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Abstract. The standard Bayesian Information Criterion (BIC) is derived un-

der some regularity conditions which are not always satisfied by the graphi-
cal models with hidden variables. In this paper we derive the BIC score for

Bayesian networks in the case when the data is binary and the underlying
graph is a rooted tree and all the inner nodes represent hidden variables. This

provides a direct generalization of a similar formula given by Rusakov and

Geiger in [10]. Geometric results obtained in this paper are complementary to
the results in the previous paper [18] extending our understanding of this class

of models. The main tool used in this paper is the connection between asymp-

totic approximation of Laplace integrals and the real log-canonical threshold.

1. Introduction

Let X(N) = X1, . . . , XN be a random sample of random variables with values in
a finite discrete space [k] := {1, . . . , k}. We assume that the true model for the data
is M0. In this paper we focus on the Bayesian approach to the model selection.
Hence, given a finite set of possible parametric models we choose a model M with
likelihood function f(θ;X(N),M) = P(X(N)|M, θ) according to the maximum a
posteriori probability given the observed data:

P(M|X(N)) ∝ g(M)P(X(N)|M) = g(M)
∫

Θ

f(θ;X(N),M)ϕ(θ|M)dθ,

where θ ∈ Θ denotes the model parameters, Θ ⊆ Rd is the parameter space, g(M)
is a prior distribution on the set of considered models, and ϕ(θ|M) is a prior
distribution on Θ given M. We focus on the model selection using large sample
approximations for log P(M|X(N)) called the BIC score.

We assume here that g(M) is uniform on the space of all the considered models.
This reduces the problem to maximizing the marginal likelihood P(X(N)|M). From
now on we fix M and hence we frequently omit it in the notation. The model is
assumed to be an image of a real analytic map p : Θ → ∆k−1, where ∆k−1 is the
probability simplex {x ∈ Rk : xi ≥ 0,

∑
xi = 1}. We assume that Θ ⊂ Rd is a

compact and semianalytic set, i.e. Θ = {x ∈ Rd : g1(x) ≥ 0, . . . , gl(x) ≥ 0}, where
gi are real analytic functions. The prior distribution ϕ : Θ → R is assumed to be
strictly positive, bounded and smooth on Θ.

Assuming the observations in X(N) are independent we can write Z(N) :=
log P(X(N)|M) as a function of sample proportions p̂(N)

i = Ni/N ∈ ∆k−1 where
Ni is the number of times that pattern i ∈ [k] was observed in the data X(N). Let
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`(p(θ);X) = log f(θ;X) be the log-likelihood for a single observation. Then the
log-likelihood of the data can be rewritten as

(1) `N (p(θ)) =
k∑
i=1

Ni log pi(θ) = N`(p(θ); p̂(N)).

In this paper following [10] we always assume that there exists N0 such that
p̂(N) = p̂ ∈M for all N > N0 and p̂ has positive entries. With this assumption the
maximum likelihood estimates are given as Θ̂ := p−1(p̂) ⊂ Θ. This follows from
the properties of the multinomial distribution. For given p̂ define the normalized
log-likelihood as a function f : Θ→ R

(2) f(θ) = f(p(θ); p̂) = `(p̂; p̂)− `(p(θ); p̂) ≥ 0

and denote

(3) I(N) :=
∫

Θ

exp {−Nf(θ))}ϕ(θ)dθ.

Then the logarithm of the marginal likelihood can be written as Z(N) = ˆ̀
N +

log I(N), where ˆ̀
N = `N (p̂).

It follows from [1], [7], [16] that under the above assumptions the geometry of
Θ̂ contains all the data we need to obtain the asymptotic approximation for Z(N).
This leads to the concept of the real log-canonical threshold of Θ̂, which will be
presented in the next section. In the standard setting one assumes that Θ̂ is a
single point. In this case the posterior distribution is asymptotically normal and to
approximate Z(N) for large N we use the Laplace approximation which gives us
the BIC score

(4) Z(N) = ˆ̀
N −

d

2
logN +O(1),

where d = dim Θ and O(1) is a standard notation which means that the omitted
term of the approximation is bounded by a constant. This evaluation was first
performed by Schwarz [12] for Linear Exponential models and then by Haughton
[4] for Curved Exponential models under some additional technical assumptions.

In this paper we investigate the asymptotic approximation for Z(N) for directed
graphical models induced by trees such that all the variables in the system are
binary and in addition we do not observe the inner nodes. These models in general
do not allow us to use the standard asymptotic approximation as in (4) since the
MLE in this case is never unique. This involves the advanced analytical tools for
approximating general Laplace integrals introduced in this context by Watanabe
[15] which link to some earlier results of Varchenko (see e.g. [1]). An algebraic
treatment of the real log-canonical threshold presented in [7] and in this paper may
simplify some asymptotic approximation techniques used in statistics.

For a given tree T and some data X(N) denote the set of possible MLEs by
Θ̂T ⊂ ΘT , where ΘT is the parameter space for the model (for details see Section
3). A surprising fact proved in this paper is that the second-order moments between
the observable variables in the system completely determine the geometry of Θ̂T

and hence also the asymptotics. In fact the only thing we need to know is the set of
sample covariances that vanish. An especially nice formula for the approximation
of the marginal likelihood is given in the case of trivalent trees, i.e. the trees such
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that each inner node has degree three (see Theorem 25). For example if all the
covariances between the leaves are nonzero then Θ̂T is a finite set of points and

Z(N) = ˆ̀
N −

4n− 5
2

logN +O(1),

where n is the number of leaves of T . Since in this case dim ΘT = 4n − 5 this
is exactly the formula in Equation (4). However, in general this formula does not
apply. First, the coefficient of logN can be different than dim Θ. Second, one
can obtain an additional log logN term affecting the asymptotics. For example
for n ≥ 4 if all the sample covariances vanish and the tree is rooted in a leaf (for
relevant definitions see Section 3) then

Z(N) = ˆ̀
N −

3n
4

logN +O(1).

If the tree is rooted in an inner node then

Z(N) = ˆ̀
N −

3n
4

logN +O(log logN),

where the coefficient in front of log logN depends on some additional conditions.
The paper is organized as follows. In Section 2 we provide the theory of as-

ymptotic approximation of the marginal likelihood integrals. This theory allows to
approximate marginal likelihood without standard regularity assumptions. We link
these concepts with the real log-canonical threshold which allows us to use simple
algebraic arguments. In Section 3 we define Bayesian networks on rooted trees and
provide a useful parametrization of these models in terms of the tree-cumulants
introduced in a previous paper [18]. In Section 4 we analyze the geometry of MLE
sets using some combinatorial insight. In Section 5 we present some further results
on asymptotics and links with the real log-canonical threshold. In Theorem 24 we
provide the approximation formula in the case when this set is a smooth subset of
the parameter space. In Theorem 25 we state the main result of this paper which
gives formulas for the BIC score for Bayesian networks on trivalent rooted trees
with hidden variables. The rest of the paper is devoted to the proof of this result.
We first reduce the problem using techniques which mimic the ones proposed by
Rusakov and Geiger [10]. Then we finish the proof using some polyhedral geom-
etry and the method of Newton diagrams. The paper is concluded with a short
discussion.
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2. Asymptotics of marginal likelihood integrals

Given θ0 ∈ Rd, let Aθ0(Rd) be the ring of real-valued functions f : Rd → R
that are analytic at θ0. Given a subset Θ ⊂ Rd, let AΘ(Rd) be the ring of real
functions analytic at each point θ0 ∈ Θ. In AΘ(Rd) each function can be locally
represented as a power series centered at θ0. By A+

Θ(Rd) we denote a subset of
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AΘ(Rd) consisting of all non-negative functions. Usually the ambient space is clear
from the context and in this case we omit it in the notation writing Aθ0 and so on.

Given a compact subset Θ of Rd, a real analytic function f ∈ A+
Θ and a smooth

positive function ϕ : Rd → R, consider the zeta function defined as

ζ(z) =
∫

Θ

f(θ)−zϕ(θ)dθ.

This function is extended to a meromorphic function in z on the entire complex line.
If ζ(z) has a smallest pole, we denote the pole and its multiplicity by rlctΘ(f ;ϕ)
and multΘ(f ;ϕ). By convention if ζ(z) has no poles then rlctΘ(f ;ϕ) = ∞ and
multΘ(f ;ϕ) = d. If ϕ(θ) ≡ 1 then we omit ϕ in the notation writing rcltΘ(f) and
multΘ(f). Define RLCTΘ(f ;ϕ) to be the pair (rlctΘ(f ;ϕ),multΘ(f ;ϕ)), and we
order these pairs so that (r1,m1) > (r2,m2) if r1 > r2, or r1 = r2 and m1 < m2.

Let θ0 ∈ Θ and let W0 be any sufficiently small neighbourhood of θ0 in Rd.
Then then by the proof of [7, Lemma 2.4] RLCTW0(f ;ϕ) does not depend on the
choice of W0 and it is denoted by RLCTθ0(f ;ϕ). If θ0 lies in the interior of Θ then
W0∩Θ = W0 and RLCTW0∩Θ(f ;ϕ) = RLCTθ0(f ;ϕ). However, if θ0 is a boundary
point of Θ that this usually does not hold and one can show that (c.f. [7])

(5) rlctW0∩Θ(f ;ϕ) ≥ rlctθ0(f ;ϕ), multW0∩Θ(f ;ϕ) ≤ multθ0(f ;ϕ).

By [7, Proposition 2.5] the set of pairs RLCTW0∩Θ(f ;ϕ) for θ0 ∈ Θ has a minimum
and

(6) RLCTΘ(f ;ϕ) = min
θ0∈Θ

RLCTW0∩Θ(f ;ϕ).

In particular if f is the normalized log-likelihood defined in (2) then RLCTΘ(f ;ϕ) =
RLCTbΘ(f ;ϕ) since for all θ ∈ Θ \ Θ̂ we have RLCTθ(f ;ϕ) = (∞, d).

Section 7.2 in [1] and independently Section 2.4 and Section 6.2 in [16] relate
computation of the asymptotic expansion for I(N) in (3) to computation the poles
and their multiplicities of ζ(z) (c.f. [11, Corollary 2]). The following result is based
on the results in [15]. To prove it we can alternatively use some techniques from
[1].

Theorem 1 ([16], §6). Let Θ be a compact semianalytic subset of Rd and f ∈ A+
Θ.

Let I(N) be defined as in (3). Then as N →∞
log I(N) = −rlctΘ(f ;ϕ) logN + (multΘ(f ;ϕ)− 1) log logN +O(1).

A guide to the proof. One first shows the theorem in the case when both f and ϕ
are monomials which follows from [1, Theorem 7.3]. The general case follows by
applications of the Hironaka’s theorem on the resolution of singularities. For detail
see also the proof of [7, Theorem 1.1]. �

Remark 2. The important connection between the theory of real log-canonical
threshold and the resolution of singularities has been omitted in this paper. For
details see [16]. In particular [1, Lemma 7.3] shows that rltcΘ(f ;φ) is always a
rational number and multΘ(f ;φ) is an integer.

Remark 3. Note that there is a substantial difference between the real log-canonical
threshold and the log-canonical threshold which is an important invariant used
in algebraic geometry (see e.g. [6, Section 9.3.B]). Let f ∈ R[x1, . . . , xd] be a
polynomial with real coefficients. By fC we denote its compactification, i.e. the
same polynomial but as a function on Cd. Saito [11] showed that rlct(f) ≥ lct(fC).
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As an example let f(x, y, z) = x2 + y2 + z2. By Kollar [5, Example 8.15] we have
lct0(fC) = 1 and one can easily show that over the real numbers a single blow-up
at the origin (see e.g. [16, Section 3.5]) allows to compute the poles of ζ(z) (c.f.
Proposition 3.3 in [11]) giving rlct0(f) = 3/2.

Let θ0 ∈ Θ and f1, . . . , fr ∈ Aθ0 then the ideal generated by {f1, . . . , fr} is
by definition {f ∈ Aθ0 : f(θ) =

∑r
i=1 hi(θ)fi(θ), hi ∈ Aθ0}. We denote it by

〈f1, . . . , fr〉. Following [7] we generalize the notion of the log-canonical thresholds
to an ideal I = 〈f1, . . . , fr〉. By definition

RLCTθ0(I;ϕ) = RLCTθ0(〈f1, . . . , fr〉;ϕ) := RLCTθ0(f ;ϕ),

where f(θ) = f2
1 (θ) + · · · + f2

r (θ). Below we list some basic properties of the real
log-canonical threshold (see also [7, Section 4]). Most of them mimic analogous
properties of the log-canonical threshold (c.f. [6, Section 9.3.B]). In particular the
next result shows that the real log-canonical threshold of an ideal is well defined.

Lemma 4 (Proposition 4.5, [7]). Given x0 ∈ Rd let f1, . . . , fr, g1, . . . , gs ∈ Ax0 . If
{f1, . . . , fr} and {g1, . . . , gs} generate the same ideal I ⊂ Ax0 , then

RLCTx0(〈f1, . . . , fr〉;ϕ) = RLCTx0(〈g1, . . . , gs〉;ϕ).

Lemma 5 (Proposition 4.7, [7]). Let ρ : Rd → Θ be a proper real analytic isomor-
phism and let f ∈ Ax0 . Denote y0 = ρ−1(x0). Then,

RLCTx0(f ;ϕ) = RLCTy0(f ◦ ρ; (ϕ ◦ ρ)|ρ′|),
where |ρ′| denotes the Jacobian of ρ.

The following three results follow easily from the interpretation of the real log-
canonical threshold and its multiplicity as coefficients in the asymptotic approxi-
mation of I(N).

Lemma 6. If ϕ is positive and bounded on Θ then

RLCTΘ(f ;ϕ) = RLCTΘ(f).

Lemma 7. Let Ix ∈ A0(Rm), Iy ∈ A0(Rn) be two ideal generated by fi(x) for
i ∈ [r] and gj(y) for j ∈ [s] respectively. Let Ix + Iy ∈ A0(Rm+n) denote the ideal
generated by all fi and gj. If RLCT0(Ix) = (λx,mx) and RLCT0(Iy) = (λy,my)
then RLCT0(Ix + Iy) = (λx + λy,mx +my − 1).

Lemma 8. Let f, g ∈ AΘ. If there exist constants c, c′ > 0 such that c g(x) ≤
f(x) ≤ c′g(x) for every x ∈ Θ then RLCTΘ(f) = RLCTΘ(g).

2.1. Netwon diagram method. In certain situations there exists a nice combi-
natorial way to compute the real log-canonical threshold. We base this section on
[1, Chapter 8]. An example of an application of these methods in statistical analysis
can be found in [17].

Let f be formal power series in x1, . . . , xd such that f(x) =
∑
α cαx

α. The
exponents of terms of the polynomial f are vectors in Nd. The Newton polyhedron
of f denoted by Γ+(f) is the convex hull of the subset

{α+ α′ : cα 6= 0, α′ ∈ Rd≥0}.

A subset γ ⊂ Γ+(f) is a face of Γ+(f) if there exists β ∈ Rd such that

γ = {α ∈ Γ+(f) : 〈α, β〉 ≤ 〈α′, β〉 for all α′ ∈ Γ+(f)}.
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If γ is a subset of Γ+(f) then we define fγ(x) =
∑
α∈γ cαx

α. The principal part of
f is by definition the sum of all fγ , where γ goes through the set of all compact
faces of Γ+(f).

If f is a polynomial then the convex hull of the exponents of the terms in the sum
is called the Newton polytope and denoted Γ(f). In this case Γ+(f) = Γ(f) + Rd≥0,
where the plus denotes the Minkowski sum, where the Minkowski sum of two
polyhedra is by definition

Γ1 + Γ2 = {x+ y ∈ Rd : x ∈ Γ1, y ∈ Γ2}.

Definition 9. The principal part of the power series f with real coefficients is
R-nondegenerate if for all compact faces γ of Γ+(f)

(7)
{
x ∈ Rn :

∂fγ
∂x1

(x) = · · · = ∂fγ
∂xn

(x) = 0
}
⊆ {ω ∈ Rn : x1 · · ·xn = 0} .

We say that I = 〈f1, . . . , fr〉 is R-nondegenerate if f =
∑
f2
i is R-nondegenerate.

From the general theory (c.f. [1]) we know that if the principal part of f is
R-nondegenerate and f ∈ A+

Θ it greatly facilitates the computations in Theorem 1.

Theorem 10. Let θ0 ∈ Θ ⊂ Rd, f ∈ A+
θ0

and f(θ0) = 0. If the principal part of f
is R-nondegenerate then RLCTθ0(f) = ( 1

t , c) where t is the smallest number such
that t (1, . . . , 1) hits Γ+(f) and c is the codimension of the face it hits.

A guide to the proof. This result uses the toric resolution of singularities. One can
apply Theorem 7.6 and Theorem 8.6 in [1]. �

Remark 11. Note that this theorem in general will not give us RLCTW0∩Θ if θ0 is
a boundary point of Θ. For a discussion see [1, Section 8.3.4] and [7].

3. Independence tree models

In this section we present the statistical models induced by trees. We introduce
the marginal likelihood integral for the model. The asymptotic approximation of
this integral, which is the main aim of this paper, involves techniques presented in
the previous section.

3.1. General Markov models. All random variables considered in this paper
are assumed to be binary with values in {0, 1}. Let T = (V,E) be a tree with the
vertex set V and the set of edges E. Denote ne = |E| and nv = |V |. We assume
that T is a rooted tree with root r ∈ V , i.e. a directed tree with one distinguished
vertex r and all the edges directed away from r. For any e = (k, l) ∈ E we say
that k and l are adjacent and k is a parent of l and we denote it by k = pa(l).
Let pβ = P(

⋂
v∈V {Yv = βv}). A Markov process on a rooted tree T is a sequence

Y = (Yv)v∈V of random variables such that for each β = (βv)v∈V ∈ {0, 1}nv

(8) pβ(θ) =
∏
v∈V

θ
(v)
βv|βpa(v)

,

where pa(r) = ∅, θ = (θ(v)
βv|βpa(v)

) and θ
(v)
βv|βpa(v)

= P(Yv = βv|Ypa(v) = βpa(v)). In
a more standard statistical language these models are just fully observed Bayesian
networks on rooted trees.

The models analyzed in this paper are induced from Markov processes on trees
by assuming that all the inner nodes represent random variables which are not
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observed directly. Let Y = (X,H) where X = (X1, . . . , Xn) denotes the variables
represented by the leaves of T and H denotes the vector of variables represented
by inner nodes. By [n] we denote the set of leaves of T . Since θ(v)

0|i + θ
(v)
1|i = 1

for all v ∈ V and i = 0, 1 then the Markov process on T defined by Equation (8)
has exactly 2ne + 1 free parameters in the vector θ: one for the root distribution
θ

(r)
1 and two for each edge (u, v) ∈ E given by θ(v)

1|0 and θ
(v)
1|1 . The parameter space

is ΘT = [0, 1]2ne+1. Let MT be a model in ∆2n−1 obtained by summing out in
(8) all possible values of the inner nodes which induces a map p : ΘT → ∆2n−1

parametrizing MT which coordinate-wise for any α ∈ {0, 1}n is given by

(9) pα(θ) =
∑
H

∏
v∈V

θ
(v)
βv|βpa(v)

,

where H is the set of all vectors β = (βv)v∈V such that βi = αi for all i ∈ [n]. We
call it a general Markov model on T .

Let X(N) = (X1, . . . , XN ) denote observations of the random vector representing
the leaves of T and let (Nα) for α ∈ {0, 1}n be the sufficient statistic given by sample
counts. As the introduction we write p̂ = [p̂α], where p̂α = Nα/N , for sample
proportions assuming p̂ ∈MT . Define the normalized likelihood function f : ΘT →
R as in (2). Then f ∈ A+

ΘT
. Since by assumption ϕ(θ) is positive and bounded

on ΘT then by Theorem 1 and Lemma 6 to obtain the asymptotic approximation
for I(N) we need to compute RLCTΘT

(f) = RLCTbΘT
(f) (c.f. Equation 6). Let

θ0 ∈ Θ̂T and let

(10) Iθ0 =
⋂

α∈{0,1}n

〈pα(θ)− p̂α〉 ⊂ Aθ0

be the ideal defining Θ̂T locally near θ0. By [7, Theorem 1.2] we have

(11) RLCTθ0(f) = RLCTθ0(Iθ0).

3.2. A reparametrization of the model. In a previous paper [18] we derived
a formula for a useful alternative coordinate system for MT . It allows us to find
another more convenient basis for Iθ0 . To introduce the result we define a partially
ordered set (poset) ΠT (for details see [18, Section 4]) of all partitions of the set of
leaves [n] obtained by removing some inner edges of T and considering connected
components of the resulting forest. The order on this poset is defined as follows.
For any E1 ⊆ E let E1 denote the maximal with respect to inclusion subset of
E inducing the same partition of [n] as E1. Now if partition π1 is obtained by
removing a subset E1 of the set of edges and π2 is obtained by removing E2 then
π1 � π2 if and only if E1 ⊆ E2. In other words π1 � π2 if and only if π2 is a
refinement of π1, i.e. can be obtained from π1 after removing some additional inner
edges of T .

For any poset Π we define its Möbius function m : Π × Π → R as a uniquely
defined function satisfying (c.f. [14, Chapter 3])

m(π, π) = 1 for every π ∈ Π and m(π1, π2) = −
∑

π1�π≺π2

mI(π1, π).

For any I ⊆ [n] we define T (I) as the minimal subtree of T spanned by I. By mI

we denote the Möbius function of ΠT (I).
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The change of the basis for Iθ0 is performed as follows. First we express the
raw probabilities [pα(θ)] for α ∈ {0, 1}n in terms of a new system of polynomials
given by all the means λi(θ) = EXi supplemented with all the central moments
µI(θ) = E

(∏
i∈I(Xi − λi)

)
for I ∈ [n]≥2 (for details see [18]), where [n]≥k denotes

all subsets of [n] with at least k elements. Finally, make a further change of the
basis such that the first n polynomials are si(θ) = 1 − 2λi(θ) ∈ [−1, 1] and the
remaining ones are the tree cumulants defined as

(12) κI(θ) =
∑

π∈ΠT (I)

mI(0I , π)
∏
B∈π

µB(θ) for all I ⊆ [n],

where 0I denotes I as an element of ΠT (I), i.e. the trivial partition with no inner
edges deleted and T is tree such that T can be obtained from T by edge contractions
and each inner node of T has degree at most three. The new basis for Iθ0 is expressed
in terms of (si(θ))i∈[n] and (κI(θ))I∈[n]≥2 . In this paper the exact form of the map
in Equation (12) is not important. We just use the fact that this map is a regular
polynomial map with a constant Jacobian (equal to one here). Nevertheless we
provide a simple example presenting the basic idea behind the change of basis.

Example 12. Let T be the quartet tree below
1

2

3

4

a b

There is only one inner edge. For example to obtain κ1234 using Equation (12) set
I = {1, 2, 3, 4} and note that ΠT (I) has only two elements: the trivial partition
0 = (1234) and the partition obtained by removing the inner edge (12)(34). By the
definition of the Möbius function mI(0, 0) = 1 and mI(0, (12)(34)) = −mI(0, 0) =
−1 and hence

κ1234 = µ1234 − µ12µ34,

where the central moments can be easily computed from the probability distribu-
tion. To compute κ123 note that ΠT (123) consists of two elements: 0 = (123) and
(12)(3). Then since µ3 = 0 we have

κ123 = µ123 − µ12µ3 = µ123.

In [18] it is also shown that polynomial maps defined above have inverse maps
which are also regular polynomial maps and hence they induce an isomorphism
between Iθ0 and another ideal with the basis expressed in terms of tree cumulants.

Corollary 13. Let p̂ ∈MT , θ0 ∈ Θ̂T and Iθ0 ⊂ Aθ0 be as defined in (10). Then

Iθ0 =

(
n⋃
i=1

〈si(θ)− ŝi〉

)
+

 ⋃
I∈[n]≥2

〈κI(θ)− κ̂I〉

 ,

where ŝi = si(θ) and κ̂I = κI(θ) for any θ ∈ Θ̂T .

The next step is to change the coordinates to obtain a more transparent repre-
sentation of Θ̂T . Define the following set of nv +ne parameters. For every directed
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edge (u, v) ∈ E

ηuv = θ
(v)
1|1 − θ

(v)
1|0 ∈ [−1, 1] and(13)

sv = 1− 2λv ∈ [−1, 1] for each v ∈ V,
where λv = EYv is a polynomial in the original parameters θ of degree depending
on the distance of v from the root r. If r, v1, . . . , vk, v is a directed path in T then

λv(θ) =
∑

α∈{0,1}k+1

θ
(v)
1|αk

θ
(vk)
αk|αk−1

· · · θ(r)
αr
.

We denote the new parameter space by ΩT ⊂ [−1, 1]ne+nv and the coordinates by
ω = ((sv), (ηe)) for v ∈ V, e ∈ E. Note that si for i ∈ [n] are both in the system
of tree cumulants and in the set of parameters. Since T is a tree than one can
easily show that 2ne + 1 = nv + ne and hence dim ΩT = dim ΘT . The change of
parameters defined above is denoted by fθω : ΘT → ΩT . It is a regular polynomial
map with a regular inverse (see [18, Section 3.2]). We write N(I) for the set of
inner nodes of T (I) and E(I) for its set of edges. The parametrization of MT in
the system of tree cumulants is given by the following proposition.

Proposition 14 (Proposition 13 in [18]). Let T = (V,E) be a rooted tree with n
leaves. Then for each i ∈ [n] one has si(ω) = si. Moreover, for any I ∈ [n]≥2 let
r(I) be the unique root of T (I). Then

(14) κI(ω) =
1
4

(1− s2
r(I))

∏
v∈N(I)

sdeg v−2
v

∏
(u,v)∈E(I)

ηuv for all I ∈ [n]≥2,

where the degree of v ∈ N(I) is considered in the subtree T (I).

For any two variables Yu, Yv define ηu,v = Cov(Yu, Yv)/VarYu where Var(Yu) =
1
4 (1 − s2

u). One can show that if (u, v) ∈ E then ηuv defined above concides with
ηu,v and we have (1−s2

u)ηu,v = (1−s2
v)ηv,u. The geometric structure of ΩT is more

complicated than the structure of ΘT . The new parameter space looks as follows.
For any choice of the values for (sv)v∈V , where sv ∈ [−1, 1], we obtain the following
constraints on the remaining parameters (c.f. [18, Equation (14)])

−min {(1 + su)(1 + sv), (1− su)(1− sv)} ≤ (1− s2
u)ηu,v ≤(15)

≤ min {(1 + su)(1− sv), (1− su)(1 + sv)} .
Recall that we assume that for N large enough p̂(N) = p̂ ∈ MT and then

p−1(p̂) = Θ̂T is the MLE. Since ω(θ) is an isomorphism with a constant Jacobian
then by Lemma 5 and Lemma 6 we have RLCTθ0(f(θ)) = RLCTω0(f(ω)), where
ω0 = ω(θ0). Consequently one has RLCTbΘT

(f(θ)) = RLCTbΩT
(f(θ(ω))), where

Ω̂T = ω(Θ̂T ). We call Ω̂T the ML fiber of p̂.
By Corollary 13 to compute RLCTω0(f) it suffices to compute the real log-

canonical threshold at ω0 for the ideal in Aω0 generated by si(ω) − ŝi = si − s0
i

for all i ∈ [n] and κI(ω) − κ̂I for all I ∈ [n]≥2. If T is rooted in an inner node
then κI(ω) does not depend on si for any i ∈ [n] (c.f. Equation (14)) and hence by
Lemma 7 one can compute separately RLCTω0(〈si − s0

i 〉) = (1/2, 1) for all i ∈ [n]
and

(16) (λ,m) = RLCTω0

 ∑
I∈[n]≥2

(κI(ω)− κ̂I)2

 .
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Then one has

(17) RLCTω0(Iω0) = (n/2 + λ,m)

We assumed above that T is rooted in an inner node. However, this reduction
remains valid if T is rooted in one of the leafs - denote it by r. Indeed, by our as-
sumption p̂ has only positive entries and then all the leaves represent non-degenerate
random variables implying s0

i ∈ (−1, 1) for all i ∈ [n]. It follows that (1 − s2
r) is a

unit in Aω0 and for all I ∈ [n]≥2 the ideal 〈κI(ω)− κ̂I〉 ⊂ Aω0 does not depend on
sr which again allows us to use Lemma 7.

For a fixed p̂ we denote by Jω0 ⊂ Aω0 the ideal generated by κI(ω)− κ̂I for all
I ∈ [n]≥2. By (16) and (17) the real canonical threshold of this ideal allows us to
compute the real log-canonical threshold of Iω0 . In the rest of the paper we focus
on computing the real log-canonical threshold of Jω0 for different points ω0 ∈ Ω̂T .
This by Equation (11) allows us to compute RLCTθ0(f) for points θ0 ∈ Θ̂T and
consequently RLCTΘ(f).

4. Singularities and the geometry of ML fibers

The geometry of the ML fiber drives the asymptotics of I(N). In this section we
analyze this using some ideas similar to the ones presented in a different context
by Moulton and Steel in [9, Section 6]. This generalizes similar results for the star
trees (c.f. [3, Theorem 7]).

For p̂ ∈MT let Σ̂ = [κ̂ij ] ∈ Rn×n be the matrix of all pairwise sample covariances
between the leaves of T . We show that the geometry of ML fibers is determined by
zeros in Σ̂. From Equation (14) for any ω0 = (s0

v, η
0
e) ∈ Ω̂T we have

(18) κ̂ij = κij(ω0) =
1
4

(
1− (s0

r(ij))
2
) ∏

(u,v)∈E(ij)

η0
uv.

We say that that an edge e ∈ E is isolated relative to p̂ if κ̂ij = 0 for all i, j ∈ [n]
such that e ∈ E(ij). By Ê ⊆ E we denote the set of all edges of T which are
isolated relative to p̂. By T̂ = (V,E \ Ê) we denote the forest obtained from T by
removing edges in Ê.

Example 15. Let T be a tree given below and assume that the estimator of the
sample covariance under the model contains zeros given in the following 7×7-matrix

b

b

b
b

b

b

b

bc

bc

bcbc

bc

1

2 3

4

5

6

7

1

µ̂ =



∗ ∗ ∗ 0 0 0 0
∗ ∗ 0 0 0 0
∗ 0 0 0 0
∗ ∗ 0 0
∗ 0 0
∗ 0
∗


where the asterisks mean any non-zero values making the matrix positive semi-
definite. One can check that Ê = {(b, c), (c, d), (c, e), (e, 6), (e, 7)} and if we depict
the edges isolated relative to p̂ by dashed lines then T̂ looks as follows
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b

b

b
b

b

b

b

bc

bc

bcbc

bc

a b

c

d

e

1

2 3

4

5

6

7

1

We now define relations on Ê and E\Ê. For two edges e, e′ with either {e, e′} ⊂ Ê
or {e, e′} ⊂ E \ Ê write e ∼ e′ if either e = e′ or e and e′ are adjacent and all the
edges that are incident with both e and e′ are isolated relative to p̂. Let us now take
the transitive closure of ∼ restricted to pairs of edges in Ê to form an equivalence
relation on Ê. Similarily, take the transitive closure of ∼ restricted to the pairs of
edges in E \ Ê to form an equivalence relation in E \ Ê. We will let [Ê] and [E \ Ê]
denote the set of equivalence classes of Ê and E \ Ê respectively.

Example 16. Consider the tree from the example above. Here [Ê] is one element
given by a subtree of T spanned by {b, d, 6, 7} and

[E \ Ê] =
{
{(1, a)}, {(2, a)}, {(a, b), (b, 3)}, {(d, 4), (d, 5)}

}
.

By the construction all the inner nodes of T have either degree zero in T̂ or the
degree is strictly greater than one. The following lemma shows that whenever the
degree of an inner node in T̂ is not zero then the node represents a non-degenerate
random variable.

Lemma 17. If v ∈ V is an inner node of T such that deg(v) ≥ 2 in T̂ then there
exists ε > 0 such that (s0

v)
2 ≤ 1 − ε for every ω0 ∈ Ω̂T . In particular variable Hv

cannot be degenerate.

Proof. By definition of T̂ one can always find two leaves i, j ∈ [n] such that κ̂ij 6= 0
and v lies on the path PT (i, j). Since Xi ⊥⊥ Xj |Hv then one can easily show (c.f.
[18, Equation (19)]) that

κ̂ij =
1
4

(1− (s0
v)

2)ηv,i(ω0)ηv,j(ω0)

and |ηv,i(ω0)|, |ηv,j(ω0)| ≤ 1. We obtain the result taking ε = 4|κ̂ij |. �

We now formulate a lemma which is partly based on Lemma 6.4 in [9].

Lemma 18. Let T = (V,E) be a tree with n leaves, and suppose p̂ ∈MT .

(i): The edges in any equivalence class of [Ê] form a connected subgraph of
T . Moreover, if T is trivalent then this subgraph is either a single edge or
a trivalent tree.

(ii): If each inner node of T has degree at least two in T̂ then all the equiva-
lence classes in [Ê] are just single edges. If each inner node has degree at
least three in T̂ then all equivalence classes in [E \ Ê] are single edges.

(iii): The edges in any equivalence class in [E \ Ê] form a path in T . For any
such path PT (u, v) κuv(ω) is constant on Ω̂T and one can identify its value
up to the sign from the sample proportions p̂.

CRiSM Paper No. 10-06, www.warwick.ac.uk/go/crism



12 PIOTR ZWIERNIK

(iv): Every connected component of T̂ is either a single node or a tree with
the set of leaves contained in [n].

Proof. The only not obvious statement is the second part of (iii). First note that
degree of each inner node of PT (u, v) in T̂ must be at least two. Moreover, degree
of v in T̂ must be at least three unless v is a leaf and the same for u. Consequently,
by Lemma 17 all the nodes in the path represent non-degenerate random variables
and one can prove the statement modifying proof of Proposition 18 in [18]. For
example if both u and v are inner nodes of T then they have degrees at least three
in T̂ and we can find four leaves i, j, k, l such that u separates i from j in T , v
separates k and l and {u, v} separates {i, j} from {k, l} like on the graph below.

b

b b

b

u v

i

j

k

l

bc bc bc bc

bc

1

Moreover by the construction we can require that κ̂ij , κ̂kl, κ̂ik, κ̂jl are all non-zero.
One can show using [18, Equation (8)] that no matter where the root is we have
κij = (1 − s2

u)ηu,iηu,j , κkl = (1 − s2
v)ηv,kηv,l, κik = (1 − s2

u)ηu,iηu,vηv,k and κjl =
(1− s2

u)ηu,jηu,vηv,l. This implies that in Ω̂T one has

κ̂ikκ̂jl
κ̂ij κ̂kl

=
1− s2

u

1− s2
v

η2
u,v(ω) = ρ2

uv(ω),

where ρuv is the correlation between Hu, Hv. In particular ρ2
uv is constant on Ω̂T

and its value is identified by µ̂. Since both u and v have degree at least three in T̂
then by the proof of [18, Proposition 18] the values of s2

u and s2
v are fixed and can

be identified from p̂ and hence since ρ2
uv(ω) is constant the same applies to κ2

uv(ω).
If either u or v is a leaf of T the argument is very similar. �

The following proposition shows that the geometry of the ML fiber Ω̂T is deter-
mined by zeros in the sample covariance matrix Σ̂.

Proposition 19 (The geometry of the ML fiber - the smooth case). Let p̂ ∈ MT

and let T̂ be defined as above. If each of the inner nodes of T has degree at least
three in T̂ then the ML fiber is a finite set of points. If each of the inner nodes of
T has degree at least two in T̂ then all the points of the ML fiber are smooth.

Proof. If each inner node of T has degree at least three in T̂ then for each h one
can find i, j, k ∈ [n] separated from each other by h such that κ̂ij κ̂ikκ̂jk 6= 0 and
then by the proof of Proposition 18 in [18] we can identify all the parameters of the
model up to the choice of labels of the inner nodes.

For the second statement: Consider any equivalence class in [Ê]. By Lemma
18 (ii) the equivalence classes are just single edges and for each such an edge e
one can find two leaves i, j such that the path between i and j crosses Ê only
through e. However one easily checks that if an edge e′ satisfies e′ ∈ E \ Ê then
necessarily ηe′ 6= 0 in Ω̂T . Moreover, each inner node on the path between i and j
is nondegenerate and therefore κ̂ij = 0 if and only if η0

e = 0 which means that the
value of this parameter is fixed in Ω̂T . Moreover, for any inner node h of T which
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has degree at least three in T̂ and for every leaf i ∈ [n] one can identify sh and si
and their values are fixed in Ω̂T again following the lines of the proof of Proposition
18 in [18]. By Lemma 18 (iii) all the equivalence classes in [E \ Ê] are paths and
for any such path PT (k, l) one can identify κ̂kl 6= 0 up to the sign. This gives us an
equation

1
4

(1− s2
r(kl))

∏
e∈PT (k,l)

ηe = κ̂kl 6= 0

defining a regular subset in a subspace of ΩT with coordinates given by sr(kl) and
ηe for all edges e of PT (k, l). If r(kl) is a leaf or deg(r(kl)) ≥ 3 in T̂ then sr(kl) has
a fixed value on Ω̂T by the preceding statement.

It remains to show that there are no other constraints on ηe for e ∈ E(uv). Note
however that if for some I ⊆ [n] such that T (I) has no vertices in Ê then T (I)
either contains all the edges of E(uv) or non of them. In the second case the values
of ηe do not matter since κI = 0 anyway. In the first case the values of ηe matter
only through the value of κuv.

All these algebraic constraints involve different parameters and hence Ω̂T is given
as a subset of ΩT which is a product of the regular subsets given above. In particular
Ω̂T is a regular subset of ΩT . �

The singular case when there is at least one degree zero inner node is more
complicated. We begin with an example.

Example 20. Let T = (V,E) be the tripod tree rooted in the inner node.

b

bc

b

b

1

2

3h

1

The degree of h in T̂ is less than two if and only if κ̂ij = 0 for all i 6= j = 1, 2, 3.
In this situation Ê = E and the ML fiber Ω̂T is given as a subset of ΩT by three
equations

(1− s2
h)ηh1ηh2 = 0, (1− s2

h)ηh1ηh3 = 0, (1− s2
h)ηh2ηh3 = 0

and si = 1− 2λ̂i for i = 1, 2, 3, where λ̂i denotes the sample mean. Geometrically
this is a sum of two hyperplanes s2

h = 1 and three planes given by ηh1 = ηh2 = 0,
ηh1 = ηh3 = 0 and ηh2 = ηh3 = 0 plus additional inequality constraints given by
Equation (15). In particular it is not a regular set since it has self-intersection
points.

The situation changes if T is rooted in one of the leaves, say in 1. In this case
Ω̂T is given as a sum of the three planes {η1h = ηh2 = 0}, {η1h = ηh3 = 0},
{ηh2 = ηh3 = 0} plus the two planes given by {s2

h = 1, η1h = 0}. Note however that
in both situations (the two different rootings) the sets are equal as the subsets of
ΩT since by (15) s2

h = 1 implies η1h = 0.

We say that a node v ∈ V is non-degenerate with respect to p̂ if either v is a leaf
of T or deg v ≥ 2 in T̂ . Otherwise we say that the node is degenerate with respect to
p̂. The set of all nodes which are degenerate with respect to p̂ is denoted by V̂ . By
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14 PIOTR ZWIERNIK

Lemma 17 the set V \ V̂ is the set of all the nodes representing random variables
which cannot be degenerate given p̂. We define the deepest singularity of Ω̂T as

(19) Ω̂deep := {ω ∈ Ω̂T : ηe = 0 ∀e ∈ Ê, s2
v = 1 ∀v ∈ V̂ }.

A priori it is not obvious that Ω̂deep is not an empty set. We check carefully that
there are always points in ΩT satisfying the constraints of Ω̂deep. Let (u, v) ∈ E,
by Equation (15) there are three cases to consider. If u and v satisfy s2

u, s
2
v 6= 1 and

(u, v) ∈ Ê then ηuv = 0 satisfy the inequality (15) for any value su, sv ∈ (−1, 1).
The case when u ∈ V̂ is trivial. Finally if u /∈ V̂ and v ∈ V̂ then the inequality is
satisfied if and only if ηuv = 0 but it still in ΩT . Hence Ω̂deep is non-empty. Note
however that unless V̂ is empty Ω̂deep will always lie on the boundary of Ω.

Proposition 21 (The geometry of the ML fiber - the singular case). If V̂ is non-
empty then the ML fiber is a collection of smooth varieties. Their common inter-
section locus is given by Ω̂deep.

Proof. First assume that all the inner node of T are in V̂ . In particular for all
i, j ∈ [n] we have κ̂ij = 0. Let A×B ⊆ V̂ × Ê. We say that A×B is minimal for
Σ̂ if for every point ω in

ΩA×B = {ω ∈ ΩT : s2
v = 1 for all v ∈ A, ηe = 0 for all e ∈ B}

and for every i, j ∈ [n] we have κij(ω) = 0 and A × B is minimal with such a
property (with respect to inclusion). Note that the ML fiber in this case is given as
the sum of all ΩA×B for all A×B minimal for Σ̂ constrained to ΩT . In particular
every ΩA×B is an affine subspace constrained to ΩT so it is smooth.

The general case can be shown in a similar manner. We use the regular case to
show that each of the components is a smooth variety. �

The next result allows us to restrict our analysis to the neighborhood of Ω̂deep.

Lemma 22. Let ω0 ∈ Ω̂deep then every open neighbourhood of ω0 contains all the
irreducible components of Ω̂T and their intersection. Therefore we have

min
ω0∈ΩT

RLCTθ0(f) = RLCTbΩdeep
(f).

Proof. The first statement follows from the proof of the proposition above. Let
V1, . . . ,Vr be all the irreducible components of Ω̂T from the proposition above.
To prove the second part note first that from the first part we can construct the
intersection lattice whose elements are subsets I ⊆ [r] such that VI =

⋂
i∈I Vi.

In particular [r] as an element of this lattice corresponds to Ω̂deep and each i ∈
[r] corresponds to Vi. Define UI = VI \

⋃
J)I VJ . Since each VI corresponds to

vanishing some of the variables then the function ω 7→ rlctω(f) is constant on each
of UI .

By [6, Exercise 9.3.17] the function ω 7→ rlctω(f) is lower semicontinuous (the
argument used there works over the real numbers). Since the set of values of the real
log-canonical threshold is discrete it means that for ω0 ∈ Ω̂T and any sufficiently
small neighbourhood W0 of ω0 one has rlctω0(f) ≤ rlctω(f) for all ω ∈ W0. Since
for any neighborhood W0 of ω0 ∈ Ω̂deep we have W0 ∩ UI 6= ∅ for all I ⊆ [r] then
necessarily the minimum of the real log-canonical threshold is attained for a point
from the deepest singularity. �
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5. Asymptotics for phylogenetic tree models

Before we state the main theorem of the paper we provide a direct corollary of
Proposition 19. The following useful result generalizes Proposition 3.3 in [11].

Lemma 23. Let Θ ⊂ Rd and f ∈ A+
Θ. If f−1(0) is a smooth subset of an open

set U ⊃ Θ and x0 ∈ f−1(0) then RLCTx0(f) = RLCTΘ(f) = (c/2, 1) where
c = codim(f−1(0)).

Proof. Recall that the real log-canonical threshold does not depend on the choice
of a neighbourhood of x0. Since f−1(0) is smooth then there exists an open neigh-
bourhood of x0 with local equations u1, . . . , ud such that the local equation of
f−1(0) is u2

1 + · · · + u2
c = 0. A single blow-up π at the origin does the job since

in the new coordinates f(π(x̃)) = x̃2
1u(x̃) where u(x̃) is nowhere vanishing and

π′(x̃) = x̃c−1
1 . Hence by [7, Proposition 2.1] RLCTx0(f) = (c/2, 1). Since by (6)

RLCTΘ(f) = minx0∈Θ RLCTW0∩Θ(f) then it suffices to show that if x0 is a bound-
ary point of Θ then RLCTW0∩Θ ≥ (c/2, 1) but this follows from (5) and the fact
that RLCTx0(f) = (c/2, 1) as θ0 is a smooth point of f−1(0) in U . �

The result gives us a way to compute the asymptotic approximation for the
marginal likelihood in a non-singular case.

Theorem 24. Let p̂ ∈ MT be such that each inner node of T has degree at least
two in T̂ . Then

Z(N) = ˆ̀
N −

1
2

(nv + ne − 2l2) log(N) +O(1),

where l2 is the number of the inner nodes of T with degree two in T̂ .

Proof. Since every inner node of T has degree at least two in T̂ then by Proposition
19 the ML fiber Ω̂T is a smooth subset of ΩT and one can see that the constraints
defining it give a smooth subset in any open subset in Rnv+ne containing Ω. Hence
by Lemma 23 it suffices to show that codim(Ω̂T ) = nv +ne− 2l2. This can be seen
directly from the proof of Proposition 19 by listing all the constraints on Ω̂T .

First, for all e ∈ Ê we have ηe = 0 in Ω̂T . If v is either a leaf of T or its degree
in T̂ is at least three then sv is fixed in Ω̂T (this gives nv − l2 further constraints).
Moreover, by Lemma 18 (iii) for all paths PT (u, v) in [E \ Ê] the value of κuv(ω)
is nonzero and fixed on Ω̂T where

κuv(ω) =
1
4

(1− s2
r(uv))

∏
e∈E(uv)

ηe,

which gives an equation involving ηe for e in the path between u and v and sr(uv)

unless r(uv) ∈ {u, v} since in this case the value of sr(uv) is fixed on Ω̂T (r(uv) has
either the degree at least three in T̂ or it is a leaf). Consequently, for each path
PT (u, v) ⊂ E one has euv − luv = 1 where euv is the number of edges and luv is the
number of degree two nodes in PT (u, v). Since all the paths have disjoint sets of
edges and their terminal nodes are either leaves or nodes of degree greater or equal
to three in T̂ then the number of paths is equal to

∑
1 =

∑
(euv− luv) = |E \Ê|− l2

where the sum is over all the paths in [E \ Ê]. Since there are no other constraints
on Ω̂T it follows that the codimension of Ω̂T is |Ê| + (nv − l2) + (|E \ Ê| − l2) =
nv + ne − 2l2. �
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It is a known fact that without lost of generality we can assume that all the inner
nodes of T have degree at least three. It follows from the fact that p ∈ MT if and
only if p ∈ MT ′ where T ′ is a tree with degree two nodes and T is obtained from
T ′ by contracting all these nodes, i.e. replacing each pair of edges (u, v), (v, w)
where deg v = 2 by an edge (u,w) and removing the node v. Moreover, for every
tree T the modelMT can be realized as a submodel ofMT , for some trivalent tree
T , with some simple constraints on the parameter space. For example the 4-star
model with four leaves and one inner node is a submodel of the quartet tree model
(the trivalent tree with four leaves). To see this write the parametrization for the
quartet tree model (c.f. Proposition 14) denoting the inner nodes by a, b and set
ηa,b = 1 and sa = sb.

For these reasons the trivalent case seems the most interesting and since it is
also easier to analyze for the singular case we consider only this situation. In the
remaining part of the paper we prove the following theorem which is our main
result.

Theorem 25. Let T = (V,E) be a trivalent tree with n ≥ 3 leaves. Let MT ⊆
∆2n−1 be the general Markov model on T parametrized as in Equation (9). Let
I(N) be defined by (3) for p̂ ∈MT and ϕ which is bounded and strictly positive. If
the root is degenerate but all its neighbors are not then as N →∞

(20) Z(N) = ˆ̀
N −

1
4

(3n+ l2 + 5l3 − 1) logN +O(1).

where li is the number of nodes in T of degree i in T̂ for i = 2, 3. If either the root
is non-degenerate or it is degenerate and all its neighbours are degenerate as well
then as N →∞

(21) Z(N) = ˆ̀
N −

1
4

(3n+ l2 + 5l3) logN +O(1).

In all other cases

(22) Z(N) = ˆ̀
N −

1
4

(3n+ l2 + 5l3) logN +O(log logN).

The proof of this result is provided in the end of the paper.
First we show that we can divide the problem into simpler subproblems. Note

that in this part we do not have to assume that the tree is trivalent. By T1, . . . , Tk
denote trees representing the equivalence classes in [Ê] and by S1, . . . , Sm denote
trees induced by the connected components of E \ Ê. By L1, . . . Lk we denote the
sets of leaves of T1, . . . , Tk. For each Si i = 1, . . . ,m by Lemma 18 (iv) its set
of leaves denoted by [ni] is a subset of [n]. To have a concrete example we may
consider the graph below where the dashed edges represent edges in Ê.

b

bc b

b

b

b

b

b

b

b

b

bc

bc
bc

bc

bc

bc

bc

T1

T2

T3

S1

S2

S3

1
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ASYMPTOTIC MODEL SELECTION FOR TREE MODELS WITH HIDDEN VARIABLES 17

The following technical lemma allows us to restrict the analysis to each of the
Ti for i = 1, . . . , k and Si for i = 1, . . . ,m separately.

Lemma 26. Let T = (V,E) be a rooted tree with n leaves and let p̂ ∈ MT . Let
ω0 ∈ Ω̂deep then without a loss of generality assume that sv = 1 for all v ∈ V̂ and
denote tv = 1− sv. Let Jω0 ⊂ Aω0 as defined in the end of Section 3. Then

Jω0 =
m⋃
i=1

Ii +
k⋃
i=1

Ji,

where Ii =
⋃
I∈[ni]≥2

〈κI(ω)− κ̂I〉 for i ∈ [m] and Ji =
⋃
k,l∈Li

〈
tr(kl)

∏
e∈E(kl) ηe

〉
if Ti is rooted in an inner node; and

Ji =
⋃
l∈Li

〈 ∏
e∈E(rl)

ηe

〉
+

⋃
k,l∈Li\r

〈
tr(kl)

∏
e∈E(rl)

ηe

〉
if it is rooted in one of the leaves denoted by r.

Proof. First we show that if i, j ∈ [n] such that κij(ω0) = 0 then κI(ω0) = 0 for all
I such that i, j ∈ I. Indeed, since ω0 ∈ Ω̂deep then κij = 0 if and only if the path
between i and j contains an edge in Ê. But this holds if and only if κI = 0 for all
I such that i, j ∈ I. From this it follows that 〈κI(ω)〉 ⊆ 〈κij(ω)〉 in Aω0 whenever
i, j ∈ I and consequently

⋃
I∈[n]≥2

〈κI(ω)− κ̂I〉 =

(
m⋃
i=1

Ii

)
+

 ⋃
k,l:κ̂kl=0

〈κkl(ω)〉

 .

From Proposition 14 we have

(23) κkl(ω) =
1
4

(1− s2
r(kl))

∏
e/∈ bEkl

ηe
∏
e∈ bEkl

ηe.

If r(kl) /∈ V̂ then (1 − s2
r(kl))

∏
e/∈ bEkl

ηe is a unit in Aω0 and hence from (23)

〈κkl(ω)〉 = 〈
∏
e∈ bEkl

ηe〉. Similarly if r(kl) ∈ V̂ then by our assumption s0
r(kl) = 1

and hence 1 + sr(kl) is a unit in Aω0 and then 〈κkl(ω)〉 = 〈tr(kl)
∏
e∈ bEkl

ηe〉. Finally
one can easily check that in both cases 〈κkl(ω)〉 ⊆

⋃
Ji. The opposite inclusion is

left as an exercise. �

Note that all m + k parts of Jω0 in Lemma 26 depend on different parameters
and by Proposition 4.6 in [7] one can compute the real log-canonical threshold for
each of the parts separately. The computation for the first m parts is simple since
for each Si for i ∈ [m] we can use Theorem 24. In the next section we focus on
computation the real log-canonical threshold of Ji for i = 1, . . . , k.

6. The case of trivalent trees

In what follows we continue the analysis from the previous section restricting
ourselves exclusively to trivalent trees. In this case we can obtain direct formulas
for the BIC score. Note that if T is trivalent with n leaves then the number of inner
nodes is n− 2 and the number of the edges is 2n− 3. Moreover, by Lemma 18 (i)
all the connected components of [Ê] are either single edges or trivalent trees. One
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18 PIOTR ZWIERNIK

can easily check that for i = 1, . . . , k if Ti is a single edge e and then rlct(Ji) = 1/2,
where Ji = 〈ηe〉. Hence in what follows we assume that |Li| > 2.

We fix 1 ≤ i ≤ k and analyse contribution to the marginal likelihood related
to Ti. Since for each i = 1, . . . , k the ideal Ji defined in Lemma 26 is monomial
then by [7, Corollary 5.11] it is R-nondegenerate and hence by Theorem 10 we can
use the Newton diagram method to compute the real log-canonical threshold. Let
ω0 ∈ Ω̂deep. Without loss of generality we assume again that sh = 1 for all inner
nodes h and we change the variables th 7→ 1−sh. By Qi(ω) we denote the generator
of Ji ⊂ Aω0 given as a sum of squares of the generating monomials as in Lemma
26. From the proof of Proposition 21 it follows that the variety of Ji is just a sum
of affine subspaces intersecting in Ω̂deep.

Let Rc+d be a real space with variables representing the edges (xe)e∈Ei
and the

inner nodes (yv)v∈Ni
of Ti = (Vi, Ei) where Ni = Vi \ Li, d = |Ei| and c = |Ni|.

We order the variables as follows: y1 ≺ · · · ≺ yc ≺ x1 ≺ · · · ≺ xd. The exponents
of terms of the polynomial Qi(ω) are vectors in {0, 2}c+d.

Now for ω0 ∈ Ω̂deep we compute RLCTω0(Qi) using the method of Newton
diagrams. This part involves a considerable amount of polyhedral geometry. To
simplify the notation we fix i = 1, . . . , k such that Ti is not a single edge and denote
Ti by T and Qi by Q. Let c = |Li| − 2 be the number of the inner nodes of T and
let d = 2|Li| − 3 be the number of edges of T . The construction of the Newton
polytope Γ(Q) ⊂ Rc+d gives a direct relationship between paths in T and points
generating the polytope. Combinations of paths give rise to points in the polytope.
The following construction is particularly useful.

Construction 27. Let T = (V,E) be a trivalent rooted tree with n ≥ 4 leaves.
We present two constructions of networks of paths between the leaves of T .

The first construction is conducted for T rooted in an inner node. If n = 4 then
the network consists of the two paths within cherries counted with multiplicity two.

1

2

4

5

3
a b

1

2

4

5

3
a b

Each of the paths correspond to a point in Γ(Q). We order the coordinates of R7

by ya ≺ yb ≺ x1 ≺ · · · ≺ x5. For example the point corresponding to the path
involving edges e1 and e2 is (2, 0; 2, 2, 0, 0, 0) and this does not depend on whether
T is rooted in a or b. The barycenter of the points corresponding to all the four
paths in the network is (1, 1; 1, 1, 0, 1, 1) both if T is rooted in a or b.

If n > 4 then we build the network recursively. Assume that T is rooted in an
inner node a and pick an inner edge (a, b). Label the edges incident with a and b as
for the quartet tree above and consider the subtree given by the quartet tree. Draw
four paths as on the picture above. We build up a network recursively. Let v be
any leaf of the quartet subtree which is not a leaf of T and label the two additional
edges incident with v by e6 and e7. Then we extend the network by adding e6

to one of the paths terminating in v and e7 to the other. Moreover we add an
additional path involving only e6 and e7 like on the picture below. By construction
v is the root of the additional path. We extend the network cherry by cherry until
it covers all terminal edges.
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1

2

4

5

3
a b

v

6
7

1

2

4

5

3
a b

v

6
7

Note that we have made some choices building up the network the construction is
not unique. However, each of the inner nodes is always a root of at least one and at
most two paths. Moreover each edge is covered at most twice and each terminating
edge is covered exactly two times. We have n paths in the network, all representing
points of Γ(Q) denoted by p1, . . . , pn. Let p = 1

n

∑n
i=1 pi then p ∈ Γ(Q) is given

by xab = 0, xe = 4/n for all e ∈ E \ (a, b), ya = yb = 4/n and yv = 2/n for all
v ∈ N \ {a, b}. Hence p depends on the construction above only through the choice
of the omitted edge not covered by any path.

If T is rooted in a leaf then we proceed as follows. For n = 4 consider a network
of all the possible paths all counted with multiplicity one apart from the cherry
paths (paths of length two) counted with multiplicity two. It makes eight paths
and each edge is covered exactly four times. With the order of the coordinates
as above the coordinates of the point representing the barrycenter of all paths in
the network are (1/2, 1/2; 1, 1, 1, 1, 1). This construction generalizes recursively in
a similar way as the one for T rooted in an inner node. We always have 2n paths
and each edge is covered exactly four times. The network induces a point p ∈ Γ(Q)
such that yh = 2/n for all h ∈ N and xe = 4/n for e ∈ E.

Let E0 denote the set of terminal edges of T , i.e. the edges incident with a leaf.
The hyperspace given by

∑
e∈E0

xe = 4 contains Γ(Q) which follows from the fact
that each path in T necessarily crosses exactly two terminal edges and hence each
point generating Γ(Q) satisfies the equation. Hence

∑
e∈E0

xe ≥ 4 defines a facet
of Γ+(Q) both if T is rooted in a leaf or in an inner node. We denote this facet by
F0.

Lemma 28 (Computing the real log-canonical threshold). Let T be a trivalent tree
with n ≥ 4 leaves. Then the vector t(1, . . . , 1) hits F0 for t = 4/n and it is the
smallest number such that t1 ∈ Γ+(Q).

Proof. The fact that 4/n1 ∈ Γ+(Q) follows from Lemma 27 and the fact that the
constructed point p ∈ Γ(Q) satisfies p ≤ 4

n 1 both if T is rooted in an inner node
or in a leaf and hence 4/n1 ∈ p + Rc+d≥0 . The result then follows since for any
s < t the vector s(1, . . . , 1) does not satisfy

∑
e∈E0

xe ≥ 4 and hence it cannot be
in Γ+(Q). �

Since ω0 ∈ Ω̂deep then rlctω0(Q) = rlctΩ(Q). By [7, Corollary 5.11] this gives
rlctω0(Q) = n/4. Note that Ω̂deep lies on the boundary of Ω. However it is not a
problem since any point in Ω̂T such that ηe = 0 for all e ∈ Ê (and we can find such
points in the interior of Ω) gives the same value of rlct. To compute the multiplicity
we have to get a better understanding of the polyhedron Γ+(Q). First we find the
hyperplane representation of the Newton polytope Γ(Q) reducing the problem to a
simpler but equivalent one.

Definition 29 (A pair-edge incidence polytope). Let T = (V,E) be a trivalent
tree with n ≥ 4 leaves. We define a polytope Pn ⊂ Rd, where d = ne = 2n − 3,
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as a convex combination of points (pij){i,j}∈[n]2 where k-th coordinate of pij is one
if the k-th edge is in the path between i and j and there is zero otherwise. We
call Pn a pair-edge incidence polytope by analogy to the pair-edge incidence matrix
defined by Mihaescu and Pachter [8, Definition 1].

The reason to study this polytope is that its structure can be handled easily
and it can be shown to be affinely equivalent to Γ(Q). To see this fix a rooting
r of T and define a linear map fr : Rd → Rc as follows: for each v ∈ V \ r set
yv = 1/2(xvch1(v)+xvch2(v)−xpa(v)v), where ch1(v), ch2(v) denotes the two children
of v, and yr = 1/2(xrch1(r) +xrch2(r) +xrch3(r)). Then one can check that for a map
(id × fr) : Rd → Rd × Rc one has (id × fr)(2Pn) = Γ(Q) which follows from the
fact that for each point yr = 2 if and only if the path crosses r and for any other
node yv = 2 if and only if the path crosses v and v is the root of the path, i.e. if
the path crosses both children of v.

Lemma 30. Let Pn ⊂ Rd be a pair-edge incidence polytope for a trivalent tree with
n leaves where n ≥ 4. Then dim(Pn) = d − 1 = 2n − 4. Hence the codimension
of Pn is one and the affine subspace defining Pn is given by

∑
e∈E0

xe = 2. For
each inner node v ∈ V let e1(v), e2(v), e3(v) denote the three adjacent edges. Then
exactly 3(n− 2) facets define Pn and they are given by

(24) xe1(v)+xe2(v)−xe3(v) ≥ 0, xe2(v)+xe3(v)−xe1(v) ≥ 0, xe3(v)+xe1(v)−xe2(v) ≥ 0

for all v ∈ V .

Proof. Let Mn be the pair-edge incidence matrix, i.e. a
(
n
2

)
× d matrix with rows

corresponding to the points defining Pn. By Lemma 1 in [8] the matrix has full rank
and hence Pn has codimension one in Rd. Moreover since each path necessarily
crosses two terminal edges then each point generating Pn satisfies the equation∑
e∈E0

xe = 2 and hence this is the equation defining the affine subspace containing
Pn.

Now we show that the inequalities give a valid facet description for Pn. It is a
direct check for n = 4 (e.g. using Polymake [2]). Assume it is true for all k < n.
By Qn we will define the polytope defined by the unique equation and 3(n − 2)
inequalities. It is obvious that Pn ⊆ Qn since all points generating Pn satisfy the
equation and the inequalities. We will show the opposite inclusion.

Consider any cherry {e1, e2} ⊂ E in the tree given by leaves denoted by 1, 2 and
the separating inner node a. Define a projection π : Rd → Rd−2 on the coordinates
related to all the edges apart from the two in the cherry. We have π(Qn) = Q̂n−1,
where P̂ = conv{0, P}. Indeed, π(Qn) is described by all the triples of inequalities
for all the inner nodes apart from the one incident with the cherry and the defining
equation becomes an inequality ∑

e∈E0\{e1,e2}

xe ≤ 2.

Moreover, inequalities in Equation (24) define a polyhedral cone and the equation∑
e∈E0\{e1,e2} xe = t for t ≥ 0 cuts out a bounded slice of the cone which is equal

to t · Pn−1. The sum of all these for t ∈ [0, 2] is exactly Q̂n−1. Since Q̂n−1 = P̂n−1

by induction then each π(x) is a convex combination of the points generating Pn−1

and zero, i.e. π(x) =
∑
cijpij where the sum is over all i 6= j ∈ {a, 3, . . . , n} and
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cij ≤ 1. Next we lift this combination to Qn. We have

x =
∑

cijπ
−1(pij) +

(
1−

∑
cij

)
π−1(0)

and we want to show that Qn ⊆ Pn. But to show this it suffices to show that any
lift of pij ∈ Pn−1 and zero to Qn will necessary imply that x ∈ Pn

Denote the edge incident with e1, e2 by e3 and the related coordinates of x by
x1, x2, x3. Consider the following three cases. First, if pij ∈ Pn−1 is such that
x3 = 0 then sum of all the other coordinates related to the terminal edges is two
since Pn−1 = Qn−1 and Qn−1 satisfy the equation

∑
e∈E0\{e1,e2} xe = 2. Hence if

we lift pij to Qn then x3 = 0 and

x1 + x2 ≥ 0, x1 − x2 ≥ 0, x2 − x1 ≥ 0

by plugging x3 = 0 into the three inequalities for the node a. But since since
π−1(pij) must also satisfy the equation

∑
e∈E0

xe = 2 and since we already have∑
e∈E0\{e1,e2} xe = 2 then x1 + x2 = 0 and hence x1 = x2 = 0. Consequently, pij

lifts to a vertex of Pn. Second, if pij is a vertex of Pn−1 such that x3 = 1 then
the sum of all the other coordinates of pij related to the terminal edges is one and
hence since the lift is in Qn we have x1 + x2 = 1. The additional inequalities give
that x1, x2 ≥ 0. Hence in this case pij lifts to a convex combination of two points
in Pn - one corresponding to a path finishing in one of the edges and the other
in the other. Finally, one can easily check that zero lifts uniquely to a point in
Pn corresponding to the path PT (1, 2). Indeed, from the equation defining Qn we
have x1 + x2 = 2 and from the inequalities since x3 = 0 we have x1 = x2 = 1.
Consequently, x can be written as a convex combination of points generating Pn
and hence x ∈ Pn. Consequently Qn ⊆ Pn. �

The lemma shows that Pn has an extremely simple structure. The inequalities
give a polyhedral cone and the equation cuts out its slice of height two. The result
gives us also the H-representation of Γ(Q).

Proposition 31 (Structure of Γ(Q)). Polytope Γ(Q) ⊂ Rc+d is given as an inter-
section of the sets defined by the facets in Equation (24) plus n − 1 equations and
if T is rooted in one of the leaves then∑

e∈E0

xe = 4 and(25)

2yv = xvch1(v) + xvch2(v) − xpa(v)v for all v ∈ N.

If T is rooted in one of the inner nodes then we have∑
e∈E0

xe = 4 and(26)

2yr = xrch1(r) + xrch2(r) + xrch3(r) and
2yv = xvch1(v) + xvch2(v) − xpa(v)v for all v ∈ N.

From this we can partially understand the structure of Γ+(Q). First we state
the following basic fact.

Lemma 32. Let Γ ⊂ Rn≥0 be a polytope and let Γ+ be the Minkowski sum of Γ
and the standard cone Rn≥0. Then all the facets of Γ+ are of the form

∑
i aixi ≥ c

where ai ≥ 0 and c ≥ 0.
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Proof. It suffices to show that all faces of Γ with the supporting hyperplane given by∑
i aixi ≥ c where c ≥ 0 and some of ai < 0 have a nonempty intersection with the

interior of Γ+. Let F be a face like that and let after renumbering a1, . . . , ak > 0,
ak+1, . . . , al < 0 and al+1 = . . . = an = 0. Let q = (q1, . . . , qn) be a point in the
interior of F . Then we can decrease coordinates x1, . . . , xk by ε/a1, . . . , ε/ak and
coordinates xk+1, . . . , xl by −ε/ak+1, . . . ,−ε/al respectively. Moreover, we decrease
xl+1, . . . , xn by some small δ. If ε > 0 and δ > 0 are sufficiently small then we still
stay in the F reaching a point q′. Since the cone q′ + Rn≥0 is contained in Γ + Rn≥0

and q lies in its interior then the lemma is proved. �

Now we are ready to compute multiplicities of the real log-canonical threshold
RLCTω0(Q) which by [7, Corollary 5.11] are given as the codimension of the face hit
by the vector of ones (codimension of the largest face containing the point 4/n1).
Note that since Ω̂deep lies on the boundary of Ω then by Corollary 11 we get only
inequalities.

Lemma 33 (Computing multiplicities). Let T be a trivalent tree with n ≥ 4 leaves
and rooted in r. If either r is one of the leaves or r is an inner node with no
adjacent leaves then w = 1. Otherwise w ≥ 1.

Proof. The proof is moved to the appendix. �

Now we return to the general case of a tree T for which T̂ decomposes into Ti
and Si. We are ready to proof the main theorem of the paper.

Proof of Theorem 25. The case when n = 3 and T is rooted in the inner node
follows from the main theorem in [10]. The case when n = 3 and T is rooted
in a leaf is left as an exercise. Assume that n ≥ 4. To compute the asymptotic
approximation for (3) we need to compute RLCTΘ(f ;ϕ). By Lemma 6 this is
equivalent to computing RLCTΘ(f). We can constrain to the deepest singularity
and then by Lemma 4 instead of f we can take the ideal in Lemma 26. Since its
various components depend on different parameters we can analyze the bits for Ti
and Si separately. Let ω0 ∈ Ω̂deep. Since si(ω + ω0)− si(ω0) = si then we have

(27) RLCTω0

(
n∑
i=1

(si(ω + ω0)− si(ω0))2

)
=
(n

2
, 1
)
.

Let Ii for each i = 1, . . . ,m de defined as in Lemma 26. By the regular case
resolved in Theorem 24, for each Si we have

RLCTω0(Ii) =
(
niv + nie − 2li2 − ni

2
, 1
)
.

We subtracted ni in the above formula since it has been already counted in (27).
Note that niv = ni + li2 + li3 and

∑m
i=1 n

i
e = |E \ Ê|. Hence

m∑
i=1

(
niv + nie − 2li2 − ni

)
=

m∑
i=1

(
li3 − li2 + nie

)
= l3 − l2 + |E \ Ê|.

By Lemma 7 one has

(28) RLCTω0

 m∑
i=1

∑
I∈[ni]≥2

(κI(ω + ω0)− κI(ω0))2

 =

(
l3 − l2 + |E \ Ê|

2
, 1

)
.
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Let r be the root of T and assume that r /∈ V̂ . In this case all Ti for i = 1, . . . , k are
rooted in one of the leaves. Let Ω0 be any sufficiently small ball around ω0 ∈ Ω̂deep.
Since Ω̂deep lies on the boundary ΩT then by Lemma 28 together with Equation
(5) we have rlctΩ0∩ΩT

(Qi) ≥ rlctω0(Qi) = (|Li|/4, 1). However in this case we can
easily provide a point on Ω̂T in the interior of Ω with the same real log-canonical
threshold as rlctω0(Qi) and hence in fact RLCTΩT

(Qi) = (|Li|/4, 1). This follows
from the fact that both Construction 27 and Lemma 28 remain valid even if all for
all the inner nodes s2

h 6= 1.
Note that since T is a trivalent tree then

∑k
i=1 |Li| = n− l1 + l2 and hence

(29) RLCTω0

(
k∑
i=1

Qi

)
=
(
n− l1 + l2

4
, 1
)
.

To write the real log-canonical thresholds in (27), (28) and (29) in a convenient
form note that for any graph with the vertex set V and the edge set E one satisfies∑
v∈V deg(v) = 2ne (see e.g. Corollary 1.2.2 in [13]). In particular for T̂ we have

l1 + 2l2 + 3l3 = 2|E \ Ê|. Consequently the coefficient 3n− l1 − l2 + 2l3 + 2|E \ Ê|
obtained by summing the real log-canonical thresholds above can be rewritten as
3n+ l2 + 5l3. Hence, if r /∈ V̂ then

Z(N) = ˆ̀
N −

1
4

(3n+ l2 + 5l3) logN +O(1).

Let r ∈ V̂ and let j be such that r is an inner node of Tj . The case when r ∈ V̂
and is slightly more complicated. There are two reasons for that. The first one
is that the case for each Ti the case |Li| = 3 leads to different real log-canonical
thresholds depending on the position of the root. If |Li| = 3 and Tj is rooted in
one of the leaves then as above RLCTω0(Qi) = (3/4, 1). However, if Ti is rooted
in the inner node (and hence j = i) then RLCTω0(Qi) = (1/2, 1) (c.f. [10]). Note
that at most one of all the Ti can be rooted in the inner node. If all the neighbors
of r represent non-degenerate random variables then r is the inner node of Tj and
|Lj | = 3. In this case the real log-canonical threshold has to be slightly modified
but we essentially repeat the computations above obtaining

Z(N) = ˆ̀
N −

1
4

(3n+ l2 + 5l3 − 1) logN +O(1).

In all other cases we do not have to modify the first coefficient of the asymptotic
approximation but we may need to change the second one according to Lemma 33.
There exists one Ti such that r is its inner node. By Lemma 33 if all the neighbours
of r are degenerate then multΘ(f) = 1 and hence

Z(N) = ˆ̀
N −

1
4

(3n+ l2 + 5l3) logN +O(1).

Otherwise we have multΘ(f) ≥ 1 and

Z(N) = ˆ̀
N −

1
4

(3n+ l2 + 5l3) logN +O(log logN).

�
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7. Discussion

In this paper we obtained the asymptotic approximation for the marginal likeli-
hood for the directed tree models when all the variables in the system are binary
and all the inner nodes of the tree represent hidden variables. We provided nice
combinatorial, algebraic and geometric insight into this problem.

The results were derived under some additional assumptions. The positivity
assumption saying that p̂α > 0 for all α ∈ {0, 1} seems plausible for real data sets.
The assumption that p̂ ∈MT seems restrictive but it was beyond the scope of this
paper to relax it. The most controversial is the assumption that the prior density
for the parameters is positive everywhere on the parameter space. In fact in the
Bayesian analysis one usually uses some popular family of distributions which do
not satisfy this assumption. We believe that careful analysis similar to the one
presented here allows to understand more general situations.

One could argue that the condition for the sample covariances to vanish has
measure zero with respect to the distribution of X(N) under the model M and
therefore it can be neglected. However, as we have shown in [18] the models under
consideration have usually complicated geometry and they have small dimension
relative to the ambient space. Hence, although p(N) will usually not lie in MT

its hypothetical limit p̂ (given the model is true) may lie on a locus of the model
corresponding to some degeneracies with a positive probability. Example of this is
given in the discussion in [3].

Appendix A. Proofs

Proof of Lemma 33. A standard result for Minkowski sums says that each face of
a Minkowski sum of two polyhedra can be decomposed as a sum of two faces of the
summands and this decomposition is unique. Each facet of Γ+(Q) is decomposed
as a face of Rc+d≥0 plus a face of Γ(Q). We say that a face of Γ(Q) induces a facet of
Γ+(Q) if there exists a face of the standard cone Rc+d≥0 such that the sum of these
two faces gives a facet of Γ+(Q). However, since the dimension Γ(Q) is lower than
the dimension of the resulting polyhedron it turns out that one face of Γ(Q) can
induce more than one facet of Γ+(Q). In particular Γ(Q) itself induces more than
one facet and one of them is F0 given by

∑
e∈E0

xe ≥ 4.
Every facet of Γ+(Q) containing 4/n1 after normalizing the coefficients to sum

to n, i.e.
∑
v αv +

∑
e βe = n, is of the form

(30)
∑
v

αvyv +
∑
e

βexe ≥ 4.

Our approach can be summarized as follows. Using Construction 27 we provide
coordinates of a point q ∈ Γ(Q) such that 4/n1 lies on the boundary of q + Rc+d≥0 .
Then 4/n1 can only lie on faces of Γ+(Q) induced by faces of Γ(Q) containing q.

First, assume that T is rooted in one of the leaves. Consider a point p ∈ Γ(Q)
induced by a network constructed in the second part of Lemma 27. From the
description of Γ(Q) in Lemma 31 we can check that p lies in the interior of Γ(Q)
since all facet defining inequalities are strict for this point. Hence the only facets
of Γ+(Q) containing p are these induced by Γ(Q) itself. How many of these facets
can be represented in the form of (30). We can find this representation by checking
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combinations of the defining equations:
∑
e∈E0

xe = 4 and

(31) 2yv − xvch1(v) − xvch2(v) + xpa(v)v = 0

for all inner nodes v. The first one defining F0 is already of this form (the sum
of coefficients is n since there are n terminal edges). Any other facet has to be
obtained by adding to the first equation (since the right hand side in (30) is 4) a non-
negative (since the coefficients in front of yv need to be non-negative) combination
of equations in (31). However, since the sum of the coefficients in (31) is +1 this
contradicts the assumption that the sum of coefficients in the defining inequality
is n. Consequently, if T is rooted in one of the leaves then the codimension of the
face hit by 4/n1 is one and hence w = 1.

Second, if the root is an inner node with no adjacent leaves we use a similar
argument. Since all the nodes adjacent to r (denote them by a, b, c) are inner we
have three different ways of conducting the construction in Lemma 27 (by omitting
each of the incident edges). Hence we get three different points and their barrycenter
satisfies xra = xrb = xrc = 8/3n and xe = 4/n for all the other edges; yr = 4/n,
ya = yb = yc = 8/3n and yv = 2/n for all the other inner nodes. Denote this point
by q. By the facet description of Γ(Q) derived in Lemma 31 we can check that this
point cannot lie in any of the facets defining Γ(Q) and hence it is an interior point
of the polytope. As in the first case it means that the facets of Γ+(Q) containing
q are induced by Γ(Q). Here the affine span is given by the equation defining F0,
the equations (31) for all inner edges v apart from the root and in addition for the
root we have

(32) 2yr − xra − xrb − xrc = 0.

Since the sum of coefficients in the above equation is negative we cannot use the
same argument as in the first case. Instead we add to

∑
e∈E0

xe = 4 a non-negative
combination of equations in (31) each with coefficient tv ≥ 0 and then we add (32)
with coefficient

∑
v 6=r tv. The sum of coefficients in the resulting equation will be n

by construction. The coefficient of xra is ta−
∑
v 6=r tv. Since it has to non-negative

it follows that tv = 0 for all v apart from a. However, by checking the coefficient
of xrb one deduces that in fact tv = 0 for all inner nodes v. Consequently the only
possible facet of Γ+(Q) containing 4/n1 is F0 and hence w = 1.

Third, if there are exactly two inner nodes adjacent to r, say a and b, then
in a similar fashion one constructs q as a barrycenter of two points obtained by
omitting one of the two edges. The point defined in this way is given by yr = 4/n,
ya = yb = 3/n and yv = 2/n for all other inner nodes, xra = xrb = 2/n and
xe = 4/n for all other edges. Denote the only leaf adjacent to r by 1. By Lemma
31 the point lies on exactly one of the facets of Γ(Q), namely the one given by
xra +xrb−xr1 ≥ 0. Using the same as in the previous paragraph we show that the
only facet of Γ+(Q) induced by Γ(Q) and containing 4/n1 is F0. We analyze the
facets induced by the inequality above. We have∑

e∈E0

xe +
∑
v

tv
(
2yv − xvch1(v) − xvch2(v) + xpa(v)v

)
+

+s (xra + xrb − xr1) + (s+
∑
v

tv) (2yr − xra − xrb − xr1) ≥ 4

where we assume that s > 0. The sum of all the coefficients again by construction
is equal to n. We check the coefficients of xra and xrb to deduce that tv = 0 for all
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v. We obtain
2syr +

∑
e∈E0\(r,1)

xe + (1− 2s)xr1 ≥ 4

and hence s ∈ [0, 1/2], where zero just gives F0 and s = 1/2 gives a new facet
yr +

∑
e∈E0\(r,1) xe ≥ 4. Consequently 4/n1 lies in two facets and then necessarily

w = 2.
In the last case, when there are exactly two leaves adjacent to r. The point p

defined in Lemma 27 can be constructed only in one way. It satisfies yr = ya = 4/n,
yv = 2/n for the rest of inner nodes, xra = 0 and xe = 4/n for the rest of the edges.
It can be checked that the point satisfies four inequalities in Equation (24) as
equalities namely

xr1 + xra − xr2 ≥ 0, xr2 + xra − xr1 ≥ 0,(33)
xab + xra − xac ≥ 0, xac + xra − xab ≥ 0,

where b, c are the nodes adjacent to a. Now we consider three cases: both b and c
are inner, exactly one of them is a leaf, and both are leaves (T is a quartet tree).
In all the cases we easily show there is at least one facet apart from F0 containing
4/n1. It follows that w ≥ 2.

�
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