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Modelling overdispersion with the Normalized
Tempered Stable distribution

M. Kolossiatis∗, J. E. Griffin† and M. F. J. Steel∗

Abstract

This paper discusses a multivariate distribution which generalizes the Dirichlet distri-
bution and demonstrates its usefulness for modelling overdispersion in count data. The
distribution is constructed by normalizing a vector of independent Tempered Stable ran-
dom variables. General formulae for all moments and cross-moments of the distribution
are derived and they are found to have similar forms to those for the Dirichlet distribu-
tion. The univariate version of the distribution can be used as a mixing distribution for the
success probability of a Binomial distribution to define an alternative to the well-studied
Beta-Binomial distribution. Examples of fitting this model to simulated and real data are
presented.

Keywords: Mice Fetal Mortality; Normalized Random Measures; Overdispersion

1 Introduction
In many experiments we observe data as the number of observations in a sample with some
property. The Binomial distribution is a natural model for this type of data. However, the
data are often found to be overdispersed relative to that model. This is often explained and
modelled through differences in the binomial success probability p for different units. It
is assumed that xi successes (i.e. observations possessing a certain property) are observed
from ni observations and that xi ∼ Bi(ni, pi) where pi are drawn independent from some
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mixing distribution on (0, 1). The Beta distribution is a natural choice since the likelihood
has an analytic form. However, although analytically convenient, estimates will be biased
if the data does not not support this assumption. Many other choices of mixing distribution
have been studied including the Logistic-Normal-Binomial model (Williams, 1982) and
the Probit-Normal-Binomial model (Ochi and Prentice, 1984). Altham (1978) and Kupper
and Haseman (1978) propose a two-parameter distribution, the Correlated-Binomial, which
allows for direct interpretation and assignment of the correlation between any two of the
underlying Bernoulli observations of a Binomial random variable through one of its two
parameters. Paul (1985) proposes a three-parameter generalization of the Beta-Binomial
distribution, the Beta-Correlated Binomial distribution. There is also a modified version
of the latter in Paul (1987). Brooks et al (1997) use finite mixture distributions to provide
a flexible specification. However, the introduction of a mixture distribution leads to more
complicated inference and harder interpretation of parameters. Kuk (2004) suggests the
q-power distribution which models the joint success probabilities of all orders by a power
family of completely monotone functions which extends the folded logistic class of George
and Dowman (1995). Pang and Kuk (2005) define a shared response model by allowing
each response to be independent of all others with probability π or taking a value Z with
probability 1 − π. Therefore more than one observation can take the common value Z.
They argue that this is more interpretable than the q-power distribution of Kuk (2004).
Rodriguez-Avi et al (2007) use a Generalized Beta distribution as the mixing distribution.

In this paper, we consider an alternative specification for the distribution of pi for which
all cross-moments are available analytically. A random variable X on (0, 1) can be defined
by considering two independent positive random variables V1 and V2 and taking

X =
V1

V1 + V2
.

A popular choice is V1 ∼ Ga(a1, 1) and V2 ∼ Ga(a2, 1) where Ga(a, b) represents a
Gamma distribution with shape a and mean a/b. This choice implies that X follows a
Beta distribution with parameters a1 and a2. The Tempered Stable distribution is a three-
parameter generalization of the Gamma distribution which has the Inverse-Gaussian distri-
bution as a special case. The extra parameter influences the heaviness of the tails of the
distribution. The distribution was proposed by Hougaard (1986) as a generalization of the
stable distribution to model frailties in survival analysis. Recently, it has been found that
the additional flexibility can be useful in the modelling of cell generation times (Palmer et
al, 2008). The Normalized Tempered Stable class is defined by choosing V1 and V2 to be
Tempered Stable random variables and is a rich family of distributions which generalizes
the Beta distribution and, more generally, the Dirichlet distribution, for random variables

2



CRiSM Paper No. 10-1, www.warwick.ac.uk/go/crism

defined on the unit simplex. Normalized Tempered Stable distributions are indexed by a
single additional parameter and can accommodate heavier tails and more skewness than
would be possible for the Dirichlet distribution.

The paper is organized as follows: Section 2 discusses some background ideas: the
Tempered Stable distribution and some distributions on the unit simplex. Section 3 de-
scribes the Normalized Tempered Stable distribution and the form of its moments and
cross-moments, Section 4 considers the use of this distribution as a mixing distribution
in a Binomial mixture, Section 5 illustrates the use of the model for simulated and real data
and compares its fit to other specifications and, finally, Section 6 concludes.

2 Background
This section describes the Tempered Stable distribution and some properties of the Dirichlet
and Normalized Inverse-Gaussian distributions.

2.1 Tempered Stable distribution

The Tempered Stable (TS) distribution was introduced by Tweedie (1984).

Definition 1. A random variable X defined on R+ follows a Tempered Stable distribution
with parameters κ, δ and γ (0 < κ < 1, δ > 0 and γ > 0) if its Lévy density is

u(x) = δ2κ κ

Γ(1− κ)
x−1−κ exp

{
−1

2
γ1/κx

}
.

We will write X ∼ TS(κ, δ, γ).

In general, the probability density function is not available analytically but can be ex-
pressed through a series representation due to its relationship to the positive stable distribu-
tion (see Feller, 1971)

f(x) = c
∞∑

k=1

(−1)(k−1) sin(kπκ)
Γ(kκ + 1)

k!
2kκ+1(xδ−1/κ)(−kκ−1) exp

{
−1

2
γ1/κx

}

where c = 1
2π δ−1/κ exp{δγ}. The expectation of X is 2κδγ(κ−1)/κ and its variance is

4κ(1−κ)δγ(κ−2)/κ. The moment generating function will be important for our derivations
and is given by

E(exp{tx}) = exp{δγ − δ(γ1/κ − 2t)κ}. (2.1)
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There are two important subclasses. A TS
(
κ, ν

κψ2κ , ψ2κ
)

will limit in probability as κ → 0
to a Gamma distribution which has probability density function

f(x) =
(ψ2/2)ν

Γ(ν)
xν−1 exp

{
−1

2
ψ2x

}

and the Inverse-Gaussian distribution arises when κ = 1
2 which has probability density

function
f(x) =

δ√
2π

exp{δγ}x−3/2 exp
{
−1

2
(δ2x−1 + γ2x)

}

The Tempered Stable distribution is infinitely divisible and self-decomposable.

2.2 Dirichlet and Normalized Inverse-Gaussian distribution

The Dirichlet distribution is a commonly used distribution on the unit simplex.

Definition 2. An n-dimensional random variable W = (W1,W2, . . . ,Wn) is said to fol-
low a Dirichlet distribution with parameters a1, a2, . . . , an+1 > 0, denoted Dir(a1, a2, . . . , an+1),
if its density is:

f(w) =
Γ(a1 + a2 + · · ·+ an+1)
Γ(a1)Γ(a2) · · ·Γ(an+1)

n∏

i=1

wai−1
i


1−

n∑

j=1

wj




an+1−1

,

where w = (w1, . . . , wn) is such that w1, . . . , wn ≥ 0 and 0 <
∑n

k=1 wk < 1.

The Dirichlet distribution can be generated through an obvious generalization of the
normalization idea in Section 1 to a vector of (n + 1) independent random variables for
which the i-th entry has a Ga(ai, 1) distribution. Its moments and cross-moments are easy
to calculate and are as follows:

Proposition 1. Let W = (W1, . . . , Wn) ∼Dir(a1, a2, . . . , an+1) and let N1, N2, N ∈ IN.
Defining S =

∑n+1
i=1 ai and µj = aj/S, we can state

1. E(WN
i ) = Γ(S)Γ(ai+N)

Γ(S+N)Γ(ai)
=

∏N−1
k=0

(
ai+k
S+k

)
, i = 1, 2, . . . , n.

2. E(WN1
i WN2

j ) = Γ(S)Γ(ai+N1)Γ(aj+N2)
Γ(S+N1+N2)Γ(ai)Γ(aj)

=
∏N1−1

k=0

(
ai+k
S+k

)∏N2−1
l=0

(
aj+l

S+N1+l

)
, i, j =

1, 2, . . . , n, i 6= j.

3. E(Wi) = µi

4. Var(Wi) = µi(1−µi)
S+1

5. Cov(Wi,Wj) = −µiµj

S+1 .
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The Inverse-Gaussian distribution is an interesting sub-class of Tempered Stable distri-
butions since its probability density function is available analytically. This is also true for
the Normalized Inverse-Gaussian distribution (Lijoi et al, 2005) which is constructed by
normalizing a vector of (n + 1) independent random variables for which all entries have
Inverse-Gaussian distributions. It is defined in the following way.

Definition 3. We say that an n-dimensional random variable W = (W1,W2, . . . , Wn) fol-
lows a Normalised Inverse-Gaussian (N-IG) distribution with parameters ν1, ν2, . . . , νn+1 >

0, or W ∼ N-IG(ν1, ν2, . . . , νn+1), if

f(w) =
exp

{∑n+1
i=1 νi

}∏n+1
i=1 νi

2(n+1)/2−1π(n+1)/2An+1(w)(n+1)/4
K−(n+1)/2

(√
An+1(w)

) n∏

i=1

w
−3/2
i


1−

n∑

j=1

wj



−3/2

(2.2)
where w = (w1, . . . , wn) is such that w1, . . . , wn ≥ 0 and 0 <

∑n−1
k=1 wk < 1, An+1(w) =

n∑

i=1

ν2
i

wi
+

ν2
n+1

1−∑m−1
j=1 wj

and K is the modified Bessel function of the third type.

The expectation and variance of any component Wi, as well as the covariance structure
of any two components, Wi and Wj of a N-IG-distributed random vector W are given in
Lijoi et al (2005):

Proposition 2. Let W = (W1, . . . , Wn) ∼ N-IG(ν1, ν2, . . . , νn+1). Then,

1. E(Wi) = νi
S =: µi, i = 1, 2, . . . , n.

2. Var(Wi) = µi(1− µi)S2 exp{S}Γ(−2, S), i = 1, 2, . . . , n.

3. Cov(Wi,Wj) = −µiµjS
2 exp{S}Γ(−2, S), i, j = 1, 2, . . . , n, i 6= j.

where S =
∑n+1

i=1 νi and Γ(a, x) =
∫∞
x ta−1 exp{−t}dt is the incomplete Gamma func-

tion.

3 Multivariate Normalized Tempered Stable distri-
bution
We define the Multivariate Normalized Tempered Stable (MNTS) distribution in the fol-
lowing way.

Definition 4. Let 0 < κ < 1 and ν = (ν1, ν2, . . . , νn+1) be a vector of positive real
numbers. If V1, V2, . . . , Vn+1 are independent Tempered Stable random variables with Vi ∼
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TS(κ, νi
κ , 1) and

Wi =
Vi

V1 + V2 + . . . Vn+1

then W = (W1,W2, . . . , Wn) follows a Multivariate Normalized Tempered Stable distri-
bution with parameters ν and κ which we denote as MNTS(ν1, ν2, . . . , νn+1;κ).

There are two special cases of this distribution. The Dirichlet distribution arises as
κ → 0 and the Normalized Inverse-Gaussian distribution arises if κ = 1/2:

MNTS(ν1, ν2, . . . , νn+1;κ) κ→0−→ Dir(ν1, ν2, . . . , νn+1)

in probability, and

MNTS(ν1, ν2, . . . , νn+1; 1/2) ≡ N-IG(2ν1, 2ν2, . . . , 2νn+1).

All the moments and cross-moments of the n-dimensional MNTS distribution exist
(since the distribution is defined on the n dimensional unit simplex) and the following
theorem gives their analytic form.

Theorem 1. Suppose that W = (W1,W2, . . . ,Wn) ∼ MNTS(ν1, ν2, . . . , νn+1;κ) and let

N1, N2, N ∈ IN. Then, defining S =
n+1∑

i=1

νi and µi = νi/S, we have that

1. E
(
WN

i

)
=

N∑

l=1

N−1∑

j=0

bN (l, j) Γ
(

l − j/κ,
S

κ

)

2. E
(
WN1

i WN2
j

)
=

N1∑

l=1

N2∑

m=1

N1+N2−1∑

t=0

cN1,N2(l, m, t) Γ
(

l + m− t/κ,
S

κ

)

where

bN (l, j) =

(
N − 1

j

)
(−1)N+j (S/κ)j/κ exp

{
S
κ

}
dN (κ, l)

Γ(N) l!κ
µl

i,

cN1,N2(l, m, t) =

(
N1 + N2 − 1

t

)
(−1)N1+N2+t (S/κ)t/κ exp

{
S
κ

}
dN1(κ, l) dN2(κ,m)

Γ(N1 + N2) l! m! κ
µl

iµ
m
j ,

and dN (κ, l) =
l∑

i=1

(
l

i

)
(−1)i

N−1∏

c=0

(κi− c).

The proof is given in the appendix and extends the method of Lijoi et al (2005) and
James et al (2006). The function dN (κ, l) defined above is related to the generalized Stirling
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numbers, or generalized factorial coefficients, G(n, k, σ) (see, for example, Charalambides
and Singh (1988) and Charalambides (2005)), through the simple formula

dN (κ, l) = (−1)N l!G(N, l, k).

The expressions for the moments are weighted sums of incomplete Gamma functions
which will have negative arguments. It was necessary to use a symbolic language, such as
Mathematica, to accurately evaluate the cross-moments when N1 and N2 becomes large
(over, say, 10). The corresponding code is freely available from:
http://www.warwick.ac.uk/go/msteel/steel homepage/software.

Corollary 1. If W = (W1,W2, . . . , Wn) ∼ MNTS(ν1, ν2, . . . , νn+1; κ) then

E (Wi) = µi,

Var(Wi) = (1− κ)µi(1− µi)

[
1−

(
S

κ

)1/κ

exp
{

S

κ

}
Γ

(
1− 1/κ,

S

κ

)]
,

Cov(Wi, Wj) = µiµj

[
κ + κ

S

κ
− κ exp

{
S

κ

}(
S

κ

)1/κ

Γ
(

2− 1/κ,
S

κ

)
− 1

]

= µiµj(1− κ)

[
exp

{
S

κ

}(
S

κ

)1/κ

Γ
(

1− 1/κ,
S

κ

)
− 1

]
,

and
Corr(Wi,Wj) = −

√
µi

1− µi

µj

1− µj
.

The expectation of Wi and the correlation between Wi and Wj do not depend on κ

and have the same form associated with the Dirichlet and the Normalized Inverse-Gaussian
distributions. The form of the variance generalizes the form for the Dirichlet and Normal-
ized Inverse-Gaussian distributions since the variance of Wi only depends on ν through
S =

∑n
i=1 νi and the mean µi = νi/S and we can write Var(Wi) = α(κ, S)µi(1− µi) for

some function α.
Applying the results of Theorem 1 to the special case of the Normalized Inverse-

Gaussian distribution allows us to extend the results of Lijoi et al (2005) (as given in
Proposition 2) to more general cross-moments:

Corollary 2. Let W = (W1,W2, . . . , Wn) ∼ N-IG (ν1, ν2, . . . , νn+1) then, for N, N1, N2 ∈
IN
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1. E
[
WN

i

]
=

N∑

l=1

N−1∑

j=0

bN (l, j) Γ (l − 2j, 2S)

2. E
[
WN1

i WN2
j

]
=

N1∑

l=1

N2∑

m=1

N1+N2−1∑

t=0

cN1,N2(l,m, t) Γ (l + m− 2t, 2S)

where

bN (l, j) =

(
N − 1

j

)
(−1)N+j S2j 22j+1 exp {2S} dN (l)

Γ(N) l!
µl

i,

cN1,N2(l, m, t) =

(
N1 + N2 − 1

t

)
(−1)N1+N2+t S2t 22t+1 exp {2S} dN1(l) dN2(m)

Γ(N1 + N2) l! m!
µl

i µm
j ,

dN (l) =
l∑

i=1

(
l

i

)
(−1)i

N−1∏

c=0

(
i

2
− c

)
, S =

n+1∑

i=1

νi and µi = νi
S .

In the calculation of dN (l) above, we only need to calculate the additive terms for odd
values of i, as the other terms will be 0.

E(W ) = 0.7, Var(W ) = 0.01 E(W ) = 0.9, Var(W ) = 0.008

0 0.5 1
0

2

4

6

0 0.5 1
0

5

10

15

Figure 1: The densities of NTS distributions with the same mean and variance but different values of κ.
In each graph the values are: κ = 0 (dashed line), κ = 0.5 (solid line), κ = 0.9 (dot-dashed line)

The univariate MNTS, which we term the Normalized Tempered Stable
(
with parame-

ters ν1, ν2 and κ, written NTS(ν1, ν2;κ)
)
, is an important case and we study its properties

in detail. As κ → 0, the distribution tends to a Beta distribution with parameters ν1 and
ν2. As κ increases, the Tempered Stable distribution becomes heavier tailed and this carries
over to the Normalized Tempered Stable distribution. This effect is illustrated in Figure 1.
In both cases, as κ increases the distribution becomes more peaked around the modal value,
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with heavier tails. The effect is more pronounced when the mean of W is close to 1 (or 0).
Figure 2 shows how the variance changes with κ (left), how the kurtosis changes with κ

(middle) and the relationship between the two, for a NTS(ν, ν; κ) distribution. Kurtosis is
defined as the standardized fourth central moment:

Kurt(X) =
E(X − E(X))4

(Var(X))2
.
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0.2

0.25

kappa

va
ria

nc
e
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Figure 2: The Variance and kurtosis of NTS distribution with mean 0.5: (a) shows κ versus the variance,
(b) shows κ versus the kurtosis and (c) shows variance versus kurtosis. In each graph: S = 0.1 (solid
line), S = 1 (dashed line) and S = 10 (dot-dashed line).
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Figure 3: Skewness against κ for various values of the mean for some NTS distributions. In each graph:
S = 0.1 (solid line), S = 1 (dashed line) and S = 10 (dot-dashed line).

This graph shows that the variance decreases as κ increases. For other values of the
first moment µ = ν1

ν1+ν2
the relationship between the variance and κ is the same but the

variance becomes smaller as µ moves further from 1/2. Also note that, for any given κ, the
variance decreases with S = ν1 + ν2 (in line with the Beta and the N-IG behaviour).
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From the shape of the graph of kurtosis plotted against κ, one can see that as κ increases,
the tails of the underlying TS distributions become heavier. There is a dramatic increase in
kurtosis for values of κ greater than 0.8. The shape of this graph is preserved for all values
of the other parameters, ν1 and ν2, and we note that the minimum kurtosis is not always
achieved for the limiting case as κ → 0, although the value at this limit is very close to
the overall minimum. For µ → 0, the value of κ that gives the minimum value of kurtosis
tends to 0.2, whereas for not very small values of µ, the case κ ' 0 seems to provide the
smallest kurtosis. There is also symmetry around µ = 1/2. The values of kurtosis increase
as |µ − 1/2| increases, whereas for large values of κ, kurtosis decreases as S = ν1 + ν2

increases, and for small values of κ kurtosis increases as S increases. In other words, the
range of possible kurtosis values decreases with S.

In the right graph in Figure 2 we see the relationship between the variance and the kur-
tosis for µ = 0.5. The shape again is the same for other values of the parameters ν1 and ν2

and the graph is exactly the same for µ and 1− µ. The Beta distribution corresponds to the
point at the left end of the graph (i.e. for smallest variance).

Let skewness of a distribution denote its standardized third central moment, i.e.

Skew(X) =
E(X − E(X))3

(Var(X))3/2
.

If µ = 1/2 the skewness is zero for all values of κ. Figure 3 shows the skewness against
κ for various values of µ and S. We only plot the skewness Skew(µ, S, κ) for µ < 0.5
since Skew(µ, S, κ) = −Skew(1 − µ, S, κ) (which follows from the construction of the
distribution). As the value of µ moves away from 1/2, the value of skewness also increases
in absolute terms. On the other hand, when the value of S = ν1 + ν2 increases, skewness
decreases in absolute value. Finally, note that, as for kurtosis, the minimum skewness
(maximum, for µ > 1/2) is not achieved for κ ' 0, but (usually) for some value between
0 and 0.6.

In Figure 4 we plot the relationship between skewness and variance (left) and kurtosis
and skewness (right), for distributions with µ < 0.5. The shape of the graph of skewness
versus the variance does not change as ν1 and ν2 change and the Beta distribution corre-
sponds to the point at the right end of the graph (i.e. with largest variance), whereas the
minimum skewness is not necessarily found at the same point. The graph of kurtosis versus
skewness is the most intriguing one. The reason for this is the little curl of the curve at its
endpoint where we have the smallest values of kurtosis. This is caused by the fact that the
minimum skewness is not achieved at the limiting case κ = 0, whereas it is for the kurtosis
(except for very small values of µ). The endpoint of the graph for which we have minimum
kurtosis corresponds to the Beta distribution. For cases with very small values for the mean,
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Figure 4: Skewness against variance and kurtosis against skewness for some NTS distributions

the same endpoint corresponds to the Beta distribution, but to neither minimum skewness,
nor to minimum kurtosis and the graph curls for both those quantities (rather than only for
the skewness, as in Figure 4).

4 The NTS-Binomial distributions
In this section, we consider using the Normalized Tempered Stable distribution as a mixing
distribution in a Binomial model. This can be written as

Xi ∼ Bi(ni, Pi), Pi ∼ NTS(ν1, ν2;κ).

The NTS(ν1, ν2; κ) mixing distribution represents the heterogeneity in the probability of
success across the different observed groups. The response can be written as the sum of n

Bernoulli random variables, Xi =
∑ni

j=1 Zi,j where Zi,1, Zi,2, . . . , Zi,ni are i.i.d. Bernoulli
with success probability Pi. The intra-group correlation is defined as Corr(Zi,k, Zi,j) which
in our model has the form

ρ = (1− κ)

[
1−

(
S

κ

)1/κ

exp
{

S

κ

}
Γ

(
1− 1/κ,

S

κ

)]
. (4.3)

where S = ν1 + ν2. The variance of Xi can be written as

Var(Xi) = n2
i Var(Pi) + niE[Pi(1− Pi)]

where Pi ∼ NTS(ν1, ν2; κ). The first term of this sum can be interpreted as the variance
due to differences between individuals in the sample (between-subject variance) whereas
the second term represents the intra-subject variability. In our model these have a simple
form: Var(Pi) = µ(1−µ)ρ and E[Pi(1−Pi)] = µ(1−µ)(1−ρ), where µ = E(Pi) = ν1

ν1+ν2
.
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The formulae for the moments derived in Theorem 1 can now be used to derive the
likelihood for an observed sample x = (x1, x2, . . . , xn):

f(x) =
∫ 1

0
· · ·

∫ 1

0
f(x|p1, . . . , pN )f(p1, . . . , pN )dp1 . . . dpN

=
N∏

i=1

∫ 1

0
f(xi|pi)f(pi)dpi

=
N∏

i=1

(
ni

xi

)
Epi

(
pxi

i (1− pi)ni−xi
)

where the expectation is given by the result in Theorem 1.

5 Examples

5.1 Simulated data

This simulation study considers the effectiveness of Maximum Likelihood estimation for
the NTS-Binomial and compares its results with the Beta-Binomial model. We created 18
data sets by simulating from the NTS-Binomial model with different parameter values. The
model is parameterized by (λ, µ, ρ) where λ = log κ− log(1− κ), µ = ν1/(ν1 + ν2) and
ρ is the intra-group correlation defined in (4.3). The number of observations for each unit
ni is set equal to a common value n. The NTS-Binomial and the Beta-Binomial models
were fitted to each data set. The Beta-Binomial is parameterized as µ = ν1/(ν1 + ν2) and
ρ = 1/(ν1 + ν2 + 1) for which E[Pi] = µ and Var[Pi] = µ(1 − µ)ρ in a similar way to
the NTS-Binomial. Table 1 shows the true parameter value and the maximum likelihood
estimates for all data sets with (asymptotic) standard errors shown in parentheses using the
NTS-Binomial model. The standard errors calculated using the (λ, µ, ρ)-parametrization
were found to be more reliable than those using the original parameterisation for these
data. The parameters µ and ρ are well-estimated in all cases. The parameter λ is harder to
estimate but becomes increasingly better estimated as n or N are increased. The estimates
of µ and ρ with the Beta-Binomial model are very similar to those with the NTS-Binomial
model, illustrating robustness of these parameters to the model misspecification. However,
the skewness and kurtosis are sensitive to the choice of models for some parameter val-
ues as shown in Table 2. The skewness (in absolute terms) and the kurtosis tend to be
underestimated by the Beta-Binomial model and the problem becomes more pronounced
as µ moves away from 1/2. The standard errors for µ and ρ are only slightly larger for

12
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data set n N λ̂ µ̂ ρ̂

1 λ = −0.69, 6 500 -0.71 (5.43) 0.67 (0.022) 0.26 (0.017)
2 µ = 0.67, 1000 -1.07 (5.26) 0.67 (0.014) 0.26 (0.012)
3 ρ = 0.25 1500 -0.71 (3.34) 0.67 (0.013) 0.24 (0.0098)
4 12 500 -0.75 (5.17) 0.67 (0.041) 0.26 (0.023)
5 1000 -0.29 (3.11) 0.68 (0.040) 0.24 (0.018)
6 1500 -0.47 (2.82) 0.67 (0.029) 0.26 (0.012)

7 λ = 0.41, 6 500 1.24 (4.00) 0.19 (0.015) 0.051 (0.037)
8 µ = 0.2, 1000 0.16 (0.51) 0.20 (0.016) 0.052 (0.030)
9 ρ = 0.062 2000 -0.23 (0.000002) 0.20 (0.0067) 0.063 (0.023)

10 12 500 0.41 (0.15) 0.21 (0.080) 0.064 (0.079)
11 1000 0.40 (0.00008) 0.19 (0.030) 0.065 (0.050)
12 1500 0.41 (0.0019) 0.20 (0.025) 0.058 (0.039)

13 λ = 1.39, 6 500 0.50 (16.67) 0.31 (0.016) 0.044 (0.021)
14 µ = 0.33, 1000 2.29 (3.70) 0.33 (0.014) 0.031 (0.018)
15 ρ = 0.026 2000 2.40 (14.58) 0.33 (0.010) 0.011 (0.011)
16 12 500 2.56 (15.62) 0.33 (0.078) 0.012 (0.055)
17 1000 1.50 (15.62) 0.33 (0.053) 0.027 (0.028)
18 1500 1.73 (6.13) 0.33 (0.047) 0.026 (0.033)

Table 1: Maximum likelihood estimates for λ, µ, and ρ for the NTS-Binomial model with the simulated
data sets.

the NTS-Biomial model compared with the Beta-Binomial model (results not shown). The

(a) (b)
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Figure 5: Density of the mixing distribution for the NTS-Binomial (solid line) and Beta-Binomial
(dashed line) models evaluated at the maximum likelihood estimates for: a) λ = −0.69, µ = 0.67,
ρ = 0.25, n = 6, N = 1500 and b) λ = 1.39, µ = 0.33, ρ = 0.026, n = 12, N = 1000
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True value NTS-Binomial Beta-Binomial
n N Skew Kurt Skew Kurt Skew Kurt

λ = −0.69, 6 500 -0.617 2.39 -0.634 2.38 -0.572 2.38
µ = 0.67, 1000 -0.620 2.43 -0.577 2.51
ρ = 0.25 1500 -0.622 2.41 -0.608 2.46

12 500 -0.643 2.39 -0.591 2.41
1000 -0.692 2.52 -0.587 2.45
1500 -0.643 2.41 -0.567 2.41

λ = 0.41, 6 500 1.07 4.26 1.470 6.04 0.521 3.15
µ = 0.2, 1000 0.922 3.89 0.721 3.38
ρ = 0.062 2000 0.916 3.79 0.707 3.38

12 500 1.040 4.14 0.681 3.32
1000 1.070 4.31 0.676 3.38
1500 1.050 4.21 0.678 3.35

λ = 1.39, 6 500 0.571 3.52 0.516 3.08 0.180 2.96
µ = 0.33, 1000 1.070 6.02 0.249 2.92
ρ = 0.026 2000 0.803 5.19 0.143 2.97

12 500 0.959 6.10 0.152 2.97
1000 0.625 3.71 0.229 2.93
1500 0.698 4.04 0.224 2.92

Table 2: The skewness and kurtosis evaluated at the maximum likelihood estimate for the NTS-Binomial
and Beta-Binomial models with the simulated data sets.

difference between the two models can be illustrated by plotting the estimated mixing dis-
tribution. The density function of the NTS distribution is not available analytically and
so a kernel density estimate is calculated from 50 000 random variates simulated from the
Tempered Stable distribution using the R code of Palmer et al (2008b). Figure 5 displays
these densities for data sets 3 and 17, respectively. In both cases, the NTS-Binomial dis-
tribution is able to capture the shape of the simulated data. The Beta-Binomial distribution
is able to capture the general shape of the distribution but not some features. For example,
the densities are very different for values close to 1 for data set 3 and the mass around the
mode is very different for data set 17.
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5.2 Mice fetal mortality data

Brooks et al (1997) analyze six data sets of fetal mortality in mouse litters. The data sets
are: E1, E2, HS1, HS2, HS3 and AVSS. E1 and E2 were created by pooling smaller data
sets used by James and Smith (1982), HS1, HS2 and HS3 were introduced by Haseman and
Soares (1976) and the AVSS data set was first described by Aeschbacher et al (1977). In
each data set, the data were more dispersed than under a Binomial distribution. Brooks et
al (1997) show that finite mixture models fit the data better than the standard Beta-Binomial
model in all data sets except AVSS. Here, we fit the NTS-Binomial and its special case
when κ = 1/2, the N-IG-Binomial model, as alternatives. Several other models have been
applied to these data including the shared response model of Pang and Kuk (2005) and
the q-power distribution of Kuk (2004). We use the data with the correction described in
Garren et al (2001).

Data N λ̂ µ̂ ρ̂

E1 205 1.036 (4.152) 0.089 (0.033) 0.079 (0.130)
E2 211 1.062 (2.862) 0.110 (0.044) 0.116 (0.122)

HS1 524 0.979 (2.767) 0.090 (0.023) 0.080 (0.091)
HS2 1328 1.600 (2.328) 0.108 (0.0090) 0.040 (0.032)
HS3 554 1.411 (1.793) 0.074 (0.018) 0.105 (0.083)

AVSS 127 -∞ 0.069 (0.038) 0.0059 (0.137)

Table 3: Maximum likelihood estimates with standard errors for the parameters in NTS-Binomial model
for the six mice fetal mortality data sets.

Table 3 shows the maximum likelihood estimates of the parameters of the NTS-Binomial
models with their related asymptotic standard errors (shown in parentheses). In all data sets
except AVSS the estimate of λ is substantially different from λ = −∞ (which corresponds
to the Beta-Binomial case). In the other data sets λ is estimated to be between 0.979 and
1.6 which correspond to κ values between 0.74 and 0.83. This suggests that the estimated
mixing distributions are substantially different from a Beta distribution. In fact the tails of
the distribution are much heavier than those defined by a Beta distribution with the same
mean and variance. The estimated mixing distributions are shown in Figure 6 with the
mixing distribution for the Beta-Binomial distribution (the AVSS data set is not included
since the estimates for NTS-Binomial and Beta-Binomial models imply the same mixing
distribution).

Estimated skewness and kurtosis for the two distributions are shown in Table 4. The
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Figure 6: Density of the mixing distribution for the NTS-Binomial (solid line) and Beta-Binomial
(dashed line) models evaluated at the maximum likelihood estimates for the mice fetal mortality data set

NTS-Binomial Beta-Binomial
Skew Kurt Skew Kurt

E1 2.75 13.26 1.41 2.42
E2 2.66 11.99 1.42 2.25

HS1 2.67 12.62 1.41 2.42
HS2 2.66 13.57 1.00 1.21
HS3 3.89 22.93 1.65 3.46

Table 4: Estimates of the skewness and kurtosis of the mixing distributions for the Beta-Binomial and
NTS-Binomial distributions

third and especially fourth moments are much larger for the NTS-Binomial model which
confirms the interpretation of κ given in Section 3.

The maximum likelihood values for the NTS-Binomial model are substantially better
than those for the Beta-Binomial model. In addition, we compare the NTS-Binomial model
to the main competitors in the literature: the finite mixture models of Brooks et al (1997),
the shared response model of Pang and Kuk (2005), the Correlated-Binomial of Altham
(1978) and Kupper and Haseman (1978), the Beta-Correlated Binomial of Paul (1985) and
the q-power distribution of Kuk (2004). We also consider the normalized Inverse-Gaussian
distribution, which fixes κ = 1/2 in the NTS-Binomial model. The Akaike Information
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Criterion (AIC) and the Bayesian Information Criterion (BIC) are used as measures of fit.
If L is the maximum likelihood value, n is the data size and k is the number of parameters,
the AIC = −2 log L + 2k and the BIC = −2 log L + k log n.

Model E1 E2 AVSS HS1 HS2 HS3
Beta-Binomial +8.3 +6.0 341.9 +9.3 +43.9 +32.8
NTS-Binomial +4.8 +1.1 +2.0 +1.2 +24.1 +3.4
N-IG-Binomial +5.1 +0.6 +0.5 +3.1 +38.9 +18.8
B-B/B mixture +3.5 +0.4 +3.8 1550.3 3274.7 1373.9
2-d binom. mixture +1.7 +0.6 +1.9 +20.6 +20.1 +4.6
3-d binom. mixture +5.1 +1.9 +5.7 +1.1 +4.1 +1.8
Best binom. mixture +5.1 +1.9 +9.7 +4.5 +1.7 +5.5
Shared response 563.1 687.8 +6.1 +20.3 +42.5 +8.9
q-power +6.6 +8.4 +8.0 +6.5 +2.1 +0.5
Correlated-Binomial +26.2 +36.7 +1.2 +57.0 +67.3 +94.5
B-C-B +7.8 +1.3 +2.0 +8.4 +35.7 +24.0

Table 5: AIC values for the competing models for each data set. The smallest value for each data set is
shown in bold and other AIC values are shown as differences from that minimum.

Results for each data set are given in Table 5 (for AIC) and Table 6 (for BIC). The
best model has the smallest value of the information criterion. In both tables, the smallest
value of AIC/BIC for each of the data sets are given in bold and the values for the other
models are given as differences from the best model. In the tables, B-B/B mixture is the
Beta-Binomial/Binomial mixture (i.e. a mixture consisting of a Beta-Binomial part and a
Binomial part), 2-d/3-d correspond to mixtures of two or three Binomials respectively, B-
C-B is the Beta-Correlated-Binomial model, and N-IG is the normalised Inverse-Gaussian
distribution. Finally, the best Binomial mixture is a mixture of Binomials with the number
of components unknown. The number of components to be fitted is derived using the
program C.A.MAN, using directional derivative methods (see Bohning et al (1992)). We
also found that the log likelihood value given by Pang and Kuk (2005) for E1 was not
consistent with their estimates. Their value seems to correspond to the data set given by
Brooks et al (1997) rather than the corrected version given by Garren et al (2001).

The NTS-Binomial model performs consistently well for all six data sets, especially in
terms of BIC. The N-IG-Binomial model also performs quite well (although it does worse
for HS2 and HS3). For the E1 and E2 data, the shared response model has the lowest AIC
and BIC values. However, the N-IG-Binomial model has a very similar value. For the
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Model E1 E2 AVSS HS1 HS2 HS3
Beta-Binomial +8.3 +6.0 347.6 +6.2 +41.9 +32.3
NTS-Binomial +8.1 +4.5 +4.9 +2.4 +27.2 +7.2
N-IG-Binomial +5.1 +0.6 +0.5 1561.9 +36.8 +18.3
B-B/B mixture +10.2 +4.6 +9.5 +5.4 +8.3 +8.2
2-d binom. mixture +5.0 +4.0 +4.8 +21.7 +23.2 +8.4
3-d binom. mixture +15.1 +12.0 +14.2 +10.8 +17.5 +14.3
Best binom. mixture +15.1 +12.0 +23.9 +22.7 +25.6 +26.6
Shared response 569.7 694.5 +6.1 +17.2 +40.4 +8.4
q-power +6.6 +7.9 +9.0 +3.4 3287.2 1383.0
Correlated-Binomial +26.2 +36.7 +1.2 +53.9 +65.2 +94.0
B-C-B +11.1 +4.6 +4.9 +9.6 +38.8 +27.8

Table 6: BIC values for the competing models for each data set. The smallest value for each data set are
shown in bold and other BIC values are shown as differences from that minimum.

AVSS data, the Beta-Binomial model is the best model with the N-IG-Binomial coming
a close second. Considering the HS1-HS3 data sets, the differences between the criterion
values of the different models are larger than in the other data sets, due to the much larger
data size. For HS1, the N-IG-Binomial model is actually the best in terms of the BIC,
whereas the B-B/B mixture performs best in terms of the AIC. The value of AIC for the N-
IG-Binomial model and the value of BIC for the B-B/B mixture are, as one would expect,
close to the smallest values. The NTS-Binomial model is the second best in terms of BIC
and third (but also very close to the second) in terms of AIC. The best model for the HS2
and HS3 data is the B-B/B mixture in terms of AIC and the q-power model in terms of BIC.
For HS3, the NTS-Binomial is second best in terms of BIC and fourth in terms of AIC.

6 Discussion
This paper has introduced a new class of distributions for random variables on the unit
simplex by normalising Tempered Stable distributions. The resulting Multivariate Nor-
malized Tempered Stable (MNTS) distribution is a natural generalisation of the Dirichlet
distribution and many properties carry over. This distribution only involves a single extra
parameter which can be clearly linked to the heaviness of the tails. The cross-moments
can be calculated analytically which allows easy likelihood inference for an NTS-Binomial
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model, which is the Binomial model mixed with an univariate MNTS distribution on the
success probability. In our examples the NTS-Binomial outperforms the Beta-Binomial
and is competitive with other previously proposed models.
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A Proofs

A.1 Proof of Theorem 1, part 1

We exploit the representation of the Normalized Tempered Stable distribution through Tem-
pered Stable random variables. If W ∼ MNTS(ν1, ν2, . . . , νn+1; κ) then we can write
Wi = Vi

V where V =
∑n+1

j=1 Vj , V1, V2, . . . , Vn+1 are independent and Vj ∼ TS(κ,
νj

κ , 1).
Then, we have:

E
[
WN

i

]
= E

[
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(A.3) is an application of the Fubini Theorem and (A.4) is an application of Theorem (16.8)
in Billingsley (1995). Finally, for (A.5) we used the know form for the moment generating
function of the Tempered Stable distribution.

The difficulty is to calculate (1), i.e. the N -th derivative of the function exp
{−νi

κ (1 + 2u)κ
}

.
This is possible using Meyer’s formula, which is a variation of Faa di Bruno’s formula (see,
for example, Johnson et al (2002)): if f and g are functions with sufficient derivatives then

∂N

∂uN
(g ◦ f)(x) =

∂N

∂uN
[g(f(u))] =

N∑

l=0

g(l)(f(u))
l!

{
∂N

∂hN
[f(u + h)− f(u)]l
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h=0

}

In this case, g(x) = exp{x} and f(x) = −νi
κ (1 + 2x)κ. We first consider:

[f(x + h)− f(x)]l =
νl

i

κl
[(1 + 2x)κ − (1 + 2x + 2h)κ]l
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and the derivative can be seen to be

∂N
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i
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The derivative can be expressed as
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∂hN
[f(x + h)− f(x)]l

∣∣∣∣
h=0

= 2N νl
i

κl

l∑

i=1

(
l

i

)
(−1)i(1 + 2x)κ(l−i)

N−1∏

c=0

(κi− c)(1 + 2x + 2h)κi−N

∣∣∣∣∣
h=0

= 2N νl
i

κl

l∑

i=1

(
l

i

)
(−1)i(1 + 2x)κl−N

N−1∏

c=0

(κi− c)

By plugging the above in Meyer’s formula, and noting that g(k)(f(x)) = g(f(x)) =
exp

{−νi
κ (1 + 2x)κ

}
, we can see that

∂N

∂uN
exp

{
−νi

κ
(1 + 2u)κ

}
= 2N

N∑

l=1

exp
{−νi

κ (1 + 2u)κ
}

l!
νl

i

κl

l∑

j=1

(
l

j

)
(−1)j(1 + 2u)κl−N

N−1∏

c=0

(κj − c)

= 2N
N∑

l=1

exp
{−νi

κ (1 + 2u)κ
}

l!
νl

i

κl
(1 + 2u)κl−NdN (κ, l)

(A.7)

where

dN (κ, l) =
l∑

j=1

(
l

j

)
(−1)j

N−1∏

c=0

(κj − c) =
l∑

j=1

(
l

j

)
(−1)j Γ(κj + 1)

Γ(κj −N + 1)

It is now straightforward to verify that

E
(
WN

i

)
=

(−1)N2N exp
{

S
κ

}

Γ(N)

N∑

l=1

νl
i

κl dN (κ, l)
l!

∫ ∞

0
uN−1 exp

{
−S

κ
(1 + 2u)κ

}
(1+2u)κl−Ndu.

The integral in the last expression can be simplified using the substitution y = (1 + 2u)κ

and the Binomial theorem:
∫ ∞

0
uN−1 exp

{
−S

κ
(1 + 2u)κ

}
(1+2u)κl−Ndu =

1

2NκSl

κl

N−1∑

j=0

(
N − 1

j

)
(−1)j Sj/κ

κj/κ
Γ

(
l − j/κ,

S

κ

)

and therefore

E
(
WN

i

)
=

N∑

l=1

N−1∑

j=0

(
N − 1

j

)
(−1)N+j exp

{
S
κ

}
dN (κ, l)

Γ(N) l!κ

(
S

κ

)j/κ (νi

S

)l
Γ

(
l − j/κ,

S

κ

)
.¤
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A.2 Proof of Theorem 1, part 2

For the cross-moments of the MNTS distribution, we have:

E
[
WN1

i WN2
j

]
=E

[
V N1

i V N2
j

V N

]
, where N = N1 + N2

=E

[
V N1

i V N2
j

Γ(N)

∫ ∞

0
uN−1 exp {−uV } du

]

=
(−1)N

Γ(N)

∫ ∞

0
uN−1 E

[
∂N1

∂uN1
exp {−uVi}

]
E

[
∂N2

∂uN2
exp {−uVj}

] ∏

t6=i,j

E [exp {−uVt}] du

=
(−1)N

Γ(N)

∫ ∞

0
uN−1 ∂N1

∂uN1
E [exp {−uVi}] ∂N2

∂uN2
E [exp {−uVj}]

∏

t 6=i,j

E
[
exp

{− uVt

}]
du

=
(−1)N

Γ(N)
exp

{
S

κ

} ∫ ∞

0
uN−1 ∂N1

∂uN1

(
exp

{
−νi

κ
(1 + 2u)κ

})

× ∂N2

∂uN2

(
exp

{
−νj

κ
(1 + 2u)κ

})
exp



−

∑

t 6=i,j

νt

κ
(1 + 2u)κ



 du

Using the result for the N−th derivative of the function exp
{−νi

κ (1 + 2u)κ
}

in (A.6), we
find:

E
(
WN1

i WN2
j

)
=

(−1)N

Γ(N)
exp

{
S

κ

}
2N

N1∑

l=1

N2∑

m=1

dN1(κ, l)dN2(κ,m)
l!m!

νl
i

κl

νm
j

κm
I∗l,m(κ)

where
I∗l,m(κ) =

∫ ∞

0
uN−1 exp

{
−S

κ
(1 + 2u)κ

}
(1 + 2u)κ(l+m)−N du.

Using the same substitution as above, y = (1+2u)κ, in I∗l,m(κ), together with the Binomial
theorem, we find:

E
(
WN1

i WN2
j

)
=

N1∑

l=1

N2∑

m=1

N1+N2−1∑

t=0

cN1,N2(l, m, t)Γ
(

l + m− t/κ,
S

κ

)
(A.8)

where

cN1,N2(l, m, t) =

(
N1 + N2 − 1

t

)
(−1)N1+N2+t (S/κ)t/κ exp

{
S
κ

}
dN1(κ, l) dN2(κ,m)

Γ(N1 + N2) l! m! κ
µl

iµ
m
j . ¤

A.3 Proof of Corollary 1

For the first moment we have:

b1(1, 0) =

(
0
0

)
(−1)1 exp

{
S
κ

}
ν1

i

Γ(1)1!κ1+0/κ S1−0/κ
(−κ), and d1(κ, 1) = −κ ⇒ b1(1, 0) = exp

{
S

κ

}
νi

S
.
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The result follows from noting that Γ
(
1− 0/κ, S

κ

)
= Γ

(
1, S

κ

)
=

∫∞
S
κ

exp{−t}dt =

exp
{−S

κ

}
.

The second moment is

E
[
W 2

i

]
= −(1− κ)µi(1− µi)

S1/κ

κ1/κ
exp

{
S

κ

}
Γ

(
1− 1/κ,

S

κ

)
+ µi(1− κ + µiκ)

since d2(κ, 1) =

(
1
1

)
(−1)1(κ− 0)(κ− 1) = κ(1− κ) and d2(κ, 2) = 2κ2, which im-

plies that b2(1, 0) = (1− κ) exp
{

S
κ

}
µi, b2(1, 1) = −(1− κ) exp

{
S
κ

}
µi

S1/κ

κ1/κ , b2(2, 0) =

κ exp
{

S
κ

}
µ2

i and b2(2, 1) = −κ exp
{

S
κ

}
µ2

i
S1/κ

κ1/κ . The result follows from noting that
Γ

(
1− 0/κ, S

κ

)
= exp

{−S
κ

}
and Γ

(
2− 0/κ, S

κ

)
= exp

{−S
κ

} (
1 + S

κ

)
.

In order to calculate the covariance we only have to calculate c1,1(1, 1, 0) and c1,1(1, 1, 1).
Noting that d1(κ, 1) = −κ it follows that

c1,1(1, 1, 0) =

(
1
0

)
(−1)2 exp

{
S
κ

}
(−κ)2 ν1

i
κ1

ν1
j

κ

Γ(2)1!1!κS1+1−0/κ

κ1+1−0/κ

= exp
{

S

κ

}
κ

νiνj

S2
= exp

{
S

κ

}
κµiµj

c1,1(1, 1, 1) =

(
1
1

)
(−1)3 exp

{
S
κ

}
ν1

i ν1
j

Γ(2)1!1!κS1+1−1/κ

κ1+1−1/κ

= − exp
{

S

κ

}
κ

S1/κ

κ1/κ

νiνj

S2
= − exp

{
S

κ

}
κµiµj

S1/κ

κ1/κ

The fact that Γ
(
1 + 1− 0/κ, S

κ

)
= Γ

(
2, S

κ

)
= exp

{−S
κ

} (
1 + S

κ

)
implies that

E [WiWj ] = κµiµj

[
1 +

S

κ
− exp

{
S

κ

}(
S

κ

)1/κ

Γ
(

2− 1/κ,
S

κ

)]
.

Subtracting E(Wi)E(Wj) from the above, we derive the formula for the covariance of
Wi and Wj , and the result follows. ¤
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