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Causal identi�ability via Chain Event GraphsPeter ThwaitesDepartment of Statistis, University of Warwik, Coventry, CV4 7AL, United Kingdom
AbstratWe present the Chain Event Graph (CEG) as a omplementary graphialmodel to the Causal Bayesian Network for the representation and analysisof ausally manipulated asymmetri problems. CEG analogues of Pearl'sBak Door and Front Door theorems are presented, appliable to the lassof singular manipulations, whih inludes both Pearl's basi Do interventionand the lass of funtional manipulations possible on Bayesian Networks.These theorems are shown to be more exible than their Bayesian Networkounterparts, both in the types of manipulation to whih they an be applied,and in the nature of the onditioning sets whih an be used.Keywords: Bak Door theorem, Bayesian Network, ausal identi�ability,ausal manipulation, Chain Event Graph, onditional independene, FrontDoor theorem1. IntrodutionIn this paper we onsider ause and e�et through the analysis of on-trolled models. The standard apparatus for suh an approah is the CausalBayesian Network (CBN) [4, 8, 9, 18℄. As noted in [22℄, CBNs are ideal forproblems whih have a natural produt spae struture, but need adaptationfor problems whih do not. It is this latter type of problem that we areprimarily onerned with here.Context-spei� variants of Bayesian Networks (BNs) have been devel-oped for takling asymmetri problems [1, 7, 12, 14℄. These are still ratherawkward for the representation and analysis of problems whose future de-velopment at any spei� point depends on the partiular history of theEmail address: Peter.Thwaites�warwik.a.uk (Peter Thwaites)Preprint submitted to Arti�ial Intelligene April 14, 2011
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problem upto that point, and the values of a partiular set of ovariates atthat point. Their use is similarly irumsribed in problems where there maybe no possible outomes of some variables given ertain histories or values ofovariates.There have of ourse been many reent advanes in CBN theory (see forexample [2, 3, 5, 10, 23, 24℄), some of whih have made the ausal analy-sis of asymmetri problems simpler. However even with these advanes theavailable graphial representations for suh problems and the types of ma-nipulation an analyst an onsider are still limited. Similarly the availableanalytial tehniques are often rather rude. It was argued in [22℄ that ausesare more naturally expressed as events rather than the values of some ran-dom variable. The Chain Event Graph (CEG) introdued in [16℄ providesan ideal graphial representation given this argument. It is also a sensi-ble representation for the analysis of manipulations to events. Moreover,as shown in [22℄, use of the CEG makes available a riher lass of possiblemanipulations than is generally the ase with CBNs.The olletion of tehniques available for use with CEG-based ausal anal-ysis is already suÆient for takling most problems, if not yet as large as thatavailable for BN-based analysis. A Bak Door theorem for CEGs analogousto Pearl's [8, 9℄ Bak Door theorem for BNs was introdued in [22℄. Herewe present a muh more general version of this as well as two versions of aFront Door theorem, the seond of whih allows onsiderably more exibilitythan the analoguous BN version [8, 9℄. We antiipate that future work willrepliate for CEGs the work done in [3, 23, 24℄ whih provides neessary andsuÆient onditions for ausal identi�ability in BNs.As the CEG is a omparatively new struture, there have been minormodi�ations sine [16℄, and indeed sine [22℄. These are detailed in the nextsetion. We believe these hanges improve the CEG by making it less messy,and also by turning it into a genuine direted ayli graph (DAG), whihlatter allows us to utilise the many results proven for this graph type.In Setion 2 we de�ne the CEG and manipulated CEG. Setion 3 developsthe Bak Door theorem and the idea of singular manipulations. A Front Doortheorem, a generalisation of Pearl's [8, 9℄ theorem for BNs, is then introduedin Setion 4, and Setion 5 provides a disussion of possible diretions forfuture researh.
2
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2. De�nitions and notationIn this setion we give a brief de�nition of a CEG. This has been modi�edslightly sine [16℄ and [22℄. We also provide some notation that will be usedthroughout the paper. We then turn our attention to what it means whenwe manipulate a CEG to an event, and present a de�nition of a manipulatedCEG.The CEG is a funtion of an event tree [15℄, retaining those featuresof the tree whih allow for the transparent representation of asymmetriproblems. They are a signi�ant extension to trees sine they express withintheir topology the entire onditional independene struture of the problemswhih they have been reated to represent [20℄.An event tree T is a direted tree with vertex set V (T ) and edge setE(T ). The root-to-leaf paths f�g of T form the atoms of the event spae.Events measurable with respet to this spae are unions of these atoms.Eah non-leaf vertex v 2 V (T ) labels a random variableX(v) whose statespae X(v) an be identi�ed with the set of direted edges e(v; v0) 2 E(T )emanating from v. For eah X(v) we let�(v) � f�e(v0 j v) j e(v; v0) 2 X(v)gwhere �e(v0 j v) � P (X(v) = e(v; v0)) are alled the primitive probabilities ofthe tree; and �(T ) � f�(v)gv2V (T )De�nition 1. (Coloured tree) For an event tree T with vertex set V (T )and edge set E(T )1. Two non-leaf verties v1; v2 2 V (T ) are in the same stage u if there is abijetion  (v1; v2) between X(v1) and X(v2) suh that if  : e(v1; v10) 7!e(v2; v20) then �e(v10 j v1) = �e(v20 j v2). The edges e(v1; v10) ande(v2; v20) have the same olour if v1 and v2 are in the same stage, ande(v1; v10) maps to e(v2; v20) under this bijetion.2. Two verties v1; v2 2 V (T ) are in the same position w if for eahsubpath emanating from v1, the ordered sequene of olours is the sameas that for some subpath emanating from v2.The set of stages of the tree is labelled L(T ), and the set of positions islabelled K(T ). 3
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In the de�nition of the CEG below we have removed the undireted edgesfrom previous de�nitions, and introdued olouring of nodes. We believe thismakes the CEG easier to read, and it also allows us to utilise the extensivetheory relating to DAGs.De�nition 2. (Chain Event Graph)The Chain Event Graph C(T ) is the oloured DAG with vertex set V (C) andedge set E(C) de�ned by:1. V (C) � K(T ) [ fw1g.2. (a) For w; w0 2 V (C) n fw1g, there exists a direted edgee(w;w0) 2 E(C) iff there are verties v; v0 2 V (T ) suhthat v 2 w 2 K(T ); v0 2 w0 2 K(T ) and there is an edgee(v; v0) 2 E(T ).(b) For w 2 V (C) n fw1g, there exists a direted edgee(w;w1) 2 E(C) iff there is a non-leaf vertex v 2 V (T )and a leaf vertex v0 2 V (T ) suh that v 2 w 2 K(T ) and there isan edge e(v; v0) 2 E(T ).3. If v1 2 w1 2 K(T ); v2 2 w2 2 K(T ) and v1; v2 are members of thesame stage u 2 L(T ), then we say that w1; w2 are in the same stage u,and assign the same olour to these positions. We label the set of stagesof C by L(C).4. If v 2 w 2 K(T ); v0 2 w0 2 K(T ) and there is an edge e(v; v0) 2 E(T ),then the edge e(w;w0) 2 E(C) has the same olour as the edge e(v; v0).The root-to-sink paths f�g of C form the atoms of the event spae of C.Events measurable with respet to this spae are unions of these atoms.Eah stage u 2 L(C) labels a random variableX(u) whose state spae X(u)an be identi�ed with the set of direted edges e(w;w0) 2 E(C) emanatingfrom any w 2 u.Example 1. CEG onstrutionWe illustrate the onstrution of a CEG through a fault diagnosis exam-ple, whih for illustrative onveniene uses only binary variables.� A mahine utilises two omponents C1 and C2. Whether C2 is fun-tioning properly or is faulty is independent of whether C1 is funtioningproperly or is faulty. 4
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v18Figure 1: Coloured tree for Example 1� If either omponent is faulty, then a third omponent C3 swithes onautomatially, and onditional on this event, whether C3 funtionsproperly or is faulty is independent of whether C1 and C2 funtionproperly or not.� If both C2 and C3 are faulty then C2 is replaed by a new ompo-nent C20; and onditional on this event, whether C20 funtions properlyor not is independent of whether C1 funtions properly or not. As C20is a new omponent the probability of it being faulty is less than thatof C2 being faulty.� If C2 is not faulty but C3 is, then C1 is replaed by a new ompo-nent C10. As C10 is a new omponent the probability of it being faultyis less than that of C1 being faulty.This information is summarised in Table 1 and in the oloured tree in Fig-ure 1. The verties v1 & v2 are in the same stage (indiated by the olouring oftheir outgoing edges) sine whether C2 funtions properly or not is indepen-dent of whether C1 does so. The verties v4; v5 & v6 are in the same stagesine they represent C3 swithing on automatially given di�erent C1; C2fault histories, and whether C3 funtions properly or not is independent ofwhether C1 and C2 funtion properly or not. The verties v4 & v6 are in the5
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Table 1: Context for Example 1Desriptor EdgesC1 funtioning properly e(v0; v1)C1 faulty e(v0; v2)C2 funtioning properly e(v1; v3); e(v2; v5)C2 faulty e(v1; v4); e(v2; v6)C3 on & funtioning properly e(v4; v7); e(v5; v9); e(v6; v11)C3 on & faulty e(v4; v8); e(v5; v10); e(v6; v12)C2 replaed by C20, C20 funtioning properly e(v8; v13); e(v12; v17)C2 replaed by C20, C20 faulty e(v8; v14); e(v12; v18)C1 replaed by C10, C10 funtioning properly e(v10; v15)C1 replaed by C10, C10 faulty e(v10; v16)same position (sine they root isomorphi oloured subtrees). The vertiesv8 & v12 are in the same stage and the same position.The CEG in Figure 2 illustrates the ideas of De�nition 2. The vertiesv4 & v6 from the tree have been merged into one position w4 representingC2 faulty. The positions w1 & w2 are in the same stage (indiated by theolouring of the nodes) sine whether or not C2 funtions properly is inde-pendent of whether or not C1 funtions properly. The positions w3 & w4 arein the same stage as they represent C3 swithing on given C1 faulty and C2either funtioning properly or not.The following notation will be used throughout the remainder of the pa-per. Reall that an atom � is a w0 ! w1 path in C. The set of atomsis denoted 
. We write w � w0 when the position w preedes the posi-tion w0 on a w0 ! w1 path. We all w a parent of w0 if there exists an edgee(w;w0) 2 E(C).Events are denoted �. �(w) is the event whih is the union of allw0 ! w1paths passing through the positionw, and �(e(w;w0)) is the union of all pathspassing through the edge e(w;w0).We an now de�ne the primitive probabilities of the CEG: �e(w0 j w) is theprobability of the edge e(w;w0); and for eah u 2 L(C) and random variableX(u) we let �(u) � f�e(w0 j w) j w 2 ugand �(C) � f�(u)gu2L(C)6
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Figure 2: Chain Event Graph for Example 1Note that if we label the probability of the event � by �(�) then �e(w0 j w) ��(�(e(w;w0)) j �(w)).A subpath of a root-to-sink path is denoted �(w;w00), where w and w00indiate the start and end positions of the subpath. �(�(w;w00)) is the eventwhih is the union of all paths utilising the subpath �(w;w00). ��(w00 j w) ��(�(�(w;w00)) j �(w)) is the probability of the subpath �(w;w00).Before moving on to manipulated CEGs we present a very useful Lemma,proofs of whih appear in [19℄ and [20℄.Lemma 1. For a CEG C and positions w1; w2; w3 2 V (C) suh thatw1 � w2 � w3 �(�(w3) j �(w1);�(w2)) = �(�(w3) j �(w2))The result an be extended so that the positions w1 & w2 an eah bereplaed by edges, and the position w3 an be replaed by a olletion ofpositions and/or edges.Essentially this tells us that being at a position (w3) or edge (or olletionof positions or edges), given that we have been at an earlier position (w2) oredge, is independent of the path taken to that position or edge. This resultis used in the proof of Theorem 1. 7
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2.1. Manipulated CEGsAnything that we observe about a system or do to a system will hange thetopology of a graphial representation of that system. In [21℄ we onsideredhow the topology of a CEG is altered when we observe an event �. Herewe investigate how the topology of a CEG is altered when we manipulateto an event �. As the following de�nitions suggest, the proess of updatingour beliefs following a manipulation is very similar to that whih happensfollowing the observation of an event. Note that the use of trees in ausalanalysis has a respetable history, featuring in for example [13, 15, 18℄.For the purposes of this paper we assume that the CEG is valid (in that itsatis�es the onditions of [22℄ De�nition 3) for any manipulation we hooseto make. A detailed disussion of what makes a CEG valid for a ausalmanipulation an be found in [22℄ Setions 3.1 and 3.2.The type of events we onsider in this paper are intrinsi events [19, 20℄(alled C-ompatible events in [21℄). An intrinsi event � is one where everyatom of � is a w0 ! w1 path of a subgraph of C, and every w0 ! w1 pathin this subgraph is an atom of �.De�nition 3. (Manipulated CEG) For a CEG C(V;E) and intrinsi event �,let Ĉ� (the CEG manipulated to the event �) be the subgraph of C with(a) V (Ĉ�) � V (C) ontains preisely those positions whih lie on aw0 ! w1 path � 2 �(b) E(Ĉ�) � E(C) ontains preisely those edges whih lie on a w0 ! w1path � 2 �() For w1; w2 2 V (Ĉ�), and e(w1; w2) 2 E(Ĉ�), the edge e(w1; w2) hasprobability uniquely assigned by the de�nition of the manipulation to �(by say De�nition 6 or [22℄ De�nition 3)(d) If w1; w2 2 V (Ĉ�) are in the same stage in Ĉ� then these positions andtheir emanating edges are oloured in Ĉ�.Probabilities in Ĉ� are denoted �̂�. For ompleteness we also de�ne aonditioned CEG (see also [21℄).De�nition 4. (Conditioned CEG) For a CEG C(V;E) and intrinsi event �,let C� (the CEG onditioned on the event �) be the subgraph of C with V (C�);E(C�) de�ned and oloured analogously with V (Ĉ�); E(Ĉ�) in De�nition 3,and 8
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() For w1; w2 2 V (C�), and e(w1; w2) 2 E(C�), the edge e(w1; w2) hasprobability ��e (w2 j w1) = P�2� �(�;�(e(w1; w2)))P�2� �(�;�(w1))where �� indiates a probability in C� and � a probability in C.3. The Bak Door theoremPearl's [8, 9℄ Bak Door theorem for BNs provides a ondensed versionof the full manipulated probability expression. So when a manipulation isimpossible or unethial in pratie, or its e�ets diÆult or impossible toobserve, an analyst may still be able to estimate the probabilities of thetheoretially possible e�ets of this manipulation.Sine 1995 there has been onsiderable e�ort put in to �nding onditionsfor ausal identi�ability on BNs [3, 10, 11, 23, 24℄ { that is onditions forwhen the e�ets of a manipulation an be estimated from a subset of variablesobserved in the idle system. CEG-based ausal theory is unsurprisingly not sofar advaned. The Bak Door theorem for CEGs introdued in [22℄ is howeveralready more exible than its ounterpart for BNs, as we demonstrate here.Pearl's Bak Door theorem for BNs states that under ertain onditionson sets of variables X; Y; Z, we an (using the notation of [6℄) write theprobability of observing Y = y following a manipulation of X to x asp(y jj x) =Xz p(y j x; z) p(z)As already implied, this expression requires the analyst to observe only theidle (or unmanipulated) system and ondition on these observations. Byareful hoie of the set Z we may be able to alulate or estimate p(y jj x)without onditioning on the full set of measurement variables.One rather useful aspet of the theorem is that the onditions an beexpressed graphially (that is, on the BN of the problem).The Bak Door theorem for CEGs introdued in [22℄ is valid for a largerolletion of types of manipulation than are possible with a BN, and sine itrefers to manipulation to events rather than of variables, it is more onsistentwith our experiene of what a manipulation atually involves. As with the BNversion of the theorem, we redue the omplexity of the general manipulatedprobability expression, as well as reduing or avoiding identi�ability problemsassoiated with it. 9
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So onsider a manipulation to the event �x. Suppose we wish to �nd theprobability of (observing) an event �y given that the manipulation to �x hasbeen enated { that is we wish to produe an expression for �(�y jj �x). Thisis equal to the probability of the event �y on the CEG Ĉ�x, whih is the sumof the probabilities of the w0 ! w1 paths in Ĉ�x whih are onsistent withthe event �y: �(�y jj �x) = �̂�x(�y)Note also that �(�y j �x) = ��x(�y).Consider a partition of the atomi events (w0 ! w1 paths in C) f�zg. Then�̂�x(�y) = �̂�x�[z �z;�y� =Xz �̂�x(�z;�y)sine the events f�zg form a partition of 
=Xz �̂�x(�y j �z) �̂�x(�z)De�nition 5. (Bak Door partition) The partition f�zg forms a BakDoor partition of 
 if(A) �̂�x(�y j �z) = �(�y j �x;�z) � = ��x(�y j �z) �(B) �̂�x(�z) = �(�z) for all �z 2 f�zgIf these onditions are satis�ed then�(�y jj �x) = �̂�x(�y) =Xz �(�y j �x;�z) �(�z)The sets of variables Z in the BN-based Bak and Front Door theorems arealled bloking sets beause they blok ertain paths between X and Y in theBN. In a muh less transparent way Z also bloks the e�et on Y of otherproblem variables so that the manipulated probability expression p(y jj x)an be ondensed. The Bak Door theorem for CEGs works in an altogetherless mysterious way. The bloking set beomes a partition of the w0 ! w1paths of the CEG into sets f�zg whih allow us to replae probabilitiesevaluated on the manipulated graph by ones evaluated on the idle CEG. Aswith the BN version, if we hoose f�zg arefully, we an alulate or estimate�(�y jj �x) from a partially observed idle system.10
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3.1. Singular manipulationsDe�nition 6. (Singular manipulation) A manipulation to � of a CEG Cis alled singular if there exist sets W � V (C), E� � E(C) suh that(i) the elements of W partition 
 (ie. every w0 ! w1 path in C passesthrough preisely one w 2 W ),(ii) for eah w 2 W , there exists preisely one emanating edge e(w;w0)whih is an element of E�,(iii) � is the union of preisely those w0 ! w1 paths that pass through somee(w;w0) 2 E�,(iv) all edge probabilities in Ĉ� are equal to the orresponding edge proba-bilities in C, exept that �̂�e (w0 j w) = 1 for w 2 W , e(w;w0) 2 E�.Essentially, a singular manipulation is one where every w0 ! w1 pathpasses through one of a olletion of positions, and the manipulation imposesa probability of 1 on one edge emanating from eah of these positions.All Do X = x and funtional manipulations (but not all stohasti ma-nipulations) of BNs are singular manipulations, but the set of singular ma-nipulations is muh larger than this.Note that if the manipulation to an event � is singular then edge proba-bilities in Ĉ� upstream and downstream of the manipulation remain as in theidle CEG C. If we were to ondition on this event �, then edge-probabilitiesin C� downstream of the observation would remain as in the idle CEG, butedge-probabilities upstream would hange in aordane with De�nition 4 ().3.2. A Bak Door theorem for singular manipulationsAs we also onsider e�et events (�y) and onditioning sets (�z), wedistinguish our manipulation event � by adding a suÆx to give �x. We alsorelabel the set W as WX , the positions within WX as wX , and the edges ofDefn. 6 (ii) as e(wX ; w0X).As the set of positions in W partitions 
, we an onsider a random vari-able X, de�ned on 
, whih takes values labelled by the emanating edgesof wX (for eah wX) with probabilities dependent on the history of the prob-lem up to that position wX . 11
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The manipulation to �x assigns a probability of 1 to one of the values ofXat eah wX , dependent on the history of the problem up to that position wX(ie. a funtional manipulation). So �x is of the form�x � [wX2WX �(e(wX ; w0X))We de�ne an e�et variable Y in exatly the same way as we have de-�ned X. So we have a set of positions WY (downstream of the set WX)whih partitions 
 (ie. every w0 ! w1 path in C passes through one of thepositions in WY ). Then �y onsists of all paths that passing through somewY 2 WY , utilise some prespei�ed edge emanating from that wY . So�y � [wY 2WY �(e(wY ; w0Y ))If we look at the onditions for Pearl's Bak Door theorem on BNs, wesee that both onditions an be re-expressed as onditional independenestatements (see for example [2℄). Pearl's ondition that Z (the Bak Doorbloking set) must blok all Bak Door paths from X to Y an be expressedas Y qQ(X) j (X;Z)where Q(X) indiates the variable parents of X. Pearl's ondition that Zmust ontain no desendents of X an be expressed asZ qX j Q(X)Note that we are here ignoring the possibility that Z � Q(X). We return tothis ase in setion 3.4.We have already replaed X = x by �x, and Y = y by �y. We nowreplae Z = z by �z, and noting that positions store the relevant history ofa problem upto that point, Q(X) = q(x) by �(wX).Substituting into Z qX j Q(X) we get�(�z j �(wX(1))) = �(�z j �(wX(1));�x)= �(�z j �(wX(1)); [wX2WX �(e(wX; w0X)))= �(�z j �(e(wX(1); w0X(1)))) (3:1)12
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Substituting into Y qQ(X) j (X;Z) we get�(�y j �x;�z) = �(�y j �(wX(1));�x;�z)= �(�y j �(wX(1)); [wX2WX �(e(wX ; w0X));�z)= �(�y j �(e(wX(1); w0X(1)));�z) (3:2)and �(�y j �(e(wX(1); w0X(1)));�z) = �(�y j �(e(wX(2); w0X(2)));�z)Theorem 1. (Bak Door theorem) With WX ; WY ; �x; �y de�ned asabove, and f�zg a partition of the atomi events, then f�zg is a BakDoor partition if onditions (3.1) and (3.2) hold for all elements of f�zg,wX 2 WX.A proof of this theorem appears in the appendix.Note that these onditions are on the graph C. They an therefore, likePearl's onditions, be heked on an unmanipulated graph (a representationof the idle system).3.3. Cheking the onditions for the Bak Door theoremPearl's onditions for his Bak Door theorem an be heked diretly onthe topology of the BN. For the CEG ondition (3.1) requires that for eahelement �z of the Bak Door partition (whih ould be of the form �(w),�(e), a union of suh events, or some totally di�erent type of event), andeah position wX 2 WX , the probability of �z onditioned on �(wX) is thesame as that of �z onditioned on the event �(e(wX ; w0X)) where e(wX ; w0X)is the singular edge emanating from wX whih remains in the manipulatedgraph. It is however not immediately apparent how to hek ondition (3.2)as simply.Clearly the exat nature of f�zg is something that we an ontrol. Assuggested above we an hoose sets of w0 ! w1 paths to belong to anyindividual element �z in many di�erent ways. In [22℄ we let our blokingset onsist of events assoiated with positions upstream of the manipulation.As is the ase with BNs, bloking sets annot be assoiated with variablesthat are desendants of the manipulated variable(s), but they don't need tobe anestors. So CEG bloking sets an also be reated using positions (or13
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edges) downstream of the manipulation. Indeed, if the events whih we wishto ondition on orrespond to values of a variable whih has not been observedat the time of the manipulation, and if our CEG has been onstruted inan extensive form order then our bloking set must use positions or edgesdownstream of the manipulation. In this paper we o�er a generalisation ofthe Bak Door theorem of [22℄, but do not intend to dupliate the resultstherein. We therefore onentrate in this setion on bloking sets downstreamof the manipulation. Between the two papers we over all possible loationsfor bloking sets of this form.For the remainder of Setion 3 we use partitions where eah �z is anevent assoiated with a olletion of positions. Repliating this work forevents assoiated with edges is straightforward. So we let eah �z be a unionof smaller events of the form �(wiz) for some set of positions fwizg, where thisset is a subset of Wz, whih is in turn a set of positions downstream of WXand upstream of WY , partitioning 
. We an of ourse make the partitionsoarser or �ner as we see �t.So a typial element of f�zg will be of the form�z = [i2A�(wiz)for some set A; wiz 2 Wz.The proess we desribe may appear ompliated, but as illustrated inExample 2 it is in fat omparatively straightforward.As both f�zg and Wz are partitions of 
, we an speify that�(wiz) \ �(wjz) = �for i; j 2 A[B[� � �[N , where N is the number of elements we have spei�edfor f�zg.Now, whereas all elements of Wz exist in C, not all will exist in Ĉ�x. Aswe have ontrol over the nature and oarseness of our partition, we an letN equal the number of elements of Wz whih exist in Ĉ�x, and onstruteah �z so that it ontains only one wz whih exists in Ĉ�x. For eah �z,all this position w1z . So, however many positions fwizg orrespond to eahelement of f�zg, there will be only N positions fw1zg that exist in Ĉ�x.The omplete set Wz = fwizgi2A[���[N partitions 
. So�(�y j �(e(wX(1); w0X(1)));�z) = �(�y j �(e(wX(1); w0X(1)));�(w0X(1));�z)14
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sine �(e(wX(1); w0X(1))) � �(w0X(1)) in C= �(�z;�y j �(e(wX(1); w0X(1)));�(w0X(1)))�(�z j �(e(wX(1); w0X(1)));�(w0X(1)))= �(�z;�y j �(w0X(1)))�(�z j �(w0X(1)))using the forms spei�ed for �z; �y; Wz and WY being downstream of WX ;and the result of Lemma 1. Hene�(�y j �(e(wX(1); w0X(1)));�z) = �(�y j �(w0X(1));�z) (3:3)But any path-segment in C starting at w0X(1) remains in Ĉ�x, and we knowthat fwizgi�2 do not exist in Ĉ�x, so there are no path-segments joining w0X(1)to wiz (for i � 2) in Ĉ�x, and hene no path-segments joining w0X(1) to wiz(for i � 2) in C. Therefore�(w0X(1)) \ �(wiz) = � for i � 2and �(w0X(1)) \ �z = �(w0X(1)) \ �(w1z)so expression (3.3) beomes�(�y j �(e(wX(1); w0X(1)));�z) = �(�y j �(w0X(1));�(w1z))= �(�y j �(w1z))using the form spei�ed for �y; the fat that Wz is downstream of WX ; andthe result of Lemma 1. Hene�(�y j �(e(wX(1); w0X(1)));�z) = �(�y j �(e(wX(2); w0X(2)));�z)as required for ondition (3.2).So if we hoose eah �z to be of the form desribed above, where foreah �z only w1z exists in Ĉ�x, then this is suÆient for ondition (3.2) to besatis�ed. We now have two onditions whih an be heked simply on thetopology of the idle CEG. 15
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Figure 3: BN and CEG C for Example 2Example 2. Using the Bak Door theoremWe illustrate the use of our Bak Door theorem through a medial exam-ple. As with Example 1 we use binary variables for illustrative onveniene.Our interest is in a ondition whih an manifest itself in one of two forms(C = 1 or 2). Individuals who will as adults develop the ondition (in eitherof its forms) display either symptom SA before the age of ten, or SB in theirlate teens, or both. Whether or not an individual displays SA is labelled bya variable A, and whether or not they display SB by a variable B. In bothases the variable takes the value 1 if the symptom is displayed, and thevalue 0 if it is not. There is a treatment T available whih has some eÆiayif given in an individual's early teens. Being treated is labelled X = 1, andnot treated X = 0. Dying before the age of �fty is labelled Y = 1, and dyingat �fty or older Y = 2.The relationships between the variables A;X;B;C and Y are desribedbelow, and are portrayed by the CEG in Figure 3, where for onvenieneedges are labelled a0 for A = 0 et.Symptom SA is often missed by dotors, but if it is deteted an individ-ual is more likely to be given treatment T . We therefore do not know the16
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distributions of A; X j A = 0 or X j A = 1. We do know however thatX /q A.Evidene from previous studies indiates that� whether or not an individual displays symptom SB depends only onwhether or not they displayed symptom SA (B qX j A),� displaying either symptom means that an individual will develop theondition in one of its two forms,� for individuals displaying SA but not SB, developing the onditionin form 1 does not depend on whether or not they had treatment T(C q X j A = 1; B = 0). Also, how long they live depends only onwhih form of the ondition they develop (Y qX j A = 1; B = 0; C),� for individuals displaying SB, developing the ondition in form 1 doesnot depend on whether or not they displayed SA, irrespetive of whetherthey were treated or not (C q A j X;B = 1). Also, how long they livedepends on whether or not they were treated and on whih form of theondition they develop (Y q A j X;B = 1; C).If we were to attempt to portray the problem via a BN it would looklike the one in Figure 3. Without onsiderable annotation the BN annotexpress the ontext-spei� onditional independene struture illustrated bythe CEG.We are interested in the e�ets on life expetany (the variable Y ) if wewere to treat everybody in the population in their early teens. So we onsiderthe singular manipulation to �x equivalent to Do X = 1, and alulate theprobability �(�y jj �x) � P (Y = 1 jj X = 1). The CEG satis�es theonditions that every path passes through a position from WX = fw1; w2gand a position fromWY = fw8; w11; w12; : : : w16g. Also, every position inWXhas an outgoing edge labelled x1 (X = 1), and every position in WY has anoutgoing edge labelled y1 (Y = 1).Clearly A is a required variable in any Bak Door bloking set Z basedon the BN representation of the problem. But from above we do not knowthe distribution of A or of any joint distribution involving A. Can we useour Bak Door theorem for CEGs to �nd an identi�able expression not in-volving A? 17
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Figure 4: Manipulated CEG Ĉ�x for Example 2In these situations we generally have a lot of exibility in determining ourbloking set (Z), and some experimentation may be needed before we �ndthe ideal alloation. Here we are onsidering �z of the form S�(w). Thehoie of positions will depend on what we an observe, and may be heavilyinuened by observation osts. Note that the onnetion between theseonstraints and our hoie of positions an be very subtle { in this examplewe learly annot estimate P (A = 1; B = 0; C = 1), but we an still inludethe position w11 in our bloking set. Here we simply imagine that theseonstraints and our experimentation have produed a bloking set of positionsWz, lying between WX and WY , omprising fw8; w9; w11; w12; w15; w16g. TheCEG Ĉ�x is given in Figure 4.Here fe(wX ; w0X)g = fe(w1; w3); e(w2; w5)g, and we ombine our fwzg toprodue f�zg as followsf�(w8);�(w11);�(w12); [�(w9) [ �(w15) [ �(w16)℄gNote that (i) f�zg forms a partition of 
, (ii) eah �z is of the form S�(w),and (iii) three of the �z are singleton �(wz) where wz appears in Ĉ�x, andthe fourth �z is the union of three �(wz) only one of whih wz is present18
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in Ĉ�x. So ondition (3.2) is satis�ed.It is straightforward to show that our f�zg satisfy ondition (3.1). Usingthe CEG C we get, for wX = w1 that�(�(w11) j �(w1)) = [p(x1 j a1) + p(x0 j a1)℄ p(b0 j a1) p(1 j a1b0)= p(b01 j a1)�(�(w11) j �(e(w1; w3))) = p(b0 j a1) p(1 j a1b0) = p(b01 j a1)and similarly for the expression involving w12.The position w8 is not downstream of w1.�(�(w9) [ �(w15) [ �(w16) j �(w1)) = p(x1 j a1) p(b1 j a1)+ p(x0 j a1) p(b1 j a1) p(1 j x0b1)+ p(x0 j a1) p(b1 j a1) p(2 j x0b1)= p(b1 j a1)�(�(w9) [ �(w15) [ �(w16) j �(e(w1; w3))) = �(�(w9) j �(e(w1; w3)))= p(b1 j a1)A similar proedure for wX = w2 on�rms that f�zg satisfy ondi-tion (3.1), and so that f�zg is a Bak Door partition of 
. Our manipulatedprobability expressionp(y1 jj x1) = �(�y jj �x) = �̂�x(�y) =Xz �(�y j �x;�z) �(�z)is evaluated on C, and simpli�es top(b0) p(y1 j b0) + p(b1) p(y1 j x1b1)So we need only know the distribution of B (the inidene of symptom SB),and the onditional distributions of Y (life expetany) on the events B = 0(SB not displayed) and X = 1; B = 1 (treated and SB displayed). Thisexpression does not involve A (the inidene of SA), and interestingly neitherdoes it involve C (whih form the ondition takes). It does however involve B,whih would be impossible if we used the BN from Figure 3 for this model,as B does not blok all Bak Door paths from X to Y .To summarise, the proedure is� Produe f�zg as presribed above, and hek that it satis�es our BakDoor ondition (3.1). 19
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� Substitute probabilities from C into our Bak Door expression and sim-plify.This example gives an insight into how to hoose the omponent �z of ourpartition. If we an �nd wz suh that �(wz) satis�es�(�(wz) j �(e(wX ; w0X))) = �(�(wz) j �(wX)) 8 wX 2 WXthen we an make �(wz) a �z.Other �z are produed by ombining one position wz that exists in Ĉ�xwith other positions fwzg that disappear when we reate Ĉ�x, in suh away that the union of their assoiated events satis�es the Bak Door ondi-tion (3.1) for all wX 2 WX .3.4. Using WX to reate a bloking setBloking sets using positions upstream of the set WX were onsideredin [22℄. Here we look at using the set WX itself to reate our bloking set.This has a diret analogy with analysis on BNs, where it is always possible toreplae Pearl's set Z by the set Q(X) to give a revised Bak Door expressionp(y jj x) =Xq(x) p(y j x; q(x)) p(q(x))This bloking set Z = Q(X) is not derived from the onditions ZqX j Q(X)and Y qQ(X) j (X;Z), and similarly our Bak Door partition f�zg here isnot derived from onditions (3.1) and (3.2). Realling the analogy betweenQ(X) = q(x) for BNs and �(wX) for CEGs suggests we look at a parti-tion f�zg where eah �z is of the form�z = [i2A�(wX(i))for some set A, where �(wX) for eah wX 2 WX is an element of some �z.The analogy between Q(X) = q(x) for BNs and �(wX) for CEGs is notperfet. It is shown in [22℄ that a better analogy for parents in a BN is a setof stages, rather than positions. So here we make a further stipulation aboutthe sets fwX(i)gi2A, and state that eah �z is of the form�z = [wX2uX �(wX) = �(uX)20
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for some uX , where eah uX is a stage, and the set fuXg form a partitionof 
. We also require that for eah wX 2 uX , the edges e(wX ; w0X) arry thesame label. These labels an di�er for di�erent stages.This is not atually an onerous restrition, as the set of manipulations wean onsider learly still ontains all basi Do interventions on BNs and allfuntional Do interventions where the argument of the funtion is (a subsetof) the parent set of the manipulated variable. In fat we an argue thatthis set ontains all funtional Do interventions of a BN: If a manipulationis funtional in that the value we manipulate X to depends on the valuetaken by another variable W , then essentially we have a deision problemand the BN representation of the system beomes an Inuene Diagram (ID)representation with X as a deision node. Clearly the value of W must beknown before X is manipulated, so in this ID representation there must bean edge fromW toX (see for example [17℄) and soW is a parent ofX. Henewe argue that for all funtional Do interventions on BNs the argument ofthe funtion is (a subset of) the parent set of the manipulated variable.In order to demonstrate that the set f�zg is a Bak Door partition weneed the result of the following Lemma, a proof of whih appears in [19℄.Lemma 2. For a CEG C, wX 2 V (C); wX 2 uX 2 L(C), and �x de�ned asin setion 3.2 �(�x j �(wX)) = �(�x j �(uX))This seemingly innouous result tells us that the probability of leaving astage by an edge arrying a partiular label is the same as that of leavingany of its omponent positions by an edge arrying this label.The equality holds if the edges e(wX ; w0X) label the same value of Xfor eah wX 2 uX . This is the ase for all basi Do interventions and allfuntional Do interventions as desribed above.

21
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Using the proof of Theorem 1 (in the appendix) we an write�̂�x(�y) = XwX2WX �(�(wX)) �(�y j �(e(wX ; w0X)))= XwX2WX �(�(wX)) �(�y j �(wX);�x)=XuX XwX2uX �(�(wX)) �(�y j �(wX);�x)=XuX XwX2uX "�(�(wX);�x;�y)�(�x j �(wX)) #=XuX "PwX2uX �(�(wX);�x;�y)�(�x j �(uX)) # =XuX "�(�(uX);�x;�y)�(�x j �(uX)) #=XuX �(�y j �(uX);�x) �(�(uX))So we an use the set WX to reate a bloking set if we insist that eah �z is�(uX) for some stage uX , and that the edges e(wX ; w0X) label the same valueof X for eah wX in any uX .Our Bak Door theorem for CEGs makes ausal analysis with them moreexible than with BNs. Firstly they are ideal for the analysis of asymmetriontrolled models suh as treatment regimes. Seondly we an analyse thee�ets of asymmetri manipulations, a task whih is not neessarily straight-forward on a BN, partiularly if both the manipulated variable and the valuethis variable takes are dependent on the values of other variables. Thesefuntional manipulations often require the addition of edges to BN repre-sentations whih an ause diÆulties for an analyst trying to �nd suitablebloking sets.Lastly we an use asymmetri bloking sets with CEGs. Reall thata good Bak Door expression allows the analyst to estimate probabilitiesof e�ets from a partially observed system, so this exibility in our hoieof partition set is very useful when some of the events in the system areunobservable or have large observational osts. Standard ausal analysiswith BNs requires one to be able to alulate or estimate p(z) and p(y j x; z)for all values z of the bloking set of variables Z. This is not neessary withCEGs { our bloking sets do not need to orrespond to any �xed subsetof the measurement random variables that de�ne a BN. We have also seen22
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that we an use the CEG version of the Bak Door theorem in ases whereit would be impossible to use the BN version, as the model does not obeythe onditions spei�ed by Pearl. Note that it would not be at all diÆultfor us to reate a Bak Door partition whih for example onsisted of somepositions fwzg downstream of the manipulation together with some stagesfuXg oinident with the manipulation.4. A Front Door theorem for CEGsPearl's Front Door theorem [8, 9℄ an be used in ases where the BakDoor theorem onditions do not hold or where the events needing to beobserved for the Bak Door theorem have too large an observational ost.Like the Bak Door theorem, the Front Door theorem allows one to reduethe omplexity of the general manipulated probability expression used withBNs, and an allow one to sidestep identi�ability problems assoiated withit. Pearl's Front Door theorem states that under ertain onditions on setsof variables X; Y; Z, we an writep(y jj x) =Xz p(z j x) Xx0 p(y j x0; z) p(x0)an expression whose value an be estimated from a partially observed idlesystem.The expression for the Front Door theorem is more omplex than that forthe Bak Door theorem, and this imposes greater restritions on the types ofmanipulation we an onsider and also initially on the nature of our blokingsets. So we on�ne ourselves here to singular manipulations and note thatas our initial expression will be diretly analogous to that for BNs, we willneed to sum over some variable orresponding to Pearl's X. Hene we needto produe a partition of 
, of whih �x is one element. Realistially thismeans on�ning ourselves to start with to manipulations diretly analogousto Pearl's Do X = x (for some riterion variable X), and onsider positionsfwXg whih eah have the same number of emanating edges and where theseedges arry the same labels for eah wX (ie. eah wX has an emanating edgelabelled xj for j in some set J).Note that even for fairly regular problems depitable by BNs there may behistories or parental on�gurations of a variable X for whih the probability23
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of a partiular outome is zero. Although normally we do not draw zero-probability edges in a CEG, in this ase it is advisable to do so, if only forthe edges emanating from those positions assoiated with the variable X.In setion 4.2 we see that we an relax these onditions onsiderably,and that there is a version of the Front Door theorem for CEGs whih issigni�antly more exible than Pearl's Front Door theorem for BNs.Pearl quotes three onditions for using the Front Door theorem, but thesean atually be redued to two onditional independene onditionsY qX j (Z;Q(X)) and Z qQ(X) j XUsing the same approah as for the Bak Door theorem, we an suggestappropriate CEG versions of these onditions. We de�ne �x and �y as insetion 3. We let f�zg be a partition of 
 and at present impose no furtherrestitions on the form of �z (as for example is done in setion 3.3). Thenwe partition 
 as f�ixgi2I = f [wX2WX �(e(wX ; wiX))gi2Iwhere the edge e(wX ; wiX) is the edge leaving wX labelled xi.Substituting into the two onditional independene onditions we get thefollowing�(�y j �(wX(1));�z) = �(�y j �(wX(1));�ix;�z)= �(�y j �(wX(1)); [wX2WX �(e(wX ; wiX));�z)= �(�y j �(e(wX(1); wiX(1)));�z) (4:1)and �(�y j �(wX(1));�ix;�z) = �(�y j �(wX(1));�jx;�z)for any i; j 2 I. Also�(�z j �ix) = �(�z j �(wX(1));�ix)= �(�z j �(wX(1)); [wX2WX �(e(wX ; wiX)))= �(�z j �(e(wX(1); wiX(1)))) (4:2)and �(�z j �(wX(1));�ix) = �(�z j �(wX(2));�ix)for any wX(1); wX(2) 2 WX and any i 2 I.24
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Figure 5: BN and CEG C for Example 34.1. A Front Door theorem for singular manipulationsTheorem 2. (Front Door theorem) If f�xg is de�ned as above, �y isde�ned as in setion 3, and f�zg is a partition of the w0 ! w1 paths in Cwhih satis�es onditions (4.1) and (4.2) above, then f�zg is a Front Doorpartition, and̂��x(�y) =Xz �(�z j �x)Xi �(�y j �ix;�z) �(�ix)A proof of this theorem is in the appendix.Note that unlike Pearl's Front Door theorem for BNs, Theorem 2 doesnot require the bloking set f�zg to lie downstream of the manipulation.This is learly very useful.Example 3. Using the Front Door theoremWe here onsider the example from [9℄ setion 3.3.3, but without refereneto Pearl's hypothetial data. This example relates to the debate onerningthe relationship between smoking and lung aner summarised in [18℄.In Pearl's example the verties of the BN in Figure 5 orrespond to binaryvariables as follows: 25
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setion 3.4), whih would be possible sine eah element of WX is a distintstage. Doing this we would getp(y1 jj x1) = �̂�x(�y) =XuX �(�y j �(uX);�x) �(�(uX))=Xa p(y1 j a; x1) p(a)For our Front Door theorem we have WX as above, f�ixg = f�1x;�2xg, where�1x (= x1) = �(e(w1; w3)) [ �(e(w2; w5))�2x (= x0) = �(e(w1; w4)) [ �(e(w2; w6))The event �y is expressible as SwY �(eu(wY ; w1)), where our fwY g arefw7; w8; w9; w10g, and eu(wY ; w1) is the (upper) edge from wY to w1 la-belled y1.We here use the exibility of CEG analysis to give eah �z a slightlydi�erent form from that used in Setion 3.3. We use a form similar to thatof �ix or �y, and let �1z =[wZ �(e(wZ; w1Z))where our fwZg are fw3; w4; w5; w6g, and the set fw1Zg onsists of w7 orre-sponding to wZ = w3; w4, and w9 orresponding to wZ = w5; w6.�2z is de�ned similarly, with fw2Zg onsisting of w8 orresponding towZ = w3; w4, and w10 orresponding to wZ = w5; w6.Using a similar proess to that utilised in the previous example, we anuse the CEG C to hek very quikly that our partitions satisfy onditions(4.1) and (4.2).Paths whih are elements of �(wX(1)) \ �ix \ �1z pass through w1 and w7for both i = 1; 2. The form of �y and the result of Lemma 1 then imply that�(�y j �(wX(1));�1x;�1z) = �(�y j �(wX(1));�2x;�1z)Similar results hold for �(wX(1));�2z; �(wX(2));�1z and �(wX(2));�2z; andhene (4.1) holds.The probability �(�1z j �(wX(1));�1x) is the probability �e(w7 j w3). Butthe positionsw3 and w5 are in the same stage, and �e(w7 j w3) = �e(w9 j w5) =�(�1z j �(wX(2));�1x). Similar results hold for �1z;�2x; �2z;�1x and �2z;�2x; andhene (4.2) holds. 27
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Conditions (4.1) and (4.2) having been satis�ed, we an substitute fromthe graph C into the expression from Theorem 2 to get the Front Door ex-pression for this example. Substituting �1x � x1; �2x � x0; �y � y1; �1z � b1and �2z � b0 into�̂�x(�y) =Xz �(�z j �1x)Xi �(�y j �ix;�z) �(�ix)we get p(y1 jj x1) =Xb p(b j x1)Xx p(y1 j x; b) p(x)So as Pearl found, the expression p(lung aner jj smoker) an be esti-mated from joint or onditional distributions of the variables X (smoker),B (tar in lungs) and Y (lung aner) only.4.2. A more exible form of the Front Door theoremAt the start of setion 4 we produed a partition of 
 of whih �x wasone element, and noted that this meant on�ning ourselves to manipulationsdiretly analogous to Pearl's Do X = x. This also required us to onsiderpositions fwXg whih had the same number of emanating edges and wherethese edges arried the same label for eah wX . In fat none of these re-stritions is neessary, as we show here. One straightforward proof of Pearl'sBak Door theorem proeeds as follows:p(y jj x) = Xq(x);z "p(q(x); x; z; y)p(x j q(x)) #= Xq(x);z p(q(x)) p(z j q(x); x) p(y j q(x); x; z) (4:3)and then uses the onditional independene statements Y q Q(X) j (X;Z)and ZqX j Q(X) to remove q(x) from (4.3) and leave the expression quotedat the start of Setion 3.Suppose instead we were to invoke the statements Y qX j (Q(X); Z) andZ qQ(X) j X when we reahed expression (4.3). This would yieldp(y jj x) =Xz p(z j x)Xq(x) p(y j q(x); z) p(q(x))28
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This expression does not require knowledge of any joint probability inludingvalues of x other than the one to whih we are manipulating. This leads tothe following Corollary.Corollary 1. If WX ; �x; �y are de�ned as in setion 3, and f�zg is apartition of the w0 ! w1 paths in C whih satis�es onditions (4.1) and(4.2), then f�zg is a Front Door partition, and�̂�x(�y) =Xz �(�z j �x) XwX2WX �(�y j �(wX);�z) �(�(wX))The proof of this orollary follows the proof of Theorem 2 until line (A.2).This version of the Front Door theorem has a number of advantages overthat given in Theorem 2, and over the Front Door theorem for BNs. Firstlywe need to alulate or estimate a smaller number of joint probabilities thanis the ase with Theorem 2 (or the BN version whih is an analogue ofTheorem 2). This latter version is also appropriate, like the Bak Doortheorem of setion 3.2, for the full range of singular manipulations, inludingboth the Do X = x and funtional manipulations of BNs.Note that like our Bak Door theorem, both versions of the Front Doortheorem for CEGs are suited for the analysis of asymmetri ontrolled mod-els, and the Theorem 2 version allows us to use asymmetri bloking sets.The advantages of being able to do this are detailed in setion 3.4. The Corol-lary 1 version allows us to analyse the e�ets of asymmetri manipulations,a task for whih the Front Door theorem for BNs is manifestly unsuited.5. DisussionAs noted in the Introdution, there have been a number of reent ad-vanes in BN theory whih onentrate on the representation and analysis ofasymmetri problems, and on the analysis of ontrolled models. The CEG ispresented here as a omplementary graphial model, appropriate for analysisin both these areas.In this paper, the Bak Door theorem of [22℄ has been generalised, anda Front Door theorem introdued. These theorems exhibit the exibility ofthe CEG framework. They an both be used with all singular manipulationsinluding the basi Do X = x and funtional manipulations possible on BNs.The Front Door theorem allows bloking sets whih, unlike Pearl's for BNs,do not need to lie downstream of the manipulation. We have also provided a29
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version of the Front Door theorem whih (again unlike the BN version) doesnot require us to sum over all values of a manipulated variable X.Causal CEG analysis is still in its infany. One potential diretion for fu-ture investigation is the CEG's exibility. So for example we have onsidereda partition f�zg whih is �xed in the sense that its membership is onstant.Causal analysis on CEGs would beome even more exible if we ould letthe membership of f�zg depend in some way on whihever wX 2 WX ourw0 ! w1 path passes through. Looking at our Bak Door theorem, theproblem here would be in interpreting and satisfying ondition (3.2), and itmight prove more sensible to return to the original onditions (A) and (B)of De�nition 5, rather than try to adapt onditions (3.1) and (3.2) to �t thissituation. It would also be useful to adapt our Bak and Front Door theoremsto produe workable versions for some of the non-singular manipulations ofthe type desribed in [22℄ setion 3.2.Longer term, we aim to repliate the work of [3, 11, 23, 24℄ for BNs in pro-duing neessary and suÆient onditions for ausal identi�ability, expressedas funtions of the topology of the unmanipulated CEG.Appendix A.Proof of Theorem 1:�̂�x(�y) = XwX2WX �̂�x(�(wX);�y) = XwX2WX �̂�x(�(wX)) �̂�x(�y j �(wX))sine f�(wX)g form a partition of the atomi events= XwX2WX �(�(wX)) �̂�x(�y j �(wX))sine every wX lies upstream of our manipulation (De�nition 6 (iv))= XwX2WX �(�(wX)) �̂�x(�y j �(wX);�(w0X))sine �(wX) = �(e(wX ; w0X)) � �(w0X) in Ĉ�x= XwX2WX �(�(wX)) �̂�x(�y j �(w0X))30
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using the form spei�ed for �y, the fat that wX � w0X � wY for somewY 2 WY in Ĉ�x, and the result of Lemma 1.From the de�nition of our manipulation, any edge lying on a w0X ! w1path in C remains in Ĉ�x, and retains its original probability. Hene any setof path-segments starting at w0X in Ĉ�x orresponds to a set of path-segmentsin C, and has the same probability as this set. Given the form spei�ed for �y,�̂�x(�y j �(w0X)) is the probability of a set of path-segments starting at w0Xin Ĉ�x. Hene �̂�x(�y j �(w0X)) = �(�y j �(w0X))and̂��x(�y) = XwX2WX �(�(wX)) �(�y j �(w0X))= XwX2WX �(�(wX)) �(�y j �(e(wX ; w0X));�(w0X))using the form spei�ed for �y, the fat that e(wX ; w0X) � w0X � wY for somewY 2 WY in C, and the result of Lemma 1= XwX2WX �(�(wX)) �(�y j �(e(wX ; w0X)))sine �(e(wX ; w0X)) � �(w0X) in C= XwX2WX �(�(wX)) Xz �(�z;�y j �(e(wX ; w0X)))sine f�zg form a partition of the atomi events= XwX2WX �(�(wX)) Xz �(�y j �(e(wX ; w0X));�z)� �(�z j �(e(wX ; w0X))) (A:1)= XwX2WX �(�(wX)) Xz �(�y j �x;�z) �(�z j �(wX))substituting from (3.1) and (3.2)=Xz �(�y j �x;�z) �(�z) �31
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Proof of Theorem 2:This follows the proof of Theorem 1 until line (A.1). We then invokeonditions (4.1) and (4.2) to give�̂�x(�y) = XwX2WX �(�(wX)) Xz �(�y j �(wX);�z) �(�z j �x)=Xz �(�z j �x) XwX2WX �(�y j �(wX);�z) �(�(wX)) (A:2)=Xz �(�z j �x) XwX2WXXi �(�y j �(wX);�z) �(�(wX);�ix)sine f�ixg forms a partition of 
=Xz �(�z j �x) XwX2WXXi �(�y j �(wX);�ix;�z) �(�(wX);�ix)using ondition (4.1). But�(�(wX);�ix) = �(�(wX);�ix;�z)�(�z j �(wX);�ix) = �(�(wX);�ix;�z)�(�z j �ix)using ondition (4.2) = �(�(wX) j �ix;�z) �(�ix)So �̂�x(�y) =Xz �(�z j �x) XwX2WXXi �(�y j �(wX);�ix;�z)� �(�(wX) j �ix;�z) �(�ix)=Xz �(�z j �x)Xi �(�y j �ix;�z) �(�ix) �AknowledgementsThis researh is being supported by the EPSRC, grant no. EP/F036752/1.32
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