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SUMMARY

This thesis considers the Bayesian analysis of general multivariate DLM's ( Dynamic Lin-

ear Models ) for vector time series forecasting where the observational variance matrices are

unknown . This extends considerably some previous work based on conjugate analysis for

a special sub—class of vector DLM's where all marginal univariate models follow the same

structure .

The new methods developed in this thesis , are shown to have a better performance than

other competing approaches to vector DLM analysis , as for instance , the one based on the

Student t filter .

Practical aspects of implementation of the new methods , as well as some theoretical prop-

erties are discussed , further model extensions are considered , including non—linear models

and some applications with real and simulated data are provided .
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CHAPTER 1

INTRODUCTION

1.1 -  Historical background  .

Although the use of conditional probability as the basis for statistical analysis can be traced

back to the eighteenth century with the work of Bayes(1763) and Laplace(1774) , only more

recently in this century there has been a revival of Bayesian ideas lead by De Finnetti , Jef-

freys and others . Over the last fifty years there has been rapidly increasing support for

the Bayesian approach to scientific learning and decision making , with the emergence of

consiberable literature , as for instance , the books of Savage(1954) , Jeffreys(1961) , Lind-

ley(1965) , DeGroot(1970) , Zellner(1971) , Box & Tiao(1973) , De Finetti(1974) , Aitchison &

Dunsmore(1980) , Berger(1985) , Srnith,J.Q.(1987) , O'Hagan(1988) , Press(1989) , West az

Harrison(1989) and others .

On the other hand , the development of data processing methods for dealing with noise con-

taminated observations can be traced back to Gauss & Legendre ( circa 1800) who developed

, independently of each other , the method of linear least squares - Gelb(1974) . More recently

, a recursive solution for linear least squares was obtained by Plackett(1950) , and Kalman

and others ( circa 1960) using state-space formulations designed optimal recursive filters for

the estimation of ( stochastic ) dynamic linear systems , which has represented a significant

progress in relation to the classical theory of stochastic processes based on the work of Wiener

and Kolmogorov ( circa 1940) .

It soon became apparent that the Bayesian approach provided a neat theoretical framework

for the recursive estimation of stochastic dynamic linear systems - Ho & Lee(1964) , Aoki(1967)

• In a time series & forecasting context however , at that time , these ideas of state-space models

and Bayesian methods were not wide spread yet and it was time for ARIMA models - Box &

Jenkins(1970) , based on classical stochastic process theory .

The Bayesian approach was developed in a time series and forecasting context by Harrison

& Stevens(1971,76) with the reformulation of the state-space representation and introduction

of the Dynamic Linear Model and multi-process models , leading to a methodology known as

Bayesian forecasting - Harrison & West(1987) , West & Harrison(1989) , which has opened a

new era for time series modelling and forecasting . This is the basis upon which we build the

models and methods presented in this thesis .

Typeset by 4145-TEX



1.2 -  Dynamic Models and Multivariate Time Series  .

In principle there are two different ways of representing a stochastic time process ( time series

) : the Auto-regressive / Moving-average - ARMA representation for stationary processes and

the state-space or Markovian representation , and it is claimed that they are theoretically

equivalent - Aoki(1987) , chapter 4 . In fact , as discussed in the next chapter , one sub-

class of dynamic linear models - the constant DLM's - are equivalent to the ARIMA models.

However , in practical terms there are considerable dissimilarities and the reasons in favour of

the second one are as follow .

First , the state-space representation is more meaningful since the system parameters have a

natural interpretation ; also they can couple with more general non-stationary data, and unlike

in the computationally demanding maximun likelihood method , the estimation algorithm for

the mean and variance of the process parameter are the efficient Kalman filter equations .

Second , while traditional time series analysis is primarily directed toward scalar-valued data

( and usually represents the time series or its differenced version by a scalar ARMA process )

the state-space or Markovian representation treats several variables simultaneously as vector-

valued variables. This allows us to understand the dynamic relations between the component

aeries as well as to obtain more adequate forecasts since we are using more information than

just one time series.

In fact , the Markovian representation of multivariate time series is more natural and sim-

pler , not suffering the drawbacks and complexity ( such as excessive number of parameters

, extremely difficult model identification , etc ) of a vector ARMA structure [ see Tiao di

Tsay(1989) [ .

However , the state-space formulation on its own ( without the Bayesian furnishment ) as

in Aoki(1987) or Harvey(1981) , does not provide the necessary and adequate environment

for time series modelling and forecasting . The Bayesian forecasting approach of Harrison &

West(1987) does provide this sort of environment through some facilities not present in other

methods such as : probabilistic interpretation for parameters di observables , model building

from simple components , intervention analysis and others .

1.3 -  The Bayesian approach to Dynamic models  .

The Bayesian analysis of dynamic models is essentially as neat as the usual Bayesian analysis
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(1.3)

(1.4)

for static models. Let y be a set of observations ( scalar or vector ) and 0 be a set of parameters.

A typical static model is defined by the likelihood ( probability distribution of the observations

conditional on the parameters ) p(y/0) and the parameters' prior distribution p(0) .

By conditional probability laws ( conglomerative or total probability property and Bayes'

theorem ) the predictive distribution p(y) and the posterior distribution p(0/y) are obtained

as :

P(Y) = f P(Y/0).P(9).de	 &	 P(O/Y) = [P(0]-1.P(Y/0).P(64)
e

In a dynamic model , the process parameter 0t , also called system state , changes as time

passes according to an evolutional distribution p(0i /Ot _ i ) which describes a Markovian tran-

sition from the state Ot _ i to Ot . That is , given the process parameter prior distribution at

time t-1 , p(Os_ i ) and the dynamic evolution distribution p(0 t /9t _ i ) , the prior distribution

at time t , p(0t ) will be given by

P( 9t) = f	 p(et / Ot-1)-P( et- 1).clet- 1	 (1.2)
et-i

The observations are now available or obtained sequentially in time ( typically at equiespaced

intervals but not necessarilly ) , with the predictive distribution p(yt) and the posterior dis-

tribution p(Ot /yt ) given respectivelly by

P(Yt) = f P(Yt /et ).ket).det
i

P(OtlYt) = [P(Y)1-1.1)(Ytlet).P(et)

In all these equations it is implicitly assumed that these probability distributions are condi-

tional on Dt _ 1 , i.e. , on the history of the series of data up to time t-1 . Then , when we

apply the system of equations (1.2)-(1.4) at time t-1 ( left hand side time index ) , from (1.4)

we get

get-IN- 1) = P(et-i/Ds--1) = get-i)

which will be input for the equation (1.2) at time t , closing the whole dynamic cycle . Clearly

, these updating equations provide us a sequential learning scheme for the ( unobservable )

process parameter (it as well as a sequence of one-step-ahead predictive distributions for the

observables yt . For two-steps-ahead or more long-term forecasting or when we find some

missing observations , we use (1.2)-(1.3) repeatedly but skipping (1.4) .
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1.4 -  Implementation aspects and tractability  .

A practical implementation of equations (1.2)-(1.4) depends on the solution of the integrals

present in the first two of these equations and the difficulty of this problem is related with

the existence of a tractable sufficient statistic for et . A sufficient statistic for a parameter

Ot summarizes all the information the observations provide about the parameters , and conse-

quently , the distribution of the parameters conditional on the observations is the same as the

distribution obtained by conditioning only on the sufficient statistic .

Apart from some special cases involving linear normal and some other models where these

updating equations can be written in a neat closed form ( standard conjugate prior analysis

and reference analysis ) , a general solution to this problem is far from trivial .

In fact , a totally general strategy to approach this problem would require the use of nu-

merical integration procedures , which are equivalent to using a discrete approximation to

the posterior distribution . Efficient N.I. procedures require initially the transformation of

the parameter space to RP where p is the parameter dimension , and are based typicaly on

Gaussian quadrature as an interpolatory integration rule for low-dimensional integrands or on

adaptive importance sampling for high-dimensional integrands - Smith,A.F.M. at all(1985)

Shaw(1987) . The implementation of efficient Gaussian quadrature methods in the context of

dynamic models is presented by Pole & West(1988) , with some real applications presented in

the case of dimension one .

Alternatively , an approximate Bayesian analysis for the system of equations (1.2)-(1.4)

can be pursued through analytical approximations exploiting the particularities of a specific

application and using adequate assumptions . Another approach for the implementation of

the Bayesian paradigm is the use of Linear Bayesian estimation - Hartigan(1969) and it is also

discussed in this thesis , although some of the more important results of this thesis are based

on analytical approximations .

1.5 -  Plan of the Thesis  .

The basic univariate DLM theory and some related topics are reviewed in chapter 2 of this

thesis , which is the key chapter about background material. This comprises the general model

formulation , the design of each component ( trend , seasonal effects , regressors , etc. ) as
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well as the more usual forms of analysis . Such analysis include the standard conjugate prior

analysis and also the use of non-informative priors ( Reference Analysis ) .

It is followed by a couple of chapters about extensions of the basic univariate DLM theory .

In chapter 3 we review some dynamic non-linear models with their respective analysis , which

will be useful in later chapters , as well as some new ideas about non-linearity . To complete

the presentation and discussion about univariate models some Bayesian monitoring procedures

are reviewed in chapter 4 acompanied by a simulation study .

The main results of the thesis are presented through chapters 5 to 9 as follows . In chapter 5

we study the difficulties associated with the Bayesian analysis of a general multivariate DLM

as well as the limitations of the common components multivariate DLM are showed in detail

through theoretical analysis and practical examplification .

In chapter 6 a new methodology designed to overcome the restrictions of the methods of

chapter 5 is presented . This includes model formulation and analysis as well as updating

algorithm with full implementation details . Also some theoretical properties for the new

methods are presented with the respective proofs and one example with real data is provided .

Some alternative estimation procedures for multivariate DLM analysis are presented and

discussed comparatively in chapter 7 . Some results from theoretical analysis and simulation

experiments are also presented .

In chapter 8 , some modelling aspects are discussed in order to extend even more the range

of applications of the proposed procedures . This includes some non-linear and non-normal

extensions of multivariate DLM's as well as an analysis and extension of Bayesian Vector

Auto-Regressive - BVAR models.

Finally , some other modelling and related aspects are discussed in chapter 9 of this thesis

, where a numerical application is provided .

1.6 -  Terminology and notation  .

Throughout the thesis all probability distributions are defined via densities with respect to

the Lebesgue measure , and they are represented by the generic symbol p0 .

Also , as usual in time series notation , no distinction is made between random variables

and their observed values , since the context generally clarifies whether the statements relate

to random variables , observations or even both .
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A typical notation used throughout this thesis is the following

(y/1) — N(m,C)

It means that the conditional distribution of the random vector y given the value of the random

vector x has a multivariate normal distribution with mean vector m and variance-covariance

matrix C .

In general , vectors are underlined and matrices appear as capital letters .

Finally , it is worth remarking that the equations are numbered according to the chapters

. For instance , equation (1.2) means equation number 2 of the chapter 1 . Further notation

will be introduced as necessary in each chapter .

1.7 -  How to read this thesis  .

In principle , the material covered throughout the chapters is sequential and sometimes

related to many references , but some effort has been made in order to make each chapter as

independent and easy to read as possible . In this way , some background material or more

technical results are presented as Appendices in most chapters .

In practice , it is suggested that , after this introductory chapter , reading starts from chapter

2 which covers some important background material and then proceeds directly to chapter 5

and the following chapters , where the main results are presented . Chapters 3 and 4 can be

read as refered to in the later chapters since , although they are important reference chapters

, they do not constitute the kernel of this thesis .

A second alternative would be to read the chapters in a strict sequential way .
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i) Likelihood / •-•-• N (FT Vt): (	 ) • .g_t ; (2.1)

ii) Evolution (-kt /_) N ( Gt .	; W) (2.2)

iii) Initial prior : ( elo /Do ) N (M0 ; C0) (2.3)

CHAPTER 2

THE UNIVARIATE DYNAMIC LINEAR MODEL

This chapter provides background material about univariate dynamic linear models as a

precursor to the study of multivariate dynamic models ( chapters 5 to 9) as well as some other

univariate models and related issues ( chapters 3 & 4) .

The formulation of the univariate DLM as well as the simplest form of analysis for such

a model is presented in section 2.1 . The problem of specification of the noise variances

is discussed in section 2.2 . In section 2.3 an alternative form of analysis for the DLM is

presented where non-informative in tial priors are used . Finally , in section 2.4 , the problem

of model specification and design is addressed .

2.1 -  Model formulation and analysis 

2.1.1 -  Definition of DLM  •

As we have seen in the last chapter , section 1.3 , any dynamic Bayesian model for a'

sequence of observations yt ( t = 1,2,... ) is characterized by the following three elements

: the likelihood p(ye / Ot ) , or distribution of the data given the parameters , the evolution

distribution p(O t Ot _ I ) which describes the ( Markovian ) parameter transition from time t-1

to time t , and the initial prior distribution p(90).

In this context , a general univariate ( normal ) Dynamic Linear Model - DLM for a sequence

of observations ye ( t = 1,2,... ) and parametrized by a px1 vector 1, is  defined by

where the quadruple { F, G, V , Wt } characterizes a specific DLM and , given B t , yt is

Conditionaly Independent of the past values of the series . Also , given , 8, is C.I. of

94 _2 etc , i.e. , the parameter evolution is Markovian .

An equivalent and more usual  Definition of DLM  for a sequence of observations lit ( t =
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1,2,... ) and parametrized by a pxl vector et is given by

i) Observation Equation :

ii) System Equation :

yt = Ft T .tlt + vt	,

et = G. 2t _ i +tut

vt	 "-'	 N (0;Vt)

,	 tut	---• N (0; W)

(2.1a)

(2.2a)

iii) Initial Information : (Bo / Do ) , N (m) ; Co) (2.3a)

where the quadruple { F, G, , ivt } is known , and the observational & evolution error se-

quences vt di t4, are independent in time and of each other , and also independent of (20 / D0)

Comments 

i) One important special case of DLM's is when {Ft , Ct, Vt, Ws} = {F,G,V,W} which is

called a  Constant DLM  and includes essentially all classical linear time series models . The

reason why classical AREMA models can be represented as constant DLM's is that any finite

order difference or differential equation can be rewritten as a vector first order equation (

Markovian representation ) . Such equivalence is shown in detail for instance , in West(1982)

Migon(1984) , Aoki(1987) or West & Harrison( 1989) . An extremelly usefull class of DLM's ,

which contain the class of Constant DLM's as a particular case , are the so called Time Series

DLM's , where { Ft , Gt } = { F ,G} but Vt & Wt can vary in time. Other particular cases

of DLM's include , for instance , static and dynamic regression models ( C t = I in both cases

and w = 0 in the static case ) as well as general Markovian processes ( v t = 0 ) .

ii) Apparently more general models could be defined by allowing the error sequences { vt }

di {tct, } to be both auto-correlated and cross-correlated , and some definitions of DLM's

allow for such structure , as for instance , in Ameen(1987) . However , it is always possible to

rephrase such a correlated model in terms of one that satisfies the independence assumptions

. Thus , we lose nothing by imposing such restrictions which lead to the simplest and most

easily analysed mathematical form .

Also , the normality assumptions for the error terms v t &tut are not restrictive since , as

shown in section 2.1.2 , the same estimated quantities are obtained with or without normality

assumptions.

2.1.2 -  Basic Conjugate Analysis : V known 
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Initially we present the analysis of the DLM supposing that Vt is known ( the problem of

how to specify Vt & Wi is considered in the next section ) . The updating equations for the

process parameter Elt are obtained using three different procedures : Normal theory , Bayes

theorem and Linear Bayes estimation . The results are summarized as follows

Theorem : For the univariate DLM of section 2.1.1 , one-step forecasts and posterior

distributions are given , for each t , as follows

Notation :	 ( Bt_ / Dt_ )	 N (	 , Ct_ )

i) Prior at time t : (12t / Dt _ 1 )	 N (c_e4 = G. Mt_ , Rt = Girt- 1 .GT + W)

(2.4)

ii) 1-step forecast : ( yt / D_ 1 )	 N (it = FtT • gt gt = FtT •Rt•Ft + Vt)	 (2.5)

iii) Posterior at t :	 /	 )	 N ('j = 	 + A .et , Ct = Rt - At .Qt . AtT )
(2.6)

where At = Re.Ft .QT' St et = yt - ft .

Proof : i) is obtained immediatelly from the system equation and ii) is a consequence

, co sidering the observation equation . Using standard multivariate normal theory , the

conditional distribution of	 given Dt = y, Dt- 1 } is obtained and iii) follows directly .

Alternatively , iii) can be proved by Bayes Theorem , as follows

t/ Dt) oc 12 ( gti ps-1)•P( Yt 24)	 where :	 (2.7)

1
p ( / Dt_ ) oc exP{	 .( Lit -	 -g.)} and	 (2.7a)

1
P( Yt /2t ) oc "P{--2.vt-{ Yt - Ft T - )2	 (2.7b)

After some algebra , we get the following posterior

p ( ft I Dt ) ocexp{- -21	-	 ) T	 1 ( et — m4 )}	 (2.8)

with mt St Ct as given in iii) above .

Comment 1  ( Linear Bayes Estimator ) : One interesting aspect of the updating equations

for the posterior moments of the DLM is that they can be derived using Linear Bayes methods

without the normality assumption . In fact , from Appendix 2.1 , under a quadratic loss

function , the linear Bayes estimate M of a random vector X given the data Y and its associated

expected squared error C are given respectively by

M= E(X)+ A .( Y - E Y
	

(2.9)

C =V (X)- A.V (Y).AT
	

(2.10)
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where A = Coy (X ,Y ).[V ( Y )]'.

In the notation of DLM's , we have X =- I t with prior moments EX = a & V (X) =

, and Y = yt with moments E Y = ft Si V ( yt ) Qt . As a consequence ,

A=Cov(X,Y).[V(Y)]-1=Cov(94,yt).[V(yt)]-1=Rt-Ft-QT1

and we get , using the LBE of equations (2.9)-(2.10) , the same updating equations given by

equation (2.6) .

Comment 2  ( Forecast Functions ) : The forecast function L(k) is defined for all integers

k > 0 as

ft(k) = E{P•t+k Dt} = E{ F;+k . kt+k I Dt}

where th-f-k = Ft+kit-f-k is the mean response function . For k strictly greater than 0 , the

forecast function provides the expected values of future observations given current information

, (k) = E{ yt+ k Dt} • In the special but very important case of Time Series DLM's , where

{Ft ,G t } = (F,G) for all t , the forecast function is given by ft (k) = .G' . The form of

the forecast function in k is a major guide to the design of DLM's ( specification of F and G)

and this will be considered briefly in section 2.4 of this chapter .

Comment 3 ( Filtering St Smoothing ) : The use of current data to revise inferences

about previous values of the process parameter is called filtering . This an important tool for

retrospective time series analysis where the information recently obtained is filtered back to

previous time points. The distribution of (#4 ._ k Dt ) for k > 1 and any fixed t , is called the

k-step filtered distribution for the state vector at that time . In this context , a related concept

is that of smoothing a time series . The retrospective estimation of a time series mean response

function lit using the filtered distributions ( k D) for k > 1 is called smoothing the

series . At any given time t , such filtered distributions are derived recursively backwards in

time , as shown in Appendix 2.1a

2.2 -  Specification of the Noise Variances 

2.2.1 -  Observational variance learning  : In most practical situations , it is not realistic to

expect that we know with accuracy the values of Vt . More likely , the kind of information

available will be beliefs about certain features of this sequence , as for instance , that Vt

10



is constant but unknown . In such cases , a fully conjugate Bayesian learning procedure is

available as detailed below .

Assuming a normal-inverse gamma prior distribution for ( , V) , with n degrees of freedom

and mean S- 1 ( S is the shape parameter )

( tit, V 1 Dt- )	 Nr;t11 ( gt,	 St-i )
	

(2.11)

where at & Rt are obtained as in section 2.1.2 , the joint posterior distribution for these

parameters will be given by

, V / Dt)	 Nr;-,,'(72,1 ,ct, St) where :	 (2.12)

_171t = at + At .( yt -	 )	 (2.13)

At = Re Fe 	 I	 (2.13a)

Qt = FtT St.Ft A- St-1	 (2.130

ct = ( Re - At .Q t •AtT ).St 1St-	 (2.14)

St = St-i . ( nt-i + /Qt ) int	 (2.15)

nt = n-t-i + 1	 (2.15a)

The marginal posterior distribution for et will be a multivariate t distribution with param-

eters nt ,	 & 	 and the marginal posterior distribution for V will be a gamma ( chi-square

) distribution with parameters St & nt •

Note that for a large number of d.f. , V will be approximately equal to S t _ 1 , equal with

probability one as nt- 1 tends to infinity , when the t distribution approach normality . In

the limit therefore , these updating equations are equivalent to those derived in section 2.1.2 .

In fact , the basic difference between the case where we know V and the present case , is the

presence of a kind of correction factor St /St _ i in the equation (2.14) that will tend to the

unit when the di. increase and then , this equation will approach equation (2.6) .

The results of this section are presented in more detail and with many references in West

& Harrison(1989) . Also , the more general methods presented in chapter 6 of this thesis

for multivariate DLM analysis, are shown to coincide with the results of this section , in the

particular case of dimension one ( scalar models ) .
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Comment  : Sometimes , when the observation errors {v t } are not normally distributed

with constant variance , we may need to use some previous transformation in the data ( for

instance , power transformations , as in Box di Cox(1964) ) in order to restore constancy

in time of observational variances . However , such procedures stop effective intervention

and for this reason we recommend the use of variance laws instead of variance stabilization

. For discussion and references about variance laws in a time series context , see West &

Harrison(1989) , chapter 10.

When it is not possible or easy to identify such systematic changes of variance in time , or

when there is some extra stochastic variation in the observations , we can model this variation

in V , increasing its uncertainty from time t-1 to t through the use of a discount factor 6

which correspond to rewriting the equations (2 15)-(2.15a) as follows

St = St-1 . (5.n-t-1 + 4 Qt) n-t	 (2.15')

Tit --= 6 MI - 1 + 1
	

(2.15d)

where in practice 6 takes large values , typicaly like .98 or .99 .

2.2.2 -  Specification of W. : The discount method 

The specification of a suitable structure for the system noise variance matrices Wt is crucial

in the implementation of the DLM updating equations . The elements of Wt quantify the

increase of uncertainty or loss of information about et from time t-1 to time t . Concretely

from section 2.1.2 ( equation 2.4 ) , we have

V (C/Dt-1) = Rt :=Gi.17(tit--1/Dt-i).GT +Wt = Pt +Wt

and it is natural to think in terms of a  rate of decay of information  6 such that A =Pt/5

for some scalar discount factor 6 (0 < 6 < 1) . Since Wt = Pt .(1 — 5)/S , this implies an

increase in variance or loss of information about et from time t-1 to time t , of 100(1— 5)/S %

. This procedure , proposed originally by Ameen di Harrison(1985) , has a strong intuitive

appealing and has overcome most of the difficulties in specifying Wt . In fact , these discount

factors play a role analogous to those used in non-Bayesian point forecasting methods , in

particular to exponential smoothing techniques - Abraham di Ledholter (1983) , providing

interpretation and meaning within the DLM framework .
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However , the theoretical equivalence between a discount DLM and a standard one is not

always guaranteed , since Wt = Rt — Pt specified in this way fails sometimes to be a proper

variance matrix . In order to avoid such problems , the discount method can be modified by

discounting each diagonal block of Pt and not the whole matrix as before . As suggested by

Harrison & West(1987) , each block of the G matrix ( the model is formed by the superposition

of blocks , as discussed in section 2.4) with corresponding blocks in C t _ 1 should be discounted

with a constant discount factor , with perhaps different factors for each block .

Although Wt can be specified by other methods , as for instance in Gamerman(1987)

because of the reasons mentioned before as well as our own experience in using the discount

method , we will consider throughout this thesis , the implementation of DLM's via blocks

discounting .

2.3 -  Non-informative initial Priors : Reference analysis 

2.3.1 -  Introduction 

We present here an alternative analysis for the DLM where it is not necessary to specify the

hyper-parameters ( such as 12_30 , Co , etc ) in the initial priors as in the analyses of section

2.1.2 or 2.2.1 . This is done through the use of vague or non-informative prior distributions (

reference priors ) as the ones proposed by Jeffreys(1961) , and constitutes a particular case of

the more general results presented in chapter 5 of this thesis concerning multivariate models .

The so called Jeffreys' rule for multiparameter problems [ see Box di Tiao (1973) , pg 54 [

can be stated as follows : ' The initial prior distribution for a set of parameters is taken to be

proportional to the square root of the determinant of the information matrix '.

In the concrete case of a prior distribution for (It , V) we shall first of all assume that it

and V are approximately independent . Then , considering the standard ( locally uniform

) reference prior for it , given by p(t) cc constant , we have as joint reference prior

V) cc p(V) . Considering the Jeffreys' rule for multiparameter problems , we have

p ( it , v ) cc I I ( v ) I 1

where 1(V) is the information matrix , i.e. , minus the expected value of the second derivative

of the log-likelihood . Since	 P(2t, V-1 ) = P(2t, V) . avev- 1 , we have , differentiating the
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log-likelihood twice with respect to V- 1 , the following result

av	 ay 
I(I() = gv-1).[av- 11-2 " [ av-- 11-1 = V-2

Consequently , the reference form will be given by

p ( It , V ) cc V-1

2.3.2 -  Reference Analysis of DLM's : Theory 

Theorem : For the univariate ( normal ) DLM defined by the equations (2.1a)-(2.2a) , let

the initial prior information be represented by the reference form p( ,v) cc v-i . Then

, assuming that Wt has full rank , we have

i) The joint prior and posterior distributions for (i, , V) at time t = 1,2,... are

1Lf	
1

given by

P(9-t, V / Dt _ 1 ) OC V — (1+	 -11 .exP{— —2V (LT .11t A — 2 . eg .Tt + lit)}

1
p(2t , V / Dt ) a v-(14-11-).exp{—( 	 .Kt.ft — 211 . .Us + Et)}	 where

2V —

Ht = Wt-1 - Wt— 1 .Gt .4-1 .Gt .147t— 1 (2.16)

A = GT .Wt-1 .Gt + Kt— 1 (2.16a)

Tt = Wt-1 .G t .Zt— 1 .Us— i (2.17)

Kt = Ht + Ft.FtT (2.18)

Ut = Tt + Ft.Yt (2.19)

Lt = Et-1 - uT_J•zt-l•ut-i (2.20)

Et = Lt + yi (2.21)

at = at-1 ± 1 (2.22)

with H1 = 0, T1 = 0 L 1 = 0 , a l =0 as initial setup .

ii) For t > tp , where tp = p + 1 , the posterior distribution for (B„ V 1 Dt) is a normal-

inverse chi square distribution with parametrization given by

( M = Kt- 1 Et ) Ct = Kt-1 ) St =E - Ut .fi.lt , nt = at -1)	 (2.23)

Proof : The proof is by finite induction on t and the details can be found in Pole Az

West(1987) . In fact , this theorem is a particular case of a more general theorem concerning

multivariate DLM's presented in section 5.4 of this thesis with the respective proof.
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2.3.3 - Reference Analysis of DLM's : Implementation 

Although the updating equations defined in the previous theorem , part (i) , are valid for

all t > 0 , for computational and interpretation reasons ( avoidance of matrix inversions

easier interpretation , etc ) , it is preferable to use the standard updating equations ( section

2.2.1 ) for t > tp , since both algorithms are algebraicly equivalent at these time points. For

0 < t < tp however , where there is no such equivalence , we need to implement the reference

analysis algorithm , and one major difficulty is the setup of the covariance matrices Wt . Since

the posterior covariance matrices Ct do not exist for t < tp ( Kt does not have full rank )

we can not apply the traditional discount techniques used in the implementation of standard

conjugate analysis of DLM's . The procedure used here is in line with Pole & West(1987)

and consists in assuming Wt = 0 for t = 1,2,., tp . This practical procedure has its rationale

in the fact that is not possible to detect or estimate any changes in parameters during the

first tp observations , since we have only one observation for each parameter in e t or V

and so , we lose nothing by setting them to zero . The basic result necessary for the practical

implementation of these ideas is given by the following theorem .

Theorem  : In the context of Reference Analysis for the univariate (normal) DLM , suppose

that Gt is non-singular and Wt = 0 . Then , the prior and posterior distributions oftit and

V have the same forms as in the theorem of section 2.3.2 , with the same initialization and

observation updating equations but different time updating equations , as follows

-I
He = GtT 	 .Ht-I.GT1 (2.24)

Tt = GtT-1 .Ut _ I (2.25)

Lt = Et-1 (2.26)

Proof  : Since Gt is non-singular , the system equation can be inverted , giving B t _ i = Gt-'.2t

, which is a linear transformation with constant Jacobian . Then , supposing that the joint

posterior distribution at time t-1 has the stated form as in the last theorem , the joint prior

distribution is obtained as

1
p( t , VIDt _ i ) cc 17 ' 4" Ilf-1. .exp{--(BiT .Ht tt — 2.itT .Tt ± Lt)}

2V

where Ht = GT - 1 .Ift-I .G t-1 ; Tt = G tT-1 .Ut-1 Si Lt = Et _ i . Since the joint prior dis-

tribution and the likelihood are the same considered in the last theorem , the joint posterior

distribution will be the same and the theorem is proved by induction .
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Corollary  : As a consequence of the last two theorems of section 2.3 , a practical Reference

Analysis algorithm for the univariate (normal) DLM is given as follows

i) For t = 0,1, .., tp — 1 , where tp = p + 1 is the minimum time such that the posterior

distributions are proper , use the updating equations of the last theorem .

ii) For t > tp , use the standard normal-inverse chi square updating algorithm of section

2.2.1 .

2.4 -  Model Specification & Design 

2.4.1 -  Basic concepts : Observability & Similarity 

Observability is a fundamental concept in linear systems theory and its counterpart in a

time series DLM context , is related with the identifiability of the p-dimensional state vector

(1, from the knowledge of the mean response parameter over time (kit , tit + i , ...) .

In order to introduce this concept , we consider initially the case where Wt = 0 for all

t , so that et = G.gt _ 1 and At+k = Fs .G' .R4 . Clearly , at least p distinct values of the

mean response are required for such identification , with parametric parsimony suggesting

that no more than p be necessary . The p distinct values starting at t , denoted by ti t =

(p,t , 1.4+1 , .., pt+p a are related to the state vector et via p t = T.et where

(F '''G )
T =	 (2.27)

Fs .GP- 1

is the observability matrix . Thus , to determine the state vector et from te precisely we—t

require that T be non-singular and then gt = T- 1 .y4 .

These ideas of parsimony and identifiability of parameters in the case of purely deterministic

evolution (Wt = 0) motivate the formal definition of observability in the general case

Any TSDLM {F,G , ., .} is observable if and only if the pxp observability matrix T given by

equation (2.27) has full rank p .

The concept of observability allows a modeller to restrict attention to a sub-class of DLM's

that are parsimoniously parametrized but provide the full range of forecast functions . This

sub-class is still large and any given form of forecast function may typically be derived from

many observable models ; such group or class of observable models with the same forecast

function form are called  Similar Models  . Since the forecast function pattern is related with
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the eigen-structure of the system matrix , two observable TSDLM's are similar if and only if

the corresponding system matrices have identical eigenvalues .

An equivalent definition is that two observable models M1 = {F1,G1}	 {F2, M2}

are Similar if they are related to each other through a linear transformation , i.e. , if there exist

a non-singular matrix H ( similarity matrix ) such that F; = F . H 1 Si G 1 H.G2 .11- 1 .

In this way , the similarity of observable models is defined via the similarity of their respective

system matrices .

2.4.2 -  System Eigen-Structure di Canonical Models 

Within each group of similar models , we identify particular models with specific , simple

structure that provide  Canonical DLM's  consistent with the required forecast function. Since

the forecast function form is related to the eigen-structure of the system matrix G , we consider

here the various possible configurations that may , and do arise in practice . The two basic

kinds of configurations are the case of real eigenvalues and the case of complex eigenvalues for

G , presented as follows

Case I : G has a single real eigenvalue A of multiplicity _p  .

There are clearly an infinite number of such matrices , the simplest one being G = A.I

which is not an useful representation because it implies a non-observable model . The class of

observable models with G as stated above for this case , is restricted to those whose system

matrix is similar to the Jordan block Jp (A) given by

A 1 0

0

0 A 1
jp ( A ) = 0 0 A1

0A01 )	

(2.28)

0 

Also , by observability constraint , it can be shown that F must have its first element non-zero

, and the simplest observable form is given by E, = (1,0, ...,0) . Then , in practice , for this

case , the simplest canonical form is

{F, G} =	 , Jp (A)}	 (2.29)

As a consequence , the corresponding forecast function for this model block will be given by

f t (k) =	 .[J p (A)] Ic	Ak .Ectit	 (2.30)
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which is a general polynomial form multiplied by the factor A c , where the coefficients (kit do

not depend on k but only on A and m . In the important special case of p = 2 , we have

ft(k) = (1 o). ( AO Al ) k • ( Mtn:: = mit + Tict.m2t
	 (2.30a)

For A = 1 , we have the linear forecast function ft (k) = mit + k.m2t , which constitutes

one of the most useful trend representations . This model , characterized by F' = (1 0)
(1
0 

i\
& G =	 may be viewed asrepresenting a locally linear development of the mean

response function over time and it is called sometimes a linear growth model .

Case I'- multiple real eigenvalues  : G has s distinct eigenvalues A 1 , ..,A 8 with Ai having

multiplicity p, > 1 so that p = p i + p, . In this case , it follows that G is similar to the

block diagonal Jordan form matrix

J = diag {Jpi	 (2.31)

defined by the superposition of Jordan blocks Jp, (A s ) , (i 1,..,․) , one for each of the distinct

eigenvalues A, and having dimension given by the corresponding multiplicities p i . Also , F

is similar to E =	 ,	 Eir, , } and in practice , for this case I', we specify G = J and F =

E , with J and E as defined above .

In this case , it is clear that the general forecast function will be given by

h(k) = E Lt(k)

where , for each i , f, (k) has its form given by (2.30) .

Case II : G has a pair of complex conjugate eigenvalues A i = A.en° Az A2 = A.e—iw for

some real A and w .

In principle , this model is similar to any model of the form {(1,1)', diag(A i , A2 ), ., .} but in

practice we do not use this canonical model since this would imply a complex parametrization

. Instead , we identify a real canonical form for G using the transformation matrix H =

(1
, which gives E2	 (1 l)'	 = (10)' and

J2 (A, W) = H. (Ao'
A
02)

= A.
(

cos w
—sin w

(2.32)

and in practice we specify F = E2 and G = J2 (A, W)
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As a consequence , the forecast function for this model will be given by

f(k) Fs .G 1̀  . pat = E.V2 (X, tOl k .	 =	 (Ak ktD). Mt

= mit .cos kw + m2t .sin kw ).Ak = X"` .At .cos (kw + Ot )	 (2.33)

where At =	 +m2 is the amplitude , and cfr t = arc tan (—"-1-21, ) is the phase-angle , or2t	 Trt

just , phase of the periodic ( also called harmonic ) model component. The quantity (i.) is the

frequency of the periodic component , and defines the number of time intervals over which the

harmonic completes a full cycle , this number being 2r/w . It is interesting to notice that

for or = z ( Nyquist frequency ) , we have just one real eigenvalue equal to —A ( note that

e' ff = e' = cos = —1) and not a pair of complex eigenvalues .

The forecast function thus has a sinusoidal form , that is modified by the multiplicative term

X k determined by A , which will dampen , explode or keep unchanged ( A < 1 , > 1, A = 1)

the periodic component . This last case (A = 1) leads to a pure cosine wave of period 2r/w

and is often used to model seasonal time series .

Case II'  : G has a set of distinct pairs A, 	 , (j	 1,..,k) , for a given integer k and

given pairs {A2 , w,} of reals . In this case , the real canonical representation for the elements

F G will be given by the superposition of the elements given in the case II above. Then

we have the canonical observable representation

F = (1,0,1,0,...,1,0)	 G = di ag 1..12 (A , wi), , J2(Ak wk)}
	

(2.34)

Also , the forecast function for this case will be given by the sum of k terms like (2.33) .

Finally , we should mention that multiplicities associated with each pair of conjugate complex

eigenvalues have not been discussed because such models are not common in practice. However

, further details are to be found in West Et Harrison(1989) .

2.4.3 -  Standard Component Models and The Superposition Principle

In practice , by standard component models we mean canonical TSDLM's that represent

the most common block models such as Trend component ( linear or otherwise ) , seasonal

components ( harmonic blocks with different frequencies ) or regression components . In this

way , according to the developments of the last sub-section , a typical linear trend block will

19



01) ; (1 0 1)
be represented by	 , a typical harmonic block for seasonal data in the

1	 ( cos w sin w
frequency cv will be represented by, and so on .

0 ) '	 —st n wcos w )

More complex models where an unknown eigenvalue A ( in the previous two examples , the

eigenvalue was equal to 1) can appear in the system matrix G constitute a case of non-linear

model and will be considered only in the next chapter.

It is worthwhile mentioning that models can be represented in a variety of observable forms

using any bijective reparametrisation . In particular , polynomial trends and seasonal compo-

nents for DLM's can be also represented in alternative ways , other than the ones considered

in this thesis , based on Jordan blocks. For example , a DLM with polynomial trend of degree

p-1 can be built by taking Ft' = (1,0, .., 0) and G t = G an upper triangular matrix such that

the non-zero triangle is the Pascal triangle , i.e. , G i; = (1 < j) (i,j = 1,..,p) where

(1 < j) means 1 if i < j and zero otherwise . In fact , both representations of polynomials -

the Pascal representation based on powers of k, {1, k,..,/cP-'} and the Jordan representation

based on standard factorial polynomials { ( k) (k)o 1,2" , (p.!j or even an alternative represen-

tation where G is an upper triangular matrix formed only by l's - give not only the same

values for their forecast functions , but the representations themselves coincide in the linear
1 1case , i.e. , G = (
	 ) in the Jordan or Pascal or triangular l's representation .
0 1

Also , the seasonal components can be represented both by Fourier form, using trigonometric

functions , as developed in the last sub-section ( the complex eigenvalue case ) or alternatively

, using the so called form free seasonal effects - West & Harrison(1989) , chapter 8 , where

the system matrix is represented as a permutation matrix . The reason why we consider the

Fourier form of representation for seasonal phenomenon in this thesis is mainly parsimony and

orthogonality , and both trend and seasonal components are represented by Jordan blocks.

Another model component of practical importance is a regression component { Ft = x ; Gt =

1} designed to represent the effect of a regressor variable xt in the model . Such variables are

typicaly external regressors or lagged versions of external or response variables ( in the last

case we have an auto-regressive component model ) .

Then , these three types of modelling components - Trend , Seasonal & Regression component

- constitute the basic blocks that builds up a widely applicable set of models . For instance,

we may find out that a given real time series of monthly observations can be represented by
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a linear trend block plus four harmonic components ( with 12 , 6 , 4 Si 3 months periodicity

) and an external regressor variable. In this case , each one of these 6 blocks or components

are DLM's and they should be combined together to form the whole model , which should be

also a DLM .

The general , simple and extremely useful principle that guarantees that a linear combination

or superposition of independent DLM's is itself a DLM is called the Superposition Principle .

This enables the construction of complex models by adding simple block structures. Formally

, one version of this principle can be stated as follows

The Superposition Principle  : For integer k > 1 , consider the k time series xit generated

by the DLM's {F2 ,G3. ,17.7 ,W3 } with state vectors 0 of dimensions p; (j = 1,..,k) . Assume

that , for all distinct i di j (1 < j,i < k) the error series vat & wit are mutually independent of

the series vit	 w . Then , the series defined by lit =-- Eik=i y, t follows a DLM {F,G,V,W},

with state vector given by it =	 , Ok' t ) of dimension p =	 p; and such that F: =

{F; t	t)	 G t = diag{G it , .., Gks) • Also , Vt = Ev,t  , Wt = diag{W1t, ••, Wkt} and

the forecast function of yt is given by the superposition of the forecast functions of the k

components .

Proof : It is immediate from linear theory , and in the case of normal DLM's , from Normal

theory .

Finally , it is important to mention that the independence of the component models in the

superposition principle is not crucial and can be relaxed in order to provide a more wider

statement . In fact , a more general statement of superposition assumes joint normality for

both observation and system error series , but not necessarily independence .

Appendix 2.1  : Linear Bayes Theory

Some  Basic Concepts 

Lets f(Y) be the Bayes Estimator for a random variable X. Then , the Bayes risk is defined

by,

r(f) = E{f(Y) —X}2  Ey Ex /Y {i(Y) X} 2 = EY d(f

where d(f/Y) is the posterior expected squared error , i.e., the posterior expected loss for a

quadratic loss function . Clearly , r(f) is minimised completely by minimizing d(f/Y) for each

Y , which gives f(Y) = E(X/Y) .
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However , this is an arbitrarily complicated function of Y and requires full Bayesian analysis

to derive . Linear estimation simplifies the derivation by restricting f(Y) to the linear class

f(Y) = a -I- br .Y . Then , a and b are chosen to minimise r(f) , which gives the optimal

estimate

!x(Y) = a + T 'Y

where the coeficients a and 6 are given respectively by

= E(X) - Coy (X, Y).[Var(Y)]-1.E(Y)

cov(x,Y).[V ar(Y )]-

Also , Vx = r(i) is a measure of how good .1(Y) is . It is the expected squared error

but notice that it is the unconditional expectation , i.e. , the prior expectation of posterior

expected squared error .

Now , suppose X is a vector . In general , we could estimate each component Xi using a

linear function of a different predictor vector Y, given by f, (X,) = a, ± bT .Y1 . Then , ai and

b, will be chosen to minimize r, (f,) = E{f,(Y) - X,} 2 and a measure of accuracy is provided

by Vx , = r1 (j2,) , what gives a kind of expected posterior variance for	 .

We would also like an analogue of covariance , and this is obtained as follows . Let

11 (Y1) )	 (/1(Y1)

f (Y) =	 i (Y) = I:

fk(Yk)	 ik(Yk)

and define	 r(f) = E{f(Y) - X}{f(Y) - X} T	 and	 Vx = r(i).

The diagonal elements of Vx will be Vx , and the off-diagonal elements will be the expected

cross-products of errors , which will correspond to covariances .

Then , the (optimal) linear Bayes estimate of the random vector X (given the data vector

Y) and its associated expected squared error are given respectively by:

(Y) = E(X) A.(Y - E(Y))

Vx = Var(X) - A.Var(Y).AT

where	 A= Cov(X,Y).[Var(Y)]-' .
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Appendix 2.1a  - Filtering Recursive Equations

Theorem : In the univariate DLM { Ft , G t , Vt , Wt } , considering the usual notation adopted

in this chapter , define Bt = Ct .dt+I .R411 for all t . Then , for all k such that 1 <

k < t , the filtered distributions for the process parameter are given by (k /A) '-'

N {at (—k); /4(-k) } where,

g(—k) = Tilt _ k + Bt_k.[it (—k + 1) — -t-k+1]

Rt (—k) = Ct—k — Bt— k 4 Rt— k+1 — Rt (—k + 1)].Ck

with starting values given by at (0) = Ln_t & R(0) = Ct	 Also , at_ k+1 = gt _ k (1) SZ

Rt—k+1 = Re- k(1) •

Proof : The filtered densities are defined recursively via

kgt—k /D) — f P( — k / 2t— ki-1) Dt ) •P(L— k+11 Dt)•d2t— k+1

which suggests proof by induction on k . For details , see for instance , West & -Harrlsont1989)

, chapter 4 .

Consequences : i) If Vt = V = 0-1 is unknown and the conjugate analysis of section 2.1

applied , then

Rt—I c I DO - T[(-k) ; (St I St-O•Rt(—k)]

ii) The corresponding smoothed distributions for the mean response of the series are given

by

(P-t-klpt) - T.,[ft(-k); (StISt-k)•F;_k•Rt(-k)•Ft-ki

where , in an extension of the notation for the forecast function to negative arguments ft (—k) =

F;_ k .at (—k) .
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CHAPTER 3

UNTVARIATE EXTENSIONS TO STANDARD DLM's

3.1 -  Introduction 

As we have seen in the last chapter ( section 2.4 ) , one of the most common types of

components in a DLM structure include cases of models where the system matrix G has

eigenvalues with modulus equal to one . That is the case for instance , of polynomial trends,

standard regressions and harmonic components for seasonal data.

However , important models are found in practice where there is one or more unknown

eigenvalues in the system matrix ( G is not totally known as before ) , and this implies that

the mean response function tit = f() cannot be represented as a linear function of 2t as

in the standard DLM . Dynamic models in which the mean response function has non-linear

terms in some parameters will be called generically non-linear models .

The most common kind of non-linear models found use in practice in a time series modelling

and forecasting context , are such that the mean response is a bilinear function of the state

vector ( bilinear models ) , which opens even further the range of applications for dynamic

models . Some very useful modelling structures such as non-linear ( Gompertz type ) growth

models , linear growth models with multiplicative seasonality , transfer response models ( spe-

cial regression models with lagged variables ) and ARMA components for noise representation

, are all typical examples of non-linear or bilinear extensions of standard DLM's .

Since these models present extra unknown quantities that break the neat linear formulation

, the analysis will not be as simple as before ( chapter 2) and some analytical approximation

or numerical integration will be required . In the next section of this chapter we present

briefly some examples of bilinear models as well as a general formulation and analysis based

on Taylor series expansion , which will be extended to the multivariate case in chapter 8 of

this thesis . Also in this section the concept of non-linearity is discussed in association with

the geometric concept of curvature , which permits us to introduce the class of 'close-to-linear

models' as a very important subset of non-linear models . In fact , the examples that will be

presented , belong to this special category of non-linear models , and that is why the analytical

approximations based on Taylor series expansions produce such good results in practice.

A totaly general strategy to the analysis of non-linear dynamic models however demands

the use of numerical integration techniques , which is discussed in section 3 of this chapter and
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discussed further in chapter 9 of this thesis , in a multivariate DLM context , where the extra

unknown quantities are not elements of G , but elements of V .

3.2 -  Non-linear dynamic models 

3.2.1 -  Examples of bilinear dynamic models 

Example 1  : Seasonal growth multiplicative models

In many time series where seasonality is a major factor , it happens that amplitudes of

seasonal components increase significantly at higher levels of the series . And , one typi-

cal situation found in practice is characterized by multiplicative seasonal variation which is

proportional to the process level .

In this case , the seasonal effects component p t and the level (trend) component -it are linked

. 0 ittogether to form the ( bilinear ) mean response function A t = 'y .(1 + Pt) where 'it = F11

and pt = 602t are linear functions of the process parameter I t = ( 1t)
-02t 

and F1 & F2

are known vectors of 0 and l's.

The full model of course is defined as usual by the observation equation lit = At + vt and

the system equation I, = G .24 _ 1 +y_t; where iht is a non-linear function of el, as defined

before , and the F's di G blocks for the linear trend and seasonal components are represented

in canonical forms as presented in chapter 2 , section 2.4 .

For more discussion , references or application of this model using real data , see for instance

, Migon(1984) or West & Harrison(1989) .

The full presentation and analysis of an extension of this model to the multivariate case is

provided in chapter 8 of this thesis .

Example 2  : Transfer Function Models

In a standard DLM framework , consider regression on current and lagged values of a single

independent or input variable Xt ( up to a maximum lag k , say ) . Assuming initially that

the regression coefficients are constant over time , the mean response pit will be given by

Jig = Po .Xt + •Xt - 1 ± ••• fik •Xt- k

This represents a kind of 'form-free' transfer function model , where At represents the effect

of the input variable X ( since time t-k to time t ) on the response variable Y .
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Although very flexible , this model structure can be non-parsimonious and inappropriate for

cases in which it is felt that the lagged effects persist into the future , perhaps decaying towards

zero as time progress . One simple way of adapting the regression structure to incorporate such

features , is to consider regression not on Xt directly , but on a constructed effect variable et

measuring the combined effect of current and past values of X , as follows

(i) observation equation : lit ---= et + vt

(ii) system equation : et = A.et_i + p.Xt+ wt

where 0 < A < 1 and p > 0 . This is obviously a non-linear model , since it can be rewritten
A Xtwith 9 = ( 6 ) and G t = (
0 1	

where A is unknown .
P

For more details about these models , as well as applications and references , see for instance

, West & Harrison(1989) . For multivariate extensions of transfer function models , see chapter

8 of this thesis , where the form free model is discussed in a vectorial context .

Example 3 : Bayesian Auto-Regressive models

In conection with the last Example 2 , it is important to mention that there is an alternative

way to make the `form-free' transfer function a more parsimonious model , even when the

lagged effects persist into the future and k is large . This is possible , introducing 'stochastic

constraints' in the j9'8 parameters through the use of convenient priors for that parameters .

One special but very important case of such modelling structure occurs when the inputs

are lagged values of the response variable , that is , when both the response and the input

variable ( in a transfer function model ) coincide. In this case , we have the so called Bayesian

auto-regressive model , where the use of convenient priors for the auto-regressive parameters

is a key feature in order to obtain model parsimony ( k can be large , if necessary ) .

In chapter 8 of this thesis we present in detail the multivariate counterpart of these auto-

regressive models , the so called BVAR ( Bayesian Vector Auto-Regressive ) models , which

can be seen as a special multivariate DLM .

3.2.2 -  Approximated analysis of non-linear dynamic models 

From the examples and concepts discussed early in this chapter, it is clear that many models

with parameter non-linearities may be written as

1) observation equation : yt = Ft (I, ) + vt

ii) system equation : ft = Gt (t- 1) + tv
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where Ft (.) is a given non-linear regression function mapping the p vector i t to the real mean

response , G t (.) is a given non-linear vector evolution function , and v t & i_v_t are error terms

subject to the usual assumptions.

One of the simplest and most easily interpretable approaches to non-linear models is based

on the use of Taylor series expansions to the mean response and/or evolution function. Briefly

, using our standard DLM notation , the application of Taylor series linearization around the

expected value a, of et in the non-linear regression function , gives us

Ft (Bt ) = Ft (at ) + Ft*.(it — at ) + higher order terms

—4 le .6h t* = { 80ere F	 10F( .4 )w 

similar Taylor series expansion for the evolution equation , we obtain the following 'linearized'

DLM ,

Ys = gs + Ft* .2  + vt

0 — h + G* 0 +i—t — —t	 t .—t -1 --t

where gt = Ft (at ) — Ft* oat ; ht = Gt (m _ 1 ) — G; .m _ 1 & G; = { o24 ._1) 	 . In
—4-1 161 — m

practice , the extra terms g t & ht do not bring any extra difficulty into the model analysis

since both terms are known .

One obvious refinement of the simple linearization method is to consider the inclusion of

quadratic terms in the Taylor series expansions. Considering the non-linear regression function

Ft (lt ) expanded till second order terms , we have

At = F) = Ft (at ) + Ft* .(2t — at ) + —21 . (it — at r .Tt . (It — at)

where Tt = 119 ftl -'dI'l	 i
i	

s a kind of curvature matrix.
i a4 le .

In order to carry on the analysis , it will be necessary to evaluate quantities such as

E(At /Dt_ j) Si Var(At /Dt _ i ) , which will require expressions for the first two moments

of a random quadratic form . Based on normality assumptions , after some algebra , we get

the following expressions

E(14 I Dt _ 1 ) = Ft (at ) + 1.0 Ts .Rt

Var(pt /Dt _ 1 ) = Ft''' .Rt . Ft* + il .tr {Tt .Rt }2
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where Re = Var(P/Dt _ i ) .

The first result is easily obtainable ( see for instance , Seber(1977) ) . The second one is

a bit more laborious and constitutes a particular case of a more general result presented in

the Appendix 8.1c , chapter 8 of this thesis . It is also shown there , concerning the seasonal

growth multiplicative model of example 1 , that after some algebra , the expressions for both

moments ( E(tit I Dt _ i ) di Var(pi /Dt _ i ) ) coincide with the results for that model given by

Migon(1984) .

Comments 

0 It is important to observe that , although the linearized model has a simple form of analysis

as in the standard DLM case , its mean response function keeps the basic non-linear structure

as in the original formulation .

ii) The truncation of the Taylor series expansion or neglect of higher order terms , is a key

assumption and its justification is based on smoothness and well behaved properties of the

non-linear functions .

3.2.3 -  Approximation assessment and non-linearity measures

0 As mentioned before , most of the more important ( non-linear) models found in practice,

belong to the special class of bilinear ( or second order ) models. Such bilinear models , as for

instance the seasonal growth multiplicative model , present only second order nonlinearities

and only the first two derivatives of the mean response function are non-zero .As a consequence

, we are not neglecting any non-zero term in the Taylor series expansion of it t = Ft (et ) and,

no truncation approximation is involved .

In fact , the expression for E(At /Dt _ 1 ) that we are using is exact and does not depend

even on normality . For the variance expression as given above however , an approximation

is involved , since we are evaluating variances of quadratic terms . In other words , we

are calculating 4th order moments , but only the first two moments are considered in the

model . Thus , such 4th order moments should be related to the first two moments under

some probability distribution assumption , and we use normality assumptions in order to get

practical results .

ii) Another important aspect to be mentioned is in connection with the quality of the approx-

imations involved and is related to the extent of' non-linearity' itself. The approximations
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involved became better and better when the combination model & data present only a small

amount of non-linearity , that is , when the model curvature is small. Each regression model

has associated with it a surface called a solution locus - Box & Lucas(1959) , and non-linearity

at any point can be quantified through the curvature of this surface at the given point .

Such measures of non-linearity for regression models , extensivelly studied by Bates &

Watts(1980) and others , depend basically on the second derivatives of the regression function

in relation to the model parameters . Although the context of dynamic models is not exactly

the same as static regression models , it is clear that such measures are associated with the

curvature matrix Tt = 1 49: 1 }	 , which is a null matrix for linear models .
-t -t ,8 =c1-4 -t

In particular , when the second term in the variance expression Var(p-t/Dt--1) is small

compared with the first one , the curvature will be small and the model will be called a

close-to-linear model

3.3 -  General 'non-linear' problems and finite mixture of DLM's

3.3.1 -  Introduction 

Although very useful in practice for the analysis of many important non-linear models

the analytical approximation methods presented in the last section of this chapter are not

totally general and cannot cope with all sorts of unknown elements in a DLM framework . For

instance , if we have unknown elements not in G but in one of the variance matrices ( V or

W ) , we need more general techniques . For this reason , since in later chapters of this thesis

we will need to deal with unknown elements in the matrix V in a multivariate DLM context

, we devote some attention to these more general techniques , also useful for usual non-linear

problems . We consider initially the non-linear problem as an illustration .

3.3.2 -  Non-linear models and finite mixture of DLM's

One basic fact about the class of non-linear models we have been considering in this chapter

is that conditionally on given values , for a certain sub-set of the unknown parameters , the

models became linear ( conditionally linear models ) .

For easy of notation , consider that there is just one unknown eigenvalue A in the G matrix

responsible for the non-linearity in the mean response function . For any given value for A

the standard DLM analysis applies , and our problem is how to learn about this parameter
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from the data . With A constant over time though unknown , the formal Bayesian analysis

proceeds as follows

(i) For each value 0 < A < 1 , specify an initial prior distribution for B o ( and also for V,

if unknown ) p(tIo /A, Do) and also p(A/Do) .

(ii) For each value of A , process the data according to the usual sequential updating

equations for the DLM , with G G(A) , which gives , at time t , the predictive density

p(yt /A, Dt _ i ) and the posterior p(t24 /A, D t ) .

(iii) For each value of A , obtain the posterior for A via Bayes'theorem ,

p( A / Dt ) = c p( A / Dt_ ) .p(yt / A , D t _ 1 )

where the integral c- 1 =	 p(yt /A, Dt _ 1 ).p(A/Dt _ 1 ).dA should be evaluated , analytically

or numerically .

(iv) Posterior inferences for et and other quantities of interest should be evaluated , as for

instance
1

p(C/D t ) = j. p(C/A,Dt).p(A/Dt).dA
13

Since , in general there is no tractable or easily calculable expression for the last couple of

integrals , in order to obtain an explicit solution to this problem , we adopt here a very

pragmatic and simple approach.

Consider a finite and fixed ( time invariant ) discretization of the parameter space for A

namely , { A i , A2 ,	 Ak } for some integer k > 1 . Then , the learning process for A will

be as follows

i) Consider pt- (i) = p(4/Dt-1) = Pr{A = Aa /D t_ i } for all t , with specified initial

prior probabilities po(j) , ( j = 1,2,..,k ) .

ii) The likelihood function for A will be given , at time t , by it (i) P(Ys/ Ai, Dt-1) (j

1,2,...,k ) , from the usual DLM updating equations.

iii) The posterior probabilities for Aa are updated , as usual , by Bayes'theorem , giving

pt (j) = ct .Pt- W it (i)	 j = 1,2,...,k ) where c g- 1 =	 pt-	 (j) .

iv) The unconditional posterior distribution for t).4 or any other unconditional distribution is

obtained as a finite mixture of the k conditional distributions, using pt (j) as the corresponding

weights , as for instance

Pt(C/Dt) = EP(gt/ Ai, Dt).Pt(i)
i=1
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As a consequence , the unconditional posterior moments will be given by similar finite mixtures

of conditional moments , as follows

= E ( tit / Dt) = EPt(i) .E(itl A; Dt)
3.1

Ct = V ( Dt)	 %Pt 	 Ai, Dt) M;t .r4 }
= 1

where	 = E(1/Ai , Dt ) — mt . This whole process defined by (i)-(iv) above is called

multiprocess class I model - Harrison & Stevens(1976) .

Comments 

i) Such mixtures of standard models are quite widely used in non-linear models or similar

problems and a good reference is West & Harrison(1989) , chapter 12 . In the engineering &

control literature, analogues of mixtures of normal DLM's ( each with known variances ) were

used , for instance , by Sorenson & Alspach(1971,72) , under the denomination of Gaussian

sums . For more references to this topic ( sometimes under the heading of parallel processing

) , see Anderson Sz Moore(1980) , chapters 9 & 10 .

ii) The basic point we should make clear here is that we have approximated integrals by

simple sums . This particular discretization process , in fact , is the simplest possible technique

of numerical integration , equivalent say , to a kind of rectangular rule where the grid of

points { , A2 , .., k is arbitrary and fixed for all time . Obviously , the accuracy of the

approximation increases with the number of grid points k , but the computational demands can

be enormous for a large k . Thus , the use of more refined techniques of numerical integration

can be necessary . A discussion about the use of more efficient NI strategies for Bayesian

analysis based on Gaussian quadrature - Smith et al(1985,87) , in a DLM context , is found in

West Az Harrison(1989) , chapter 13 .
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CHAPTER 4

MODEL MONITORING & INTERVENTION

4.1 -  Introduction 

In this chapter we discuss one important characteristic of Bayesian forecasting models re-

lated with the fact that they are open to intervention whenever this is judged necessary . By

model intervention we mean ammendments to the probability distribution of the process pa-

rameters anticipating major changes in the process ( feed-forward intervention ) or detecting

and correcting performance deterioration ( feed-back intervention ) . In particular , we dis-

cuss in this chapter the monitoring of model performance via Bayes'factors , in the context of

univariate models , which is extended to the multivariate case in chapter 9 of this thesis .

One of the simplest situations related to feed-forward intervention is when there is infor-

mation concerning a future discrepant observation ( outlier ) as for instance , reflecting the

effects of a coming strike on production levels of an industrial good or the effects of extremely

bad weather on agricultural production , etc . If such outliers are expected to occur in the

near future , an obvious intervention procedure is simply to ignore such wild observation or

, to associate a very large variance to it . In practice , a general procedure for introducing

feed-forward intervention will require not only variance ammendments but changes to the both

mean and variance of the state vector .

On the other hand , when no information is available for anticipatory intervention , and the

model performance starts to deteriorate , it is still possible to intervene after the detection of

model inadequacies signalled by a monitoring scheme. Such monitoring schemes are based on

sequences of cumulative Bayes'factors as an assessment tool for possible model inadequacies

and constitutes the basic ingredient for the implementation of feed-back intervention.

In the next section we discuss briefly the more important aspects related with feed-forward

intervention . In section 4.3 we discuss the basic ideas related to monitoring schemes and feed-

back intervention. Finally , in section 4.4 , some aspects of Bayesian monitoring in connection

with more classical statistical procedures are discussed and , in particular , the random variable

'Run Length' is studied in this context.

4.2 -  Feed-Forward Intervention 
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The general form of feed-forward intervention in a Bayesian dynamic model and in particular

in the DLM , is simply to change the prior moments of It , previously ( , R) to new

values (4 ,	 ) , anticipating changes in the series .

Such strategy , based on these new prior moments , is adequate for forecasting further

into the future , but a problem arises when considering filtering and smoothing the series

using retrospective analysis . It is clear that the new post—intervention prior distribution

(ft / 4, D t ) N (a; , Rts ) is no longer consistent with the DLM structure previous to time

t.

In order to have such desirable consistency , we initialy observe that the previous moments

for the state vector and their corresponding post—intervention values ( with the stars'notation

) can be related through a linear transformation , as follows

( Lemma ) - Let f; = 	 ht where ft has moments („ Re) , Kt is a p square upper-

triangular , non-singular matrix , and he is a p vector . Then , Lr; has moments (4, R;)

if Kt and ht are chosen as Kt =	 ht = ase — Kt .g_e , where Ut & A are the

unique , upper triangular , non-singular square root matrices of R; & Re respectively , thus

Rt" = Ut .U;	 = Zt .4 .

Proof : The matrices Ut A exist and are unique since R; and Rt are symmetric

positive definite matrices ( see , for example , Graybil1,1969 ) . They define the Cholesky

decomposition of these variance matrices and are easily computed . Prom the definition of 2;

it follows that 4 = , and so , the expression above for ht is obtained for any given

Kt . Also, R = Kt •Re.K it , and thus, Ut .f4 = (Kt.Z).(Kt.4 . Now, Kt .A is a square

, non-singular , upper triangular matrix and , since the matrix Ut is unique , it follows that

Ut = Kt .Zt . The expression for Kt follows since A is non-singular.

Consequence ( Theorem ) : Suppose that the moments (4, R) are specified to incorporate

feed-forward intervention in a DLM and Kt & ht are defined as in the previous Lemma. Then

, the post—intervention prior is the prior obtained in a standard DLM with evolution equation

amended to ft = G 1 _t4 , tv* N (11_,t ,Wil where G; Kt .Gt & Wt* = Kt Wt ift' .

Proof : It is immediate from the previous Lemma .

Thus , any interventions modelled by (2t //t , Dt _ )	 N(,R) can be formally and

routinely incorporated into the model by appropriately amending the evolution equation at
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time t , and reverting to the usual equations for future times not subject to intervention .

It means that the usual updating , forecasting , filtering and smoothing algorithms apply

directly with the post-intervention model . For applications or further details , see West &

Harrison(1989) .

4.3 -  Model Monitoring & feed-back intervention 

4.3 1 -  Bayes' Factors 

This section discusses the use of automatic methods for the sequential monitoring of forecast

perf rmance based on a statistical measure of accuracy . Central to such ideas is the notion of

assessing model performance relative to that obtained through using one or more alternative

models and the key concept is that of the Bayes' factor or ratio of two predictive distributions

Consider any two models ( denoted by Mo and M1 ) with the same structure , differing only

through the values of defining parameters such as , for instance , mean and/or variance Mo

is the routine or standard model in use , and M1 is an alternative model providing assessment

of M by comparison . At any time t , each model provides a predictive distribution for yt

given Dt _ i , given respectively by po (yt /Dt _ i ) Sz pi (yt /Dt _ 1 ) .

The Bayes'Factor for Mo versus Mi based on the observed value yt is defined as Ht =

Po (Yt/ Dt-1) / Pi (Yt/Dt- i ) . For integers k = 1,2,..,t , the ( cumulative ) Bayes'factor for M0

versus M1 based on the sequence of k consecutive observations th v.- ,--1,••,Yt-k+i is defined

as
t

Ht k)= 11 II.; = Po(Yt,Ye-1,-,Yt-k+i/ Dt-k) Pi(Yt,Yt-1,-,Yt-k+1/Dt-k)
.7=t-k+1

These Bayes'factors , alternatively called Weights of Evidence 1 Jeffreys (1961) , Good(1985)

] , provide the basic measures of predictive performance of Mo relative to M1 - see also

Zellner,A.(1978) . For each k ,Hi (k) measures the evidence provided by the most recent k

consecutive observations . Some basic features of Bayes'factors are noted

(i) For k = 1 , we have Ht(1) = Ht for all t . Also , taking k =t , the Bayes'factor based

on all the data is Ht (t)

(ii) Evidence for or against the model Mo accumulates multiplicatively as data is processed

, that is , for each t> 1 , we have Ht (k)= H. H_ 1 (k -1) (k = 2,..,t ) . Alternatively , on
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the log scale , evidence is additive , with

log Ht (k)= log Ht + log Ht _ i (k — 1) , k = 2, .., t

(iii) Following Jeffreys(1961) , a log Bayes'factor of 1 (-1) indicates evidence in favour of model

Mo (M1 ) , a value of 2 or more ( -2 or less ) indicating the evidence to be strong . Clearly

the value 0 indicates no evidence either way .

4.3.2 -  Model monitoring 

In a monitoring context the focus is on local model performance and the key elements are

both the individual measures Ht and the cumulative measures Ht (k) for k < t . The cu-

mulative measures are necessary to detect small or gradual changes not detectable individualy

, but the individual measures are also necessary to detect sudden changes otherwise masked

from previous evidence in favour of the standard model .

In fact , we want to know the most likely point of structural change in a given time series

by identifying the most discrepant group of recent consecutive observations . This is done by

minimising the Bayes 'factors H2 (k) with respect to k , as follows. Let L t = min i < k < t Ht(k)

for t = 1,2,.. with Li = H1 , which can be written sequentially as Lt = Ht . min { 1 ,L_1}

for t = 2,3,.. . The minimun at time t is taken at k = It , with Lt = H(i) where the integers

It , called run length , are sequentialy updated via

{ it _ i + 1 ,	 if Lt _ i < 1
t =1

1 ,	 if L2-1 > 1

Note that Lt = Ht if and only if It = 1 , otherwise Lt = Ht .Lt _ 1 and It = lt _ i + 1

providing the stated results .

The sequence { Lt } provides a sequential monitor or tracking of the predictive performance

of Mo relative to M1 . In particular , if at time t-1 , the evidence favours Mc, so that

Lt-1 > 1 , then Lt = Ht and decisions about possible model inadequacies are based on yt

alone . If lit is very small then yt is a possible outlier or may indicate the onset of change .

Specifically , let r ( 0 < r < 1) be a prespecified threshold for Bayes'factors , defining the

lower limit on acceptability of Lt ( in practice , typical values for r are chosen between 0.1

and 0.2 ) .

One key ingredient of a monitoring scheme that should be specified is the alternative model

Mi. . In fact , both predictive ( one-step ahead forecasting ) distributions for Mc, and M1 , in
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a DLM context , will be normal or student t distributions and , without loss of generality , the

standard model is considered with mean zero and variance 1 . Perhaps the simplest example

of structure for the alternative model would be to keep the same probability distribution as in

Mo but differing by a shift in the level (mean) parameter . One interesting case of modelling

shifts in the level process is when we consider the possibility of level change symmetrically in

both directions , in the alternative model . In this case , we have two alternative models and

the associated double monitoring scheme is essentially similar to standard backward CUSUM

techniques - Harrison & Davies(1964) .

A more general alternative model however that can cope with changes both in mean and

variance is the scale shift model M1 in which et = yt has standard deviation k rather than

unity , giving , in the normal case , the Bayes 'factor H t = k.exp{-0.5.e? .(1— Ic -2 )} . These

models are particularly useful in modelling outliers , as for instance , in Box & Tiao(1968)

or Smith & Pettit(1985) .

4.3.3 -  Model adaptation and feed-back intervention 

The monitoring of model performance to detect deterioration in predictions needs to be

supplemented with techniques for diagnosis of the problem and subsequent adaptation to re-

store predictive performance . In accordance with West & Harrison(1989) , the following

logical scheme provides a guide to the use of Bayes' factors in detecting and diagnosing model

breakdown . At time t , proceed with the monitor as follows

(i) Calculate the Bayes' factor Ht . If Ht > r , then yt is viewed as consistent with Mo

and we proceed to (ii) to assess the possibility of model failure prior to time t . Alternatively

if Ht <r , then lit is a potential outlier and should be treated as a missing value for updating

purposes . However , the possibility that yt presages changes in model parameters must be

catered for after rejecting the observation , thus the need for intervention is signalled and we

proceed to (iii) .

(ii) Calculate the cumulative Bayes' factor Lt and the corresponding run-length it to assess

the possibility of changes prior to time t . If Lt > r , then Mo is satisfactory and so proceed

to (iv) to perform standard updates , etc . Otherwise , L t < r indicates change that should

be signalled , requiring intervention ; then , proceed to (iii) .

(iii) Issue signal of possible changes consistent with deterioration of predictions from Mo
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and call for feed-back interventions to adapt the model for the future . In practice , such

interventions can be implemented very effectivelly through the use of a more heavily discounted

version of the matrix Wt ( use of a smaller discount factor p , instead of the value considered

for standard operation ) . Following such interventions , update the time index to t+1 for the

next observation stage , and proceed to (i) , reinitialising monitoring by setting I t = Lt = 0 .

(iv) Perform usual analysis and updating with Mo , proceeding to (i) at time t+1 .

In practice , we have one operational problem of choosing appropriate values for r and p

( respectively the threshold and the discount parameter ) in order to implement the above

monitoring scheme . This and related issues are discussed in the next section of this chapter.

4.4 -  Monitoring schemes di its operating characteristics 

4.4.1 -  Introduction 

The monitoring of real observable processes in order to detect possible structural changes is

an important practical problem with a wide range of applications in forecasting ( as we have

seen in the previous section of this chapter ) and process control. It consists in using a scheme

of sequential hypothesis tests in order to decide at each time , based on process observations

if there is or not some kind of structural change in the process . One concrete situation typical

in quality control of industrial processes is to test sequentially for possible level or variability

change in observable manufacturing characteristics .

Obviously , any proposed sequential test should have its Operating Characteristics well

known. One of the most important of such characteristics is the number of observations taken

before the detection of change - a measure of quickness of change detection - known in the

literature as Run Length , the stopping rule of the process. The mean of this random variable

, the Expected Run Length - ERL , and the probability of false detection of change , known as

False Alarm Probability , have a role in sequential test theory similar to the traditional Type

I and Type II errors in classical fixed sample size tests .

In a non-Bayesian context , Page(1954) proposed sampling inspection schemes based on Cu-

mulative Sum of observations to test level change in i.i.d. binomial processes , Kemp(1958,71)

studied the operating characteristics of such tests and Barnard(1959) proposed practical graph-

ical representations for such tests . One good review of the whole subject is De Bruyn(1968)

. For applications of such tests in a forecasting context , one pioneering work is Harrison &
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Davies(1964) , and in a more sophisticated multiprocess modelling context , Ameen & Harri-

son(1985) .

The study of such operating characteristics , namely the ERL of CUSUM tests , can be

approached in different ways , and the more common are : Simulation , as in Bissel(1969) and

others , Solution of Integral Equations , as in Goel & Wu(1971) for instance , and Markov

Chains , as in Brook & Evans(1972) . Obviously , this methodology applies to Bayesian

monitoring schemes such as the one introduced in the previous section , since Cumulative

Bayes Factors can be written in a logarithm scale as a Bayesian CUSUM .

The operating characteristics , namely the ERL and the probability of false alarm , are

studied via simulation , in the next sub-section , where two different kinds of structural change

are considered : level change and variability change .

4.4.2 -  Simulation Study 

In order to study the performance of the Bayesian monitoring scheme ( section 4.3 ) in

detecting level changes , we have simulated 1000 sequences of i.i.d. normal data with unitary

variance and different values for the level 0 . Each sequence finishes when the change is

detected and this simulation process is repeated for different values of the operating parameters

r and p . The average of this thousand run lengths obtained in each configuration is then

calculated .

We have considered seven different values for the process level 0 ( 0 0.5 1.0 1.5 2 3 5 )

with zero level for Mo and a 6x7 matrix of values for the operating parameters ( r from

0.2 to 0.5 , and p from 0.05 to 0.3 ) . The test procedure is defined by the comparison of

Z = in Ht + min [0 , Zt _ 1 ] with r , where in Ht = —0.54/n p + (1— p).y?] is the log-Bayes

factor.

The case 0 = 0 , corresponds to the false alarm case . The other cases represent small level

changes ( 0 = 0.5 or 1 ) , medium level changes ( 0 =-..- 1.5 ) or large level change ( 0 = 2 , 3

or 5 ) . All the simulation cases were run in a PC-OLIVETTI M-24 , and some of the results

are given at the end of this chapter .

The simulation results show that the monitoring scheme under study is reasonably robust

for the ERL with respect to the operating parameters in the case of large level changes . For

instance , a level change of 5 s.d. is detected in 1 step , and a level change of 3 s.d. is detected
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, depending very little on the values of r and p , at an expected time between 1.2 and 1.4

approximately . However , the time of detection of a ( small ) change of 1 s.d. can change

from approximately 5 time units ( p = 0.3 and r = 0.5) to approximately 15 ( p = 0.05 and

r = 0.2) .

In all cases , the ERL decreases with the increase of p and r , but the false alarm probabil-

ities increases , which makes the choice of these parameters a non-trivial problem . The ERL

results are an informative guide for choosing the threshold and the discount values , and all

depends on the relative importance of quick detection and risk of false detection. In particular

, in an industrial context for instance , if we know approximately the costs associated with

each situation ( false detection and delay in detecting a true change ) , as in Goel Sz Wu(1973)

, this choice can be made by considering a specific loss function .

For some of the mentioned configurations , we have obtained the sample run length distri-

bution , which for small or medium shifts shows a distribution approximately exponential .

For large level changes , only the tail of the distribution has an exponential shape , and this is

in accordance with some theoretical results found in Kemp(1971) and others . These graphics

are shown in the end of this chapter for the case of 0 = 1.5 .

Also , in a similar simulation study for variability change , we observe that the way the

ERL changes with r and p for a given value of 0 is similar to the previous cases , with the

exception that the detection of change is slower .

Finally , we conclude this simulation study , with one simple application of Bayesian moni-

toring in a control context , where the data is not i.i.d. as in a usual forecasting context , but

correlated . In the control of nuclear material , known in the literature as Nuclear Material

Accounting - NMA , the basic interest is to detect possible loss of nuclear material by monitor-

ing sequences such as , M.U.F = I(n-1) - I(n) + T(n) , where I(n) and I(n-1) are respectively

the accounting of nuclear material at the end and beginning of period n ; T(n) is the transfer

( inputs minus outputs ) of nuclear material during the period n , and M.U.F. is the material

unaccounted for , which should be zero if there was no loss or error of any kind .

A detailed description of this problem is found for instance , in Goldman at al(1982) . Speed

St Chulpin(1986) sugest for these M.U.F. sequences a simple model considering only first-order

auto-correlations , and Downing at al(1978) consider for these sequences a MA(1) model.

Because of the difficulty in obtaining real data , we have considered the simulation of a
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MA(1) process. Using this simulated data, it was calculated the ERL or average time before

loss detection , for different configurations as shown in Tab-3 at the end of this chapter .

One of the main aspects of these results is that the ERL values do not change very much in

comparison with the i.i.d. case.
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APPENDIX 4.4. -- SIMULATION RESULTS

TAB 1A : ARL - NORMAL CASE

LEVEL = 0.5

(	 1000 simulations / small	 level change
"	 •	 -

.1-G\ e .05 .10 .15 .20

43.13 37.06 28.87 27.72 27.32 27.16

•25 35.01 26.65 24.06 23.09 G.,71

.3 27.95 -2.82 20.28 19.05 19.53 19.57

.35 25.73 20.27 17.44 16.65 15.74 16.54

.4 21.59 17.02 14.59 17.96 13.53 17.74

.45 20.07 15.08 13.88 12.70 12.14 11.96

.5 17.31 13.47 12.00 10.99 10.56 10.52

'r\1).

.2

. 25

. 3

. 35

. 4

. 45

. 5

LEVEL = 1.0
.05 .10 .15 .20

14.85 11.17 10.96 10.00 9.68 91-6

12.75 10.16 8.82 8.75 8.48 8.69

11.09 8.78 7.83 8.00 7.61 7.68

10.66 8.42 7.07 7.48 6.74 6.79

9.43 7.66 7.08 6.27 6.11 5.93

8.26 6.41 5.86 5.69 C 5.26

7.56 5.95 5.61 4.92 4.98 5.15



.2

.25

.3

.35

.4

.45

.5

Cont.	 (

.05

6.11

5.50

4.21

4.43

4.14

4.26

3.78

medium level change

LEVEL = 1.5

.10	 .15

4.86	 4.55

4.66	 A.31

4.23	 3.66

3.89	 3.85

3.52	 3.40

3.43	 3.18

3.23	 3.07

&	 false alarm case )

.20	 . 25'

4.77	 4.77

4.02	 4.00

3.67	 7.74

3.59	 7.35

3.27	 7‘04

3.04	 2.97

2.83	 2.76

4 , 70

4.36

7.89

7.61

7.40

.7.11

2.97

2.80

FALSE ALARM CASE	 ( LEVEL = 0 )

• .05 .10 .15 .20 .25 .30

.2 89.99 68.08 58.86 55.77 56.79 55.82

.25 69.28 52.07 45.66 43.18 41.91 41.55.,J,J

.3 56.43 42.45 36.42 34.80 73.84 73.73

-r=......J 44.99 33.42 29.59 27.31 27.29 27.0Z

.4 39.27 29.07 25.01 22.91 22.91 21.84

.45 34.94 25.75 22.48 20.37 20.11 19.97

.5 30.41 21.94 18.56 18.27 16.32 16.34



TAB IB :

.2

ARL -

.05

3.11

NORMAL CASE (

LEVEL = 2

.10

2.81

1000 simulations /

.15	 .20

n m-n
.:.„,-2.62	 ....

large level change

.'.'"	 .70

2.4e3	
n m-=
4....11J

.25 ''.98 2.47 2.45 2.79 2.74 2.41

.3 2.71 , -=..:_..„,,J 2.29 2.16 2.16 2.20

.35 2.48 .	 2.21 2.16 1.98 2.04 2.04

.4 2.44 n n-r
a	 ..4.-. 2.04 2/101 1.94 1.99

.45 2.25 2.12 1.97 1.89 1.88 1.87

•...1' 2.21 1.94 1.94 1.81 1.77 1.76

)

. e.
fros'

. 2

. 25

. 3

. 35

. 4

.45

. 5

LEVEL = 3

.05 .10 .15 .20 ,=......-1 .17)

1.46 1-75 1.36 1.34 1.40 1.38

1.38 1.34 1.33 1.31 1.71 1.72

1.36 1.28 1.27 1.27 1.26 1.26

1.73 1.26 1.'5 1.23 1.'1 1.27

1.25 1.24 1.19	 . 1.21 1.22 1.19

1.24 1.20 1.19 1.19 1.18 1.18

1.23 1.18 1.17 1.16 1.15 1.15



TAB 1C : VARIABILITY CHANGE - 1000 simulations

CASE 1 -	 1.5 s.d. change

• .05 .10 .15 .20 .25 .70

---<<)- 10.48 9.08 7.97 8.20 8.00 7.66

.25 9.2e 8.00 7.80 7.26 7.18 6.90

..z. 8.32 7.20 7.05 6.58 6.56 6.,/

.35 7.56 6.44 6.36 5.37 6.02 =

.4 7.25 6.26 5.94 5.80 = 5.44

.45 6.68 5.96 5.06 5.30 4.98 5.'1

.5 6.36 5.54 5.14 4.64 4.74 4.74

CASE 2 - 2.0 s.d. change

.05 .10 .15 .20

.2 4.57 4.24 4.30 4.28 4.00 4.06

4.49 4.09 3.94 3.96 3.81 7.93

.3 4.16 3.80 3.72 7.58 3.26 7.45

.35 3.69 3.64 3.48 7,20 3.28 3.24

.4 3.67 3.42 3. 23 • 3.18 3.10 3.14

.45 3.51 3.25 3.17 2.98 2.94

.5 3.40 3.14 2.85 2.86 2.82 2.89



Cont.

a

.05

2.49

CASE 3

.1 0

.4.38

- 3.0 s.d.	 change

.15	 .20

2,29	 2.17

a

2 22

• 25
,1 	 ?A 2 . 27 2.'74 2.18 2.23 2.19

.3

.715

2.29

2.18

2.17

2.16

2.18

'1.12 2.06

--..,

2.09

2.09

2.00

2.18 2.10 2.05 2.02 1.94 1.98

.45 2.14 2.10 1.95 1.93 1.93 1.94

. 2.10 2. 07 1.93 1.89 1.88 1.80

CASE 4 - 5 s.d. change

.05 .10 .15 .20 ,= .30

• 1.68 1•59 1.58 1.57a I.) 1.57 1.56

•	 •n 1.59 1.59 1.55 1.56 1.53

. • 1.55 1.56 1.54 1.55 1.53 1.5-7

.35 1	 '16 .0 1.53 1.50 1.49 1.45 1.46
•

.4 1.50 1.44 1.48 1.50 1.49 1.43

.45 1.47 1.45 1.45 1.45 1.43 1,41

•,J 1.47 1.47 1.44 1.40 1.7:9



TAB 3

.

- ERL

.1

/	 MA(1)

m = 0

.2

MODEL	 (1000 simulations )

CASE 1 - TETA = .2

m = 1

..e...,	 .1, -..,

.2 63.78 55.90 10.97 9.66 8.71

.3 40.36 35.34 7.85 7.77 7.38

.4 29.72 23.85 6.64 6.15 5.88

.

.2

.1

4.62

m = 1.5

,•	 ...

4.40

.3

4.03

.1

2.41

m ,- .

2.,9

•

2.34

.3 3.69 3.48 3.42 2.19 2.01 2.01

.4 3.12 3.00 2.82 1.98 1.90 1.90

m = 3 m = 5

.1 ar• .3 .1 .2 a

,74
•i 1.34 1.34 1.75 1.006 1.006 1.006

1.26 1.18 1.24 1.004 1.002 1.004

.4 1.17 1.16 1./6 1.002 1.000 1.00'
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CHAPTER 5

MULTIVARIATE DYNAMIC LINEAR MODELS

5.1 - Introduction 

The development of statistical procedures for modelling and analysis of vector time series is

a very important theoretical issue with an enormous range of applications in many different

areas. In practical situations such as in business, engineering, social or natural sciences, we

frequently observe several related time series, and procedures for joint modelling, analysis or

forecasting of such processes are necessary.

We commonly observe a fisical or economic process classified or disaggregated by geograph-

ical region or another factor, generating naturally a multivariate series of data. In such cases

the correlation structure among the component series or, for instance, the joint probability

distribution of one subset of series given values of another subset of series can be of extreme

importance in a decision making or planning process.

The more general assumption we can make about these time processes is that they are

non-stationary, and in a natural and Bayesian way we will consider here the case of dynamic 

Bavesian models - Harrison St West(1987) , West St Harrison(1989) or, more specifically, the

class of Multivariate Dynamic Linear Models. In principle, the class of univariate (normal)

dynamic linear models - D.L.M.'s for short - can be extended in a simple way, taking the

observations at each time as vectors rather than scalars, providing a wide and rich class of

models for multiple time series.

In fact, these models have already been defined since the original introduction of D.L.M.'s to

statisticians by Harrison & Stevens (1976), and the basic theory is the same as in the univariate

case, provided that we know the observational noise variance-covariance matrix V. This means

that conditionally on the knowledge of V, the Bayesian estimation procedure for the process

parameter THETA gives the same well known Kalman Filter-type equations used frequently

in the univariate case , shown in chapter 2 .

This sort of unified DLM structure with respect to the dimension of the observations

in fact represents another extra advantage of the Markovian or state-space representation

of time-series over more traditional forms of representation . While traditional time series

analysis is primarily directed toward scalar-valued data, and usually represents time processes

or their differenced version by scalar ARMA models , our DLM approach based on Markovian
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representation of time series , treat several variables simultaneously as vector-valued variables

In practice however, the observational noise variance-covariance matrix V is not known and

some procedure for estimating it sequentially is necessary. This and related issues will be

discussed throughout this chapter and some techniques for multivariate DLM analysis will be

presented as well an analysis of its limitations. Also, we don't know the system noise covariance

matrix W, but this is not a central issue here because the commonly used univariate technique

of discount factors [Harrison St West(1987)] can be extended to the multivariate case in a

straight forward way .

Alternatively, if we know the value of the system parameter THETA, a neat conjugate prior

analysis to estimate the covariance matrix V is available, adopting an inverted-Wishart distri-

bution for V . This, combined with the standard updating equations for estimating THETA

would be perhaps the simplest ideas we could think of. However, as explained in section 5.2,

although useful in some cases , this sort of conditional analysis does not constitute a general

procedure and a more sensible one would be the joint estimation of both parameters . A

natural candidate model is the multivariate normal-inverse Wishart distribution . Such basic

initial ideas as well as the introduction of the notation will be considered in detail in the next

section.

It is important to notice however, that for some special cases a full Bayesian solution is

available. In the particular case of dimension one (univariate models) there is a neat conjugate

prior analysis for estimating this observational noise variance (scalar) based on the inverted-

gamma/normal distribution - Harrison & West(1987) - as shown in chapter 2.

Another important particular situation is the case of common components multivariate

D.L.M.'s where each univariate marginal D.L.M. has the same F and G elements (regression

and system matrix respectively) and all covariance matrices are scaled by the observational

noise variance V in a Kronecker product fashion. In this case, a standard analysis based on

the inverse-Wishart/matrix-Normal distribution - Dawid(1981) , Press(1982) - is presented by

Quintana(1985).

These two particular cases are covered in section 5.3 of this chapter , where the common

components limitations are analysed , and are special cases of the more general new methods

we propose in the next chapter. Also , a new updating algorithm for the common components
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multivariate DLM , based on Reference Analysis and Jeffreys'priors is presented in section 5.4

of this chapter , where an application with real data is provided in order to exemplify some

of the common components drawbacks studied in section 5.3 . Finally , some technical results

such as the Matrix Inversion Lemma , the matrix-normal / inverse-Wishart algorithm and

some related results are presented in the form of Appendices to this chapter .

5.2 - PROBLEM FORMULATION AND GENERAL BACKGROUND

In this section we present formally the general multivariate D.L.M. model with the more

simple possible forms of analysis in the first couple of sub-sections. It is followed in the next

sub-section by a discussion of some aspects involved in a more general joint analysis .

5.2.1 The General Multivariate D.L.M.

This model was presented originally by Harrison & Stevens(1976) and is stated in terms of

discrete intervals of time indexed by t .

DEFINITION : The multivariate (normal) D.L.M. for a vector of observations _Et of dimen-

sion d made at indexed times t=1,2,... is defined by the following equations:

i) observation equation	 _ty =FtT -it + ilt, (2, — N(0,14)

	

(5.1)

ii) system equation:
	

tit = G, It _ 1 + Lv_t , t4 - N (Q, wt )
	

(5.2)

where:

et is a pxl vector of process parameters at time t.

Ft is a pxd matrix of (known) constants and/or independent regressors.

Gt is a pxp known system matrix .

& tut are sequences of independent zero mean normal random vectors which without loss

in generality are also independent of each other .

Vt is a dxd (unknown) observational noise variance-covariance matrix.

Wt is a pxp ( known ) system noise variance-covariance matrix.

Comments : a) The variance-covariance matrix structure

0 the unknown observational variance Vt can vary in time , but usually varies much slower

than the process parameter ei , or it is constant up to perhaps a scale factor . Another

50



possibility of variance dynamics scheme is the use of power or other laws , which , for the

univariate case were discussed briefly in chapter 2 .

ii) In practice the unknown system noise variance-covariance matrix W t will be specified

through the use of a vector of  discount factors b  in a simple extension of the technique used

for univariate D.L.M.'s as in Harrison & West (1987).

b) Some special particular cases

i) Static multivariate regression models ( Wt = 0; Gt = I) . In this class of models we have

, among others , for instance , the general linear model with common regression coeficients -

Box & Tiao (1973) and the seemingly unrelated regression equations model - Zellner(1971)

as well general simultaneous equations models.

ii) Among s ochastic process models , we could mention as particular cases for instance

the multidimensional random walk ( Vt = 0; Ft = Gt = I) , or even more general Markovian

processes with G t � I . Among time series models , we have as particular case the Common

Components Models ( F t = /0 Ft ; Gt = I® G; Wt = Vt 0 Wt ) , as for instance the dynamic

linear matrix-variate model - Quintana(1985) , Quintana & West(1987) , and the generalized

multivariate exponential smoothing model - Harvey(1986) , among others .

c) NOTATION : Initially , lets consider the following notation,

Dt = (me , Dt _ 1 ) represents all information available (data and others) about the process at

time t.

gt/Vt, Dt- 1 ,--, N(gt ,Rt ) is the prior distribution for the process parameter at time t

conditional on Vt •

Bt /Vt , Dt , N(,Ct.) is the posterior distribution for gt , conditional on Vt .

5.2.2 - Basic Conditional Analysis 

a) Conditioned on the value of Vt , we can learn abouttit in a standard Bayesian fashion (

Conjugate Prior Analysis ) as follows:

i) time updating : (C/Dt _ 1 ) ---, N(gt ,Rt ) where:

nt = Gt. Mt -1
	

(5.3a)

Rt = G, .Ct _ 1 .GT + Wt
	

(5.3b)

where Wt is specified through a given discount vector b .
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ii) observation updating: Re I Dt) -•••• N (m„Ct ) where:

Mt = _44 + At . (kt - FT -at) (5.4a)

Ct = Rt - ite•Qt•AeT (5.4b)

At = Re • Ft . Q;- 1 (5.4c)

Qt = FtT • Rt - Fe +V (5.4d)

iii) initial information: (go/Do) "•-• A r (r_n_ 0 , Co)

al) Reference Analysis : Alternatively , when there is practically no initial information

available about c such as (mo , Co) or when it is difficult to setup such initial values , it is

still possible to carry on a special Bayesian analysis ( Reference Analysis ) for the multivariate

D.L.M. When Vt is known and we consider a vague or non-informative initial prior distribution

for 0 , the updating equations for the multivariate D.L.M. can be obtained from the previous

algorithm of this section using the Binomial Inverse Theorem or Matrix Inverse Lemma ( see

Appendix 5.1 of this chapter ) as follows

0 From the equations 5.4b and 5.4c , we have

Ct = Re - Ae .Q e . AT = Re - Re . Fe . (FT .Rt . Ft + Ve) - 1 .FtT .Rt

or equivalently , considering the Matrix Inversion Lemma

ct- 1 = Rt- 1 + Ft yt- 1 . FtT	 or	 Kt = Ht + Ft .Vt-1 .FtT
	

(5.5a)

where Ht = Rt--' and Kt = Ct- 1	are respectively the prior and posterior Inverse Co-

variance or Information matrix associated with the process parameterlit when such inverses

exist - otherwise we update Kt and Ht without such interpretation . Also , from 5.3b

Rt- 1 = (Wt + G t .Ct _ 1 .GT )- 1 , or

Ht = yvt- 1 _ yvt-I . Gt .pt- 1 . G tT .W'
	

(5.5b)

Pt = GT .wt- 1 .Gt + Kt- 1
	 (5.5c)

and the cycle for updating the information matrices is complete .
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ii) Now , from equations 5.4c and 5.4d , A t = Rt.FT .(FtT .14-Ft + Vi)' and , by the

Matrix Inversion Lemma , we have

At = (Ftr .vt- Ft + Rt- ) - . Ftr. .vt- 1	 or	 At =-- Ct .FT .Vt -1
	

(5.6a)

Now , from (5.4a) we have ,	 = (I— At.Ft ).gt At .kt , or

c' . mt = (ct- 1 FtT yt- 1 Ft )	 FtT yt- 1 ty 	 which gives

ist = + FtT .Vt - 1.y--t (5.6b)

where ht = Rt- 1 Jilt and ist = ct-	 . Also , from (5.3a) we have,	 = Rt- 1 .Gt .rnt _ i =

1 It_ 1 or, substituting Rt- l andCt _ 1 for equivalent expressions , we get

h = ( vt- _	 .Gt .pt- 1 r wt- 1 )	 ( pt- 1 ± pt- .Gt .ut-	 .pt- 1).k

where ut- = (wt .Rt- 1 wt ) - 1 = (	 Gt .pt- 1 .Gri)- 1 . Then , after some algebra , we

get finally

Wt- 1 . Gt . Pt- ._tk
	

(5.6c)

The equations (5.5a) to (5.6c) with the Initial Values H1 = 0, h i = 0 define the so called Infor-

mation or Inverse-Covariance Filter . These updating equations coincide with the Reference

Analysis of the multivariate D.L.M. , presented in the Appendix 5.1.

b)Conditional on the value oft, we can learn about Vt using standard conjugate prior anal-

ysis for the model (5.1)-(5.2) as follows:

i) prior distribution : (Vt /Dt _ 1 )	 1 [St _ ; nt _ I ] , where S_ 1 and nt- are respectively

the shape parameter and d.f. of the inverse-Wishart distribution.

ii) posterior distribution: (V/ D) ,-.147-1[St;n-t] where:

St = St - + .1Ztr
	

(5.7a)

kt = y — .at
	 (5.7b)

= rit-i + 1
	

(5.7c)

fr't = E(Vt /Dt ) = n' .St
	 (5.7d)
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5.2.3 -  Toward a Joint Analysis 

A possible way to estimate both l 1 t and Vt would be, at each time t, to iterate between these

two conditional estimators - given by the equations (5.3a)-(5.4d) and (5.7a)-(5.7d) - until we

get some kind of convergence, and then go to the next time t+1. However, this procedure

can be very time demanding if we don't get convergence in one or two iterations, and more

efficient methods are necessary. Otherwise, if we pre-specify in one iteration every time, the

performance can be very poor because we are not taking fully into account the uncertainty

about one parameter when we estimate the other one and vice-versa.

On the other hand, a joint estimator for 1, and Vt can be built from the joint posterior

distribution of these parameters. More specifically, a multivariate normal/inverse-Wishart

prior density for the model given by the equations (5.1)-(5.2) will give us

P(, Ift/Dt) a PA, vt/A-1) .A/it, vt)

cc P(Vt Dt-i ).v(et/Vt,A-1).kyt/tit,vt)

P(2t, VaDt) cc lvt I - '23--; .exp[- 1.trSs -1 -Vt- 1 ]

1 1 	 1
exp[- i (i, - LO T . Rt- 1 .(B, - at )1.1Vt I - 2 .exp[- i (y.t - Ft .t1t ) T .Vt-1 .Nt - Ft A)]

where the three factors represent respectivelly the prior marginal distribution for Vt , the (

conditional on Vt ) prior distribution for et and the likelihood for et and Vt . Of course, it

would not be easy or tractable to integrate out (5.8) in order to get joint posterior moments

for gt and Vt .However, joint modes (C, Vt*) , which involve only derivatives can be more

immediately obtained, resulting in the following modal equations:

61; = at + Rt . FT .[FtT .Rt . Ft + Vt* ]- 1 . (1 - Ft .clt)
	

(5.9a)

Vt. = (nt-i - d) - 1 . [Vt._ 1 + (Et - Ft .il ) . (yt - Ft .C; ) 7' )
	

(5.9b)

These equations should be solved iteratively to provide the values of the modes for use as point

estimates of the parameters of our sequential normal-Wishart prior specification 1 step on .

But the difficulty is the same as before : an iterative solution is not computationally attractive

and simple approximations supposing independence between the two equations are not good

estimators.

(5.8)
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( nt- i . St- i
V )/ D t - 1 	 x2n,_ i

This sort of problem arises in general because there is not a set of tractable sufficient statistics

, and it is interesting to mention that this sort of difficulty in estimating noise variances is

not restricted to dynamic models . It happens for instance in static linear models such as

the general linear model with common regression coeficients - Box & Tiao(1973) and the

seemingly unrelated regression model - Zellner(1971) . Also, in dynamic models under constant

noise variances following an Inverse-Wishart distribution , the posterior distribution of et

is an intractable multivariate poly-t distribution ( Broemeling , 1985 ) . It is clear now that

extra assumptions  are necessary in order to obtain a tractable procedure for on-line variance

learning .

After we have this initial exploration into the nature of the problem we continue our inves-

tigation as follows . In the next section we present two particular cases where a fully bayesian

solution is possible. After a brief review of the univariate case that provide us with some

important insight , we show the serious limitations of the common component multivariate

D.L.M.

5.3 - CONJUGATE ANALYSIS FOR SPECIAL D.L.M.'s 

5.3.1 - The Univariate Case : In the case where Vt is an unknown scalar but constant

(Vt --= V) there is a fully conjugate bayesian learning procedure. Here we present briefly this

analysis for future reference . Further details and references can be found in Harrison & West

(1987) or in chapter 2 of this thesis , where we present also other alternative algorithms for

DLM analysis.

In our case of Vt = V constant for all t and d=1 , the model (5.1)-(5.2) can be written as:

lit = FT. + vt,	 vt ,--. N[O,Vi
	

(5.10)

ft = G t lit- 1 + tSt ,	 ,--- N[0, V .W :]
	

(5.10a)

The analysis is as follows:

i) At time t-1 the variance V is modelled by an inverse chi-square distribution with nt -I di'

and point estimate St _ 1 , or
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and the parameter vector et has a prior distribution conditional on V given by,

(it /V, Dt _ 1 ) — N (c1 t , Rt )	 (5.11a)

where at and Gt follow the same time evolution given respectively by the equations 5.3a and

5.3b , and the corresponding marginal for 94 is a multivariate t distribution with nt _ 1 ci.f.

ii) The posterior distribution for the unknown parameters will be also a normal / inverse

chi-square distribution with parameters nt & St for V and m & Ct for Bt given by:

(5.12a)

(5.12b)

(5.12c)

(5.12d)

St = St-i . (nt-i + 4/Qt)/nt

?Le = nt-1 -I- 1

et = yt —

Qt = FtT • Rt•Ft + St- 1

and also

IL. ti = gt ± At •et

Ct = (Rt — At•Qt•A T )St I St - 1

At = Rt • Ft • Qt 1

(5.13a)

(5.130

(5.13c)

Comments:

i) It is important to notice that the key difference between the case of V known with poste-

rior distribution given by the equations (5.4) and the present case of unknown variance with

posterior distribution given by the equations (5.13) is the presence of the scale factor St ! St- 1

(equation 5.13b) correcting the standard expression for the posterior variance C t given by the

equation 5.4b . This idea of variance scaling will be very useful in order to appreciate better

some aspects of the techniques proposed in the next chapter.

ii) An alternative to the conjugate prior analysis of the univariate D.L.M. , given by equations

5.12a - 5.13c , is to consider a vague or non-informative initial prior . This sort of Reference

Analysis version of the previous algorithm as well some implementation aspects are covered in

detail in chapter 2 of this thesis .

iii) This case of a constant unknown variance V is readily extended to that of general variance

laws , which are defined up to an unknown constant ( West & Harrison, 1989) .

56



5.3.2 The Common Components Model

This model is presented in Quintana(1985,87), developed in Quintana& West (1986,88) and

given in West & Harrison (1989) . Also , a non-Bayesian version of this model is presented in

Harvey(1986) . The CCM is a particular case of the multivariate D.L.M. model of section 2.1

and its essential feature is that all marginal univariate component DLM's have the same F,G

& W elements.

In order to investigate its properties and compare with other methods, we present formally

the model here. This is done, rewriting the multivariate DLM equations (5.1)-(5.2), adding

the following assumptions:

i) the design elements (regression and system matrices) F t & Gt are specified respectively

by

Ft = (id 0 Ft)	 &
	

Gt =-- (id 0 Gt)

where the regression and system matrices, respectively Ft & G t are common for all the d

univariate marginal D.L.M. components.

ii) all the variance-covariance matrix structure is scaled by the observational variance V in

a Kronecker product fashion

W t =VOWt & ct.vect

where the corresponding univariate elements Wt and Ct are common for all the d univariate

marginal D.L.M. components. For simplicity , we consider V as constant although it can read-

ily be considered such that its elements each follow variance laws known up to proportionality

constants.

iii) the observational variance V given Dt- 1 follows an inverse-Wishart matrix distribution,

V/Dt-i P..' W-i[dt-I,n-t-i]

where dt _ 1 is the shape parameter and n-ti is the d.f. ( dt _ i int _ i is a point estimate of

V/Dt-1 )•

This gives the common components multivariate D.L.M. defined by the following equations:

i) observation equation: 4 = (I, 0 FT ).14t ±Ilt,	 14 ,-- Nan
	

(5.14)

ii) system equation: Bt = (Id 0 Gt ).2t _ i + w , udt - N(,v ® wt)
(5.15)
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V) 

- N { ( It ) C 7 ° 14

V 0 Rt.F)1
v0Qt

iii) prior information:	 (ft _ I /V, Dt _ 1 ) — N(Lrit _ i , V 0 Ct _1)
	

(5.16)

(V /D_ 1 )Dt-i) --, W-1 (dt-1, 711-1)	 (5.16a)

This model can be equivalently formulated in terms of matrix normal notation , which

enables an efficient updating algorithm , that is shown in the Appendix 5.2

However, in order to understand better the characteristics and limitations of this model we

present here the following Model Analysis , where , for simplicity , we consider F t and Gt as

constant.

i) By construction, all covariance matrices are scaled by V, and the joint prior distribution

of observations and state parameters will be given by

where	 (5.17)

at = (I 0 G)..trit _ i	;	 L . (1 0 FT ).at	(5.17a)

Qt = FT .Rt.F + 1	 Rt = G .Ct _ 1 .GT +Wt	 (5.170

Also, as a consequence

Cov (Lit,4) . [Var(Mt )] -1 = I 0 At
	

(5.17c)

where A, = Rt.F.QT1

ii) Consequently, the posterior distribution for the state parameter and observational vari-

ance will be given by:

(1t1 Dt, V) •-• N(mt; 17 0 CO	 (5.18)

where

mt = gt + (I 0 At ).(yt — Lt ) and Ct = Re — At.QtAtT
	

(5.18a)

Also, (V /Dc)Dt) --, W -1 (dt;nt) where,

dt ....= de_i ± gt . IT . QT 1 .
, nt = nt - I -I- 1 ; ft = 4 — it (5.180

Important : From the above analysis , it is clear that the model is very restrictive and

limited in application. The far too strong structural model assumptions result in :

i) The sequence of updatings of the mean E(2t / Dt ) is totally independent of the variance-

covariance matrix V . This is clear since A t does not depend on V. Or, in other words, we
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don't have a general fully joint estimation procedure because the mean updating doesn't take

into account the observational variance. Consequently , the location estimates do not benefit

from any estimate of the variance and , as we have discussed before in section 5.1 , this is a

restrictive and very bad property.

ii) The marginal forecast distributions of each series and the marginal distributions of their

parameter blocks are identical to those derived simply by operating with the series indepen-

dently with individual models. Again, it means that we don't have a general multivariate

model, but only a combination of a set of univariate individual normal DLM's.

Writing kt(u=	 ,•••, ydt ) and 0.(0=	 it	 )

and 0 t+k /Do, y: are identical to those derived from the commensurate individual DLM

applied just to the ith observation series. Thus all forecast and retrospective joint distributions

conditional on all y to time T are identical to those conditional on yi,t to time T alone ( T—t

= 1,2,3,.. ) . This arises since if 4 = (eit,••,edt ) and di = {d,,} , we have

d,,,t = d,, t —1 + C2t•Q t— 1

and of course Qt is independent of V .

iii) It requires common marginal models with , in general , not only the pair Ft , Gt the

same for each component series but a common 'generalized signal-to- noise ratio'. In fact , if

we call Et = F .2., of signal and kt of noise , the prior generalized signal-to-noise ratio ( of

variances ) for the common components multivariate DLM will be given by

V ar[12, 1 Dt _ 1 ] = Var [FT /Di _ 1 ] =	 at I's

= (10 FtT ).(V 0 Rt).(I Ft ) = V	 •Rt•Ft

Then , the generalized ratio of V(Et ) by V(i4 ) is a scalar factor common to all univariate

marginal models given by At = FT .Rt .Ft . In a similar way , the posterior generalized signal-

to- noise ratio of variances is the scalar FT .0 .F2 common to all univariate marginal component

models , which is a very restrictive property .

iv) Effective intervention is virtually impossible within the model since it is not possible to

retain the V 0 Ct structure and alter the relative parameter uncertainties with a common Ct

, the forecast distributions Yi,t+k /DO,Y:
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v) Extensions to include non-linearities in the observation or system equation and usual

linearisations via Taylor series are not compatible with the common component structure , as

recognised by Quintana(1987) , pg 116.

vi) Since the system matrix has the form Gt = (IOG) with the block G common to all

marginal series , it is not possible the modelling of shared components. That is the case , for

instance , of a model with the same seasonal parameters for all series . If we write such model

( artificially and non-parsimoniously ) as a CCM , by repeating the shared component to all

series , the only way to guarantee that all these repeated parameters are the same is to impose

a linear parametric constraint to the model ( L. 0 for all t , where L is a contrast matrix

of zeros and ones ) . It happens that the CCM variance structure is not compatible with such

linear constraint , and therefore , the modelling of any shared component is not compatible

with the CCM framework .

Thus , the common components model is practically worthless . The restriction that F and

G must be the same and that the signal-to-noise ratio is also the same across all components

is far too particular . And when this prevents effective interventions and does not lead to

any differences in the marginal distributions of the individual series from those derived using

univariate methods , it is clearly seen that the value of this class of models is extremely limited

In order to overcome these serious limitations we propose a more general methodology in

the next chapter where such restrictions do not apply.

However , in order to make the Bayesian analysis of the common components multivariate

DLM as complete as possible , and also to avoid the eventual inconvenience associated with

prior specification , we provide an alternative new updating algorithm for this model in the

next section where reference priors ( Jeffreys'priors) are used . This algorithm will be used in

an application with real data, in order to stress and exemplify in detail some of the drawbacks

just mentioned .

5.4 - Reference Analysis of Common Components Multivariate DLM's

5.4.1 - Reference Analysis theory

Theorem 5.1 : For the Common Components Multivariate DLM defined by the equations
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(5.38)-(5.39) , let the initial prior information be represented by the reference form

p(et,v/Dt) cc ivri-cd+1,

Then , assuming that Wt in (5.39) has full rank , we have

A) The joint prior and posterior distributions of the matrix process parameter 8t and

observation noise variance-covariance matrix Vt at time t = 1,2, .. are given by

P(et, 11 I Dt- 1) c< Ivi- ; . ( a t- i+d+i) .exp{— il ITV -1 . [e' .Ht .8t — 2.8T.Tt ± Li]}

P(et, V I Dt ) cc yr i 1 .trV -1 .[eT.Kt .et — 2.e.T•ut +E]}; (at+d+1) exp ,. 	_

where

Ht = wt-1 — Wt- 1 .Gt .Zt-1 .Gt.Wt-1

Zt = G tT .Wt-1 .Gt + Kt-i

Tt = Wt-1.Gt • Zt- 1 . Ut - 1

Kt = Ht + Ft.Ftr

Ut = Tt + Ft.4

Lt = Et-1 — UT 1 . 4-1 • Ut- 1

Et = Lt + y'

at = at-i + 1

(5.19)

(5.19a)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

with H1 = 0, T1 = 0, L 1 = 0 and al = 0 as initial setup.

B) For t > tp , where tp = p+1.d.(d+1) ( if there is missing data in these first observations or

problems of collinearity if the model includes regressors then , tp should be increased proper,y

) , the posterior distribution for (et,v/Dt) is a matrix-normal / inverse-Wishart distribution

with parametrization (Mt , Ct , S, ri.t ) given by

Mt = IC' .Ut , Ct = Kt-1 , St = Et — Ut .Mt and nt = at — d	 (5.26)

Proof :

A) The proof is by finite induction on t as follows : Assume that the given joint prior

distribution for (8 t , V) is true for t-1

1
p(Ot , V I Dt- i ) cc IV I' } (at - 1+ '1+1) .exp{--

2
.trIT -1 . (el' .Ht .8t — 2.8T.Tt + Lit)}
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From the model , the likelihood of an observation 4 is given by,

1(et,v/x) cc Ivl- t .exP{-1.trilt- 1 .(gt - FT .et) . (y, - Ftr.et)r}

cc 1v1- 1 .exp{-1.trv--- 1 .(eT.Ft.Fir .8t - 2.eT.Ft .4 + L.,T)}

By Bayes' Theorem , the joint posterior distribution is given by

p(et,VIDt) CC p(et,v/Dt--1)./(et,V/X)

v	 a	 1).exp{_l.tri	 V-1.(81..Kt.et - 2.8 ' .0  + Et)}cc	 i-f(t+d+ 

where

Kt = He + Ft.FtT

Ut =Tt+ Ft.yt

Et = Lt+4.47.

at = at-i +1

Now , the joint prior distribution at time t+1 , will be given by

ge t+1, 17/D0 = f P(et+i,V/et,Dt).p(et/Dt).det

= fP(et+iiet,V,Dt).19(V/et,Dt).P(et/Dt).det

= fp(et+i/et,v,Dt).p(et,v/D).det

From the model system equation , the first term in the integral is the matrix- normal distri-

bution N ( Gt+1. et,wt+i, V ) , and then

P(et+i, VIA) CC f VI 3 .exp{--.trlf- (
2	 '•,et+1 - Gt+I• )7 . .w - / in

i j	 t+ i • l %-it+3. - Gt+1.8t)}.

. iv i - f.(at+d+1) .exp{_il .trV -1 .(8T.Kt .et - 2.eT.ut +Et)}.det

oc f III - f.(at+2d+1).exp{_

OC f VI- 
f.(at+2d+1) .eXp{-1.trV'.(et - at7 .4-(et - cti)+ Rt}.det

where

r rr -1
Zt = Kt + GT

t+ 1 ' YV t+ 1 ''''
/1t+ 1

at --- zr .l .rt = 4-1 *(14 + GI+ i -Wr+11.et+1)

, zaT TA7-1 go,A ----. E2 m `Q't+1."t+1."'t+i

lit =--- Bt - atT.Zt.at

il .0V -1 .(eT.Zt.et - 2 .er.rt + A)I.det
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Integrating out the matrix-normal density , we get finally

get+1,17/ Dt)	 (0t+d+1)

Now , substituting Bt and at by their expressions in Rt , we get

a	 )1' 7-1 .(Ut + GTt+1.Wt;11.8t+1)+EtRt = c . Txr-1
%-'t+1.vrt+1..vt+i - (Ut + GT w-i et+I• t+1 . t+1,

= T
t+1 •Ht+I .et+i - 2.8T Tt+1 .	+ Lt+

where

Ht+1 = Wr+11 — W-1 G+1

Tt+i = I'vt+11.Gt+1.4-1.ut

Lt+1 = Et -	 .4- I .Ut

Finally ,fort  = 1, the theorem is also valid , since if we set H1 = 0, = 0, L1 = 0 and a l = 0

, we get from the expression for the joint prior distribution , exactly the reference form

p(e i , V / D 0 ) oc IV

B) From the part A of this theorem , the joint posterior is given by

p(et , V / Dc) oc V1 - f.(ati-d+1). exp{--
1

. trV .(eT .Kt .et - 2.8T.Ut ± Et)}2

which for t > tp (when the posterior distributions are proper) can by rewritten as

p(et ,V/Dt ) cc ..(at+d+1).expf — 1.017-1. [ (et - Mt) T .Kt.(et - Mt) + Et -	 .Ift-Mtil

°C	 .1(0s+d+1)exp{—iltrV-1(Et - 	 .Mt )}exp{ trV -1 (et - MOT .K t (et - Aft)}

where Mt and Ct are identified from the matrix-normal component as

= Kt- 1 Et	 Ct = Kt-1

Also , from the inverse-Wishart component , we have

St = Et - UtT .Mt	 St	 nt = - d

respectively the point estimate of V and its degree of freedom. Then , we have established the

equivalence between the Reference Analysis updating equations and the traditional standard

updating equations for the common components multivariate DLM .
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Comment : Reference form and the Jeffreys' prior 

The reference form used in the Theorem 5.1 can be justified or interpreted in terms of

the so called Jeffreys' priors . The Jeffreys' rule for multiparameter problems [ see Box and

Tiao(1973) , pg 54 ] can be stated as follows : ' The initial prior distribution for a set of

parameters is taken to be proportional to the square root of the determinant of the information

matrix '. For the prior distribution of (e ,V) , we shall first of all assume that et and V are

approximately independent so that , considering the standard ( locally uniform ) reference

prior for Ot , p(Eil t ) cc constant , we have as joint reference prior , p(et , V) oc p(V) . Then

, considering Jeffreys' rule for multipararneter problems , we have

P(etY) cc Ii(V)I1

where I(V) is the Information matrix ( minus the expected value of the second derivative of the

log-likelihood ) . Since p(e t ,v- i) = p(e t ,V).1 T,I , we have , using standard results

and derivating the log-likelihood twice with respect to v-1

av	 ay 
lin =1/07-11.1-51-71-2 ' lav-11-1

Finally , it is necessary to proof that I 3'i7v I = 
vid+1.	 ( see for instance Anderson(1984)

pg 601 ) , which gives the reference form used in the Theorem 5.1

,	 , av , ,
p(et,v ) cc 1 ---1 — 2 = 171-1*(d+1)

av-i

For further discussion about non-informative priors , an alternative reference ( in a Kalman

filter context ) is Catlin(1989) , chapter 7 .

5.4.2 - Reference Analysis Implementation 

Although the updating equations defined in the previous theorem , part A , are valid for

all t > 0 , for computational and interpretation reasons ( avoidance of matrix inversions

easier interpretation ,etc ) ,it is preferable to use the standard updating equations ( Appendix

- 5.2) for t > tp , since both algorithms are algebraicly equivalent at these time points . For

0 < t < tp however , where there is no such equivalence , we need to implement the reference

analysis algorithm , and one major difficulty is the setup of the covariance matrices Wt . Since

the posterior covariance matrices C t do not exist for t < tp (Kt does not have full rank )
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we can not apply the traditional discount techniques used in the implementation of standard

conjugate prior analysis of DLM's .

The procedure used here is in line with the Pole and West(1987) method for the univariate

case , and consists in assuming W, = 0 for t --= 1,2,..,tp . This practical procedure has its

rationale in the fact that is not possible to detect or estimate any changes in parameters during

the first tp observations , since we have only one observation for each parameter in 8, or V

, and so , for convenience we set them to zero . The basic result necessary for the practical

implementation of these ideas is given by the following theorem .

Theorem 5.2: In the context of Reference Analysis for the common components multivariate

DLM , suppose that Gt is non-singular and W, = 0. Then , the prior and posterior distributions

of 8, and V have the same forms as before (Theorem 5.1) , with the same initialization and

observation updating equations but different time updating equations , as follows

i) Time Updating 

T-1	 -I
H =-- Gt .Kt-i Et

r- -1Tt = Gt .Ut_i

Lt = Et-i

ii) Observation Updating :

Kt = Ht + Ft.17

Ut = Tt + Ft ..y4

Et = Lt

at = a1-1 + 1

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

(5.33)

iii)  Initialization : H1 = 0 ; Ti = 0 ; Li .---- 0 ; ai = 0 .

Proof : Suppose that the joint posterior distribution at time t — 1 has the stated form as in

the last theorem , given by

1
p(e, 1, V/ Dt- i ) oc Iv 1 -1.(at - i +d+ 1).exP{-2.trV-1 .(13T_I.K,_1.8	 .,-1 —2 8T 1 • Ut-1 +E - 1 )}t-	 t
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Now , since Wt = 0 , the system equation is e t = Gt .8t _ 1 which can be inverted ( Gt is non-

singular ) so that 8t _ i = Gt-1 .8 t , what is a linear transformation with constant Jacobian .

Then , the joint prior distribution is immediately obtained as

p(8t , V I Dt _ i )oc ivi- f(at-i+d+1) expr_i 21 trV -1 (el' .GT - 1 Kt _ i G 1 8 t - 28'G' Ut-1 ± E_ 1)}

cc III—j(a t - i+d+1).expr_i 1.trV -1 . (el' . Ht .8 t - 2.8tT .Tt -I- Lt)}

where Ht = Gr i .Ift--1 .GT 1 ; Tt = GT -1 - Ut- 1 & Lt = Et-i .

Since the joint prior distribution and the likelihood are the same considered in the last

theorem , the joint posterior distribution will be also the same , given by

p(e t ,V/Dt ) a IVI- (

i. at+d+1) .exp{_
1

.trV -1 .(8T .Kt.et - 2.er • ut + Et)}

and the theorem is proved by induction .

Corollary  : As a consequence of Theorems 5.1 and 5.2 , a practical Reference Analysis

updating algorithm for the common components multivariate DLM is given as follows

i) For t = 0,1,2, .., tp -1, where tp is the minimum time such that the posterior distributions

are proper ( tp = p + 1.d.(d+ 1) if there is no missing data at the begining , etc ) , use the

updating equations of Theorem 5.2 ( initialization plus the cycle observation updating / time

updating ) .

ii) For t > tp , use the standard matrix-normal / inverse-Wishart updating algorithm of

Appendix 5.2 ( equations 5.41-5.48a )

Comments 

i) In the particular case of dimension d = 1 ( univariate case ) , the results of Theorems 5.1

and 5.2 coincide with the Reference Analysis of univariate DLM's , as presented by Pole and

West(1987) .

ii) In general , the assumptions of non-singularity of Wt and Gt present respectively in

Theorems 5.1 and 5.2 , are satisfied for most practical situations . Even in rare cases such as

when we have a moving-average component in the model , this difficulty can be avoided by

considering an alternative parametrization .
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5.4.3 - An Application with Real Data 

Here we show in practice one application with real data using the algorithm for Reference

Analysis of multivariate DLM's with common components presented in the last sub-section (

Corollary of Theorems 5.1 and 5.2) .

The data set to be analysed consists of a 3-dimensional vector time series of ( monthly )

Industrial Production Indexes-IN in Spain , since January of 1981 to August of 1988 . The

three marginal component time series consist of the following categories or types of industrial

production indexes : Consumer IPI , Investment IPI and Intermediate IPI . This vector valued

time series is shown graphically in figure 5.1 , at the end of this chapter , where we can observe

some long-term trend behaviour and a seasonal pattern in the data.

The presence of a trend or growth component in this kind of data is not surprising since

Spain is one of the fast growing economies in the European comunity , although the presence of

significant positive levels of growth in the investment IPI series has been observed only in more

recent years , after the middle of 1985 ( see fig. 5.1 ) . In particular , in relation to the seasonal

behavior , we can notice from that diagram , a very sharp fall in the industrial production

indices of the three series in August of each year . The reason for such an abrupt change in

the industrial production index at this particular month is because the holiday period for all

industrial workers in Spain is in August , when the production is reduced to minimum levels .

As a result , to express this sort of 'holiday-effect' seasonality we need six harmonics ( the

first or 12-period harmonic , the sixth or 2-period harmonic corresponding to the Nyquist

frequency and all the intermmediate ones ) since , apart from trend or other components , the

levels of IF! in July of each year , for all the three series , are recovered again two periods (

months ) later in September , which suggests the presence of six harmonics . The presence

of all these 6 harmonics is also confirmed through the use of Periodograms for all the three

component series , so the overall seasonal structure is described by the first six harmonics .

The trend component is considered as a dynamic linear growth model ( level and slope or

growth rate parameter for each marginal time series ) , and the model specification is then

complete . One important aspect to be mentioned here related with model specification is that

the assumption that all the six harmonics are present in all marginal series ( common seasonal

structure ) is a very particular one , valid approximately for the specific data set in question

but not as a general rule . More general models may be necessary and this is discussed in the
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next chapter.

The residuals from the one-step-ahead forecasts considering the present model ( linear trend

+ six harmonics ) , using the Reference Analysis algorithm for common components multi-

variate DLM's of last sub-section is shown in figure 5.2 . As we can notice , the number of

observations per series necessary in order to have proper distributions is 15 ( 11 for the six

harmonics + 2 for the linear trend + 1 noise variance + 1 correlation ) , and after that all

distributions are proper , giving consequently , among others , one-step-ahead forecasts and

its residuals ( the codes 1 , 2 and 3 are used to refer respectively to Consumer WI , Investment

IPI and Intermediate IPI ) . Also , and the more important aspect we can observe in fig 5.2 , is

the fact that the residuals are centered around zero and reasonably uncorreiated only for the

series 1 and 3 , respectively Consumer IPI and Intermediate IPI . For the series of Investment

IPI however , after middle of 1985 approximately , the residuals are not more centered around

zero and are highly positively correlated , resulting in a significant under forecasting . In fact

, this is the result of a major change in the trend pattern for the series of Investment WI

around middle of 1985 , as we can see in fig 5.1 . Consequently , some sort of intervention

in the estimation process for this series around middle of 1985 is necessary in order to restore

the previous forecasting performance , but this is not possible within the common component

structure as mentioned before .

Also , the correlation structure among the series is given as a result from the mentioned

algorithm , which is shown in figure 5.3 . As we can see from that picture , the correlation be-

tween the comsumer and investment industrial production indexes is about 0.5 approximatelly

, and the same is valid for the correlation between the investment and the intermediate IPI .

The correlation between the comsumer and the intermediate IPI however is not so stable in

the begining , but after the first half of the series it reaches values about 0.6. In fact we were

not expecting very high correlations among the series ( or , among the correspondent error

terms ) since the trend component is not very expressive .

Finally , in order to complement the present discussion about model identification , it is

interesting to observe two aspects . First , as mentioned before , the assumption that all the

three series have a six harmonic structure ( common component hypothesis ) is only one ap-

proxirnation . From the Periodogram graphics shown in figs. 5.4 to 5.6 , we can see for instance

that the importance of the first harmonic (in terms of percentage of variability explained in
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the data ) is very different in each series . If we take into account some considerations about

model parsimony , would be possible to drop the first harmonic in one series or two perhaps,

but not in all of then , and the model would not be a common component one .

Second , as an alternative ( more parsimonious ) model formulation , it is interesting to

mention that three harmonics ( the first , the fourth and the sixth ) involving a total of 5

parameters per series could be substituted by only one regressor coefficient per series , where

the regressor is a dummy variable assuming the value 1 corresponding to every August month

and zero otherwise .

Then , this real example has suggested us that the common component model is only one

first approximation presenting serious drawbacks . If we want a more parsimonious seasonal

representation or more proper forecasts for the series of investments , then we need go beyond

the common component structure .

Appendix 5.1 : The Matrix Inversion Lemma and the Reference Analysis of D.L.M.'s 

Lemma  ( Matrix Inversion ) : Given the matrices R, F and V , with dimensions respectively

pxp , pxn and nxn , then , the following algebraic identity holds , supposing that the various

inverses exist

(R-' + FY' .FT ) i = R - R.F.(FT .R.F +V)' .FT .R

Proof : See , for instance , Anderson & Moore(1979) , pg 138 or Quintana(1987) , pg 51 .

Theorem  ( Reference Analysis ) : Consider the multivariate DLM defined by the equations

(5.1) and (5.2) where Vt is known , Gt is of full rank and Wt is non-singular for all t . If we

assume that the initial prior information for the process parameter et is represented by the

reference form

p(11, /Do)	 cc	 constant

then , the prior and posterior distributions of Bt at time t = 1,2,.. have the following ( Possibly

improper ) form

p(it1 Dt _ i ) oc exp{-1(21. .Ht.f), -24 At)}

1
P(it/A) oc exP{----.2(PtT .Kt .gt - 2. ' .k)}	 where
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Ht = wt--1 _ wt-I .Gt .pt- 1 . GtT .wt- 1	 (5.34)

Pt =	 ± Kt-1
	 (5.34a)

=	 1 .Gt.Pt-	(5.35)

Kt = Ht + Ft.V .FtT	 (5.36)

ist = ht. + Ft .Vt- 	(5.37)

with initial values H1 = 0 and h 1 = 0 .

Proof : The proof proceeds by induction on t . The likelihood for e t from an observation

y is given by-t
r(et/t) cc exp{--2-1 (1);	 1.FtT - 2.2tT .	 1.4))

Supposing that p(C/Dt-i) is given as stated , then

p(tit /Dt ) cc p(t1Dt_i).1(CIL)

1 rrexp{ _ i(9.; .Ht	 2..etT	 Ft .vt- 1 . FtT .#4 2.gtT Ft .vi-	 )
ex

1
a exp{- -

2 
( 6itT .Kt..2‘ —	 .kt )}

and the posterior for et is also of the stated form . Now , the prior for the next time t 1 will

be

P(t+i/Dt) = f P(t+1)2ti pt) 48-t = f PO4+ A, Dt)-P%ipt)-cket

From the system equation (5.2) , the first term in this integral is a normal distribution with

mean Gt+ 1 1_, and covariance matrix Wt + 1 , which gives,

PUt + Dt) 'pc f erP{- -21 Kit +1 - Gt+1,147 - 141J+11 . (2t+1 G+ L .) + • Kt	 2.ft ._kt1}.44

cc f exP{--21 A+1 	 )7..Pt.(Rt+1 -2t)
	

where

Pt = Kt + Gt+I-WriA.Gt+1

-qt = Pt-1 • (At GT+I.Wr+11.Pt+

„It = 0T+ 1. wt-+ 1.1 9	 .pt

( Note that Pt is non-singular since Kt is symmetric positive semi-definite , Wt+i is non-singular

and Gt+i is of full rank ) . Then , by standard normal theory , we have

PRt+iipt) oc exP{÷}
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where , expanding -it , we have

T W- 1i .+0 I )ryT w - 1	 )7. .pt- 1 .(ist + Gt+1 . t+ -t,k + lit+1 . t+1 . 9-t+1'it = _ter+i .Wt-1-111-t+ 1 - Lt

= PI+ 1 . He+ 1 .g.t+ 1 - 2.2,T+1 14+1 + const.,	 with

D-1 rzT iv - 1
Ht+ 1 = wt.+11 - wrii .Gt+ 1... t •'-' t+ 1 • " t+1

ii.t +1 = i'Ve-Vi .G t + i . Pt- 1•Ist

Thus , we have shown that if the prior at time t has the stated form then the prior at time t+1

also has the stated form , and also that the posteriors are of the stated form. It remains to show

that the initial prior distribution satisfies the theorem . This is true because H1 = 0, h 1 = 0

imply p(21 /D0) a exp{-1.0) , or p(0 1 /Do) a constant , which is exactly the reference form

and the theorem is proved .

Comment : The equations (5.36)-(5.37) of the Reference Analysis (correspondent to the

posterior moments in the standard updating ) coincide with the corresponding equations of

the Information or Inverse Covariance Filter - Anderson & Moore (1979) , pg 139-140 . The

other equations ( 5.34 - 5.35 ) do not coincide with the filter equations , although they are

algebraically equivalent to them. Also , the equations (5.34) - (5.35) coincide with the equa-

tions presented by Pole & West (1987) , pg 7 , and the equations (5.36)-(5.37) are a natural

multivariate extension of those equations since in the unidimensional case , we can rewrite

(5.36)-(5.37) as

Kt =-- He + Fe feT .Vt-1
	

1s4 = lit + Ft.yt.Vt-1

where Vt- 1 and ye are now scalars .

Appendix 5.2 : Basic Notation and the Matrix Normal /Inverse Wishart Updating 

Notation . Definitions and Properties 

a) vec A denotes the usual column-vectorization of a matrix A , i.e. , if A =-- ( al , ..., a )

then , vec A =--- ( a, ..., arm ) and some of the more useful properties include the following

1) vec(A+ B)= vecA + vecB

ii) vecA.C.B = (BT 0 A).vecC
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A 0 B =
am, .B

b) A 0 B denotes the Kronecker direct product between the matrices A and B , i.e.

and some basic properties include the following

1)	 A --.-- diag(A, .., A)

ii) (A® B) -1 =	 0 B-1

iii) (A B).(C D) = A.0 B.D

c) The random matrix 8 is said to have a Matrix Normal Distribution

8 - N(M,C,E) i.f.f. vec 8 N(vecM, E 0 C)

what means that if the matrices C and E are both positive definite , the probability density

of 8 is proportional to,

exp{A-tr(8 - m).c-'.(e -

As a consequence , the linear transformation A.8.B D is also a matrix normal distribution,

with mean A.M.B C and covariance matrices ( left and right ) given by A.C.A T and BT.E.B.

Also , the matrices e and E are said to have a joint Matrix Normal / Inverse-Wishart

distribution

NW-1 (M,C , S, d)

if and only if 8/E N(M,C,E) and E w- 1 (S, .

The Matrix Normal / Inverse-Wishart Model 

The common components model of section 5.3 can be equivalently formulated in a more

compact matrix-normal distribution notation writting the vector 2, as a matrix et where each

column represents the process parameters associated with each univariate marginal D.L.M.

(It = vecet ) as follows:

i) observation equation:

ii) system equation:

FT = tT p _ T
%-it	 1,4

et = Gt•et-i+

EtT N(CI,V)	 (5.38)

Ut N(0,Wt ,V)	 (5.39)
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(5.48)

(5.48a)

iii) prior information:(8 t- 1 1V, Dt- 1) -- N (Mi- 1 ,Ct _ 1 , V)	 (5.40)

(V/Dt_ i ) ••••• W-1(St-i,nt-i)
	

(5.40a)

Obs: This model formulation was presented originally by Quintana(1985) , where further

details and references can be found.

The equivalence between the matrix-normal formulation of equations (5.38)- (5.40a) and the

standard D.L.M. formulation given by the equations (5.14)- (5.16a) can be easily verified: from

(5.16),

(vecet_11V,Dt_ i ) ,.., N(vecMt _ i ,V 0 Ct- 1)
0 f

4-4 (et_ 1 IV, Dt- 1 ) ..., N(Mt-i,Ct-	 )

, what is (5.40) ; in a similar way, the other two equivalences can be verified.

Finally, the Updating Relations for f t and Vt can be obtained considering the standaid

multivariate-normal/inverse-Wishart model - eq.(5.14)-(5.16a) or, alternatively, using the more

compact matrix-normal notation, we get the following updating equations:

(5.41)

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

mt = 4 + At.Et

ct =1? - At -Qt.AtT

Mt. = Gt.Mt-i

R t = G t . Ct - i .GT +W

At = Rt .FtT .QT1

et = p4 - Ftr .1t4s

Qt = FT .Rt .Ft + 1

and also (V /D)Dt) .-., W -1 (dt, nt ) where :

d t = dt- 1 ± et-etT.QT1

nt . nt_ i -I- 1

73



1-4

a

I	 I	 1	 11
0 0 0 0 0 0
CD tD 'q RI 0 CD

1.4 s-1	 ./4

LT-T-r-rr-rrr-
000000000C) 0 C3 C3 C3 C) ' C) ID 0 Ul 0 Ul

U, Tr 171 CU	 c) cn 00	 LI1 CU ON Ul CU
vl 1-4	 1,4



1.4

a.	 a.
W I	 U-

r7-1 " 7 ----r	 — r - -1-1

	

o In 0 111 0 -000000	 o in o in o In o in
v4	 l	 e4	 (11 C1J ."4	 V/ ty	 ru ,-* v4	 I v4 ..1

I	 l	 I	 l



;

r------- - .-- - -- -1. WC"
cn
44

7)
6i
. .—
a0

.44
• •	 •	 •	 •	 •	 •

	

1 1 1 T11	 11 1 1 I 1

	

efl CO 1%. ICI 11, 1' in	 in in o in VI WI
• CU	 CU • r•

0 0 0 0 0 0 0 0 • • 0 •
0 010

1	 I



/................ ••n•n•• a.............ft...

to

in

4
-I

I

ni

‘11.
in

Morle.n .0*	 ,,,,..

LI
H
rzi in

cu

T
o
cu

in
.3

J_•_
o
e4

_I
in	 o



" ID

• in

frl

CU

-

111111-r-1

	

oininin	 0	 111	 V	 10	 0
CU	 •	 wet	 •	 14	 •

	CU 	 P.	 0;
ye



o	 IL	 in	 o m	 i in o
14	 •

n•nnn•••n•••••.J.•• ...0+n••n•• • ••nn• •nn••...... •	 Nir

0

rr

I

In

0



CHAPTER 6

A GENERAL METHODOLOGY FOR D.L.M. ANALYSIS

6.1 Introduction 

We introduce here a general methodology for analysis of multivariate D.L.M.'s where the

vector process parameter et and the observational noise variance-covariance matrix V are both

estimated on line in a fully joint fashion, without the limitations present in the previous model

of the last chapter ( the design of the matrices F and G does not need to have common blocks

only , and so on ) . This is possible considering a multivariate extension of some ideas used in

the univariate case. As we have seen from section 5.3.1 (unidimensional case) one of the key

ideas abo t estimating ft when V is unknown is the use of a factor to correct the standard

structure for the posterior variance Ct . This factor (see equation 5.13b) is basically V or

its last estimate St with reference to the previous estimate St _. 1 or any other reference as for

instance an initial reference So. In this way we are introducing the uncertainty about V in the

estimation equations for C , that gives a fully joint estimation procedure .

In the multivariate case , V is not a scalar and generally Ct and St do not have the same

dimensions so that this principle cannot be applied in a straight forward way. But this idea

( also present in the common component model of section 5.3.2 where all covariance matrices

are self-scaled by V in a Kronecker product fashion ) is very attractive and should be pursued.

This dimension problem however can be avoided by reparametrization from the process

parameter t24 to the mean response parameter p =Fi tt , since the variance of A has the
—t	 —t

same dimension dxd as V and can be scaled by S.

A general and natural variance structure considers symmetry , where all covariance matrices

are symmetrically pre and post multiplied by V i . in a simple multidimensional extension of

the univariate formulation . In fact , this variance structure is compatible not only with the

univariate case , but also with the common components model formulation , and in a more

general multivariate DLM framework , it provides the structure for a joint sequential estimation

( approximated conjugate prior analysis ) of 2, and V .

When we introduce this key feature in the model structure , the adaptive coefficient and the

posterior mean for B, will depend on V ( and consequently on the inter-series correlations )

so giving a fully multivariate model without the constraints mentioned before.
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Et is given by

It is important to remember however that the D.L.M. model has its dynamic evolution ex-

pressed in terms of the process parameter B4 and consequently we will need both parametriza-

tions: it in the time updating and —/lt in the observation updating, where the basic model

structure is defined.

As this sort of variance-scaling operation is specific to the p t parametrization, we should

apply the inverse operation before the inverse reparametrization from p t to 2t is carried out

again.

The posterior moments for /1 t are transformed back into the corresponding moments for ft

exploiting the Conditional Independence of et and y t given p t . The necessary results about

Conditional Independence are presented in Appendix 6.1A and the full model formulation and

analysis is presented in the next section as well as the corresponding updating equations and

some basic properties. In the following section of this chapter , an alternative representation for

the same model is proposed with different characteristics, and implemented in two alternative

versions. Finally , in the last section , one example of application using real data is given .

6.2  A General Multivariate D.L.M. 

Definition: A scaled version of the general multivariate D.L.M. model for a vector of obser-

vations y of dimension d made at intervals , at times t=1,2,...is defined by equations (5.1) and-4

(5.2) with the following distributional assumptions:

(i) Likelihood function : 	 (y_t hlt ,V = S 2 )	 N(Et ; S2 ) (6.1)

(ii) Approximate Prior Distribution :	 (/D- 1 ,V)	 N(Lt ; R;) (6.2)

(v- 1 /Dt_ i )	 w(utz2i; nt--1) (6.3)

where:

_p t = Ft .P4 with Ft & ft as defined before is the mean response parameter.

_f t is the prior mean for p given V—t

R;	 S.Et .S is the prior variance-covariance matrix for pt given V , where

Et = Var[Lit /Dt_I,V = I]

Ut--21 is the prior precision matrix, and nt _ i is the prior d.f.

Comment 
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It is important to notice that any symmetric positive definite matrix V can be expressed as

the square of a matrix S as in (6.1) . Although S is not unique , expedient choices of its form

are given in Appendix 6.2b .

6.2.1 Model Analysis:

Considering the assumptions (6.1)-(6.3) , the Bayesian analysis of the scaled multivariate

D.L.M. gives:

(i) Predictive distribution:

N(L;Q;)
	

(6.4)

where Q; = S.Qt .S , with Qt = Et + I = qj 2 say. This predictive distribution for yt ( note

that 4 = Et + z ) is obtained immediately from (6.1)-(6.2) since its mean vector L coincide

with the mean of Et given in (6.2) and its variance-covariance matrix Q1 is the sum of the

two covariance matrices given in (6.1) and (6.2) .

(ii) The adaptive coeficient (regression of Et on yt given Dt _ 1 8/ S 2 ) is defined by:

tA = Cov(y4 , yt).[Var(y4)]-	 given D_ 1 & S2 , or

A* = V ar(Et / Dt_I , S2).[Var(1t/Dt-i., 2.5 )) -1 = s.E.s.(s.Q. ․)-1

A* =	 where A =

(iii) The Sequential Approximation of the Posterior Distribution 

(Et / Dt , S2) N[m, = f t + A' .(kt - f) Ct = S.(I - A).Et .S	 (6.6)

The expressions in (6.6) are easily verified from (6.4) and (6.5) . Given the adaptive coefficient

matrix A* , the expression for the mean in (6.6) follows immediately as in usual posterior mean

updating . In the same way , the variance matrix expression in (6.6) can be obtained from our

usual posterior variance updating , which using the present notation is C t = R.; - A; .Q1 .AT

• Substituting R; , A; and Q; by their respective expressions , we get the desired result .

Also , defining HT = S- 1 .q.S or HT = S- 1 .Qt- .S , we have , using (6.4) , that

(HT .ft / 13t- -1, S 2 ) - N(); V)	 (6.7)

(6.5)
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And , using (6.3) , by Bayes rule we get

W(nts

n ± 1	
+ 1)

e 

where r is the precision matrix given by (6.3).

6.2.2 -  Posterior approximation az related aspects 

The first point that is important to stress here is that a precise formulation of DLM's in

closed form ( exact conjugate prior analysis ) is possible only for the scalar ( univariate ) and

the common components model , but not for the general case .

For these two special cases , the adaptive coefficients matrix A* does not depend on V ( in

fact , A = At = R F.Q;-1 for the univariate case and A* = At = I 0 At for the common

components case ) and consequently there is no approximation involved .

But in the general case , since V = S 2 , we find that the adaptive coefficients matrix A*

is of the form A* = S.A.S' ( and also HT = S- 1 .q.S ) and some sort of approximation is

necessary in order to keep a tractable close form of analysis .

A natural approach to this problem is to consider that in the locality of our best estimate

of V , namely Vt _ 1 =	 1 , we have that the adaptive coefficient matrix A* is locally

approximated by A* -= St _	 and also similarly HT -=	 .

The main practical and theoretical reasons that support the use of the approximations

considered as well as the whole methodology are

i) It is an effective procedure that enables a tractable closed form of analysis at a very

reasonable computational cost ( the whole algorithm is presented in the next sub-section with

full implementation details )

ii) The proposed general formulation coincide with exact conjugate prior analysis results

in the special cases of common components and univariate models , which is an excellent

theoretical property ( this one and other properties are presented with the corresponding

proofs in section 6.2.4 of this chapter ) .

iii) Even in the general case , the approximations involved can become exact or almost exact

if all estimated elements in V have an error ( difference from the unknown true variance or

covariance values ) proportional or almost proportional to a same constant . For a study of

the sensitivity of S.A.S- 1 in relation to perturbations in S , see Appendix 6.1b.

(6.8)
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iv) As the number of degrees of freedom increases , the model analysis for the general

case became exact , since Ut _ 1 converge in probability to S and we approach the case of a

multivariate DLM where V is known , which is presented in section 5.2.2. Then , even when

the linear or proportional assumption is not verified , the approximations are still justified

since in general U approaches S very quickly .

v) Finally , it is important to mention that the learning process for V is a key feature of

the present method and in general , as shown in the next chapter , it is faster and better than

with other approximation procedures for multivariate DLM analysis.

6.2.3 Updating Equations

In accordance with the general concepts introduced in 6.1 and the formal model definition

and analysis of last sub-section, the updating equations for the scaled multivariate D.L.M.

model will be given by the following steps:

notation: (04 _ 1 /Dt _ t , V = I) N(1731_ 1 , Ct'_i)

step 1 - time updating: (Pt- , V = I)	 N (gt Rt ) where:

a = G mi-
	 (6.9)

R.t = G .Gtl_ .GT + W
	

(6.10)

where W is specified through a given vector of discount factors 6. There is no time updating

for V - it is supposed to be constant, and the time evolution for et is the same as in the

standard multivariate D.L.M. model of last chapter .

step 2- reparametrization and scaling: (Et /Dt _ i ,V)	 N(L, 1'4') where:

f =FTat	 (6.11)—t

R: = Sc .Et .ScT	 (6.12)

Et = FtT .Rt .Ft	 (6.12a)

where initially, the scaling matrix S ec is set up as an identity and updated in step 3.
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step 3 - observation updating. a) posterior moments for Ait 	 (/D, v) — N(mt , Ct ) where:

»it =	 + A*	 —L) (6.13)

Ct = R;	 A; .Q; .A;r (6.14)

A-; = R; (6.14a)

Q; = R; + V

b) posterior moments for V : (V/Dt )	 W '(dt,n1 )	 where:

(6.146)

dt = rk .Vt	 (dt-i + ht./11.) (6.15)

nt = n_ 1 + 1

h, = St _	 .[(C2:).1]-1

(6.15a)

(6.150

St = (Ve)i (6.16)

Sc = St .So (6.16a)

where So is a reference matr x set up initially such that the initial scale factor S c is the

identity matrix.

step 4- Inverse reparametrization and scaling (f t /Di , V = I)	 N(ml ,Ctl ) where : (for

details, see Appendix 6.1A)

g4 -F itNrn
	

(6.17)

=R + 	E,).A:r
	

(6.18)

= R,	 (6.19)

C; =	 .C,.(S:1)T
	

(6.20)

Algorithm Implementation:

The implementation of the above 4-steps algorithm requires the computation of two matrix

square roots in step 3, respectively in equations 6.15b and 6.16. These matrix square roots

are implemented in two different versions, using respectively two different matrix factoriza-

tion techniques: the Cholesky decomposition method and the Jacob & related methods. (see

Appendix 6.2B for details and references).

The basic difference between these two versions is that , the second one provides not only

square root but also the full eigen-structure of V , making possible an additional Principal
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Components analysis of the multivariate time series, that is particularly attractive when the

dimension d is not small. Another advantage of using the eigen-structure is that this matrix de-

composition method is invariant under series permutations , although it takes more processing

time.

6.2.4 - Basic Properties

In order to complete the theory about the scaled multivariate D.L.M. model of this section

and also to provide a full insight about its characteristics , we present here four basic results

with the corresponding proofs. The first one is a coherence statement , and provides the

equivalence between the model formulation of 6.2.1 and the updating equations of section

6.2.2 , in order to unify and validate the whole formulation . The second one , as mentioned

before , is the fact that the models of section 5.2 ( the common components model and the

univariate model ) are special cases of the general methods presented here. The third one

refers to the important aspect that the associated marginals and conditional distributions also

follow the same distributional structure as the joint model. Finally, the last one give us the

limiting behaviour of the updating equations and is based on convergence results for dynamic

linear models.

i)  Specification Equivalence 

The posterior distribution of equations (6.6)-(6.8) given in the model analysis of 6.2.1 , and

the posterior distribution of the updating equations (6.13)-(6.15) are equivalent.

Proof:

By equation (6.14a) and using (6.2) & (6.4) , we have:

A• = S.Et .Qi- 1 .S- 1 = S.A.S- 1 , which agrees with (6.6).

Now, by (6.2),(6.4) and (6.5), the expression (6.14) becomes

Ct = S.Et.S — S.Et .00j 1 .Et .S = S.[I — ilj.Et .S , which agrees with (6.6).

Finally, by (6.15b) the coeficient of e,, using (6.4) is

S.(S.Q1)- 1 = S.q.S -1 = H , showing that (6.8) and (6.15) are equivalent.

ii) Special Models
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The posterior distribution of the general model of section 6.2 , given by (6.6)-(6.8), under

common components assumptions coincides with the posterior distribution of that model. Also,

as a consequence , the univariate DLM of section 5.2 is a special case of our general model.

Proof:

Considering the model analysis of 5.2.2 , the adaptive coeficient of (6.5) , will be given by

A* = Cov(tit ,L).[Var(mt )] -1 = (V 0 F.R.t .FT ).(V 0 Qt ) -1 = k.l

where lc = F.Rt .FT .QT 1 , and since S.A* .S-1 = AS , the posterior means of both models

coincide. Also, as Ct of (6.6) and (6.14) are the same, and 1?; = V ar(Et 1 Dt- 1,V) and Q; =

Var(yt /Dt _ i ,V) are both proportional to V, then Ct cc V in both models (with the same

proportionality constant). Now, as (6.8) and (6.15) are equivalent, and Q: = V Ci)Qt = Qt .V
_ L

we have, using (6.15b) and (6.16) , that ht = et .Q t '	 ; consequently , by (6.15), we get,

dt = li_t = (Li + .4. .QT 1

ns

which is exactly the updating equation for d t in the model analysis of 5.2.2 , and the observation

updating for both models coincide .

In order to have full equivalence between both algorithms , their time updatings for et

should be the same . This means that the equations (6.9)-(6.10) under common components

conditions should coincide respectively with equations (5.43)-(5.44) of Appendix 5.2 for the

CCM . In fact , by (5.43) we have Mt* = G .Mt _ 1 where these matrices of prior and posterior

means are such that rn i_ i = vec Mt _ 1 & ci_t = vec Mt* . Then

at = vecG.Mt _ i = (Id 0 G).vecMt _ 1 = G._ 1

which is exactly eq. (6.9) forrn 	 = TrIl_ i . Also , by (6.10) , since Re = V ar{It l Dt_ i ,V =

I} we have,

B4 = G.Ct _ I .GT + W  = (I 0 G).(/ 0 Ct _ i ).(/ 0 GT ) + (/ 0 Wt)

= (i 0 G .Ct- 1 .GT ) + (I 0 Wt) = Id 0 Rt

where Re = G .Ct _ 1 .GT + Wt which is exactly (5.44) .

In practice however we specify W t through a discount matrix B with a discount vector b in

the diagonal and ones elsewhere . This produces the same results as if we define alternatively

B a = ( I'd 0 B) where B is a discount matrix for the marginal models. Then,

Itt = (Id 0 G .Ct _ i .Gr ).B = (Id 0 G.Ct-i .GT )•(Id 0 B) = Id 0 Rt
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where A = GC_ i GT .B , which is exactly the practical implementation of (5.44) , and the

proof is totally complete .

iii) Approximated Marginal St Conditional Distributions 

Each scalar time series in the d-dimensional vector y of observations modelled by the scaled---t

multivariate DLM model follows an univariate DLM model. Also, conditional on the values of

a given subset of d — el* time series , the corresponding ci s -dimensional vector y: will follow a

scaled multivariate DLM model.

Proof : This is a direct consequence of multivariate normal theory.

Corollary: One important consequence of this property is that the model can be used to

define not only joint and marginal forecasting functions but also Conditional Forecasting Func-

tions , which is an extremely attractive feature of such multivariate models.

iv) Convergence result 

If a given scaled multivariate DLM is constant and  observable , ( that is , the matrix T

given by (6.21) has full rank ) then , using arguments analogous to those in Quintana(1987)

the following limiting relationships about adaptive coeficients and variance-covariance matrices

are conjectured

lim {A;, Cil ,./it , R.:,Q:), = {A*,C 1 , R, R*,Q*}
t— co

with the following relations

R=G.Ci .GT -f-W ; A*. R*.Q •-1 ; Q* = R. +V

Comment

For convergence results about observable constant DLM's , also valid for multivariate con-

stant DLM's , see Harrison(1985) and West St Harrison(1989) .

In the particular case of common components , the limiting results above coincide with the

limiting equations for the CCM , as given in Quintana(1987).

6.3 -  An Alternative Model Representation  .
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Although the method proposed previously in the last section is perfectly valid for modelling

and forecasting purposes , the model is basically defined in the ii parametrization where the

variance structure is specified , and full unconditional distribution for 0 is not available.

In fact , given an initial probabilistic information for ( 20 /D0 , V = sg ) where So is a

reference variance matrix ( see step 3 of section 6.2.3 ) , all we can get from the model with

respect to gt is the distribution of (2t /Dt , V = S) , restricted on a reference variance

matrix SR = So .

Consequently , the possibility of intervention in the 0 prior for instance is more restricted

and an alternative procedure where full ( unrestricted ) prior and posterior distributions are

available is desired . That is , we want the posterior distribution (Lo t /D2 , V) for a general

and unrestricted variance matrix V .

In this way , we will keep the basic model formulation forilt as in section 6.2 but an

alternative procedure to bring back the information from E t to et will be introduced , instead

of using Conditional Independence relations , that will make a direct new model formulation

for B.4 possible.

In order to make easier the full understanding of the new model formulation and analysis

introduced in section 6.3.3 , we present two introductory sub-sections - 6.3.1 and 6.3.2 - with

basic definitions and concepts as well as some theoretical background .

6.3.1 -  Basic Definitions and Concepts. 

We consider here an alternative way of structuring the prior covariance matrix R under the

same basic model of last section. But now , dimension compatibility is reached not contracting

R to the S dimension , but expanding S to a R compatible dimension through the  observability

matrix T defined by,
(T1)

T = T2 =

Tic (

FFG )

FGk-1

(6.21)

with dimension kdxp , where k is the maximum parametric dimension of the marginal models

, d is the dimension of the observations and p is the process parameter dimension.

In order to understand the meaning and usefulness of this matrix T , lets see how it works

in practice as a transformation matrix from the space generated by et to the space generated

by Et and vice-verse through a very simple illustrative example .
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(1111+ 1 ) = ( F 

.0 . (1 o\
I. j tt (6.24)

= ( titat )
(6.25)

ST= (6.26)

Example : Without loss of generality with respect to the aspects we want to focus attention,

consider the unidirnensional linear growth model with zero noise ( otherwise , consider expected

values of parameters and observations ) defined by,

fit =- P4	 (6.22a)

( ii tfitt ) = ( 01 13 . ( 2 i : )	 (6.226)

where At (mean response parameter) represents the process level and )9t is the slope parameter.

We notice that the information about f t is transferred ( partially) to At through the relation,

p,t = F.ft = ( 1 0 ) . ( 1:5,: )	 (6.23)

but the reciprocal (the 'bring back' of information from At to et ) is not obvious since F is not

invertible . In order to overcome this difficulty we rewrite (6.23) with t substituted by t-I-1

At+i =F.10.1 = FG .2t = (1 0).(01 1)1 .61t
	 (6.23a)

and add (6.23a) to (6.23) , giving

Now , the inverse transformation is possible , giving

41
(

1 0 -1	 At
1 1 ) ' Li = ( !1 01).(PtA+1)

Basically , what happens is that the information about the slope A lost after the contraction

transformation F can be recovered considering the additional transformation FG . In a more

general situation where we have more parameters and 4 is a vector , the same ideas apply and

the transformation from 0 to A is the one defined by equation 6.21 .-t	 _t

Definitions : Now , the expanded scale matrix ST of dimension kdxp is defined by

RI. = T- .5.2, .R.S; .T-i	 (6.27)

S . .Tk

where S• is such that V = S* .Vt _ i .S* , and the scaled version of R will be defined by ,

where R = Varift /Dt_ 1 ,V = Vs- i l and T- is the Penrose generalized inverse of the ob-

servability matrix T , which will coincide with the standard inverse for common components

models .
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6.3.2 -  Theoretical background 

Although it may seem arbitrary ,in fact, the variance structure (6.26)-(6.27) was designed

in order to hold certain specific relations as we can see through the following  analysis 

0 Rewriting the equation (6.27) as T.Hr .T	 ST .R.S; and using the definitions (6.21)

and (6.26) , we have

S* .Y
(F1G).Ity. F	 G •.) = S"•F G .R.(S* .F i S* . 111 G ..)

•

which immediately implies that

Var[FT .G1	 Dt- 1 ,V = S a .14-1.S*1= S* .FT .Gi

j=0,1,..,k-1 , where ,	 j=0 , it gives

V ar[Et 1 Dt_ i , V = S2 ]= S".FT .Rt .F.S" = S*	 = S.Et.S

(6.28)

(6.29)

(6.30)

since E; = Var [Et /Dt _ i , V =Irt--1] =	 .Et.Vtli and S = S" .Vt 2_ by construction.

We notice that (6.30) is exactly the same variance structure considered in the last section,

as we can see from equations (6.12)-(6.12a) . As a consequence ( see property ii of section

6.2.3 ) , in the case of j = 0 , the variance structure (6.29) is in accordance with the

conjugate analysis for the common components model. That is the case , for instance , of the

multivariate steady model - a multidimensional generalization of the univariate steady model

presented by Harrison & Stevens (1976) - where each marginal univariate series is described

by only one parameter (k=0) , the level process , and then j= 0.

Now , to see that not only for j = 0 but for any j= 0, 1,.., k — 1 , the relations (6.29) are

in exact accordance with the conjugate analysis of the common components model of section

5.2.2 , we proceed as follows :

From the left hand side of (6.29) , we have,

Var [FT .G' ./D_ 1 , V = S''	 = 11 ' . Gi .R, . G ii .F	 (6.31)

Under common components conditions (F =IOF ; G=IOG ; 114=VORt)

and using operating properties of Kronecker products such as (A 0 B).(C 0 D) = A.0

B.D ; (A® B) k = Ak 0 Bk ; (A®	 = 0	 , etc , the equation (6.31) became

Var[F i .Gilt /.] = V F' Ci .A.Gsa F = c.V = c.S* .Vt _ i .S*	 (6.32)
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where c = .Gi	.F is a scalar.

Now, from the right hand side of (6.29) , and under the same conditions ( common compo-

nents) , we get

Var[F ' .Gi .P4 /1= S*.Vi-i 0 Fi Gi .Rt .G 1 F.S" = c.S* .Vt - i.S*
	

(6.33)

Finally , comparing (6.32) with (6.33) we see that these variances coincide exactly .

6.3.3 - Model Formulation and Analysis

Definition : An alternative formulation of the multivariate DLM model of section 6.2 for a

vector of observations 4 of dimension d made at intervals , at times t=1,2,.. is defined by the

equations (5.1)-(5.2) with the following distributional structure

i) prior distribution for V : (17- 1 /Dt_ 1 )	 w(cit _ I ;nt _ i ) where 4_ 1 and nt_ 1 are re-

spectively the shape parameter and the d.f. of the Wishart distribution such that Vt_1

de- int-1.

ii) joint prior distribution for gt and 4 :

( 24 I Dt-1, 17 = Ss Ye-1.P) N Wit ) • (R. I'	
r.F

L	 .Rr .F +Vs-

where RT = T .ST .R.S;	 , with T and ST as defined in (6.21) Sz (6.26) respectively and

R =Var[et 1De - i,17 = Vt-1]

iii) As a direct consequence of the definition above given by (i) (ii) , we have also that the

joint prior distribution for	 and y is given by :
-t	 -t

(
1.1 T I 

De-i,V = S.S' =	 N ( Fr	 S.Et.S' S.Et .S1)1 (6.35)
kt 1	 tk 	 ff

where all elements in the covariance matrix of (6.35) can be equivalently written with the star

superscript since , for instance

Q; = q.qi = Var[z/Dt-I, V = Vs- 11 =	 1.Qt.vtli

and then,
_ 1 1	 _ 1

=	 vvt-1 = S.Qt.S

Model Analysis  :

(6.34)
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m = a + AT .ft--t -t (6.41a)

0  Posterior distribution for V 

From the joint prior distribution given in (iii) above , we have

(/D_ 1 ,V = S2 = Ss .Vt _ 1 .S" ) N[0; S.Qt.S]
	

(6.36)

Or, equivalently , (H.et l Dt _ i , V = S2 ) s N(0; V) where H = S.(S* .q) -1 = S 1 St _ i.S-1.

Now , supposing that H is locally constant around V = Vt-i = St - 1 • S;-, , and , as a

consequence , approximately equal to S_ 1 .q' , we have , using standard conjugate analysis

, the following posterior for V : (V 1 /D1 ) W (dt ;nt) where

dt =d 	 + ht.h:
	

(6.37a)

h. = St-1-9- -ft
	 (6.370

nt = nt- + 1
	

(6.37c)

which coincides with the posterior distribution for V given by the equations (6.15)-(6.16) .

ii)  Posterior distribution for u 

From the joint prior distribution for y and E t , we have that the adaptive coeficients matrix-t

A* is given by

A* = Cov(x, Et 1 Dt_i,V).Var(mt/Dt_i,V)

= S.E, .S ' . (S.Q .S' )- 1 = S.Et .Q;.1 .S -1 = S.At	 (6.38)

As a consequence , the posterior distribution for Et will be given by

Dt,V) N[F' Alt + A* .ft	 S s* .(I - A*).E;.S*	 (6.39)

which coincides with the posterior distribution of the model formulation of section 6.2 .

(iii) Posterior distribution for 0,  : From the joint prior distribution for y t and gt , the

adaptive coeficient matrix AT is given by

AT = C Ot(yt , ft / Dt _ i ,V).Var(mt /Dt - i , V) = RT •F.W 1
	

(6.40)

where QT = -FITS + Vt- . As a consequence , conditional on V , the posterior distribution

for 2, will be given by (C/D,,V) N(;Ct ) where
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(6.42a)

(6.42b)

Ct = (I— F.AT ).Rr	 (6.41b)

Also , the unconditional posterior distribution for Bt will be given by,

p(it /Dt ) = f p(It / Dt ,V).p(V Dt ) dV

where the densities for ft and V in the integrand were defined before . Solving this integral

in V , we get a multivariate t distribution for the unconditional posterior distribution of I t ,

with parameters m , Ct and nt , as defined before.

6.3.4 -  Updating Equations 

As a consequence of the definitions and analysis of sections 6.3.1 to 6.3.3 , we have the

following Updating Equations defined directly in terms of the e t parameter :

notation  : (tit _ 1 /Dt _ 1 , V), N(_ 1 , C_ 1 )_1)

1)  Time Updating  : (B4 / Dt_ i , V) N(at ,Rt ) where

a = G m-t	 • --t - 1

Rt = G.Ct _ i .GT +w t

In practice , Wt is specified through a discounting factor 0 < 8 < 1 - see Harrison & West(1987)

ii) Observation Updating for V : (17-1 1Dt) — W(dtint) where

(6.43)dt = dt -1 + ht .hT

1	 1
= Vtl i . [Qt2 1 -1.-te (6.43a)

Qt = FT .Re.F -1-Vt_ (6.430

et = y_t — FT Alt (6.43c)

nt = nt -1 + 1 (6.44)

Vt = nT l .dt (6.45)

St = Vt 3 (6.45a)
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iii)  Scaling and Observation Updating for 0,  : (8, / D,,V) N (ral,,Ct ) where

r_n_t = g_t + AT .ft	(6.46)

AT =	 (6.46a)

Ct = (I— FAT)•kr	 (6.47)

HT

▪

 T •(ST	 (6.47a)

QT 

▪ 

FT •Rf .F Vt	 (6.48)

Ss --_-_ St .St _	 (6.49)

ST =	 :	 (6.50)
.Th

F' .G5-1	 , j	 1, k	 (6.50a)

Important Implementation aspects 

i) This algorithm was implemented considering two different numerical methods for matrix

square root evaluation ( equations 6.25 and 6.25a) : the Cholesky decomposition and the

Jacobi method . Also , numerical methods for generalized inverse matrix evaluation are used

in the implementation of the equation 6.47a. For details and references about these numerical

procedures , see Appendices 6.2a and 6.2b.

ii) Although there is theoretical equivalence between the model structure of this section and

the former formulation of section 6.2 ( and consequently the conjugate analysis of the CCM is

a particular case ) , its practical implementation using discount factors procedures in the time

updating stage does not necessarily keep this equivalence . In fact , given a discount matrix

B , under common components conditions , we have

it, = G.Ct_ .GT .B = (/ Gt)•(Vt- O Ct-1)-(/0 GT ).B

= (17,-1 0 G .Ct_i.GT).B

The usual definition of B with a discount vector b in the diagonal and ones elsewhere ( diagonal

discount ) clearly destroy the mentioned equivalence , although this is still the recommended

practical procedure .

Such equivalence however can be obtained using the following alternative specification for

the discount matrix. Consider a  common discount  factor 0 < fi < 1 for all matrix elements
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E
y3 . eitV ti

=1

1
—
t

.[ R2 (w) + (w) ]	 withC(w)

(1 .. 1 )
( variances or covariances ) such that B = if+	 : :: :

1 .. 1	
As a consequence , we have

Rt = V_ 1 0 Rt , where R., = G .Ct _ 1 .GT I 13 , which is the standard practical variance time

updating for the CCM .

For this reason , we have implemented the updating equations of this section using both

discount options : block diagonal discount and common discount .

6.4 - An Application with real data 

We present here one example of application with real data where the algorithm of section

6.3 for updating of the general multivariate DLM is used .

6.4.1 -  Data Modelling and Analysis  :

The data in question is a three-dimensional time series of soft wheat prices per 100Kg in

the three major European economies : Great Britain , France and West Germany . The

series consist of monthly average prices , expressed in European Currency Units - ECU , from

January of 1982 to April of 1988 . The reference source of this data is EUROSTAT , and

consists originally of agricultural price series from the CRONOS DATABANK .

Commodity price series in general present annual seasonality and , in the case of the present

data , this can be observed in fig. 6.1 . In fact , a more carefull analysis of the seasonal pattern

present in the data using a Periodogram ( see figs 6.4 , 6.5 ) , suggests the presence of the first

two harmonics ( 12 months and 6 months seasonality ) in both the DTPRICE and FRPRICE

series . The GBPRICE series however does not present any significant harmonic at all , and

consequently , no seasonal component is considered for this series .

These harmonic analysis results were obtained through the package B.A.T.S. ( Bayesian

Analysis of Time Series ) and the Periodogram is essentially the squared magnitude of the

discrete Fourier Transform of the data ( each individual scalar time series ) D t = {Yi , Y2, —, Yt}

, i.e.
2

R(w) = E y, .cos wti di 1(w) = E yi .sin wti
=	 i=
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where w = -1. is called respectively first harmonic , second harmonic , ... etc for T = 12 , 6
T

,... ( it is considered monthly data ) , and C(w) will give the proportion of variation in the

data explained by each individual harmonic.

A model is specified ( multivariate DLM ) with a linear trend component and a 2-harmonic

structure for each series , except the GBPRICE series where there is only the trend term .

At this point , it is interesting to mention two aspects related with model selection , or

more specifically , with the identification of the seasonal structure that should be present in

the model . The first one is that if we want a more parsimonious model , we could perhaps

drop the second harmonic in the DTPRICE series since it has a relatively small significance

as showed in fig 6.4. The second aspect is related with the data measurement unit considered

, i.e. , E.C.U. The model we have chosen , and particularly the seasonal structure , would

be different if the prices were given in their national currencies - Pounds , Francs and Marks

. In this case , as suggested similarly by a spectral analysis of each new time series , only

the FRPRICE ( in Francs ) series would follow the same previous two-harmonic structure

the DTPRICE ( in Marks ) series would need only the first harmonic and the GBPRICE ( in

Pounds ) series would need one or perhaps two harmonics in its seasonal structure .

It is clear that , because the seasonal structure is not common to all series , the model does

not have more an overall common component structure , but a general multidimensional DLM

form. Concretely , the model under consideration can be written as

y = F.it +Et , Et ,-.. N (0,V )
—t

0 — G 0 + w
—t — • —t —1 —t	 W e••• N (0, W )

with the design elements F &G specified as F = diag { Fl, F2, F3 } where

Fi = F2 = ( 1	 0	 1	 0	 1	 0)	 &	 F3 = (

and the system matrix is G = diag {G i ,G2 ,G3 } where

1	 0	 0 0 0	 0)

G I = G2 = diag
1 (1	 1) .(	 .866	 0.5 ) . (	 0.5

0	 1) ; 	—0.5	 .866	 '	 —.866
.8 66) 1
0.5 )

& Gs = (1
0

1)
1)

In order to make use of the algorithm of last section , relatively non-informative initial priors

( standard priors with large values for the parameters associated with uncertainty ) are set

where Co = 100.1 and no = 0.001 . The one-step-ahead forecasting residuals from this model
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is presented in fig 6.2 , which suggests , with the exception of a few points , a good agreement

between model and data . The correlation between the component series are presented in fig

6.3 , which show a high correlation between the series of German and French prices ( around

0.8 or 0.9) and a weak correlation between these series and the GBPRICE series . In fact

the original series suggest this sort of behavior ( without quantifications of course ) , which

reflects a more independent or peculiar position of Great Britain in terms of economic policy

, particularly in the case of agricultural products .

6.4.2 -  A Conditional Analysis 

Another interesting aspect we can explore in our analysis is related to the way the data is

sequentially available in time . In general , we can notice that the agricultural prices for West

Germany are available in EUROSTAT at least 1 month ahead in relation to the prices in the

other two countries . For instance , if today the more recent data available in EUROSTAT

about commodity prices ( wheat in particular ) in England or France is relative to March/89

, the same data for West Germany is available till April or May/89 for instance .
Yi,t- i

In general , what happens with our data , say L _ i = u.2. t- 1 is that , when we are using
Y3.t- 1

data till time t-1 to make 1-step-ahead forecast about k t , in fact , yit is available ( or another

subset of L ) and we can use this information to improve our view about the future values of

the other components of y . Then , using the notation of the algorithm of section 6.3 , the--t

predictive distribution for k i is given by

(Yt i Dt- 1,V) •-- N( f t = FT Alt

Now , given that yit is known at time t-1 , the conditional predictive distribution for y* =
--t

Y2t(
Y3t 

is given by (y*IDt-i,Yi	 (rt ,V) — Nt,Q;)--t	 where-

r = f2t + Q21 . 41-11 . (Yit — fit)-t -

Q; = Q22 - Q21 •Gil 412

Notation  : flt
f -- ( f )	 &	 Qt .

 
(u Q12 )

-2t	 -v 21 Q22 i

• As a consequence , conditional on a given value of y it , we can now define one-step-ahead

forecasting residuals for the other two series as < = it — .1• These conditional residuals are- 2t 

shown in fig 6.7 , which can be compared with the usual residuals.

, Qt = FT .Rt.F +vt- 1)
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Appendix 6.1a - Some Conditional Independence Results

Consider the following basic definitions involving the random vectors X , Z & U and the

concept of Conditional Independence - C.I. for short

(i) X is Conditionally Independent of U , given Z , if and only if, X given Z has the same

probability distribution as X given Z and U.

notation : X±U/Z 4- X/Z X/Z, U

(ii) X and U are Conditionally Independent given Z if and only if, given Z , X is Conditionally

Independent of U and U is Conditionally Independent of X.

Now, lets consider some basic results involving normality and conditional independence:

LEMMA: If the normal random vectors X, U & Z are such that X and U are Conditionally

Independents given Z , then , we have

Cov [X, If] = Cov[X, 4.[Var(Z)1 -1 .Cov[Z, 17]

Proof : Considering the notation

	

Exx Exu	 I	 Ex z )( Xu )

	

Euu	 I	 EuzVar	 =

Z	 I	 Ezz

from standard multivariate normal theory , we have

Var (X I Z) (Ex
—xU I . )	 —

Exu )_ E( Exz ) - 1
E UU )	 uz .Ezz - (Ezx Ezu )

Then , since Coy ( X ,U / Z ) = 0 by hypothesis , we have

Ex u — Ex z -E Z lz .Ezu = 0	 , or equivalently

Cov[X, fi] = Cov[X, 4. [Var (Z)] -1 .Cov[Z, U]

THEOREM: If X , Z and U have a joint normal distribution and, given Z, X and U are

Conditionaly Independent, then

IX I U = u ), N f ( m;c )) . ( C;c il*.C; ) )
I	 .	 )	 l'71tz'	 ••	 Ci ii
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where:

A* = Cov(X,Z).[Var(Z)]-'

m;c = mx + A*. ( 174 - mz)

= Cx A.*.(C; - Cz).A*T

Proof:

(i) Let A = Cov(Z,U).[Var(U)]-' . Then, using Lemma 1,

A*.A = Cov(X,Z).[V ar(2)1 .Cov(Z,U).[Var(U)]-1 = Cov(X,U).[Var(U)]-1

Then, as msz = mz + A.(u - mu) we have:

m;c = mx A*.A.(u - mu) = rnx A*.(m; - mz)
	

(1)

(ii) C = Cz - A.Cu .AT . Then, as C;c = Cx - A* .A.Cu .AT .A*T , we have

C;( = Cx + A* .(C; - Cz).A-T
	

(2)

Finally, lets consider the specific case of multivariate D.L.M's , where X = , Z = p = F.0

and U = y . At each time t , given Et = Flt , Pt and are conditionaly independent by

definition . Using our usual notation , the prior moments are (40 ,14) and (gm , R) and the

conditionaly independent posterior moments are (me,C 8 ) and (m , CO. Then, the relations

(1) and (2) can be rewritten as:

=	 A*.(tzni, - ao )	 (1')

Co = 14 + A.	- Rm ).A*2.	(2')

where A* = Cov(0,).11, ar(A)]-' = FT .R0.1i;1

Appendix 6.1b - Some Sensitivity Analysis Results

notation : A is a dxd real matrix and S is such that S.ST = V where V is a dxd covariance

matrix.

Lets study the sensitivity of T =	 I to variations or perturbations in the matrix S or

V. Initially we will consider the special cases of first order (linear or proportional) and second
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order perturbations in S using ordinary tools, and after , the more general case, using tensor

differential calculus.

a) special perturbations : 1" dz 2" order cases.

One very important special case is when all elements of V vary or are perturbated proportion-

ally to the same constant A 2 say. Or, equivalently, when all elements of S vary proportionally

to the same constant A. In this case, as

(AS).A.(AS)-1 = S.A.S-1

there is no resulting perturbation in T.

Now, in the case of 2" order perturbations, given by

1
S --n 5+ e.S1 + .€2 . S2 + 0(c3)

it will induce a perturbation in T , given by

1
T —n T + E.Ti + -

2 
.e2 .T2+ o(€3)

where:

Ti = Ri .T - T.fii 	 T2 = (R2 . T - T.R2 ) - 2.T1 .R1

RI = Si .S-1	 R2 = S2 .S-1

obviously, when S = S1 and 52 = 0 we have the proportional case.

b) sensitivity analysis - general case

Considering the matrix differential of T = S.A.S- 1 , we have:

dT = (dS).A. S-1 + S.A.d(S -1 ) , or

d(vecT) = [(A.S -1 ) T 0 Id].(vecdS) ± [Id 0 S.A].(vecd(S-1))

or, equivalently

d(vecT)= {[(A.S -1 )T 0 Id] - [ (S')T 0 S.A.S-1]}d(vec5)

where the dxd matrix between curly brackets is the Derivative Matrix. This matrix , express all

the information about how sensitive is S.A.S -1 to variations in S. However, this information

can be summarized in a simple way through its Euclidean Norm, as follows :

ID! =1[(A.s-i)T 0 led— [(s- 1 )T 0Th
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or,using well known inequalities, we have

I DI I(A.s-')I 0 LI +1(s- i )T OT1

and, after some algebra, we get

,aT ,
1—
as

! d.tr(A.V -1 .AT ) ± tr (17 -1 ).tr(V. A.17-1 .AT ).

For more details about matrix or tensor differential calculus, a good reference is Magnus &

Neudecker(1988).

Appendix 6.2a - Generalized Inverse Matrix Techniques

I - Basic Definitions and Properties 

DEF.1 : A matrix is Hermitian if it equals its own Hermitian transpose ( or complex con-

jugate transpose AH = AT ) ; that is , A is Hermitian if A = AH . In practice , a Hermitian

matrix is the counterpart of a symmetric matrix when A has complex elements. When A is

real , both concepts coincide. One important property of such matrices is that the eigenvalues

of a Hermitian matrix are real .

DEF.2 : The ( Moore-Penrose ) generalized inverse ( or pseudo-inverse ) of a matrix A , not

necessarily square , is a matrix A- that satisfies the following conditions

i) A.A- and A- .A are Hermitian.

ii) A.A- .A = A

iii) A- .A.A- = A.

In the case where only the condition ii) is satisfied , A- is called a conditional inverse of A;

some authors , such as Rao (1973) , define g-inverses in this more general way ( for specific

applications where uniqueness is not necessary ) .

PROP.! ( Existence & Uniqueness ) : For every matrix A of dimension nxm , the M-P

generalized inverse A- exists and is unique ( with dimension mxn ) .

PROP.2 ( Operational Properties )

1) A- = A- ' for a non-singular square matrix A

ii) (Al- = A	 ;	 (AH)- = (A-)H

iii) (kA) - = il .A- for k � 0	 ;	 0- = 0	 ( null matrix )
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( case I)

if at = At- .Ati -at Az at 0 0 (II)

iv) When the columns of A form a linearly independent set of vectors , we have , A.- =--

(AH.A)-1.AH.

-  Computing MP-generalized Inverses 

Although the last operational property (iv) provides a simple and practical way of calculating

generalized inverses , it is restricted to the case of full rank matrices . In our context of

multivariate DLM's of this chapter , A is an observability matrix T ( see definition 6.21 )

where for most practical situations we have full rank . However , there are models where T

doesn't have full rank and , a more general matrix inversion procedure can be necessary .

An iterative scheme to find the MP-inverse of a matrix is given by the following Theorem [

Graybill (1983)

Theorem : Let A be an mxn matrix , let At _ I be the mx(t-1) matrix consisting of the first

t-1 columns of A and let a t be the t' column of A . Then , we have

A- . ( At-1 i Atil.at.bj	 where,

bt = (I - At --1 .Ati i ) .at	 if	 at �
- [1 + al. •( At-I .Atr- 1) - .at l(At - AT_ /)-.atb t 

al..(At-I.AtT- 1) - •( At- • AtT- 1) - •at
bt = 0	 if	 at = 0	 ( case III )

Appendix 6.2b - Factorization Methods for p.d. Matrices

In the methodology introduced in this chapter , two basic factorization algorithms and

related techniques were used: the Cholesky decomposition method, that gives the square

roots of a symmetric matrix , and the Jacob method, that provide full eigen-structure , and

consequently square roots also. We present here the basic definitions and properties about

these and related methods. A more detailed description of these techniques and full references

can be found for instance , in Bierman,G.J.(1977) or Press,W.H. at all (1986)

A)  Matrix Square Roots dz the Cholesky Decomposition Algorithm

Definition: If the positive definite matrix V can be written as V = S.ST , with S a

square matrix, we say that S is a square root of V. This definition, although frequently used, is

not universal. Some authors allow S to be rectangular , while others restrict S to be symmetric.
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Basic Properties:

i) Unicity: Square Roots matrices, when they exist, are non-unique. If S is one square root

of V , and P is orthogonal (P.PT = I) , then S.P is also a square root of V.

ii) Existence: Every P.D. matrix has a square root. This can be verified by the elementar

process of completing squares in the corresponding quadratic forms.

iii) Triangular Factorization: If Si and S2 are two lower triangular factorizations of V

then Si = S2. diag(±1, ..., ±1) , i.e. S(j, j) = ±[V (j, Alf . From now on, we will consider

the unique square root corresponding to positive diagonal elements.

Lower Triangular Cholesky Decomposition

If V is P.D., it has a lower triangular factorization V = S.ST , and the one with positive

diagonal elements is given by the following algorithm: For j = 1,...,d-1 (d= dim V), recursively

cycle through the following ordered set of equations:

s (i, 2.) = 1 r (3. Al

S(k,j) =V (k,j)1S(j,j) , k = j + 1, .., d.

V(i,k) 4-- V(i,k) — S(i,j).S(k,j) , k= j + 1, ., d; i =

and then S (d, d) = V (d, d)

Proof: (see Bierman,G.J.(1977) for instance)

Comments: i) An upper triangular factorization follows a similar algorithm , changing only

indices order.

ii) The Cholesky decomposition algorithm can also be phrased in terms of the Sweep Oper-

ator - Goodnight(1979).

B) The Jacob Method and related techniques for EiRen-Structure computing

Definition: A dxd matrix V is said to have an eigen-vector x and corresponding eigenvalue

A if V.x = A.x . Multiples of x are not considered distinct eigen-vectors and the zero vector is

not considered to be an eigen-vector at all.

Basic Properties:

i)Existence: The associated characteristic equation IV — A./I = 0 , derived from the definition

, is a du  degree polynomial in A whose roots are the eigenvalues , that proves that there exist
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always d (not necessarily distinct) eigenvalues. Consequently, by the definition , there are d

corresponding eigen-vectors (not necessarily distincts).

ii) Symmetry & diagonalization: If V is symmetric, the eigen yalues of V will be real. Also, if

they are distinct , the eigen-vectors x will be orthogonal to each other , forming an orthogonal

matrix X. Then, by definition , V.X = X.diag(A l , .., Ad ) , or equivalently , x-- 1 .v.x =

diag(Al , .., Ad ) , which is a special (similarity) transformation called diagonalization.

iii) Similarity transformations: In general , for some transformation matrix X , the applica-

tion V --n X- 1 .V.X is called a similarity transformation of the matrix V. They play a crucial

role in the computation of eigenyalues because they leave the eigenvalues unchanged , since

1x- 1 .v.x - All = lx- i (v - A.1).xi = Iv - A.II

In general, the strategy of virtually all modern eigensystem routines is to nudge the matrix V to-

wards diagonal form by a sequence of similarity transformations V --, V1 = xi- ' .v.xl. ;171 -1

V2 = X2-1 .11.1.X2 ..etc , till we get Vk = diag(A I , .., Ad) for a certain k. And, the eigen-vectors

are the columns of the accumulated transformation X = X1.X2....Xk.

Jacobi Transformations : The simplest technique for diagonalization of a symmetric matrix

consists in a sequence of similarity transformations based on the Jacob rotation matrix,

C

1 )

C	 a

where all the diagonal elements are unity , except for the two elements c in rows (and columns)

p and q. ALI off-diagonal elements are zero, except the two elements s and -s. The numbers c

and s are the cosine and sine of a rotation angle 0 , where these elements are chosen (at each

time) in order to make one of the off-diagonal elements of the transformed matrix equal zero.

The original Jacob's algorithm searched the whole upper triangle at each stage and set the

largest off-diagonal element to zero. A better strategy however, used nowadays, is the cyclic

Jacob method, where one annihilates elements in strick order.

Comment : It is important to mention however that when d is large (around 10 or more), the

Jacobi method became inefficient , and is recommended to reduce V first to a tridiagonal form

(using Household transformations) and then use some iterative or factorization method (Jacobi

, QL algorithm, etc) to complete the diagonalization. The Household algorithm reduces a dxd

1

Ppq = i:
—8

1

105



symmetric matrix V to tridiagonal form by d-2 orthogonal transformations , each one annihi-

lating part of a whole column and corresponding row. The basic ingredient is the orthogonal

matrix P = 1 — 2.w.wr, Iw1 2 = 1. It is easy to show that P acts on a given vector x to

zero all its elements except the first one. The implementation details of this method can be

found for instance in Press,W.H.at all(1986).
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CHAPTER 7

SOME ALTERNATIVE TECH:NIQUES FOR DLM ANALYSIS

7.1 -  Introduction 

As we have seen in chapter 5 , fully closed bayesian procedures for estimating It and V in the

multivariate D.L.M. model are available only for particular cases and an efficient estimation

algorithm for the general case is far from trivial. However, alternative approximation tech-

niques are possible , and we compare here the new methodology proposed in the last chapter

, with some of these alternative techniques.

The more important of these alternative procedures for multivariate DLM analysis consists

in obtaining an approximated inverse-Wishart marginal posterior distribution for Vt based

on matrix Taylor series expansions - West (1982), and a marginal posterior distribution for

It based on the Robust Filter - Masreliez (1975) di West (1981) . This procedure will be

referred to as marginal approximation approach and is presented briel3y in the next section of

this chapter , where it is compared with the new methods of last chapter in relation to some

aspects .

In the following section , some alternative approximation techniques proposed in the engi-

neering literature such as sequential likelihood methods - Maybeck(1982) , are presented and

discussed comparatively. Also , the possibility of using Linear Bayes tools for joint estimation

of it and V is discussed in the last section of this chapter, as well as the drawbacks associated

with such approach . Finally , some technical results are presented at the end of this chapter

as Appendices as well as some graphical results.

7.2 The Marginal Approximation approach 

This method is based on the Robust Filter , introduced by Masreliez(1975) and used by

West(1982) as an approximation for the marginal posterior distribution for the process param-

eter et in a multivariate (normal) DLM context. In addition , an inverse-Wishart approxima-

tion to the marginal posterior distribution for V is presented by West(1982) , based on Taylor

series truncation of the exact posterior distribution .

7.2.1 - A marginal posterior distribution for V

Considering the usual notation of the last two chapters, the likelihood for V can be written
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(7.5)

(7.6)

as,

p(kt/v, Dt_ 1 ) CC IQtr- .exp[-1(1t - FtT .gt ) T	 .(2t — FtT.at)1

where Q t = FT .R .F + V . Equivalently, using properties of trace of products,

P(4/17, Dt- -1) oc IC't I — 1 .erp[— -21 .trQT 1 .ft.e]
	

(7.1)

where et is the one-step-ahead forecasting error.

Also, using the inverse-Wishart distribution as prior for V or, equivalently, a Wishart dis-

tribution as prior for V-1

1
p(V -1 /Dt _ i )	 IV -1 1	 3	 .exp[- i .trV -1 .st _ 1]

we get by Bayes rule, after some algebra, the following marginal posterior distribution:

p(V -1 /De) oc V	 .exp[-1.0(107-1 + in Qt I + V-1 .St- +Q'..)]	 (7-3)

Now, approximating the exponent of (7.3) by Taylor series expansion as a linear function of

the precision matrix P = V- i in order to have the same Wishart structure as the prior in

(7.2), we get, after some algebra, the following updating equations: (details in Appendix 7.1a)

-
= dt- + Qt— 1 - 1 • [ft •ft	 (Qt Vt - 1) •V -

1
t • Qt] •Vt - 1 •Qt-

(7.2)

(7.4)

and also, naturally,

nt = n1 _ 1 + 1

Vt = E[V / Dt ] = (nt -	 1.dt

7.2.2 - Marginal Posterior for it

Considering p(e.t / Dt _ 1 ) N(cit , ) as prior distribution for t24 , since the observational

variance V is unknown , we can write the predictive distribution for the observations kt as a

multivariate t distribution,

p(p,/ Dt _ i ) oc [ft-i + (Mt - Ft . ) T .QT 1. (y_t - Ft.gt)]
	

(7.7)

or, equivalently, in short form,

P(ft) cc (ft-i + er Q- 1 P
-t • t ••=t

where ft = — Ft . and Q=FT .&.F+ 1.

(7.7a)
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An approximation to the sequential updating of et can be obtained through the Robust Filter

equations (details can be found in the Appendix 7.1b) as follows : (2t /Dt) - N(., Cs)

Ln_t = Lit + Rt .FtT .g (4 )
	

(7.8)

ct = Rt - RtstT.1-1(4).Ft.Rt
	

(7.9)

where:
(1-1

9(Mt ) = - —
a

Inp(y ) =—. te
at 

a	 QT1H(1 ) = ay g (x) = -;,--t

(7.10)

(7.11)

with:

at = (1 + nt-i) -1. (nt-I + fr .QT1-ft)
	

(7.12)

where the derivatives in (7.10)47.11) are easily obtained from (7.7) .

7.2.3 - Methods Assessment 

It is interesting to remember that one key feature a general joint estimator for et and V

should possess (and not present in the common component model of chapter 5 ) is that the

posterior mean for It should depend on the observational noise variance parameters. Or

in other words , the mean updating for c should depend on the uncertainty about V , as

mentioned before in chapter 5 .

In the case of the marginal approximation approach , the posterior mean for e t , expressed

by equation (7.8) , is a function of the precision matrix parameters through the equation

(7.10) for g(.) and the sort of limitations mentioned before doesn't occur here. In fact , the

uncertainty about the observational variance was introduced into the Robust filter equations

through the specification of a multivariate t distribution as the predictive distribution for 4 .

Another important property , also present in the new methods of the last chapter , is the

coincidence with conjugate analysis results under common components conditions . In order

to investigate if this key property is valid or not for the marginal approximation approach we

present here the following analysis :
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(7.13)

(7.14)

(7.15)

(7.16)

i) Using the Robust filter equations , the marginal posterior distribution for et will be

approximated by : (P/ D ) es,	 Ct) where

At
= Lit ± .7;:t .(Y-t Lt)

Qt T
Ct = Rt - At •-•Át

at

where At = Rt .Fr .c1T Under common components conditions , using (7.13)-(7.14) we have

fit = + 
(I At) 

.(Y	 f )
at	 - t -t

14	 t Rtsr .QT 1Ct = - 1 (Rt — At. Qt .A.0	 where	 A =
at

and , since at (nt _ 1 +1)- i .(nt_ i + ftr , this posterior distribution approach conju-

gate analysis results only for a number of d.f. such that n.t _ 1 >> ftT .QT 1 .ft , when at approach

1 . Or , in other words , there is convergence to conjugate analysis results , since the Student

t filter converge to the normal filter as the d.f. increases - [ West(1982),chapter 4] . See also

Appendix - 7.1b .

ii) From the inverse- Wishart approximation given by the equations (7.3)-(7.5) , we have that

P(V-1 /Dt-1) = W (dt, r11) , where

- v	 T • v	 )v-1 n	 -1	 (7.17)de = de- 1 + Q
1

t	 t _ . (ft .ft	 ar (F /Dt_	 t _ 1	 •• s-1 -14t

But , under common components conditions , we have

-1
= (vt-i clt)	 Qt .1	 where Q' is scalar	 (7.17a)

Var(F..6_1e/Dt-1) = (I FT ).(V _ 1 .F4).(10 F) = A.Vt _ i 	where A = FT .Re.F (7.176)

Then , the equation (7.17) under common components conditions can be rewritten as dt =

dt-1 + At	 where

1
At = tit-(fte .QT 1 ) + ( 1 — with fit = QT 1 = ± A (7.18)

and sincesince 0 < /3t < 1 (A> 0 because there is uncertainty about f t ) , there is no coincidence

with the increment It .ftT .Qt-' for the CCM ( for details about this model see chapter 5 ) .

When 2, = 0 is not dynamic , then A converge to zero , and consequently f3t converge to 1
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and we have convergence to conjugate analysis results in the variance updating . In general

when et is dynamic we have also consistency in the estimation of V using (7.17) , as pointed

out by West(1982) . However , for finite samples , as the increment A t is less dependent on

the new data through the error term than in the CCM ( where fi t is 1 ) , and consequently

more conservative , we can not expect a variance learning process as quick as in the conjugate

analysis. Consequently , we would expect a better variance learning process with the methods

of last chapter than with the methods of this section , as confirmed through the use of simulated

series .

Now, in order to complement the above analysis of the Marginal Approximation Approach

- MAA , relative to the new methods of chapter 6 , we consider here a brief experiment with

simulated data . The comparative performance of both methods , specially in relation to

variances and correlation coefficients estimation are desired.

The simulated data consists of a bivariate time series following a linear growth model

where each series is described by a level parameter and a slope ( growth ) parameter , both

changing slowly in time and related to the observations through the DLM structure . The

series have 75 observations each and they were generated with observational variances of 4

and 10 respectivelly and a correlation coefficient between noise series of 0.5 . A time plot of

this data , labeled as Series! and Series2 , is shown in figure 7.1 and the vector series itself is

presented in Tab 7.1 .

Considering this data and the use of non-informative initial priors ( large values for the pa-

rameters representing uncertainty : Co = 1000.1 & n' = 1000) the marginal approximation

method was applied and , in particular , the time sequences {a t } and {fit } were monitored

, with the results shown in the figs. 7.8 - 7.9 . Also , using the same initial priors , one-step-

ahead forecasting errors ( figs. 7.2 - 7.3) , observational noise variances ( figs. 7.4-7.5 ) and

intra-series correlations (figs. 7.6-7.7 ) were monitored comparatively for both methods. The

notation used in these graphics is as follows : EW , VW & CW denote respectively the Errors

, Variances and Correlations ( as explained in the respective titles ) for the MAA method ( or

West method ) and similarly , ES , VS & CS represent the same quantities for the method

of chapter 6 . For instance , ES[1;] represents the errors ( in the one-step-ahead forecasting

) for the Seriesl using the new method of chapter 6 ; VW[;2;2] represents the observational

variance for the Series2 , estimated via the MAA method , and so on .
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Based on the analytical and numerical results above mentioned , we have the following

comments about the methods individual and comparative performance :

i) Not only the MAA updating for it converge to the CCM updating as the cl.f. increases

as seen in i) but also this convergence is very quick ( see fig. 7.8) . As a consequence , both

methods in general will behave very similarly for location estimation or prediction ( see figs.

7.2-7.3 for 1-step-ahead forecasting error comparative performance ) .

ii) The new method updating for V is by far better than the MAA updating. In the case of

correlations for instance , as we can see from the fig.7.6-7.7 , the MAA algorithm is not able

to reach the true correlation value 0.5 at the end of 75 observations while the new algorithm

does it at the beginning. ( both methods are initialized with zero correlation and a relativelly

vague prior information in the other parameters ; the initial d.f. ranges from 0.01 in fig.7.6 to

1 in fig.7.7 ) . For variance estimation however , the MAA algorithm performs not totally bad

( see fig.7.4-7.5 ) but still not as good as the new algorithm.

iii) As we have seen before , the new algorithm of chapter 6 ( under common components

conditions and using a standard diagonal discount squeme ) does not coincide with the con-

jugate analysis algorithm results , and the coincidence is obtained only using an alternative

constant discount scheme. However , in most practical situations , both discount schemes give

results almost undistinguishable . That is the case for instance , in the example given by the

figure 7.10 , where a discount factor of 0.98 was used .

7.3 -  Likelihood Approximation Approach 

In order to investigate other possible alternative forms of model analysis in a context as

wide as possible , we consider also here some approximated procedures based on maximum

likelihood ideas. This method is one of the more accepted and more substantiated tools in the

engineering literature about system identification . One of the reasons perhaps is because some

of its properties make it attractive for certain applications . For details about these properties

, see for instance , Rao,C.R.[19731 . However , one big disadvantage to maximun likelihood

estimation ( apart from the difficulties and limitations shown in this special application ) is

the lack of theoretical knowledge about the behavior of the estimates for small sample sizes.

In order to make explicit the difficulties and limitations of such likelihood procedures in

problems of sequential DLM estimation we present the basic ideas used in the development of

118



=0
o

(7.2 lb)

problems of sequential DLM estimation we present the basic ideas used in the development of

these methods . The construction of such methods involve two basic steps : the formulation of

the likelihood equations ( exact or approximated ) and the solution of such equations . These

two steps are presented briefly in the next couple of sub-sections and it is followed by some

critic discussion .

7.3.1 -The Likelihood Equations :

By repeated use of probability laws , we can write the likelihood for the observational

variance V in the multivariate DLM as :

p ( 61t, Dc/V) = p(ilt/Dt,v).p(A/v)

= P(6 t Dt, 11 ) .12 (kt i Dt-1,V).p(Dt_11V)

=	 / Dt, v ) . H P(Y Di-1,17)
	

(7.19)

Or , equivalently , in terms of log-densities (log-likelihoods), we have

1n p(, Dt IV) = In p(2t 1 Dt ,V) E ln p(y I Di_ 1 , V)	 (7.20)
j= 1

For a multivariate normal DLM , each of the log-densities in (7.20) can be written out explicitly

as :

1	 1

	

in p(2 t 1 Dt, V) = const. -	 I - i•(gt Mt)T.Ct-1.(94

1	 1

	

/n p(z I 13;_ i ,V) = const. -	 Qt I - • (Y.; FT	 .Q;	 - FT 44)
(7.20b)

where Q . = FT .1'4 .F + V . Note that all these expressions are implicitly functions of V .

Now , by subst. the expressions (7.20a)-(7.20b) in the log-likelihood function , we have :

1	 1	 1 ,

	

in p (eit Dt IV) = const. - -
2

iniCt l - -
2	In1Qti -2	 7.CTI-(t Mt)

a= 1

t2 Dzi _ FT .tiAT .Q,'	 FT a .) (7.21)
j=1

And , the likelihood equations will be given by its partial derivatives

a
in p(0 Dt /V)	 = 0	 (7.21a)

v=vt
a

av In P(e" DtIV)

(7.20a)
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0 =m—t

E tr{w 1 [Qj

j=t — N+1

= 0	 (7.230

v= - E [ti • .u7: - FT .14.111—7
j=t — N +1

.Re .F
—7 —1

(7.24)

(7.24a)

Using (7.21) to develop the equation (7.21a) , we get

-(2t	 ).ct- 1 Iv	 = Q	
= 17_1t 	(7.22)

V =V. t

Or , the maximum likelihood estimate it of et is given by the standard posterior mean mt

where 17t ( the ML estimate of V) replaces V through its expression ( Q = FT .R.F +V ) .

Also , from (7.21b) , after some calculations and simplifications ( see Appendix 7.2 for details

) we get the following approximated likelihood equation for the elements of V:

QT 1 	 crilLaQ•)E tr{[Q7 1 -	 =Q	 (7.23)7 •-7 —7 • 7 • av
j=t— N +1	 0 =m—t

where Le, = yi - F.a; ; vk is the kth element of vec V , and N is such that V is supposed

essentially constant over N periods of time.

7.3.2 - L.E. Approximated Solution :

Now , since Qi = FT .Ra.F +V, the partial derivative of Qi that appears in (7.23) is given

by :
aR,	 43V

—avk
ovk 	• auk

(7.23a)

because we neglect 0:- , since the estimation of et is robust in relation to variations in V .

Now , rewritting the equation (7.23) , we get

which would be satisfied for all j if the term between brackets is zero . Also , if the estimation

process is essentially time invariant over the most recent N steps , i.e. , Q7 1 cont. over

these steps , then an estimate 17t of V at time t can be obtained from

E [FT .14.F +V -	 0	 what gives
i=t- N 4-1
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It happens however that these expressions , also known as Covariance matching estimator -

Mehra(1972) , Chin(1979) - can lead to an estimate of V that is not positive definite . In order

to avoid these difficulties , a better estimate can be obtained by verifying the following relation

(17 1 .u..	 _ FT.rn	 (7.25)

where te = y — F.rri j is a sort of posterior residual. Now , using (7.25) into equation (7.23b)
-3	 -3

, we have

t =	 E [ • • T
U • .0	 (7.26)
-.7 -.7 ± FT .0 j

N 
j=t- N +1

v=
.	 • •
 t N 

E 33Tu + FT .Ct .F	 (7.26a)- -
3=4- N +1

7.3.3 - Method assessment and discussion 

Although the adaptation of maximum likelihood techniques for using in a sequential esti-

mation context is theoreticaly sounded , its practical implementation requires certain approx-

imations , resulting in equations such as (7.24)-(7.24a) which are equivalent to some ad hoc

procedures ( Covariance matching techniques ) present in the engineering literature.

In particular , the use of posterior information about et in the estimation of V at time t

introduced through equation (7.25) improves the method considerably but the variance esti-

mation is still an off-line procedure . In fact , we can consider the whole method as a kind of

two-stage procedure : given V , the process parameter i t is estimated in a standard Bayesian

way ; after that , V is estimated using an auxiliary relation ( equation 7.26 or 7.26a) . This

method presents the same kind of drawback as the ones mentioned in section 5.2.3 and a more

deeper analysis follows .

From equations (7.26) or (7.26a) we can see that the uncertainty about lit expressed through

Ct is present in the estimation equation for Vt , which characterizes joint estimation and is a

desirable property . However , the uncertainty about V is neglected in the estimation of

which is supposed ( as an approximation ) to be robust in relation to variations in V . Or , in

other words , the approximation uses the standard Kalman Filter equations for the estimation

of the process parameter	 , which is a limitation . It is important to remember that this sort

of limitation does not occur with our new propposed methods of chapter 6 or even with the

marginal approximation approach of this chapter .
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Also , one very important practical aspect to be considered in the implementation of equation

(7.26) or (7.26a) is the choice of a suitable value for N . This constant is a sort of smooth

parameter in the sense that a sequential estimation of V with only small irregularities will

demand a large value for N . In fact , we would expect from a good estimator for V , a smooth

sequence of estimates , i.e., a sequence of estimates with only small fluctuations after a certain

number of observations have been processed .

Then , it is clear that we need to use a large value for N , but this will introduce at least

two inconveniences . First , a large N will be computationally undesirable because of the

quantities that need to be stored , mainly in (7.26) . Second , there is an initialization problem

in order to implement the sum in equation (7.26) or (7.26a) and a large number of extra initial

observations will be necessary when N is large .

Also , experiments with real and simulated data have shown that is very difficult to choose

a value for N that could conciliate these problems , which makes this method very limited in

practice .

7.4 -  The Linear Bayes Approach 

From the basic theory about linear Bayes estimation , presented briefly in Appendix 7.3

it should be possible in principle , to use such ideas for the joint estimation of Bt and V in a

multivariate DLM context. In order to make Linear Bayes Estimation operational we need to

set up two initial steps

i) elements definition : the data ( or, a sufficient statistic ) zt and the parameter Et should

be specified .

ii) prior moments : E() ; V(z_t ) & Cov(14 ,71,- ) should be determined .

For the data ( or , sufficient transformation ) definition , since we are estimating not only ft

but also variances , the data or a sufficient statistic from the data should include not only the

original observations but also its squares which in a vectorial context , can be represented by

Z =
-t ( Y 0 Y

where vec y .yT = 
—t
y 0 y

—t —t	 —t
(7.27)

is the standard column vectorization of the matrix y .yr. and 0 is the usual direct Kronecker
-t -t

product operator. ( alternatively , we could consider the more parsimonious short vectorization

operator VEC , where there are no repeated elements ) .
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fci	 /Dt-1 04.0

-46

( Rt_i rdz`-'t - 1

(4-1
Pt-'

CPI)

C23t-1 (7.30)iii) prior inf.:

The natural parameter definition for such a multivariate model could be represented in

principle by 21'4 = ( 0
-4 where cr_t = V EC Vt . However , with the introduction of y 0 y in

the calculation of V(g) and Cov(zt ,rt ) will require the specification of quantities such

as C ov( t 0 gt , .74 ) which are not given directly from the model.

This sort of difficulty could in principle be overcome through one of the following two possi-

bilities . The first one could be the introduction of a relation between the variance-covariance

matrices Var(R.,) and Tit such as , for instance , a proportionality relation Var(F.f t/Vt ) o: lit

( or , perhaps a relation such as Var(B4 ) = Rt 0 lit , used in the common components model

of chapter 5 ) .

In order to avoid such procedures , a second and more natural solution can be the introduc-

tion of	 = it 0 .12, in the basic parametrization 7r„

= (a-t	 --t
cr

where	 = VEC.121. dc g = V EC V,	 (7.28)

Then , we have completed the basic definitions concerning z and r t , and the model can be

defined formally as follows

	

i) obs. equation :	 = F. +	 (0, V)	 (7.29)

	ii) system equation :	 = G. _ 1 + Lit 	 -(Q, Wt)	 (7.29a)

iv) assumption : Et has same moments as the normal distribution up to 4th order , and is

independent of

Now , the second step in the BLE implementation consists in the calculation of the following

prior moments for zt :

F	 )E = t glt /Et) = E-st (p.( 0 gt ) +

=	 0!i +vecRti)+1
	 (7.31)

where I" =FOF , since

E(, ®9) = E(vec t	 = vec give )	 and
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Cov(At,rt))
V() ) f (7.34)

vec (mt _ 1 .1Ln_t_ + Rt _ i ) rnt _ 1 0 mt_ + vec Rt -

ii) V(At)=Var{E(Atizt)}±E{Var(At/Et)}

where

Var [E(At /E, )1= (F.Rt-.1.FT

	

	
F.ctiz .F.T + F.0.31

F*.Ut _ i .F*T ± Pt-1 + 2.P.C731)

and also,

E[Var(.1 t I Et )] = E (17t
	

L.[(F.) Vt]
L.[Vt Vt + (Vt FUT FT ).L1)

or equivalently,

(7.32a)

(VtL(F n(St-	 r_nt- + Ct121)
o s_ 1 +	 +[S_1 0 EN_AT ) + CT21].L) 7.320

with E(tP AP
T
 =	 i.rditT + Rt -ii.FT , where the expression for Var(y 0 Y /Lt) is

--t —t

developed in Appendix 7.2c .

F.Rt _1
iii)	 Cov (g.,, Et ) = I F.C1

F.C,131

F* .CP 1

Fs .Ct23 + Pt-1

(7.33)

Putting together the prior moments for Et ( equation 7.30) and At ( equations 7.31 & 7.32

) , we have the following joint prior :

( 71;4 ) ip 	 (EE71:;4 ; rit)

Then , the B.L.E equations will be given by

E / = E + At .( - E zt )	 (7.35)

Var(Et /At ) = Var(rt ) - At .Var(At ).AtT	(7.36)

where At = Cov(zt ,71t).[Var(A,)]-1 .

At this point , it is convenient to see that the introduction ofcit in the model parametrization

does not bring extra difficulties in terms of implementation such as initialization or time

updating . In fact , these two implementational aspects can be handled as follows:

i) Initialization for gt = 0 et : (t = 1)

/ Dt	 "••••	 ; Ut _ )
	

where
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g4 _ 1 . E(et 0 et 1 Dt_o=_10E42 _ 1 - 1 - vec Rt -1

Ut _ i =V(It02t/Dt_1)=L.[Rt_i0R,_1+(Rt_i0mt_14_71111).L]

ii) Time-updating for at = et oet : (G � I & W 0 0)

It is basically the same as the time-updating for 24 , noticing that the system dynamics Lit =

G.et _ 1 imply that at = G.at _ 1 where G = G 0 G. Also , if we use a discount factor 13 for et

, we should use a discount factor /32 for.

At this point , we have a complete linear Bayes estimation methodology for joint estimation

of et and V which is in principle , theoretically sounded and operationali feasible . However

a deeper look at this procedure will show some remaining difficulties as explained below.

It is known in the context of DLM theory that 4 contain the sufficient information to

estimate the parameter It and , in practice , we would like to have the estimation equation

for et as a linear function of y . It happens however that the coefficient of the quadratic term-.4
in y (element of A) is not zero and the method should be modified in order to attend this--t
requirement .

One natural solution to overcome this drawback and guarantee linearity is to decouple ft

from the parametrization r t keeping two separate sub-models , one for the location parameter

lit and other for , say i = (	 . Also , as these two model components are interdependent/
oLt

, the interaction structure of covariances are updated separatedly as a third component.

Now , this new structured model is totally operational and gives updating equations for

all quantities involved , but at least two drawbacks still remain . First , in order to take

into account the uncertainty about V in the estimation of Bt , the updating of the variance

of ft should be done indirectly through the variance of et 0 Bt which is correlated with cit

. In practice however , these variances and the ones obtained directly from the updating of

ft don't coincide ( for coherence reasons they should ) . The same problem occurs with the

corresponding means . As a consequence , we do not get a positive estimate for V , which is

one of the main drawbacks of Linear Bayes Estimation .

Appendix 7.1a - Matrix Taylor Series Expansion 

Denoting by 1(P) the exponent in the expression (7.3) as a function of the precision matrix
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y = Ft + tit_t

et =	 + Lit where :

P =--	 1 , a first order matrix Taylor series expansion of 4.) at the point P = P_ 1 gives,

f (P) f (Pt- 1) + (P — Pt _ 1 ). 81 (P) 
op

, where

P = Pt- t

f (P) = In113 1 + In 1Qt(P)I + P.St_ +	 (P).§. t.ftT

In particular, we will use the following derivative results (see Press, pg 41)

-:-p ' pi = -1 v

..	 a
ar„ In I Q (P) I = —V .QT .V

...	 a
its) -51,0QT 1 (11'ft •ftT = ± PAY- •ft •fiT . (I Ut 3:)

where Ut = Qt — vt . Then

(P) = const + (P — P_ 1).(S_1 + Vt-1	 + (1+
	 I.; .gtT .(1 + ut .p)-1

or ,	 (P) = const* + P.St , where

St = St- 1 + ( 1+ Pt- .Ut) - .[f t + ut v + ut .Pt- OM' + ut.Pt_1)-1

or , equivalently

St -- Q 1 .Vt- 1 . [ft •ftT Ut 17j- 114d	 1 . Qt-

Appendix 7.1b - The Robust Filter Equations

Consider the following (partially) non-normal version of the multivariate D.L.M. model

given by

i) the observational noise Et has an unimodal, symmetric and twice differentiable density.

ii) the system noise Ev_t has density approximately normal (or its variance W is small in

comparison to the observational variance noise V) or equivalently , B t /Dt _	 N(at, ).
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Then , (gdDt ) === N(m ,Ce) , where the posterior moments for et are given by the following

Robust Filter Equations

Lr_ti = + Bt.9(Y4)

Ct =	 — Be .H (ye)..13T

where the (vector) influence function g and the information matrix H are defined respectively

by,

	

g(x) =	
a 

Irip(24/Dt-i)

a

	

R(x) =	 9(4)

and the covariance matrix Be is given by

Be = Cov(e4 ,4/De-i) = Re.FT

Proof:

By Bayes Theorem,

r-Lt2	 .19(ge/Di) (12e = 1PCYJA-1)] -1 - f fe .P(X/#4)-PRIDe- i ) apt

and consequently,

P(P.,/A-1)-(17-ti -114) = f p (y_t /194)-(P4- c-14) .P(24/ De-i)

by an approximate normality assumption for p(B4/De-1)

ap(241A- ) _ 
pt- ( 94 — g4)-P(e/De-i)aet

and then

P(Mt /De-i) . (r-t-ti - Lit) = -Rt . f P(/g4)
4(0IA-i) 

de,

Now , integrating by parts, we get

P(It /Dt-i)•(-Mt g-t) = — 14 . 10 - f AlDt-1) . -a-Fa A/R4)(ket]

and the r.h.s. became Rt . 	 / Dt,) = Rt.Ftr •-of,-PU4 /Dt-i)	 or

a
- g_t = Re.FtT .—InP(y4/De-i)

ay,

, and the first filter equation is proved.

Also, in a similar manner for Ct , using integration by parts twice, we get Ct 
=

Bt.H(4).BT
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Basic Properties:

1) In the normal case, the Robust Filter equations coincide with the standard bayesian

analysis of the multivariate DLM .

Proof  : Since , by hypothesis ,p(4/D t _ i) N(L,Q t ) , we have

1	 1
inA/Dt-i) cc -- i dri 1Qt1 -	 - ftr .V . (y -

Then , by definition , we have

9(4) =	 In p(y4 1 Ds-1) = QT 1 -(Yt

11(4) = -4-9(L)=Q;-1

Now , by the filter equations , we have

mit= Lit + Bt .C4-1 • (2, —

= Rit _ Bt .Qt- .Bir Rt _ B .r) -1	 DT
t	 t	 • '"C t • 'V t	 • ZIPt

Or , equivalently , since A t = Rt .FtT .QT 1 = Bt .Qt- I we have

r-r-t1 =tit + At-( -Li)

= Rt - At.Qt-AIT

which are the standard updating equations for the DLM .

ii)  Interpretation of g(.) and H(.) 

By Bayes theorem , we have

	

a	 a a
inketiy).	 ln fit ) - E9 {— InkEtIlt)}

	

ay	 -t	 a	 ayt
--t

We see that the influence of y on the posterior distribution will tend to dominate the combined

influence of the previous observations when the value of 1 --a_ey In pLty [40 ) is large relative to its

expected value in the context of all previous observations . The negative of this derivative is

called the influence function of the likelihood with respect to 4 [ Ramsay & Novick(1980)

the minus sign ensuring that the influence of the large observation will be positive .

In the normal case , as we can see from i) , the influence function g(mt ) QT 1. (yt - L) is

linear on the present data	 and its predictive mean it . As a consequence , the influence
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function is unbounded . In a non-normal context as for instance in the Student t case , the

influence function is bounded and its non-linearity operating on the residuals et :--- 4 — f t

deemphasizes the influence from large residuals. In particular , since p(/D_ i ) is unimodal ,

we see from the updating for m that the correction term B t .g(.) disappears ( and the influence

function will be zero ) when the observation on y coincides with the mode of p(y--t iDt _ 1 ) and--t 

not the mean as in the normal filter .

Also, as H(L) by definition is a second derivative of a log- likelihood , it can be interpreted

as a kind of Information matrix . In fact , the information about the random variable 4

contained in H is transfered to et through the covariance matrix B t . This information matrix

, as we have seen before , coincide with the predictive precision matrix Q t- 1 in the normal case

and will be proportional to Q t- 1 in the Student t case .

iii) Other Properties

Another way to look or to interpret the Robust filter is to see it as an approximation to

the exact minimum variance filter where the state estimate is formed as a linear prediction

corrected by a non-linear function of past and present observations . The approximation to

the minimum variance filter becomes better and better as the ratio between the state and

observational variances go to zero , when the relations will hold exactly . In particular

the system variance W will approach zero in this case and this corresponds to the use of a

discounting factor close to 1 .

Further details or other properties about the Robust filter can be found for instance , in

Masreliez(1975) or West(1981) .

Equivalently, the filter equations can be written as [West(1981)]

mt = Lit + Ct .FtT .g(mt — Ft 4)

C7 1 =.-- R 1 -I- FtT .H (mt — Ft .at ) . Ft

where g(.) and H(.) are defined as before.

Appendix - 7.2  : An Approximated Likelihood Function

Now, consider (7.21b) with the log-density given by (7.21) , where the evaluations are easier

if we consider each element of V individually. Typical forms to appear ( see expression 7.21)
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are the partials of the log of a determinant and of a quadratic form involving an inverse matrix

; such derivatives can be expressed as ( see Press, pg 41 or Maybeck, pg 79 )

3m (Al	 aA
1 alAl –

avk = IAI • al/k	 OVk

= —A,-- aA
aVk 	 0101/k

where lik is the kth element of vec B , with A and B square matrices ( in our case , B represents

V and A represents the covariance matrices Ct or Q; ) .

Using the above two derivative formulaes , equation (7.21) becomes

1	 act	 1_1 aQt
Dt /V) = i .tr{Ct- .—a } — zd tr {Qt •—avk }

OVk

	

Vk	 2=1

ai	 t a_ FT .13) T . Q7	 Qa v k .Q.7 1 .(mi r cki ) + 2. E ti
ai

-c.FT	 (y
j* - 

FT . = 0i • --
3=1	

j = 1

where we should notice that the two other terms in 7.21 involving (B 4 - m ) are null because

Be is set equal to the ML estimate =	 ( see equation 7.22) .

Also , using well known properties about the trace of a matrix ( such as a T .b = tr(a.bT ) =

tr(b.ar ) for any vectors a and b) , the likelihood equation above can be rewritten as :

act	 aaT
tr{Ct-1	} - 2.E 	

.1 —3
.u. +Etr{[Q 71 - Q7 

3
1.u..u7 .Q

•
-77 1 ] -aQ = 0

• OVk	 OVk	 — 	 avk

	

2=1	 i=i

where ti, = y - F.ai and Vk is the kth element of vec V .

Now , we should use the knowledge that V varies much slower than the quantities related

with le in order to get equations more suitable for sequential estimation. This implies that

one adequate model is such that V is essentially constant over any given interval of N sample

periods ; that is , at a given time t , the parameters in V are supposed to have remained

constant since the time t-N1-1. This sort of fixed-length memory version of the ML estimator

is obtained by rewriting the former equations with the lower limits in the sums equal to t-N-F1

instead of 1 .

It is important to mention however that there is no general closed form solution to this last

equation and some sort of iterative solution or direct approximation of the likelihood equation

is necessary.

To enhance online applicability , not only can an iterative solution procedure be approxi-

mated ( see for instance , Maybeck(1982) pp 80-120) but the likelihood equations themselves
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, aQ
tr{[`471 _ ,-17 1 	 /17,-1	

'41	 3 • avk
j=t— N

0

flt=mt

can be approximated as well. As pointed out by Maybeck(1982) , analyses based on simulations

or other methods can indicate the relative sensitivities of individual terms in the likelihood

equation to parameter values , and the less sensitive terms can be neglected.

With these ideas in mind , we neglect the first two terms in the former equation , because

it represents the sensitivity of state variable statistics (specifically ch and Ct ) on V , what we

know is considerably robust , giving the following approximated likelihood equation :

which is exactly equation (7.23) of section 7.3.

Appendix - 7.3 : Linear Bayes Theory and related results

Some  Basic Concepts 

Lets f(Y) be the Bayes Estimator for a certain random variable X . Then , the Bayes risk is

defined by,

r( f) = E{ f (Y) -	 = EExile {f(Y) -	 = Ey d(f /Y)

where d(f/Y) is the posterior expected squared error , i.e., the posterior expected loss for a

quadratic loss function . Clearly , r(f) is minimised completely by minimizing d(f/Y) for each

Y , what gives f(Y) = E(X/Y) .

However , this is an arbitrarily complicated function of Y and requires full Bayesian analysis

to derive . Linear estimation simplifies the derivation by restricting f(Y) to the linear class

(Y) = a i-bT .Y . Then , a and b are chosen to minimise r(f) , what gives the optimal estimate

fx(Y)= a + IT Y

where the coeficients a and 6 are given respectively by

a E(X) - Coy (X, Y).[Var(Y)]-1.E(Y)

= Cov(X,Y).[Var(Y)]-1

Also , Vx = r(f) is a measure of how good /(Y) is. It is expected squared error , but notice

that it is the unconditional expectation , i.e. , the prior expectation of posterior expected

squared error .
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a vec AT

a (vec A)TKmn ( or , equivalently, K,n ,,vec A = vec AT )

Now , suppose X is a vector . In general , we could estimate each component Xi using a

linear function of a different predictor vector Yi given by fi (Xi ) = a1 + 19T .Yi . Then , ai and

bi will be chosen to minimize ri (fi ) = E{fi (Y) - X1 }2 and a measure of accuracy is provided

by Vx, = r, (A) , what gives a kind of expected posterior variance for fi .

We would also like an analogue of covariance , and this is obtained as follows . Let

(Y1)	 ac	
An= 

(f1(.71))
f(Y) =

fk(n))	 fk (Yk

and define	 r(f) = E{f (Y) - X}{f (Y) - X}T	 and	 Vx =

The diagonal elements of Vx will be vx• and the off-diagonal elements will be the expected

cross-products of errors , which will correspond to covariances .

	

Then , the (optimal) linear Bayes estimate M	 (Y) of the random vector X (given the

data vector Y) and its associated expected squared error C are given respectively by:

= E(X) A.(Y - E(Y))

C = Var(X) - A.Var(Y).AT

where	 A = Cov(X, Y).[Var(Y)]-1 .

Some second order moments and related results

The objective here is to develop an expression for Var(L Oz t hr,) where (kt	(V) , Et)

and this is done as follows . After some basic results about Jacobian matrices we present a

result (Lemma) for the desired variance in the case of IP = 0 and E = I and then the general-t -
result .

Jacobian transformations : the Commutation and the Symmetrization matrices .

Definition  : The Jacobian matrix of the transformation from the real mxn matrix A to its

transpose AT ( or equivalently , ... permutation from vec A to vec AT )

is called a Commutation Matrix .

This matrix can be represented as

m n

Kmn =_ED,Hi;
1=1 j=1
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where Hi; is a mxn matrix with 1 in its iith position and zeros elsewhere .

Commutatibility  : The key property of the commutation matrix ( and the one from which

it derives its name ) enables us to interchange or commutate the two matrices of a Kronecker

product . Let A be a mxn matrix and B a pxq matrix ; then

Kp,„.(A® B)= (B A).Kg„

In particular , if b is a pxl vector, K pin .( A b) = b A.

Symmetrization  : Closely related to the commutation matrix is the Symmetrization Matrix

Arn . It transforms an arbitrary nxn matrix A into the symmetric matrix .(A + AT) .

Naturaly , they are related by the expression

xr	 r
--= -	 +K))

2 '

The explicit form of N„ is derived from K„„ . For instance , for n = 2 , we have

( 2 0 0 0 )
0	 J. 0

L2 = 2.N2 =
0	 0
00 02

Lemma : Var(u0u) = 2.N„ where u ( 0, In ) and N„ is the symmetrization matrix.

Proof : Without loss of generality , suppose A is a rucn symmetric matrix. Then , considering

as an approximation that u has the same moments as the normal distribution up to 4" order,

and using well known results for variance of a quadratic form ( see , for instance , Seber,G.A.F.

pg 41 ) , we have

Var (ui .A.0 ) = 2.tr A2 = tr .A + tr A2

Now, using the property that tr .B = ( vec	 .vec B and the definition of the commutation

matrix , we have

Var (u' .A.0 ) (vec A) .vec A + (vec A' ) ' .vec A

Var (us .A.u) = (vec	 .(In2 Knn).vec A
	

(*)

On the other hand , .A.& = vec u'.A.0 , and using the property that vec A.X.B = (B' 0

A).vec X we have

Var (u' .A.u) = (vec A)' .V ar( u 0 u).vec A	 (**)
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Comparing (*) and (**) , we have , finally

Var (LI li) = In2 Knn 2.Nn

Now , let's extend this result to the case where we have (y_t /It )	 (ibt , Et) and we want

Var (y y /7r ) . This is done as follows:—t —t -4
Conditionally on 7.1 t we have y	 E:	 +	 , where y,	 (0, ./p) , and then—t

Y	 = Et3 .tJt 0 E ta .1/4 + Eta Alt 0 + ti) Ei	 ± Lb 0,

Using twice the property that (AO B).(C 0 D) = A.0 0 B.D and also the commutability and

symmetrization properties , we have

t 0 Y, = (Et1 E ) . ( Ømt) + 2.Np . M1	 ) .Lit +tj_i_, ti2t

Using the Lemma's result and the matrix product property twice again , we have finally

Var	 0 y hit) = Lp-[Et 0 Et + (Et 0 (/) .1,1; ).11p]	 where Lp = 2.Np
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CHAPTER 8

SOME SPECIAL MODELLING ASPECTS

8.1 -  Introduction  .

In this chapter we explore some important modelling aspects in conection with the multi-

variate DLM model , which is a very general and flexible modelling framework , in order to

extend even more the range of possible applications for such models .

We should not forget however that the methods and models covered in the last three chapters

of this thesis , were founded upon the assumptions of linearity and normality , and this can

be unjustifiable in some special applications .

As discussed previously in chapter 3 of this thesis for univariate models , the possibility

of extending the DLM structure in order to permit the introduction of non-linearities in the

observation or system equation can be of extreme importance , as for instance , in the case of

the seasonal growth multiplicative model and others .

With these ideas in mind , in the next section of this chapter , a non-linear extension of the

methodology developed in chapter 6 for multivariate DLM analysis is introduced , as well as

the specific case of the multivariate Seasonal Growth Multiplicative - SGM model . In fact

this new multivariate model extends not only the methods of chapter 6 , but also it extends

the scalar SGM model of chapter 3 to the vectorial case.

Another kind of extension of multivariate DLM's useful in some practical applications is

related with the modelling of some non-normal data, as for instance , time series data consisting

of proportions or compositions of a whole ( compositional time series ) . This is possible

through the use of some special transformations such as the logistic log-ratio transformation -

Aitchison(1986) , as presented in section 8.3 of this chapter .

Finally , in section 8.4 of this chapter , one of the most popular methods in the econometric

literature about multivariate time series modelling and forecasting , the so called BVAR (

Bayesian Vector Auto-Regressive ) model - Litterman(1980) , is analysed as a special case of

common components multivariate DLM . Also , a possible way of extending this model to a

more general framework is discussed .
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(8.1)

(8.2)

8.2 - Modelling Non-Linearities 

We present here an extension of the model formulation of chapter 6 in order to permit

the introduction of non-linearities in the observation or system equation, making the range

of possible applications for such models even wider. In the first couple of sub-sections we

introduce a new class of non-linear multivariate models with the corresponding analysis and

updating equations. In the following sub-section , the important case of the multivariate

Seasonal Growth Multiplicative model is considered in detail.

8.2.1 - General formulation and some implementation aspects.

Concretely , we consider here a more general (non-linear) relation of link between the process

parameter C and the mean response parameter Let in order to extend the multivariate D.L.M.

model of chapter 6 as follows

Definition : A general multivariate (normal) Dynamic Non-Linear Model - D.N.L.M. for a

vector of observations y of dimension d made at intervals at times t = 1,2,.. is defined by the—t

following equations :

	

i) observation equation :	 yt = g() + Lt , LI, — N (0 ,Vt)

	ii) system equation :	 ft = G . et_ 1 + ylt , 1kt — N(, W))

where

i) g is a (non-linear) differentiable function.

ii) all the other elements are defined as before.

It is clear that the formulation of equations (5.1)-(5.2) is a particular case of (8.1)-(8.2) in

the special situation when g is a linear function.

Now, in order to make such model formulation operational , we introduce more structure in

the above model definition as follows. First , we consider briefly a direct way of implementing

the dynamic non-linear model given by the equations (8.1)-(8.2) based on an extension of the

methodology of section 6.2 as follows .

Definition : A scaled version of the multivariate (normal) D.N.L.M. of this section is defined
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by the equations (8.1)-(8.2) plus the following distributional assumptions :

(1) likelihood function :	 (kt 	, V = S)	 N (At; 52)
	

(8.3)

	

(ii) prior distribution : (	 Dt _ 1 , V)	 N ( Lt ; 1')
	

(8.4)

	

(V'/D_ 1 )	 w(ut-_21;
	

(8.4n)

where

(i') _tp = g() where g is a differentiable function , Et is the mean response parameter

and it is the process parameter as usual.

(ii') Given V and Dt _ 1 , L is the prior mean and Ri" = S.Et .S is the prior variance

matrix for Et , where E t = Var {Et / Dt _ 1 , V = I} . Also, Uti21 is the prior observational

precision matrix and rit _ i is the corresponding prior degree of freedom (d.f.) .

As the basic model structure is defined in terms of the mean response parameter , the model

analysis for the scaled DNLM is structuraly analogous to the one developed in section 6.2.1 .

The updating equations however , are the same as in section 6.2 only for the steps 1 and 3. In

the steps 2 and 4 we redefine the elements j, E t and AI as follows :

= E [ 9 () / Dt _ 1 ,17 ] (8.5)

Et = V ar [g(ft )/ Dt_ ,V = .1] (8.6)

= Cot, Pit	 9%)]• El (8.7)

These equations are implemented in practice , without major difficulties ( as exemplified in

section 8.2.3 for the SGM model ) , and are functions of g_, , Rt and g. The full updating

equations for this model are presented in the Appendix 8.1 of this chapter [ equations (8.8)—

(8.25) ] .

8.2.2 -  An Alternative Implementation  .

Although the procedures described in the last sub-section of this chapter for the implemen-

tation of the multivariate DNLM are perfectly valid and operational , they suffer from the

same limitations as the methods of section 6.2 , where the posterior distribution for I t is

available only conditionally on a given V . For these reasons , we develop here an alternative

way of implementing the model given by the equations (8.1)-(8.2) based on an extension of the

methodology presented in section 6.3 to the non-linear case.
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(

frfrt.tG

frt.Gk-1

(8.27)

Before introducing the main model framework , we commence by presenting some introduc-

tory  Definitions : 

(i) The equivalent to the F element in a multivariate DLM context is defined for the more

general framework of equations (8.1)-(8.2) as follows

a g( B4) 

a et

where at is the most recent estimate of Ot . As expected , in the special case of linear models

, where g(lt ) = Ft .& , we have that Pt = Ft .

(ii) For the model structure of equations (8.1)-(8.2) , the generalized observability matrix

tt of dimension kdxp is defined by

(8.26)
0 = a—t

where Et is given by (i) and k is the maximum parametric dimension of the marginal models (

d is the dimension of the observations and p is the dimension of the process parameters ) . In

the case of linear models , since Pt = F , we have that tt = T , where T is the observability

matrix given by the equation (6.21) .

Also , as a consequence , the corresponding to the matrix ST given by equation (6.27) will

be the matrix .§T of dimension kdxp defined by

s,T	 ( S.	

(8.28)

S*

where S" is such that V = S*.Vt _ i .S" .

Definition : A scaled version of the multivariate ( normal) DNLM of this section for a

vector of observations y of dimension d made at times t=1,2,.. is defined by the equations
--4

(8.1)-(8.2) with the following distributional structure

i) Prior distribution for V : (v- 1 / Dt ._ 1 )	 W ( de-1; nt-i ) where de- 1 & nt _ i are re-

spectively the shape parameter and the d.f. in the Wishart distribution such that

dt-i/n/-1 •

ii) Joint prior distribution for et and yt :

( et I Dt _ i ,V = S. .Vt-i.S .	N {( g
f
t). (1?'T	

hi. :I'	 )1'	 •

Vt-1 =

(8.29)
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where kr = tt- .§7. .R..C.ir with i't Sz:§T as defined respectively in (8.27)-(8.28) and R =

Var{t/Dt-1,V = Vt-i} •

From the above definition , which coincides with the definition of section 6.3.3 in the case

of linear models , we get similar posterior distributions forti t , pt and V as the ones given in

6.3.3 , considering P, kr , etc instead of F , Rr , etc . As a consequence , the Updating

Equations for the DNLM of this section will be obtained from the one given in section 6.3.4

with some slight adaptations , as shown in the Appendix 8.1 [ equations (8.30)-(8.45) I .

8.2.3 -  An Application; The Multivariate Seasonal Growth Multiplicative - SGM Model 

This model is a natural multivariate extension of the scalar seasonal growth multiplicative

model - [ Harrison(1965) , Migon(1984) i - and is a special case of the general formulation of

section 8.2.1 .

I -  Model Definition 

The multivariate seasonal growth multiplicative model for a d-dimensional vector of obser-

vations y has its basic structure described by a linear trend for each individual series and a-t
common multiplicative seasonal component. In full notation , it is defined as follows :

(mt
i) the process parameter et .	 is such that at = (	 i7r1,...,Ld)t is a 2dx1 vector

P-t

(accounting for the linear trend components 7r t = it t	 , i = 1,..,d ( level and growth
Pst

parameters ) and p is a 2hx1 vector of seasonal effects ( harmonic representation ) common-4

for all time series , where h is the number of harmonics considered ( or , if the Nyquist frequency

is present , this vector is a (2h-1)xl vector ) .

ii) the parameter evolution is expressed by the system matrix

G = diag [(Id 0 GT ), (GH1,-, Glih)]
	

(8.46)

	

( 1 1)	 ( cosjw sinjw
where CT =	 & Girj =	 i = 1,.., h. with w = to, =

	

0 1 j	 -sinjw cosjw j
274 where Ti is the Ph seasonal period ( For the Nyquist frequency , we have GH,h = -1) .

iii) the two basic TS components are expressed by the trend

2t = F . tit	where	 F = [(id 0 F),(1] & F = (1,0)	 (8.47)

150



and the  seasonal effects component 

Pt = 1+E. 	 where	 E= (0,1,0,..,1,0)	 (8.48)

They are linked through the non-linear (multiplicative) relation 	 = Pt .It	, which

completes the model formulation of equations (8.1)-(8.2).

II -  Updating Equations  .

As mentioned before, in order to implement the updating equations through the methods

of section 8.2.1 , the three quantities given by the equations (8.5)-(8.7) should be evaluated

and this is done considering	 = git ) = pt.it.

Now, since Lt	 = I) N (at , Rt ) , the joint prior moments for	 = ( it ) will
pt

= I) 1n1(i.t ,Rt) , wherebe given by

and
Rt	 V(2t) cv

.	 v(pt ) ) with	 (8.49)

=	 --= 1 +E. 	 V(2t ) = F.Rt .FT	 V (pt ) E.R.t .ET 	 CV = F.Rt.ET

Then , (Le / Dt- V ) (L, .Et .ScT ) where:

	

i)f:t = E[pt.it lDt-1,.1 = fit	 + CV	 (8.50)

ii) Et = Var [pt .IDt _ 1 ,V JLHT .R.Hg +	 (8.51)

with the following matrix definitions

a) Ht= 
a Li, AI. . ( Diapvit, ..., A))

(

a 	 ,	 -rit,••,7dg

b) Tt =	 . tr(71.Rt .T1 .Rt) .

(0d.dwhere	 Tit = 	 	 with	 h = (0, .,1, .,0) 	 = 1,., d
8-A ea-A T —	 h.

For a proof of the validity of equations (8.51)-(8.53) see Appendix 8.2 .

Also , the covariance in equation (8.7) can be expressed , as follows :

(8.52)

(8.53)

cov[et ,g(c)] = cov[pt	 ft] = .Covhlt ,	 + it .Cov [Pt, gt]

Or,	 C ov[gt , g (ft )] = fit .F .Rt + it .E.Rt	 (8.54)

And also	 = (%$.F + it.E).Rt.E;"1 	 (8.55)
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• 4 (8.56)

(j = 1,2, ..,	 (8.57)

8.3 -  Modelling Compositional Data  .

In principle , the class of models for vector time series analysis and forecasting presented in

the last three chapters of this thesis were directed towards the representation of continuous

data or , more specifically , the modelling of multivariate normal observations .

In practice however , some real data sets are not formed by continuous observations but

discrete ones or representing proportions of a whole as in the case of compositional data for

instance .

Such series of proportions or compositions can be obtained ( if not directly as the original

data ) as the result of the division of each component series by the total. The idea behind

this initial transformation ( as explained by West & Harrison (1989) , chapter 15) is that if

general environmental conditions can be assumed to affect each of the series through a common

multiplicative factor at each time, then , the convertion to proportions will remove such effects

and lead to a simpler analysis.

In this way , in order to enlarge the applicability of our models to such non-normal data , we

consider here the use of special transformations in this previously transformed data , in order

to have continuous observations again and consequently , be able to use the DLM framework .

Concretly , if ye ( t=1,2,..) is a d-dimensional vector time series of positive quantities of

similar nature , then , the time series of proportions & is defined by

1 
d

& = E Y,t
i= I

Now, the logistic log-ratio transformation - Aitchison (1986) , can be used to map the vector

of proportions & into a vector of real-valued quantities It , where a particular symmetric

version is given by

zit = log {	 = log Pt — 10913g
Pt

where y-r d
= ii=1 p:t is the geometric mean of the elements pit .

The inverse of this log ratio transformation is the logistic transformation

exp(zit) 
pit =	 d	 j= 1,.., d 	 (8.58)

exp(zit)

Then , if we represent g., = (sit ,.., zdt ) . as a normal DLM , the observational distribution of

the proportions & will be the multivariate logistic-normal distribution as defined in Aitchison
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(8.59)

(8.60)

Shen(1980) , and a sufficient condition for the vector pt to follow such distribution is that

the original series Et is distributed as a multivariate log-normal .

Now , we face another problem : the elements of g_ t sum to zero by the definition and

this implies that V is singular with rank d-1 . This and other singularities , as suggested by

West di Harrison(1989) , can be handled as follows . Initially , zt is modelled ignoring the

constraint ( i.e. , assuming that V is non-singular ) and then transforming z t to L.It where

L =	 = I — c/- 1 .11' . Then applying the transformation L to the observation equation of

the multivariate DLM in	 , we get

= P.It +	 ,	 N (0,V*)

0 — G 0	 w-4 — .-t-	 tizt	 N ( W)

where z.; = L., F = L.F and V 	 L.V.L.

Then , the algorithm of chapter 6 for multivariate DLM analysis is considered for estimating

the process parameter and the observational variance V' . This information is transformed

back to obtain V through the relation V = , where L- is the MP-generalized

inverse of L .

8.4 -  Vector Auto-Regressive Dynamic Models 

8.4.1 - Introduction 

Since its original introduction by Litterman,R.B.(1980) , the B.V.A.R. (Bayesian Vector

Auto-Regressive ) method has became popular in the econometric literature as a successful

technique for modelling and forecasting multivariate time series . In order to understand its

advantages and limitations as well as its relationship with multivariate DLM's , we present

here a brief description and analysis of this model .

By Vector Auto-Regression - VAR , we mean a projection ( regression ) of each element of

a vector time-series on its own lags and lags of each of the other elements in the vector . In

an econometric jargon , we can say that all variables in the model are endogenous and the

whole model structure is in a reduced form . It is supposed that all lag orders (up to a certain

order m say ) of all variables are present in each equation and the possibility of introducing

one deterministic component in each equation ( there are as many equations as elements in

the vector time series ) is also considered .
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The VAR model is claimed to be a very general representation with which to approximate

the stochastic process generating a multivariate time series , specially if we consider the class

of such models with time-varying coefficients . In fact , as shown in the next sub-section , the

VAR model (in its dynamic version ) can be considered as a particular case of the common

components model presented in chapter 5 , depending on the variance specification for its

dynamic ( random walk type ) evolution.

One key feature of such VAR models is the presence of a large number of parameters which

if estimated from a not very large data set , will create an overparametrization problem : one

finds a very good in-sample fit and a very bad out-of-sample forecast performance.

Classical econometric models ( simultaneous equations or structural models ) approach this

problem relying on econometric theory to suggest which lagged variables should be present or

not in each equation. To avoid overfitting , the forecaster is forced to rely heavily on exclusion

restrictions , even though that represents an unreasonably strong prior , one that will never

be altered by evidence in the data .

An alternative modelling procedure is to consider a large number of lags , say m , for each

variable in each equation and impose some sort of parametric constraint , in a deterministic

or stochastic way , in order to increase the number of degrees of freedom . A review and

discussion of different deterministic and stochastic types of restrictions used in distributed lag

models can be found in Young,A.S.(1983) . It is suggested that there are advantages in using

the stochastic type of constraints and in a Bayesian framework it is implemented through the

use of adequate prior distributions .

Instead of setting lots of coefficients to zero , the BVAR technique specifies through the use

of a prior distribution that most coefficients are likely to be close to zero ; the larger the lag of

a given variable , the more likely it is that the coefficient is zero . The rationale for this is the

fact that more recent values of a variable are more likely to contain useful information about

its future movements than older values .

As a simple ilustrative example , consider that the regression coefficients bijk ( j = 1,..,m )

of the j-th lag in each of the d variables ( k = 1,..,d ) in each of the d equations , with the

exception of the first lag , have the following prior distribution

(bijk I D0 )	 N (0, cr.j 1 )	 (8.61)

where a is an overall tightness hyper-parameter ( in practice its value is set up between 0.1 and
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0.3 ) . The first coefficient b 1 corresponding to the first lag , as suggested by Litterman(1981)

, has its initial prior mean set up as 1 in order to represent a random walk type process and

an initial prior variance as in (8.61) . A more general set up for the initial priors as the one

suggested by the authors is described in Appendix 8.3 . For a more detailed discussion of the

BVAR approach , see for instance Litterman(1980,1984) or Doan,Litterman az Sims(1984) .

Now , a brief formal exposition of the BVAR model as well as some analysis and critics

is presented in the next sub-section where the relation between such models and the DLM

framework is stablished and some natural extensions are proposed .

8.4.2 -  BVAR Models : Definition , Critics and Interpretation as a Special DLM  .

Definition  : An Tel order auto-regressive representation for the dxl vector time series Et

is given by
m

y = E B2 .y . ± Et , Et --, N ( 0 , V )
	

(8.62)
3=1

where B, ( j = 1,..,m ) are dxd matrices of unknown auto-regressive coefficients , yt is such

that any deterministic components ( such as constants , trends , seasonals or any exogenous

variable ) are supposed to be previously eliminated from the data.

The ( static ) BVAR model is then defined by the observation equation ( likelihood ) given

above plus some initial prior specification for the auto-regressive parameters ( prior distribution

) like the one given by equation ( 8.61 ) for instance . A more general procedure to specify

the initial priors is presented in detail in Appendix 8.3 . The prior specification problem in a

general multivariate regression context is discussed in Brown,P.J.(1980) and Makelainen,T &

Brown,P.J.(1988).

One typical case of a deterministic term that should be previously eliminated from the

data is the seasonal component present in many time series . Unfortunately , this important

component is supposed to be known or previously estimated by another method , as for instance

, using dummy variables as regressors , as suggested by Litterman(1986) .

What is important to notice is the fact that seasonality does not have a stochastic treatment

and is not estimated jointly in the model , which is a serious drawback of this BVAR method.

Now , in order to understand better the BVAR model and see more clearly its limitations,

we proceed with the following analysis

From the model definition (static case) , the it h equation (i = 1,..,d) has the following scalar
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4—mYti = (k:-1 ' (8.64)

where F =	 "	 k )

form :

yl =bill . Y13-1 +	 +	 .yi , t - m

2 Y2 ,t — 1 + • • • • + bin,. 2 • Y2, t — m

d • Yd, t — 1 + • • • • ± bi,n d • Yd, t — m	 Vt

where b", k is the kth element of the ith row of ./3; . Or , equivalently

(8.63)

where the y's and b1 's are respectively the columns of lagged variables and auto-regressive

coefficients in (8.62) .

Now , putting together the d equations like (8.63) , we have the following observation

equation

=(/0F).11t+2,
	 N (0, V )	 (8.65)

&	 1(= vec
b1

Also , if we consider the possibility of a random walk type variation for61t , we have the

following system equation

=	 , !Et	 N (0, W)	 (8.66)

and the  Dynamic BVAR Model  is defined by the equations (8.65)-(8.66) together with some

prior distribution for et like (8.61) and a prior distribution for V .

It is important to stress the fact that the Dynamic BVAR model is defined independently

of the way that W t is specified operationaly , which can be done in many different ways .

In the computer implementation of the BVAR methodology developed by the authors - the

RATS ( Regression Analysis of Time Series ) package , such operational specification is left to

the user . One special way of implementing W t , which is part of the common component

DLM framework of chapter 5 , is to consider

Wt =V OWt	 (8.67)
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where Wt is specified through the use of a vector of discount factors .

As we can see , the equations (8.65)-(8.66) plus the specification in (8.67) define a special

or particular case of the common components model presented in chapter 5 , and the so called

Dynamic BVAR model , in such circunstances , can be considered as a type of CCM .

As a consequence , this model can carry out not only the advantages of common components

such as simplicity and computational efficiency but also its drawbacks (see chapter 5 for a

discussion of the limitations of that model ) .

In fact , if we redefine the Dynamic BVAR model through the equations (8.65)-(8.67) , and

not more through the equations (8.65)-(8.66) as before , we get some important advantages

over the traditional formulation . First of all , we can now estimate V jointly with e t , which

did not happen before - see for instance Litterman (1988) . Second and very important , is

the fact that now we can introduce other components in the model as for instance a seasonal

component with as many harmonics as necessary or exogenous variables as external individual

regressors .

This new formulation - the Dynamic BVAR / CCM - has now overcome one of the main

drawbacks of the traditional BVAR model : the proper modelling of seasonal data , and also

, it has opened the model to the inclusion of exogenous variables when necessary . However

one important question remains : how about the main drawback of the CCM ( see chapter 5

) , i.e. , the coincidence with individual univariate DLM results .

It may seem a surprise , but it does not happen in the special framework of the dynamic

Bayesian vector auto-regressive model and the reason is as follows . Each univariate marginal

model - see for instance the equation (8.63) for the i th variable - depends not only on the

lagged values of this ith variable , but also on the lagged values of all the others d-1 variables

that form the vector time series . In this way , the predictive distribution for the i th variable

for instance , depends not only on the past values of this variable but also on the past values

of all the other variables , which characterises a general multivariate model for multiple time

series .

8.4.3 -  Further Extensions to BVAR Models 

Now , in order to remove some lasting limitations still present in the Dynamic BVAR /

CCM , as for instance , the constraint that the seasonal pathern or exogenous variables ( if
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present) should be the same ( equal number of harmonics or a common regressor ) for each

individual time series , as well as constraints concerning interventions , we extend the model .

For the applications where we need a seasonal component and it can not be represented in a

common components framework ( or we need different regressors for each marginal equation )

, we redefine the Dynamic BVAR model - call that the Extended BVAR model - as a special

case of the multivariate DLM model of chapter 6.

Another case where such general framework ( the multivariate DLM ) can be used as an

extended BVAR model is when we want to remove one or more lagged variables in certain

equations of a vector auto-regressive structure. That is , when we do not want or need all lags

of all variables present in each equation. This sort of modelling flexibility ( not present in the

original BVAR model ) can be very important in larger systems for instance , where we need

to reduce even more the total number of parameters in the model and any useless component

should be removed .

Appendix 8.1 -  Updating Equations for the DNLM ( algorithms I & II) 

Using the same notation of chapter 6 , the full Updating Equations for the scaled DNLM

will be given by the following steps ( algorithm I )

Notation  : (i 	 / Dt-1 , V = /) •••• N (722. 1 ) Ci--1)

step 1- time updating  : (2, / A-1,V = .1) -- N ( cit , Re) where :

a = G mi-t	 .—t- i

Rt = G.Ct _ i .GT + W

In practice , W is specified through a given vector of discount factors b . Also , there is no

time updating for V , since it is supposed to be constant in time .

step 2 - reparametrization Sz scaling  : (Ltd./3,1,V) - N (j) Rn where

(8.8)

(8.9)

Lt = E{g(th) I Dt _ i ,V }

R; = Sc.Et.S•

Et = Var{g(2t ) / Dt _ 1 ,V = I}

where initially , the scaling matrix Sc is set up as an identity and updated in step 3 .
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step 3 - observation updating : 	 (t14 1 AY) .--' N (mt , ct)	 where

g-t1=L+A;.(Y -f) (8.13)

c't = R; - A:.Q:-Ais (8.14)

Ai = Ri.Q;-1 (8.15)

Q; = IC +V (8.16)

Also , (V I Dt ) -, W-1. (di ; nt ) where :

cis = nt .Vt = dt-i + ht.hr (8.17)

ne = nt-1 + 1 (8.18)

he ...st_1.[(Q;)1]-1• (8.19)

St = tvt it. (8.20)

Sc = Ss.So (8.21)

where So is a reference matrix set up initialy such that the initial scale factor Sc is the identity

matrix.

step 4 - inverse reparametrization and scaling : 	 (24 / Dt ,V = I) , N (tril , C') where

Er-ell = C-L2 + 4 4714/ - 14) (8.22)

ci = Rt + it . (c; (8.23)

Al .cov{et , g(4)}.Ei-1 (8.24)

C; = s; 1 .ct .(s i)T (8.25)

Updating Equations for the DNLM ( algorithm II) 

As a consequence of the definitions and explanations of section 8.2.2 , we have the following

Updating Equations for the DNLM defined directly in terms of the process parameter 24 :

Notation  : (flt_ 1 /Dt_ i , V) .--, N (n_. tl _ 1 ) Ct- 1)

i)  Time Updating  : (i24 / Ds-1,V ) — N (g4 , Rt) where

a = G m
	 (8.30)

Rt = G.Ct_ i .GT +ws
	 (8.31)
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apt

—

:ii) Observation Updating for V  : (V-1 / Dt )	 W (d2 ; n) where

dt = d2-1	 t.hr	 (8.32)
1

ht = V 1 .[]'.	 (8.33)

4't = PT .A.P+vt_i	 (8.34)

„ =	 • .�1.4
Y.;

_

	

	 (8.35)

(8.36)= 74-1 +

= nT 1 .c/t	(8.37)

= vt 3	 (8.38)

iii) Scaling and Observational Updating for ei  :	 t I Dt, V) r•-• N (tht , Os) where

Int = + AT .;	 (8.39)

AT = Rr.F.Q -1:1 	 (8.40)

= (/— P.AT).kr	 (8.41)

=	 T • Rt	 (8.42)

QT = ET .1t T.P ± Vt	 (8.43)

5" = St St-	 (8.44)

s-.t)
=	 :	 (8.45)

sa

(8.45a)=	 , j= 1, k

Appendix 8.2 - Covariance Between Quadratic Forms & Related Results 

1) In order to prove the validity of the equation (8.31) we consider the Taylor Series expansion

of the vectorial function	 = Pt.i,	 as follows :

Lit = f (4) = f( t ) + HT .( — St) + (1(— it)T .Tit.(At

with
a

=

(

8a÷

8 is

opt

H2 =
-•

where:

apt•(rit,••,-idt) 
T	 = Diag ( —I fit)N 

_At

=	 -t	 =	 =	 , -rdt )
apt	 —t
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Tit =	
attr

—t —t

a2pt-y.t (0 dxd
= a

(2tT ,Pt) 8(17 'P)T —

a2ttit Air \

0 )

where

where

Also , the 2nd derivatives will form an array where each one of its d faces is given by

with h• = (0,.,1, 0) . Consequently , the variance-covariance matrix of/2,4 will be given by,

1 ( •
Var (p) =HT .Var().Ht	 • tii

ti; = Cov(KT .T, , KT •)
which involves covariances between random quadratic forms .

ii) In order to find out an expression for the covariance of two random quadratic forms

we proceed as follows . Initially , consider the quadratic forms A ' .Ti .A and A ' .T.i .A where

T„T, are symmetric and A -- (0,R) . As R is a covariance matrix , it is positive semi-

definite , and consequently there exists a non-singular matrix U such that u.u' = R . Then

, we can rewrite the quadratic forms as A ' .Z.A =	 .A.X and A' .2', 	 =	 .B.X where

X =	 , A = .T, .0 and B =	 , what gives an uncorrelated structure for X

: X (0, I) • Although no normality assuptions are considered , we suppose independence

between the elements X, of X as well constant 4th order moments (ce 4 = EX = const. for all

i = 1,..,d +1) . Now,

E{(X 1 .A.X).(X i .B.X)} = E

where , using the assumptions of independence and constant eh order moments , we get

ce4,

/	

if the indexes are all equal

1E(Xi .XJ .Xk .X1).	 ,	 if indexes are equal in pairs

	

0,	 otherwise

Then , if Q A = .A.X and Q = .B.X , we have :

E{Q A .Q B} = 4 .	 .bii +	 ± 2. E aii.bij
i� k	 i0i

= a4 .a ' .A+ E aii.bkk — Lit .b ± 2. E aii .bii —
Vi,k

= (a4 — 3)4' 1+ (trA).(trB)± 2.tr(A.B)
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where a & b are the column vectors of the diagonal elements of A and B respectivelly . Now,

as E(X 1 .A.X) = trE(A.X.X ' ) = trA and E(X1 .B.X) = tr B , we have :

	

C ov{Q A 13} = E{Q A ,Q B} -	 Al•E{QB}

= S + (trA).(trB) + 2.tr(A.B) — (trA).(trB)

	

= S + 2.tr(A.B),	 where 6 = (a4 — 3).d .k

Using the definitions of A and B given before , we have

Cov{A s	 .A 	 8 + 2.tr(U' .71.(111

Since Ulf = R, and the trace of a product of matrices is invariant under cyclical permutations

, we have finally

Cov{21.71.A, .Ti .A} = 6 + 2.tr(R.T1.R.Ti)

In particular , if we have normality ( or a distribution with the same moments as the normal

up to 4th order ) then 8 = 0 , what gives , using our initial notation

Cov{V i	, /V ' .Ta .A* } = 2.tr(Ti .R.7; .R)

Also , the diagonal elements (variances) are given by

Var{A' ' .Ti .A"} = 2.tr(T1 .R)2

what is the expression commonly used for such variances in the univariate case .

iii) Finally , we need now to prove that each of the d quadratic forms in the Ts and the

linear form in H present in the Taylor Series expansion are not correlated . This is necessary

, in order to garantee that the expression for V (tit ) does not have terms other than the ones

considered . To do this , we proceed as follows . Although we do not assume normality for

Y = A * , we will suppose that Y has a symmetric distribution. Under such conditions , as

EY = E(A) = Q , we have

Cov{Y,Y i .T.Y} = E{Y.Y	 (.T.Y) = 	, tii.E(Yi.Y.,..Yk)

and from the symmetry assuptions , as E{Yi .Y5 .Yk } = 0 , we have , Cov{Y,Y 1 .T.Y} = 0.
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Consequently, Var(tit ) = HT .R.Ht + 1Tt where Tt = (•. tr (Ti .Rt .7,..R.t ) .

as in (8.13), what complete the proof.

Comments :

i) It is interesting to notice that in the particular case of dimension one ( univariate case)

0 1)there is only one matrix of second derivatives given by T = (
	

) 
and the matrix H of1 0

first derivatives becames a vector H = ( 13i )	 . Also , the variance-covariance matrix of A

C.,„ )
is given y R = (V" 

v	
, and consequentlyven	

p

(v., c.,,,) (A) + 1 .tr f (0 1) (v., cip)12
VOA t l Dt _ i ) = (A i).

.	 Vp ) • .')', )	 2	 t 1 0) 	 .	 Vp ) i

Then , after some easy matrix algebra , we get the following expression for the variance of the

product of trend and seasonal components:

V ar (p.-)') . ,32V ± ;i2 .vo + 2.15..i.c.p., +
C

 
7 +V .17.7

, what coincide with results found in Migon(1984) for the univariate seasonal growth multi-

plicative model.

ii) Finally, it is important to assess the validity of the assumptions considered when we use

results for variances and covariances of quadratic forms . In fact , in the context of section

8.2 , such quadratic forms came from (Taylor Series expansion of) the product of trend and

seasonal (random) components. If we know the seasonal effect exactly or very precisely (small

variance), the product will behave like a linear function and normality will be a consequence .

In practice , we do not know the seasonal effects exactly but its variance is much smaller than

the trend variance . Or , in other words, the product of the two components is a non-linear

function but it has in practice a  close to linear behavior and normality or other assumptions

such as the ones we have used will be justified . In fact , in order to obtain expressions for

the variance-covariance of 1.4 we have considered assumptions weaker than normality , such as-4

constant 4th order moments . But , to implement such expressions in an easier way , we have

assumed 6 = 0 , what means a behavior like the normal up to 4th order moments.

163



Appendix 8.3 -  Initial Priors Seting for BVAR Models 

The ( static ) BVAR model is defined by the likelihood function ( observation equation )

given by equation (8.62) plus the following prior specification for the auto-regressive parameters

(V3k / Do)	 N (m(j);V(i,j,k)) i,k = 1, d & j = 1, m. where :

i) bijk is the coeffi ient of the ph lag a = 1,.,m ) of the /e h variable ( k = 1,.,d ) in the ith

equation (i = 1,.,d) of the linear system defined by (8.62) .

ii) m(j) is the initial prior mean of b.; k and it is equal zero for all lags j with the exception

of the first one where we have m(1) = 1 .

iii) V(i,j,k) is the initial prior variance of b,i k and is given by the following expression

V(i, j, = a. f(i,k).g(j).Sk IS, where

a is an overall tightness parameter such that , smaller its value , stronger the constraint is

i.e. , tighter to zero ( in practice a is chosen between .1 and .3 ) .

f(i,k) is an indicator of the influence of the kth variable in the ith equation of (8.62) , where

f(i,i) = 1 and 0< f (1,k) < 1 for i	 k .

go) is an indicator of the relative influence of each lag and is expressed as a decreasing

function of the lag order j as for instance , g(j) =	 ( harmonic decreasing ) , g(j)= j-2

( quadratic decreasing ) or g(j) =	 , 0 < c <1 ( geometric decreasing ) .

Sk /S, are coeficients designed to correct possible expected inequalities between observa-

tional variances ; for instance , if the kth component of mi has approximately twice the vari-

ability of the ith component , then , we should introduce this sort of information through the

coeficient Sk IS, = 2 .

In fact , in the example given by (8.61) , it was supposed that all variables are equally

influential in each equation , that all marginal series have approximately the same variability

and that the lag-influence function has an harmonic type of decreasing.
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CHAPTER 9

FURTHER MODEL EXTENSIONS AND ILLUSTRATIONS

9.1 -  Introduction 

Among other issues , this chapter discusses further extensions of the basic methodology for

multivariate DLM analysis developed in chapter 6 of this thesis . Such extensions include

the introduction of extra flexibility in the model through ( random walk type ) stochastic

changes in the observational variance matrix V , as well as , the introduction of monitoring &

intervention facilities to be used whenever judged convenient .

These two special modelling aspects , aimed to improve model flexibility and forecasting

performance , are discussed in section 9.2 of this chapter , and further extend the range of

applications of the basic model formulation of chapter 6 , initiated in chapter 8 of this thesis .

Finally , section 9.3 of this chapter presents a numerical application concerning a multi-

plicative seasonal growth model , similar in many aspects to the SGM model of chapter 8

but considering a linear version of that model ( in the log scale ) , where the seasonal effect

parameters are common to all series . This application , illustrates once more the use of the

general techniques proposed in this thesis , mainly in situations where other more restrictive

methods for multivariate time series analysis do not succeed .

9.2 -  Special Modelling Extensions 

9.2.1 -  Discounted variance matrix learning 

As discussed briefly in chapter 2 of this thesis in the context of univariate DLM's , one

simple way of giving extra flexibility to the model is to introduce stochastic changes in the

scale parameter Vt , as in Harrison St West(1986) . We borrow such ideas from that context

and extend it to apply to the multivariate models of chapter 6. This is done as follows.

Consider the variance matrix V subject to some random disturbance over the time interval

t-1 to t , where such stochastic variation is steady and described by a random walk model for

Vt ( or some other function of Vt such as Vt— ' for instance ) . Using the notation of chapter 6,

the precision matrix vtz l, has a posterior distribution at time t-1 given by (Vr_ 11 / D_1) --•

W (dt _ 1 , n.. 1 ) where de_ 1 & nt _ 1 are respectively the shape parameter and the number of

degrees of freedom .
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The dynamic evolution for the precision matrix Vt-' is then modelled as Vt- 1 = Vt:

(6V -1 ) t , where the disturbance term is uncorrelated with (Vt=1/Dt_1) . As a consequence

, at time t , we have

Var{Vt-1 /Dt-i}=Var{Vt-i/Dt_i)+Var{(5V-It}

where the first of the two variance components in the right hand side is a function of nt-li .

Using the discount concept ( see chapter 2 ) , we may represent the increase in variance

given by the last term ( disturbance ) by a discounted version of the first term , and this is

done simply discounting rat _ 1 . The di. updating nt = n1 +1 of the algorithm of chapter

6 , is substituted by the discounted version n t = + 1 , where a typical value for the

discount factor 8 is around 0.98 or 0.99 .

The rationale and coherence of such procedures is similar to the corresponding univariate

model ( more details can be found for instance , in West & Harrison(1989) ) .

9.2.2 -  Multivariate Monitoring & Intervention 

As we have seen in chapter 4 of this thesis , in the context of univariate DLM's , model

performance can be assessed sequentially to detect possible structural changes or outliers using

Bayes' factors, which constitute the basis for an eventual feed-back intervention in the model

. Or , if we have information to anticipate an exceptional occurrence or a future structural

change , we can implement feed-forward intervention .

In principle , such ideas can be extended to a multivariate context , since Bayes'factors are

defined for multivariate predictive distributions exactly in the same way as before ( chapter 4

) and with the same properties . However , some important practical questions arise as well

as methodological ones . Initially , we have to decide if we assess the model performance of

(y Dt _ i ) jointly or marginaly , and the answer is not trivial.

Concretely , if we have ( / D_ 1 )	 N (ft , Qt ) , the straightforward multivariate coun-
,

terpart of the usual ( unidimensional ) residual standardisation yt*t =-- ( yit — A ) / Wit ( 1 =

1,..,d) is given by the square root of the quadratic form Tt2 = (yt —	 — ft)

where Tt is the so called Hotelling statistic - Hotelling(1947) .

Although used in quality control of industrial processes , a monitoring scheme based on the

overall statistic Tt instead of the marginalia y7t would present at least two big inconveniences
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for time series applications . First , an assessment measure using Bayes' factors , based on an

overall statistic Tt could suggest a good overall model performance concomitantly with one or

more predictive marginals having a bad forecasting performance . This unfortunate situation

can happen in particular , if the dimension d is large and just one or a few marginals disagree

with the current model , since this effect is masked by the overall statistic Tt and a necessary

call for intervention in that particular components is not heard .

A second undesirable property of such Bayesian monitoring schemes based on the statistic

Tt as a kind of standardised residual is that its operating characteristics , mainly the Expected

Run Length - ERL will tend to exibit a slow detection of change because of the masking effect

discussed earlier . In fact , the ERL for the detection of level change in normal processes

via the marginal and joint approach ( in a non-Bayesian quality control context ) has been

studied by Crosier(1988) , with the results showing the superiority of the marginal approach

in relation to the joint one ( respectively called multivariate CUSUM and CUSUM of the T

statistics by Crosier ) . For a brief discussion about the mathematical equivalence between log

Bayes factors and the so called CUSUM's , as well as ERL and related topics , see chapter 4

of this thesis .

As a consequence of the discussion and analysis carried above , it is clear that the more

appropriate way to extend the Bayesian monitoring scheme of chapter 4 to the multivariate

case is to consider a set of d parallel monitoring schemes for each marginal series . Therefore

, this is the basis for the extension of automatic feed-back intervention schemes to the case of

vector time series . The practical implementation of such schemes , can follow the basic lines

described here and in chapter 4 but there is some flexibility to adapt to a particular type of

application or objectives and , therefore , this is left to the practitioner .

9.3 -  The SGM Model : A Numerical Illustration 

9.3.1 -  Introduction 

As discussed in chapter 5 of this thesis ( section 5.3.2 ) , the modelling of any individual

component , as for instance , a common seasonal component , is not compatible with the CCM

framework and the need for the general DLM structure is evident . A closely related issue was

considered in the previous chapter , concerning the SGM model. In that model , all individual

marginal series share the same ( multiplicative ) seasonal structure , which is what we call a
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shared component.

This section considers an alternative version of the SGM model where the observational

errors are multiplicative and not additive . In the logarithmic scale , such model may be

expressed as a multivariate DLM with trend components for each series but just one seasonal

component ( with as many harmonics as necessary ) common to all marginal series. In principle

, both methods are useful to analyse this type of seasonal effect , and one clear advantage of

the second one is simplicity . In order to illustrate such modelling aspects , we consider an

application with simulated data.

9.3.2 -  The Simulated Data : a preliminar view 

The data considered here is a three dimensional time series obtained by logarithmic trans-

formation of a vector time series with 48 observations generated according to a SGM model.

The data , shown in fig 9.1 , is typical , for instance , of marketing environments where the

sales of one product ( corresponding to series 2 in the log scale ) falls down concomitantly with

the rise in sales of the other two competitors ( series 1 and 3 ) . In such circunstances , where

the products are similar and the market is the same , usually , all series are shaped by the

same seasonal variations .

From a simple inspection of that picture , the presence of linear growth ( trend component

) and a 4-period harmonic ( seasonal component ) is evident. This particular kind of seasonal

oscillation is typical of business accounts , since one 'period' is usually 3 months , and 4 periods

will correspond to one year .

The presence of a second harmonic in the data, however , is not totaly clear from a simple

visual inspection , and the use of a Periodogram is useful to confirm such extra harmonic (

this is the Nyquist or 2-period harmonic ) .

Once identified the main characteristics in the transformed data that should be considered

in the modelling process , we turn to the question of coherence in using transformations of

the original data . It should be noticed that the original data ( such as sales series , etc ) is

essentially positive and the logarithmic transformation restores the real domain R required

for analysis purposes ( we are using normal DLM's ) , and therefore , it is a coherent procedure

, as well as ,a very usual one .

9.3.3 -  The Modelling Structure 
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The specific DLM {F,G,W} to be used in the analysis of the simulated data described in

9.3.2 , is characterised by 3 components ( linear trend and two harmonics ) with the respective

discount factors , as follows

i) A common real root component with eigenvalue 1 of multiplicity 2 , and a discount factor

of 0.95 . ( linear trend )

ii) A shared real root component with a single eigenvalue -1 , and a discount factor of 0.975

, related to the series 1,2 & 3 ( Nyquist harmonic)

iii) A shared complex root component with eigenvalue of modulus 1 and period 4 , and

discount factor of 0.975 , related to the series 1,2 & 3 . ( first or 4-period harmonic )

As a consequence , the triple {F,G,W} is completely defined ( for a review about DLM

specification & design , see section 2.4 of chapter 2 ) . The input of information for the model

specification using an interactive APL function is shown after fig 9.1 , as well as the system

matrix G . The values chosen for the discount factors represent typical setings and are based

on our experience in similar situations ( for a discussion about discount factors , see section

2.2 of chapter 2 ) .

The algorithm for vector DLM analysis ( section 6.3 , chapter 6 , using discounted variance

learning — section 9.2.1 ) was applied , considering the model & data set described above , with

the following prior set up . As prior mean for the trend ( level and growth parameters ) and

seasonal parameters , was considered respectivelly , 4.5 , 0 , 6 , 0 , 5 , 0 ,1 , 1.2 and 0.5 . The

prior observational variance matrix was initialised with 0.8 , 0.8 and 0.4 in the diagonal and

zeros elsewhere , with 0.005 for its associated number of d.f. The prior variance matrix was

initialised with variances respectively 50 , 10 , 50 , 10 , 50 , 10 , 8 , 8 , 8 , and zeros for the

off-diagonal terms . Also , the discount factor for the observational variance learning process

was set up as fi = 0.99 .

9.3.4 -  Estimation and Prediction Results 

The one-step-ahead forecasting residuals for the three series are shown in fig 9.2 , at the

end of this chapter . Apart from the initial points , the residuals are satisfactory ( no large

magnitudes or expressive auto-correlations , etc . ) , with the most well behaved series ( series

3 ) showing the smallest residuals , as expected .

The estimated correlation structure among series is shown in fig 9.3 . As we can see from
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that picture , the learning process for the correlation between the series 2 and 3 , denoted

CS[;2;3] , is extremely fast , stabilising around 0.6 with just a few observations . The other

two correlations , respectively between series 1 & 3 , and 1 & 2 , have values around 0.3 and

-0.3 , with convergence not as quick as in the first picture , but still satisfactory .

The trend component ( level parameter ) estimates are shown in fig 9.4 , denoted MS[1;]

MS[3;] & MS[5;] , respectively for the series 1, 2 and 3 . The growth parameter estimates

are shown in fig 9.5 , respectively , from the bottom to the top , for series 1 , 2 and 3 . The

growth parameter is practicaly constant for the series 1 and 2 , respectively 0.015 and -0.005

, but change ( decay ) slightly for the series 3 ( around 0.025) .

The shared seasonal component estimates are shown in fig 9.6 . The first harmonic , pre-

senting periodicity 4 ( the picture on the top ) shows a very stable behaviour with time, and

a magnitude around 15 per cent . The second harmonic , presenting periodicity 2 ( Nyquist

frequency ) , fluctuates a bit in time , with magnitude around 0.03 , and consequently it is

more difficult to detect directly from the data .

Finally , a comment should be made about the estimation of the observational variances,

covariances and correlations. The model analysis provides approximate Bayesian estimates of

the observational variance-covariance structure, and these estimates are transformed into cor-

relation estimates ( intra—series correlations ) . The theoretical justification for such procedure

is based on the so called plug—in rule ( see Quintana,J.M.(1987) , chapter 5 ) . Very often

estimates of functions of the parameters are of interest , as for instance , the correlation or even

the eigen—structure of the matrix V , and such transformations of estimates are themselves

Bayesian estimates .
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DIMENSION of OBSERVATION VECTOR : 3
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