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Inference in Two-Piece Location-Scale models

with Jeffreys Priors

F. J. Rubio∗and M. F. J. Steel†

Abstract

This paper addresses the use of Jeffreys priors in the context of univariate three-

parameter location-scale models, where skewness is introduced by differing scale

parameters either side of the location. We focus on various commonly used param-

eterizations for these models. Jeffreys priors are shown not to allow for posterior

inference in the wide and practically relevant class of distributions obtained by

skewing scale mixtures of normals. Easily checked conditions under which inde-

pendence Jeffreys priors can be used for valid inference arederived. We empiri-

cally investigate the posterior coverage for a number of Bayesian models, which

are also used to conduct inference on real data.

Key Words: coverage; Bayesian inference; noninformative prior; posterior existence;

skewness

1 Introduction

The use of skewed distributions is an attractive option for modeling data presenting

departures from symmetry. Several mechanisms to obtain skewed distributions by ap-

propriately modifying symmetric distributions have been presented in the literature (Az-

zalini, 1985; Fernández and Steel, 1998; Mudholkar and Hutson, 2000). We focus on

∗UNIVERSITY OF WARWICK , DEPARTMENT OFSTATISTICS, COVENTRY, CV4 7AL, UK. E-mail:

F.J.Rubio@warwick.ac.uk
†UNIVERSITY OF WARWICK , DEPARTMENT OFSTATISTICS, COVENTRY, CV4 7AL, UK. E-mail:

M.F.Steel@stats.warwick.ac.uk

1

CRiSM Paper No. 11-13, www.warwick.ac.uk/go/crism



the simple univariate location-scale model where we induceskewness by the use of dif-

ferent scales both sides of the mode and only distinguish three scalar parameters. We

investigate Bayesian inference using Jeffreys priors in this simple setting.

Firstly, we consider univariate (continuous) two-piece distributions with different

scales both sides of the location parameter. Then, we will focus on the family of skewed

distributions defined in Arellano-Valle et al. (2005), where the scales are reparameter-

ized in terms of a common scale and two functions,a(γ) and b(γ), depending on a

single skewness parameterγ. By appropriately choosing these functions, this family

covers the models presented in Fernández and Steel (1998) and Mudholkar and Hutson

(2000), among others. As shown in Jones (2006), all the members of this family are

merely reparameterizations of each other. However, we willsee that inferential proper-

ties can vary for different parameterizations.

Whereas we discuss orthogonality of parameterizations, which is of direct interest

for likelihood-based frequentist inference, we will mostly focus on Bayesian inference

in this paper. A commonly used prior structure to reflect an absence of prior information

is the Jeffreys (or “Jeffreys-rule”) prior, which is the reference prior (Berger et al., 2009)

in the case of a scalar parameter under asymptotic posteriornormality. Under these

conditions, Clarke and Barron (1994) showed that this priorasymptotically maximizes

the expected information from repeated sampling. The Jeffreys prior is an interesting

choice because no subjective parameters have to be elicitedand it is invariant under

reparameterizations (Jeffreys, 1941).

However, in our two-piece location-scale framework (or itsreparameterizations),

we show that Jeffreys prior does not lead to a posterior in thewide and empirically in-

teresting class of distributions obtained by skewing scalemixtures of normals. Thus, we

consider models that do not imply a reparameterization of the two-piece model, and give

an example where this is induced by truncation of the range ofγ. In addition, we con-

sider the independence Jeffreys prior, which is shown to lead to a valid posterior in some

cases. Simple conditions regarding posterior existence with the independence Jeffreys

prior are derived. For example, it is shown that neither the Jeffreys nor the independence

Jeffreys prior can be used for Bayesian inference with the skewness transformation of

Fernández and Steel (1998) applied to the entire class of scale mixtures of normals.

The structure of this document is as follows: in Section 2 we present the two-piece

model and the family of skewed distributions defined in Arellano-Valle et al. (2005).

We also derive the Fisher information matrix for these models as well as the Jeffreys

and independence Jeffreys priors. In Section 3 we examine posterior existence with
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these priors in the context of a scale mixture of normals for the underlying symmetric

distribution. In Section 4 we conduct a numerical coverage analysis of the95% credible

intervals for various models, which are also applied to a real data set. The final section

contains concluding remarks. Proofs of all theorems are given in the Appendix.

2 Fisher information matrix and Jeffreys priors

2.1 Two-piece location-scale models

Let f(y|µ, σ) be an absolutely continuous density with support onR, location parameter

µ ∈ R and scale parameterσ ∈ R
+, and denotef

(

y−µ
σ
|0, 1

)

= f
(

y−µ
σ

)

. Consider

the following “two-piece” density constructed off
(

y−µ
σ1

)

truncated to(−∞, µ) and

f
(

y−µ
σ2

)

truncated to[µ,∞):

g(y|µ, σ1, σ2, ε) =
2ε

σ1
f

(

y − µ

σ1

)

I(−∞,µ)(y) +
2(1− ε)

σ2
f

(

y − µ

σ2

)

I[µ,∞)(y), (1)

whereσ1 ∈ R
+ andσ2 ∈ R

+ are separate scale parameters and0 < ε < 1. In order to

get a continuous density, we need to consider the special case whereε = σ1/(σ1 + σ2),

so that

s(y|µ, σ1, σ2) =
2

σ1 + σ2

[

f

(

y − µ

σ1

)

I(−∞,µ)(y) + f

(

y − µ

σ2

)

I[µ,∞)(y)

]

. (2)

Typically, f will be a symmetric density function. In this paper, we will assume

f to be symmetric with a single mode at zero, which means thatµ is the mode of the

density in (2). If we choosef to be normal and Student densities, the distribution in (2)

corresponds to split-normal and split-t distributions, respectively, as defined in Geweke

(1989). In earlier work, the case with normalf was termed joined half-Gaussian by

Gibbons and Mylroie (1973) and two-piece normal by John (1982). We shall denote the

model in (2) as the two-piece model. Note that
∫ µ

−∞

s(y|µ, σ1, σ2) dy =
σ1

σ1 + σ2
, (3)

so thats is skewed aboutµ if σ1 6= σ2 and the ratioσ1/σ2 controls the allocation of mass

to each side ofµ.

We are mainly interested in the inferential properties of these skewed distributions

under the popular Jeffreys priors, but will also briefly discuss orthogonality of their
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parameters. We use the concept of orthogonality in Cox and Reid (1987), which relates

to zeros in the Fisher information matrix of the model. Ifθ1 is orthogonal toθ2, we will

denote this asθ1 ⊥ θ2.

We first calculate the Fisher information matrix and characterize, in terms of the

symmetric densityf , the cases where this matrix is well defined:

Theorem 1 Let s(y|µ, σ1, σ2) be as in (2) and suppose that the following conditions

hold

(i)
∫

∞

0

[

f ′(t)
f(t)

]2

f(t) dt <∞,

(ii)
∫

∞

0
t2
[

f ′(t)
f(t)

]2

f(t) dt <∞,

(iii) limt→∞ tf(t) = 0 or
∫

∞

0
tf ′(t)dt = −1

2
, which means thatf(t) is o

(

1
t

)

.

Then the Fisher information matrixI(µ, σ1, σ2) is






2α1

σ1σ2
− 2α3

σ1(σ1+σ2)
2α3

σ2(σ1+σ2)

− 2α3

σ1(σ1+σ2)
α2

σ1(σ1+σ2)
+ σ2

σ1(σ1+σ2)2
− 1

(σ1+σ2)2

2α3

σ2(σ1+σ2)
− 1

(σ1+σ2)2
α2

σ2(σ1+σ2)
+ σ1

σ2(σ1+σ2)2






, (4)

where

α1 =

∫

∞

0

[

f ′(t)

f(t)

]2

f(t) dt,

α2 = 2

∫

∞

0

[

1 + t
f ′(t)

f(t)

]2

f(t) dt = −1 + 2

∫

∞

0

t2
[

f ′(t)

f(t)

]2

f(t) dt,

α3 =

∫

∞

0

t

[

f ′(t)

f(t)

]2

f(t) dt.

Conditions(i) and(ii) are required for the existence of the expression in (4). Con-

dition (iii) is useful to simplify some expressions and is satisfied by many models of

interest. As examples, normal, Studentt, logistic, Cauchy, Laplace and exponential

power distributions all satisfy(i)− (iii). Note that ifα1, α2 andα3 are positive, none of

the entries of the Fisher information matrix are zero. Therefore this is a non-orthogonal

parameterization.

The Jeffreys prior, proposed by Jeffreys (1941), is defined as the square root of the

determinant of the Fisher information matrix. In contrast,the independence Jeffreys

prior is defined as the product of the Jeffreys priors for eachparameter independently,

while treating the others parameters as fixed.
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Corollary 1 If the Fisher information matrix in (4) is non-singular, then the Jeffreys

prior for the parameters in (2) is

πJ(µ, σ1, σ2) ∝ 1

σ1σ2(σ1 + σ2)
. (5)

The independence Jeffreys prior is

πI(µ, σ1, σ2) ∝
√

[σ1 + α2(σ1 + σ2)][σ2 + α2(σ1 + σ2)]√
σ1σ2(σ1 + σ2)2

. (6)

The Jeffreys prior is defined only in the cases when the Fisherinformation matrix

is non-singular. Note that the determinant of the Fisher information matrix can be fac-

tored into two terms, one dependent on the parameters and theother dependent on the

constants(α1, α2, α3). The former is always positive. The following result gives condi-

tions on the densityf that ensure that the second factor does not vanish and the Fisher

information matrix is thus non-singular.

Theorem 2 If the conditions of Theorem1 are satisfied andf ′(t) 6= 0 a.e., then the

Fisher information matrix is non-singular.

In particular, the Fisher information matrix (4) is non-singular if f corresponds to a

normal, Laplace, exponential power, logistic, Cauchy or Studentt distribution. The

structure of the independence Jeffreys prior in (6) assumesthat α2 > 0, which will

always be the case (see the proof of Theorem 2).

2.2 Reparameterizations of the two-piece model

In order to link the two-piece model in(2) with the family defined in Arellano-Valle et

al. (2005), consider the following reparameterization (one-to-one transformation)

(µ, σ1, σ2) ↔ (µ, σ, γ), (7)

µ = µ,

σ1 = σb(γ),

σ2 = σa(γ),

whereγ ∈ Γ, σ > 0 anda(γ) > 0 andb(γ) > 0 are differentiable functions such that

0 < |λ(γ)| <∞,withλ(γ) ≡ d

dγ
log

[

a(γ)

b(γ)

]

. (8)
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The condition in (8) implies that (7) is a non-singular mapping and is thus necessary

for it to be a one-to-one transformation. Then we get the following reparameterized

density from (2)

s(y|µ, σ, γ) = 2

σ[a(γ) + b(γ)]

[

f

(

y − µ

σb(γ)

)

I(−∞,µ)(y) + f

(

y − µ

σa(γ)

)

I[µ,∞)(y)

]

. (9)

This expression was presented by Arellano-Valle et al. (2005) as a general class of

asymmetric distributions, which includes various skewed distributions presented in the

literature. Like Jones (2006), we view (9) with a given choice of f not as a class of

densities but as a class of reparameterizations of the same density.

Two parameterizations in terms of the functions{a(γ), b(γ)} have been widely stud-

ied: the inverse scale factors (ISF) model (Fernández and Steel, 1998), corresponding

to {a(γ), b(γ)} = {γ, 1/γ} for γ ∈ R
+ and theǫ-skew model (Mudholkar and Hutson,

2000), which chooses{a(γ), b(γ)} = {1 + γ, 1− γ} for γ ∈ (−1, 1).

The Fisher information matrix for the reparameterized model in (9) is as follows:

Theorem 3 Let f(y|µ, σ) be as in Theorem 1. Then the Fisher information matrix

I(µ, σ, γ) for model (9) is










2α1

a(γ)b(γ)σ2 0 2α3

σ[a(γ)+b(γ)]

[

a′(γ)
a(γ)

− b′(γ)
b(γ)

]

0 α2

σ2
α2

σ

[

a′(γ)+b′(γ)
a(γ)+b(γ)

]

2α3

σ[a(γ)+b(γ)]

[

a′(γ)
a(γ)

− b′(γ)
b(γ)

]

α2

σ

[

a′(γ)+b′(γ)
a(γ)+b(γ)

]

α2+1
a(γ)+b(γ)

[

b′(γ)2

b(γ)
+ a′(γ)2

a(γ)

]

−
[

a′(γ)+b′(γ)
a(γ)+b(γ)

]2











.

The fact that the elementsI12 andI21 are zero indicates that this reparameterization

is interesting because it induces orthogonality between the parametersµ andσ for any

choice of{a(γ), b(γ)}. In addition, by appropriately choosing the pair of functions

{a(γ), b(γ)} we can generate more zero entries in the Fisher information matrix, as

shown in the following corollary.

Corollary 2 If d
dγ

log [a(γ) + b(γ)] = 0, thenI23 = I32 = 0. In particular if a(γ)+b(γ)

is constant, thenI23 = I32 = 0.

Note that ifα3 > 0, thenI13 = I31 = 0 only if a(γ) ∝ b(γ) which does not satisfy

(8). Jones and Anaya-Izquierdo (2010) analysed the zeroes of the expectation of the

Hessian matrix of(µ, σ, γ) in model (9) augmented with an extra parameter to model

the properties off . They also found thatµ ⊥ σ and if a(γ) + b(γ) is constant then

σ ⊥ γ as in Corollary 2.
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The corresponding Jeffreys prior and independence Jeffreys prior for the parameter-

ization in (7) are given in the following result.

Corollary 3 If the Fisher information matrix is non-singular, then the Jeffreys prior for

the parameters in (9) is

πJ(µ, σ, γ) ∝
|a′(γ)b(γ)− a(γ)b′(γ)|
σ2a(γ)b(γ)[a(γ) + b(γ)]

=
|λ(γ)|

σ2[a(γ) + b(γ)]
, (10)

whereλ(γ) was defined in (8). The independence Jeffreys prior is

πI(µ, σ, γ) ∝ 1

σ

√

α2 + 1

a(γ) + b(γ)

[

b′(γ)2

b(γ)
+
a′(γ)2

a(γ)

]

−
[

a′(γ) + b′(γ)

a(γ) + b(γ)

]2

. (11)

Conditions to ensure non-singularity of the Fisher information matrix for the param-

eterization in (9) are similar to those obtained for the two-piece model (2) in Theorem2.

The only difference is that in this case we have to choose a pair of functions{a(γ), b(γ)}
such that (7) corresponds to a non-singular transformation:

Corollary 4 If the conditions of Theorem1 are satisfied,f ′(t) 6= 0 a.e., and (8) holds,

then the Fisher information matrix corresponding to model (9) is non-singular.

Due to the invariance property of the Jeffreys prior there isa one-to-one relationship

between (5) and (10). On the other hand, the independence Jeffreys prior is not invariant

under reparameterizations, so the properties of this priorare dependent on the choice of

{a(γ), b(γ)}.

Now we will briefly discuss the inverse scale factors andǫ-skew models.

2.2.1 Inverse scale factors model

The ISF model corresponds to choosing{a(γ) = γ, b(γ) = 1/γ}, γ ∈ R
+ in (9), so that

from Theorem 3 the Fisher information matrix of the parameters (µ, σ, γ) is

I(µ, σ, γ) =











2α1

σ2 0 4α3

σ(γ2+1)

0 α2

σ2

α2(γ2
−1)

σ(γ3+γ)

4α3

σ(γ2+1)

α2(γ2
−1)

σ(γ3+γ)
α2

γ2 + 4
(γ2+1)2











. (12)

If the Fisher information matrix in (12) is non-singular, then the Jeffreys prior for

the ISF model is

πJ(µ, σ, γ) ∝ 1

σ2 (1 + γ2)
, (13)
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which has a finite integral overγ ∈ R
+, but is improper in terms ofµ andσ. The

independence Jeffreys prior is

πI(µ, σ, γ) ∝ 1

σ

√

α2

γ2
+

4

(γ2 + 1)2
, (14)

which is not integrable in any of the parameters.

2.2.2 ǫ-skew model

For theǫ-skew model we choose{a(γ) = 1−γ, b(γ) = 1+γ} in (9), whereγ ∈ (−1, 1),

leading to the Fisher information matrix

I(µ, σ, γ) =







2α1

σ2(1−γ2)
0 − 2α3

σ(1−γ2)

0 α2

σ2 0

− 2α3

σ(1−γ2)
0 α2+1

1−γ2






. (15)

Theǫ-skew parameterization satisfies the condition in Corollary 2 and thus its Fisher

information matrix has four zeroes. This feature simplifiesclassical inference. For

example, in the cases wheref is normal or Laplace, the correspondingǫ-skew model

leads to maximum likelihood estimators in closed form (Mudholkar and Hutson, 2000;

Arellano-Valle et al., 2005).

Provided the Fisher information matrix in (15) is non-singular, the Jeffreys prior for

theǫ-skew model is

πJ(µ, σ, γ) ∝ 1

σ2(1− γ2)
, (16)

which is not integrable in any of the parameters. The independence Jeffreys prior is

πI(µ, σ, γ) ∝ 1

σ
√

1− γ2
, (17)

which has a finite integral overγ ∈ (−1, 1), but does not integrate inµ andσ. Note

that for this model the independence Jeffreys prior does notdepend onf (throughα2),

in contrast with the priors for the two-piece model in (6) andthe ISF model in (14).

In the different models mentioned above, the skewness parameterγ does not have

the same interpretation. This makes it particularly difficult to compare models and to

propose compatible priors onγ. It is therefore helpful to introduce a measure of skew-

ness which has a common meaning for all models. In particular, we use the skewness

measure with respect to the mode from Arnold and Groeneveld (1995), defined as

8
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Definition 1 The Arnold-Groeneveld measure of skewness for a distribution functionS

corresponding to a unimodal density with the mode atM is defined as

AG = 1− 2S(M).

TheAG measure takes values in(−1, 1) and provides information about the allocation

of mass to each side of the mode. Positive values ofAG indicate right skewness while

negative values indicate left skewness. From (3) it is immediate that for the two-piece

modelAG = (σ2−σ1)/(σ1+σ2), which only depends on the two scales and not on the

properties off . Similarly, for the parameterization in Arellano-Valle etal. (2005) in (9)

theAG skewness measure has a closed form which only depends onγ:

AG(γ) =
a(γ)− b(γ)

a(γ) + b(γ)
.

For the special case of the ISF model in Subsection 2.2.1, this reduces to

AG(γ) =
γ2 − 1

γ2 + 1
,

while for theǫ-skew model in Subsection 2.2.2 we obtainAG(γ) = −γ.
In both examples above, theAG skewness measure is a monotonic function ofγ, so

we can meaningfully interpretγ as a skewness parameter. In general, we will be mostly

interested in parameterizations such that this is the case,which can be characterized as

follows:

Theorem 4 Let s, a(γ) andb(γ) be as in (9), then for any unimodal densityf

• AG(γ) is increasing if and only ifλ(γ) > 0.

• AG(γ) is decreasing if and only ifλ(γ) < 0.

3 Inference

In this section we will present necessary and/or sufficient conditions for the properness

of the posterior distribution of the parameters of the two-piece models considered when

using the priors presented in the last section. Throughout this section we will assume

that we have observed a sample ofn independent replications from either (2) or (9)

and that all the observations are different, as we are dealing with continuous sampling

9
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distributions. Most of the results in this section are for the case where the underlying

symmetric distribution (with densityf ) belongs to the wide class of scale mixtures of

normals. For those (rare) cases where such anf does not lead to a nonsingular infor-

mation matrix (see Theorem 2 and Corollary 4) or a well-defined independence Jeffreys

prior, we could either implicitly impose any necessary restrictions upon the class, or we

could simply consider the results as valid for the entire class of scale mixtures of normals

but with a prior structure that is not strictly the (independence) Jeffreys prior (but cer-

tainly inspired by the latter). However, most cases of practical interest will correspond

to anf that allows for a straightforward interpretation of the results in this section.

3.1 Independence Jeffreys prior

The independence Jeffreys prior is not invariant under reparameterizations. Therefore if

we consider one-to-one transformations as in (7), we need toanalyse the properness of

the posterior distribution of(µ, σ, γ) for each specific choice of{a(γ), b(γ)}.

Theorem 5 The posterior distribution of the parameters(µ, σ1, σ2) of model (2) is

proper using the independence Jeffreys prior (6) iff is a scale mixture of normals and

the number of observationsn ≥ 2.

Scale mixtures of normals contain some important distributions, such as the normal,

Studentt with ν degrees of freedom, logistic, Laplace, Cauchy and the exponential

power family with power1 ≤ q < 2. Thus, for this wide and practically important class

of distributions the two-piece model in (2) with the independence Jeffreys prior leads to

valid inference in any sample of two or more observations.

We can derive a similar existence result for the model in (9) within a class of prior

distributions:

Theorem 6 If f is a scale mixture of normals in the model (9), then for any parameter-

ization{a(γ), b(γ)} the posterior distribution of(µ, σ, γ) is proper forn ≥ 2 under any

prior structure of the formπ(µ, σ, γ) ∝ σ−1π(γ), whereπ(γ) is proper.

This Theorem implies that a posterior will exist for theǫ-skew model under the

independence Jeffreys prior in (17), as this prior is a member of the class in Theorem 6.

However, for the ISF model the independence Jeffreys prior does not integrate inγ

and we can show that a posterior does not exist in this case:
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Theorem 7 If f is a scale mixture of normals in (9) and{a(γ), b(γ)} are as in the

inverse scale factors model, then the posterior distribution of(µ, σ, γ) is improper under

the independence Jeffreys prior (14).

Theorems 6 and 7 emphasize the relevance of the choice of the functions{a(γ), b(γ)}
for the properness of the posterior distribution of(µ, σ, γ) when using the independence

Jeffreys prior. The fact that the ISF model does not allow forinference with the in-

dependence Jeffreys prior is rather surprising since this prior almost always leads to

proper posteriors, and the ISF model is quite a straightforward extension of the usual

location-scale model. Subsection 3.3 will shed more light on this.

3.2 Jeffreys prior

If we consider functionsf , a(γ) and b(γ) such that the Fisher information matrix is

non-singular (see Theorem 2 and Corollary 4) we can think of making inference using

the Jeffreys prior. We now study the properness of the posterior distribution of the

parameters(µ, σ, γ) when we choose this prior. An important feature of this prioris the

invariance under one-to-one reparameterizations. Therefore, the results regarding the

properness of the posterior of(µ, σ, γ) for any choice of{a(γ), b(γ)} in model (9) that

corresponds to a one-to-one transformation in (7) are the same and also applicable to

the posterior of(µ, σ1, σ2) in model (2).

Theorem 8 Lets be as in (9), assume thatf is a scale mixture of normals and consider

the Jeffreys prior (10) for the parameters of this model. Then, for n ≥ 2, a necessary

condition for the properness of the posterior distributionof (µ, σ, γ) is

∫

Γ

[

a(γ)

a(γ) + b(γ)

]n+1

|λ(γ)| dγ <∞, (18)

with λ(γ) defined as in (8).

Corollary 5 Consider sampling from (9) withf a scale mixture of normals and{a(γ), b(γ)}
as in the inverse scale factors model, then the posterior distribution of (µ, σ, γ) is

improper using the Jeffreys prior (10). As a consequence, for any pair of functions

{a(γ), b(γ)} such that the mapping(µ, σ1, σ2) ↔ (µ, σ, γ) is one-to-one, the posterior

distribution of(µ, σ, γ) is improper using the Jeffreys prior (10).

Proof. We can verify that the necessary condition (18) is not satisfied for these functions.
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This corollary implies that we can not conduct Bayesian inference for the param-

eters of this type of skewed distributions using the Jeffreys prior. It is rather rare to

find that the Jeffreys prior does not lead to a proper posterior, and it is somewhat sur-

prising to find that we can not use this prior in these rather simple classes of two-piece

distributions with only three parameters.

Because the Jeffreys prior is invariant under reparameterization, its use is thus pro-

hibited in any one-to-one reparameterization of the two-piece models in (2) or (9). How-

ever, one way to get around this problem is to choose functions {a(γ), b(γ)} such that

the mapping(µ, σ, γ) 7→ (µ, σ1, σ2) is not one-to-one, but hopefully still of some inter-

est for modelling. Another way to produce a proper posteriordistribution when using

the Jeffreys prior is to restrictΓ such thatλ(γ) is absolutely integrable.

Theorem 9 Lets be as in (9) wheref is normal or Laplace. Consider the Jeffreys prior

(10) for the parameters of this model. Let{a(γ), b(γ)} be continuously differentiable

functions forγ ∈ Γ such that

0 <

∫

Γ

|λ(γ)| dγ <∞. (19)

Then we have the following results

(i) The posterior distribution of(µ, σ, γ) is proper forn ≥ 2.

(ii) The mapping(µ, σ, γ) 7→ (µ, σ1, σ2) is not one-to-one.

(iii) If Γ is an interval (not necessarily bounded) andAG(γ) is monotonic, thenAG(γ)

is not surjective.

First, we considered forcing existence of the posterior through the choice of the

functions{a(γ), b(γ)}, in particular such that the ratioa(γ)/b(γ) is bounded, which

excludes a one-to-one reparameterization in (7). However,the examples we generated

in this way did not lead to implied priors onAG that could be of interest to practitioners.

It is actually easier to generate examples of practical relevance if we consider re-

stricting the parameter space ofγ in the context of functions{a(γ), b(γ)} that would

not lead to a posterior with unrestrictedγ. The following is such an example.
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Example 1 (Logistic AG) Considera(γ) = 1 + exp(2γ), b(γ) = 1 + exp(−2γ) for

γ ∈ R, then

AG(γ) = tanh(γ),

λ(γ) = 2

πJ (µ, σ, γ) ∝ 1

σ2
sech(γ)2. (20)

In addition, the functionsa(γ), b(γ) andAG(γ) are monotonic∀ γ ∈ R, the Jeffreys

prior in (20) implies thatAG ∼ Unif(−1, 1) andAG : R 7→ (−1, 1). Clearly,λ(γ)

is not integrable onR, but if we restrictγ ∈ [−B,B] for some0 < B < ∞, then we

can use the Jeffreys prior(20) for making inference on(µ, σ, γ) for normal of Laplace

f andAG : R 7→ [tanh(−B), tanh(B)]. Figure 1 presents the functionsa(γ), b(γ)

and AG(γ) and Figure2 shows the factor depending onγ in the Jeffreys prior for

B = 3. The induced prior onAG is a Uniform over the range[tanh(−B), tanh(B)] =

[−0.995, 0.995].

We will call the model in Example 1 the “logistic AG model” as AG(γ) is a logistic

function of γ transformed to take values in the interval (-1,1) forγ ∈ R. The choice

of a(γ) and b(γ) does lead to a one-to-one transformation in (7) whenγ ∈ R, but

not if γ is restricted to a bounded interval: then the ratioa(γ)/b(γ) is also bounded

and this precludes a one-to-one mapping. Note thata(γ) andb(γ) satisfy the condition

a(γ) + b(γ) = a(γ)b(γ), which induces a really interesting structure on the Jeffreys

prior, namely that it implies a uniform prior in terms of theAG measure. This might be

an attractive prior for practitioners to use in the absence of strong prior information.

-3 -2 -1 0 1 2 3
0

50

100

Γ

-3 -2 -1 0 1 2 3
-1

0

1

Γ

AGHΓL

(a) (b)

Figure 1:(a)a(γ) (solid line) andb(γ) (dashed line); (b)AG(γ).
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Figure 2:Jeffreys prior(20) as a function ofγ.

3.3 Intuitive explanation

As mentioned before, the lack of a posterior under a commonlyused prior in what

is essentially a very simply generalisation of a standard location-scale model can be

considered surprising. Thus, we offer a few explanatory comments in this subsection.

These are not meant to be formal proofs (they can be found in the Appendix), but merely

intuitive ideas that help us understand what drives the mainresults we have found in the

previous subsections.

In the context of the two-piece model in (2), it is easy to see that asσ1 tends to

zero, the sampling density tends to the half density on[µ,∞) with scaleσ2. Thus, the

likelihood will be constant inσ1 in the neighbourhood of zero. This means the prior

needs to integrate in that neighbourhood for a posterior to exist. If we consider the

independent Jeffreys prior in (6) it behaves likeσ−1/2
1 for smallσ1 and this integrates

close to zero. Indeed, we have a posterior in this case. However, the Jeffreys prior in (5)

behaves like1/σ1 for smallσ1 and this does not integrate, thus precluding a posterior.

Of course, similar arguments hold in the case of smallσ2.

In the case of the reparameterized model in (9), we have a potential problem if one

of the scales, say,σa(γ) goes to zero. If then the ratiob(γ)/a(γ) has an upper bound,

this will necessarily imply that both scales tend to zero, sothe model behaves like a

standard location-scale model which leads to a proper posterior under the Jeffreys prior.

This is the case explored in Theorem 9 and Example 1. If, however, the ratio between

the functionsa(γ) andb(γ) is not bounded and (7) defines a one-to-one mapping, we

will have no posterior with the Jeffreys prior due to the invariance of this prior under

reparameterization, and it depends on the particular choice of functions{a(γ), b(γ)}
whether the independence Jeffreys prior will lead to a posterior. It is helpful to transform

the parameters back to those of the two-piece model in (2). Then, for theǫ-skew model
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the independence Jeffreys prior in (17) can be shown to behave like σ−1/2
i for small

σi, i = 1, 2, which is integrable close to zero, and the posterior is well-defined. On the

other hand, the independence Jeffreys prior for the ISF model in (14) behaves like1/σi
for smallσi, i = 1, 2, which does not integrate in a neighbourhood of zero and precludes

posterior existence.

4 Numerical results

4.1 Simulation study

In this section we investigate the empirical coverage of the95% posterior credible inter-

vals, defined by the2.5th and97.5th percentiles. We simulateN = 10, 000 datasets of

sizen = 30, 100 and1000 from various sampling models where we takef to be a nor-

mal distribution throughout, and analyse these data using the corresponding Bayesian

model. Model 1 consists of the two-piece model (2) and the independence Jeffreys prior

(6). Model 2 corresponds to (9) using{a(γ), b(γ)} of theǫ-skew model under the inde-

pendence Jeffreys prior. Model 3 is the logistic AG model of Example 1 forγ ∈ [−B,B]

with the Jeffreys prior in (20). For each of theseN datasets, a sample of size3, 000 was

obtained from the posterior distribution using a Markov chain Monte Carlo sampler af-

ter a burn-in period of5, 000 iterations and thinned to every50th iteration. Finally, the

proportion of95% credible intervals that include the true value of the parameter was cal-

culated. Results are presented in Tables 1-4. For Model 3 we know that the truncation

to a finite interval is what makes the posterior well-defined.To investigate how sensitive

the results are to the particular value chosen forB, we have used various values.

Sample size n = 30 n = 100 n = 1000

Parameters
σ1 = 2.0 σ1 = 0.66 σ1 = 2.0 σ1 = 0.66 σ1 = 2.0 σ1 = 0.66

σ2 = 0.5 σ2 = 1.50 σ2 = 0.5 σ2 = 1.50 σ2 = 0.5 σ2 = 1.50

µ 0.9761 0.9672 0.9711 0.9559 0.9482 0.9534

σ1 0.9606 0.9513 0.9741 0.9581 0.9473 0.9492

σ2 0.9748 0.9711 0.9606 0.9512 0.9485 0.9505

Table 1:Coverage proportions. Mixture model with independence Jeffreys prior (Model 1)

All models lead to coverage probabilities above the nominallevel for samples of

sizen = 30, especially in the case ofσ for Model 3. Once we increase the sample size

15

CRiSM Paper No. 11-13, www.warwick.ac.uk/go/crism



Sample size n = 30 n = 100 n = 1000

Parameter γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

µ 0.9710 0.9699 0.9543 0.9552 0.9469 0.9485

σ 0.9591 0.9602 0.9475 0.9452 0.9527 0.9541

γ 0.9707 0.9691 0.9580 0.9575 0.9484 0.9519

Table 2:Coverage proportions.ǫ-skew model with independence Jeffreys prior (Model 2)

Sample size n = 30 n = 100 n = 1000

Parameter γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

µ 0.9673 0.9641 0.9493 0.9530 0.9481 0.9493

σ 0.9949 0.9908 0.9522 0.9600 0.9480 0.9473

γ 0.9640 0.9654 0.9488 0.9520 0.9477 0.9469

Table 3:Coverage proportions. Logistic AG model with Jeffreys prior (Model 3) andB = 3

Sample size n = 30 n = 100 n = 1000

Parameter γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5 γ = 0.5 γ = −0.5

µ 0.9680 0.9652 0.9486 0.9488 0.9494 0.9450

σ 0.9905 0.9916 0.9575 0.9529 0.9504 0.9417

γ 0.9659 0.9641 0.9517 0.9517 0.9525 0.9447

Table 4:Coverage proportions. Logistic AG model with Jeffreys prior (Model 3) andB = 30

to n = 100, the coverage is quite close to the nominal value, except forone setting for

Model 1, where the coverage is still a bit high. As we further increase to samples of

1000 observations, all cases lead to coverage very close to95%, as we would expect.

For Model 3, the choice ofB (among reasonable values) does not seem to have any

noticeable effect. Overall, the frequentist coverage properties of the models examined

are pretty good, with perhaps Model 2 displaying the best performance.

4.2 Application to real data

Consider the data set presented in Mudholkar and Hutson (2000) which contains the

heights of 219 of the world’s volcanoes. We use Models 1 to 3 described in the previous

subsection as well as the skew-normal model of (Azzalini, 1985), which will be denoted
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as Model 4, given by

s(y|µ, σ, λ) = 2

σ
φ

(

y − µ

σ

)

Φ

(

λ
y − µ

σ

)

,

using the prior

π(µ, σ, λ) ∝ σ−1π(λ). (21)

The structure of this prior, using the Jeffreys prior ofλ derived in the model without

location and scale parameters forπ(λ), was proposed in Liseo and Loperfido (2006),

who also prove existence of the posterior under this prior. Bayes and Branco (2007)

show that the Jeffreys prior ofλ can be approximated by a Studentt distribution with

1/2 degrees of freedom, which is what was used for our calculations.

A sample of size10, 000 was drawn from the posterior distribution after a burn-in

period of50, 000 iterations with a thinning of100 iterations for all models.

Figure 3 shows the fit of the predictive densities of the various models overplotted

with the data histogram. Models 1-3 lead to almost overlapping predictives, but the one

for Model 4 is slightly different.

0 50 100 150 200
0

0.005

0.01

y

Figure 3: Predictive distributions and data histogram: Model 1 (continuous line); Model 2

(long-dashed line); Model 3,B = 3 (dashed line); Model 3,B = 10 (dotted line); Model 3,

B = 30 (dotted-dashed line); Model 4 (bold line).

Bayes factors can be computed between Models 1, 2 and 4 despite the arbitrary

integrating constant (improperness) of the prior, since the prior has a product structure

with an improper factor (inσ andµ) which is common to all models, and the factor

corresponding to the skewness parameter is integrable and thus properly normalised.

As Model 3 does not share the same factor inσ it can not be compared with the other

models through Bayes factors. The marginal likelihoods needed in the calculation of
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Bayes factors are estimated using the generalised harmonicmean estimator (Chopin

and Robert, 2010), with an importance function chosen to resemble the posterior but

with thinner tails. The resulting Bayes factors are close tounity.

5 Concluding Remarks

We consider the class of univariate continuous two-piece distributions, which are often

used to modify a symmetric location-scale model to allow forskewness, and its repa-

rameterized versions as presented in Arellano-Valle et al.(2005), where we can identify

a location, a scale and a skewness parameter. A number of well-known distributions

correspond to particular choices of this parameterization. In particular, we focus on

Bayesian inference in these models using Jeffreys or the independence Jeffreys prior.

We prove that these models do not lead to valid posterior inference under Jeffreys prior

for any underlying symmetric distribution in the class of scale mixture of normals. As

an ad-hoc fix, we show that modifying Jeffreys prior by truncating the support of the

skewness parameter can lead to posterior existence. A more fundamental solution is to

use the independence Jeffreys prior instead, which is shownto lead to a valid posterior

for some parameterizations of these sampling models. For a number of models that lead

to valid inference, we compute empirical coverage probabilities of the posterior credi-

ble intervals. This reveals a mostly satisfactory behaviour of these models. Finally, we

apply the models, as well as an alternative skewed distribution due to Azzalini (1985),

to some real data.

It is important to stress that the three-parameter samplingmodels examined here are

quite simple modifications of the standard location-scale model, and that the Jeffreys

prior is a very commonly used prior in the absence of subjective prior information. The

fact that the combination of these sampling models with a Jeffreys prior does not lead to

a posterior is somewhat surprising and definitely relevant for statistical practice, as these

models seem attractive options to deal with skewed data. Thebetter properties of the

independence Jeffreys prior are in line with statistical folklore: Jeffreys (1961, p. 182)

himself preferred this prior for location-scale problems,and in the univariate normal

case, the independence Jeffreys is a matching prior (Bergerand Sun, 2008). Even with

this prior, however, problems of posterior existence can occur, depending on which

parameterization we choose. Similar problems of nonexistence under the independence

Jeffreys prior also occur for Birnbaum-Sanders distributions (see Xu and Tang, 2011).

Ongoing research examines other “non-subjective” prior structures for use with two-
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piece distributions which can be attractive due to their mathematical properties and their

practicality.

Appendix: Proofs

Proof of Theorem 1

The first partial derivatives oflog[s(y|, µ, σ, γ)] are given by

∂

∂µ
log[s(y|, µ, σ1, σ2)] = − 1

σ1

f ′

(

y−µ
σ1

)

f
(

y−µ
σ1

) I(−∞,µ)(y)−
1

σ2

f ′

(

y−µ
σ2

)

f
(

y−µ
σ2

) I[µ,∞)(y),

∂

∂σ1
log[s(y|, µ, σ1, σ2)] = − 1

σ1 + σ2
− y − µ

σ2
1

f ′

(

y−µ
σ1

)

f
(

y−µ
σ1

) I(−∞,µ)(y),

∂

∂σ2
log[s(y|, µ, σ1, σ2)] = − 1

σ1 + σ2
− y − µ

σ2
2

f ′

(

y−µ
σ2

)

f
(

y−µ
σ2

) I[µ,∞)(y).

Then the entries of the Fisher information matrix of(µ, σ1, σ2) are given by

I11 = E

[

(

∂

∂µ
log[s(y|, µ, σ1, σ2)]

)2
]

=
2α1

σ1σ2
,

I22 = E

[

(

∂

∂σ1
log[s(y|, µ, σ1, σ2)]

)2
]

=
α2

σ1(σ1 + σ2)
+

σ2
σ1(σ1 + σ2)2

,

I33 = E

[

(

∂

∂σ2
log[s(y|, µ, σ1, σ2)]

)2
]

=
α2

σ2(σ1 + σ2)
+

σ1
σ2(σ1 + σ2)2

,

I12 = E

[(

∂

∂µ
log[s(y|, µ, σ1, σ2)]

)(

∂

∂σ1
log[s(y|, µ, σ1, σ2)

)]

= − 2α3

σ1(σ1 + σ2)
,

I13 = E

[(

∂

∂µ
log[s(y|, µ, σ1, σ2)]

)(

∂

∂σ2
log[s(y|, µ, σ1, σ2)

)]

=
2α3

σ2(σ1 + σ2)
,

I23 = E

[(

∂

∂σ1
log[s(y|, µ, σ1, σ2)]

)(

∂

∂σ2
log[s(y|, µ, σ1, σ2)

)]

= − 1

(σ1 + σ2)2
.

�
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Proof of Theorem 2

The determinant of the Fisher information matrix is

|I(µ, σ1, σ2)| =
2α2 (α1 + α1α2 − 2α2

3)

σ2
1σ

2
2(σ1 + σ2)2

.

We will first prove thatα2 > 0. From the definition ofα2 it can only be zero if

1 + tf ′(t)/f(t) = 0 wheneverf(t) > 0. This means thatf(t) = −tf ′(t) and this only

happens iff(t) = K/t for any positiveK. The latter, however, is not a probability

density function onR. Thus,α2 can not be zero.

Next, we will prove thatα1(1 + α2) > 2α2
3. Applying the Cauchy-Schwarz in-

equality we haveα1(1 + α2) ≥ 2α2
3. We will show that this is a strict inequality. The

condition in Theorem 2 implies that

0 <

∫

∞

0

t

[

f ′(t)

f(t)

]2

f(t) dt.

Let

φ(t) =

∣

∣

∣

∣

∣

f ′(t)
√

f(t)

∣

∣

∣

∣

∣

> 0 a.e. andψ(t) = t

∣

∣

∣

∣

∣

f ′(t)
√

f(t)

∣

∣

∣

∣

∣

> 0 a.e.

Note that[βφ(t) + ψ(t)]2 > 0 a.e. for anyβ ∈ R, and thus

0 <

∫

∞

0

[βφ(t) + ψ(t)]2 dt = β2

∫

∞

0

φ2(t) dt+ 2β

∫

∞

0

φ(t)ψ(t) dt+

∫

∞

0

ψ2(t) dt.

This is a polynomial of degree2 in β with positive coefficients and no real roots, imply-

ing that the discriminant is negative, so that

[

∫

∞

0

t

[

f ′(t)

f(t)

]2

f(t) dt

]2

<

[

∫

∞

0

t2
[

f ′(t)

f(t)

]2

f(t) dt

][

∫

∞

0

[

f ′(t)

f(t)

]2

f(t) dt

]

.

�
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Proof of Theorem 3

The first partial derivatives oflog[s(y|, µ, σ, γ)] are given by

∂

∂µ
log[s(y|, µ, σ, γ)] = − 1

σb(γ)

f ′

(

y−µ
σb(γ)

)

f
(

y−µ
σb(γ)

) I(−∞,µ)(y)−
1

σa(γ)

f ′

(

y−µ
σa(γ)

)

f
(

y−µ
σa(γ)

) I[µ,∞)(y),

∂

∂σ
log[s(y|, µ, σ, γ)] = −1

σ
− y − µ

σ2b(γ)

f ′

(

y−µ
σb(γ)

)

f
(

y−µ
σb(γ)

) I(−∞,µ)(y)−
y − µ

σ2a(γ)

f ′

(

y−µ
σa(γ)

)

f
(

y−µ
σa(γ)

) I[µ,∞)(y),

∂

∂γ
log[s(y|, µ, σ, γ)] = −a

′(γ) + b′(γ)

a(γ) + b(γ)
− y − µ

σ

b′(γ)

b(γ)2

f ′

(

y−µ
σb(γ)

)

f
(

y−µ
σb(γ)

) I(−∞,µ)(y)

− y − µ

σ

a′(γ)

a(γ)2

f ′

(

y−µ
σa(γ)

)

f
(

y−µ
σa(γ)

) I[µ,∞)(y).

Thus, the entries of the Fisher information matrix of(µ, σ, γ) are

I11 = E

[

(

∂

∂µ
log[s(y|, µ, σ, γ)]

)2
]

=
2α1

a(γ)b(γ)σ2
,

I22 = E

[

(

∂

∂σ
log[s(y|, µ, σ, γ)]

)2
]

=
α2

σ2
,

I33 = E

[

(

∂

∂γ
log[s(y|, µ, σ, γ)]

)2
]

=
α2 + 1

a(γ) + b(γ)

[

b′(γ)2

b(γ)
+
a′(γ)2

a(γ)

]

−
[

a′(γ) + b′(γ)

a(γ) + b(γ)

]2

,

I12 = E

[(

∂

∂µ
log[s(y|, µ, σ, γ)]

)(

∂

∂σ
log[s(y|, µ, σ, γ)

)]

= 0,

I13 = E

[(

∂

∂µ
log[s(y|, µ, σ, γ)]

)(

∂

∂γ
log[s(y|, µ, σ, γ)

)]

=
2α3

σ[a(γ) + b(γ)]

[

a′(γ)

a(γ)
− b′(γ)

b(γ)

]

,

I23 = E

[(

∂

∂σ
log[s(y|, µ, σ, γ)]

)(

∂

∂γ
log[s(y|, µ, σ, γ)

)]

=
α2

σ

[

a′(γ) + b′(γ)
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]

.
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Proof of Theorem 4

Note that

d

dγ
AG(γ) = 2

a′(γ)b(γ)− a(γ)b′(γ)

[a(γ) + b(γ)]2
= 2

a(γ)b(γ)λ(γ)

[a(γ) + b(γ)]2
,

so that
dAG(γ)

dγ
> 0 ⇔ dλ(γ)

dγ
> 0 and

dAG(γ)

dγ
< 0 ⇔ dλ(γ)

dγ
< 0.

�

Proof of Theorem 5

Consider the independence Jeffreys prior(6) and the change of variable(7), then

πI(µ, σ, γ) ∝ |a′(γ)b(γ)− a(γ)b′(γ)|
√

[b(γ) + α2[a(γ) + b(γ)]][a(γ) + α2[a(γ) + b(γ)]]

σ
√

a(γ)b(γ)[a(γ) + b(γ)]2

≤ (α2 + 1)|a′(γ)b(γ)− a(γ)b′(γ)|
σ
√

a(γ)b(γ)[a(γ) + b(γ)]
.

For the particular choice{a(γ), b(γ)} = {γ, 1/γ}, the upper bound ofπI(µ, σ, γ) is

proportional to[σ(1 + γ2)]−1.

Applying Theorem 1 from Fernández and Steel (1998) and using this upper bound

we can derive the properness of the posterior distribution of (µ, σ, γ). Now, since the

mapping(µ, σ, γ) ↔ (µ, σ1, σ2) is one-to-one, it follows that the posterior distribution

of (µ, σ1, σ2) is proper. �

Proof of Theorem 6

Let f be a scale mixture of normals withλj the mixing variable associated withyj and

where theλjs are independent random variables defined onR
+ with distributionPλj

.

We get an upper bound for the marginal distribution of(y1, ..., yn) proportional to

∫

R
+
n

∫

Γ

∫

∞

0

∫

∞

−∞

(

n
∏

j=1

λ
1
2
j

)

σ−(n+1)

[a(γ) + b(γ)]n
exp

[

− 1

2σ2h(γ)2

n
∑

j=1

λj(yj − µ)2

]

× π(γ) dµdσdγdP(λ1,...,λn),
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whereh(γ) = max{a(γ), b(γ)}. Consider the change of variableϑ = σh(γ) and rewrite

the upper bound as follows

∫

Γ

[

h(γ)

a(γ) + b(γ)

]n

π(γ) dγ

∫

R
+
n

∫

∞

0

∫

∞

−∞

(

n
∏

j=1

λ
1
2
j

)

ϑ−(n+1)

× exp

[

− 1

2ϑ2

n
∑

j=1

λj(yj − µ)2

]

dµdϑdP(λ1,...,λn).

Fernández and Steel (2000, Th. 1) show that the integral inµ, ϑ, λ1, ..., λn is finite if

n ≥ 2. Then the existence of the integral inγ is a sufficient condition for the properness

of the posterior distribution of(µ, σ, γ). The result then follows from
∫

Γ

[

h(γ)

a(γ) + b(γ)

]n

π(γ) dγ ≤
∫

Γ

π(γ) dγ.

�

Proof of Theorem 7

Assumef is a scale mixture of normals. With the independence Jeffreys prior we get a

lower bound for the marginal density of(y1, ..., yn) which is proportional to

∫

R
+
n

∫

∞

0

∫

∞

0

∫

∞

−∞

(

n
∏

j=1

λ
1
2
j

)

σ−(n+1)γn

(1 + γ2)n
exp

[

− 1

2σ2

n
∑

j=1

λjγ
−2 sign(yj−µ)(yj − µ)2

]

×
√

α2

γ2
+

4

(γ2 + 1)2
dµdσdγdP(λ1,...,λn)

≥ √
α2

∫

R
+
n

∫

∞

0

∫

∞

0

∫ y(1)

−∞

(

n
∏

j=1

λ
1
2
j

)

σ−(n+1)γn−1

(1 + γ2)n
exp

[

− 1

2σ2γ2

n
∑

j=1

λj(yj − µ)2

]

× dµdσdγdP(λ1,...,λn).

Consider the change of variableϑ = σγ. Then we can rewrite this lower bound as

follows
∫

∞

0

γ2n−1

(1 + γ2)n
dγ

∫

R
+
n

∫

∞

0

∫ y(1)

−∞

(

n
∏

j=1

λ
1
2
j

)

ϑ−(n+1) exp

[

− 1

2ϑ2

n
∑

j=1

λj(yj − µ)2

]

× dµdϑdP(λ1,...,λn).

The first integral is infinite for any value ofn which implies the improperness of the

posterior distribution. �
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Proof of Theorem 8

If f is a scale mixture of normals, then integrating over a subspace with respect toµ we

get a lower bound for the marginal distribution of(y1, ..., yn) which is proportional to

∫

R
n
+

∫

Γ

∫

∞

0

∫ y(1)

−∞

(

n
∏

j=1

λ
1
2
j

)

σ−(n+2)

[a(γ) + b(γ)]n
exp

[

− 1

2σ2a(γ)2

n
∑

j=1

λj(yj − µ)2

]

× |λ(γ)|
a(γ) + b(γ)

dµdσdγdP(λ1,...,λn).

Consider the change of variableϑ = σa(γ). Then we can rewrite this lower bound

as follows

∫

Γ

[

a(γ)

a(γ) + b(γ)

]n+1

|λ(γ)| dγ
∫

R
n
+

∫

∞

0

∫ y(1)

−∞

(

n
∏

j=1

λ
1
2
j

)

ϑ−(n+2)

× exp

[

− 1

2ϑ2

n
∑

j=1

λj(yj − µ)2

]

dµdϑdP(λ1,...,λn).

Therefore, the existence of the first integral is a necessarycondition for the proper-

ness of the posterior distribution of(µ, σ, γ). �

Proof of Theorem 9

The proof of(i) is as follows. Iff is normal, definingh(γ) = max{a(γ), b(γ)} we get

an upper bound for the marginal distribution of(y1, ..., yn) which is proportional to

∫

∞

−∞

∫

Γ

∫

∞

0

πJ(µ, σ, γ)

[a(γ) + b(γ)]nσn
exp

[

− 1

2σ2h(γ)2

n
∑

j=1

(yj − µ)2

]

dσdγdµ

∝
∫

∞

−∞

[

n
∑

j=1

(yj − µ)2

]

−
n+1
2

dµ

∫

Γ

h(γ)n+1

[a(γ) + b(γ)]n+1
|λ(γ)|dγ.

The first integral exists ifn ≥ 2. Then the existence of the second integral is a

sufficient condition for the existence of the posterior distribution. For the second integral

we use that
∫

Γ

h(γ)n+1

[a(γ) + b(γ)]n+1
|λ(γ)|dγ ≤

∫

Γ

|λ(γ)|dγ,
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which is finite by assumption. Iff is Laplace, analogously to the normal case we get an

upper bound for the marginal distribution of(y1, ..., yn) which is proportional to

∫

∞

−∞

∫

Γ

∫

∞

0

πJ(µ, σ, γ)

[a(γ) + b(γ)]nσn
exp

[

− 1

σh(γ)

n
∑

j=1

|yj − µ|
]

dσdγdµ

∝
∫

∞

−∞

[

n
∑

j=1

|yj − µ|
]

−(n+1)

dµ

∫

Γ

h(γ)n+1

[a(γ) + b(γ)]n+1
|λ(γ)|dγ,

and the same argument leads to the result.

Result(ii) follows immediately from Corollary 5.

For (iii) let us assume, without loss of generality, thatAG(γ) is an increasing func-

tion andΓ = (γ, γ). First, note that we can rewriteAG(γ) as follows

AG(γ) = tanh

{

1

2
log

[

a(γ)

b(γ)

]}

.

Then

lim
γ→γ

AG(γ) = 1 ⇔ lim
γ→γ

log

[

a(γ)

b(γ)

]

= ∞

lim
γ→γ

AG(γ) = −1 ⇔ lim
γ→γ

log

[

a(γ)

b(γ)

]

= −∞,

which contradicts the assumption thatλ(γ) is absolutely integrable. The result is analo-

gous ifAG is decreasing. �
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