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Inference in Two-Piece Location-Scale models
with Jeffreys Priors

F. J. Rubidand M. F. J. Steél

Abstract

This paper addresses the use of Jeffreys priors in the daftexivariate three-
parameter location-scale models, where skewness is irteadby differing scale
parameters either side of the location. We focus on variooswonly used param-
eterizations for these models. Jeffreys priors are showmonallow for posterior
inference in the wide and practically relevant class ofritistions obtained by
skewing scale mixtures of normals. Easily checked conditionder which inde-
pendence Jeffreys priors can be used for valid inferenceleneed. We empiri-
cally investigate the posterior coverage for a number ofeB&@n models, which
are also used to conduct inference on real data.

Key Words: coverage; Bayesian inference; noninformativerpposterior existence;
skewness

1 Introduction

The use of skewed distributions is an attractive option fadeling data presenting
departures from symmetry. Several mechanisms to obtaweskeistributions by ap-
propriately modifying symmetric distributions have beeaegented in the literature (Az-
zalini, 1985; Fernandez and Steel, 1998; Mudholkar angétyt2000). We focus on
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the simple univariate location-scale model where we indikesvness by the use of dif-
ferent scales both sides of the mode and only distinguistetbcalar parameters. We
investigate Bayesian inference using Jeffreys priorsisidimple setting.

Firstly, we consider univariate (continuous) two-piecstabutions with different
scales both sides of the location parameter. Then, we velllS@n the family of skewed
distributions defined in Arellano-Valle et al. (2005), waehe scales are reparameter-
ized in terms of a common scale and two functiom8y) andb(~), depending on a
single skewness parameter By appropriately choosing these functions, this family
covers the models presented in Fernandez and Steel (1888Jliadholkar and Hutson
(2000), among others. As shown in Jones (2006), all the mesvddethis family are
merely reparameterizations of each other. However, wesedl that inferential proper-
ties can vary for different parameterizations.

Whereas we discuss orthogonality of parameterizationghnl of direct interest
for likelihood-based frequentist inference, we will mgdticus on Bayesian inference
in this paper. A commonly used prior structure to reflect eseabe of prior information
is the Jeffreys (or “Jeffreys-rule”) prior, which is theeeénce prior (Berger et al., 2009)
in the case of a scalar parameter under asymptotic postesionality. Under these
conditions, Clarke and Barron (1994) showed that this @gymptotically maximizes
the expected information from repeated sampling. Theelesfprior is an interesting
choice because no subjective parameters have to be elanigdt is invariant under
reparameterizations (Jeffreys, 1941).

However, in our two-piece location-scale framework (orrgparameterizations),
we show that Jeffreys prior does not lead to a posterior iwilde and empirically in-
teresting class of distributions obtained by skewing seaktures of normals. Thus, we
consider models that do not imply a reparameterizationefitto-piece model, and give
an example where this is induced by truncation of the range & addition, we con-
sider the independence Jeffreys prior, which is shown ttiea valid posterior in some
cases. Simple conditions regarding posterior existentie tive independence Jeffreys
prior are derived. For example, it is shown that neither #ifs&lys nor the independence
Jeffreys prior can be used for Bayesian inference with tiegvalkess transformation of
Fernandez and Steel (1998) applied to the entire classatd suxtures of normals.

The structure of this document is as follows: in Section 2 vesent the two-piece
model and the family of skewed distributions defined in Aaed-Valle et al. (2005).
We also derive the Fisher information matrix for these meda well as the Jeffreys
and independence Jeffreys priors. In Section 3 we examisgpor existence with
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these priors in the context of a scale mixture of normalsHtierunderlying symmetric
distribution. In Section 4 we conduct a numerical coverag@yasis of thed5% credible
intervals for various models, which are also applied to &data set. The final section
contains concluding remarks. Proofs of all theorems arergin the Appendix.

2 Fisher information matrix and Jeffreys priors

2.1 Two-piece location-scale models

Let f(y|u, o) be an absolutely continuous density with supporRoiocation parameter
1 € R and scale parameter € R*, and denotef (:-£]0,1) = f (!=#). Consider
the following “two-piece” density constructed g“f(%) truncated to(—oo, 1) and

¥ (%) truncated tdu, oo):

01 01 02 02

oyl o1, 008) = 257 (y — “) Ioop(y) + 20 - 8>f (y — “) Loy (y), (1)

wheres, € R ando, € R" are separate scale parameters@rdes < 1. In order to
get a continuous density, we need to consider the speciealvdasre: = o, /(0; + 03),
so that

Syl o1, 02) = — {f (y _M) Lo (y) + f (y — u) fm,oco(y)} )

0’1"‘0’2 (o] 09

Typically, f will be a symmetric density function. In this paper, we wilsame
f to be symmetric with a single mode at zero, which means,ihiatthe mode of the
density in (2). If we choos¢ to be normal and Student densities, the distribution in (2)
corresponds to split-normal and splithstributions, respectively, as defined in Geweke
(1989). In earlier work, the case with normalwas termed joined half-Gaussian by
Gibbons and Mylroie (1973) and two-piece normal by John 2)98/e shall denote the
model in (2) as the two-piece model. Note that

n o
s(ylp, o1, 02) dy = ) (3)
— 0 g1 +0’2

so thats is skewed abouyt if o, # o9 and the ratior; /o5 controls the allocation of mass
to each side of:.

We are mainly interested in the inferential properties esthskewed distributions
under the popular Jeffreys priors, but will also briefly diss orthogonality of their

3
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parameters. We use the concept of orthogonality in Cox amndi ®887), which relates
to zeros in the Fisher information matrix of the model;lfis orthogonal ta@,, we will
denote this a8; L 0.

We first calculate the Fisher information matrix and chamaeg, in terms of the
symmetric density, the cases where this matrix is well defined:

Theorem 1 Let s(y|u, 01,02) be as in (2) and suppose that the following conditions
hold

Q) 5 |5
() Ji= 2 [29] p (1) dt < oc,

(iii) limy_,o tf(t) = 00r [;°tf(t)dt = —3, which means that(t) iso (7).

]2f(t)dt< o,

Then the Fisher information matrii( ., oy, 02) is

200 _ 2a3 _ 2a3

01202 o1(o1+02) 02(014{02)
. s (D) g2 _
o1(o14+02) o1(o1+0o2) + o1(o1+02)? (01+02)2 ’ (4)
2ai3 . 1 Qg + (2]
o2(c1402) (o01+02)? o2(01402) o2(o1+02)?
where
> f’(t)r
o = f(t)dt,
/0 [f(t)
= IOIN > L [F®]°
ay = 2/ [1+t fydt=—-1+2 [ |=—=| f(t)dt,
0 f(t) 0 f(t)
> f’(t)r
- / t{— (1) dt
o LS

Conditions(i) and(i7) are required for the existence of the expression in (4). Con-
dition (i) is useful to simplify some expressions and is satisfied byyrmaodels of
interest. As examples, normal, Studéntogistic, Cauchy, Laplace and exponential
power distributions all satisf{i) — (iii). Note that ifa;, oy andag are positive, none of
the entries of the Fisher information matrix are zero. Ttogeethis is a non-orthogonal
parameterization.

The Jeffreys prior, proposed by Jeffreys (1941), is defireetha square root of the
determinant of the Fisher information matrix. In contrabg independence Jeffreys
prior is defined as the product of the Jeffreys priors for gaatameter independently,
while treating the others parameters as fixed.

4
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Corollary 1 If the Fisher information matrix in (4) is non-singular, thehe Jeffreys
prior for the parameters in (2) is

1

. 5
711](,"670170'2) X 0_10_2<0_1 _'_0_2> ( )

The independence Jeffreys prior is
miponey) o VATTO T o2lox t oulon T ou)] (6)

w/0'10'2(0'1 + 0'2)2

The Jeffreys prior is defined only in the cases when the Fisthermation matrix
is non-singular. Note that the determinant of the Fishesrmftion matrix can be fac-
tored into two terms, one dependent on the parameters aratltbedependent on the
constantgay, as, a3). The former is always positive. The following result givesdi-
tions on the density that ensure that the second factor does not vanish and therFis
information matrix is thus non-singular.

Theorem 2 If the conditions of Theorer are satisfied and’(t) # 0 a.e., then the
Fisher information matrix is non-singular.

In particular, the Fisher information matrix (4) is nonuar if f corresponds to a
normal, Laplace, exponential power, logistic, Cauchy ard8nt¢ distribution. The
structure of the independence Jeffreys prior in (6) assuhmsy, > 0, which will
always be the case (see the proof of Theorem 2).

2.2 Reparameterizations of the two-piece model

In order to link the two-piece model if2) with the family defined in Arellano-Valle et
al. (2005), consider the following reparameterizationef@o-one transformation)

(1, 01,02) < (w,0,7), (7
o=
o = ob(v),
oy = oa(y),

wherey € I', 0 > 0 anda(v) > 0 andb(y) > 0 are differentiable functions such that

0 < [A7)| < oo, with A(y) = %log [Zém . (8)
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The condition in (8) implies that (7) is a non-singular maggpand is thus necessary
for it to be a one-to-one transformation. Then we get theotalthg reparameterized
density from (2)

s(ylp, o,7) = m [f (ib_(;;) Icoop(y) + f (%) [[u700)<y)] - (9)

This expression was presented by Arellano-Valle et al. $2@8 a general class of
asymmetric distributions, which includes various skewestridhutions presented in the
literature. Like Jones (2006), we view (9) with a given cleoaf f not as a class of
densities but as a class of reparameterizations of the sansityl

Two parameterizations in terms of the functida$y), b(+) } have been widely stud-
ied: the inverse scale factors (ISF) model (Fernandez aeel,3998), corresponding
to {a(v),b(y)} = {v,1/~} for v € R and thee-skew model (Mudholkar and Hutson,
2000), which choosegu(v),b(7)} = {1 +~,1 —~} fory € (-1, 1).

The Fisher information matrix for the reparameterized nhod€) is as follows:

Theorem 3 Let f(y|u, o) be as in Theorem 1. Then the Fisher information matrix
I(p, 0,) for model (9) is

201 0 23 [a’(v) _ b’(v)}
a(y)b(v)o? ala(y)+b(y)] | alv) b(7)
0 as as | a/ (N ()
o2 o | a(y)+b(v)
205 [a’(w) B b'm] - [a’(7)+b’(v)} o bl [b/w a'w] N [a'<w>+b'<w>r
ala(y)+b(v)] | a(v) b(v) o | a(y)+b(v) a(y)+b(y) | b(v) a(7) a(y)+b(v)

The fact that the elemenfs, and/,; are zero indicates that this reparameterization
is interesting because it induces orthogonality betweerptrameterg ando for any
choice of{a(v),b()}. In addition, by appropriately choosing the pair of funoso
{a(¥),b(~)} we can generate more zero entries in the Fisher informatiatmixn as
shown in the following corollary.

Corollary 2 If % log [a(7) + b(7y)] = 0, thenly; = I3, = 0. In particular if a(y) +b(y)
is constant, thetdy; = I3, = 0.

Note that ifas > 0, thenl 3 = I3, = 0 only if a(y) o b(y) which does not satisfy
(8). Jones and Anaya-lzquierdo (2010) analysed the zerodee expectation of the
Hessian matrix of 1, o, ) in model (9) augmented with an extra parameter to model
the properties off. They also found that. | o and if a(~) + b(v) is constant then
o L vasin Corollary 2.
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The corresponding Jeffreys prior and independence Jsffnegr for the parameter-
ization in (7) are given in the following result.

Corollary 3 If the Fisher information matrix is non-singular, then thefideys prior for
the parametersin (9) is

@/ (Nb(Y) —a(F AW (10)

™ , 0, 0.8 )
102 X a0 latr) + b))~ o7la(y) + b
where\(~) was defined in (8). The independence Jeffreys prior is

1\/a(a2 +1 [b’(v)Q a’(v)2] B la’(v) + V()

mi(p,0,y) o — N+ | o) * a(v) a(y) +b(v)

Conditions to ensure non-singularity of the Fisher infatioramatrix for the param-
eterization in (9) are similar to those obtained for the piece model (2) in Theorem
The only difference is that in this case we have to chooserapainctions{a(v), b(v)}
such that (7) corresponds to a non-singular transformation

} . (11)

Corollary 4 If the conditions of Theorerhare satisfiedf'(t) # 0 a.e., and (8) holds,
then the Fisher information matrix corresponding to mo@li§¢ non-singular.

Due to the invariance property of the Jeffreys prior thegease-to-one relationship
between (5) and (10). On the other hand, the independerfogydgbrior is not invariant
under reparameterizations, so the properties of this prmdependent on the choice of

{a(y),0(7)}.

Now we will briefly discuss the inverse scale factors arstkew models.

2.2.1 Inverse scale factors model

The ISF model corresponds to choosiad~y) = v, b(v) = 1/v},v € R in (9), so that
from Theorem 3 the Fisher information matrix of the paramsste, o, v) is

2001 O dag

o2 a('yQQJrl)
o az (v —1

[(IU/7 07 ’y) = O o'_g ;(73—}—7) ° (12)
dag O‘Q(’yQ*l) @ 4 4

o(v2+1)  o(¥3+y) 92 (9241)?

If the Fisher information matrix in (12) is non-singulargththe Jeffreys prior for
the ISF model is
1

P+ -

my(p,0,7)
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which has a finite integral ovey € R™, but is improper in terms ofi ando. The
independence Jeffreys prior is

1 (6%) 4
T, 0,7) X =y 5+ 3, (14)
I( ) o ,7/2 (72 + 1)2

which is not integrable in any of the parameters.
2.2.2 e-skew model

For thee-skew model we choosei(y) = 1—,b(y) = 1+~}in (9), wherey € (—1,1),
leading to the Fisher information matrix

2 () __Z2a3
2(1—+2) a(1-+2)
I(p,0,7) = 0 o 0 : (15)
2a3 0 as+1

~o(1-9?) 12

Thee-skew parameterization satisfies the condition in Corplaand thus its Fisher
information matrix has four zeroes. This feature simplifiésssical inference. For
example, in the cases whefeis normal or Laplace, the correspondiagkew model
leads to maximum likelihood estimators in closed form (Moitar and Hutson, 2000;
Arellano-Valle et al., 2005).

Provided the Fisher information matrix in (15) is non-sitaguthe Jeffreys prior for
the e-skew model is

1
Tk, 0,7) ma (16)
which is not integrable in any of the parameters. The inddpece Jeffreys prior is
1
17)

™ , 0,7 X
I(:u ) 0'\/1—7’}/2

which has a finite integral over € (—1,1), but does not integrate in ando. Note
that for this model the independence Jeffreys prior doeslapénd ory (throughas),
in contrast with the priors for the two-piece model in (6) &nel ISF model in (14).

In the different models mentioned above, the skewness meamdoes not have
the same interpretation. This makes it particularly diffica compare models and to
propose compatible priors on It is therefore helpful to introduce a measure of skew-
ness which has a common meaning for all models. In particwaruse the skewness
measure with respect to the mode from Arnold and Groenetél@), defined as

8
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Definition 1 The Arnold-Groeneveld measure of skewness for a distobditinctionS
corresponding to a unimodal density with the mod@/ats defined as

AG =1—28(M).

The AG measure takes values(r1, 1) and provides information about the allocation
of mass to each side of the mode. Positive valued@findicate right skewness while
negative values indicate left skewness. From (3) it is imiatedhat for the two-piece
modelAG = (o2 — 1) /(01 + 02), which only depends on the two scales and not on the
properties off. Similarly, for the parameterization in Arellano-Valleat (2005) in (9)

the AG skewness measure has a closed form which only depengs on

a(y) = b(v)
a(y) +b(y)

For the special case of the ISF model in Subsection 2.2 4 reéduces to

AG(7) =

2
v —1
A = —
G(7) T
while for thee-skew model in Subsection 2.2.2 we obtai&'(y) = —.

In both examples above, th&7 skewness measure is a monotonic function,afo
we can meaningfully interpretas a skewness parameter. In general, we will be mostly
interested in parameterizations such that this is the easeh can be characterized as
follows:

Theorem 4 Lets, a(y) andb(~) be as in (9), then for any unimodal densjty

e AG(y) isincreasing if and only iA(y) > 0.

e AG(~) is decreasing if and only iX() < 0.

3 Inference

In this section we will present necessary and/or sufficienddions for the properness
of the posterior distribution of the parameters of the tvieep models considered when
using the priors presented in the last section. Throughvsitsection we will assume
that we have observed a samplerofndependent replications from either (2) or (9)
and that all the observations are different, as we are dgalith continuous sampling
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distributions. Most of the results in this section are fog tase where the underlying
symmetric distribution (with density) belongs to the wide class of scale mixtures of
normals. For those (rare) cases where suclf does not lead to a nonsingular infor-
mation matrix (see Theorem 2 and Corollary 4) or a well-defimelependence Jeffreys
prior, we could either implicitly impose any necessarynegons upon the class, or we
could simply consider the results as valid for the entireglaf scale mixtures of normals
but with a prior structure that is not strictly the (independe) Jeffreys prior (but cer-
tainly inspired by the latter). However, most cases of peatinterest will correspond
to an f that allows for a straightforward interpretation of theultsin this section.

3.1 Independence Jeffreys prior

The independence Jeffreys prior is not invariant undermreepaterizations. Therefore if
we consider one-to-one transformations as in (7), we neaddtyse the properness of
the posterior distribution of:, o, ) for each specific choice dia(v), b(+)}-

Theorem 5 The posterior distribution of the parametefs, o, 0,) of model (2) is
proper using the independence Jeffreys prior () i6 a scale mixture of normals and
the number of observations> 2.

Scale mixtures of normals contain some important distidimgt such as the normal,
Studentt with v degrees of freedom, logistic, Laplace, Cauchy and the exual
power family with powen < ¢ < 2. Thus, for this wide and practically important class
of distributions the two-piece model in (2) with the indedence Jeffreys prior leads to
valid inference in any sample of two or more observations.

We can derive a similar existence result for the model in (@hiw a class of prior
distributions:

Theorem 6 If f is a scale mixture of normals in the model (9), then for anyapaater-
ization{a(y), b(7)} the posterior distribution of., o, ) is proper forn. > 2 under any
prior structure of the formr(u, o,7) oc o~ (~y), wherer () is proper.

This Theorem implies that a posterior will exist for theskew model under the
independence Jeffreys prior in (17), as this prior is a merabthe class in Theorem 6.

However, for the ISF model the independence Jeffreys poesahot integrate in
and we can show that a posterior does not exist in this case:

10
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Theorem 7 If f is a scale mixture of normals in (9) anfdi(v),b(v)} are as in the
inverse scale factors model, then the posterior distrioutf(x, o, v) is improper under
the independence Jeffreys prior (14).

Theorems 6 and 7 emphasize the relevance of the choice afrtbedns{a(v), b(v)}
for the properness of the posterior distributior{efo, v) when using the independence
Jeffreys prior. The fact that the ISF model does not allowifderence with the in-
dependence Jeffreys prior is rather surprising since thas plmost always leads to
proper posteriors, and the ISF model is quite a straightiodvextension of the usual
location-scale model. Subsection 3.3 will shed more lightios.

3.2 Jeffreys prior

If we consider functionsf, a(v) andb(~) such that the Fisher information matrix is
non-singular (see Theorem 2 and Corollary 4) we can thinkaking inference using
the Jeffreys prior. We now study the properness of the postdrstribution of the
parameters$y, o, v) when we choose this prior. An important feature of this pisadhe
invariance under one-to-one reparameterizations. Thwexethe results regarding the
properness of the posterior gf, o, v) for any choice ofa(v), b()} in model (9) that
corresponds to a one-to-one transformation in (7) are theesand also applicable to
the posterior of 4, o1, 02) in model (2).

Theorem 8 Lets be as in (9), assume thdtis a scale mixture of normals and consider
the Jeffreys prior (10) for the parameters of this model. MfHer n > 2, a necessary
condition for the properness of the posterior distributafri., o, v) is

a il
[l tae) o <o 4o
with A(+) defined as in (8).

Corollary 5 Consider sampling from (9) witfia scale mixture of normals afd.(~), b(v)}
as in the inverse scale factors model, then the posteridribigion of (y,o,v) is
improper using the Jeffreys prior (10). As a consequenaeafy pair of functions
{a(¥),b(~)} such that the mapping:, o1, 02) <> (i, o,7) is one-to-one, the posterior
distribution of(u, o, ) is improper using the Jeffreys prior (10).

Proof. We can verify that the necessary condition (18) is not sati$ér these functions.

11
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This corollary implies that we can not conduct Bayesianrgriee for the param-
eters of this type of skewed distributions using the Jeffrpsior. It is rather rare to
find that the Jeffreys prior does not lead to a proper postaial it is somewhat sur-
prising to find that we can not use this prior in these rathmipse classes of two-piece
distributions with only three parameters.

Because the Jeffreys prior is invariant under reparanzettéon, its use is thus pro-
hibited in any one-to-one reparameterization of the twez@imodels in (2) or (9). How-
ever, one way to get around this problem is to choose funetjafyy), b(v)} such that
the mapping i, o,v) — (i, 01, 09) is Not one-to-one, but hopefully still of some inter-
est for modelling. Another way to produce a proper postatistribution when using
the Jeffreys prior is to restridt such that\(~) is absolutely integrable.

Theorem 9 Lets be as in (9) wherg is normal or Laplace. Consider the Jeffreys prior
(10) for the parameters of this model. Lgt(v),b(v)} be continuously differentiable
functions fory € I" such that

0< / IA(7)| dy < 0. (19)
r
Then we have the following results

(i) The posterior distribution ofy, o, ) is proper forn > 2.
(i) The mappingy, o,v) — (i, 01, 02) iS NOt one-to-one.

(iii) If T"is aninterval (not necessarily bounded) aAd () is monotonic, thedG(~)
IS not surjective.

First, we considered forcing existence of the posterioough the choice of the
functions{a(v), b(v)}, in particular such that the ratia(v)/b(v) is bounded, which
excludes a one-to-one reparameterization in (7). Howdlverexamples we generated
in this way did not lead to implied priors ot that could be of interest to practitioners.

It is actually easier to generate examples of practicavaglee if we consider re-
stricting the parameter space pfin the context of functionga(v), b(v)} that would
not lead to a posterior with unrestricted The following is such an example.

12
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Example 1 (Logistic AG) Considera(y) = 1 + exp(2y), b(y) = 1 + exp(—2) for
~v € R, then

AG(y) = tanh(y),
A(y) = 2

1
7y (1,0,7) oc —5sech(y)”. (20)

In addition, the functions(y), b(y) and AG(y) are monotoni¢’ v € R, the Jeffreys
prior in (20) implies thatAG ~ Unif(—1,1) and AG : R — (—1,1). Clearly, A\(v)
is not integrable orR, but if we restricty € [—B, B] for some0) < B < oo, then we
can use the Jeffreys prige0) for making inference oy, o, ) for normal of Laplace
fand AG : R ~ [tanh(—B),tanh(B)]. Figure1 presents the functions(y), b(y)
and AG(v) and Figure2 shows the factor depending onin the Jeffreys prior for
B = 3. The induced prior oG is a Uniform over the rang&anh(—B), tanh(B)]| =
[—0.995,0.995].

We will call the model in Example 1 the “logistic AG model” a$3fy) is a logistic
function of v transformed to take values in the interval (-1,1) o R. The choice
of a(y) andb(v) does lead to a one-to-one transformation in (7) whea R, but
not if v is restricted to a bounded interval: then the ratig)/b(v) is also bounded
and this precludes a one-to-one mapping. Notedf@t andb () satisfy the condition
a(y) + b(y) = a(v)b(~), which induces a really interesting structure on the Jgéfre
prior, namely that it implies a uniform prior in terms of th& measure. This might be
an attractive prior for practitioners to use in the abserigtrong prior information.

100 1

50+ AG(y) Of

Figure 1:(a) a(y) (solid line) andh(v) (dashed line); (bDAG (7).
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my(y)

Figure 2:Jeffreys prior(20) as a function ofy.

3.3 Intuitive explanation

As mentioned before, the lack of a posterior under a commasgd prior in what
is essentially a very simply generalisation of a standacation-scale model can be
considered surprising. Thus, we offer a few explanatoryroemts in this subsection.
These are not meant to be formal proofs (they can be founeiApipendix), but merely
intuitive ideas that help us understand what drives the mesults we have found in the
previous subsections.

In the context of the two-piece model in (2), it is easy to de# aso; tends to
zero, the sampling density tends to the half density.ono) with scalecss. Thus, the
likelihood will be constant iro; in the neighbourhood of zero. This means the prior
needs to integrate in that neighbourhood for a posteriowxist.e If we consider the
independent Jeffreys prior in (6) it behaves Ii:klfel/2 for small oy and this integrates
close to zero. Indeed, we have a posterior in this case. Hawhe Jeffreys prior in (5)
behaves likel /oy for smallo; and this does not integrate, thus precluding a posterior.
Of course, similar arguments hold in the case of small

In the case of the reparameterized model in (9), we have ataitproblem if one
of the scales, saya(~y) goes to zero. If then the ratig~)/a(~) has an upper bound,
this will necessarily imply that both scales tend to zerotts® model behaves like a
standard location-scale model which leads to a proper postender the Jeffreys prior.
This is the case explored in Theorem 9 and Example 1. If, hewée ratio between
the functionsa(v) andb(y) is not bounded and (7) defines a one-to-one mapping, we
will have no posterior with the Jeffreys prior due to the im&ace of this prior under
reparameterization, and it depends on the particular ehaidunctions{a(~), b(v)}
whether the independence Jeffreys prior will lead to a pmstdt is helpful to transform
the parameters back to those of the two-piece model in (Zn;THor thee-skew model
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the independence Jeffreys prior in (17) can be shown to leelile o, */* for small

0,1 = 1,2, which is integrable close to zero, and the posterior is-@eflned. On the
other hand, the independence Jeffreys prior for the ISF imod&4) behaves likd /o;
for smallo;, 7 = 1, 2, which does not integrate in a neighbourhood of zero andyntes
posterior existence.

4 Numerical results

4.1 Simulation study

In this section we investigate the empirical coverage obtiie posterior credible inter-
vals, defined by the.5th and97.5th percentiles. We simulat¥ = 10, 000 datasets of
sizen = 30,100 and1000 from various sampling models where we tgké be a nor-
mal distribution throughout, and analyse these data usiagbrresponding Bayesian
model. Model 1 consists of the two-piece model (2) and thepetdence Jeffreys prior
(6). Model 2 corresponds to (9) usigg(y), b(~)} of thee-skew model under the inde-
pendence Jeffreys prior. Model 3 is the logistic AG modelxdiBple 1 fory € [—B, B]
with the Jeffreys prior in (20). For each of theSedatasets, a sample of sizg)00 was
obtained from the posterior distribution using a Markoviohdonte Carlo sampler af-
ter a burn-in period o5, 000 iterations and thinned to evebyth iteration. Finally, the
proportion 0f95% credible intervals that include the true value of the patemeas cal-
culated. Results are presented in Tables 1-4. For Model 3now khat the truncation
to a finite interval is what makes the posterior well-definBalinvestigate how sensitive
the results are to the particular value chosendpwe have used various values.

Sample size n = 30 n = 100 n = 1000
0'1:2.0 0'120.66 0'1:2.0 0'120.66 0'1:2.0 0'120.66
Parameters
09 = 0.5 09 = 1.50 09 = 0.5 09 = 1.50 09 = 0.5 09 = 1.50
W 0.9761 0.9672 0.9711 0.9559 0.9482 0.9534
o1 0.9606 0.9513 0.9741 0.9581 0.9473 0.9492
09 0.9748 0.9711 0.9606 0.9512 0.9485 0.9505

Table 1:Coverage proportions. Mixture model with independencéelef prior (Model 1)

All models lead to coverage probabilities above the nomliea| for samples of
sizen = 30, especially in the case offor Model 3. Once we increase the sample size
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Sample size n = 30 n = 100 n = 1000

Parameter| v =05 | v=—-05|v=05|v=—-05|v=05|~v=-05
1 0.9710| 0.9699 | 0.9543| 0.9552 | 0.9469| 0.9485
o 0.9591| 0.9602 | 0.9475| 0.9452 | 0.9527| 0.9541
0% 0.9707 | 0.9691 | 0.9580| 0.9575 | 0.9484| 0.9519

Table 2:Coverage proportiong-skew model with independence Jeffreys prior (Model 2)

Sample size n = 30 n = 100 n = 1000
Parameter| v =05 | ~v=—-05|~v=05|v=—-05|~v=05|~v=-0.5
1 0.9673| 0.9641 | 0.9493| 0.9530 | 0.9481| 0.9493
o 0.9949| 0.9908 | 0.9522| 0.9600 | 0.9480| 0.9473
v 0.9640| 0.9654 | 0.9488| 0.9520 | 0.9477| 0.9469

Table 3:Coverage proportions. Logistic AG model with Jeffreys pfidodel 3) andB = 3

Sample size n = 30 n = 100 n = 1000
Parameter| v =05 | v=—-05|v=05|v=—-05|~v=05|~v=-05
1 0.9680 | 0.9652 | 0.9486| 0.9488 | 0.9494 | 0.9450
o 0.9905| 0.9916 | 0.9575| 0.9529 | 0.9504 | 0.9417
0% 0.9659 | 0.9641 | 0.9517| 0.9517 | 0.9525| 0.9447

Table 4:Coverage proportions. Logistic AG model with Jeffreys pfidodel 3) andB = 30

ton = 100, the coverage is quite close to the nominal value, excepriersetting for
Model 1, where the coverage is still a bit high. As we furtherease to samples of
1000 observations, all cases lead to coverage very clog&to as we would expect.

For Model 3, the choice o8 (among reasonable values) does not seem to have any
noticeable effect. Overall, the frequentist coverage ertgs of the models examined
are pretty good, with perhaps Model 2 displaying the besbpmance.

4.2 Application to real data

Consider the data set presented in Mudholkar and HutsorDj20B0ich contains the
heights of 219 of the world’s volcanoes. We use Models 1 tosgudleed in the previous
subsection as well as the skew-normal model of (Azzalir85)9which will be denoted
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as Model 4, given by

S(ylu,a,/\)zgqﬁ (y;“)®<kygﬂ>,

using the prior
(w0, \) o< o tw(N). (21)

The structure of this prior, using the Jeffreys prior)otlerived in the model without
location and scale parameters faf\), was proposed in Liseo and Loperfido (2006),
who also prove existence of the posterior under this pricaye® and Branco (2007)
show that the Jeffreys prior of can be approximated by a Studerdistribution with
1/2 degrees of freedom, which is what was used for our calculatio

A sample of sizel0, 000 was drawn from the posterior distribution after a burn-in
period of50, 000 iterations with a thinning of 00 iterations for all models.

Figure 3 shows the fit of the predictive densities of the waimodels overplotted
with the data histogram. Models 1-3 lead to almost overlagpredictives, but the one
for Model 4 is slightly different.

0.01-

0.005r

0 50 100 150 200

y

Figure 3: Predictive distributions and data histogram: Model 1 (twmus line); Model 2
(long-dashed line); Model 33 = 3 (dashed line); Model 3B = 10 (dotted line); Model 3,
B = 30 (dotted-dashed line); Model 4 (bold line).

Bayes factors can be computed between Models 1, 2 and 4 el¢bpitarbitrary
integrating constant (improperness) of the prior, sineeghor has a product structure
with an improper factor (inr and i) which is common to all models, and the factor
corresponding to the skewness parameter is integrableharsdptroperly normalised.
As Model 3 does not share the same factos it can not be compared with the other
models through Bayes factors. The marginal likelihoodsadan the calculation of
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Bayes factors are estimated using the generalised harmoegan estimator (Chopin
and Robert, 2010), with an importance function chosen teméxdte the posterior but
with thinner tails. The resulting Bayes factors are closertiby.

5 Concluding Remarks

We consider the class of univariate continuous two-pies#idutions, which are often
used to modify a symmetric location-scale model to allowdkewness, and its repa-
rameterized versions as presented in Arellano-Valle €2805), where we can identify
a location, a scale and a skewness parameter. A number ekm@ln distributions
correspond to particular choices of this parameterizatibmparticular, we focus on
Bayesian inference in these models using Jeffreys or theperdence Jeffreys prior.
We prove that these models do not lead to valid posteriorenfee under Jeffreys prior
for any underlying symmetric distribution in the class ofilgcmixture of normals. As
an ad-hoc fix, we show that modifying Jeffreys prior by trunwathe support of the
skewness parameter can lead to posterior existence. A modariental solution is to
use the independence Jeffreys prior instead, which is shovaad to a valid posterior
for some parameterizations of these sampling models. Fomdbar of models that lead
to valid inference, we compute empirical coverage prolitggslof the posterior credi-
ble intervals. This reveals a mostly satisfactory behavaduhese models. Finally, we
apply the models, as well as an alternative skewed distoibutue to Azzalini (1985),
to some real data.

It is important to stress that the three-parameter samptiogdels examined here are
quite simple modifications of the standard location-scateleh and that the Jeffreys
prior is a very commonly used prior in the absence of subjegdrior information. The
fact that the combination of these sampling models with frelef prior does not lead to
a posterior is somewhat surprising and definitely relevanstatistical practice, as these
models seem attractive options to deal with skewed data.b€kter properties of the
independence Jeffreys prior are in line with statisticétltoe: Jeffreys (1961, p. 182)
himself preferred this prior for location-scale problerasd in the univariate normal
case, the independence Jeffreys is a matching prior (BargeSun, 2008). Even with
this prior, however, problems of posterior existence catugcdepending on which
parameterization we choose. Similar problems of nonextgt@nder the independence
Jeffreys prior also occur for Birnbaum-Sanders distritnsi (see Xu and Tang, 2011).
Ongoing research examines other “non-subjective” prinrcstires for use with two-
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piece distributions which can be attractive due to theithmatatical properties and their
practicality.

Appendix: Proofs

Proof of Theorem 1

The first partial derivatives dbg[s(y/|, 1, o, y)] are given by

ai log[s(yl, t, 01,09)] = ;mf<wu> Y) U%J; <<yy:2:)> L0y (Y
ai log[s(yl, p, 01,02)] = —gli(h - ygf“?((ﬁ)) I oo (),
8(872 log[s(yl, p, o1, 02)] = _Ulj—UQ _ yg—%,uj; ((5:13 I1o0) ()

Then the entries of the Fisher information matrix pf o1, 05) are given by

[ 0 2 20(1
Ill = K (a lOg[S(y|,ﬂ,Ul,02)]) ] = 0.10.2’
[ o 2] Qs 09
Iy, = E || =—1 =
22 (301 og[s(y|,u,al,ag)]) o1(oy +03) oo + 09)%
W) 2] Qo o1
I3 = E|[=—1o =
33 (302 Bls(ul,,01,02) ) oa(01 + 02) " o2(01 + 02)%
o 203
Ly = E|(=—log -1 T oo+ o)
12 _(3,u y| /%01,02 ) ( Og y|au701a02)):| 0.1(0.1 _|_0-2)’
o 2ai3
Ly = E|(=log -1 T oot o)
13 _(a,u y| /’L70-1a0-2 ) ( Og y|aﬂ701a02)):| 0'2(0'1 —|—O'2)’
- 9 1
Iy = E i aﬁ‘ll gls(yl, u, 01, 02)] 8—108;[ sl 01,09) || = _m'

4
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Proof of Theorem 2

The determinant of the Fisher information matrix is

2&2 (C(l + g — 20[3)

I(p,01,09) =
(g, 01, 02) oi03(01 + 09)?

We will first prove thata;, > 0. From the definition oty it can only be zero if
1+tf'(t)/f(t) = 0 wheneverf(t) > 0. This means thaf(t) = —tf'(¢) and this only
happens iff(t) = K/t for any positive/X. The latter, however, is not a probability
density function ofR. Thus,as can not be zero.

Next, we will prove thata (1 + a3) > 2a2. Applying the Cauchy-Schwarz in-
equality we havey, (1 + az) > 2a3. We will show that this is a strict inequality. The
condition in Theorem 2 implies that

> [ro)
O</O t[f(t)} f(t)dt.
Let
o(t) = ‘ fJEZ) >0a.e and)(t) =t \;% >0 a.e.

Note that{3¢(t) + +(¢)]* > 0 a.e. for any3 € R, and thus

0< / 1B6(t) + ()P dt = B / St dt+ 26 / T o(w(t) di + / () d.

This is a polynomial of degre2in 5 with positive coefficients and no real roots, imply-
ing that the discriminant is negative, so that

[ [ [T dtr < [ [ 2[5O 5o dt] [ [ 159 s dt] -
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Proof of Theorem 3

The first partial derivatives dbg[s(y/|, 1, o, y)] are given by

0

% 10g[3(y|, M, 0, ’7)]
0

a_o_ 10g[3(y|, M, 0, ’7)]

0
% 10g[3(y|, K, 0, ’7)]

I o I\
- _ablv) ¥ 55:5:)) Ttoeun(y) = Ual ) f gfa((%); T00) (),
_ o P\ EE o (e
N _é - 325(5) f g::%); Gl 52(1(5) f éfi%); Tioo)(¥),
_ amrie) v-wve) M),
) HB0) o B0 g ()

y—p

y—ua’(v)f/(

)

oa(y)
- o a(7)2f<:a_(5)> [[MVOO)@)-

Thus, the entries of the Fisher information matrix pf o, v) are
he = B | oslstul o) | = st
Iy = E <a%log[8(y|,u,am)]> I%,

B : 9 1t . 2] o+l V() d(0)*] [d() +V ()
= B _(371 st ’7)]) | aln)+e() Lb() ' a(v)} la(v)er(v)
Ly = E (%log[S(yLu,am)]) (a%log[S(yLu,am)ﬂ =0,

113 = E (%1Og[s(y|>ﬂag>7)]> <%10g[3(y|a/~%0a7)>}

_ 2013 {a’(v) G

ola(y) +b(y)] La(y)  b(7) ]’
123 = E[(%log[s(y|,u,a,v)]) %log[s(y|au>aa7)):|
™ {a’(v)ﬂLb’(v)}
o La(y)+0b(y) ]
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Proof of Theorem 4

Note that
d L d (VoY) —a(MV' () alv)b(v)A(y)
L T B 12 | e Y B 1o
so that dAG d\ dAG d\
dv() 0@%>Oand#<0@%<o.

Proof of Theorem 5

Consider the independence Jeffreys pfidrand the change of variab(&), then

|’ (7)b(y) — a()V (V)[V/[b(7) + azla(v) + b(Y)]][a(v) + azla(v) + b(7)]]

N [
[(,LL, 7’}/) o a(f‘y)b(’y [a("y) b(’}/)]z
(a2 + D]d'(M)b(y) — a(m¥' ()]
- ovab()a() +b(7)]

For the particular choic€a(v),b(v)} = {v,1/~}, the upper bound of;(u, o,7) is
proportional to[o (1 + v?)] .

Applying Theorem 1 from Fernandez and Steel (1998) andyusiis upper bound
we can derive the properness of the posterior distributfofi.oo, v). Now, since the
mapping(u, o,v) < (u, 01, 02) IS one-to-one, it follows that the posterior distribution
of (u, 01, 09) IS proper. O

Proof of Theorem 6

Let f be a scale mixture of normals witty the mixing variable associated with and
where the);s are independent random variables definedRérwith distribution P .
We get an upper bound for the marginal distributiori@f ..., v,,) proportional to

/ﬂw// / (ﬁAj e la(y) + o) p[ zftmgé&‘(yﬁ

v) dudodyd Py,
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whereh(v) = max{a(v), b()}. Consider the change of variable= oh(v) and rewrite
the upper bound as follows

et o L L2 (00) 7
X exp [—Z—W;Aj(%—u)?] duddd P, x)-

Fernandez and Steel (2000, Th. 1) show that the integgahin\,, ..., A, is finite if
n > 2. Then the existence of the integrahins a sufficient condition for the properness
of the posterior distribution dfy, o, v). The result then follows from

/F [%]nw(v) dy < /F ©(y) dy.

Proof of Theorem 7

Assumef is a scale mixture of normals. With the independence Jeffpepr we get a
lower bound for the marginal density 0, ..., v,) which is proportional to

/ﬂw/ // < JQ) 1(++71)7 [ ZA ey, —u)]

9 4
X — + ———= dudodydP,,...
vy (2 1\ o (n+1),y -1 1 n
> A2 - Mol — 1)?
> o /W/ / / (H J> o P 20_%2; (Y = 1)
X dpdodydPy, ..\

Consider the change of variable= o+. Then we can rewrite this lower bound as
follows

| wet /(H J%)ﬁ(nﬂe}{p[szM Mf]

X dudﬂdP()\l ..... An)e

The first integral is infinite for any value afwhich implies the improperness of the
posterior distribution. O

23

CRiSM Paper No. 11-13, www.warwick.ac.uk/go/crism



Proof of Theorem 8

If fis a scale mixture of normals, then integrating over a sutespath respect ta. we
get a lower bound for the marginal distribution(af, ..., ,,) which is proportional to

LT (T e [t St ]

A()]
xidudadvdp 1 An)-
a(y) + b(7) o)

Consider the change of variahle= ca(v). Then we can rewrite this lower bound

as follows
O] o [ [T ) e
/r[a(v)er(v My n H
1
X exp [_W ij(yj - ,u)2] dpddd Py, ...\
j=1

Therefore, the existence of the first integral is a necessamglition for the proper-
ness of the posterior distribution ¢f, o, 7). O

Proof of Theorem 9

The proof of(i) is as follows. Iff is normal, defining:(y) = max{a(y), b(~y)} we get
an upper bound for the marginal distribution(gf, ..., v,,) which is proportional to

n

/ / / WJ M’U Vlan exp [—m ;(yj — )?| dodydp
x /Oo [Z(yj —p)?

j=1

_n+41

i h(y)"+!
i | Ty 2 rep O

The first integral exists ifh > 2. Then the existence of the second integral is a
sufficient condition for the existence of the posteriormlsition. For the second integral

we use that o
Y
/r [a(7y) + b(y)]m+? [A()ldy < /F IA(Y)|d,
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which is finite by assumption. If is Laplace, analogously to the normal case we get an
upper bound for the marginal distribution @f, ..., y,,) which is proportional to

711 M>U v) BRI
[ e exp[ Sl M]

—(n+1) .
~ [ [Zm i [ SO,

a(m) + b

and the same argument leads to the result.
Result(i7) follows immediately from Corollary 5.

For (iii) let us assume, without loss of generality, tHat(~) is an increasing func-
tion andl’ = (v,7). First, note that we can rewritéG(v) as follows

160 = o { L1 2]}

b()
Then
lim AG(y) =1 < limlog [M} = 00
= = (7)
: _ : a(v)| _
LIL%AG(V) =-1 & %erilog [5(7)} = —00,
which contradicts the assumption thdty) is absolutely integrable. The result is analo-
gous if AG is decreasing. O
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