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Using dynamic staged trees for discrete time series data:
robust prediction, model selection and causal analysis

Guy Freeman
University of Warwick
Jim Q. Smith
University of Warwick

Summary. A new tree-based graphical model — the dynamic staged tree — is used to model
discrete-valued discrete-time multivariate processes which are hypothesised to exhibit certain sym-
metries concerning how situations might unfold. We define and implement a one-step-ahead
prediction algorithm using multi-process modelling and the power steady model. This is robust
to short-term variations in the data yet sensitive to underlying system changes. We demonstrate
that the whole analysis can be performed in a conjugate way so that the vast model space can be
traversed quickly and results communicated transparently. We also demonstrate how to analyse
causal hypotheses on this model class. Our techniques are illustrated using a simple educational
example.

Keywords: Staged trees, Bayesian model selection, Bayes factors, forecasting, discrete time series,
causal inference, power steady model, multi-process model

1. Introduction

In this paper we consider a class of dynamic multivariate models with finite discrete state
spaces over the observed variables, which have the following characteristics:

(1) A description is provided of the possible development histories each unit in a given
time cohort can take. These histories could be radically different from one another
in terms of length of development, the variables encountered, the state spaces of each
stage of development, and so on.

(2) There are various symmetry hypotheses for a given population of units concerning
which situations in the histories have the same distributions over their immediate
developments.

(3) The units arrive in discrete equally-spaced time cohorts. The symmetries in the
system are allowed to change from one time point to the next to reflect a changing
environment.

(4) The system may, at various times, be subject to local interventions. The model then
admits a “causal” extension which provides predictions of the process when subject
to such a control.

We are particularly interested in this paper in making good one-step ahead predictions
for such a model. This will also provide the probabilities of the symmetry hypotheses
through time to use as an explanatory tool.

One example of a system that fits the criteria above is a programme of study provided
by an educational establishment which monitors students’ marks over time. We therefore
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Fig. 1. Event tree for marks for two modules in a course. Marks are discretized into 3 grades, and A
and NA indicate whether the mark is recorded or missing. The 10 situations are labelled and the 16
leaf nodes are unlabelled.

use this as our running example. The general points above translate into the following
specific issues:

(1) The modules of the course are always taken in a particular order (or consistent with
some partial order); there might be a requirement to achieve a threshold mark before
being allowed to continue onto the next module; and certain modules might have
different prerequisite modules.

(2) A student’s performance on a previous module could influence the marks on a later
one.

(3) New students come in yearly cohorts. Because of any number of possible changes in
any number of unobserved confounding factors the similarities in outcomes between
different course histories could change for each cohort.

(4) The administrators will be interested in predicting the effect on the mark distribution
by changing the program in some way, such as changing the syllabus or lecturer for a
module, changing the prerequisites for a modules, or removing a module entirely.

To graphically represent the different histories of a unit in the system one could use
event trees (Shafer, 1996). One example of an event tree for the marks for a course with
two modules is given by Figure 1.

The event tree can represent any discrete event space and naturally codifies a chrono-
logical order (or partial order) in its topology, and so we base our own model class on it.
However, it is not sufficient for addressing the rest of our requirements by itself, particularly
because it does not codify the symmetries in the system that we are interested in modelling.
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Different situations having the same subsequent development can be viewed as a kind
of conditional independence (Dawid, 1979) where the random variable describing the sub-
sequent development is held to be independent of the history that led to the situation —
see Studený (2005) for an overview of conditional independence structures. There are many
graphical models that aim to represent conditional independence relations between the dif-
ferent variables of a system. Bayesian networks (BNs) (Pearl, 2000b; Cowell et al., 1999)
are currently the most prominent of these models. However, they cannot easily represent in
their graphical structure the asymmetry in the potential histories of a unit. Some enhance-
ments to the canonical Bayesian network have therefore been suggested in order to take
this “context-specific independence” into account, for example by Boutilier et al. (1996).

Using different semantics from BNs, Smith and Anderson (2008) defined the chain
event graph (CEG) as an enhancement of the event tree, where non-leaf nodes with
the same probability distribution over their outgoing edges are linked by undirected edges,
and where subtrees with identical probability distributions of their root-to-leaf paths are
merged. Our model class is therefore based on CEGs, but extended into a more general
dynamic scenario where probabilities are allowed to change with time.

In this paper we describe the dynamics of the process by a state space model incorpo-
rating a switching mechanism to a neighbouring model at a given time point. The earliest
example of this class, to the best of our knowledge, was studied for univariate Gaussian se-
ries by Harrison and Stevens (1976) and called Multi-process Models Class II (see West and
Harrison (1997) for a more recent review). Frühwirth-Schnatter (2006) reviews switching
models for non-Gaussian state spaces, none of which have closed posterior forms. Here, we
use a type of multi-process model which allows us to dynamically shift from one symmetry
partition to another neighbouring one.

Various classes of discrete multivariate time series are of course well studied. Possibly
the closest class to the one considered here are the model used in event history analysis.
Event history data relates to when events of interest occur, rather than what events occur
at time points of interest. Formally, an event history can be identified as a marked point
process, a set {(Ts, Es) : s = 1, . . . , S} of pairs of times Ts when events Es occurred, where
the times are random variables while the events of interest are fixed beforehand, although
their order might be uncertain a priori (Arjas, 1989). Two graphical models developed for
event history analysis are local independence graphs (Didelez, 2008) and graphical duration
graphs (Gottard, 2007). While there is an overlap between event history data and the
problem outlined here, it is clear that the two address quite separate concerns. In event
history analyses the number of events under consideration is typically small, with the focus
of analysis being the time of events, usually allowed to occur within a continuous time
domain. Here, in contrast, we wish to model a complex discrete distribution over a discrete
time domain.

In order to take into account possible drifting on the tree parameters through time caused
by unobserved background processes, one could follow the filtering approach of stating a
transition probability P (θt | θt−1, S), where θt represents the parameters on the tree at
time t and S is the underlying model. The most common way to achieve this is to use a
conventional state space formulation. Unfortunately, this approach immediately requires
the inference to be undertaken with approximating numerical methods. This is not ideal in
this context for several reasons: Firstly, in the stochastic version of the process we consider,
conjugacy is retained by using product Dirichlet priors, and it would be a shame to lose
this useful modular property. Secondly, because of the enormity of the model space of our
domain of application it is convenient to be able to have Bayes factors calculable in closed
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form, because this speeds up computation of model goodness enormously. Thirdly, models
in this class are easier to interpret when they retain their modular and conjugate forms.

Another approach, which we take here, is to set a transition function

T : P (θt−1 | xt−1, S) 7→ P (θt | xt−1, S) (1)

where xt−1 are the observations up to time t−1. Although this approach is more restrictive
in its scope, it can be justified through various characterisations (Smith, 1979, 1992) and
we show below that it can have the very attractive property of preserving the conjugate
structure of each model in this class, encouraging several different authors to use such
transitions.

Interventions on a graphical model are covered by the causal literature (e.g. Pearl
(2000b)). Causal analysis on event trees was considered by Shafer (1996) and was defined
for chain event graphs by Thwaites et al. (2010). We extend this to the dynamic model
class we present here. By retaining conjugacy when learning model probability parameters,
this causal extension of the model class is particularly straightforward, allowing us to utilise
the model for a controlled environment.

We proceed to developing our new model, the dynamic staged tree. In Section 2 we
formally define the necessary concepts. In Section 3 we develop a multi-process model for
the dynamic staged tree that can be used to make one-step ahead predictions. In Section 4
we extend the multi-process model to causal analyses on the dynamic staged tree. We end
in Section 5 by applying our analyses to some real educational data.

2. Concepts and definitions

2.1. Event tree
We begin the paper with some definitions; see Smith and Anderson (2008) for more details
about these concepts.

Let T = (V (T ), E(T )) be a directed tree where V (T ) is its node set and E(T ) its edge
set. Let L(T ) be the set of leaf nodes and S(T ) = {v : v ∈ V (T ) \ L(T )} be the set of
situations of T . Let λ(v, v′) be the path from node v ∈ S(T ) to node v′ ∈ V (T ) (if it
exists), and let Λ(v, T ) = {λ(v, v′) : v′ ∈ L(T )}, the set of paths from v to a leaf node. Let
X = Λ(v0, T ), where v0 is the root node of T , so that X is the set of root-to-leaf paths of
T . Each path X ∈ X is an atomic event, corresponding to a possible unfolding of events
through time by using the partial ordering induced by the paths.

Let X(v) denote the set of children of v ∈ S(T ). In an event tree (ET), each situ-
ation v ∈ S(T ) has an associated random variable X(v) with sample space X(v), defined
conditional on having reached v. The distribution of X(v) is determined by the primitive
probabilities θ(v) = {θ(v, v′) = p(X(v) = v′) : v′ ∈ X(v)}.

With random variables on the same path being mutually independent, the joint prob-
ability of events on a path can be calculated by multiplying the appropriate primitive
probabilities together. Each primitive probability θ(v, v′) is a colour for the directed edge
e = (v, v′), so that we let π(e) := θ(v, v′).

2.2. Staged trees
Starting with an event tree T , define a floret of v ∈ S(T ) as

F(v) =
(
V (F(v)) , E (F(v))

)
(2)
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Figure 1: A floret of v ∈ S(T ). This subtree represents both the random variable

X(v) and its state space X(v).

Fig. 2. A floret of v ∈ S(T ). This subtree represents both the random variable X(v) and its state
space X(v).

where V (F(v)) = v ∪ X(v) and E(F(v)) = {e ∈ E(T ) : e = (v, v′) : v′ ∈ X(v)}. The floret
of a vertex v is thus a sub-tree consisting of v, its children, and the edges connecting v and
its children, as shown in Figure 2. This represents, as defined in section 2.1, the random
variable X(v) and its sample space X(v).

Two situations v, v′ ∈ S(T ) are said to be in the same stage u if and only if X(v) and
X(v′) have the same distribution under a bijection

ψu(v, v
′) : X(v) → X(v′) (3)

It follows that one necessary condition for v and v′ to be in the same stage is that |X(v)| =
|X(v′)|, i.e. v and v′ have the same number of children. In particular, ψu(v, v) is the identity
function for any stage u that contains v, including u = {v}.

The set of stages (or staging) of T is written U(T ). It is clear that U(T ) is a partition
of S(T ). The set S(T ) itself can be thought of as the trivial staging.

Finally, a staged tree ST (T, U(T )) is constructed from T by letting V (ST ) = V (T )
and E(ST ) = Ed(ST ) ∪ Eu(ST ), where Ed(ST ) and Eu(ST ) are constructed as follows:

• Ed(ST ) is identical to E(T ) except that two edges (v, v∗), (v′, v′∗) are given the same
colour if and only if v∗ 7→ v′∗ under some ψu(v, v

′) as defined above;

• Eu(ST ): for every v, v′ ∈ S(T ), an undirected edge between v and v′ is drawn if and
only if X(v) and X(v′) have the same distribution.

It is easily shown (Smith and Anderson, 2008) that BNs over finite discrete random
variables are an important but small subclass of staged trees.

3. Prediction with dynamic staged trees

Let T be an event tree whose topology is known and fixed in time, but with an uncertain
and possibly dynamic probability distribution over its structure. Let the set of situations
of T , S(T ), be denoted by S =

{
v1, . . . , v|S|

}
.

At each time point t = 1, . . . , τ , we wish to predict xt(v, v′) for all v′ ∈ X(v) for all
v ∈ S, where xt(v, v′) is the number of times X(v) = v′ at time t. Let xt = (xt(v))v∈S
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where xt(v) = (xt(v, v
′))v′∈X(v). Then at every time t we need to construct a probability

distribution over the possible values of xt conditional on all previous observations xt−1 =
(x1, . . . ,xt−1). The marginal joint distribution P (xt) over time of the full data set can
be represented as a product of the one-step ahead predictive probabilities P (xt | xt−1).
Bayes factors associated with different models can then be expressed as a function of these
quantities. It is interesting to note that this factorisation corresponds to the prequential
likelihood described by Dawid (1984) used for comparing probabilistic forecasting systems.

The probability distribution of xt | xt−1 can be written parametrically as a function of
θt, the values of θ(v) for all v ∈ S at time t, so that

P (xt | xt−1) =

∫
Θt

P (xt | θt,xt−1)P (θt | xt−1)dθt (4)

θt is unknown in the general case. One way to specify the distribution of θt is to assume
the process can be described by a dynamic staged tree. We define a dynamic staged tree
to be an event tree where at each time point t = 1, . . . , τ (where τ can be finite or infinite)
an independent sampling over X occurs but with a possibly different staging Ut(T ).

If v, v′ ∈ S(T ) are in the same stage u in a partition U at time t then we assume that

θt(v) = θt(v
′) , θt(u) (5)

With these assumptions, the distribution of θt under a staging Ut can be written as the
product of the distribution of each stage’s parameters:

P (θt | Ut,x
t−1) =

∏
u∈Ut

P (θt(u) | Ut,x
t−1) (6)

Therefore equation (4) can be written as

P (xt | xt−1) =
∑
Ut∈U

∫
Θt

P (xt | θt, Ut,x
t−1)P (θt | Ut,x

t−1)P (Ut | xt−1)dθt (7)

=
∑
Ut∈U

∫
Θt

(
P (xt | θt, Ut,x

t−1)P (Ut | xt−1)
∏
u∈Ut

P (θt(u) | Ut,x
t−1)

)
dθt

(8)

So to carry out a one-step ahead forecast on the system three probability distributions
must be specified: the sampling distribution P (xt | xt−1,θt, Ut), the stage parameter dis-
tributions P (θt(u) | Ut,x

t−1), and the staging distributions P (Ut | xt−1). We show below
how this can be achieved for each term in turn.

3.1. The sampling distributions
Under complete sampling the distribution of X(v) for any situation v ∈ S is conditionally
independent of any other quantity given θ(v). In particular, this means that the distribu-
tions of X(v) and X(v′) for two situations v, v′ ∈ S, v ̸= v′, are assumed to be independent
conditional on θ(v), θ(v′).

This does not necessarily apply to xt(v), because the distribution of the number of
samples Nt(v) from X(v) at time t is unknown in the general case. We assume here,
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however, that for all situations v bar the root node v0 that Nt(v) equals the value of
xt(v

∗, v), where v∗ is the situation such that v ∈ X(v∗), i.e. where v∗ is the parent node of
v. We discuss the setting of Nt(v0) shortly.

We can therefore write P (xt | θt, Ut,x
t−1) as

P (xt | θt, Ut,x
t−1) =

∑
Nt(v0)

P (xt | Nt(v0),θt, Ut,x
t−1)P (Nt(v0) | θt, Ut,x

t−1) (9)

=
∑

Nt(v0)

([∏
v∈S

P (xt(v) | θt(v), xt(v∗, v))

]
P (Nt(v0) | θt, Ut,x

t−1)

)
(10)

=
∑

Nt(v0)

∏
v∈S

I{∑ xt(v,v′)=xt(v∗,v)}
∏

v′∈X(v)

θt(v, v
′)xt(v,v

′)

P (Nt(v0) | θt, Ut,x
t−1)


(11)

where IA is the indicator variable for an event A and xt(v
∗, v0) is understood to mean

Nt(v0).
The modelling of the distribution of Nt(v0) depends on the details of the system under

consideration. One common scenario is when Nt(v0) is believed to be independent of all
other system parameters apart from, at most, values of Ns(v0) for s < t. One approach in
this case is to model Nt(v0) as a Poisson variable with parameter λ, where λ can either be
constant or itself given a conjugate prior of Gamma(αλ, βλ) at time 1.

When Nt(v0) is known, equation (11) becomes

P (xt | θt, Ut,x
t−1) =

∏
v∈S

I{∑ xt(v,v′)=xt(v∗,v)}
∏

v∗∈X(v)

θt(v, v
′)xt(v,v

′)

 (12)

where xt(v∗, v0) should again be read as Nt(v0).

3.2. The stage parameter distributions
As with every aspect of the model, the specification of the probability distribution over the
floret parameters for each possible stage should be tailored to the scenario at hand. In many
cases, however, it is possible to characterise the distribution from some common qualitative
modelling assumptions.

Consider first the trivial staging Ut = S. It is shown in Freeman and Smith (2009) that
if it is assumed that the relative rates of the root-to-leaf paths are independent, then the
additional assumption of mutual independence of the floret distributions implies that each
non-trivial floret’s distribution must be Dirichlet. Therefore, denoting its set of hyperpa-
rameters as αt(v) = (αt(v, v

′))v′∈X(v), the density of θt(v) | Ut = S,xt−1 for a non-trivial
floret v ∈ S is

fθt(v)(θt(v) | Ut = S,xt−1) = Γ

 ∑
v′∈X(v)

αt(v, v
′)

 ∏
v′∈X(v)

θt(v, v
′)αt(v,v

′)−1

Γ(αt(v, v′))
(13)

for
∑

v′∈X(v) θv(v, v
′) = 1 and αt(v, v

′) > 0 for all v′ ∈ X(v), and 0 otherwise.
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8 Freeman and Smith

Now consider a staging U that is not a trivial partition of S. In Freeman and Smith
(2009) we show that requiring margin equivalency to hold for its stages u ∈ U charac-
terises the prior on the floret distributions. A stage u has margin equivalency when

P (X(u) | θ, U) = P (X(u) | θ, S). (14)

where X(u) is the random variable with sample space
∪

v′∈vu
{v′∪{

∪
v∈u ψ(vu, v)(v

′)}}, i.e.
the edge equivalence classes under a stage. This property is analogous to that of parameter
modularity for Bayesian networks (Heckerman, 1999). With the distribution for florets in
S given above, this implies that the prior probability of θt(u) | Ut = U,xt−1 has a Dirichlet
distribution too, with hyperparameters that are sums of the corresponding hyperparameters
under S of the constituent florets:

fθt(u)(θt(u) | Ut = U,xt−1) = Γ

 ∑
v′∈X(vu)

ᾱt(u, v
′)

 ∏
v′∈X(vu)

θt(u, v
′)ᾱt(u,v

′)−1

Γ(ᾱt(u, v′))
(15)

where vu is any situation in u, θt(u, v′) are the elements of the vector θt(u) and ᾱt(u, v
′) =∑

v:v∈u αt(v, ψu(vu, v)(v
′)). Informally, equation (15) says that the hyperparameter vector

for all of the floret distributions of the situations in stage u is equal to the sum of the
hyperparameter vectors of the floret distributions under S.

With margin equivalency and independence between the floret distributions under S,
the floret distributions under different stagings for stages composed of the same situations
will always be the same. Therefore the probability distributions for a stage’s parameters
(13) and (15) depend only the composition of the stage and not on the rest of the staging.
This property is useful since it allows us to discuss the characteristics of stage clusters
of variable groups without reference to the partition in which they appear. This makes
individual models much simpler to explain. It also reduces the computational complexity
in calculating (13) and (15) because they will not be dependent on staging.

As every θt(u) is conditionally independent of all other quantities given αt(u) = (αt(v))v∈u,
setting P (θt | Ut,x

t−1) only requires the setting of αt(v) for each v ∈ S for every t. This
task can be simplified further by assuming

ft+1,v(θ) = T (f∗t,v(θ)) (16)

for some function T for all t > 1, where ft,v(θ) is the density of θt(v) | xt−1, Ut = S as given
in equation (13), and f∗t,v(θ) is the density of θt(v) | xt, Ut = S, so that for every v ∈ S
only α1(v) needs to be set.

The simplest choice of T is the identity functional, so that ft+1,v(θ) = f∗t,v(θ) for t > 1.
With ft,v(θ) as given in equation (13) and P (xt(v) | θt(v)) ∝

∏
v′∈X(v) θt(v, v

′)xt(v,v
′) as

given by equation (11), Bayes’ theorem requires

f∗θt(v)(θt(v) | x
t) = Γ

 ∑
v′∈X(v)

α∗
t (v, v

′)

 ∏
v′∈X(v)

θt(v, v
′)α

∗
t (v,v

′)−1

Γ(α∗
t (v, v

′))
(17)

where α∗
t (v, v

′) = αt(v, v
′) + xt(v, v

′), and so

αt+1(v) = αt(v) + xt(v). (18)
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Dynamic staged trees 9

As equation (18) is true for all t > 1, αt(v) can be written as a function of only α1(v) and
xt−1(v),

αt(v) = α1(v) +

t−1∑
τ=1

xτ (v) (19)

for all v ∈ S.
Letting T be the identity functional reflects a modelling assumption that the underlying

probabilities associated with each stage do not evolve from year to year for a given staged
tree. Sometimes this will be too strong an assumption to make. In this case, a weaker
set of assumptions are needed which will represent the fact that there is an “information
drift” between the time points. This will also guard against spurious jumps in the model
probabilities from expected model drift.

One way to characterise T to meet this need is provided by the power steady model
(Smith, 1979, 1981, 1992). It was shown by Smith (1979) that if, loosely speaking, it is
assumed that the Bayes decision under a step loss function would stay the same over time
if no more information was gathered about the system but that the expected loss of the
decision increases due to increasing uncertainty, then it is required that

ft+1,v(θ) ∝ (f∗t,v(θ))
k (20)

for some 0 < k ≤ 1.
This transition function has a number of appealing properties. Firstly, when applied to

the joint distribution P (θt | Ut,x
t−1) of the θ under any staging Ut, the floret independence

structure is kept intact.
Secondly, it can be shown that use of the steady model guards against misspecified

priors, making predictions more robust. Let the local de Robertis measure DRA be
defined as follows (Smith and Daneshkhah, 2010):

dLA(f, g) = sup
θ,ϕ∈A

{(log f(θ)− log g(θ))− (log f(ϕ)− log g(ϕ))} (21)

for any A ∈ Θ. Smith and Daneshkhah (2010) show that the local de Robertis mea-
sure is a separation measure where its separations do not change under Bayesian updating
(Smith and Daneshkhah, 2010). It therefore represents artifacts of the model that cannot
be changed by observation. It can easily be shown that, where f∗ ∝ fk and similarly for g,

dLA(f
∗, g∗) = k(dLA(f, g)), (22)

Thus using the steady model brings distributions closer together when 0 < k ≤ 1. In this
sense steady models tend to be robust against initial prior misspecification, if we see f as
the prior used in the analysis and g as the “true” prior. See Smith and Rigat (2008) for
further details.

A similar result can be shown for Kullback-Leibler (KL) distances (Kullback and Leibler,
1951): recall that for two densities f and g the KL distance is given by

dKL(f ; g) =

∫
(log f(θ)− log g(θ))g(θ)dθ

and that the entropy H of a density is given by

H(f) = −
∫
f(θ) log f(θ)dθ
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10 Freeman and Smith

Let f1, f2 be any two densities such that H(f1) = H(f2). Then

dKL(pt+1; f1)− dKL(pt+1; f2) = k(dKL(pt; f1)− dKL(pt; f2)) (23)

where pt is the density of the stage parameters at time t, both after observing xt, so that
pt+1 ∝ (pt)

k. Equation (23) says that the distance between the density of the stage param-
eters under any staging and two arbitrary densities with the same entropy decreases by a
fixed proportion at each time step, again indicating a robustness to prior mis-specification.

Thirdly, with α∗
t (v) = αt(v)+xt(v), equation (20) implies that θt+1(v) is still distributed

Dirichlet if θt(v) is Dirichlet but with the hyperparameters of the distribution now given by
the values

αt+1(v, v
′) = kαt(v, v

′) + kxt(v, v
′)− k + 1 (24)

Solving this recurrence relation for a constant k yields

αt(v, v
′) = kt−1(α1(v, v

′)− 1) +

t−1∑
τ=1

kt−τxτ (v, v
′) + 1 (25)

which heuristically can be seen as weighting recent observations more heavily for the setting
of the latest prior.

Each situation can have its own k, k(v), and it might be desired that this k(v) be
different for different t, for example when an external intervention in the system occurs.

We note that the use of the power steady model has a long history with Dirichlet
distributions (e.g. in Smith (1979); Queen et al. (1994); Cowell et al. (1999)) and more
generally (e.g. Ibrahim and Chen (2000); Rigat and Smith (2009)), and has also been
used in Bayesian forecasting under the alternative name of exponential forgetting (Raftery
et al., 2010). Here we use the power steady model as a justifiable and conjugate method
for making inference about tree models whose floret probabilities evolve.

3.3. The staging distributions
We have allowed for drift over time in the values of probabilities associated with the con-
ditional independence structure implicit in a staged tree model. However, we also want to
allow for the possibility that the tree stagings themselves — and not just their parameters
— evolve in time. It is unfeasible and usually unnecessary to model all possible changes of
this partition space; in most applications it is appropriate to assume that changes in stage
structure will be small in number and occur locally.

We therefore propose a dynamic model for the staged trees analogous to the Class
2 Multi-process Models used for dynamic linear models (DLMs) (Harrison and Stevens,
1976; West and Harrison, 1997). This was developed for the case where “no single [model]
adequately describes what might happen to the process in the next time interval” (West
and Harrison, 1997). We describe the C2MPM here as it applies to the staged tree setting.

Let U be the set of all possible stagings of T , and for each U ∈ U and t > 1 let
πt(U) = P (Ut = U | xt−1). There is obviously a large class of possible specifications for
πt(U), but we note the three “practically important possibilities” mentioned by (West and
Harrison, 1997):

(1) Fixed model selection probabilities, such that

πt(U) = π(U) for all t ≥ 1 (26)
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Here, one needs to only specify one prior over U . This prior remains fixed through
time and isn’t changed by observations.

(2) First-order Markov probabilities, where fixed transition probabilities between the
models

π(U | U ′) = P (Ut = U | Ut−1 = U ′) (27)

are specified a priori, so that

πt(U) =
∑
U ′∈U

π(U | U ′)P (Ut−1 = U ′ | xt−1) (28)

Some initial prior distribution over the staged tree space, π1(C), would need to be
set.

(3) Higher-order Markov probabilities, where the probabilities of the stagings at time t
additionally depend on the stagings at t− 2, t− 3, etc.

While the first possible modelling strategy, of fixed staging probabilities, is much the
simpler one (and the option used by West and Harrison for exposition), the second and
third strategies are often going to be more accurate reflections of experts’ beliefs. We show
here how to implement first-order Markov transitions between stagings.

A common assumption will be that π(U | U ′) is larger the “closer” U is to U ′ in some
sense, so that the underlying process is unlikely to change too much over a short period of
time. If π(U | U ′) = 0 for some U ∈ U , this has the advantage of reducing the number of
terms in equation (28).

We therefore require a metric on U and then let π(U | U ′) be a function of this metric.
Any intuitive metric on general sets of partitions can be used, e.g. that of Meilă (2007).
A simple metric that we use here can be derived from the Hasse diagram of the lattice of
partitions of S under the relation “finer than” (see Stanley (1997) for a detailed overview
of such lattice terminology). The Hasse diagram for |S| = 4 is shown in Figure 3.

The length of the shortest path between two partitions on the Hasse diagram is a metric
on the partition space of S, and we call it ℓ here. A distance of ℓ = 1 represents the division
of a stage or the merging of two stages. One possible way to set π(U | U ′) based on this
metric is

π(U | U ′) =


ρ if U = U ′

|Bϵ(U
′)|−1

(1− ρ) if 0 < ℓ(U,U ′) ≤ ϵ,

0 otherwise
(29)

where Bϵ(U
′) = {U ∈ U : ℓ(U,U ′) ≤ ϵ, U ̸= U ′, U ∈ U} is an ϵ-ball of stagings around U ′

under the ℓ metric. This represents a belief that the underlying symmetry process changes
only locally and slowly. If more radical changes in the symmetry process are taking place
due to external intervention in the system then the methodology in Section 4.1 can be
deployed.

The other term in (27), P (Ut−1 = U ′ | xt−1), can be calculated for each Ut−1 using
Bayes’ theorem:

P (Ut−1 = U ′ | xt−1) ∝ P (xt−1 | Ut−1 = U ′)P (Ut−1 = U ′ | xt−2) (30)

=
P (xt−1 | Ut−1 = U ′)P (Ut−1 = U ′ | xt−2)∑

U ′∈U P (xt−1 | Ut−1 = U ′)P (Ut−1 = U ′ | xt−2)
(31)
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1,2,3,4

Fig. 3. The Hasse diagram of the lattice of partitions of S when |S| = 4

The P (Ut−1 = U ′ | xt−2) terms on the right-hand side of (31) will be already be available
at time t − 1. The term P (xt−1 | Ut−1 = U ′), meanwhile, can be calculated as follows,
using equations (11) and (15) at time t− 1:

P (xt−1 | Ut−1 = U ′) =

∫
Θt−1

P (xt−1 | θt−1, Ut−1 = U ′)P (θt−1 | Ut−1 = U ′)dθt−1 (32)

∝
∫
Θt−1

∏
u∈U ′

Γ

 ∑
v′∈X(vu)

ᾱt−1(u, v
′)

 ∏
v′∈X(vu)

θt−1(u, v
′)ᾱ

∗
t−1(u,v

′)−1

Γ(ᾱt−1(u, v′))

 dθt−1

(33)

=
∏
u∈U ′

Γ
(∑

v′∈X(vu) ᾱt−1(u, v
′)
)

Γ
(∑

v′∈X(vu) ᾱ
∗
t−1(u, v

′)
) ∏

v′∈X(vu)

Γ(ᾱ∗
t−1(u, v

′))

Γ(ᾱt−1(u, v′))

 (34)

where vu is any situation in u, ᾱ∗
t−1(u, v

′) = x̄t−1(u, v
′) + ᾱt−1(u, v

′), where x̄t−1(u, v
′) =∑

v:v∈u xt−1(v, ψu(vu, v)(v
′)) and ᾱt−1 is as defined in equation (15).

The number of terms in (28) can be reduced further by setting the values of P (Ut−1 =
U ′ | xt−1) below a threshold q as zero and normalising the remaining probabilities to
ensure they still sum to 1. A similar approach advocated by Madigan and Raftery (1994)
as “Occam’s window” is to discard models U ′ that are not in the set

U∗
t =

{
Ut ∈ U :

P (Ut | xt)

maxU P (U | xt)
≤ q

}
(35)

for some 0 < q < 1, i.e., to only keep models where the Bayes factor between them and the
most probable model a posteriori are above a certain threshold. This has the advantage of
guaranteeing that at least one model will be kept.
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3.4. One-step-ahead prediction
Equation (7) can now be written, using the foregoing, as

P (xt | xt−1) =
∑
Ut∈U

∫
Θt

 ∑
Ut−1∈U

π(Ut | Ut−1)P (Ut−1 | xt−1)

 ∑
Nt(v0)

P (Nt(v0) | θt, Ut,x
t−1)

·
∏
u∈Ut

IA

Γ( ∑
v′∈X(vu)

ᾱt(u, v
′)
)
·
∏

v′∈X(vu)

θt(u, v
′)ᾱt(u,v

′)+x̄t(u,v
′)−1

Γ(ᾱt(u, v′))

 dθt

(36)

where A is the event ∀v ∈ u \ v0,
∑

v′ xt(v, v
′) = xt(v

∗, v). If it is assumed that the distri-
bution of Nt(v0) depends only on xt−1 then (36) can be further simplified to the closed-form
solution

P (xt | xt−1) =
∑
Ut∈U

( ∑
Ut−1∈U

π(Ut | Ut−1)P (Ut−1 | xt−1)

 ∑
Nt(v0)

P (Nt(v0) | xt−1)

·
∏
u∈Ut

IA

Γ
(∑

v′∈X(vu) ᾱt(u, v
′)
)

Γ
(∑

v′∈X(vu)
ᾱ∗
t (u, v

′)
) ∏

v′∈X(vu)

Γ(ᾱ∗
t (u, v

′))

Γ(ᾱt(u, v′))

)
(37)

If Nt(v0) is always known, then (37) can be simplified further to become

P (xt | xt−1) =
∑
Ut∈U

( ∑
Ut−1∈U

π(Ut | Ut−1)P (Ut−1 | xt−1)


·
∏
u∈Ut

IA

Γ
(∑

v′∈X(vu) ᾱt(u, v
′)
)

Γ
(∑

v′∈X(vu)
ᾱ∗
t (u, v

′)
) ∏

v′∈X(vu)

Γ(ᾱ∗
t (u, v

′))

Γ(ᾱt(u, v′))

)
(38)

4. Causal intervention

With any forecasting system there is also an attendant need to consider the effects of
external intervention in the system, including by the forecasters themselves (West and
Harrison, 1989). This ensures that all relevant information is taken into account, increasing
the accuracy of future forecasts.

The predicted effect of an intervention depends both on the nature of that intervention
and the context in which it applies. Many interventions act only on certain local features
of a model while leaving the other features of the model unchanged. We note that these
types of interventions have now been extensively studied on non-dynamic BNs (Pearl, 2000b;
Spirtes et al., 2001), which are called causal Bayesian networks (CBNs) in this context.
Dynamic extensions of CBNs also exist (Queen and Smith, 1993; Eichler and Didelez, 2007;
Queen and Albers, 2009). A Bayesian way of learning causal Bayesian networks is given by
Cooper and Yoo (1999).
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14 Freeman and Smith

We believe that tree-based graphical models are very useful in general for carrying causal
analysis. Due to the multiple representations of each variable in the graph — one for each
possible path-history on parent variables — much more refined interventions in the system
can be represented (Shafer, 1996). How causal hypotheses can be represented within the
framework of static CEGs has been investigated by Thwaites and Smith (2006) and Thwaites
et al. (2010).

We now show how causal analysis affects the one-step ahead forecast on a dynamic
staged tree given by equations (36), (37), and (38) for two different types of intervention:
one on the possible stagings on a tree T and one on the structure of the tree T itself.

4.1. Intervention on the staging distribution
Suppose that at time t some situations will be moved into their own stage u, leaving all
other stages intact. For example, in our educational example, the exams for the second
module might be tailored so that performance in the first module is no longer a predictor in
how well students should perform in it. The one-step ahead forecasts can then be modified
in the following way to reflect this intervention.

Recall that π∗
t−1(U) = P (Ut−1 = U | xt−1). Let π†

t (U) = P (Ut = U | xt−1, It), where
It is the intervention described above. Then one approach to modelling the intervention is
to set π†

t (U) = π∗
t−1(U) for each U ∈ U such that u ∈ U , and set π†

t (U
†) = π∗

t−1(U) and
π†
t (U) = 0 for U ∈ U such that u ̸∈ U , where U † is the same as U except that u ∈ U †

and other stages that contained situations v ∈ u are reduced accordingly. The effect of this
approach is to transfer the probability massed on the stagings where u ̸∈ U to stagings
where u ∈ U .

One issue that now arises is how the distribution of θt | Ut is affected. In the absence
of further information, a good default is to use the steady model as in the idle system but
with a lower value for the steady parameter k. This indicates that past data might not
be as useful in helping to make predictions in this situation as under the idle system. We
note that this is analogous to setting a higher variance on evolution parameters in dynamic
linear models when forecasting after interventions is required for that model class (Section
1.2.2 of West and Harrison (1997)).

4.2. Intervention on T
Recalling the event tree pictured in Figure 1, consider the case where at time t the course
directors decide to eliminate the first module on the tree from course. This means that the
marks that students would have got for this module are unknown from that time onwards,
and therefore all of the data at time t for this module will be concentrated on the second
(“NA”) edge of the v1 floret.

This type of intervention is analogous to the do operator introduced for CBNs by (Pearl,
2000a), where a random variable is forced to take a particular value with probability 1.
The difference with CBNs is that staged trees allow a richer set of interventions on their
structure, including letting an intervention take place at specific time and situations, and
not merely changing the value of a variable under all circumstances.

We assume that the probability distributions on any unmanipulated florets remain un-
changed, just as for CBNs manipulations are local Pearl (2000a). We will also assume that
once an intervention is made, it endures thereon. We now describe how the learning frame-
work outlined previously can be adapted to prediction after an intervention of this type
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occurs.
Without loss of generality, say that at time t an intervention It(v, v′) at situation v ∈ S

occurs so that θt(v, v′) is equal to 1 for a specific v′ ∈ X(v) and to 0 for all other v∗ ∈ X(v).
By the definition of the event tree, along with the causal assumptions, all other floret
distributions are technically unchanged. However, notice that the probability of reaching
any node in any Λ(v∗, T ), the sub-tree with v∗ as the root node, is zero. It follows that the
tree T is equivalent to the reduced tree T ′ where all Λ(v∗, T ) are deleted and only the edge
(v, v′) remains in the floret F(v), and so the process can henceforth be considered to take
place on this reduced tree T ′.

The one-step ahead forecasts can now be calculated as before with a few modifications
due the set of situations S changing; call this new set S†. Firstly, the distribution over U †,
the new set of possible stagings, must be set. There are several possible choices here. In
the absence of any other information, a good default is to let

P (Ut = U† | xt−1, It(v, v
′)) = P (Ut−1 = U | xt−1), (39)

where U† is the staging formed from U by replacing each stage u ∈ U with a new stage
u† := u \ {v†}v†∈S\S† , and by splitting the stage u† ∈ U † that contains the intervention
node v into u† \ v and v.

Secondly, the distributions of the stage parameters θt(u) for any u need to be reconsid-
ered. Under the causal assumptions considered here, interventions have only local effects,
so a sensible default model is to let fθt(u)(θt(u) | Ut = U,xt−1, It(v, v

′)) be calculated as
before, i.e. as given in Equation (15).

Assuming that all of the other system characteristics, e.g. the steady model and the
multinomial sampling, are intact post-intervention, the one-step ahead forecast (37) is ad-
justed to become

P (xt | xt−1, It(v, v
′)) =

∑
U†

t ∈U†

( ∑
Ut−1∈U

π†(U †
t | Ut−1)P (Ut−1 | xt−1)

 ∑
Nt(v0)

P (Nt(v0) | xt−1)

·
∏

u∈U†
t

IA

Γ
(∑

v′∈X(vu) ᾱt(u, v
′)
)

Γ
(∑

v′∈X(vu)
ᾱ∗
t (u, v

′)
) ∏

v′∈X(vu)

Γ(ᾱ∗
t (u, v

′))

Γ(ᾱt(u, v′))

)
(40)

where π†(U †
t | Ut−1) = π(Ut | Ut−1) by the argument above.

5. A simple educational example

In this section we illustrate how to carry out one-step ahead predictions with dynamic
staged trees using 12 years’ worth of exam marks for two first-year undergraduate modules.
The underlying event tree used was that shown in Figure 1.

We made the following assumptions:

(1) Nt(v0) was known for all values of t
(2) The distribution over the root-to-leaf paths at time t = 1 under U1 = S was Dirichlet

with all path hyperparameters equal to 1
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Table 1. All possible stagings and their posterior probabilities at each time
t for k = 0.9, ρ = 0.9, q = 0.2 with P (U1 = {v1, v2, {v3, . . . , v6},
{v7, . . . , v10}}) = 1

Time Ut P (Ut | xt)

1 1, 2, {3,4,5,6}, {7,8,9,10} 1
2 1, 2, 3, {4,5,6}, {7,8,9,10} 0.824

1, 2, {3,4,5,6}, {7,9,10}, 8 0.175
3 1, 2, 3, {4,5,6}, {7,8,9,10} 0.766

1, 2, 3, {4,5,6}, {7,10}, {8,9} 0.233
4 1, 2, 3, {4,5,6}, {7,8,9,10} 0.677

1, 2, 3, {4,5,6}, {7,10}, {8,9} 0.322
5 1, 2, 3, {4,5,6}, {7,8,9,10} 0.328

1, 2, 3, {4,5,6}, {7,10}, {8,9} 0.671
6 1, 2, 3, {4,5,6}, {7,10}, {8,9} 1
7 1, 2, 3, {4,5,6}, {7,10}, {8,9} 0.609

1, 2, 3, {4,5,6}, {7,10}, 8, 9 0.390
8 1, 2, 3, {4,5,6}, {7,10}, {8,9} 0.304

1, 2, 3, {4,5,6}, {7,10}, 8, 9 0.695
9 1, 2, 3, {4,5,6}, {7,10}, 8, 9 1
10 1, 2, 3, {4,5,6}, {7,10}, 8, 9 1
11 1, 2, 3, {4,5,6}, {7,10}, 8, 9 1
12 1, 2, 3, {4,5,6}, {7,10}, 8, 9 1

(3) For the transitions between stagings we used the ℓ metric with ϵ = 1, i.e. only transi-
tions between models with local changes were considered possible.

We present here the posterior probabilities P (Ut | xt) for the stagings after t = 1 for
each time t for different hyperparameter values, when analysed with and without an external
intervention.

In a full analysis this application could be run over a distribution of the hyperparameters
k (the steady model parameter), ρ (the probability of the underlying model not changing)
and q (the Occam’s window threshold), perhaps after taking account of an elicited prior
over their possible values. However, to illustrate the efficacy of our methods rather than
learn these hyperparameters it is better to hold them fixed so that we can better focus on
the impact of various structured assumptions we learn about.

5.1. Analysis of the series without intervention
In Table 5.1 we present P (Ut | xt) for t = 1 . . . 12 for the model where U1 = {v1, v2,
{v3, . . . , v6}, {v7, . . . , v10}} with probability 1 and k = 0.9, ρ = 0.9 and q = 0.2. The latter
two parameter values ensure that few new models will be kept in the analysis, as the high
value of ρ gives a low prior probability on transitions between stagings and this value of
q makes the Occam’s window set of equation (35) small. This speeds up the computation
of the forecasts at the expense of possibly worse predictions through fewer stagings being
included in the model averaging.

An alternative way of presenting this information is to plot how P (vi, vj ∈ u), the
probability that situations vi, vj are in the same stage, changes for increasing values of t.
Figure 4 shows this for the information in Table 5.1.
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Fig. 4. Plots of probabilities that each pair of situations are in the same stage for different values of t,
for the case when k = 0.9, ρ = 0.9, q = 0.2 with P (U1 = {v1, v2, {v3, . . . , v6}, {v7, . . . , v10}}) = 1,
using the values in Table 5.1

To illustrate how the level of detail in the staging distribution changes as a function
the hyperparameters, we carried out the analysis again with radically different values: we
set k = 0.5 (so that floret distributions are flattened more quickly and therefore past
observations more heavily discounted), ρ = 0.25 (so that the probability of moving between
stagings is more likely), and q = 0.05 (so that stagings with poorer Bayes factors relative to
the most likely are kept in the analysis) with P (U1 = {v1, v2, {v3, . . . , v6}, {v7, . . . , v10}}) =
1 still assumed for consistency. The resulting matrix plot of probabilities of situations being
in the same stage against time is as shown in Figure 5.

It can be seen from the latter figure that the analysis with the new hyperparameter
values gives much the same qualitative description of the system as the more conservative
hyperparameters at greater computational expense, with the pay-off of greater detail.

Some interesting characteristics of the system can be discerned from this initial ex-
ploratory analysis of this system. With regard to the situations concerning whether marks
are available for a module or not, θ(v3) — the probability distribution for the second mod-
ule’s marks being available given that the mark in the first module is itself missing — does
not appear to be related to the others at any time point. Until t = 7, v4, v5 and v6, the
situations representing the probability of marks being missing in the second module after
gaining a high, medium or low mark respectively in the first module, had high but falling
probabilities of being in the same stage, implying that independence of the second module’s
marks being missing from skill in the first module kept decreasing from a high point. At
t = 8, in contrast, these probabilities are much lower, although the probability distribu-
tions of marks being missing after gaining a medium or low mark in the first module are

CRiSM Paper No. 10-14, www.warwick.ac.uk/go/wcrism



18 Freeman and Smith

● ● ● ● ● ● ● ● ● ● ● ●1

1

● ● ● ● ● ● ● ● ● ● ● ●

2

1

● ● ● ● ● ● ● ● ● ● ● ●

3

1

● ● ●
●

●

● ● ●
● ● ● ●

4

1

● ● ●
●

●

●
● ● ●

●

●

●

5

1

● ● ●
●

●
●

●
●

●

● ●
●

6

1

● ● ● ● ● ● ● ● ● ● ● ●

7
1

● ● ● ● ● ● ● ● ● ● ● ●

8

1
● ● ● ● ● ● ● ● ● ● ● ●

9

1

● ● ● ● ● ● ● ● ● ● ● ●

10

1

● ● ● ● ● ● ● ● ● ● ● ●

1

2

● ● ● ● ● ● ● ● ● ● ● ●2

2

● ● ● ● ● ● ● ● ● ● ● ●

3

2

● ● ● ● ● ● ● ● ● ● ● ●

4

2

● ● ● ● ● ● ● ● ● ● ● ●

5

2

● ● ● ● ● ● ● ● ● ● ● ●

6
2

● ● ●

●
●

● ● ● ● ● ● ●

7

2
● ● ●

●
●

●

● ● ●

●

●

●8

2

● ● ●

●

●
●

● ● ● ● ● ●

9

2

● ● ●

●
●

● ● ● ● ● ● ●

10

2

● ● ● ● ● ● ● ● ● ● ● ●

1

3

● ● ● ● ● ● ● ● ● ● ● ●

2

3

● ● ● ● ● ● ● ● ● ● ● ●3

3

●

● ● ● ● ● ● ● ● ● ● ●

4

3

●

● ● ● ● ● ● ● ● ● ● ●

5
3

●

● ● ● ● ● ● ● ● ● ● ●

6

3
● ● ● ● ● ● ● ● ● ● ● ●

7

3

● ● ● ● ● ● ● ● ● ● ● ●

8

3

● ● ● ● ● ● ● ● ● ● ● ●

9

3

● ● ● ● ● ● ● ● ● ● ● ●

10

3

● ● ●
●

●

● ● ●
● ● ● ●

1

4

● ● ● ● ● ● ● ● ● ● ● ●

2

4

●

● ● ● ● ● ● ● ● ● ● ●

3

4

● ● ● ● ● ● ● ● ● ● ● ●4
4

● ●
●

●

●
●

● ●

● ●

●

●

5

4

● ●
●

●

●

●

●

● ● ● ● ●

6

4

● ● ● ● ● ● ● ● ● ● ● ●

7

4

● ● ● ● ● ● ● ● ● ● ● ●

8

4

● ● ● ● ● ● ● ● ● ● ● ●

9

4

● ● ● ● ● ● ● ● ● ● ● ●

10

4

● ● ●
●

●

●
● ● ●

●

●

●

1

5

● ● ● ● ● ● ● ● ● ● ● ●

2

5

●

● ● ● ● ● ● ● ● ● ● ●

3
5

● ●
●

●

●
●

● ●

● ●

●

●

4

5

● ● ● ● ● ● ● ● ● ● ● ●5

5

● ●
●

●

●

●

●

● ●
●

●

●

6

5

● ● ● ● ● ● ● ● ● ● ● ●

7

5

● ● ● ● ● ● ● ● ● ● ● ●

8

5

● ● ● ● ● ● ● ● ● ● ● ●

9

5

● ● ● ● ● ● ● ● ● ● ● ●

10

5

● ● ●
●

●
●

●
●

●

● ●
●

1

6

● ● ● ● ● ● ● ● ● ● ● ●

2

6
●

● ● ● ● ● ● ● ● ● ● ●

3

6

● ●
●

●

●

●

●

● ● ● ● ●

4

6

● ●
●

●

●

●

●

● ●
●

●

●

5

6

● ● ● ● ● ● ● ● ● ● ● ●6

6

● ● ● ● ● ● ● ● ● ● ● ●

7

6

● ● ● ● ● ● ● ● ● ● ● ●

8

6

● ● ● ● ● ● ● ● ● ● ● ●

9

6

● ● ● ● ● ● ● ● ● ● ● ●

10

6

● ● ● ● ● ● ● ● ● ● ● ●

1

7

● ● ●

●
●

● ● ● ● ● ● ●

2

7
● ● ● ● ● ● ● ● ● ● ● ●

3

7

● ● ● ● ● ● ● ● ● ● ● ●

4

7

● ● ● ● ● ● ● ● ● ● ● ●

5

7

● ● ● ● ● ● ● ● ● ● ● ●

6

7

● ● ● ● ● ● ● ● ● ● ● ●7

7

● ●

●

● ●
●

●

●
● ● ● ●

8

7

● ●

●

●

●
●

●
●

●

●

●

●

9

7

● ●

● ●

● ● ●
●

●

●
● ●

10

7

● ● ● ● ● ● ● ● ● ● ● ●

1
8

● ● ●
●

●
●

● ● ●

●

●

●2

8

● ● ● ● ● ● ● ● ● ● ● ●

3

8

● ● ● ● ● ● ● ● ● ● ● ●

4

8

● ● ● ● ● ● ● ● ● ● ● ●

5

8

● ● ● ● ● ● ● ● ● ● ● ●

6

8

● ●

●

● ●
●

●

●
● ● ● ●

7

8

● ● ● ● ● ● ● ● ● ● ● ●8

8

● ●

●

●

●

●

●

●

● ● ● ●

9

8

● ●

●

● ●
●

●

●
● ● ● ●

10

8

● ● ● ● ● ● ● ● ● ● ● ●

1

9
● ● ●

●

●
●

● ● ● ● ● ●

2

9

● ● ● ● ● ● ● ● ● ● ● ●

3

9

● ● ● ● ● ● ● ● ● ● ● ●

4

9

● ● ● ● ● ● ● ● ● ● ● ●

5

9

● ● ● ● ● ● ● ● ● ● ● ●

6

9

● ●

●

●

●
●

●
●

●

●

●

●

7

9

● ●

●

●

●

●

●

●

● ● ● ●

8

9

● ● ● ● ● ● ● ● ● ● ● ●9

9

● ●

●

●

●
●

●
●

●

● ●

●

10

9

● ● ● ● ● ● ● ● ● ● ● ●

1

10

● ● ●

●
●

● ● ● ● ● ● ●

2

10

● ● ● ● ● ● ● ● ● ● ● ●

3

10

● ● ● ● ● ● ● ● ● ● ● ●

4

10

● ● ● ● ● ● ● ● ● ● ● ●

5

10

● ● ● ● ● ● ● ● ● ● ● ●

6

10

● ●

● ●

● ● ●
●

●

●
● ●

7

10

● ●

●

● ●
●

●

●
● ● ● ●

8

10

● ●

●

●

●
●

●
●

●

● ●

●

9

10

● ● ● ● ● ● ● ● ● ● ● ●

10

10

Fig. 5. Plots of probabilities that each pair of situations are in the same stage for different values of t,
for the case when k = 0.5, ρ = 0.25, q = 0.05 with P (U1 = {v1, v2, {v3, . . . , v6}, {v7, . . . , v10}}) = 1

deemed to become slightly more likely to be the same after that, with students performing
well in the first module continuing to have a very different probability distribution for the
missingness of their second module marks. We investigate a possible causal hypothesis that
might explain what might have changed at t = 8 in the next section.

Another notable finding is that v7 and v10 — the situations concerning marks in the
second module after getting a poor grade or having a missing mark in the first module,
respectively — are always strongly related. It therefore appears that the second module
marks of students who did poorly in the first module should be used to predict the second
module performance of students whose first module marks are missing.

It is worth noting again that these detailed homogeneities would not have been as easily
identifiable if the model class was restricted to Bayesian networks.

5.2. Analysis of the series after intervention
We also carried out an analysis with the latter parameters after a hypothesised causal
intervention: we assumed that at t = 8 the situations for the grades (v2, v7, v8, v9, v10) were
put into the same stage. This could have happened, for example, because the modules were
re-defined to be very similar in difficulty for students with different skills. The resulting
matrix of probabilities of situations being in the same stage through time is shown in Figure
6.

It can be seen that the probabilities are not too different from those in Figure 5, but there
are increased probabilities of v8, v9 and v10 being in the same stage even for t > 8, which
indicates slightly higher probabilities of dependence between the second module’s grades
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Fig. 6. Plots of probabilities that each pair of situations are in the same stage for different values of t,
for the case when k = 0.5, ρ = 0.25, q = 0.05 with P (U1 = {v1, v2, {v3, . . . , v6}, {v7, . . . , v10}}) = 1,
and situations v2, v7, v8, v9, v10 caused to be in the same stage at t = 8

for students who performed differently in the first module under the causal hypothesis
considered here.

6. Discussion

We have presented in this paper a new discrete time series modelling class, the dynamic
staged tree, that is intuitive to use and suitable for carrying out causal analysis.

Obviously the class of models we define here can be usefully refined. In many potential
applications we would like to allow for multiple possible trees at any time point. If the
general class of event trees T is required, then P (xt | xt−1) can still be calculated as
outlined in this paper but with the additional step of marginalising over the T ∈ T such
that P (T | xt−1) > 0, assuming the number of such T is tractable. If all that is required
is the subclass of T which is trees that are merely different partitionings of the same set of
root-to-leaf path events, then assuming that the same root-to-leaf path events on different
trees have the same probability, the floret distributions on all trees can be characterised
as Dirichlet by the method used here. The method of assigning probabilities over the tree
space in either case, or how those probabilities change over time, would still need to be
resolved. We plan to explore this class in a later paper.

Another way of enlarging the model space is to allow for uncertainty in ψu(v, v
′), i.e.

which edges of two florets are coloured identically when their root nodes are in the same
stage. The type of hypothesis this could capture includes a belief in the stability in values
between different random variables. In our educational example, this would translate into
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believing that the probability of getting the same grade in the second module as in the first
one is the same for all grades.

We note that the number of possible ψu(v, v
′) for any pair v, v′ is |X(v)|!. Therefore

to make the model search tractable in general either the number of possibilities must be
restricted using contextual information or a local neighbourhood switching function, as with
the staging space model in this paper.

One blind spot of the staged tree is its ignoring the time it takes for events to occur by
modelling only which events occur. In applications like the educational one above, where the
time of the events is known, or where the time to an event is not relevant to the probability
of it occurring — as with constant hazard function models — this does not matter. For
other systems, however, the time at which events occur are an extremely important part
of the underlying process, and is the type of domain where event history analysis has been
applied. We are currently investigating the link between staged tree models of the type
described here and event history models which explicitly acknowledge this extra source of
variation.

Finally, it appears that the dynamic staged tree process can be extended to model
processes defined on continuous as well as discrete variables. Converting the leaf nodes on
a tree into continuous sample spaces is trivial. When other variables are continuous then
analogous conjugate models can be defined which describe hierarchical clustering models.
We will report on these developments in a later paper.
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