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Causal identi�ability via Chain Event GraphsPeter ThwaitesDepartment of Statisti
s, University of Warwi
k, Coventry, CV4 7AL, United Kingdom
Abstra
tWe present the Chain Event Graph (CEG) as a 
omplementary graphi
almodel to the Causal Bayesian Network for the representation and analysisof 
ausally manipulated asymmetri
 problems. CEG analogues of Pearl'sBa
k Door and Front Door theorems are presented, appli
able to the 
lassof singular manipulations, whi
h in
ludes both Pearl's basi
 Do interventionand the 
lass of fun
tional manipulations possible on Bayesian Networks.These theorems are shown to be more 
exible than their Bayesian Network
ounterparts, both in the types of manipulation to whi
h they 
an be applied,and in the nature of the 
onditioning sets whi
h 
an be used.Keywords: Ba
k Door theorem, Bayesian Network, 
ausal identi�ability,
ausal manipulation, Chain Event Graph, 
onditional independen
e, FrontDoor theorem1. Introdu
tionIn this paper we 
onsider 
ause and e�e
t through the analysis of 
on-trolled models. The standard apparatus for su
h an approa
h is the CausalBayesian Network (CBN) [4, 8, 9, 18℄. As noted in [22℄, CBNs are ideal forproblems whi
h have a natural produ
t spa
e stru
ture, but need adaptationfor problems whi
h do not. It is this latter type of problem that we areprimarily 
on
erned with here.Context-spe
i�
 variants of Bayesian Networks (BNs) have been devel-oped for ta
kling asymmetri
 problems [1, 7, 12, 14℄. These are still ratherawkward for the representation and analysis of problems whose future de-velopment at any spe
i�
 point depends on the parti
ular history of theEmail address: Peter.Thwaites�warwi
k.a
.uk (Peter Thwaites)Preprint submitted to Arti�
ial Intelligen
e April 14, 2011
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problem upto that point, and the values of a parti
ular set of 
ovariates atthat point. Their use is similarly 
ir
ums
ribed in problems where there maybe no possible out
omes of some variables given 
ertain histories or values of
ovariates.There have of 
ourse been many re
ent advan
es in CBN theory (see forexample [2, 3, 5, 10, 23, 24℄), some of whi
h have made the 
ausal analy-sis of asymmetri
 problems simpler. However even with these advan
es theavailable graphi
al representations for su
h problems and the types of ma-nipulation an analyst 
an 
onsider are still limited. Similarly the availableanalyti
al te
hniques are often rather 
rude. It was argued in [22℄ that 
ausesare more naturally expressed as events rather than the values of some ran-dom variable. The Chain Event Graph (CEG) introdu
ed in [16℄ providesan ideal graphi
al representation given this argument. It is also a sensi-ble representation for the analysis of manipulations to events. Moreover,as shown in [22℄, use of the CEG makes available a ri
her 
lass of possiblemanipulations than is generally the 
ase with CBNs.The 
olle
tion of te
hniques available for use with CEG-based 
ausal anal-ysis is already suÆ
ient for ta
kling most problems, if not yet as large as thatavailable for BN-based analysis. A Ba
k Door theorem for CEGs analogousto Pearl's [8, 9℄ Ba
k Door theorem for BNs was introdu
ed in [22℄. Herewe present a mu
h more general version of this as well as two versions of aFront Door theorem, the se
ond of whi
h allows 
onsiderably more 
exibilitythan the analoguous BN version [8, 9℄. We anti
ipate that future work willrepli
ate for CEGs the work done in [3, 23, 24℄ whi
h provides ne
essary andsuÆ
ient 
onditions for 
ausal identi�ability in BNs.As the CEG is a 
omparatively new stru
ture, there have been minormodi�
ations sin
e [16℄, and indeed sin
e [22℄. These are detailed in the nextse
tion. We believe these 
hanges improve the CEG by making it less messy,and also by turning it into a genuine dire
ted a
y
li
 graph (DAG), whi
hlatter allows us to utilise the many results proven for this graph type.In Se
tion 2 we de�ne the CEG and manipulated CEG. Se
tion 3 developsthe Ba
k Door theorem and the idea of singular manipulations. A Front Doortheorem, a generalisation of Pearl's [8, 9℄ theorem for BNs, is then introdu
edin Se
tion 4, and Se
tion 5 provides a dis
ussion of possible dire
tions forfuture resear
h.
2
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2. De�nitions and notationIn this se
tion we give a brief de�nition of a CEG. This has been modi�edslightly sin
e [16℄ and [22℄. We also provide some notation that will be usedthroughout the paper. We then turn our attention to what it means whenwe manipulate a CEG to an event, and present a de�nition of a manipulatedCEG.The CEG is a fun
tion of an event tree [15℄, retaining those featuresof the tree whi
h allow for the transparent representation of asymmetri
problems. They are a signi�
ant extension to trees sin
e they express withintheir topology the entire 
onditional independen
e stru
ture of the problemswhi
h they have been 
reated to represent [20℄.An event tree T is a dire
ted tree with vertex set V (T ) and edge setE(T ). The root-to-leaf paths f�g of T form the atoms of the event spa
e.Events measurable with respe
t to this spa
e are unions of these atoms.Ea
h non-leaf vertex v 2 V (T ) labels a random variableX(v) whose statespa
e X(v) 
an be identi�ed with the set of dire
ted edges e(v; v0) 2 E(T )emanating from v. For ea
h X(v) we let�(v) � f�e(v0 j v) j e(v; v0) 2 X(v)gwhere �e(v0 j v) � P (X(v) = e(v; v0)) are 
alled the primitive probabilities ofthe tree; and �(T ) � f�(v)gv2V (T )De�nition 1. (Coloured tree) For an event tree T with vertex set V (T )and edge set E(T )1. Two non-leaf verti
es v1; v2 2 V (T ) are in the same stage u if there is abije
tion  (v1; v2) between X(v1) and X(v2) su
h that if  : e(v1; v10) 7!e(v2; v20) then �e(v10 j v1) = �e(v20 j v2). The edges e(v1; v10) ande(v2; v20) have the same 
olour if v1 and v2 are in the same stage, ande(v1; v10) maps to e(v2; v20) under this bije
tion.2. Two verti
es v1; v2 2 V (T ) are in the same position w if for ea
hsubpath emanating from v1, the ordered sequen
e of 
olours is the sameas that for some subpath emanating from v2.The set of stages of the tree is labelled L(T ), and the set of positions islabelled K(T ). 3
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In the de�nition of the CEG below we have removed the undire
ted edgesfrom previous de�nitions, and introdu
ed 
olouring of nodes. We believe thismakes the CEG easier to read, and it also allows us to utilise the extensivetheory relating to DAGs.De�nition 2. (Chain Event Graph)The Chain Event Graph C(T ) is the 
oloured DAG with vertex set V (C) andedge set E(C) de�ned by:1. V (C) � K(T ) [ fw1g.2. (a) For w; w0 2 V (C) n fw1g, there exists a dire
ted edgee(w;w0) 2 E(C) iff there are verti
es v; v0 2 V (T ) su
hthat v 2 w 2 K(T ); v0 2 w0 2 K(T ) and there is an edgee(v; v0) 2 E(T ).(b) For w 2 V (C) n fw1g, there exists a dire
ted edgee(w;w1) 2 E(C) iff there is a non-leaf vertex v 2 V (T )and a leaf vertex v0 2 V (T ) su
h that v 2 w 2 K(T ) and there isan edge e(v; v0) 2 E(T ).3. If v1 2 w1 2 K(T ); v2 2 w2 2 K(T ) and v1; v2 are members of thesame stage u 2 L(T ), then we say that w1; w2 are in the same stage u,and assign the same 
olour to these positions. We label the set of stagesof C by L(C).4. If v 2 w 2 K(T ); v0 2 w0 2 K(T ) and there is an edge e(v; v0) 2 E(T ),then the edge e(w;w0) 2 E(C) has the same 
olour as the edge e(v; v0).The root-to-sink paths f�g of C form the atoms of the event spa
e of C.Events measurable with respe
t to this spa
e are unions of these atoms.Ea
h stage u 2 L(C) labels a random variableX(u) whose state spa
e X(u)
an be identi�ed with the set of dire
ted edges e(w;w0) 2 E(C) emanatingfrom any w 2 u.Example 1. CEG 
onstru
tionWe illustrate the 
onstru
tion of a CEG through a fault diagnosis exam-ple, whi
h for illustrative 
onvenien
e uses only binary variables.� A ma
hine utilises two 
omponents C1 and C2. Whether C2 is fun
-tioning properly or is faulty is independent of whether C1 is fun
tioningproperly or is faulty. 4
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v18Figure 1: Coloured tree for Example 1� If either 
omponent is faulty, then a third 
omponent C3 swit
hes onautomati
ally, and 
onditional on this event, whether C3 fun
tionsproperly or is faulty is independent of whether C1 and C2 fun
tionproperly or not.� If both C2 and C3 are faulty then C2 is repla
ed by a new 
ompo-nent C20; and 
onditional on this event, whether C20 fun
tions properlyor not is independent of whether C1 fun
tions properly or not. As C20is a new 
omponent the probability of it being faulty is less than thatof C2 being faulty.� If C2 is not faulty but C3 is, then C1 is repla
ed by a new 
ompo-nent C10. As C10 is a new 
omponent the probability of it being faultyis less than that of C1 being faulty.This information is summarised in Table 1 and in the 
oloured tree in Fig-ure 1. The verti
es v1 & v2 are in the same stage (indi
ated by the 
olouring oftheir outgoing edges) sin
e whether C2 fun
tions properly or not is indepen-dent of whether C1 does so. The verti
es v4; v5 & v6 are in the same stagesin
e they represent C3 swit
hing on automati
ally given di�erent C1; C2fault histories, and whether C3 fun
tions properly or not is independent ofwhether C1 and C2 fun
tion properly or not. The verti
es v4 & v6 are in the5
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Table 1: Context for Example 1Des
riptor EdgesC1 fun
tioning properly e(v0; v1)C1 faulty e(v0; v2)C2 fun
tioning properly e(v1; v3); e(v2; v5)C2 faulty e(v1; v4); e(v2; v6)C3 on & fun
tioning properly e(v4; v7); e(v5; v9); e(v6; v11)C3 on & faulty e(v4; v8); e(v5; v10); e(v6; v12)C2 repla
ed by C20, C20 fun
tioning properly e(v8; v13); e(v12; v17)C2 repla
ed by C20, C20 faulty e(v8; v14); e(v12; v18)C1 repla
ed by C10, C10 fun
tioning properly e(v10; v15)C1 repla
ed by C10, C10 faulty e(v10; v16)same position (sin
e they root isomorphi
 
oloured subtrees). The verti
esv8 & v12 are in the same stage and the same position.The CEG in Figure 2 illustrates the ideas of De�nition 2. The verti
esv4 & v6 from the tree have been merged into one position w4 representingC2 faulty. The positions w1 & w2 are in the same stage (indi
ated by the
olouring of the nodes) sin
e whether or not C2 fun
tions properly is inde-pendent of whether or not C1 fun
tions properly. The positions w3 & w4 arein the same stage as they represent C3 swit
hing on given C1 faulty and C2either fun
tioning properly or not.The following notation will be used throughout the remainder of the pa-per. Re
all that an atom � is a w0 ! w1 path in C. The set of atomsis denoted 
. We write w � w0 when the position w pre
edes the posi-tion w0 on a w0 ! w1 path. We 
all w a parent of w0 if there exists an edgee(w;w0) 2 E(C).Events are denoted �. �(w) is the event whi
h is the union of allw0 ! w1paths passing through the positionw, and �(e(w;w0)) is the union of all pathspassing through the edge e(w;w0).We 
an now de�ne the primitive probabilities of the CEG: �e(w0 j w) is theprobability of the edge e(w;w0); and for ea
h u 2 L(C) and random variableX(u) we let �(u) � f�e(w0 j w) j w 2 ugand �(C) � f�(u)gu2L(C)6
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Figure 2: Chain Event Graph for Example 1Note that if we label the probability of the event � by �(�) then �e(w0 j w) ��(�(e(w;w0)) j �(w)).A subpath of a root-to-sink path is denoted �(w;w00), where w and w00indi
ate the start and end positions of the subpath. �(�(w;w00)) is the eventwhi
h is the union of all paths utilising the subpath �(w;w00). ��(w00 j w) ��(�(�(w;w00)) j �(w)) is the probability of the subpath �(w;w00).Before moving on to manipulated CEGs we present a very useful Lemma,proofs of whi
h appear in [19℄ and [20℄.Lemma 1. For a CEG C and positions w1; w2; w3 2 V (C) su
h thatw1 � w2 � w3 �(�(w3) j �(w1);�(w2)) = �(�(w3) j �(w2))The result 
an be extended so that the positions w1 & w2 
an ea
h berepla
ed by edges, and the position w3 
an be repla
ed by a 
olle
tion ofpositions and/or edges.Essentially this tells us that being at a position (w3) or edge (or 
olle
tionof positions or edges), given that we have been at an earlier position (w2) oredge, is independent of the path taken to that position or edge. This resultis used in the proof of Theorem 1. 7
CRiSM Paper No. 11-16, www.warwick.ac.uk/go/crism



2.1. Manipulated CEGsAnything that we observe about a system or do to a system will 
hange thetopology of a graphi
al representation of that system. In [21℄ we 
onsideredhow the topology of a CEG is altered when we observe an event �. Herewe investigate how the topology of a CEG is altered when we manipulateto an event �. As the following de�nitions suggest, the pro
ess of updatingour beliefs following a manipulation is very similar to that whi
h happensfollowing the observation of an event. Note that the use of trees in 
ausalanalysis has a respe
table history, featuring in for example [13, 15, 18℄.For the purposes of this paper we assume that the CEG is valid (in that itsatis�es the 
onditions of [22℄ De�nition 3) for any manipulation we 
hooseto make. A detailed dis
ussion of what makes a CEG valid for a 
ausalmanipulation 
an be found in [22℄ Se
tions 3.1 and 3.2.The type of events we 
onsider in this paper are intrinsi
 events [19, 20℄(
alled C-
ompatible events in [21℄). An intrinsi
 event � is one where everyatom of � is a w0 ! w1 path of a subgraph of C, and every w0 ! w1 pathin this subgraph is an atom of �.De�nition 3. (Manipulated CEG) For a CEG C(V;E) and intrinsi
 event �,let Ĉ� (the CEG manipulated to the event �) be the subgraph of C with(a) V (Ĉ�) � V (C) 
ontains pre
isely those positions whi
h lie on aw0 ! w1 path � 2 �(b) E(Ĉ�) � E(C) 
ontains pre
isely those edges whi
h lie on a w0 ! w1path � 2 �(
) For w1; w2 2 V (Ĉ�), and e(w1; w2) 2 E(Ĉ�), the edge e(w1; w2) hasprobability uniquely assigned by the de�nition of the manipulation to �(by say De�nition 6 or [22℄ De�nition 3)(d) If w1; w2 2 V (Ĉ�) are in the same stage in Ĉ� then these positions andtheir emanating edges are 
oloured in Ĉ�.Probabilities in Ĉ� are denoted �̂�. For 
ompleteness we also de�ne a
onditioned CEG (see also [21℄).De�nition 4. (Conditioned CEG) For a CEG C(V;E) and intrinsi
 event �,let C� (the CEG 
onditioned on the event �) be the subgraph of C with V (C�);E(C�) de�ned and 
oloured analogously with V (Ĉ�); E(Ĉ�) in De�nition 3,and 8
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(
) For w1; w2 2 V (C�), and e(w1; w2) 2 E(C�), the edge e(w1; w2) hasprobability ��e (w2 j w1) = P�2� �(�;�(e(w1; w2)))P�2� �(�;�(w1))where �� indi
ates a probability in C� and � a probability in C.3. The Ba
k Door theoremPearl's [8, 9℄ Ba
k Door theorem for BNs provides a 
ondensed versionof the full manipulated probability expression. So when a manipulation isimpossible or unethi
al in pra
ti
e, or its e�e
ts diÆ
ult or impossible toobserve, an analyst may still be able to estimate the probabilities of thetheoreti
ally possible e�e
ts of this manipulation.Sin
e 1995 there has been 
onsiderable e�ort put in to �nding 
onditionsfor 
ausal identi�ability on BNs [3, 10, 11, 23, 24℄ { that is 
onditions forwhen the e�e
ts of a manipulation 
an be estimated from a subset of variablesobserved in the idle system. CEG-based 
ausal theory is unsurprisingly not sofar advan
ed. The Ba
k Door theorem for CEGs introdu
ed in [22℄ is howeveralready more 
exible than its 
ounterpart for BNs, as we demonstrate here.Pearl's Ba
k Door theorem for BNs states that under 
ertain 
onditionson sets of variables X; Y; Z, we 
an (using the notation of [6℄) write theprobability of observing Y = y following a manipulation of X to x asp(y jj x) =Xz p(y j x; z) p(z)As already implied, this expression requires the analyst to observe only theidle (or unmanipulated) system and 
ondition on these observations. By
areful 
hoi
e of the set Z we may be able to 
al
ulate or estimate p(y jj x)without 
onditioning on the full set of measurement variables.One rather useful aspe
t of the theorem is that the 
onditions 
an beexpressed graphi
ally (that is, on the BN of the problem).The Ba
k Door theorem for CEGs introdu
ed in [22℄ is valid for a larger
olle
tion of types of manipulation than are possible with a BN, and sin
e itrefers to manipulation to events rather than of variables, it is more 
onsistentwith our experien
e of what a manipulation a
tually involves. As with the BNversion of the theorem, we redu
e the 
omplexity of the general manipulatedprobability expression, as well as redu
ing or avoiding identi�ability problemsasso
iated with it. 9
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So 
onsider a manipulation to the event �x. Suppose we wish to �nd theprobability of (observing) an event �y given that the manipulation to �x hasbeen ena
ted { that is we wish to produ
e an expression for �(�y jj �x). Thisis equal to the probability of the event �y on the CEG Ĉ�x, whi
h is the sumof the probabilities of the w0 ! w1 paths in Ĉ�x whi
h are 
onsistent withthe event �y: �(�y jj �x) = �̂�x(�y)Note also that �(�y j �x) = ��x(�y).Consider a partition of the atomi
 events (w0 ! w1 paths in C) f�zg. Then�̂�x(�y) = �̂�x�[z �z;�y� =Xz �̂�x(�z;�y)sin
e the events f�zg form a partition of 
=Xz �̂�x(�y j �z) �̂�x(�z)De�nition 5. (Ba
k Door partition) The partition f�zg forms a Ba
kDoor partition of 
 if(A) �̂�x(�y j �z) = �(�y j �x;�z) � = ��x(�y j �z) �(B) �̂�x(�z) = �(�z) for all �z 2 f�zgIf these 
onditions are satis�ed then�(�y jj �x) = �̂�x(�y) =Xz �(�y j �x;�z) �(�z)The sets of variables Z in the BN-based Ba
k and Front Door theorems are
alled blo
king sets be
ause they blo
k 
ertain paths between X and Y in theBN. In a mu
h less transparent way Z also blo
ks the e�e
t on Y of otherproblem variables so that the manipulated probability expression p(y jj x)
an be 
ondensed. The Ba
k Door theorem for CEGs works in an altogetherless mysterious way. The blo
king set be
omes a partition of the w0 ! w1paths of the CEG into sets f�zg whi
h allow us to repla
e probabilitiesevaluated on the manipulated graph by ones evaluated on the idle CEG. Aswith the BN version, if we 
hoose f�zg 
arefully, we 
an 
al
ulate or estimate�(�y jj �x) from a partially observed idle system.10
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3.1. Singular manipulationsDe�nition 6. (Singular manipulation) A manipulation to � of a CEG Cis 
alled singular if there exist sets W � V (C), E� � E(C) su
h that(i) the elements of W partition 
 (ie. every w0 ! w1 path in C passesthrough pre
isely one w 2 W ),(ii) for ea
h w 2 W , there exists pre
isely one emanating edge e(w;w0)whi
h is an element of E�,(iii) � is the union of pre
isely those w0 ! w1 paths that pass through somee(w;w0) 2 E�,(iv) all edge probabilities in Ĉ� are equal to the 
orresponding edge proba-bilities in C, ex
ept that �̂�e (w0 j w) = 1 for w 2 W , e(w;w0) 2 E�.Essentially, a singular manipulation is one where every w0 ! w1 pathpasses through one of a 
olle
tion of positions, and the manipulation imposesa probability of 1 on one edge emanating from ea
h of these positions.All Do X = x and fun
tional manipulations (but not all sto
hasti
 ma-nipulations) of BNs are singular manipulations, but the set of singular ma-nipulations is mu
h larger than this.Note that if the manipulation to an event � is singular then edge proba-bilities in Ĉ� upstream and downstream of the manipulation remain as in theidle CEG C. If we were to 
ondition on this event �, then edge-probabilitiesin C� downstream of the observation would remain as in the idle CEG, butedge-probabilities upstream would 
hange in a

ordan
e with De�nition 4 (
).3.2. A Ba
k Door theorem for singular manipulationsAs we also 
onsider e�e
t events (�y) and 
onditioning sets (�z), wedistinguish our manipulation event � by adding a suÆx to give �x. We alsorelabel the set W as WX , the positions within WX as wX , and the edges ofDefn. 6 (ii) as e(wX ; w0X).As the set of positions in W partitions 
, we 
an 
onsider a random vari-able X, de�ned on 
, whi
h takes values labelled by the emanating edgesof wX (for ea
h wX) with probabilities dependent on the history of the prob-lem up to that position wX . 11
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The manipulation to �x assigns a probability of 1 to one of the values ofXat ea
h wX , dependent on the history of the problem up to that position wX(ie. a fun
tional manipulation). So �x is of the form�x � [wX2WX �(e(wX ; w0X))We de�ne an e�e
t variable Y in exa
tly the same way as we have de-�ned X. So we have a set of positions WY (downstream of the set WX)whi
h partitions 
 (ie. every w0 ! w1 path in C passes through one of thepositions in WY ). Then �y 
onsists of all paths that passing through somewY 2 WY , utilise some prespe
i�ed edge emanating from that wY . So�y � [wY 2WY �(e(wY ; w0Y ))If we look at the 
onditions for Pearl's Ba
k Door theorem on BNs, wesee that both 
onditions 
an be re-expressed as 
onditional independen
estatements (see for example [2℄). Pearl's 
ondition that Z (the Ba
k Doorblo
king set) must blo
k all Ba
k Door paths from X to Y 
an be expressedas Y qQ(X) j (X;Z)where Q(X) indi
ates the variable parents of X. Pearl's 
ondition that Zmust 
ontain no des
endents of X 
an be expressed asZ qX j Q(X)Note that we are here ignoring the possibility that Z � Q(X). We return tothis 
ase in se
tion 3.4.We have already repla
ed X = x by �x, and Y = y by �y. We nowrepla
e Z = z by �z, and noting that positions store the relevant history ofa problem upto that point, Q(X) = q(x) by �(wX).Substituting into Z qX j Q(X) we get�(�z j �(wX(1))) = �(�z j �(wX(1));�x)= �(�z j �(wX(1)); [wX2WX �(e(wX; w0X)))= �(�z j �(e(wX(1); w0X(1)))) (3:1)12
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Substituting into Y qQ(X) j (X;Z) we get�(�y j �x;�z) = �(�y j �(wX(1));�x;�z)= �(�y j �(wX(1)); [wX2WX �(e(wX ; w0X));�z)= �(�y j �(e(wX(1); w0X(1)));�z) (3:2)and �(�y j �(e(wX(1); w0X(1)));�z) = �(�y j �(e(wX(2); w0X(2)));�z)Theorem 1. (Ba
k Door theorem) With WX ; WY ; �x; �y de�ned asabove, and f�zg a partition of the atomi
 events, then f�zg is a Ba
kDoor partition if 
onditions (3.1) and (3.2) hold for all elements of f�zg,wX 2 WX.A proof of this theorem appears in the appendix.Note that these 
onditions are on the graph C. They 
an therefore, likePearl's 
onditions, be 
he
ked on an unmanipulated graph (a representationof the idle system).3.3. Che
king the 
onditions for the Ba
k Door theoremPearl's 
onditions for his Ba
k Door theorem 
an be 
he
ked dire
tly onthe topology of the BN. For the CEG 
ondition (3.1) requires that for ea
helement �z of the Ba
k Door partition (whi
h 
ould be of the form �(w),�(e), a union of su
h events, or some totally di�erent type of event), andea
h position wX 2 WX , the probability of �z 
onditioned on �(wX) is thesame as that of �z 
onditioned on the event �(e(wX ; w0X)) where e(wX ; w0X)is the singular edge emanating from wX whi
h remains in the manipulatedgraph. It is however not immediately apparent how to 
he
k 
ondition (3.2)as simply.Clearly the exa
t nature of f�zg is something that we 
an 
ontrol. Assuggested above we 
an 
hoose sets of w0 ! w1 paths to belong to anyindividual element �z in many di�erent ways. In [22℄ we let our blo
kingset 
onsist of events asso
iated with positions upstream of the manipulation.As is the 
ase with BNs, blo
king sets 
annot be asso
iated with variablesthat are des
endants of the manipulated variable(s), but they don't need tobe an
estors. So CEG blo
king sets 
an also be 
reated using positions (or13
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edges) downstream of the manipulation. Indeed, if the events whi
h we wishto 
ondition on 
orrespond to values of a variable whi
h has not been observedat the time of the manipulation, and if our CEG has been 
onstru
ted inan extensive form order then our blo
king set must use positions or edgesdownstream of the manipulation. In this paper we o�er a generalisation ofthe Ba
k Door theorem of [22℄, but do not intend to dupli
ate the resultstherein. We therefore 
on
entrate in this se
tion on blo
king sets downstreamof the manipulation. Between the two papers we 
over all possible lo
ationsfor blo
king sets of this form.For the remainder of Se
tion 3 we use partitions where ea
h �z is anevent asso
iated with a 
olle
tion of positions. Repli
ating this work forevents asso
iated with edges is straightforward. So we let ea
h �z be a unionof smaller events of the form �(wiz) for some set of positions fwizg, where thisset is a subset of Wz, whi
h is in turn a set of positions downstream of WXand upstream of WY , partitioning 
. We 
an of 
ourse make the partitions
oarser or �ner as we see �t.So a typi
al element of f�zg will be of the form�z = [i2A�(wiz)for some set A; wiz 2 Wz.The pro
ess we des
ribe may appear 
ompli
ated, but as illustrated inExample 2 it is in fa
t 
omparatively straightforward.As both f�zg and Wz are partitions of 
, we 
an spe
ify that�(wiz) \ �(wjz) = �for i; j 2 A[B[� � �[N , where N is the number of elements we have spe
i�edfor f�zg.Now, whereas all elements of Wz exist in C, not all will exist in Ĉ�x. Aswe have 
ontrol over the nature and 
oarseness of our partition, we 
an letN equal the number of elements of Wz whi
h exist in Ĉ�x, and 
onstru
tea
h �z so that it 
ontains only one wz whi
h exists in Ĉ�x. For ea
h �z,
all this position w1z . So, however many positions fwizg 
orrespond to ea
helement of f�zg, there will be only N positions fw1zg that exist in Ĉ�x.The 
omplete set Wz = fwizgi2A[���[N partitions 
. So�(�y j �(e(wX(1); w0X(1)));�z) = �(�y j �(e(wX(1); w0X(1)));�(w0X(1));�z)14
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sin
e �(e(wX(1); w0X(1))) � �(w0X(1)) in C= �(�z;�y j �(e(wX(1); w0X(1)));�(w0X(1)))�(�z j �(e(wX(1); w0X(1)));�(w0X(1)))= �(�z;�y j �(w0X(1)))�(�z j �(w0X(1)))using the forms spe
i�ed for �z; �y; Wz and WY being downstream of WX ;and the result of Lemma 1. Hen
e�(�y j �(e(wX(1); w0X(1)));�z) = �(�y j �(w0X(1));�z) (3:3)But any path-segment in C starting at w0X(1) remains in Ĉ�x, and we knowthat fwizgi�2 do not exist in Ĉ�x, so there are no path-segments joining w0X(1)to wiz (for i � 2) in Ĉ�x, and hen
e no path-segments joining w0X(1) to wiz(for i � 2) in C. Therefore�(w0X(1)) \ �(wiz) = � for i � 2and �(w0X(1)) \ �z = �(w0X(1)) \ �(w1z)so expression (3.3) be
omes�(�y j �(e(wX(1); w0X(1)));�z) = �(�y j �(w0X(1));�(w1z))= �(�y j �(w1z))using the form spe
i�ed for �y; the fa
t that Wz is downstream of WX ; andthe result of Lemma 1. Hen
e�(�y j �(e(wX(1); w0X(1)));�z) = �(�y j �(e(wX(2); w0X(2)));�z)as required for 
ondition (3.2).So if we 
hoose ea
h �z to be of the form des
ribed above, where forea
h �z only w1z exists in Ĉ�x, then this is suÆ
ient for 
ondition (3.2) to besatis�ed. We now have two 
onditions whi
h 
an be 
he
ked simply on thetopology of the idle CEG. 15
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Figure 3: BN and CEG C for Example 2Example 2. Using the Ba
k Door theoremWe illustrate the use of our Ba
k Door theorem through a medi
al exam-ple. As with Example 1 we use binary variables for illustrative 
onvenien
e.Our interest is in a 
ondition whi
h 
an manifest itself in one of two forms(C = 1 or 2). Individuals who will as adults develop the 
ondition (in eitherof its forms) display either symptom SA before the age of ten, or SB in theirlate teens, or both. Whether or not an individual displays SA is labelled bya variable A, and whether or not they display SB by a variable B. In both
ases the variable takes the value 1 if the symptom is displayed, and thevalue 0 if it is not. There is a treatment T available whi
h has some eÆ
ia
yif given in an individual's early teens. Being treated is labelled X = 1, andnot treated X = 0. Dying before the age of �fty is labelled Y = 1, and dyingat �fty or older Y = 2.The relationships between the variables A;X;B;C and Y are des
ribedbelow, and are portrayed by the CEG in Figure 3, where for 
onvenien
eedges are labelled a0 for A = 0 et
.Symptom SA is often missed by do
tors, but if it is dete
ted an individ-ual is more likely to be given treatment T . We therefore do not know the16
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distributions of A; X j A = 0 or X j A = 1. We do know however thatX /q A.Eviden
e from previous studies indi
ates that� whether or not an individual displays symptom SB depends only onwhether or not they displayed symptom SA (B qX j A),� displaying either symptom means that an individual will develop the
ondition in one of its two forms,� for individuals displaying SA but not SB, developing the 
onditionin form 1 does not depend on whether or not they had treatment T(C q X j A = 1; B = 0). Also, how long they live depends only onwhi
h form of the 
ondition they develop (Y qX j A = 1; B = 0; C),� for individuals displaying SB, developing the 
ondition in form 1 doesnot depend on whether or not they displayed SA, irrespe
tive of whetherthey were treated or not (C q A j X;B = 1). Also, how long they livedepends on whether or not they were treated and on whi
h form of the
ondition they develop (Y q A j X;B = 1; C).If we were to attempt to portray the problem via a BN it would looklike the one in Figure 3. Without 
onsiderable annotation the BN 
annotexpress the 
ontext-spe
i�
 
onditional independen
e stru
ture illustrated bythe CEG.We are interested in the e�e
ts on life expe
tan
y (the variable Y ) if wewere to treat everybody in the population in their early teens. So we 
onsiderthe singular manipulation to �x equivalent to Do X = 1, and 
al
ulate theprobability �(�y jj �x) � P (Y = 1 jj X = 1). The CEG satis�es the
onditions that every path passes through a position from WX = fw1; w2gand a position fromWY = fw8; w11; w12; : : : w16g. Also, every position inWXhas an outgoing edge labelled x1 (X = 1), and every position in WY has anoutgoing edge labelled y1 (Y = 1).Clearly A is a required variable in any Ba
k Door blo
king set Z basedon the BN representation of the problem. But from above we do not knowthe distribution of A or of any joint distribution involving A. Can we useour Ba
k Door theorem for CEGs to �nd an identi�able expression not in-volving A? 17
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Figure 4: Manipulated CEG Ĉ�x for Example 2In these situations we generally have a lot of 
exibility in determining ourblo
king set (Z), and some experimentation may be needed before we �ndthe ideal allo
ation. Here we are 
onsidering �z of the form S�(w). The
hoi
e of positions will depend on what we 
an observe, and may be heavilyin
uen
ed by observation 
osts. Note that the 
onne
tion between these
onstraints and our 
hoi
e of positions 
an be very subtle { in this examplewe 
learly 
annot estimate P (A = 1; B = 0; C = 1), but we 
an still in
ludethe position w11 in our blo
king set. Here we simply imagine that these
onstraints and our experimentation have produ
ed a blo
king set of positionsWz, lying between WX and WY , 
omprising fw8; w9; w11; w12; w15; w16g. TheCEG Ĉ�x is given in Figure 4.Here fe(wX ; w0X)g = fe(w1; w3); e(w2; w5)g, and we 
ombine our fwzg toprodu
e f�zg as followsf�(w8);�(w11);�(w12); [�(w9) [ �(w15) [ �(w16)℄gNote that (i) f�zg forms a partition of 
, (ii) ea
h �z is of the form S�(w),and (iii) three of the �z are singleton �(wz) where wz appears in Ĉ�x, andthe fourth �z is the union of three �(wz) only one of whi
h wz is present18
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in Ĉ�x. So 
ondition (3.2) is satis�ed.It is straightforward to show that our f�zg satisfy 
ondition (3.1). Usingthe CEG C we get, for wX = w1 that�(�(w11) j �(w1)) = [p(x1 j a1) + p(x0 j a1)℄ p(b0 j a1) p(
1 j a1b0)= p(b0
1 j a1)�(�(w11) j �(e(w1; w3))) = p(b0 j a1) p(
1 j a1b0) = p(b0
1 j a1)and similarly for the expression involving w12.The position w8 is not downstream of w1.�(�(w9) [ �(w15) [ �(w16) j �(w1)) = p(x1 j a1) p(b1 j a1)+ p(x0 j a1) p(b1 j a1) p(
1 j x0b1)+ p(x0 j a1) p(b1 j a1) p(
2 j x0b1)= p(b1 j a1)�(�(w9) [ �(w15) [ �(w16) j �(e(w1; w3))) = �(�(w9) j �(e(w1; w3)))= p(b1 j a1)A similar pro
edure for wX = w2 
on�rms that f�zg satisfy 
ondi-tion (3.1), and so that f�zg is a Ba
k Door partition of 
. Our manipulatedprobability expressionp(y1 jj x1) = �(�y jj �x) = �̂�x(�y) =Xz �(�y j �x;�z) �(�z)is evaluated on C, and simpli�es top(b0) p(y1 j b0) + p(b1) p(y1 j x1b1)So we need only know the distribution of B (the in
iden
e of symptom SB),and the 
onditional distributions of Y (life expe
tan
y) on the events B = 0(SB not displayed) and X = 1; B = 1 (treated and SB displayed). Thisexpression does not involve A (the in
iden
e of SA), and interestingly neitherdoes it involve C (whi
h form the 
ondition takes). It does however involve B,whi
h would be impossible if we used the BN from Figure 3 for this model,as B does not blo
k all Ba
k Door paths from X to Y .To summarise, the pro
edure is� Produ
e f�zg as pres
ribed above, and 
he
k that it satis�es our Ba
kDoor 
ondition (3.1). 19
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� Substitute probabilities from C into our Ba
k Door expression and sim-plify.This example gives an insight into how to 
hoose the 
omponent �z of ourpartition. If we 
an �nd wz su
h that �(wz) satis�es�(�(wz) j �(e(wX ; w0X))) = �(�(wz) j �(wX)) 8 wX 2 WXthen we 
an make �(wz) a �z.Other �z are produ
ed by 
ombining one position wz that exists in Ĉ�xwith other positions fwzg that disappear when we 
reate Ĉ�x, in su
h away that the union of their asso
iated events satis�es the Ba
k Door 
ondi-tion (3.1) for all wX 2 WX .3.4. Using WX to 
reate a blo
king setBlo
king sets using positions upstream of the set WX were 
onsideredin [22℄. Here we look at using the set WX itself to 
reate our blo
king set.This has a dire
t analogy with analysis on BNs, where it is always possible torepla
e Pearl's set Z by the set Q(X) to give a revised Ba
k Door expressionp(y jj x) =Xq(x) p(y j x; q(x)) p(q(x))This blo
king set Z = Q(X) is not derived from the 
onditions ZqX j Q(X)and Y qQ(X) j (X;Z), and similarly our Ba
k Door partition f�zg here isnot derived from 
onditions (3.1) and (3.2). Re
alling the analogy betweenQ(X) = q(x) for BNs and �(wX) for CEGs suggests we look at a parti-tion f�zg where ea
h �z is of the form�z = [i2A�(wX(i))for some set A, where �(wX) for ea
h wX 2 WX is an element of some �z.The analogy between Q(X) = q(x) for BNs and �(wX) for CEGs is notperfe
t. It is shown in [22℄ that a better analogy for parents in a BN is a setof stages, rather than positions. So here we make a further stipulation aboutthe sets fwX(i)gi2A, and state that ea
h �z is of the form�z = [wX2uX �(wX) = �(uX)20
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for some uX , where ea
h uX is a stage, and the set fuXg form a partitionof 
. We also require that for ea
h wX 2 uX , the edges e(wX ; w0X) 
arry thesame label. These labels 
an di�er for di�erent stages.This is not a
tually an onerous restri
tion, as the set of manipulations we
an 
onsider 
learly still 
ontains all basi
 Do interventions on BNs and allfun
tional Do interventions where the argument of the fun
tion is (a subsetof) the parent set of the manipulated variable. In fa
t we 
an argue thatthis set 
ontains all fun
tional Do interventions of a BN: If a manipulationis fun
tional in that the value we manipulate X to depends on the valuetaken by another variable W , then essentially we have a de
ision problemand the BN representation of the system be
omes an In
uen
e Diagram (ID)representation with X as a de
ision node. Clearly the value of W must beknown before X is manipulated, so in this ID representation there must bean edge fromW toX (see for example [17℄) and soW is a parent ofX. Hen
ewe argue that for all fun
tional Do interventions on BNs the argument ofthe fun
tion is (a subset of) the parent set of the manipulated variable.In order to demonstrate that the set f�zg is a Ba
k Door partition weneed the result of the following Lemma, a proof of whi
h appears in [19℄.Lemma 2. For a CEG C, wX 2 V (C); wX 2 uX 2 L(C), and �x de�ned asin se
tion 3.2 �(�x j �(wX)) = �(�x j �(uX))This seemingly inno
uous result tells us that the probability of leaving astage by an edge 
arrying a parti
ular label is the same as that of leavingany of its 
omponent positions by an edge 
arrying this label.The equality holds if the edges e(wX ; w0X) label the same value of Xfor ea
h wX 2 uX . This is the 
ase for all basi
 Do interventions and allfun
tional Do interventions as des
ribed above.

21
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Using the proof of Theorem 1 (in the appendix) we 
an write�̂�x(�y) = XwX2WX �(�(wX)) �(�y j �(e(wX ; w0X)))= XwX2WX �(�(wX)) �(�y j �(wX);�x)=XuX XwX2uX �(�(wX)) �(�y j �(wX);�x)=XuX XwX2uX "�(�(wX);�x;�y)�(�x j �(wX)) #=XuX "PwX2uX �(�(wX);�x;�y)�(�x j �(uX)) # =XuX "�(�(uX);�x;�y)�(�x j �(uX)) #=XuX �(�y j �(uX);�x) �(�(uX))So we 
an use the set WX to 
reate a blo
king set if we insist that ea
h �z is�(uX) for some stage uX , and that the edges e(wX ; w0X) label the same valueof X for ea
h wX in any uX .Our Ba
k Door theorem for CEGs makes 
ausal analysis with them more
exible than with BNs. Firstly they are ideal for the analysis of asymmetri

ontrolled models su
h as treatment regimes. Se
ondly we 
an analyse thee�e
ts of asymmetri
 manipulations, a task whi
h is not ne
essarily straight-forward on a BN, parti
ularly if both the manipulated variable and the valuethis variable takes are dependent on the values of other variables. Thesefun
tional manipulations often require the addition of edges to BN repre-sentations whi
h 
an 
ause diÆ
ulties for an analyst trying to �nd suitableblo
king sets.Lastly we 
an use asymmetri
 blo
king sets with CEGs. Re
all thata good Ba
k Door expression allows the analyst to estimate probabilitiesof e�e
ts from a partially observed system, so this 
exibility in our 
hoi
eof partition set is very useful when some of the events in the system areunobservable or have large observational 
osts. Standard 
ausal analysiswith BNs requires one to be able to 
al
ulate or estimate p(z) and p(y j x; z)for all values z of the blo
king set of variables Z. This is not ne
essary withCEGs { our blo
king sets do not need to 
orrespond to any �xed subsetof the measurement random variables that de�ne a BN. We have also seen22
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that we 
an use the CEG version of the Ba
k Door theorem in 
ases whereit would be impossible to use the BN version, as the model does not obeythe 
onditions spe
i�ed by Pearl. Note that it would not be at all diÆ
ultfor us to 
reate a Ba
k Door partition whi
h for example 
onsisted of somepositions fwzg downstream of the manipulation together with some stagesfuXg 
oin
ident with the manipulation.4. A Front Door theorem for CEGsPearl's Front Door theorem [8, 9℄ 
an be used in 
ases where the Ba
kDoor theorem 
onditions do not hold or where the events needing to beobserved for the Ba
k Door theorem have too large an observational 
ost.Like the Ba
k Door theorem, the Front Door theorem allows one to redu
ethe 
omplexity of the general manipulated probability expression used withBNs, and 
an allow one to sidestep identi�ability problems asso
iated withit. Pearl's Front Door theorem states that under 
ertain 
onditions on setsof variables X; Y; Z, we 
an writep(y jj x) =Xz p(z j x) Xx0 p(y j x0; z) p(x0)an expression whose value 
an be estimated from a partially observed idlesystem.The expression for the Front Door theorem is more 
omplex than that forthe Ba
k Door theorem, and this imposes greater restri
tions on the types ofmanipulation we 
an 
onsider and also initially on the nature of our blo
kingsets. So we 
on�ne ourselves here to singular manipulations and note thatas our initial expression will be dire
tly analogous to that for BNs, we willneed to sum over some variable 
orresponding to Pearl's X. Hen
e we needto produ
e a partition of 
, of whi
h �x is one element. Realisti
ally thismeans 
on�ning ourselves to start with to manipulations dire
tly analogousto Pearl's Do X = x (for some 
riterion variable X), and 
onsider positionsfwXg whi
h ea
h have the same number of emanating edges and where theseedges 
arry the same labels for ea
h wX (ie. ea
h wX has an emanating edgelabelled xj for j in some set J).Note that even for fairly regular problems depi
table by BNs there may behistories or parental 
on�gurations of a variable X for whi
h the probability23
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of a parti
ular out
ome is zero. Although normally we do not draw zero-probability edges in a CEG, in this 
ase it is advisable to do so, if only forthe edges emanating from those positions asso
iated with the variable X.In se
tion 4.2 we see that we 
an relax these 
onditions 
onsiderably,and that there is a version of the Front Door theorem for CEGs whi
h issigni�
antly more 
exible than Pearl's Front Door theorem for BNs.Pearl quotes three 
onditions for using the Front Door theorem, but these
an a
tually be redu
ed to two 
onditional independen
e 
onditionsY qX j (Z;Q(X)) and Z qQ(X) j XUsing the same approa
h as for the Ba
k Door theorem, we 
an suggestappropriate CEG versions of these 
onditions. We de�ne �x and �y as inse
tion 3. We let f�zg be a partition of 
 and at present impose no furtherresti
tions on the form of �z (as for example is done in se
tion 3.3). Thenwe partition 
 as f�ixgi2I = f [wX2WX �(e(wX ; wiX))gi2Iwhere the edge e(wX ; wiX) is the edge leaving wX labelled xi.Substituting into the two 
onditional independen
e 
onditions we get thefollowing�(�y j �(wX(1));�z) = �(�y j �(wX(1));�ix;�z)= �(�y j �(wX(1)); [wX2WX �(e(wX ; wiX));�z)= �(�y j �(e(wX(1); wiX(1)));�z) (4:1)and �(�y j �(wX(1));�ix;�z) = �(�y j �(wX(1));�jx;�z)for any i; j 2 I. Also�(�z j �ix) = �(�z j �(wX(1));�ix)= �(�z j �(wX(1)); [wX2WX �(e(wX ; wiX)))= �(�z j �(e(wX(1); wiX(1)))) (4:2)and �(�z j �(wX(1));�ix) = �(�z j �(wX(2));�ix)for any wX(1); wX(2) 2 WX and any i 2 I.24
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Figure 5: BN and CEG C for Example 34.1. A Front Door theorem for singular manipulationsTheorem 2. (Front Door theorem) If f�xg is de�ned as above, �y isde�ned as in se
tion 3, and f�zg is a partition of the w0 ! w1 paths in Cwhi
h satis�es 
onditions (4.1) and (4.2) above, then f�zg is a Front Doorpartition, and̂��x(�y) =Xz �(�z j �x)Xi �(�y j �ix;�z) �(�ix)A proof of this theorem is in the appendix.Note that unlike Pearl's Front Door theorem for BNs, Theorem 2 doesnot require the blo
king set f�zg to lie downstream of the manipulation.This is 
learly very useful.Example 3. Using the Front Door theoremWe here 
onsider the example from [9℄ se
tion 3.3.3, but without referen
eto Pearl's hypotheti
al data. This example relates to the debate 
on
erningthe relationship between smoking and lung 
an
er summarised in [18℄.In Pearl's example the verti
es of the BN in Figure 5 
orrespond to binaryvariables as follows: 25
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Figure 6: Manipulated CEG Ĉ�x for Example 3X = 1: smoker, X = 0: non-smoker,Y = 1: lung 
an
er, Y = 0: no lung 
an
er,B = 1: tar in lungs, B = 0: no tar in lungs.The variable A is asso
iated with an unobservable geneti
 tenden
y, thepresen
e of whi
h (A = 1) in an individual e�e
ts both the probability thatthe individual smokes and that they get lung 
an
er. The variable B by
ontrast is observable. Pearl uses the BN to show that it is possible toestimate p(lung 
an
er jj smoker) from joint or 
onditional distributions ofthe variables X;B and Y even if there were to exist su
h an unobservablegeneti
 tenden
y.We demonstrate the use of the Front Door thorem for CEGs by repli-
ating this result. The unmanipulated CEG is given in Figure 5, where asbefore edges are labelled a0 for A = 0 et
. We 
onsider the manipulationto �x equivalent to Do X = 1 and use Theorem 2 to �nd an expression for�(�y jj �x) � P (Y = 1 jj X = 1). The manipulated CEG Ĉ�x is given inFigure 6.Note that if A was observable we 
ould use the Ba
k Door theorem forCEGs here with WX = fw1; w2g doubling up as the blo
king set (as in26
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se
tion 3.4), whi
h would be possible sin
e ea
h element of WX is a distin
tstage. Doing this we would getp(y1 jj x1) = �̂�x(�y) =XuX �(�y j �(uX);�x) �(�(uX))=Xa p(y1 j a; x1) p(a)For our Front Door theorem we have WX as above, f�ixg = f�1x;�2xg, where�1x (= x1) = �(e(w1; w3)) [ �(e(w2; w5))�2x (= x0) = �(e(w1; w4)) [ �(e(w2; w6))The event �y is expressible as SwY �(eu(wY ; w1)), where our fwY g arefw7; w8; w9; w10g, and eu(wY ; w1) is the (upper) edge from wY to w1 la-belled y1.We here use the 
exibility of CEG analysis to give ea
h �z a slightlydi�erent form from that used in Se
tion 3.3. We use a form similar to thatof �ix or �y, and let �1z =[wZ �(e(wZ; w1Z))where our fwZg are fw3; w4; w5; w6g, and the set fw1Zg 
onsists of w7 
orre-sponding to wZ = w3; w4, and w9 
orresponding to wZ = w5; w6.�2z is de�ned similarly, with fw2Zg 
onsisting of w8 
orresponding towZ = w3; w4, and w10 
orresponding to wZ = w5; w6.Using a similar pro
ess to that utilised in the previous example, we 
anuse the CEG C to 
he
k very qui
kly that our partitions satisfy 
onditions(4.1) and (4.2).Paths whi
h are elements of �(wX(1)) \ �ix \ �1z pass through w1 and w7for both i = 1; 2. The form of �y and the result of Lemma 1 then imply that�(�y j �(wX(1));�1x;�1z) = �(�y j �(wX(1));�2x;�1z)Similar results hold for �(wX(1));�2z; �(wX(2));�1z and �(wX(2));�2z; andhen
e (4.1) holds.The probability �(�1z j �(wX(1));�1x) is the probability �e(w7 j w3). Butthe positionsw3 and w5 are in the same stage, and �e(w7 j w3) = �e(w9 j w5) =�(�1z j �(wX(2));�1x). Similar results hold for �1z;�2x; �2z;�1x and �2z;�2x; andhen
e (4.2) holds. 27
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Conditions (4.1) and (4.2) having been satis�ed, we 
an substitute fromthe graph C into the expression from Theorem 2 to get the Front Door ex-pression for this example. Substituting �1x � x1; �2x � x0; �y � y1; �1z � b1and �2z � b0 into�̂�x(�y) =Xz �(�z j �1x)Xi �(�y j �ix;�z) �(�ix)we get p(y1 jj x1) =Xb p(b j x1)Xx p(y1 j x; b) p(x)So as Pearl found, the expression p(lung 
an
er jj smoker) 
an be esti-mated from joint or 
onditional distributions of the variables X (smoker),B (tar in lungs) and Y (lung 
an
er) only.4.2. A more 
exible form of the Front Door theoremAt the start of se
tion 4 we produ
ed a partition of 
 of whi
h �x wasone element, and noted that this meant 
on�ning ourselves to manipulationsdire
tly analogous to Pearl's Do X = x. This also required us to 
onsiderpositions fwXg whi
h had the same number of emanating edges and wherethese edges 
arried the same label for ea
h wX . In fa
t none of these re-stri
tions is ne
essary, as we show here. One straightforward proof of Pearl'sBa
k Door theorem pro
eeds as follows:p(y jj x) = Xq(x);z "p(q(x); x; z; y)p(x j q(x)) #= Xq(x);z p(q(x)) p(z j q(x); x) p(y j q(x); x; z) (4:3)and then uses the 
onditional independen
e statements Y q Q(X) j (X;Z)and ZqX j Q(X) to remove q(x) from (4.3) and leave the expression quotedat the start of Se
tion 3.Suppose instead we were to invoke the statements Y qX j (Q(X); Z) andZ qQ(X) j X when we rea
hed expression (4.3). This would yieldp(y jj x) =Xz p(z j x)Xq(x) p(y j q(x); z) p(q(x))28
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This expression does not require knowledge of any joint probability in
ludingvalues of x other than the one to whi
h we are manipulating. This leads tothe following Corollary.Corollary 1. If WX ; �x; �y are de�ned as in se
tion 3, and f�zg is apartition of the w0 ! w1 paths in C whi
h satis�es 
onditions (4.1) and(4.2), then f�zg is a Front Door partition, and�̂�x(�y) =Xz �(�z j �x) XwX2WX �(�y j �(wX);�z) �(�(wX))The proof of this 
orollary follows the proof of Theorem 2 until line (A.2).This version of the Front Door theorem has a number of advantages overthat given in Theorem 2, and over the Front Door theorem for BNs. Firstlywe need to 
al
ulate or estimate a smaller number of joint probabilities thanis the 
ase with Theorem 2 (or the BN version whi
h is an analogue ofTheorem 2). This latter version is also appropriate, like the Ba
k Doortheorem of se
tion 3.2, for the full range of singular manipulations, in
ludingboth the Do X = x and fun
tional manipulations of BNs.Note that like our Ba
k Door theorem, both versions of the Front Doortheorem for CEGs are suited for the analysis of asymmetri
 
ontrolled mod-els, and the Theorem 2 version allows us to use asymmetri
 blo
king sets.The advantages of being able to do this are detailed in se
tion 3.4. The Corol-lary 1 version allows us to analyse the e�e
ts of asymmetri
 manipulations,a task for whi
h the Front Door theorem for BNs is manifestly unsuited.5. Dis
ussionAs noted in the Introdu
tion, there have been a number of re
ent ad-van
es in BN theory whi
h 
on
entrate on the representation and analysis ofasymmetri
 problems, and on the analysis of 
ontrolled models. The CEG ispresented here as a 
omplementary graphi
al model, appropriate for analysisin both these areas.In this paper, the Ba
k Door theorem of [22℄ has been generalised, anda Front Door theorem introdu
ed. These theorems exhibit the 
exibility ofthe CEG framework. They 
an both be used with all singular manipulationsin
luding the basi
 Do X = x and fun
tional manipulations possible on BNs.The Front Door theorem allows blo
king sets whi
h, unlike Pearl's for BNs,do not need to lie downstream of the manipulation. We have also provided a29
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version of the Front Door theorem whi
h (again unlike the BN version) doesnot require us to sum over all values of a manipulated variable X.Causal CEG analysis is still in its infan
y. One potential dire
tion for fu-ture investigation is the CEG's 
exibility. So for example we have 
onsidereda partition f�zg whi
h is �xed in the sense that its membership is 
onstant.Causal analysis on CEGs would be
ome even more 
exible if we 
ould letthe membership of f�zg depend in some way on whi
hever wX 2 WX ourw0 ! w1 path passes through. Looking at our Ba
k Door theorem, theproblem here would be in interpreting and satisfying 
ondition (3.2), and itmight prove more sensible to return to the original 
onditions (A) and (B)of De�nition 5, rather than try to adapt 
onditions (3.1) and (3.2) to �t thissituation. It would also be useful to adapt our Ba
k and Front Door theoremsto produ
e workable versions for some of the non-singular manipulations ofthe type des
ribed in [22℄ se
tion 3.2.Longer term, we aim to repli
ate the work of [3, 11, 23, 24℄ for BNs in pro-du
ing ne
essary and suÆ
ient 
onditions for 
ausal identi�ability, expressedas fun
tions of the topology of the unmanipulated CEG.Appendix A.Proof of Theorem 1:�̂�x(�y) = XwX2WX �̂�x(�(wX);�y) = XwX2WX �̂�x(�(wX)) �̂�x(�y j �(wX))sin
e f�(wX)g form a partition of the atomi
 events= XwX2WX �(�(wX)) �̂�x(�y j �(wX))sin
e every wX lies upstream of our manipulation (De�nition 6 (iv))= XwX2WX �(�(wX)) �̂�x(�y j �(wX);�(w0X))sin
e �(wX) = �(e(wX ; w0X)) � �(w0X) in Ĉ�x= XwX2WX �(�(wX)) �̂�x(�y j �(w0X))30
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using the form spe
i�ed for �y, the fa
t that wX � w0X � wY for somewY 2 WY in Ĉ�x, and the result of Lemma 1.From the de�nition of our manipulation, any edge lying on a w0X ! w1path in C remains in Ĉ�x, and retains its original probability. Hen
e any setof path-segments starting at w0X in Ĉ�x 
orresponds to a set of path-segmentsin C, and has the same probability as this set. Given the form spe
i�ed for �y,�̂�x(�y j �(w0X)) is the probability of a set of path-segments starting at w0Xin Ĉ�x. Hen
e �̂�x(�y j �(w0X)) = �(�y j �(w0X))and̂��x(�y) = XwX2WX �(�(wX)) �(�y j �(w0X))= XwX2WX �(�(wX)) �(�y j �(e(wX ; w0X));�(w0X))using the form spe
i�ed for �y, the fa
t that e(wX ; w0X) � w0X � wY for somewY 2 WY in C, and the result of Lemma 1= XwX2WX �(�(wX)) �(�y j �(e(wX ; w0X)))sin
e �(e(wX ; w0X)) � �(w0X) in C= XwX2WX �(�(wX)) Xz �(�z;�y j �(e(wX ; w0X)))sin
e f�zg form a partition of the atomi
 events= XwX2WX �(�(wX)) Xz �(�y j �(e(wX ; w0X));�z)� �(�z j �(e(wX ; w0X))) (A:1)= XwX2WX �(�(wX)) Xz �(�y j �x;�z) �(�z j �(wX))substituting from (3.1) and (3.2)=Xz �(�y j �x;�z) �(�z) �31
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Proof of Theorem 2:This follows the proof of Theorem 1 until line (A.1). We then invoke
onditions (4.1) and (4.2) to give�̂�x(�y) = XwX2WX �(�(wX)) Xz �(�y j �(wX);�z) �(�z j �x)=Xz �(�z j �x) XwX2WX �(�y j �(wX);�z) �(�(wX)) (A:2)=Xz �(�z j �x) XwX2WXXi �(�y j �(wX);�z) �(�(wX);�ix)sin
e f�ixg forms a partition of 
=Xz �(�z j �x) XwX2WXXi �(�y j �(wX);�ix;�z) �(�(wX);�ix)using 
ondition (4.1). But�(�(wX);�ix) = �(�(wX);�ix;�z)�(�z j �(wX);�ix) = �(�(wX);�ix;�z)�(�z j �ix)using 
ondition (4.2) = �(�(wX) j �ix;�z) �(�ix)So �̂�x(�y) =Xz �(�z j �x) XwX2WXXi �(�y j �(wX);�ix;�z)� �(�(wX) j �ix;�z) �(�ix)=Xz �(�z j �x)Xi �(�y j �ix;�z) �(�ix) �A
knowledgementsThis resear
h is being supported by the EPSRC, grant no. EP/F036752/1.32
CRiSM Paper No. 11-16, www.warwick.ac.uk/go/crism



Referen
es[1℄ C. Boutilier, N. Friedman, M. Goldszmidt, D. Koller, Context-spe
i�
independen
e in Bayesian Networks, in: Pro
eedings of the 12th Con-feren
e on Un
ertainty in Arti�
ial Intelligen
e, 1996, pp. 115{123.[2℄ A.P. Dawid, In
uen
e diagrams for 
ausal modelling and inferen
e, In-ternational Statisti
al Review 70 (2002) 161{89.[3℄ A.P. Dawid, V. Didelez, Identifying the 
onsequen
es of dynami
 treat-ment strategies, Resear
h Report 262, University College London, 2005.[4℄ D. Glymour, G.F. Cooper, Computation, Causation and Dis
overy, MITPress, 1999.[5℄ D. He
kerman, A Bayesian approa
h to Learning Causal Networks, in:W. Edwards, et al. (Eds.), Advan
es in De
ision Analysis, CUP, 2007,pp. 202{220.[6℄ S.L. Lauritzen, Causal inferen
e from graphi
al models, in: O.E.Barndor�-Nielsen, et al. (Eds.), Complex Sto
hasti
 Systems, Chapmanand Hall, 2001.[7℄ D. M
Allester, M. Collins, F. Periera, Case fa
tor diagrams for stru
-tured probabilisti
 modeling, in: Pro
eedings of the 20th Conferen
e onUn
ertainty in Arti�
ial Intelligen
e, 2004, pp. 382{391.[8℄ J. Pearl, Causal diagrams for empiri
al resear
h, Biometrika 82 (1995)669{710.[9℄ J. Pearl, Causality: Models, Reasoning and Inferen
e, Cambridge, 2000.[10℄ J. Pearl, Statisti
s and 
ausal inferen
e: A review, So
iedad de Estadis-ti
a e Investiga
ion Operativa. Test 12 (2003) 281{345.[11℄ J. Pearl, J.M. Robins, Probabilisti
 evaluation of sequential plans from
ausal models with hidden variables, in: Pro
eedings of the 11th Con-feren
e on Un
ertainty in Arti�
ial Intelligen
e, 1995, pp. 444{45.[12℄ D. Poole, N.L. Zhang, Exploiting 
ontextual independen
e in proba-bilisti
 inferen
e, Journal of Arti�
ial Intelligen
e Resear
h 18 (2003)263{313. 33
CRiSM Paper No. 11-16, www.warwick.ac.uk/go/crism



[13℄ J.M. Robins, A new approa
h to 
ausal inferen
e in mortality studieswith sustained exposure period { appli
ation to 
ontrol of the healthyworker survivor e�e
t, Mathemati
al Modelling 7 (1986) 1393{1512.[14℄ A. Salmeron, A. Cano, S. Moral, Importan
e sampling in Bayesian Net-works using probability trees, Computational Statisti
s and Data Anal-ysis 34 (2000) 387{413.[15℄ G. Shafer, The Art of Causal Conje
ture, MIT Press, 1996.[16℄ J.Q. Smith, P.E. Anderson, Conditional independen
e and Chain EventGraphs, Arti�
ial Intelligen
e 172 (2008) 42{68.[17℄ J.Q. Smith, P.A. Thwaites, In
uen
e diagrams, in: E.L. Melni
k, B.S.Everitt (Eds.), En
y
lopedia of Quantitative Risk Analysis and Assess-ment, volume 2, Wiley, 2008, pp. 897{910.[18℄ P. Spirtes, C. Glymour, R. S
heines, Causation, Predi
tion and Sear
h,Springer-Verlag, 1993.[19℄ P.A. Thwaites, Chain Event Graphs: Theory and appli
ation, Ph.D.thesis, University of Warwi
k, 2008.[20℄ P.A. Thwaites, J.Q. Smith, Separation theorems for Chain EventGraphs, Submitted to the Annals of Statisti
s (2011).[21℄ P.A. Thwaites, J.Q. Smith, R.G. Cowell, Propagation using Chain EventGraphs, in: Pro
eedings of the 24th Conferen
e on Un
ertainty in Arti-�
ial Intelligen
e, 2008, Helsinki, pp. 546{553.[22℄ P.A. Thwaites, J.Q. Smith, E.M. Ri

omagno, Causal analysis withChain Event Graphs, Arti�
ial Intelligen
e 174 (2010) 889{909.[23℄ J. Tian, Identifying dynami
 sequential plans, in: Pro
eedings of the24th Conferen
e on Un
ertainty in Arti�
ial Intelligen
e, 2008, Helsinki,pp. 554{561.[24℄ J. Tian, J. Pearl, A general identi�
ation 
ondition for 
ausal e�e
ts, in:Pro
eedings of the 18th National Conferen
e on Arti�
ial Intelligen
e,AAAI Press, 2002, pp. 567{573.34
CRiSM Paper No. 11-16, www.warwick.ac.uk/go/crism


