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Abstract

We present the Chain Event Graph (CEG) as a complementary graphical
model to the Causal Bayesian Network for the representation and analysis
of causally manipulated asymmetric problems. CEG analogues of Pearl’s
Back Door and Front Door theorems are presented, applicable to the class
of singular manipulations, which includes both Pearl’s basic Do intervention
and the class of functional manipulations possible on Bayesian Networks.
These theorems are shown to be more flexible than their Bayesian Network
counterparts, both in the types of manipulation to which they can be applied,
and in the nature of the conditioning sets which can be used.

Keywords: Back Door theorem, Bayesian Network, causal identifiability,
causal manipulation, Chain Event Graph, conditional independence, Front
Door theorem

1. Introduction

In this paper we consider cause and effect through the analysis of con-
trolled models. The standard apparatus for such an approach is the Causal
Bayesian Network (CBN) [4, 8, 9, 18]. As noted in [22], CBNs are ideal for
problems which have a natural product space structure, but need adaptation
for problems which do not. It is this latter type of problem that we are
primarily concerned with here.

Context-specific variants of Bayesian Networks (BNs) have been devel-
oped for tackling asymmetric problems [1, 7, 12, 14]. These are still rather
awkward for the representation and analysis of problems whose future de-
velopment at any specific point depends on the particular history of the
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problem upto that point, and the values of a particular set of covariates at
that point. Their use is similarly circumscribed in problems where there may
be no possible outcomes of some variables given certain histories or values of
covariates.

There have of course been many recent advances in CBN theory (see for
example [2, 3, 5, 10, 23, 24]), some of which have made the causal analy-
sis of asymmetric problems simpler. However even with these advances the
available graphical representations for such problems and the types of ma-
nipulation an analyst can consider are still limited. Similarly the available
analytical techniques are often rather crude. It was argued in [22] that causes
are more naturally expressed as events rather than the values of some ran-
dom variable. The Chain Event Graph (CEG) introduced in [16] provides
an ideal graphical representation given this argument. It is also a sensi-
ble representation for the analysis of manipulations to events. Moreover,
as shown in [22], use of the CEG makes available a richer class of possible
manipulations than is generally the case with CBNs.

The collection of techniques available for use with CEG-based causal anal-
ysis is already sufficient for tackling most problems, if not yet as large as that
available for BN-based analysis. A Back Door theorem for CEGs analogous
to Pearl’s [8, 9] Back Door theorem for BNs was introduced in [22]. Here
we present a much more general version of this as well as two versions of a
Front Door theorem, the second of which allows considerably more flexibility
than the analoguous BN version [8, 9]. We anticipate that future work will
replicate for CEGs the work done in [3, 23, 24] which provides necessary and
sufficient conditions for causal identifiability in BNs.

As the CEG is a comparatively new structure, there have been minor
modifications since [16], and indeed since [22]. These are detailed in the next
section. We believe these changes improve the CEG by making it less messy,
and also by turning it into a genuine directed acyclic graph (DAG), which
latter allows us to utilise the many results proven for this graph type.

In Section 2 we define the CEG and manipulated CEG. Section 3 develops
the Back Door theorem and the idea of singular manipulations. A Front Door
theorem, a generalisation of Pearl’s [8, 9] theorem for BNs, is then introduced
in Section 4, and Section 5 provides a discussion of possible directions for
future research.
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2. Definitions and notation

In this section we give a brief definition of a CEG. This has been modified
slightly since [16] and [22]. We also provide some notation that will be used
throughout the paper. We then turn our attention to what it means when
we manipulate a CEG to an event, and present a definition of a manipulated
CEG.

The CEG is a function of an event tree [15], retaining those features
of the tree which allow for the transparent representation of asymmetric
problems. They are a significant extension to trees since they express within
their topology the entire conditional independence structure of the problems
which they have been created to represent [20].

An event tree T is a directed tree with vertex set V(7) and edge set
E(T). The root-to-leaf paths {A} of 7 form the atoms of the event space.
Events measurable with respect to this space are unions of these atoms.

Each non-leaf vertex v € V(T) labels a random variable X (v) whose state
space X(v) can be identified with the set of directed edges e(v,v") € E(T)
emanating from v. For each X (v) we let

(v) = {me(v' | v) | e(v,v') € X(v)}

where 7. (v' | v) = P(X(v) = e(v, ")) are called the primitive probabilities of
the tree; and
I(T) = {I1(v) }vev(r)

Definition 1. (Coloured tree) For an event tree T with vertex set V(T)
and edge set E(T)

1. Two non-leaf vertices v', v? € V(T) are in the same stage u if there is a
bijection P (v', v?) between X(v') and X(v?) such that if ¢ : e(v',v") —
e(v?,v?) then m.(v" | v') = 7w (v* | v?). The edges e(v',v") and
e(v?,v?") have the same colour if v' and v* are in the same stage, and
e(vt, v!") maps to e(v?,v*) under this bijection.

2. Two vertices v', v? € V(T) are in the same position w if for each
subpath emanating from v', the ordered sequence of colours is the same
as that for some subpath emanating from v>.

The set of stages of the tree is labelled L(T), and the set of positions is
labelled K(T).
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In the definition of the CEG below we have removed the undirected edges
from previous definitions, and introduced colouring of nodes. We believe this
makes the CEG easier to read, and it also allows us to utilise the extensive
theory relating to DAGs.

Definition 2. (Chain Event Graph)
The Chain Event Graph C(T) is the coloured DAG with vertex set V(C) and
edge set E(C) defined by:

1. V(C) = K(T) U{w}-

2. (a) For w, w' € V(C) \ {w}, there exists a directed edge
e(w,w') € EC) iff  there are vertices v, v' € V(T) such
that v € w € K(T), v € w' € K(T) and there is an edge
e(v,v') € E(T).

(b) For w € V(C) \ {we}, there exists a directed edge
e(w,we) € E(C) iff  there is a non-leaf vertez v € V(T)
and a leaf vertex v' € V(T) such that v € w € K(T) and there is
an edge e(v,v') € E(T).

3. If v! € w' € K(T), v* € w? € K(T) and v', v*> are members of the
same stage u € L(T), then we say that w', w? are in the same stage u,
and assign the same colour to these positions. We label the set of stages
of C by L(C).

4. Ifvewe K(T), v € w' € K(T) and there is an edge e(v,v") € E(T),
then the edge e(w,w') € E(C) has the same colour as the edge e(v,v").

The root-to-sink paths {A} of C form the atoms of the event space of C.
Events measurable with respect to this space are unions of these atoms.

Each stage u € L(C) labels a random variable X (u) whose state space X(u)
can be identified with the set of directed edges e(w,w') € E(C) emanating
from any w € wu.

Example 1. CEG construction
We illustrate the construction of a CEG through a fault diagnosis exam-
ple, which for illustrative convenience uses only binary variables.

e A machine utilises two components C'1 and C2. Whether C2 is func-
tioning properly or is faulty is independent of whether C'1 is functioning
properly or is faulty.
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Viz O Vi

Figure 1: Coloured tree for Example 1

e [f either component is faulty, then a third component C'3 switches on
automatically, and conditional on this event, whether C'3 functions
properly or is faulty is independent of whether C'1 and C2 function
properly or not.

e If both C2 and C3 are faulty then C2 is replaced by a new compo-
nent C'2'; and conditional on this event, whether C2' functions properly
or not is independent of whether C'1 functions properly or not. As C2’
is a new component the probability of it being faulty is less than that
of C'2 being faulty.

e If C'2 is not faulty but C3 is, then C1 is replaced by a new compo-
nent C'1". As C'1’ is a new component the probability of it being faulty
is less than that of C'1 being faulty.

This information is summarised in Table 1 and in the coloured tree in Fig-
ure 1. The vertices vy & v, are in the same stage (indicated by the colouring of
their outgoing edges) since whether C'2 functions properly or not is indepen-
dent of whether C'1 does so. The vertices vy, vs & vg are in the same stage
since they represent ('3 switching on automatically given different C'1,C2
fault histories, and whether C'3 functions properly or not is independent of
whether C'1 and C2 function properly or not. The vertices vy & vg are in the
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Table 1: Context for Example 1

Descriptor Edges

C1 functioning properly e(vg, v1)

C1 faulty e(vg, v2)

C?2 functioning properly e(vy,v3), e(vg,vs)

C2 faulty e(vy, vq), e(vg, vg)

C3 on & functioning properly e(vq, v7), e(vs,vg), e(veg,v11)
C3 on & faulty e(vy, v8), e(vs,v1g), e(vs, v12)
C2 replaced by C2', C2' functioning properly | e(vg, v13), €(v12,v17)

C2 replaced by C2', C2' faulty e(vg,v14), €(v12,v18)

C1 replaced by C'1', C1" functioning properly | e(vig, v15)

C1 replaced by C1', C'1' faulty e(v10, V1g)

same position (since they root isomorphic coloured subtrees). The vertices
vg & wvyo are in the same stage and the same position.

The CEG in Figure 2 illustrates the ideas of Definition 2. The vertices
vg & vg from the tree have been merged into one position w, representing
C?2 faulty. The positions w; & wy are in the same stage (indicated by the
colouring of the nodes) since whether or not C2 functions properly is inde-
pendent of whether or not C'1 functions properly. The positions ws & w, are
in the same stage as they represent C'3 switching on given C'1 faulty and C2
either functioning properly or not.

The following notation will be used throughout the remainder of the pa-
per. Recall that an atom A is a wyg — ws path in C. The set of atoms
is denoted 2. We write w < w’ when the position w precedes the posi-
tion w' on a wy — ws path. We call w a parent of w' if there exists an edge
e(w,w") € E(C).

Events are denoted A. A(w) is the event which is the union of all wy — w
paths passing through the position w, and A(e(w, w')) is the union of all paths
passing through the edge e(w, w').

We can now define the primitive probabilities of the CEG: 7. (w' | w) is the
probability of the edge e(w, w'); and for each u € L(C) and random variable

X (u) we let
H(u) = {me(w' | w) | w e u}

and

I(C) = {II(u) }uer(e)

6
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Figure 2: Chain Event Graph for Example 1

Note that if we label the probability of the event A by w(A) then 7. (w' | w) =
m(Ale(w,w")) | Aw)).

A subpath of a root-to-sink path is denoted p(w,w"), where w and w"
indicate the start and end positions of the subpath. A(u(w,w")) is the event
which is the union of all paths utilising the subpath p(w,w"). m,(w" | w) =
m(A(p(w,w")) | A(w)) is the probability of the subpath u(w,w").

Before moving on to manipulated CEGs we present a very useful Lemma,
proofs of which appear in [19] and [20].

Lemma 1. For a CEG C and positions wi,ws,ws € V(C) such that
w; < Wy < W3

m(A(ws) | Alwr), AMws)) = m(A(ws) | A(ws))

The result can be extended so that the positions w; & wsy can each be
replaced by edges, and the position wsz can be replaced by a collection of
positions and/or edges.

Essentially this tells us that being at a position (w3) or edge (or collection
of positions or edges), given that we have been at an earlier position (ws) or
edge, is independent of the path taken to that position or edge. This result
is used in the proof of Theorem 1.
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2.1. Manipulated CEGSs

Anything that we observe about a system or do to a system will change the
topology of a graphical representation of that system. In [21] we considered
how the topology of a CEG is altered when we observe an event A. Here
we investigate how the topology of a CEG is altered when we manipulate
to an event A. As the following definitions suggest, the process of updating
our beliefs following a manipulation is very similar to that which happens
following the observation of an event. Note that the use of trees in causal
analysis has a respectable history, featuring in for example [13, 15, 18].

For the purposes of this paper we assume that the CEG is valid (in that it
satisfies the conditions of [22] Definition 3) for any manipulation we choose
to make. A detailed discussion of what makes a CEG valid for a causal
manipulation can be found in [22] Sections 3.1 and 3.2.

The type of events we consider in this paper are intrinsic events [19, 20|
(called C-compatible events in [21]). An intrinsic event A is one where every
atom of A is a wy — we path of a subgraph of C, and every wy — we, path
in this subgraph is an atom of A.

Definition 3. (Manipulated CEG) For a CEG C(V, E) and intrinsic event A,
let C* (the CEG manipulated to the event A) be the subgraph of C with

(a) V(CY) C V(C) contains precisely those positions which lie on a
Wy — Weo path X € A

(b) E(CY) C E(C) contains precisely those edges which lie on a wy — wae
path A € A

(¢) For wi,wy € V(CY), and e(wy,wy) € E(CY), the edge e(wy,w,) has
probability uniquely assigned by the definition of the manipulation to A
(by say Definition 6 or [22] Definition 3)

(d) If wy,wy € V(éA) are in the same stage in C® then these positions and
their emanating edges are coloured in C*.

Probabilities in C* are denoted #*. For completeness we also define a
conditioned CEG (see also [21]).

Definition 4. (Conditioned CEG) For a CEG C(V, E) and intrinsic event A,
let CN (the CEG conditioned on the event A) be the subgraph of C with Vv(ch),
E(C*) defined and coloured analogously with V (C*), E(C") in Definition 3,
and
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(¢c) For wi,wy € V(CY), and e(w,,wy) € E(C"), the edge e(w,wy) has

probability
7TA(w2 L wy) = > nen TA Ale(wr, w)))
‘ > xen TA Awr))

where 7 indicates a probability in C* and © a probability in C.

3. The Back Door theorem

Pearl’s [8, 9] Back Door theorem for BNs provides a condensed version
of the full manipulated probability expression. So when a manipulation is
impossible or unethical in practice, or its effects difficult or impossible to
observe, an analyst may still be able to estimate the probabilities of the
theoretically possible effects of this manipulation.

Since 1995 there has been considerable effort put in to finding conditions
for causal identifiability on BNs [3, 10, 11, 23, 24] that is conditions for
when the effects of a manipulation can be estimated from a subset of variables
observed in the idle system. CEG-based causal theory is unsurprisingly not so
far advanced. The Back Door theorem for CEGs introduced in [22] is however
already more flexible than its counterpart for BNs, as we demonstrate here.

Pearl’s Back Door theorem for BNs states that under certain conditions
on sets of variables X,Y,Z, we can (using the notation of [6]) write the
probability of observing Y = y following a manipulation of X to x as

ply |l 2) = ply | z,2) p(2)

As already implied, this expression requires the analyst to observe only the
idle (or unmanipulated) system and condition on these observations. By
careful choice of the set Z we may be able to calculate or estimate p(y || x)
without conditioning on the full set of measurement variables.

One rather useful aspect of the theorem is that the conditions can be
expressed graphically (that is, on the BN of the problem).

The Back Door theorem for CEGs introduced in [22] is valid for a larger
collection of types of manipulation than are possible with a BN, and since it
refers to manipulation to events rather than of variables, it is more consistent
with our experience of what a manipulation actually involves. As with the BN
version of the theorem, we reduce the complexity of the general manipulated
probability expression, as well as reducing or avoiding identifiability problems
associated with it.
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So consider a manipulation to the event A,. Suppose we wish to find the
probability of (observing) an event A, given that the manipulation to A, has
been enacted that is we wish to produce an expression for w(A, || A;). This
is equal to the probability of the event A, on the CEG éAI, which is the sum
of the probabilities of the wy — w., paths in CA+ which are consistent with

the event A:
7T(Ay || Az) = (Ay)

Note also that (A, | A,) = 7 (A,).
Consider a partition of the atomic events (wy — we pathsin C) {A,}. Then

(A, = (JA:A) Z “(As, Ay)

since the events {A,} form a partition of Q

—Z (Ay | A2) 7 (A2)

Definition 5. (Back Door partition) The partition {A,} forms a Back
Door partition of 2 if

(A) whe(Ay | A,) = m(Ay | Ay, As) (—7r "(Ay [ A) )
(B) 7h«(A,) = w(A,) for all A, € {A,}

If these conditions are satisfied then

T(Ay || Ag) =7 (Ay) = Y w(Ay | gy A) m(AL)

z

The sets of variables Z in the BN-based Back and Front Door theorems are
called blocking sets because they block certain paths between X and Y in the
BN. In a much less transparent way 7 also blocks the effect on Y of other
problem variables so that the manipulated probability expression p(y || x)
can be condensed. The Back Door theorem for CEGs works in an altogether
less mysterious way. The blocking set becomes a partition of the wy — ws
paths of the CEG into sets {A,} which allow us to replace probabilities
evaluated on the manipulated graph by ones evaluated on the idle CEG. As
with the BN version, if we choose {A,} carefully, we can calculate or estimate
(A, || A;) from a partially observed idle system.

10
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3.1. Singular manipulations

Definition 6. (Singular manipulation) A manipulation to A of a CEG C
is called singular if there exist sets W C V(C), Ex C E(C) such that

(1) the elements of W partition Q) (ie. every wy — ws path in C passes
through precisely one w € W),

(i1) for each w € W, there exists precisely one emanating edge e(w,w')
which s an element of Ey,

(111) A is the union of precisely those wy — weo paths that pass through some
e(w,w') € Ey,

(iv) all edge probabilities in CA are equal to the corresponding edge proba-
bilities in C, except that 72 (w' | w) =1 for w € W, e(w,w') € Ey.

Essentially, a singular manipulation is one where every wy — ws path
passes through one of a collection of positions, and the manipulation imposes
a probability of 1 on one edge emanating from each of these positions.

All Do X = z and functional manipulations (but not all stochastic ma-
nipulations) of BNs are singular manipulations, but the set of singular ma-
nipulations is much larger than this.

Note that if the manipulation to an event A is singular then edge proba-
bilities in CA upstream and downstream of the manipulation remain as in the
idle CEG C. If we were to condition on this event A, then edge-probabilities
in C» downstream of the observation would remain as in the idle CEG, but
edge-probabilities upstream would change in accordance with Definition 4 (c).

3.2. A Back Door theorem for singular manipulations

As we also consider effect events (A,) and conditioning sets (A,), we
distinguish our manipulation event A by adding a suffix to give A,. We also
relabel the set W as Wy, the positions within Wy as wy, and the edges of
Defn. 6 (ii) as e(wy, w').

As the set of positions in W partitions {2, we can consider a random vari-
able X, defined on €2, which takes values labelled by the emanating edges
of wy (for each wy) with probabilities dependent on the history of the prob-
lem up to that position wy.

11
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The manipulation to A, assigns a probability of 1 to one of the values of X
at each wyx, dependent on the history of the problem up to that position wx
(ie. a functional manipulation). So A, is of the form

A, = U Ae(wx, wy))

wx EWx

We define an effect variable Y in exactly the same way as we have de-
fined X. So we have a set of positions Wy (downstream of the set Wy)
which partitions € (ie. every wy — ws path in C passes through one of the
positions in Wy ). Then A, consists of all paths that passing through some
wy € Wy, utilise some prespecified edge emanating from that wy. So

Ay = U Ale(wy, wy))

wy €Wy

If we look at the conditions for Pearl’s Back Door theorem on BNs, we
see that both conditions can be re-expressed as conditional independence
statements (see for example [2]). Pearl’s condition that Z (the Back Door
blocking set) must block all Back Door paths from X to Y can be expressed
as

YILQ(X) | (X, 2)

where QQ(X) indicates the variable parents of X. Pearl’s condition that Z
must contain no descendents of X can be expressed as

ZIX | Q(X)

Note that we are here ignoring the possibility that Z = Q(X). We return to
this case in section 3.4.

We have already replaced X = z by A;, and Y = y by A,. We now
replace Z = z by A,, and noting that positions store the relevant history of
a problem upto that point, Q(X) = q(z) by A(wy).

Substituting into Z IT X | Q(X) we get

(A, | A(U)X(l))) (A, | A(U)X(l))aAa:)

=7(A, | A(wX(l)), U Ae(wx, w'y)))

wx EWx

=7(A; | Ale(wxqy, wyqy))) (3.1)

12
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Substituting into Y IT Q(X) | (X, Z) we get

m(Ay | Apy Ay) = (A, | Alwxqy), Au, A)
=m(Ay | Mwxe), | Ale(wx,wi)), As)

wx EWx

=m(Ay | Ale(wxqy, W), As) (3:2)
and
T(Ay | Ale(wxy, w))), Az) = T(Ay | Ale(wx(z), W), Az)

Theorem 1. (Back Door theorem) With Wx, Wy, A,, A, defined as
above, and {A,} a partition of the atomic events, then {A,} is a Back
Door partition if conditions (3.1) and (3.2) hold for all elements of {A,},
wx € Wx.

A proof of this theorem appears in the appendix.

Note that these conditions are on the graph C. They can therefore, like
Pearl’s conditions, be checked on an unmanipulated graph (a representation
of the idle system).

3.3. Checking the conditions for the Back Door theorem

Pearl’s conditions for his Back Door theorem can be checked directly on
the topology of the BN. For the CEG condition (3.1) requires that for each
element A, of the Back Door partition (which could be of the form A(w),
A(e), a union of such events, or some totally different type of event), and
each position wyx € Wy, the probability of A, conditioned on A(wy) is the
same as that of A, conditioned on the event A(e(wy, w')) where e(wy, w')
is the singular edge emanating from wyx which remains in the manipulated
graph. It is however not immediately apparent how to check condition (3.2)
as simply.

Clearly the exact nature of {A,} is something that we can control. As
suggested above we can choose sets of wy — w. paths to belong to any
individual element A, in many different ways. In [22] we let our blocking
set consist of events associated with positions upstream of the manipulation.
As is the case with BNs, blocking sets cannot be associated with variables
that are descendants of the manipulated variable(s), but they don’t need to
be ancestors. So CEG blocking sets can also be created using positions (or

13
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edges) downstream of the manipulation. Indeed, if the events which we wish
to condition on correspond to values of a variable which has not been observed
at the time of the manipulation, and if our CEG has been constructed in
an extensive form order then our blocking set must use positions or edges
downstream of the manipulation. In this paper we offer a generalisation of
the Back Door theorem of [22], but do not intend to duplicate the results
therein. We therefore concentrate in this section on blocking sets downstream
of the manipulation. Between the two papers we cover all possible locations
for blocking sets of this form.

For the remainder of Section 3 we use partitions where each A, is an
event associated with a collection of positions. Replicating this work for
events associated with edges is straightforward. So we let each A, be a union
of smaller events of the form A(w?) for some set of positions {w’}, where this
set is a subset of W,, which is in turn a set of positions downstream of Wy
and upstream of Wy, partitioning €. We can of course make the partitions
coarser or finer as we see fit.

So a typical element of {A,} will be of the form

1€EA

for some set A, w’ € W,.

The process we describe may appear complicated, but as illustrated in
Example 2 it is in fact comparatively straightforward.

As both {A,} and W, are partitions of €, we can specify that

A(w?) N A(wl) = ¢

fori,j € AUBU---UN, where N is the number of elements we have specified
for {A,}.

Now, whereas all elements of W, exist in C, not all will exist in C*=. As
we have control over the nature and coarseness of our partition, we can let
N equal the number of elements of W, which exist in éAz, and construct
each A, so that it contains only one w, which exists in CA+. For each A,
call this position w!. So, however many positions {w'} correspond to each
element of {A,}, there will be only N positions {w!} that exist in C+.

The complete set W, = {w'};cau..un partitions Q. So

m(Ay | A(e(wX(1)=w’)((1)))aAz) =7(Ay | A(e(wX(l)Jw’X(l)))JA(le(l)):AZ)

14
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since A(e(wxq), ) C Alwy ) inC

m(Az, Ay | Ale(wxqy, U)X(l))) A(“)X(l)))
m(As | Ale(wxqy, W) Aw'y))
m(Az, Ay | A(wX 1) ))
m(A | Alw)))

using the forms specified for A,, A,; W, and Wy being downstream of Wy;
and the result of Lemma 1. Hence

m(Ay | Ale(wxqy, wi))), Az) = w(Ay | AMwi)), As) (3.3)

But any path-segment in C starting at U}’X( 1 remains in éAz and we know
that {w }i>2 do not exist in C2+ | 50 there are no path- segments joining wX(l)

to w? (for i > 2) in C*+, and hence no path-segments joining wX( )y to w}
(for : > 2) in C. Therefore

Aw'yqy) N Aw')=¢  fori>2

and
Aw'yqy) N A, = Awly ) N Aw})

so expression (3.3) becomes
T(Ay | Ale(wxy, w))), As) = 7(Ay | Alw)y)), Aw;))
= (A | Aw;))

using the form specified for A,; the fact that W, is downstream of W; and
the result of Lemma 1. Hence

m(Ay | Ale(wxy, wi))), Az) = w(Ay | Ale(wi ), wi)), Az)

as required for condition (3.2).

So if we choose each A, to be of the form described above, where for
each A, only w! exists in C*, then this is sufficient for condition (3.2) to be
satisfied. We now have two conditions which can be checked simply on the
topology of the idle CEG.
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Figure 3: BN and CEG C for Example 2

Example 2. Using the Back Door theorem

We illustrate the use of our Back Door theorem through a medical exam-
ple. As with Example 1 we use binary variables for illustrative convenience.

Our interest is in a condition which can manifest itself in one of two forms
(C =1 or 2). Individuals who will as adults develop the condition (in either
of its forms) display either symptom S4 before the age of ten, or Sg in their
late teens, or both. Whether or not an individual displays S, is labelled by
a variable A, and whether or not they display Sg by a variable B. In both
cases the variable takes the value 1 if the symptom is displayed, and the
value 0 if it is not. There is a treatment 7" available which has some efficiacy
if given in an individual’s early teens. Being treated is labelled X = 1, and
not treated X = 0. Dying before the age of fifty is labelled Y = 1, and dying
at fifty or older YV = 2.

The relationships between the variables A, X, B, C' and Y are described
below, and are portrayed by the CEG in Figure 3, where for convenience
edges are labelled ay for A = 0 etc.

Symptom S4 is often missed by doctors, but if it is detected an individ-
ual is more likely to be given treatment 7. We therefore do not know the
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distributions of A, X | A=0o0r X | A = 1. We do know however that
XTI A.
Evidence from previous studies indicates that

e whether or not an individual displays symptom Sp depends only on
whether or not they displayed symptom Sy (BII X | A),

e displaying either symptom means that an individual will develop the
condition in one of its two forms,

e for individuals displaying S4 but not Sg, developing the condition
in form 1 does not depend on whether or not they had treatment T
(CIOX | A=1,B=0). Also, how long they live depends only on
which form of the condition they develop (YII X | A=1,B=0,C),

e for individuals displaying Sg, developing the condition in form 1 does
not depend on whether or not they displayed S 4, irrespective of whether
they were treated or not (C'IT A | X, B =1). Also, how long they live
depends on whether or not they were treated and on which form of the
condition they develop (Y II A | X, B =1,C).

If we were to attempt to portray the problem via a BN it would look
like the one in Figure 3. Without considerable annotation the BN cannot
express the context-specific conditional independence structure illustrated by
the CEG.

We are interested in the effects on life expectancy (the variable Y) if we
were to treat everybody in the population in their early teens. So we consider
the singular manipulation to A, equivalent to Do X = 1, and calculate the
probability 7(A, || A;) = P(Y = 1 || X = 1). The CEG satisfies the
conditions that every path passes through a position from Wy = {w;,wy}
and a position from Wy = {wsg, wi1, wie, ... wig}. Also, every position in Wy
has an outgoing edge labelled x; (X = 1), and every position in Wy has an
outgoing edge labelled y; (Y =1).

Clearly A is a required variable in any Back Door blocking set Z based
on the BN representation of the problem. But from above we do not know
the distribution of A or of any joint distribution involving A. Can we use
our Back Door theorem for CEGs to find an identifiable expression not in-
volving A?
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Figure 4: Manipulated CEG CA+ for Example 2

In these situations we generally have a lot of flexibility in determining our
blocking set (Z), and some experimentation may be needed before we find
the ideal allocation. Here we are considering A, of the form [JA(w). The
choice of positions will depend on what we can observe, and may be heavily
influenced by observation costs. Note that the connection between these
constraints and our choice of positions can be very subtle — in this example
we clearly cannot estimate P(A =1,B = 0,C = 1), but we can still include
the position wi; in our blocking set. Here we simply imagine that these
constraints and our experimentation have produced a blocking set of positions
W,, lying between Wy and Wy, comprising {ws, wg, wi1, wia, wis, wie}. The
CEG C»+ is given in Figure 4.

Here {e(wx,w'y)} = {e(w, ws3), e(wy, ws) }, and we combine our {w,} to
produce {A,} as follows

{A(ws), A(wir), Awiz), [A(wg) U A(wis) U Awie)]}

Note that (i) {A.} forms a partition of {2, (ii) each A, is of the form |J A(w),
and (iii) three of the A, are singleton A(w,) where w, appears in C*+, and
the fourth A, is the union of three A(w,) only one of which w, is present
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in C*+. So condition (3.2) is satisfied.
It is straightforward to show that our {A,} satisfy condition (3.1). Using
the CEG C we get, for wxy = w; that

m(A(wn) | A(wr)) = [p(z1 | a1) + p(xo | a1)] p(bo | ar) pler | aibo)
:p(bocl \ a1)
m(A(wr) | Ale(wr,ws))) = p(bo | a1) pler | arby) = p(boey | ar)

and similarly for the expression involving w;s.
The position wg is not downstream of w;.

m(A(we) U A(wis) U A(wig) | A(wr)) = p(x1 [ ar) p(by | a1)
+ (o [ ar) p(br | ar) pler | zobr)
+p(zo | a1) p(by [ ar) p(ea | zoby)
=p(bi | a1)
m(A(wg) U A(wis) U Awig) | Ale(wr, ws))) = m(A(wg) | Ale(wr, ws)))
=p(bi | a1)
A similar procedure for wxy = wy confirms that {A,} satisfy condi-

tion (3.1), and so that {A,} is a Back Door partition of 2. Our manipulated
probability expression

pyi [ m1) =7(Ay || Ap) = 7ATAJD(Ay) = ZW(Ay | Mg, Az) m(AL)

z

is evaluated on C, and simplifies to

p(bo) p(y1 | bo) +p(b1) p(y1 | 7101)

So we need only know the distribution of B (the incidence of symptom Spg),
and the conditional distributions of Y (life expectancy) on the events B = 0
(Sp not displayed) and X = 1, B = 1 (treated and Sp displayed). This
expression does not involve A (the incidence of S,4), and interestingly neither
does it involve C' (which form the condition takes). It does however involve B,
which would be impossible if we used the BN from Figure 3 for this model,
as B does not block all Back Door paths from X to Y.
To summarise, the procedure is

e Produce {A,} as prescribed above, and check that it satisfies our Back
Door condition (3.1).
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e Substitute probabilities from C into our Back Door expression and sim-
plify.

This example gives an insight into how to choose the component A, of our
partition. If we can find w, such that A(w,) satisfies

m(AMw:) | Ae(wx, wi))) = m(AMw.) | Mwx)) Vwx € Wx

then we can make A(w,) a A,.

Other A, are produced by combining one position w, that exists in Che
with other positions {w,} that disappear when we create C*: in such a
way that the union of their associated events satisfies the Back Door condi-
tion (3.1) for all wy € Wy.

3.4. Using Wy to create a blocking set

Blocking sets using positions upstream of the set Wx were considered
in [22]. Here we look at using the set W itself to create our blocking set.
This has a direct analogy with analysis on BNs, where it is always possible to
replace Pearl’s set Z by the set Q(X) to give a revised Back Door expression

ply |l x) = ply | =.q(x)) plq(x))
a(x)

This blocking set Z = Q(X) is not derived from the conditions ZI1.X | Q(X)
and Y ITQ(X) | (X, Z), and similarly our Back Door partition {A,} here is
not derived from conditions (3.1) and (3.2). Recalling the analogy between
Q(X) = ¢(x) for BNs and A(wy) for CEGs suggests we look at a parti-
tion {A,} where each A, is of the form

i€A

for some set A, where A(wy) for each wy € Wy is an element of some A,.

The analogy between Q(X) = ¢(z) for BNs and A(wy) for CEGs is not
perfect. It is shown in [22] that a better analogy for parents in a BN is a set
of stages, rather than positions. So here we make a further stipulation about
the sets {wx () }ica, and state that each A, is of the form

A, = U Awyx) = Auy)

wx EUuxX
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for some uy, where each ux is a stage, and the set {ux} form a partition
of Q. We also require that for each wx € ux, the edges e(wx,w') carry the
same label. These labels can differ for different stages.

This is not actually an onerous restriction, as the set of manipulations we
can consider clearly still contains all basic Do interventions on BNs and all
functional Do interventions where the argument of the function is (a subset
of) the parent set of the manipulated variable. In fact we can argue that
this set contains all functional Do interventions of a BN: If a manipulation
is functional in that the value we manipulate X to depends on the value
taken by another variable W, then essentially we have a decision problem
and the BN representation of the system becomes an Influence Diagram (ID)
representation with X as a decision node. Clearly the value of W must be
known before X is manipulated, so in this ID representation there must be
an edge from W to X (see for example [17]) and so W is a parent of X. Hence
we argue that for all functional Do interventions on BNs the argument of
the function is (a subset of) the parent set of the manipulated variable.

In order to demonstrate that the set {A,} is a Back Door partition we
need the result of the following Lemma, a proof of which appears in [19].

Lemma 2. Fora CEGC, wx € V(C), wx € ux € L(C), and A, defined as
in section 3.2

(A, | Mwx)) =7(As | Alux))

This seemingly innocuous result tells us that the probability of leaving a
stage by an edge carrying a particular label is the same as that of leaving
any of its component positions by an edge carrying this label.

The equality holds if the edges e(wy,w') label the same value of X
for each wy € uy. This is the case for all basic Do interventions and all
functional Do interventions as described above.
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Using the proof of Theorem 1 (in the appendix) we can write

ﬁAI(Ay) = Z T(Awx)) T(Ay | Ale(wx, wy)))

wx EWx

= Z m(Awx)) m(A, | Awx),Ay)

wx EWx

=37 > m(A(wx)) m(Ay | A(wy), Ar)

uUx WxEUX

=2 >

ux WxEuUx

m(A(w ) Az Ay)
m(As | Alwx))
(A( x), Az, Ay)

—Z [ S [ AG))
—Z Ay | Mux), Ay) m(Aux))

T(A(ux), Ay, Ay)
m(Ay | Alux))

23

ux

So we can use the set Wy to create a blocking set if we insist that each A, is
A(uy) for some stage uy, and that the edges e(wx, w'y) label the same value
of X for each wy in any wuy.

Our Back Door theorem for CEGs makes causal analysis with them more
flexible than with BNs. Firstly they are ideal for the analysis of asymmetric
controlled models such as treatment regimes. Secondly we can analyse the
effects of asymmetric manipulations, a task which is not necessarily straight-
forward on a BN, particularly if both the manipulated variable and the value
this variable takes are dependent on the values of other variables. These
functional manipulations often require the addition of edges to BN repre-
sentations which can cause difficulties for an analyst trying to find suitable
blocking sets.

Lastly we can use asymmetric blocking sets with CEGs. Recall that
a good Back Door expression allows the analyst to estimate probabilities
of effects from a partially observed system, so this flexibility in our choice
of partition set is very useful when some of the events in the system are
unobservable or have large observational costs. Standard causal analysis
with BNs requires one to be able to calculate or estimate p(z) and p(y | z, 2)
for all values z of the blocking set of variables Z. This is not necessary with
CEGs - our blocking sets do not need to correspond to any fixed subset
of the measurement random variables that define a BN. We have also seen
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that we can use the CEG version of the Back Door theorem in cases where
it would be impossible to use the BN version, as the model does not obey
the conditions specified by Pearl. Note that it would not be at all difficult
for us to create a Back Door partition which for example consisted of some
positions {w,} downstream of the manipulation together with some stages
{ux} coincident with the manipulation.

4. A Front Door theorem for CEGs

Pearl’s Front Door theorem [8, 9] can be used in cases where the Back
Door theorem conditions do not hold or where the events needing to be
observed for the Back Door theorem have too large an observational cost.
Like the Back Door theorem, the Front Door theorem allows one to reduce
the complexity of the general manipulated probability expression used with
BNs, and can allow one to sidestep identifiability problems associated with
it.

Pearl’s Front Door theorem states that under certain conditions on sets
of variables X,Y, Z, we can write

ply | 2) = plz]z) Y ply | 2) pa')

an expression whose value can be estimated from a partially observed idle
system.

The expression for the Front Door theorem is more complex than that for
the Back Door theorem, and this imposes greater restrictions on the types of
manipulation we can consider and also initially on the nature of our blocking
sets. So we confine ourselves here to singular manipulations and note that
as our initial expression will be directly analogous to that for BNs, we will
need to sum over some variable corresponding to Pearl’s X. Hence we need
to produce a partition of €2, of which A, is one element. Realistically this
means confining ourselves to start with to manipulations directly analogous
to Pearl’s Do X = x (for some criterion variable X'), and consider positions
{wx } which each have the same number of emanating edges and where these
edges carry the same labels for each wy (ie. each wy has an emanating edge
labelled z; for j in some set .J).

Note that even for fairly regular problems depictable by BNs there may be
histories or parental configurations of a variable X for which the probability
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of a particular outcome is zero. Although normally we do not draw zero-
probability edges in a CEG, in this case it is advisable to do so, if only for
the edges emanating from those positions associated with the variable X.

In section 4.2 we see that we can relax these conditions considerably,
and that there is a version of the Front Door theorem for CEGs which is
significantly more flexible than Pearl’s Front Door theorem for BNs.

Pearl quotes three conditions for using the Front Door theorem, but these
can actually be reduced to two conditional independence conditions

YIX | (ZQ(X) and ZHQ(X)]|X

Using the same approach as for the Back Door theorem, we can suggest
appropriate CEG versions of these conditions. We define A, and A, as in
section 3. We let {A,} be a partition of {2 and at present impose no further
restictions on the form of A, (as for example is done in section 3.3). Then
we partition {2 as

{Ai}z’elz{ U A(e(anwé())}iel

where the edge e(wy, w%) is the edge leaving wx labelled x;.
Substituting into the two conditional independence conditions we get the
following

7T(Ay ‘ A(wx(l)),/\z) = 7T(Ay ‘ A(wx(l)),A;,Az)
=m(Ay | Mwx), |J Ale(wx, wy)), Az)

wx EWx
= 7m(Ay | Ale(wxy, wiy)), Az) (4.1)
and ‘ ‘
W(Ay | A(U)X(l))aAlxaAz) - W(Ay ‘ A(U)X(l))aAg;aAz)
for any ¢,7 € 1. Also
m(As | AY) = m(A. | A(wxqy), AL)

= W(Az ‘ A(’ll)x(l)), U A(e(anwg()))

wx EWx
=7(A, | A(e(wx(l),wg((l)))) (4.2)

and
71-(AZ ‘ A(wX(l))JA;) = 71-(AZ ‘ A(wX(2))=Ai)

xT

for any wx (1), wxp) € Wx and any i € 1.
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Figure 5: BN and CEG C for Example 3

4.1. A Front Door theorem for singular manipulations

Theorem 2. (Front Door theorem) If {A,} is defined as above, A, is
defined as in section 3, and {A,} is a partition of the wy — wy paths in C
which satisfies conditions (4.1) and (4.2) above, then {A,} is a Front Door
partition, and

At (Ay) =) m(A | A)) w(A, | AL AL) m(AL)

z i

A proof of this theorem is in the appendix.

Note that unlike Pearl’s Front Door theorem for BNs, Theorem 2 does
not require the blocking set {A,} to lie downstream of the manipulation.
This is clearly very useful.

Example 3. Using the Front Door theorem

We here consider the example from [9] section 3.3.3, but without reference
to Pearl’s hypothetical data. This example relates to the debate concerning
the relationship between smoking and lung cancer summarised in [18].

In Pearl’s example the vertices of the BN in Figure 5 correspond to binary
variables as follows:
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Figure 6: Manipulated CEG C*+ for Example 3

X =1: smoker, X = 0: non-smoker,

Y = 1: lung cancer, Y = 0: no lung cancer,

B =1: tar in lungs, B = 0: no tar in lungs.

The variable A is associated with an unobservable genetic tendency, the
presence of which (A = 1) in an individual effects both the probability that
the individual smokes and that they get lung cancer. The variable B by
contrast is observable. Pearl uses the BN to show that it is possible to
estimate p(lung cancer || smoker) from joint or conditional distributions of
the variables X, B and Y even if there were to exist such an unobservable
genetic tendency.

We demonstrate the use of the Front Door thorem for CEGs by repli-
cating this result. The unmanipulated CEG is given in Figure 5, where as
before edges are labelled ay for A = 0 etc. We consider the manipulation
to A, equivalent to Do X = 1 and use Theorem 2 to find an expression for
m(Ay || A,) = P(Y =1 || X = 1). The manipulated CEG C** is given in
Figure 6.

Note that if A was observable we could use the Back Door theorem for
CEGs here with Wy = {w;,ws} doubling up as the blocking set (as in
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section 3.4), which would be possible since each element of Wy is a distinct
stage. Doing this we would get

plys [l w1) =70 (A,) = Y w(Ay | Aux), As) 7(A(ux))

= Zp(yl | a,x1) p(a)

a

For our Front Door theorem we have Wy as above, {Al} = {A! A2} where

AL (= 1) = Ale(wy, w3)) U Ae(ws, ws))
A2 (= 1g) = Ae(wy, wq)) U A(e(ws, wg))

The event A, is expressible as U, A(e"(wy,ws)), where our {wy} are
{wz, wg, wg, wip}, and €"(wy, wy) is the (upper) edge from wy to wy la-
belled ;.

We here use the flexibility of CEG analysis to give each A, a slightly
different form from that used in Section 3.3. We use a form similar to that
of AL or A,, and let

AL = Aetuy, wh)
wz
where our {wz} are {ws, w4, ws, wg}, and the set {w}} consists of w; corre-
sponding to wy; = ws, wy, and wy corresponding to wy = ws, wg.

A? is defined similarly, with {w%} consisting of wg corresponding to
wy = w3, wy, and wyy corresponding to wy = ws, we.

Using a similar process to that utilised in the previous example, we can
use the CEG C to check very quickly that our partitions satisfy conditions
(4.1) and (4.2).

Paths which are elements of A(wx (1)) N AL N A} pass through w; and wy
for both 2 = 1,2. The form of A, and the result of Lemma 1 then imply that

W(Ay | A(’U)X(l)), A}C, Ai) = W(Ay ‘ A(’U)X(l)), Ai, Ai)

Similar results hold for A(wxq)), A% A(wx), Al and A(wx (), AZ; and
hence (4.1) holds.

The probability 7(A] | A(wxq)), A,) is the probability 7.(w; | ws). But
the positions ws and wy are in the same stage, and 7, (w7 | w3) = 7 (wq | w5) =
(AL | A(wx(z)), AL). Similar results hold for AL, AZ; A2, Al and A%, AZ; and
hence (4.2) holds.
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Conditions (4.1) and (4.2) having been satisfied, we can substitute from
the graph C into the expression from Theorem 2 to get the Front Door ex-
pression for this example. Substituting A} = x1, A2 = xo, Ay =y;, AL =
and A% = by into

w0, = Do mAs | AD D w4, | AL AL) w(AL)

we get

p(yr || 21) Zpb\xlzpyl\fvb x)

So as Pearl found, the expression p(lung cancer || smoker) can be esti-
mated from joint or conditional distributions of the variables X (smoker),
B (tar in lungs) and Y (lung cancer) only.

4.2. A more flexible form of the Front Door theorem

At the start of section 4 we produced a partition of  of which A, was
one element, and noted that this meant confining ourselves to manipulations
directly analogous to Pearl’s Do X = x. This also required us to consider
positions {wyx} which had the same number of emanating edges and where
these edges carried the same label for each wy. In fact none of these re-
strictions is necessary, as we show here. One straightforward proof of Pearl’s
Back Door theorem proceeds as follows:

(a(x), 7, 2,y)
plylle) =Y [p—]
2= | ol | a@)

=Y pla@)) p(z | alx),z) ply | 4(2), , 2) (4.3)

a(z),z

and then uses the conditional independence statements Y 11 Q(X) | (X, Z)
and ZI1X | Q(X) to remove ¢(z) from (4.3) and leave the expression quoted
at the start of Section 3.

Suppose instead we were to invoke the statements YIIX | (Q(X), Z) and
ZT Q(X) | X when we reached expression (4.3). This would yield

ply || z) = ZpZIIZpy\q p(a(x))
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This expression does not require knowledge of any joint probability including
values of x other than the one to which we are manipulating. This leads to
the following Corollary.

Corollary 1. If Wx, A,, A, are defined as in section 3, and {A,} is a
partition of the wy — wy paths in C which satisfies conditions (4.1) and
(4.2), then {A,} is a Front Door partition, and

e (Ay) =) m(A | Ay) Y w(Ay | Awx), AL) T(A(wx))

z wx EWx

The proof of this corollary follows the proof of Theorem 2 until line (A.2).

This version of the Front Door theorem has a number of advantages over
that given in Theorem 2, and over the Front Door theorem for BNs. Firstly
we need to calculate or estimate a smaller number of joint probabilities than
is the case with Theorem 2 (or the BN version which is an analogue of
Theorem 2). This latter version is also appropriate, like the Back Door
theorem of section 3.2, for the full range of singular manipulations, including
both the Do X = 2 and functional manipulations of BNs.

Note that like our Back Door theorem, both versions of the Front Door
theorem for CEGs are suited for the analysis of asymmetric controlled mod-
els, and the Theorem 2 version allows us to use asymmetric blocking sets.
The advantages of being able to do this are detailed in section 3.4. The Corol-
lary 1 version allows us to analyse the effects of asymmetric manipulations,
a task for which the Front Door theorem for BNs is manifestly unsuited.

5. Discussion

As noted in the Introduction, there have been a number of recent ad-
vances in BN theory which concentrate on the representation and analysis of
asymmetric problems, and on the analysis of controlled models. The CEG is
presented here as a complementary graphical model, appropriate for analysis
in both these areas.

In this paper, the Back Door theorem of [22] has been generalised, and
a Front Door theorem introduced. These theorems exhibit the flexibility of
the CEG framework. They can both be used with all singular manipulations
including the basic Do X = x and functional manipulations possible on BNs.
The Front Door theorem allows blocking sets which, unlike Pearl’s for BNs,
do not need to lie downstream of the manipulation. We have also provided a
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version of the Front Door theorem which (again unlike the BN version) does
not require us to sum over all values of a manipulated variable X .

Causal CEG analysis is still in its infancy. One potential direction for fu-
ture investigation is the CEG's flexibility. So for example we have considered
a partition {A,} which is fized in the sense that its membership is constant.
Causal analysis on CEGs would become even more flexible if we could let
the membership of {A,} depend in some way on whichever wyxy € Wy our
wy — We path passes through. Looking at our Back Door theorem, the
problem here would be in interpreting and satisfying condition (3.2), and it
might prove more sensible to return to the original conditions (4) and (B)
of Definition 5, rather than try to adapt conditions (3.1) and (3.2) to fit this
situation. It would also be useful to adapt our Back and Front Door theorems
to produce workable versions for some of the non-singular manipulations of
the type described in [22] section 3.2.

Longer term, we aim to replicate the work of [3, 11, 23, 24] for BNs in pro-
ducing necessary and sufficient conditions for causal identifiability, expressed
as functions of the topology of the unmanipulated CEG.

Appendix A.

Proof of Theorem 1:

() = > AN (Awy) Ay) = ) M (Awx)) 7 (A, | Alwx))

wx EWx wx EWx

since {A(wx)} form a partition of the atomic events

= 3 w(A(wx)) 7 (A, | Awy)

wyx EWx

since every wy lies upstream of our manipulation (Definition 6 (iv))

= Y w(Awy)) 7 (A, | Alwx), Aw)))

wyx EWx

since A(wyx) = Ale(wy,w'y)) € A(wly) in C*

= > w(A(wy)) 7 (A, | Awly))

wx EWx
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using the form specified for A,, the fact that wxy < w' < wy for some
wy € Wy in éAI, and the result of Lemma 1.

From the definition of our manipulation, any edge lying on a w'y — wy
path in C remains in éAI, and retains its original probability. Hence any set
of path-segments starting at w'y in Ch corresponds to a set of path-segments
in C, and has the same probability as this set. Given the form specified for A,
#he (A, | A(w'y)) is the probability of a set of path-segments starting at w'y
in C%+. Hence

(A | Adwl)) = (A, | Aduly))

and
e (A,) = Z (A wx)) T(Ay | A(w'y))
= Z T(Awx)) m(Ay | Ale(wx, w'y)), A(w'y))

using the form specified for A, the fact that e(wx, w') < wy < wy for some
wy € Wy in C, and the result of Lemma 1

— Z T(AMwx)) T(Ay | Ale(wx, wy)))

wx EWx

since A(e(wy,w'y)) C A(w'y) in C

= Z W(A(’ll)x)) ZW(AzaAy | A(e(anle)))

wx EWx 2z

since {A,} form a partition of the atomic events

= Z m(Awx)) ZW(Ay | Ale(wx,wy)), A)

x (A, | Ale(wy, w'))) (A1)
= > w(A(wy) Y ow(Ay | Ay AL) w(AL | Alwy))

substituting from (3.1) and (3.2)

=Y w8y | Aw AL 7(AL) -
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Proof of Theorem 2:

This follows the proof of Theorem 1 until line (A.1). We then invoke
conditions (4.1) and (4.2) to give

i (A) = Y w(A(wx)) Yom(Ay | Alwx), As) m(A, | Ay)

=Y " r(A 1A YD w(Ay | Afwx), As) T(A(wy)) (A.2)

= (A A D Y Ay | Alwx), As) w(A(wx), AL

wx€eEWx 1

since {Al} forms a partition of
=3 m(A A DD D> (A, | Awy), AL AL) m(Awx), AY)
z wx€Wx 1@
using condition (4.1). But

m(A(wy), AL, AL)  m(Awy), Al A.)
ﬂ-(Az ‘ A(U)X),A;) 7T(Az | Ag:)

T(A(wy), Ay) =

using condition (4.2)

= W(A(’ll)x) | A;,Az) 7r(Azal:)

So
e (Ay) =) o m(A | Ae) Y D (A | Afwy), AL AL)
z wx€e€Wx i
x (A wx) | AL, AL) m(AL)
= ZW(Az | Ay) ZW(Ay | A;aAz) 7r(A;) [
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