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Abstract

It is shown how to obtain the bias-reducing penalized maximum likelihood estimator for
the parameters of a multinomial logistic regression by using the equivalent Poisson log-linear
model. This allows a simple and computationally efficient implementation of the reduced-bias
estimator, using standard software for generalized linear models.
Key words: Jeffreys prior; leverage; logistic linear regression; Poisson trick.

1 Introduction

Use of the Jeffreys-prior penalty to remove the O(n−1) asymptotic bias of the maximum like-
lihood estimator in exponential family models was developed in Firth (1993) and has been
found to be particularly effective in binomial and multinomial logistic regressions (e.g., Heinze
& Schemper, 2002; Bull et al., 2002, 2007). Implementation of the method in binomial and other
univariate-response models is by means of a simple, iterative data-adjustment scheme (Firth,
1992). The purpose here is to extend such simplicity of implementation to multinomial models.

Suppose that observed k-vectors y1, . . . , yn of counts are realizations of independent multi-
nomial random vectors Y1, . . . , Yn. Let mr =

∑k
s=1 yrs be the multinomial total and πrs

be the probability of the sth category for the multinomial vector Yr, with
∑k

s=1 πrs = 1
(r = 1, . . . , n; s = 1, . . . , k). In multinomial logistic regression the log-odds of category s versus
category k, say, for the rth multinomial vector is

log

(
πrs
πrk

)
= ηrs = βTs xr (r = 1, . . . , n; s = 1, . . . , q) . (1)

Here xr is a corresponding vector of p covariate values, with first component unity if a constant is
included in the model; and βs ∈ <p is a vector of parameters for the sth category (s = 1, . . . , q),
with q = k−1. Write γ = (βT1 , . . . , β

T
q )T for the row vector of all parameters. The linear predictor

ηrs may then be expressed in the form ηrs =
∑pq

t=1 γtgrst, where grst is the (s, t)th component
of the q × pq matrix Gr = Iq ⊗ xTr with Iq the q × q identity matrix (r = 1, . . . , n; s = 1, . . . , q).
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Maximum likelihood estimation of γ may be performed either by maximizing the multinomial
likelihood or by estimating via maximum likelihood the parameters θ = (γT , φ1, . . . φn)T of a
Poisson log-linear model with

logµrs = ζrs = φr + (1− δsk)βTs xr (r = 1, . . . , n; s = 1, . . . , k) . (2)

Here µrs (r = 1, . . . , n; s = 1, . . . , k) represent the expectations of independent Poisson random
variables Yrs, and φ1, . . . , φn are nuisance parameters; the Kronecker function δsk is equal to 1
when s = k and zero otherwise.

The above equivalence was noted in Birch (1963), and Palmgren (1981) showed that the
inverse of the Fisher information on β1, . . . , βq is the same in both representations under the

restriction
∑k

s=1 µrs = mr (r = 1, . . . , n) on the parameter space of the Poisson log-linear
model. That restriction is automatically satisfied at the maximum likelihood estimate because
if l(γ) is the log-likelihood for the Poisson log-linear model, then ∂l(γ)/∂φr = mr − τr, where
τr =

∑k
s=1 µrs (r = 1, . . . , n).

2 Bias reduction via the log-linear model

In Firth (1992) it is shown that the bias-reducing adjusted score functions for the log-linear
model (2) can be written in the form

U∗t =

n∑
r=1

k∑
s=1

(
yrs +

1

2
hrss − µrs

)
zrst (t = 1, . . . , n+ pq) . (3)

Here zrst is the (s, t)th component of the k × {n+ pq} matrix

Zr =

 Gr 1q ⊗ eTr
0Tpq eTr

 (r = 1, . . . , n) ,

with 0pq being a pq-vector of zeros, 1q a q-vector of ones, and er a vector of zeros with one
in its rth component. The leverage quantity hrss is the sth diagonal component of the k × k
matrix Hr = ZrF

−1ZT
r Wr, where F is the Fisher information on θ and Wr = diag {µr1, . . . , µrk}

(r = 1, . . . , n). The matrix Hr is the k × k, rth diagonal block of the asymmetric ‘hat matrix’
for model (2).

As in Firth (1992), expression (3) directly suggests an iterative procedure for solving the

adjusted score equations: at the jth iteration, (i) calculate h
(j)
rss (r = 1, . . . , n; s = 1, . . . , k),

where the superscript (j) denotes evaluation at the candidate estimate θ(j) of the previous

iteration and (ii) fit model (2) by maximum likelihood but using adjusted responses yrs +h
(j)
rss/2

in place of yrs, to get new estimates θ(j+1). However, solution of the adjusted score equations
U∗t = 0 (t = 1, . . . , n+ pq) does not result in the reduced-bias estimates of γ in the multinomial
model. The reason is that by (3) the adjusted score equation for φr gives τ∗r = mr + tr{H∗r }/2,
with the star superscript denoting evaluation at the solution; this is in contrast to maximum
likelihood, where the essential restriction τ̂r = mr (r = 1, . . . , n) is automatic.

In order to construct a simple iterative procedure that does deliver the reduced-bias estimates
of γ, it is convenient to re-express the model in terms of θ† = (γT , τT )T , with τT = (τ1, . . . , τn),
since then the necessary restriction is imposed directly by fixing the τ parameters at the corre-
sponding multinomial totals. The log-linear model (2) is then re-written as a canonically-linked
generalized nonlinear model,

logµrs = log τr + (1− δsk)ηrs − log

{
1 +

q∑
u=1

exp (ηru)

}
(r = 1, . . . , n; s = 1, . . . , k) . (4)
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The variance and the third cumulant of Yrs under the Poisson assumption are equal to µrs
and the leverages hrss are parameterization invariant. Hence, expression (13) in Kosmidis &
Firth (2009) gives that the bias-reducing adjusted score equations using adjustments based on
the expected information matrix take the form

U †t =
n∑

r=1

k∑
s=1

[
yrs +

1

2
hrss +

1

2
µrstr

{
(F †)−1D2

(
ζrs; θ

†
)}
− τrπrs

]
z†rst (t = 1, . . . , n+ pq) ,

where F † is the expected information on θ†, D2
(
ζrs; θ

†) denotes the (n+ pq)× (n+ pq) Hessian

matrix of ζrs with respect to θ†, and z†rst is the (s, t)th component of the k × {n+ pq} matrix

Z†r =

Gr − 1q ⊗
(
πTr Gr

)
1q ⊗

(
τ−1r eTr

)
−πTr Gr τ−1r eTr

 (r = 1, . . . , n) ,

with πr = (πr1, . . . , πrq)
T and πrs = µrs/τr (s = 1, . . . , k).

After noting that D2
(
ζrs; θ

†) does not depend on s and substituting for z†rst (r = 1, . . . , n; s =
1, . . . , k), the adjusted score functions for γ take the simple form

U †t =

n∑
r=1

q∑
s=1

[
yrs +

1

2
hrss −

(
τr +

1

2
tr{Hr}

)
πrs

]
grst (t = 1, . . . , pq) . (5)

The following theorem provides some identities on the relationship between the matrix Hr

and the q × q, rth diagonal block of the asymmetric hat matrix for the multinomial logistic
regression model (1). Denote the latter matrix by Vr.

Theorem 1 Let vrsu be the (s, u)th component of the matrix Vr (r = 1, . . . , n; s, u = 1, . . . , k−1).
If the parameter space is restricted by τ1 = m1, . . . , τn = mn then

hrss = πrs + vrss −
q∑

u=1

πruvrus (s = 1, . . . , q) ,

hrkk = πrk +

q∑
s,u=1

πruvrus ,

where πrs = µrs/τr (r = 1, . . . , n; s = 1, . . . , k).

Note that with the assumptions and identities in Theorem 1 it may immediately be seen
that tr{Hr} = tr{Vr} + 1 (r = 1, . . . , n). Some algebra using the identities in Theorem 1 then
yields that, under the restriction τr = mr (r = 1, . . . , n), the adjusted score functions for γ in
(5) take the form

U †t =

n∑
r=1

q∑
s=1

{
yrs +

1

2
vrss −

(
mr +

1

2
tr{Vr}

)
πrs −

1

2

q∑
u=1

πruvrus

}
grst (t = 1, . . . , pq) .

Using the results in Kosmidis & Firth (2009, p.797) on adjusted score functions for canonically-
linked multivariate generalized linear models, further algebra shows that the above expression
coincides with the adjusted score functions for the multinomial logistic regression model for
any value of γ. The proof of Theorem 1 and details of the algebraic manipulations, which are
straightforward but tedious, are in Kosmidis (2007, Appendices B.5 and B.6).
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Hence the following iterative procedure applies: move from candidate estimates γ(j) to new
values γ(j+1) by solving

0 =

n∑
r=1

q∑
s=1

[
yrs +

1

2
h̃(j)rss −

(
mr +

1

2
tr
{
H̃(j)

r

})
π(j+1)
rs

]
grst (t = 1, . . . , pq) , (6)

with h̃
(j)
rss calculated under the restriction

∑k
s=1 µ

(j)
rs = mr. Directly from (5), the above iteration

has a stationary point at the reduced-bias estimates of γ. Furthermore, from the form of the
score functions for Poisson log-linear models, iteration (6) may be decomposed into the following
steps:

1. set φ̃(j)r = log

{
k∑

s=1

µ(j)rs −
1

2
tr
{
H(j)

r

}}
− log

{
1 +

q∑
s=1

exp
(
η(j)rs

)}
(r = 1, . . . , n),

2. use θ̃(j) = (γ(j), φ̃
(j)
1 , . . . , φ̃

(j)
n ) to calculate a new value H̃

(j)
r for the hat matrix (r =

1, . . . , n),

3. fit the log-linear model (2) by maximum likelihood but using the adjusted responses yrs +

h̃
(j)
rss/2 in place of yrs to get new estimates θ(j+1) (r = 1, . . . , n; s = 1, . . . , k).

Note thatHr depends on the model parameters only through the Poisson expectations µr1, . . . , µrk
(r = 1, . . . , n) and that the first step implies the rescaling of the current values of those expec-
tations so that they sum to the corresponding multinomial totals. It is straightforward to
implement this iteration using standard software for univariate-response generalized linear mod-
els; a documented program for the R statistical computing environment (R Development Core
Team, 2010) is available from the second author upon request.

References

Birch, M. W. (1963). Maximum likelihood in three-way contingency tables. Journal of the Royal
Statistical Society, Series B: Methodological 25, 220–233.

Bull, S. B., Lewinger, J. B. & Lee, S. S. F. (2007). Confidence intervals for multinomial logistic
regression in sparse data. Statistics in Medicine 26, 903–918.

Bull, S. B., Mak, C. & Greenwood, C. (2002). A modified score function estimator for multinomial
logistic regression in small samples. Computational Statistics and Data Analysis 39, 57–74.

Firth, D. (1992). Generalized linear models and Jeffreys priors: An iterative generalized least-squares
approach. In Computational Statistics I, Y. Dodge & J. Whittaker, eds. Heidelberg: Physica-Verlag.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38.

Heinze, G. & Schemper, M. (2002). A solution to the problem of separation in logistic regression.
Statistics in Medicine 21, 2409–2419.

Kosmidis, I. (2007). Bias Reduction in Exponential Family Nonlinear Models. Ph.D. thesis, Department
of Statistics, University of Warwick.

Kosmidis, I. & Firth, D. (2009). Bias reduction in exponential family nonlinear models. Biometrika
96, 793–804.

Palmgren, J. (1981). The Fisher information matrix for log linear models arguing conditionally on
observed explanatory variables. Biometrika 68, 563–566.

R Development Core Team (2010). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

4

CRiSM Paper No. 10-18, www.warwick.ac.uk/go/crism


