules within that

layer, where θ is the angle between either the dipole vector, O—H bond vector or plane

normal vector of water and the CNT/fullerene/graphite normal vector, and by counting

the frequency of the cos(θ) in that layer.

5.4 Results

The aim of this work is to study the structural properties of water surrounding three

graphitic surfaces (CNT, fullerene and graphite) and whether or not the curvature of

the surfaces can influence these properties. The behaviour of water molecules around

the surfaces was studied by considering both the spatial and orientational distributions

of water. Oxygen and hydrogen density profiles around the CNT, fullerene and graphite,

which show the density of water as a function of the distance to each surface, are shown

in Figure 5.2, while the exact values appear on Table 5.1. In all cases the distance is

measured from the surface to the water oxygen atoms. The density profiles show that the

water near the CNT/fullerene/graphite surfaces is densely packed relative to the bulk.

The almost coincident first peaks of oxygen and hydrogen distributions indicate that the

plane of the water molecule is almost tangential to the surfaces. However, hydrogen is

slightly closer to the surfaces than oxygen, which is probably due to a smaller van der

Waals radius of hydrogen.

To gain insight into the alignment of water molecules on the surfaces and
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Figure 5.2: Atom density of oxygen and hydrogen around (a) carbon nanotube, (b)
fullerene and (c) graphite as measured from each surface. Dotted lines represent layer
boundaries.
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Figure 5.3: Dipole moment distribution Pµ(cosψ) vs cos(ψ), where ψ is the angle
between the dipole moment vector and the CNT/fullerene normal vector. Plots a) to
e) corresponds to layers 1 to 5.
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Table 5.1: Summary of the peak positions (r) and heights [ρ(r)] of the oxygen and
hydrogen density profiles for the three surfaces. Peak positions (r) are in Å.

CNT
1st Peak 1st Trough 2nd Peak

r ρ(r) r ρ(r) r ρ(r)
O 3.16 0.23 4.76 0.028 5.76 0.084
H 2.96 0.31 5.36 0.092 6.26 0.130

Fullerene
O 3.14 0.22 4.74 0.023 5.94 0.079
H 2.94 0.31 5.34 0.0953 6.14 0.133

Graphite
1st Peak 1st Trough 2nd Peak

r d(r) r d(r) r d(r)
O 3.2 0.098 4.4 0.0154 6.5 0.0947
H 2.9 0.126 4.4 0.0530 6.5 0.180

Graphite
2nd Trough 3rd Peak

d(r) d(r) r d(r)
O 7.7 0.0536 9.5 0.078
H 8.0 0.12 9.5 0.144

compare with other simulation data, three orientational probability distributions of

the water molecules — a distribution of the dipole moment Pµ[cos(ψ)], OH bond

vector POH [cos(θ)], and the plane-normal vector Pp[cos(φ)] of the water molecule

were calculated. The angles ψ, θ, and φ are the angles made, respectively, by the

dipole moment vector, the OH bond vector, and the plane-normal vector with the

CNT/fullerene/graphite normal vector. To investigate the orientation of the water

molecules near the surface as well as away from it the space around the CNT/fullerene/graphite

was divided into cylindrical/spherical/rectangular box layers respectively, as summarised

in Tables 5.2 and 5.3. The division into layers has been considered previously [234; 235].

In the calculation of the different orientational distribution functions, we considered only

the water molecules that are within a specified shell. It will be referred in the text to

154



5.4 Results

Table 5.2: Summary of cylindrical/spherical shell boundaries considered for the calcula-
tion of the orientational distributions around the CNT and fullerene, respectively.

CNT Fullerene
Layer
No. r1(Å) r2(Å) r1(Å) r2(Å) Remarks

1 0.00 2.86 0.00 2.83 Repulsive zone around the solute
2 2.86 4.10 2.83 4.14 Around the first peak in the O density profile
3 4.10 5.36 4.14 5.24 Between the first and the second peak in the O density profile
4 5.36 6.90 5.24 6.94 Around the second peak in the O density profile
5 6.90 10.0 6.94 9.00 Beyond the second peak

layers 1 and 2 as the interfacial region and layers 3 and 4 as the intermediate region, for

all cases. The systems were partitioned into layers, by dividing the region of the oxygen

density profile of the CNT interface into layers, based on the previous work of Choudhury

[208]. In order to be consistent with the CNT layer division, a rule was applied when

choosing the layers for the fullerene and graphite interfaces. For each CNT layer, a

ratio (di/dj , dk/dj etc.) between the optima of the CNT O density profile in that layer

and the density at the respective layer boundary was calculated (See Figure 5.2). The

calculated ratios were then applied to the fullerene and graphite oxygen density profiles

to determine the boundaries of the layers. As an example, for the CNT in layer 1 the

ratio between the density of the first boundary and the density of the first peak (di/dj)

was calculated, and then used to determine the first boundary (di) in the fullerene and

graphite systems; to determine the position in the second boundary the ratio dk/dj was

calculated for the CNT system and then this value was used to determine the second

boundary (dk) in the fullerene and graphite systems.

The results for the Pµ[cos(ψ]) of the water in the five different layers for the
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Figure 5.4: Dipole moment distribution Pµ[(cos(ψ)] vs cos(ψ), where ψ is the angle
between the dipole moment vector and the graphite surface normal vector. Plots a) to
g) corresponds to layers 1 to 7.

156



5.4 Results

Figure 5.5: OH bond distribution POH(cosθ) vs cos(θ), where θ is the angle between
the OH bond vector and the CNT/fullerene normal vector. Plots a) to e) corresponds
to layers 1 to 5.
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Figure 5.6: OH bond distribution POH [cos(θ)] vs cos(θ), where θ is the angle between
the OH bond vector and the graphite surface normal vector. Plots a) to g) corresponds
to layers 1 to 7.
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Table 5.3: Summary of layer boundaries considered for the calculation of the orienta-
tional distributions for the graphite sheet.

Layer No. r1(Å) r2(Å) Remarks

1 0.00 2.72 Repulsive zone around the solute
2 2.72 4.18 Around the first peak in the O density profile
3 4.18 5.32 Between the first and the second peak in the O density profile
4 5.32 7.50 Around the second peak in the O density profile
5 7.50 8.57 Between the second and the third peak in the O density profile
6 8.57 10.10 Around the third peak
7 10.10 20.00 Beyond the third peak

CNT and fullerene are shown in Figure 5.3, while the results for the dipole distribution

of graphite around the seven layers are shown in Figure 5.4. Near the hydrophobic

surface (layer 1) the three surfaces present a peak in the distribution around ψ =

90◦ suggesting that dipole moments show preference to be tangential to the solute

surface. These results are in agreement with recent studies of the orientation of water

molecules on CNTs [173], fullerenes [208] and graphite [196]. Similar to layer 1, the

dipole orientation of water molecules around the first peak (layer 2) has, for all surfaces,

a broad distribution of dipoles at φ = 90◦. However, in the case of the nanotube and

the fullerene a large fraction of water molecules also orient their dipoles around φ = 0◦

and φ = 180◦. This is not the case for the graphite surface. The distribution in layer

3 for the CNT and fullerene, (Figure 5.3) is similar to the distribution in layer 2 but is

flatter. In the case of graphite, layer 3 presents a small bump at around φ = 90◦ as in

the previous layers and two peaks at 0◦ and 180 ◦, suggesting that some of the water

molecules orient their dipole moments perpendicular to the graphite sheet and other

water molecules orient their dipoles tangential to the surface. The distribution around

159



Chapter 5. Simulation of liquid water on graphitic surfaces using a polarisable
force-field

the second peak (layer 4) for the CNT and fullerene is approaching bulklike behaviour

while in layer 5 it is more-or-less homogeneous, indicating a bulk phase. In the graphite

system, the dipole orientation in layer 4 exhibits a small broad bump between 80◦ and

100◦. This suggests that in this layer dipoles are slightly oscillating from the tangential

orientation to the surface. In layers 5 and 6 there is still a weak structuring, but in

layer 7 it reaches the bulk phase. These Pµ[cos(ψ)] distributions are comparable to the

dipole distributions of water near planar graphene plates [234].

In Figure 5.5 we show the POH [cos(θ)] distributions in the same five layers

for the CNT and fullerene and Figure 5.6 shows the POH [cos(θ)] distributions for the

graphite. The distribution in layer 1 for the CNT and fullerene [Figures 5.5(a) and 5.5(b)

respectively], show two large peaks at around θ = 0◦ and 90◦ - 100◦. The greatest peak

(at 90◦ - 100◦) suggests that the majority of the water molecules has one of the OH

bonds tangential to the surface. Due to the HOH angle constraint, it can be inferred

that the other OH bond should also be tangential to the surface. The smaller peak

at θ = 0◦ indicates there are a small number of molecules which have one of the OH

bonds pointing away from the surface. In the case of the graphite system, there is no

such peak at θ = 0◦, which suggest that practically all the water molecules have one

of the OH bonds flat on the surface. This difference in the OH orientation in layer 1

between the graphite and the CNT and fullerene might be attributed to differences in

the surface curvature. However, the POH [cos(θ)] in layer 2 is similar for all the surfaces.

For the three surfaces there are two large peaks at θ = 0◦ and 90◦ - 100◦. Again, these

data suggest that some water molecules have one of the OH bonds tangential to the

surface and other water molecules have one of the OH bonds pointing away from the

surface. The other OH bond is once again restricted to the HOH angle constraint. The

distribution in layer 3 as shown in Figure 5.5(c) and 5.6(c), which corresponds to the
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Figure 5.7: Distribution of the orientation of the plane of the water molecules [PP (cosφ)]
vs cosφ, where φ is the angle between the normal vector to the plane of the water
molecule and the vector drawn from the centre of the CNT/fullerene to the oxygen
atom of the water. Plots a) to e) corresponds to layers 1 to 5.
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region between the first and the second peak of the oxygen density profile has, for all

surfaces, a peak at around θ = 110◦ - 120◦ and another one at 0◦. The distribution

around the second peak (layer 4) for all the surfaces, has a pronounced peak at around

180◦ and a shallower one at around 60◦-70◦, while in the case of the CNT and fullerene,

in layer 5 water molecules are as random as in the bulk, and in the case of graphite,

water reaches the bulk phase in layer 7 [Figure 5.6(g)]. Clearly, the OH orientation

persists further (to layer 4) than the dipole orientation (layer 3 at best). These findings

are in good agreement with the POH [cos(θ)] distributions for fullerenes [208], CNTs

[173] and for graphite [196]. A small bump in layer 5 is observed in the case of the CNT

and fullerene which should be further investigated.

Finally in Figures 5.7 and 5.8 we show the Pp[cos(φ)] for the same layers for

the three surfaces. For all three surfaces, there are two large peaks at 0◦ and 180◦ in

layers 1 and 2, indicating that water molecules are mostly oriented with their planes

tangential to the surface [Figures 5.7(a) and (b) and 5.8(a) and (b)]. In the third layer,

water molecules at the CNT interface are oriented with their plane normals slightly

perpendicular to the surface, while in the case of the fullerene, water molecules are

oriented with their plane normals slightly tilted at around θ=35◦-40◦. Layers 4 and 5

have uniform distributions with values around 0.5 that are characteristic of the bulk

liquid. However, in the case of the CNT, in layer 5 there is a small peak at around

θ=90◦. A couple of tests were done in order to investigate possible origins for this

small bump. First, the boundaries of layer 5 were modified by decreasing and increasing

the layer limits to understand if it was a problem related with boundary delimitation.

Second, the Pp[cos(φ)] was calculated in the last 0.5 ns of the trajectory to confirm

that it was not an equilibration issue. Failing that, one possible cause for water not

behaving as bulk in layer 5 might be the size of the box being too small. In the case of
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Figure 5.8: Distribution of the orientation of the plane of the water molecules
[PP [cos(φ)] vs cos(φ), where ψ is the angle between the normal vector and the graphite
surface normal vector. Plots a) to g) corresponds to layer 1 to 7.
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the graphite, planes of water molecules behave as random as in bulk after layer 5.

These data suggest that for all surfaces, in layer 1 the majority of the water

molecules lie flat on the surface with the dipole moment and the plane of the water

molecules tangential to the surface. The OH bonds are also tangential to the surface.

However, in the case of the CNT and the fullerene, a small fraction of water molecules

also orient one of the OH bonds away from the surface. In fact, this is in agreement with

the Pp[cos(φ)], where a non-zero probability of finding a water molecule with its plane

oriented perpendicular to the surface is presented [Figure 5.7(a)]. On the other hand,

in the case of the graphite, the probability of finding a water molecule with its plane

perpendicular to the surface is very small, which correlates well with the non existing

peak at 0◦ in the POH [cos(θ)] distribution [Figure 5.6]. To illustrate this, let us consider

the maximum of the Pp[cos(φ)] distribution and Pp[cos(0◦)] in the three cases. If we

divide the maximum of the Pp[cos(φ)] by the Pp[cos(0◦)] in each case, for layer 1, we

will get approximately 2.8, 4.7 and 11 for the CNT, fullerene and graphite, respectively.

These data show, that in the case of the CNT and fullerene the Pp[cos(0◦)] is more

significant than in the case of the graphite.

5.4.1 Hydrogen bonding

It is well known that water has an extended network of hydrogen bonds that are thought

to be responsible for most of its properties. It is likely that the presence of a large

hydrophobic solute such as a graphitic surface will cause a disruption of the H-bond

network. To further investigate the influence of the graphitic surfaces on the molecular

water structure, we calculated the average number of hydrogen bonds per water molecule

as a function of distance from the surface. To define hydrogen bonds in our systems,

we used the geometric criteria [236] whereby two water molecules are considered to be
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Figure 5.9: Average number of hydrogen bonds (ηHB) per water molecule as a function
of the distance r from each surface. For clarity the fullerene and graphite profiles are
off-set the origin by 0.1 Å.

hydrogen bonded only if the inter-oxygen distance is less than 3.55 Å and simultaneously

the hydrogen-oxygen (hydrogen bonded) distance is less than 2.5 Å and the H—O· · · O
angle is less than 30◦.

The hydrogen bond profile for the the three surfaces is shown in Figure 5.9

together with the corresponding averages in Table 5.4. In the case of the CNT, we find

that the average number of hydrogen bonds decreases from a bulk value of about 3.4

per molecule to a value of about 2.85 at the CNT-water interface. Similarly, for the

fullerene interface the average number of hydrogen bonds decreases from a bulk value

of approximately 3.4- 3.5 to an interfacial value of about 2.9. For the graphite system,

an equivalent behaviour is found, going from an average number of hydrogen bonds of

3.4 for the bulk phase to a value of around 2.7 at the interfacial region.

This behaviour at the interface seems to be due to the plane of the water

molecules being oriented tangential to the surface. It is possible that the structured water
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will prevent the formation of more than three hydrogen bonds due to all molecules being

in the same orientation. This is similar to what has been reported for other hydrophobic

surfaces [226; 175; 208; 235]. On the other hand, water in the layers above the first

layer, is in two different orientations and therefore is free to form as many hydrogen

bonds as it can, which is why the number of hydrogen bonds increases after the first

peak in the density profile. This conclusion is supported by the orientation distribution

analysis where we found that in layer 1 water molecules orient themselves with the dipole

moment, plane and OH bonds tangential to the plane of the surface. Whereas in layer 2

some of the water molecules are oriented with their planes tangential to the surface and

other water molecules are oriented with the water plane slightly oriented perpendicularly

to the surface.

5.4.2 Residence times of water molecules within layers

We calculated residence times τres which are the average times spent by water molecules

in each layer. We considered “continuous” residence times, i.e., they are computed until

a water molecule leaves the layer for the first time and thus does not allow for multiple re-

entrance of water molecules. The values for the residence times τres, of water molecules

in each region for the three surfaces are presented in Table 5.4. In order to calculate this

property five time origins were considered. For each origin we looked for water molecules

in a specific layer and monitored the time (in picoseconds) that each water molecule

resided in that layer for that interval. This process was repeated for five time origins.

An interval of 200 picoseconds between each origin was considered. In general, a water

molecule stays longer in the interfacial and bulklike region compared to the intermediate

region. This is due to the attraction that the surface exerts on the water molecules,

which forces the waters to be in the region of the first peak of the oxygen density profile.

166



5.4 Results

Table 5.4: Average and normalised residence times of water in each layer for all three
surfaces. Layers refers back to Tables 5.2 and 5.3.

Layer No. τres(ps) τN
res(ps)

CNT
1 0.046 0.016
2 4.16 3.35
3 0.91 0.72
4 2.85 1.85
5 4.74 1.53

Fullerene
1 0.038 0.013
2 3.52 2.69
3 0.85 0.77
4 2.51 1.48
5 2.83 1.37

Graphite
1 0.03 0.011
2 9.38 6.42
3 0.69 0.60
4 6.04 2.77
5 1.22 1.14
6 2.10 1.37
7 26.58 2.68
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The greater residence times of the water molecules in the bulk region can be explained

by the greater number of hydrogen bonds which trap the water molecules. Assuming

that molecules move evenly, the residence times should be normalised with the width

of the considered region in order to obtain a parameter that is independent on the size

of the water layer. The normalised residence times < τN
res > of water in each region

for all surfaces, are given in Table 5.4 along with the non-normalised values. For all

three surfaces, the normalised residence times are greater for layer 2 which is the region

that corresponds to the highest oxygen density of the density profile and are lower for

layer 3 which corresponds to the lowest density region of the oxygen density profile. In

addition, the region around the second peak of the oxygen density profile (layer 4) also

displays higher residence times. In the case of the graphite interface, we also notice a

slightly lower residence time in layer 5, when compared to layer 6. This is because layer

5 corresponds to a region of low oxygen density as it is the area between the second and

the third peak. The higher residence time values in the region of the first peak of the

oxygen density profile indicates that water spends more time closer to the solute surface

than in any other region.

5.5 CNT–OH defect simulations

As previously mentioned, MD simulations of a CNT with an OH defect attached to the

side walls were performed in explicit solvent with the aim to investigate the structural

properties of water surrounding the OH defect. This study is essential in order to be able

to perform further simulations to study the interactions of defective CNTs and peptides.

Figure 5.10 presents the oxygen and hydrogen density profiles around the OH defect

as a function of the distance to the surface. In order to calculate the water density

profiles, a 2×1×2 super-cell was created such that the C—O bond lay along the z-axis,
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Figure 5.10: Atom density of oxygen and hydrogen around an OH defect attached to
the CNT as measured from the surface.

as illustrated in Figure 5.11. Then, a cylinder of radius 1.5 Å was considered around the

OH defect (dotted lines in Figure 5.11) and was divided into slices in the z direction and

the number of hydrogen and oxygen atoms were counted for each slice and averaged

with respect to the volume of the slice. The oxygen and hydrogen density profile show

a broad peak at around 4.35 Å, and show that there is a loss of structuring compared

to that observed at the ideal CNT. Between 10 and 20 Å water behaves as bulk and

as expected, after this distance, water starts to behave as previously seen for the ideal

CNT. The right hand side of the plot is thus, symmetric to the water density profile plot

at the ideal CNT (Figure 5.2).
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x
y

z

Figure 5.11: Snapshot illustrating a 2×1×2 supercell of the CNT wiht one OH defect
in water in the xz plane. The C—O bond lies along the z-axis. Dotted lines correspond
to the cylinder around the OH defect that goes till the CNT of the next cell.

5.6 Discussion

The results of our simulations enable us to draw some conclusions about the structure

and orientation of water molecules at the liquid - graphitic surface interface. In the first

layer, water molecules orient themselves with the dipole moment nearly tangential to the

plane of the surface and with both OH bonds lying flat on the solute. This correlates

with the lower average number of hydrogen bonds per water molecule at the interface

compared to the bulk. In the case of the CNT and fullerene, the plane of the water

molecules is slightly inclined toward the surface, while in the case of graphite the plane

of the water molecules is mostly oriented tangential to the surface. This also correlates

with the almost coinciding first peak distributions of the oxygen and hydrogen density

profiles. In addition, this is in good agreement with previous MD simulations, which

have also provided evidence that water molecules prefer to orient the dipole moment
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nearly tangential to the plane of the CNT [173], and the fullerene [208]. The differences

observed between the water plane orientation for the graphite and the CNT and fullerene

could be explained by differences in the curvature of each surface. Therefore, we expect

that the hydrogen bonds at the interface layer will be in a planar geometry for graphite

and slightly out-of-plane for the CNT and fullerene. However, it should be pointed out

that since different boundaries were used the simulations are not really comparable.

We observe that water molecules in the interfacial zone (layers 1 and 2) have

greater residence times than water molecules in the intermediate zone (layers 3 and 4),

and in the bulk phase residence times are slightly lower than in the interfacial region.

The increased residence times at the interface correlates with the region of highest

density of oxygen and this is in good agreement with previous MD simulations that also

calculated the residence times of water in a graphite channel [175]. In that study the

authors obtained a normalised residence time of 5.46 ps and 3.59 for the interfacial and

bulk water, respectively. These results are in reasonable agreement with our calculated

normalised residence times for the graphite interface (6.42 ps and 2.68 ps, respectively).

In agreement with the water density, water shows anisotropic orientational or-

dering for all three surfaces. Our results suggest that there are no more than two layers

of structured water on the surface of CNT and fullerene and three layers of structured

water at the graphite interface. In all cases, the first and second layers exhibit the most

structuring. The extent of this water structuring is rather weak and does not persist

further than 6 Å away from the CNT and fullerene and 10 Å away for the graphite.

This is in contrast to other well-studied hydrophilic surfaces; for example, the water

on the surface of titania is highly structured and the ordering propagates far from the

surface [174]. This obviously has consequences when considering binding biomolecules

to surfaces. Strongly structured water is more likely to extend further into the bulk and
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therefore exert a greater effect on the local environment of bound molecules; whereas

weakly structured water is probably easier to displace for direct interactions with the

surface.

5.7 Summary and Outlook

MD simulations to investigate the interactions of water with graphitic surfaces — car-

bon nanotubes, fullerenes and graphite have been carried out. The existing polarisable

AMOEBAPRO force-field [142; 143; 144] which includes distributed multipoles up to

and including quadrupoles for the electrostatics was extended to include a description of

the non-bonded interactions between water and the graphic surfaces at the same level of

theory. Water density profiles, water orientational structure, average number of hydro-

gen bonds and water residence times have been calculated. These simulations suggest

that the water ordering is fairly weak and that there are no more than three layers of

structured water on the graphitic surfaces. The spatial and orientational distributions

of water around the graphitic surfaces are shown to reproduce the hydration behaviour

very well, when compared with previous work. Furthermore, these results show that this

extended force-field can be used to model aqueous graphitic surfaces interfaces and it

is therefore viable for use in future studies of biomolecules with graphitic surfaces in

water. In addition, MD simulations of a CNT with one OH defect in water have been

performed. Water density profiles show that water structuring at the CNT+OH inter-

face is very weak, indicating that the OH defect has a disruptive effect on the structured

interfacial water.
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Chapter 6

Modelling the effect of surface

defects on the binding affinity

between peptides and carbon

nanotubes

6.1 Abstract

In this Chapterthe interactions of peptides with a carbon-nanotube (CNT) that has de-

fects are investigated by molecular dynamics (MD) simulations. The presence of defects

on CNTs is thought to be very common and arises from the synthesis and purification

process; it is thought that the presence of defects affects some of the properties of

CNTs. The aim of this study is to investigate if the presence of defects affects the

binding affinity between peptides and CNTs. In line with the concentration and type of

defects used, the findings described herein demonstrate that the presence of OH defects
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attached to the outside walls of CNTs only affects the peptide locally and the binding

affinity is not significantly affected by the presence of defects on the nanotube exterior.

6.2 Introduction

Most of the modelling studies related to molecular adsorption on CNTs treat them as

“ideal”, i.e., perfect crystalline structures without defects. However, experiments have

shown that even high-quality CNTs may contain at least one defect per each 4 µm

[237]. Defects on CNTs can be introduced during either the synthesis or purification

processes and can be of several types: topological defects, which correspond to the

presence of rings in the network other than hexagons (e.g. the Stone-Wales defect);

structural defects such as the absence of a carbon atom (vacancy); and functionalisation

or chemical defects, such as the covalent attachment of atoms or groups to the carbon

lattice of the nanotube [238]. These types of defects are illustrated in Figure 6.2.

While several works are dedicated to the development of techniques that can

identify and count point defects in CNTs [239; 237], others are focused on the effects

of the presence of defects on carbon surfaces (e.g. [212; 213; 216; 215; 240; 241]).

The presence of defects can substantially alter the properties of CNTs, especially the

mechanical [242; 243; 244; 240] and electronic properties [238; 245; 241] and may

switch on or off certain desirable properties. For instance, the conductance of CNTs

can be tuned by controlling the density of defects, and induced defects may be used to

modify the CNT properties [246]. Several studies focused on the effect of the Stone-

Wales defects in the mechanical properties [242; 243; 244; 240], such as the fracture

strength [244], indicate that even a few number of defects in the carbon lattice can give

rise to a degradation of the CNT mechanical properties [242]. A number of studies have

also investigated the effect of vacancy defects on CNTs on its mechanical [244; 247] and
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(a) (b) (c)

Figure 6.1: (a) Schematic of a CNT with random vacancies (From [248]), (b) CNT with
a covalent functionalisation and (c) schematic of the formation of a Stone-Wales defect
on a CNT. (From [252]).

electrical properties [245; 248]. In addition, a wide number of studies also investigated

the effects of covalent functionalisation of CNTs and multi-walled carbon nanotubes

(MWCNTs) with polymers [64] and biomolecules [66; 59; 67]. This procedure has

been used not only as an effective way of solubilising and dispersing CNTs in water

but also as a tool for the fabrication of nanocomposite materials [249; 250]. A review

of covalent functionalisation with organic moieties, along with the different techniques

used to characterise the functionalised materials can be found in Reference [251].

As mentioned in Chapter 5, the interaction of water with pure, ideal graphitic

surfaces has been object of extensive experimental [253; 254] and theoretical studies, not

only by modelling bulk water adsorbed on the graphitic surface ([173; 192; 199; 202;

255], for example) but also by modelling the interaction of water clusters with these

surfaces [209]. From both types of studies it has been demonstrated that the adsorption

interaction of water at these bare carbon surfaces is rather weak [192; 255; 202; 199].

Ulberg and Gubbins [209] demonstrated the importance of hydrogen bonding on the

mechanism of adsorption of water onto carbon slit pores, by calculating adsorption

isotherms. Following this work, Maddox et al. [256] included a description of carboxyl

groups on the surface of the pore, in which they concluded that the presence of such

hydrophilic sites significantly increased the adsorption of water although it was depen-

dent on the arrangement of the active groups on the surface, and whether or not they
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were isolated. Subsequent studies by Gubbins et al. [210; 211; 212] presented a simple

model for the adsorption of water in activated carbons, based on a square-well poten-

tial to describe surface sites. Grand canonical Monte Carlo (GCMC) simulations were

performed on pure water [210] and methane/water [211] vapour mixtures [210; 211] ad-

sorbed onto porous activated carbons. In agreement with the early experimental study

of Dubinin [257], Gubbins et al. [211] concluded that the mechanism of water adsorp-

tion in activated carbons is based on the initial adsorption of water molecules at the

activated carbon followed by the clustering of water molecules and pore filling at higher

pressures, with the formation of hydrogen bonds being the driving force for water ad-

sorption. Furthermore, Gubbins et al. demonstrated the importance of the site density

and site distribution of defects in the water adsorption by varying the configuration of

sites (for a fixed concentration) [210].

In addition, there are many experimental [257] and theoretical [213; 258; 212]

studies on adsorbed small molecules (including water) on activated carbon surfaces

such as carbon black [216; 259], soot particles [214; 260; 261; 262; 263] and graphite

[264; 265; 215]. These studies have been undertaken for a wide variety of reasons. For

instance, the adsorption properties of soot particles have been considered since these

particles are emitted into the troposphere by aircraft and are thought to be responsible

for the nucleation of cloud ice particles [266]. Soot is typically modelled as graphitic

surfaces with several functional groups attached to it, such as hydroxyls, carbonyl and

carboxyl groups. The presence of such groups increases the adsorption of large quantities

of water, unlike pure graphite. A series of papers reported by Picaud et al. have

reported the adsorption of water on partially oxidised soot surfaces using both quantum

mechanical (QM) calculations [214; 264] and MD simulations [260; 265; 215]. The

QM calculations aimed to investigate the local structure of the activated sites as well
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as the optimal arrangement of the water molecules (adsorbed as water clusters) around

it. In addition, the calculations also supplied values of partial point charges for the

functional groups of hydroxyl [264] and carboxyl [214] defective sites. The obtained

geometries were used to perform MD simulations to characterise the adsorption of water

molecules (not liquid water) on activated graphite surfaces [260; 265; 215]. These

authors were the first to carry out MD simulations of water clusters adsorbed on defective

graphitic surfaces, and were also the first to perform MD simulations to characterise

the competition between the affinity of water—OH and water—COOH by simulating

both types of sites simultaneously on the surface [215]. These studies suggest that

the presence of chemical defects such as COOH groups act as a trapping site for the

water molecules, which then attract other water molecules leading to the formation of

large aggregates [214; 260]. However, in the case of hydroxyl groups, the OH—water

interaction is weaker than the water—water interaction which leads to the clustering

of water molecules at the site. GCMC simulations were also performed by Picaud et

al. to study the adsorption isotherms of water on soot particles modelled by concentric

graphite layers with randomly distributed OH and COOH groups [262]. In agreement

with their previous MD simulations [260; 265] these studies highlighted that the OH

sites have a weaker effect on the adsorption of water molecules compared to the COOH

sites.

The adsorption of other solvents such as methanol and ethanol, on graphitised

carbon black has also been considered [259]. It was found that both the presence and

the configuration of the carbonyl groups attached to the surface made the surface more

attractive with respect to adsorption. However, once a water monolayer was formed,

the adsorption behaviour between both surfaces (with and without carbonyl groups) was

found to be similar. More recently, Birkett et al. [216] used an idealised method to
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introduce heterogeneity on a carbon surface by considering several functional groups as

active sites on the surface. Functional groups were primarily modelled as fixed water

molecules parallel to the carbon surface, within this model, these authors considered

the three functional groups that are usually found in carbon blacks; carbonyl, hydroxyl

and carboxyl groups [267]. The authors justified the use of fixed water molecules as a

model to represent heterogeneity at the surface, taking into account that if these fixed

water molecules could not promote water adsorption, it would be unlikely that any other

functional group would promote adsorption of water molecules on the surface. Birkett

et al. [216] concluded from these studies that the fixed water molecules functioned as

clustering sites and therefore increased the adsorption of water molecules compared to

the bare surface. While the adsorption of water molecules due to both carbonyl and

hydroxyl goups was very weak, the adsorption of water molecules due to two carboxyl

groups was found to be comparable to that of two fixed water molecules (set at a

distance from the surface comparable to a carboxyl site). The higher affinity for water

molecules of the carboxyl groups (compared with carbonyl and hydroxyl) was found to

be related to the distance the group extends from the surface (which is similar to the

distance of the fixed water molecules).

Common to all these studies is the modelling of the carbon surfaces as graphite,

the inclusion of functional groups (such as hydroxyl, carbonyl and carboxyl groups), and,

the modelling of water as clusters not as liquid water. Furthermore, despite the consider-

able number of studies addressing the influence of defects on the properties of CNTs, no

one yet has reported how the presence of defects on CNTs might affect the interaction

of peptides at such interfaces. Therefore binding affinity changes associated with the

presence of defects has not been reported until the present study. An understanding of

the effects of the presence of defects in CNTs on the binding affinity is crucial, in the
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development of new materials as well as for biomedical applications. There is a wide

range of new proposed therapies and applications based on CNTs, including cell destruc-

tion [268; 78], antibacterial activity [80], sensitive biosensors [59; 60], drug delivery [72],

electroanalytical devices [269], artificial muscles [270] and laser heating cancer therapy

[268; 271]. Despite these potential therapeutical applications, there is the concern that

exposing humans to CNTs may cause significant health problems. In addition, issues re-

lated with environmental impact must also be addressed [59]. However, studies suggest

that if CNTs below a given length (1 to 5 µm) are wrapped with biomolecules [71] they

have limited toxicity [70], while CNTs greater than a given treshold cannot be excreted

and may build up in the kidneys. Since defects are almost certainly going to be present

on the CNTs, it is important to understand its effects on the interaction with peptides

in order to be able to control binding affinity.

6.3 Methods

As mentioned before, the aim of this study is to examine if the presence of defects and

therefore the departure from the CNT ideality affects the binding affinity between CNTs

and peptides. To achieve this, several OH groups were attached to the surface of the

CNT. The inclusion of the parameters for the OH defect was based on the assumption

that the OH group and the carbon attached to the OH group are similar to the tyrosine

residue in AMOEBAPRO. The carbon atom at which the defect is attached was also

treated as similar to tyrosine. This enabled the use of the tyrosine parameters in the

description of the OH defect attached to the CNT. In contrast to the carbon atom

attached to the OH group in tyrosine, the carbon atom attached to the OH group in the

CNT has valence 4 instead of 3. For this reason a new atom type and atom class was

created in which the same bonded and VDW parameters as tyrosine were used but the
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valence was 4. The dipoles and quadrupoles for the carbon attached to the OH group

and for the OH group were set to zero and the carbon atom charge was adjusted in order

to obtain a neutral charge overall for the COH group. No polarisation was included in

the COH group. Similarly, the parameters for the bonded terms were the same as the

parameters for tyrosine. For instance the C—O, the O—H stretch and the C—O—H

angle were the same as for tyrosine and are summarised in Table 6.1.

Table 6.1: Potential parameters for the COH defect used in the present MD simulations.
These parameters were taken from the tyrosine residue in the AMOEBAPRO force-field.

VDW parameters
Atom σ /Å ε /kcal mol−1 q/e

C 3.800 0.0890 +0.22900
O 3.405 0.1100 -0.56325
H 2.655 0.0135 +0.33425

Interacting pair distance (Å)

C—C 1.4214
C—O 1.3550
O—H 0.9470

C—O—H angle 109.00◦

As previously mentioned, it is known from experiments that high-quality SWC-

NTs can contain, on average, about one defect per 4 µm. This is equivalent of one

defect per 1012 atoms [237]. In addition, defects can be bunched together or spread

over the tube, or more likely a combination of both. Because of this, we ran simulations

of the peptide sequences with the CNT with OH defects arranged in two different distri-

butions (one with the defects bunched in one site, and another with the defects spread

over the CNT). Herein, I will use spread defects to refer to the four OH defects spread

over the CNT and bunched defects for the 4 OH defects bunched together in one site.

The spread defects were all selected from a region of width 60 Å in the centre of the
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Figure 6.2: CNT with 4 OH bunched defects.

nanotube, in order to avoid having defects near the CNT ends and therefore avoiding

the edge effects arising from the presence of the terminal hydrogen atoms. The first

defect was randomly selected from that region and the second defect was randomly

selected under the condition of it being at a distance greater than 20 Å from the first

OH defect. The third OH defect was randomly selected under the condition of being

at a distance greater than 15 Å from the first and second OH defects, while the fourth

defect was randomly selected to be at a distance greater than 10 Å from the previous

three defects. The bunched defects were chosen from two pairs of carbon atoms from

two adjacent hexagons at the centre of the CNT, where each pair is intercalated by an

sp2 carbon. This is because we do not have the torsional parameters for two defective

sites together. Figures 6.2 and 6.3 show an illustrative example of the bunched and

spread defects, respectively.

MD simulations of systems comprised of a defective CNT and one each of the

peptide sequences B1 (HWKHPWGAWDTL), B3 (HWSAWWIRWNQS), B1Y (HYKH-

PYGAYDTL) and B3Y (HYSAYYIRSNQS) were performed with our extended AMOE-

BAPRO force-field which was modified to treat the interactions between peptides and

the OH defect. A hydrogen-terminated zigzag (8,0) CNT with 976 atoms was used.

All simulations were performed with the TINKER [171] package. Since the inclusion
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Figure 6.3: CNT with 4 OH defects spread over the tube.

of atomistic water would increase the simulation time, a continuum effective solvent

model (ASP [172; 146]) was used to describe the water. As previously mentioned, this

model has previously [118; 120] been shown to give good results. All simulations were

carried out in the canonical ensemble at room temperature. The Verlet [129] algorithm

was used to solve the equations of motion with an integration timestep of 1.0 fs and

a cutoff of 8 Å was applied to all non-bonded interactions. The systems were equili-

brated for 1 ns, and an additional 1 ns of production run was performed. To attempt to

identify many different binding configurations, several different geometries were used for

each peptide sequence. The best geometries obtained from the simulations described in

Chapter 3 were used as initial configurations for these simulations.

Once again, to analyse the results both structural and energetic metrics were

used. Binding affinity was quantified in terms of normalised interaction energy EN ,

where the interaction energy between the peptide and the CNT was divided by the

number of atoms in the peptide. Structural metrics include the average ring-CNT dis-

tance (calculated as the distance between the ring centre-of-mass and the CNT surface),

ring-tilt relative to the surface normal (calculated as described in Chapter 3, Section 3.3),

average end-to-end peptide distance, and peptide y-shift. Again, the average end-to-end

peptide distance was calculated by determining the distance between each carbon of each
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Figure 6.4: Schematic of a CNT slice.

of the two terminal methyl groups (blocking groups) and averaging this distance over

the production run. The peptide y-shift was calculated by determining the y-component

of the peptide centre-of-mass for each frame and calculating the distance between this

y-component for the first frame of the production run, and each subsequent frame of

the production run. The y-shift was then averaged over the production run. Since the

distance was calculated by taking the square root of a squared distance, the y-shift is

always a positive value. Large y-shifts indicate that the peptide is far from its initial

position, while a y-shift close to zero indicates that the peptide spent the trajectory close

to its initial position. These data do not give any information about the direction in

which the peptide is moving. In addition, the maximum displacement is defined as the

maximum distance travelled by the peptide along the y-axis (the maximum distance in

the y-shift profile). In order to estimate the peptide mobility on both the ideal and the

defective CNTs, the peptide residence time was calculated by choosing the α-carbon of

the residue 6 in each peptide sequence and calculating the time it spent, on average, in

a 2 Å slice, which was defined by incrementing +2.0 Å from the origin along the y-axis.

This was done by arbitrarily picking 10 time origins and calculating the time it took to

move 2 Å away from that origin. In Figure 6.4 is a schematic of a CNT slice. In addition,

183



Chapter 6. Modelling the effect of surface defects on the binding affinity
between peptides and carbon nanotubes

Figure 6.5: Schematic of the water-dimer geometry used in the force-field validation.

the three closest peptide atoms to each of the 4 OH-defects was identified as a function

of time. This was done by calculating the distance between all the peptide heavy atoms

(C, N, O) and each of the four OH defects. Only the distances less than 8 Å were

considered, since this is the value of the non-bonded cutoff used in these simulations. In

order to look for the first, second and third atoms that spent more time close to each of

the defects, the frequency at which each peptide atom was the closest to the defect was

then determined. This frequency was calculated by counting the number of times each

heavy atom was the closest and dividing by the number of frames of the production run.

6.4 Results

6.4.1 OH defect validation

In order to validate the extension of the force-field to describe OH defects, the abso-

lute pair VDW and electrostatic energies between H and O were compared for several

configurations of a water–dimer and a CNT with one OH defect and a water molecule

(water–CNT+OH) in exactly the same configuration. In Figures 6.5 and 6.6 are shown

one of the geometries of the water-dimer studied and the correspondent geometry of
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a water-CNT+OH, respectively. The water–CNT+OH configuration was obtained by

optimising the water–dimer and then replacing one of waters with the CNT+OH defect.

The same was done for a benzene–water complex and a benzene–CNT+OH system.

In this case, the benzene–water complex was optimised and then the water molecule

was replaced with the defect. In Figures 6.7 and 6.8 are shown the geometries for the

water–benzene and benzene–CNT+OH systems, respectively. The absolute pair VDW

and electrostatic energies along with the distance between the atom pair for both the

water–dimer/water–CNT+OH and water–benzene/benzene–CNT+OH are given in Ta-

bles 6.2 and 6.3. Comparison of the absolute pair energies and pair distances for the

water–dimer and the water–CNT+OH (Table 6.2), show that the trends in the distance

and energy of each atom pair are favourable overall, despite the fact that the absolute

pair energies and distances do not exactly agree. However, it was not expected for them

to necessarily agree; for example, these data show that the water binds less strongly to

the defect than to another water, which is in agreement with what was expected since

in the case of the defect the oxygen is attached to a carbon atom instead of another

hydrogen atom such as in the case of water. In addition, the defect does not include

a dipole, quadrupole or polarisation. In the case of the water–benzene and benzene–

CNT+OH (Table 6.3), comparison of the absolute pair energies and pair distances show

that there is reasonable qualitative agreement, despite the fact that some of the dis-

tances and energies being considerably different, e.g. the pairs H14—C6 and H14—C2

for the VDW energies and H14—C2 and O13—C5 for the electrostatic energies. These

data suggest that benzene binds more strongly to the defect (in isolation) than to a

water molecule. Furthermore, the total interaction VDW and electrostatic energies in

the case of the water–dimer/water–CNT+OH and water–benzene/benzene–CNT+OH

are also in good agreement, giving us confidence to use this force-field in the simulation

185



Chapter 6. Modelling the effect of surface defects on the binding affinity
between peptides and carbon nanotubes

of OH defective CNTs and peptides. In addition, the interaction energy of both a water

molecule and a benzene molecule at an ideal CNT and at a CNT with one OH defect

was calculated. These data is shown in Table 6.4. Again, this was done for the water

and benzene in exactly the same geometry both at the defective and ideal CNT. To

accomplish this, first the water/benzene at the defective CNT was optimised and the

interaction energy was calculated by running a single point energy calculation on the

resulting geometry. Then, the defect was removed and the “ideal” interaction energy

was calculated again by running a single point energy calculation of that geometry. As

expected, the interaction in the case of the water–CNT+OH is stronger than in the ideal

CNT, since the OH group attracts the water molecule more then the ideal CNT. In the

case of the benzene–CNT+OH the interaction is slightly stronger then in the ideal case.

These data suggest that the OH defect model is suitable to be used in the simulations

of peptides and defective CNTs, since it is qualitatively in good agreement with the

atom pair distances and energies of a water–dimer and a water–benzene complex and

the interaction of water/benzene molecule at the defective CNT is stronger than at the

ideal CNT.

6.4.2 Petide–defective CNT simulations

In Figure 6.9 is a snapshot of the best trajectory of B3Y interacting with one of the OH

defects in the spread CNT. The normalised interaction energies, EN averaged over the

two distinct lowest binding trajectories for the peptide sequence B1, B3, B1Y and B3Y

are presented in Table 6.5 for the ideal CNT, the bunched defects CNT and the spread

defects CNT, along with the standard error of the mean (SEM), being defined by the

standard deviation of the sample means. These results suggest that the inclusion of OH

defects on the CNT exterior does not cause any major difference in the binding affinity
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Table 6.2: Absolute pair VDW and electrostatic energies (kcal/mol) and pair distances
(Å) for the H and O in the water–dimer and in the water–CNT+OH system.

VDW
water–dimer water–CNT+OH

Atom pair Actual distance Energy Atom pair Actual distance Energy
O1—O2 2.8920 0.1757 O1—O2 2.8683 0.2216
O1—H5 2.0213 2.2705 O1—H5 2.0113 2.3762
O1—H6 3.3277 −0.0260 O1—C5 3.8163 −0.0900
O2—H3 3.2770 −0.0273 O2—H3 3.2596 −0.00277
O2—H4 3.2771 −0.0273 O2—H4 3.2492 −0.0279
H3—H5 3.7857 −0.0025 H3—C5 4.2592 −0.0117
H3—H6 2.4584 −0.0091 H3—H6 2.4686 −0.0097
H4—H5 3.7858 −0.0025 H4—C5 4.3047 −0.0110
H4—H6 2.4585 −0.009 H4—H6 2.4298 −0.0071
Total: 2.3425 kcal/mol 2.4369 kcal/mol

Multipoles
O1—O2 2.890 30.8120 O1—O2 2.8683 35.4456
O1—H5 3.3800 −13.2630 O1—C5 3.8163 −10.7135
O1—H6 1.9355 −28.1722 O1—H6 1.9269 −32.3869
O2—H3 3.3251 −12.9191 O2—H3 3.3083 −14.4984
O2—H4 3.3253 −12.9187 O2—H4 3.2970 −14.5527
H3—H5 3.8965 5.5275 H3—C5 4.3102 4.5578
H3—H6 2.4363 9.6714 H3—H6 2.4514 11.5496
H4—H5 3.8966 5.5273 H4—C5 4.3595 4.5001
H4—H6 2.4364 9.6708 H4—H6 2.4056 11.7822
Total: −6.064 kcal/mol −4.3162 kcal/mol

− 3.7215 kcal/mol −1.8793 kcal/mol
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Table 6.3: Absolute pair VDW and electrostatic energies (kcal/mol) and pair distances
(Å) for the H and O in the water–benzene and in the benzene–CNT+OH system.

benzene–water benzene–CNT+OH
VDW

Atom pair Actual distance Energy Atom pair Actual distance Energy
H7—H14 3.7138 −0.0057 H7—H14 3.8368 −0.0046
O13—H14 4.1608 −0.0158 O13—H14 4.2353 −0.0142
H14—C1 3.0867 −0.0079 H14—C1 3.2146 −0.0224
H14—H12 3.4931 −0.0081 H14—H12 3.7593 −0.0052
O13—H12 4.0444 −0.0187 O13—H12 4.1167 −0.0168
H14—C6 3.0408 0.0010 H14—C6 3.1589 −0.0177
O13—C6 3.5954 −0.0987 O13—C6 3.6839 −0.0973
O13—C1 3.6813 −0.0974 O13—C1 3.7635 −0.0934
H14—H8 3.6247 −0.0065 H14—H8 3.7279 −0.0055
O13—H8 4.2966 −0.0130 O13—H8 4.3588 −0.0119
H14—C2 3.0264 0.0044 H14—C2 3.0255 −0.0046
H14—H11 3.6508 −0.0063 H14—H11 3.5653 −0.0072
O13—H11 4.0330 −0.0190 O13—H11 4.1240 −0.0167
H14—C5 2.9314 0.0347 H14—C5 3.0255 0.0046
O13—C5 3.6037 −0.0987 O13—C5 3.6895 −0.0971
H14—H9 3.4692 −0.0084 H14—H9 3.5357 −0.0075
O13—H9 4.3109 −0.0128 O13—H9 4.3693 −0.0118
H14—C3 2.9157 0.0414 H14—C3 2.9459 0.0290
H14—H10 3.4011 −0.0094 H14—H10 3.7593 −0.0052
O13—H10 4.1870 −0.0152 O13—H10 4.1167 −0.0168
H14—C4 2.8665 0.0663 H14—C4 2.9459 0.0290
Total: −0.2938 kcal/mol −0.3933 kcal/mol

Multipoles
H7—H14 3.7412 2.4852 H7—H14 3.8685 3.1385
O13—H7 4.2110 −4.4527 O13—H7 4.2849 −4.9095
H14—C1 3.0352 −3.0202 H14—C1 3.1679 −3.7808
H14—H12 3.5048 2.6944 H14—H12 3.7943 3.2001
O13—H12 4.0920 −4.6827 O13—H12 4.1635 −5.0617
H14—C6 2.9942 −3.0632 H14—C6 3.1152 −3.8700
O13—C6 3.5954 5.3295 O13—C6 3.6839 5.8504
O13—C1 3.6813 5.1238 O13—C1 3.7635 5.6667
H14—H8 3.6239 2.6234 H14—H8 3.7306 3.2569
H14—C2 2.9563 3.2244 H14—C2 3.0756 −3.9393
H14—H11 3.6846 2.5153 H14—H11 3.5768 3.4007
O13—H11 4.0804 −4.6228 O13—H11 4.1709 −5.0526
H14—C5 2.8708 −3.3302 H14—C5 2.9654 −4.1517
O13—C5 3.6037 5.3894 O13—C5 3.6895 −5.8358
H14—H9 3.4447 2.8403 H14—H9 3.5099 3.4639
O13—H9 4.3647 −4.3442 O13—H9 4.4221 −4.7474
H14—C3 2.9563 −3.2244 H14—C3 2.8652 −4.3712
H14—H10 3.3825 2.8839 H14—H10 3.7943 3.2001
O13—H10 4.2381 −4.4972 O13—H10 4.1635 −5.0617
H14—C4 2.7858 −3.6480 H14—C4 2.8652 −4.3712
Total: −10.2248kcal/mol −12.304 kcal/mol

−10.52 −12.70188
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Table 6.4: Interaction energy (kcal/mol) for a water–CNT+OH, water–ideal CNT,
benzene–CNT+OH and benzene–ideal CNT systems.

System Interaction Energy (kcal/mol)

water-ideal CNT −1.95
water-CNT+OH −4.57

benzene-ideal CNT −1.79
benzene-CNT+OH −2.97

Table 6.5: Normalised interaction energies, EN (kJ mol−1atom−1), and the standard
error of the mean (SEM) of EN , averaged over the two distinct trajectories of lowest
energy for each aptamer, for the peptide—CNT interface for the ideal CNT, the 4 OH
bunched defects and the 4 OH spread defects.

Ideal CNT Bunched defects Spread defects
Aptamer EN SEM EN SEM EN SEM

B1 −1.35 0.01 −1.29 0.07 −1.36 0.01
B3 −1.32 0.02 −1.35 0.02 −1.35 0.02
B3Y −1.17 0.05 −1.18 0.04 −1.12 0.06
B1Y −1.19 0.01 −1.15 0.07 −1.21 0.01
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Figure 6.6: Schematic of the water–CNT+OH geometry used in the force-field valida-
tion.

between the ideal and defective CNTs. As found for the ideal CNT, in the case of the

bunched defects and spread defects CNTs, the original sequences B1 and B3 show the

greatest affinity to the CNT compared to the mutant sequences. However, there is no

significant difference between the normalised interaction energies of the same peptide

sequence in each of the cases (ideal CNT, bunched and spread defect CNTs).

In order to investigate if the binding geometry of the peptide sequences was

affected by the inclusion of defects on the CNT, the ring-to-surface distances and the

ring-tilt angles were calculated. Figures 6.10 and 6.11 show the distribution profile of

the centre-of-mass to CNT surface distances for H, W and Y for the best trajectories

of B1, B3, B1Y and B3Y for the bunched defect and spread defect cases, respectively.

Profiles for the same peptide sequences adsorbed at an ideal CNT can be found in

Chapter 3 in Figures 3.4 and 3.5. The differences in the binding geometry between

the original and the mutant sequences at both the ideal and the defective CNT (both

bunched and spread) are similar. In the case of the original sequences, B1 and B3, all

tryptophans and one histidine mantain relatively close contact to the CNT surface, while
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Figure 6.7: Schematic of the benzene–water geometry used in the force-field validation.

for the peptide mutants, B1Y and B3Y, configurations were adopted where only one

or two rings were relatively close to the CNT surface. Figures 6.12 and 6.13 show the

average ring-tilt angle and fluctuation in this angle (calculated as the root-mean-square

deviation of the tilt angle) presented as a bar chart for the original sequences B1 and B3

and the mutated sequences B1Y and B3Y for the bunched and spread defects CNTs,

respectively. The same bar charts for the ideal CNT can be found in Chapter 3 in Figures

3.7 and 3.8. These ring-tilts reinforce the information from the ring-to-surface distance

profiles, emphasising that tryptophan residues always adopt a flat orientation in the CNT

surface while tyrosine can also adopt configurations where the ring is perpendicular to

the CNT surface, as for instance, in the case of Y6 in B3Y for both bunched and spread

defects (Figures 6.12 and 6.13, respectively). Because the indole ring in the tryptophan

residues maintain a flat orientation, they are able to get closer to the CNT surface. On

the other hand, it was concluded in Chapter 3 that tyrosine is more flexible (since it only

has one 6-membered aromatic ring) and adopts several configurations relative to the

surface; therefore it does not get as close to the CNT surface as tryptophan. With the

exception of ring-tilts of B3Y in the spread case, the presence of OH defects on the CNT
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Figure 6.8: Schematic of the benzene–CNT+OH geometry used in the force-field vali-
dation.

exterior does not seem to affect either the ring-to-surface profiles or the ring-tilt-angles,

as evidenced by the similar profiles to the case of the ideal CNT. However, for B3Y in

the spread CNT, there is an increased number of rings with an orientation around 90◦

(3 rings against 2 in the case of the ideal CNT). Later in this Section an attempt to

correlate this result with other data will be presented.

To better understand if the OH defects have any effect on the geometry and

mobility of the peptide sequences when adsorbed on the CNT, the peptide end-to-end

distance, the y-shift along with the maximum peptide displacement and the peptide

residence time were calculated. In Table 6.6 is the average end-to-end peptide distance

and respective fluctuation, the average y-shift and fluctuation, the maximum peptide

displacement and the average residence time (τ) for the ideal CNT, the bunched case

and the spread case. With the exception of B3Y in the bunched defects, the peptide end-

to-end distance is greater for the original sequences, B1 and B3, then for the mutated

sequences, B1Y and B3Y, for all cases (ideal and defective CNTs). However, with

the exception of B3 and B3Y in the bunched case, there is no significant difference
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Table 6.6: Peptide end-to-end distance (Å) and respective root-mean-square-deviation
(rmsd), y-shift (Å) and rmsd, peptide maximum displacement (Å) and peptide residence
time (τ/ps) on the ideal, bunched and spread defect CNTs.

Aptamer Ideal CNT
End-end rmsd y-shift rmsd Maximum displacement τ

B1 27.32 1.39 26.30 8.92 55.90 7.45
B3 27.04 2.85 23.40 5.38 48.07 6.30
B1Y 13.34 3.46 9.34 6.71 29.23 4.80
B3Y 16.69 2.26 3.84 2.52 11.20 4.70
Aptamer Bunched defects

End-end rmsd y-shift rmsd Maximum displacement τ
B1 27.38 1.73 12.14 9.05 31.10 2.30
B3 20.80 3.89 8.53 6.49 28.58 2.70
B1Y 16.75 3.20 6.76 3.01 13.33 4.65
B3Y 36.74 2.61 7.52 5.45 20.87 2.55
Aptamer Spread defects

End-end rmsd y-shift rmsd Maximum displacement τ
B1 27.12 1.34 8.91 6.74 23.24 2.05
B3 21.21 5.54 5.37 4.65 18.04 2.85
B1Y 13.87 2.16 5.64 3.86 14.68 2.90
B3Y 12.79 2.24 6.20 4.01 17.89 2.40
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Figure 6.9: Snapshot taken from the trajectory of the B3Y peptide interacting with the
CNT with 4 OH spread defects. The peptide backbone is highlighted.

in the peptide end-to-end distance between the ideal and the defective CNTs. In the

case of the y-shift and maximum displacement (which give the maximum distance the

peptide moved along the y-axis), it is clear from Table 6.6, that B1 and B3 on the

ideal CNT have a large y-shift and a large maximum displacement, indicating that

these peptides travelled a further distance compared to the peptides with the defective

CNTs. However, the y-shift of the mutated sequences, B1Y and B3Y, do not show such

distinction between the ideal and defective CNTs. But in the case of the maximum

displacement of the mutated sequences, there are differences between the ideal and the

defective CNTs. In the case of B1Y at both bunched and spread defect CNTs, the

maximum displacement is smaller than in the case of the ideal CNT. On the contrary,

the maximum displacement of B3Y at the defective CNTs is greater than in the case of

the ideal CNT. The average peptide residence times (τ) help to understand the effect of
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a) b)

c) d)

Figure 6.10: Distribution profile of the distance from the nanotube surface to the ring
centre-of-mass for all the aromatic residues H, W, Y and F for the peptide sequences (a)
B1, (b) B3, (c) B1Y and (d) B3Y interacting with a CNT with 4 OH defects bunched
together.
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a) b)

c) d)

Figure 6.11: Distribution profile of the distance from the nanotube surface to the ring
centre-of-mass for all the aromatic residues H, W, Y and F for the peptide sequences
(a) B1, (b) B3, (c) B1Y and (d) B3Y interacting with a CNT with 4 OH defects spread
over the tube.

the OH defects on the mobility of the peptide adsorbed onto the CNT. First these data

show that for the ideal CNT, the peptide residence times of the original sequences, B1

and B3, is greater than in the case of the mutated sequences. Second, these data show

that the peptide residence times are slightly larger in the case of the ideal CNT than

in the cases of the defective CNTs. In some cases, the residence time is approximately

half (or more) the value in the ideal CNT. The relatively small residence time of B3Y in

the spread CNT (2.40 ps) might be correlated to the fact that there is a larger number

of aromatic rings in a perpendicular orientation to the CNT surface (the ring-tilt angles

in Figure 6.13). However in the case of B1 at both bunched and spread CNTs the
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residence time is also small even though the ring-tilts do not seem to be affected. These

data suggest that the presence of OH defects on the CNT exterior increases the mobility

of the peptides. However, it seems that there is no correlation between the maximum

displacement and the residence time. Yet, it is rather surprising that the maximum

displacement as well the peptide residence time for B1, B3 and B1Y at the ideal CNT

is large, indicating that the greater the residence time the further the peptide travels.

However, inspection of the y-shift as a function of the trajectory, reveals the reason for

this apparent inconsistency. As an example, in Figure 6.14 the y-shift as a function of the

trajectory for B1 and B3 at the ideal CNT is shown. When the y-shift is 0 Å, it means

that the peptide is at its initial position. Thus, these plots show that in the case of the

ideal CNT, the peptide travelled a further distance because it moved without returning

to its initial position for a longer period than in the case of the spread defects CNT.

On the other hand, in the case of B1 and B3 in the spread defects CNT, the peptide is

more unstable, and thus it travels backwards and forwards due to its greater mobility,

explaining the smaller maximum displacement in the case of the defective CNTs.

In order to further characterise these systems, the identities of the peptide heavy

atoms that interacted with the OH defects (the three closest peptide atoms within the

8.0 Å cutoff to each of the OH defects) during the production run were determined. In

Table 6.7 the three closest peptide atoms to each of the OH defects for each peptide,

the residue to which that atom belongs and whether or not it is a side chain atom

(S) or a backbone atom (B) is summarised. The OH defects are distinguished by OH-

1, OH-2, · · · and the closest atom is presented first, then the second and third closest,

respectively. In addition, the frequency (expressed as a percentage of how often a certain

atom was within the cutoff) is also given. The B1Y peptide at the bunched defects CNT

do not have any atoms interacting with the OH defects during the whole production
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a) b)

c) d)

Figure 6.12: Average and fluctuation of the ring-tilt angle (relative to surface normal)
at the peptide-nanotube interface for all aromatic residues in the original sequences (a)
B1 and (b) B3 and the mutated sequences (c) B1Y and (d) B3Y for the case of the OH
defects bunched together. A value of approximately 0◦ indicates an orientation parallel
with the surface.

run. This is because the OH defects were located at one site and the peptide was

interacting with the CNT in a different part of the nanotube. Interestingly, this peptide

has an average residence time of 4.65 ps, comparable to the residence time of B1Y at

an ideal CNT, giving further evidence that the mobility of the peptide is affected by the

presence of the OH defects. Overall, the main residues involved in the interaction with

the OH defects are histidine, tryptophan, lysine and serine. Alanine and arginine are also

involved in the interaction in the case of B3Y on the spread defects CNT. In the case of

the bunched defects, it seems that the peptides that have more atoms interacting with
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a) b)

c)

d)

Figure 6.13: Average and fluctuation of the ring-tilt angle (relative to the surface normal)
at the peptide-nanotube interface for all aromatic residues in the original sequences (a)
B1 and (b) B3 and the mutated sequences (c) B1Y and (d) B3Y for the case of the
spread OH defects. A value of approximately 0◦ indicates an orientation parallel with
the surface.

the OH defects have the smaller residence times. In addition, B3Y, which has slightly

fewer atoms interacting with the OH groups than B1, has a slightly larger residence

time. Again, these data provide evidence that the presence of OH defects interacting

with the peptide atoms can affect the mobility of the peptide. At first sight, it may

seem that in the case of the spread defects, there is no clear reason for the differences

in the residence times. However, a closer inspection of the data in Table 6.7 helps us

to understand the origin of such smaller residence times. Despite these peptides (in

the spread defects) having fewer atoms in total interacting with the OH defects, the
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a) b)

c) d)

Figure 6.14: y-shift distance as a function of time for (a) B1 and (b) B3 at the ideal
CNT and (c) B1 and (d) B3 at the spread defects CNT.

frequency at which it occurs was higher, meaning that these atoms spent more time

interacting with the OH defects. For instance, B3Y in the case of the spread defects

has one peptide oxygen atom that interacted 12% of the time with OH-1. On the other

hand, the highest frequency in the case of B3Y in the bunched defects is 3.0% (carbon

interacting with OH-2). So, even though B3Y in the spread defects has fewer atoms

interacting with the OH defects, the residence time is comparable to that of B3Y in the

bunched defects case (2.40 vs 2.55 ps , respectively), due to the fact they interact with

the defects for a longer time. Similarly, despite B1 in the bunched case having more

peptide atoms interacting with the OH defects, the frequency is much lower than in the

case of B1 in the spread defects (4% vs 11.5%, respectively), which possibly explains

the lower residence time for B1 in the spread defects (2.30 and 2.05 ps, respectively).
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Table 6.7: The three closest peptide atoms (within the 8.0 Å cutoff) to each of the OH
defects during the production run, for both the bunched case and the spread case. —
means that no atom was found within the cutoff distance. For each OH defect site the
three closest atoms, the residue (Res.) to which it belongs to, the type (sidechain S, or
backbone B) and the frequency (%) are given.

Bunched defects
Pept. Site Atom Res. Type % Atom Res. Type % Atom Res. Type %
B1 OH-1 C H1 S 1.5 N H1 S 1.4 N K3 S 1.0

OH-2 C H1 S 4.0 N H1 S 2.0 N K3 S 1.3
OH-3 C H1 S 3.0 C H1 S 2.0 N H1 S 2.0
OH-4 N H1 S 4.0 C H1 S 1.6 C H1 S 0.75

B3 OH-1 — — —
OH-2 — — —
OH-3 C S12 S 0.6 O S12 S 0.1 —
OH-4 C S12 S 0.55 — —

B1Y OH-1 — — —
OH-2 — — —
OH-3 — — —
OH-4 — — —

B3Y OH-1 C S12 S 0.3 — —
OH-2 C S12 S 3.0 — —
OH-3 C S12 S 2.2 O S12 S 0.4 NS12 S 0.1
OH-4 C S12 S 1.4 O S12 S 0.05 NS12 S 0.05

Spread defects
Pept. Site Atom Res. Type % Atom Res. Type % Atom Res. Type %
B1 OH-1 — — —

OH-2 — — —
OH-3 N H4 S 11.5 C H1 S 9.5 C H4 S 7.8
OH-4 C W9 S 11.3 C W9 S 3.0 C K3 S 2.6

B3 OH-1 C S12 S 7.7 C W6 S 2.2 O S12 S 1.5
OH-2 C S12 S 13.0 C W6 S 1.5 N S12 S 0.15
OH-3 — — —
OH-4 — — —

B1Y OH-1 — — —
OH-2 — — —
OH-3 N H1 S 7.6 C H1 S 6.0 N H1 S 0.3
OH-4 — — —

B3Y OH-1 O S3 B 12.0 C A4 S 3.0 C R8 S 2.0
OH-2 — — —
OH-3 — — —
OH-4 — — —
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6.5 Discussion

As pointed out before, this work represents the first attempt at studying the effect of

disrupting the CNT ideality on the binding of peptides onto the CNT surface. These

findings suggest that the presence of defects has a small effect on the binding affinity of

peptides to CNTs. However, these data suggest that the peptide mobility is increased

by the presence of OH defects on the CNT. It is not surprising that these OH defects

only present a physical barrier to the peptide adsorption, since the distance that the

defect group extends from the surface is small (compared for example with a COOH

group), such that it causes only a minor perturbation. This is in agreement with previous

studies where the heterogeneity of graphite was modelled by either fixing single water

molecules [216] or by attaching different functional groups (carbonyl, hydroxyl, and

carboxyl groups) [213; 216; 215] to the surface. From the study of Do et al. [216] it

was concluded that the adsorption of water that resulted from the presence of carbonyl

and hydroxyl groups was very small and that the adsorption due to the carboxyl groups

was comparable to that of two fixed water molecules. These differences were attributed

to the distance that each group extends away from the surface, which is in agreement

with the weak “adsorbing power” of the OH defects used in this study. In addition,

recent studies also agree with this finding [216], in that defects which extend further

from the surface, such as a COOH group, can have a major influence on the adsorption

of molecules [215; 272]; certainly more than the OH groups have. The weak attraction

of this OH defect to polar molecules can be inferred from the weak interaction energy

between the defective CNT and, for example, a water molecule. As shown in Table

6.4, the interaction energy between a water molecule and an ideal CNT, calculated with

this force-field is −2.20 kcal/mol, while the interaction energy for a water molecule in

the same geometry and a CNT with one OH defect is −4.57 kcal/mol. In addition, as
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shown in Table 5.1 of Chapter 5, the position of the first peak of the density profile (in

the ideal CNT) is 3.16 Å for oxygen and 2.96 Å for hydrogen. Since the distance that

the OH defect projects from the surface is 1.36 Å (C—O distance Table 6.1), it is clear

that the water molecules cannot approach close enough to engage with the defect.

Even though it seems that the OH defects have not significantly affected the

peptide-CNT interaction energy, in this study our defect concentrations corresponded

to the concentration in high-quality CNTs, which are thought to contain on average one

defect per 4µm [237]. However, these “almost pure” CNTs are very expensive, and in

many applications lower-quality CNTs are used; therefore the effect of the defects might

be greater. To gain an insight into the OH defect density effect, a number of preliminary

simulations were also performed with 15 OH spread defects attached to the exterior of

the CNT (of the same dimensions to those previously used in this work), for the original

sequence B1 and for the mutated sequences B1Y, B3Y and B1F. In this system we

therefore have increased the density concentration by almost four-fold. The geometries

of the best trajectories of the simulations in Chapter 3 were used as initial configurations

for these simulations with 15 OH spread defects. In Table 6.8 the normalised interaction

energies, EN , and the peptide residence time, τ averaged over a 1 ns production run

are presented. The original sequence B1 does not seem to be affected by the density of

the OH defects, as evidenced by the greater binding affinity, which is comparable to the

interaction energy at the ideal CNT (Table 6.5). In the case of the mutated sequences,

B1Y and B3Y, the binding affinity is slighly weaker than that reported for 4 OH defects

(both bunched and spread), which suggests that the the binding affinity is affected by

the presence of OH defects. Even though the mutated sequence B1F, has not been

studied in this Chapter, it also seems that the the binding affinity is slightly affected

by the presence of the OH defects (see Table 3.3 in Chapter 3). The peptide residence
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Figure 6.15: Snapshot taken from the trajectory of the B1Y peptide interacting with a
CNT with 15 OH spread defects. The peptide backbone is highlighted.

time is also slightly lower for B3Y and B1Y in this case, than in the case of the 4OH

defects. However, in the case of B1, the residence time is lower than in the case of the

4 OH bunched defects and higher than in the case of the 4 OH spread defects (Table

6.6). It is stressed that this is just a preliminary study, and further simulations would

have to be performed in order to draw conclusions about the consequences of higher

OH defect concentrations. However, these data suggest that the density of OH defects

affects the binding affinity of peptides to CNTs. In Figure 6.15 a snapshot of the B1Y

peptide interacting with a CNT with 15 OH spread defects is shown.

Table 6.8: Normalised interaction energies, EN (kJ mol−1atom−1) and peptide residence
time (ps), averaged over a 1 ns production run for the peptide—CNT interface in the
case of the CNT with 15 OH defects spread over the surface.

Aptamer EN τ

B1 −1.38 3.30
B3Y −1.09 2.20
B1Y −1.06 2.05
B1F −0.998 3.10

Another important aspect in the adsorption of peptides onto defective CNTs

is the distribution of the defects. From an experimental point of view, it is currently

impossible to selectively study the influence of the type, concentration or distribution of
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6.5 Discussion

defects, since it would be challenging to isolate each of these variables in the laboratory.

This is why molecular simulation constitutes an imperative tool for this study. The

work of Seaton et al. [213] provides a relevant investigation of the separate effects of

density, distribution and type of defects on the water adsorption of activated carbon

pores. The distance between the defects plays an important role in water adsorption, as

well as the orientation of the OH defects.The optimum orientation of the OH groups was

found to be the one in which the hydrogens are pointing towards each other (converging

hydrogens) since water molecules can fit between the defects [213]. In addition, the

presence of closely located defects causes a stronger hydrophilic effect than isolated

defects, even if the total density of isolated defects is higher. Surprisingly, the findings

of Seaton et al. [213] suggested that the amount of adsorbed water is mainly affected

not by the type of defect, but by the number of oxygen atoms on the surface, since the

amount of water adsorbed at a COOH group is similar to the amount of water adsorbed

at two close carbonyls. Based on these findings, it appears important to investigate the

effect of the distribution of defects on the binding affinity of peptides onto CNTs, along

with the study of the effect of the defect density.

This previous paragraph leads us to a very important topic which has been subject

of much research, namely water. Currently, no implict solvent model can accurately

describe microscopic water effects (both structural and dynamic), no matter how good

such a model is. While in our previous work [120], comparison of the structural properties

of a strong binding peptide at an ideal CNT in both implicit and explicit solvent lead us

to conclude that the use of an implicit model in that case was reasonable, we contend

that in the case of a defective CNT, the situation might be different since the OH defects

might increase the hydrophilicity of the CNT. The consequences of a more hydrophilic

surface is that water adsorption is influenced by the presence of the polar groups on the
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surface. As discussed in Chapter 5, the adsorption of water at pure graphitic surfaces is

weak, however as several studies suggested, at activated carbons the adsorption process

can be significantly affected [256; 210; 211; 212; 213; 265; 215]. However, recent studies

suggest that in the case of the OH defect, the interaction between water molecules and

OH defects is quite weak compared to the water-water interaction, and as a consequence

the water molecules (adsorbed in finite numbers) tend to aggregate above the surface

instead of being trapped (unless the temperature is low enough) by the OH sites [265].

In addition, in our own studies we have shown that the oxygen density profile around the

OH defect (Chapter 5) also indicates a weak structuring around the defect. On the other

hand, in the case of the COOH defect, studies show that this group exhibits a stronger

affinity for water molecules and is therefore able to attract more water molecules [215].

Even though the previous studies indicate that graphitic surfaces containing OH sites

behave similarly to the ideal surfaces [262; 215], none of these studies have simulated

liquid water at the interface. This is why further studies should be performed in order

to investigate whether or not the inclusion of explicit water will significantly affect our

findings.

In terms of the peptide sequences studied in the present Chapter, it was expected

that B1Y and B3Y would show a preference for binding at the OH defects, due to the

presence of the tyrosine residues that also have an OH included in the phenol group.

In addition, B3 has more polar groups than B1, thus B3Y is the most polar of all

sequences and therefore, it was expected that it would show a preference for the OH

defects. These results suggest that B1Y and B3Y (especially B3Y) in the defective

CNTs are more flexible and suggest that the defects might perturb the tyrosines (even if

only locally). But, the inclusion of explicit water may alter this. In addition, it could be

expected that the original sequences, B1 and B3, would be affected by the presence of
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the OH defects in terms of binding affinity, since from Table 6.4 the interaction between

benzene and a CNT with one OH defect is slightly stronger than that at an ideal CNT.

However, the difference in interaction energy between the two cases is so small (−1.79

vs −2.97 kcal/mol) that at 298 K this will not make a difference. This is why the

interaction energies of B1 and B3 at the defective CNTs (Table 6.5) do not reflect such

increases in the binding affinity. However, the peptide residence times at the defective

CNTs suggest a greater mobility of these peptides than at the ideal CNT. In addition,

tryptophan has one of the closest atoms to one of the OH defects for B1 and B3 in the

spread case (Table 6.7).

6.6 Summary and Outlook

The binding behaviour of several peptide sequences adsorbed at two defective CNTs

were investigated by molecular dynamics simulations. Four OH defects in two different

arrangements (bunched together and spread over the CNT) were considered to break the

ideality of the CNT. Results show that the binding affinity was not significantly affected

by the presence of the OH defects. In addition, it was found that the original sequences,

B1 and B3, have the greatest affinity to the CNT regardless of the presence or absence

of OH defects. However, results showed a general increase in the peptide mobility

resulted from the presence of the OH defects. These findings should give insights for

the applications of real CNTs with peptides. In the future it would be interesting to

explore the effect of Stone-Wales, vacancy defects and charged defects on the binding

affinity of peptides onto CNTs. It would also be interesting to explore the effect of

having mixtures of different defects on the CNT and its effects on the peptide binding

affinity. In addition, a further study to evaluate the effects of OH defects on the binding

affinity to peptides in explicit water is also necessary.
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Chapter 7

Conclusions and Outlook

The main aim of this thesis was to study the interactions of peptides with graphitic sur-

faces in order to aid our understanding of the general mechanisms that govern peptide-

inorganic recognition. Specifically, the goal was to investigate peptide-graphitic surface

interfaces with a view to establishing the rules of design that give peptide sequences

controllable affinity to graphitic surfaces. It is imperative to understand the mechanisms

that dictate peptide-inorganic interactions so these can be predicted and controlled for

the desired application.

This thesis focused mainly on carbon nanotubes (CNTs) due to their wide range

of current and potential applications in the fields of nanotechnology and medicine. For

instance the variety of biomedical applications such as drug [72; 73], gene [76] and

peptide [74] delivery vehicles makes CNTs an attractive object of research. These

applications are, curently limited, due to the fact that CNTs are hydrophobic and are

very difficult to disperse. Moreover, the use of CNTs still raises concerns associated

with the potential impacts on human health [69] and environmental safety [59]. The

ability of peptides to disperse and solubilise CNTs have opened up new prospects for
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the implementation of a wide range of applications. In addition, the ability to control

the strength of binding similarly gives such promise.

Part of this thesis is based on the experimental work of Wang et al. [94] which

suggested two peptide sequences, B1 (HWKHPWGAWDTL) and B3 (HWSAWWIRSNQS), both

of which having strong affinity for CNTs. These authors showed the important role of

the aromatic content (histidine and tryptophan) in the sequences found for the strong

binding to CNTs. In our previous work [118], where we performed molecular dynamics

(MD) simulations of B1 and B3 and a weak-binder control peptide with a single-walled

CNT, we had already confirmed the experimental observations [94] of the relative binding

affinity for the sequences studied. In order to study the importance of the aromatic

content, mutations of the tryptophan content by the aromatic residues tyrosine and

phenylalanine on B1 and B3 were performed. In agreement with recent studies [102;

101], the results presented in Chapter 3 showed that none of the peptide mutants

exceeded the original sequences in terms of binding affinity. In addition, none of the

mutants reached the lower range of binding affinity of the weak-binder control peptide.

These differences in binding affinity were attributed to the greater stability of the indole

ring in tryptophan. Furthermore, the interfacial shape was also studied by performing

similar investigations with the same peptides adsorbed on a graphene sheet. It was found

that a compromise existed between maintaining all the aromatic residues close to the

graphene surface and also allowing the non-aromatic residues to approach the surface.

This suggests that these peptide sequences not only bind strongly to a graphitic surface,

but bind better at a curved graphitic surface. Therefore, the results presented in Chapter

3 suggest that these peptide sequences may have been selected for the interfacial shape,

as well as interfacial chemistry. In addition, the results presented in Chapter 3 gave a

glimpse that peptide composition is an important factor in determining strong binding;
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but this might not be the only factor. This idea was pursued in more detail in Chapter

4, where the influence of the peptide sequence on the binding affinity to CNTs was

studied. It was demonstrated that the binding affinity of a peptide sequence with fixed

composition could be modified by mixing the peptide sequence. These findings show that

the sequence plays an important role in controlling the strength of the peptide binding

affinity to CNTs and if experimentally tested, it should be detectable. Furthermore,

these findings constitute the first step to understanding the design rules for peptide-CNT

interfaces. For example, it was found that strong binding may be due to the presence

of isolated pair of tryptophans, while weaker binding may be due to the presence of two

tryptophan residues intercalated by another residue.

Chapter 5 was dedicated to the study of the behaviour of water at graphitic

surfaces – CNTs, graphite and fullerenes. This study was necessary in order to under-

stand if water structuring at the interface would affect the binding affinity of peptides.

It was found that water structuring around the graphitic surfaces is weak. In addition,

this study aimed to validate the extended polarisable force-field AMOEBAPRO (which

includes a description of the non-bonded interactions between water and graphitic sur-

faces) in order to be able to use it in future simulations of peptides with graphitic

surfaces in aqueous solution. Finally, in Chapter 6, the influence of surface defects on

the binding affinity between peptides and CNTs was investigated. Again, this study is

important since real CNTs are not ideal pristine structures. Understanding how defects

affect the binding affinity will help to rationalise the mechanisms that govern the in-

teraction between peptides and real CNTs. Results showed that the presence of OH

defects did not significantly affect the binding affinity; however an increase in the pep-

tide mobility was noticed. The weak effect was proposed to be related to the distance

that the OH group extends from the surface. For example, a COOH group is proposed
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to have a greater effect on the binding affinity, since this group can extend a greater

distance from the surface (compared to the OH group) [272].

The work presented in this thesis has helped to understand the nature of peptide-

CNT interactions, why composition (in this case the aromatic content) is important

for the binding affinity and why the sequence (which gives the peptide conformation)

also plays a very important role. These findings highlight the importance of motifs

rather than isolated residues, since motifs can modulate the local environment around

the key residues that participate in the binding. Therefore, the work described in this

thesis opens up new vistas into the decoding of the mechanisms that control molecular

binding at peptide–inorganic interfaces. These findings should be further explored via

both simulations and experiments; for instance, the peptide sequences studied here could

be experimentally tested and characterised. In addition, the key motifs responsible for

strong and weak binding could be isolated and studied. There is also scope for further

simulations of these peptides in explicit solvent and for using the knowledge gained in

this thesis to design novel peptides with controllable affinity to graphitic surfaces.
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