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Abstract: we give a simple proof of Kramkov’s uniform optional decomposition in the case where

the class of density processes satisfies a suitable closure property. In this case the decomposition is

previsible.

Keywords: UNIFORM SUPERMARTINGALE; UNIFORM OPTIONAL DECOMPOSITION; UNI-

FORM PREDICTABLE DECOMPOSITION

AMS subject classification: 60G15

§1 Introduction

In [4], Kramkov showed that for a suitable class of probability measures, P, on a
filtered measure space (Ω,F ,Ft; t ≥ 0), if S is a supermartingale under all Q ∈ P, then
there is a uniform optional decomposition of S into the difference between a P-uniform
local martingale and an increasing optional process. In this note we give (in Theorem 2.2)
a simple proof of this result in the case where the martingale logarithms of the density
processes of the p.m.s in P (taken with respect to a suitable reference p.m.) are closed
under scalar multiplication (and hence continuous).

The applications in [4] refer to the financial set-up, where P is the collection of Equiv-
alent Martingale Measures for a collection of discounted securities X , and S is the payoff to
a superhedging problem for an American option, so that

St = ess sup
Q∈P

ess sup
stopping times τ≥t

E[Xτ |Ft],

where X is the claims process for the option.
Other examples are a multi-period coherent risk-measure where the risk measure ρt is

given by
ρt(X) = ess sup

Q∈P
E[X|Ft]

(see [4]) and the Girsanov approach to a control set-up, where S is given by the same
formula, but P corresponds to a collection of costless controls on X (see, for example, [1]).

§2 Uniform supermartingale decomposition

We assume that we are given a filtered probability space (Ω,F , (Ft)t≥0,P), satisfying
the usual conditions, and a collection, P, of probability measures on (Ω,F) such that Q ∼ P,
for all Q ∈ P.

We note that, since Q ∼ P, ΛQ
t
def
= dQ

dP
∣∣
Ft

is a positive P-martingale, with ΛQ
0 = 1.

Lemma 2.1. We may write ΛQ
t = E(λQ)t, where E is the Doleans-Dade exponential and

λQ
t =

∫ t
0
dΛQs
ΛQ
s−

, so that λQ is a P-local martingale with jumps strictly bounded below by −1.

1
I am most grateful to an anonymous referee for pointing out an error in an earlier draft of this paper and

for very helpful comments on the presentation



CRiSM Paper No. 11-06, www.warwick.ac.uk/go/crism

2 UNIFORM SUPERMARTINGALE DECOMPOSITIONS

Proof From Theorem II.8.3 of [4], if neither ΛQ
t nor ΛQ

t− vanishes then λQ exists. The fact
that ΛQ does not vanish follows from the stronger statement that, since Q ∼ P, ΛQ is
strictly positive. This also implies, once we have established its existence, the condition on
the jumps of λQ.

The fact that ΛQ
t− does not vanish follows via the following argument. First note that

dP
dQ
∣∣
Ft

=
(
ΛQ
t

)−1, so
(
ΛQ
t

)−1 is a Q-martingale. NowMloc, the class of local martingales, is
equal to H loc

1 , the localisation of H1 = {martingales M : E[sup0≤t<∞ |Mt|] <∞} [see [2]).
So, it follows that there is a localising sequence (Tn) of stopping times increasing (Q and
hence) P-a.s.to ∞ such that E

[
supt≤Tn

(
ΛQ
t

)−1]
<∞. It follows from the integrability that

supt≤Tn
(
ΛQ
t

)−1 is P-a.s. finite and hence inft≤Tn ΛQ
t is P-a.s. strictly positive. Thus ΛQ

t− is
P-almost surely positive on the stochastic interval [[0, Tn]]. Now letting n ↑ ∞ we see that
the second requirement is satisfied.

We denote by L the collection {λQ; Q ∈ P} and by Lloc the usual localisation of L.

Theorem 2.2 Suppose that
i) P ∈ P; and
ii) Lloc is closed under scalar multiplication;

then any P-uniform non-negative supermartingale, S, possesses a class-uniform Doob-
Meyer predictable decomposition, i.e. we may write S uniquely as

S = M −A,

where M is a P-uniform local martingale and A is a locally integrable predictable increasing
process with A0 = 0.

Remark: Notice that condition (ii) implies that every element of Lloc is continuous. This
follows since: any element of Lloc has jumps bounded below by −1; then if δλ ∈ Lloc for
all δ ∈ R, by taking appropriately large positive and negative values of δ, we see that the
jumps of λ must be of size zero.

Proof of Theorem 2.2: take Q ∈ P, with ΛQ = E(λQ). Now S is a non-negative Q-
supermartingale iff SΛQ is a non-negative P-supermartingale so, taking the Doob-Meyer
decomposition of S with respect to P: S = M −A, we must have that

SΛQ = S0 +
∫
St−dΛQ

t +
∫

ΛQ
t dSt+ < S,ΛQ >

= S0 +
∫
St−dΛQ

t +
∫

ΛQ
t dMt +

∫
ΛQ
t (d < λQ,M >t −dAt) (2.2)

is a P-supermartingale. Now since the first two terms in the last line of (2.2) are local
martingales, whilst the last is a predictable process of integrable variation on compacts, it
follows that the last term must be decreasing.

Now we claim that we must then have

< λQ,M >+<< A, with
d < λQ,M >+

dA
≤ 1, (2.2)

where < λQ,M >+ and < λQ,M >− are, respectively, the increasing processes corre-
sponding to the positive and negative components in the Hahn decomposition of the signed
measure induced by < λQ,M >.
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This follows from the more general statement: if µ, m+ and m− are three σ-finite
measures on a measurable space (Ω,F) and

(i) m+ and m− are mutually singular
and

(ii) ν
def
= µ−m+ +m− is also a measure, then

m+ << µ, with
dm+

dµ
≤ 1.

To see this, take A ∈ F with m+(A) > 0 then m−(A) = 0 and ν(A) = µ(A) −m+(A) ≥ 0
so µ(A) > 0 and m+(A) ≤ µ(A).

Now Lloc is closed under scalar multiplication so that, localising if necessary, we may
assume that δλ ∈ L and so, defining Qδ by ΛQδ def= E(δλQ), we see that (2.2) holds with λQ

replaced by δλQ for any δ ∈ R. Letting δ → ∞ we see that d<λQ,M>+

dA = 0, whilst letting

δ → −∞ we see that d<λQ,M>−

dA = 0. It follows immediately that

< λQ,M >≡ 0

To complete the proof we need simply observe that

MΛQ = M0 +
∫
Mt−dΛQ

t +
∫

ΛQ
t dMt +

∫
ΛQ
t d < M,λQ >t,

and hence M is a Q-local martingale and since Q is arbitrary, the result follows

Remark: We note that if P consists of the EMMs for a vector-valued martingale M and the
underlying filtration supports only continuous martingales (for example if it is the filtration
of a multi-dimensional Wiener process), then the conditions of Theorem 2.2 are satisfied.
This follows since, under these conditions, if λ is a P-local martingale then λ ∈ Lloc ⇔<
λ,M >= 0, and the same then holds for any multiple of λ.
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