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Inference for grouped data with a truncated
skew-Laplace distribution

F. J. Rubidand M. F. J. Steél

Abstract

The skew-Laplace distribution has been used for modellengigle size with
point observations. In reality, the observations are tated and grouped (rounded).
This must be formally taken into account for accurate maaglland it is shown
how this leads to convenient closed-form expressions ferlitelihood in this
model. In a Bayesian framework, we specify “noninformdtibenchmark pri-
ors which only require the choice of a single scalar priordrpprameter. We
derive conditions for the existence of the posterior distiibn when rounding and
various forms of truncation are considered in the model. Wig@cus mostly on
modelling microbiological data obtained with flow cytometising a skew-Laplace
distribution. However, we also use the model on data oftexd ts illustrate other
skewed distributions, and we show that our modelling faablyr compares with
the popular and flexible skew-Student models. Further elesmgn simulated data
illustrate the wide applicability of the model.

Key Words: Bayesian inference; flow cytometry data; glass filata; posterior exis-
tence; rounding

1 Introduction

We propose a truncated skew-Laplace distribution for ugl woarse (in particular
rounded) or set observations. Bayesian inference will Inelgcted using Markov chain
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Monte Carlo methods. Our leading example concerns miclofiical data obtained
with flow cytometry, in particular forward scatter (FS) datstained for the Escherichia
Coli (E. Coli) bacterium. Julia and Vives-Rego (2005, 2PD08e a skew-Laplace dis-
tribution to model these data, which are truncated due teémsitivity of the flow cy-
tometer and are recorded as set data because the obsenaag@resented as integers.
Truncation and coarsening must be formally included in tloglehin order to conduct
inference appropriately and to fit the data well. This agian will be used throughout
most of the paper, and will serve as an important motivatkagle. However, later
we will use the same model for a data set on the breaking strexiglass fibres, which
has frequently been used in the statistics literature fastiiating skewed distributions.
Further examples on simulated data illustrate the genppicability of the model.

In order to define the skew-Laplace distribution, we use treegal skewing frame-
work of Fernandez and Steel (1998a). This leads to a skeMata distribution which
is parameterised through a single skewness parameterskéusess parameter has a
nice interpretation in terms of the allocation of mass toléieand to the right of the
mode. It also leads to inferential advantages as the skeavidgcale parameters have
clearly defined roles, whicé.g.facilitates specification of the prior distribution.

Despite the introduction of skewness, rounding and truoca the model, the like-
lihood has a relatively simple closed-form expression.sTthakes efficient likelihood-
based inference feasible, and in this paper we will focus ayeBian inference. Maxi-
mum likelihood estimates, profile likelihoods and confidemttervals are numerically
very close to posterior modes, posterior density functammsHighest Posterior Density
(HPD) credible intervals, respectively. For models withieas degrees of truncation,
we propose benchmark “non-informative” priors which reguhe choice of a scalar
prior hyperparameter. As these priors are improper, weagdsoe sufficient conditions
for the existence of the posterior. These conditions areeauild and trivial to check.
An important advantage of the Bayesian framework is thaaitrally leads to formal
model comparison on the basis of Bayes factors. We computesBactors between
the various models as a function of the single prior hypenpater and also consider
comparison based on predictive performance. For the glagsdata, we compare the
skew-Laplace model with commonly used skew-Student spatidns and find the for-
mer does better in terms of Bayes factors and matches thelkmgtStudent model in
terms of predictive performance. Inference with the skemplace model is not sub-
stantially complicated by the use of set observations arcation of the sample space,
in contrast with skew-Student or skew-normal models, forcWithe likelihood is not
available in closed form.

CRiSM Paper No. 10-20, www.warwick.ac.uk/go/crism



2 Set observations

Whenever we use a continuous model for the observationagctally recorded values
are necessarily rounded, as they are recorded to some fiadision. There has been an
active literature on the quantitative effects of roundiaggrouping), as summarized in
e.g. Heitjan (1989) and more recently in Schneeweiss e2@lQ). Within a Bayesian
context, the explicit modelling of grouped data or set obestons has been proposed by
Fernandez and Steel (1998b, 1999a) as a way to avoid pgtbalsituations such as the
nonexistence of a posterior with a proper prior. The reasosudch behaviour is linked
to the fact that any set of point observations has zero pibtyabnder a continuous
sampling model. Set observations in our context of roundnegimple neighbourhoods
(intervals of positive Lebesgue measure) of the recordedt mdservations that are
chosen in accordance with the precision of the measurirgegeo Thus, for=1,...,n
and somel > 0, we define

Plobservingy,;| =P[y; € S;] =Ply; —d <Y <y, +d]. 1)

3 The skew-Laplace distribution

In order to define the skew-Laplace distribution we use tleavsless mechanism pro-
posed in Fernandez and Steel (1998a). Thus, we saykthatskew-Laplacéu, o, ) if
the density function o¥ is

1
o(++3)

@exp (%) forleu,

exp [@] forxz < p,

fX<'T‘:u7O-77) = (2)

whereu € R, o,y > 0. This model (with a different, less interpretable paramsaion,
used in Julia and Vives-Rego, 2005, 2008) was called thepiece double exponential
distribution in Lingappaiah (1988). The allocation of més®ach side of the mode is
given by

1 — Fx(plp,o7) 5
Fx(p|p, o,7)

)

which clearly highlights the role of as the skewness parameter, withhe location
parameter (which is always the mode) and scale parameter. Of course, for= 1
we obtain the usual Laplace distribution, whereas righsifpe) skewness corresponds
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toy > 1 and left (negative) skewness o< 1. Inverting~ corresponds to mirror-
ing the density function around the mode. If we measure skewhy the usual third
centered moment divided by the cubed standard deviatierdifference between mean
and mode divided by the standard deviation or the measurenaldand Groeneveld
(1995) (defined as one minus twice the probability mass téetthef the mode), therny
and1/~ lead to equal amounts of skewness with opposing signs. adldlmeasures are
strictly increasing functions of the skewness parameter

The distribution function ofX is given by

e (2222)

ﬁ [1—72 (exp <’%f> —1)] forx > p.

First we investigate the analysis with the skew-Laplacérifigtion in (2), taking
into account the fact that the actual observations are dind described in Section 2.

Fx(z|p,0,7) =

3.1 Likelihood Function

Consider an independent sample of rounded observagions y,, from (2). The round-
ing as in (1) implies that
Plobservingy;,] = Ply; —d <Y <vy; +d
= Fx(y; +dlp,0,7) — Fx(y; — d|p, 0,7). 3)

Suppose that there akedifferent observationg* = {y},...,yi} and{ny,...,ng}
are the corresponding observed frequencies. The likdiilfimaction for this sample is

k
Ly, 0,7) o [ [Fxlw; + dlns 0.7) = Fx(y; = dlw,o,7)]"™ .

=1

The E.Coli dataset contains = 9,015 observations, rounded to = 98 integer
values (so thaf = 1/2), ranging fromd7 to 165 with frequencies in betweehand306.
The glass fibre data have = 63 observations, rounded to the nearest one hundredth
(d = 0.005), ranging from0.55 to 2.24 with 49 repeated observations.

3.2 Bayesian Inference

In order to come up with a reasonable “noninformative” pobthe parameters in our
model(2), we first consider the fact that the three parameters haadylgistinct roles,

4
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so that a product structure for the prior seems a good chdéicthe symmetric model
(i.e.y = 1) the (noninformative) full Jeffreys prior is given yu, o) < 072, as is the
case for any location-scale model (Fernandez and Ste@®h)9 We then modify this
prior by bounding the parameter space of the locatiowhich is important in ensuring
that a posterior distribution existsd. is a well-defined probability distribution). As we
are dealing with necessarily positive observations witlnérnal mode in both of our
applications, we use zero as a lower bound for the moeéereas we introduce a single
hyperparamete¥/ as the upper bound. To elicit a prior for the skewness paemetve
consider the skewness measure of Arnold and Groeneveld)1@8ich takes values
in the interval (-1,1) and specify a uniform prior on this mee. This leads to the
following prior for the model parameters:

~
m(p,0,7) x —————1(0 < u < M). 4
(w,0,7) 1) (0 <p<M) (4)
Note that this density is improper inand the prior mass assigned to a range of positive
skewness (sayy € (a,b) with b > a > 1) is the same as that assigned to the corre-
sponding range of negative skewnegs=((1/b,1/a)). We take the upper bound to
be 1000 in the results presented in Sections 3-5.

We obtain the following sufficient condition for the existerof the posterior distri-
bution.

Theorem 1 The posterior distribution ofy, o, ) for the modek2) and the prior dis-
tribution (4) is proper if the number of different observations is at legste. £ > 3.

Proof. see Appendix

Inference for the E.Coli data was conducted using a MarkaincMonte Carlo
(MCMC) algorithm. In particular, we simulated a chain ofdgim2, 510, 000 from the
posterior using the t-walk algorithm (Christen and Fox, @04nd after a burn-in of
10,000 we retained every00th set of parameter values, leading to sample of 25,000
draws. Figurel shows the marginal posterior distributions (f, o, y). Inference is
quite precise withh5% Highest Posterior Density (HPD) credible intervals given a
follows: p: (69.75,70.93), ~v: (1.03,1.10) ando: (10.29,10.73). It is clear that the
relatively large dataset contains quite a lot of informaim the three parameters in our
model. The evidence indicates a relatively small but quieeisely determined amount
of right skewness in the data. Prior density functions ase displayed in Figure, but
they are virtually flat for the range of the parameter vallesg (prior density values
are quite small, so the prior for and~ is scaled up by the most convenient power of

5
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ten; foro an arbitrary scaling is applied). Figueeshows the predictive distribution of
the data (the sampling density () with the parameters integrated out with the poste-
rior distribution). However, comparing the data histognaith this predictive density
indicates a rather poor fit of the data. For example, it sedwausthe slightly positive
skewness is not consistent with the perhaps more pronoudettéshoulder” in the data
when we limit ourselves to the range where data were actoagrved. On the other
hand, the far left tail of the predictive density is simplyt meatched by any data. Thus,
it appears truncation of the data is an issue and we will n@aausiodel that allows us
to formally accommodate such truncation.

ft o ol

20

10

69.5 70 70.5 71

Figure 1:E. Coli data: Posterior (solid line) and scaled prior (dasliee) density functions.

0.05f 7

40 60 80 100 120 140 160
y

Figure 2:Histogram of E. Coli data and predictive density.

4 Doubly Truncated Model

Let us considel” to be a version of the skew-Laplace distributed random kid in
(2), truncated to the intervéd, , 6]. The density function of” is then

Fx (I, 0.7) 101,00 (¥)
Fx(balp, 0,7) — Fx(61]p, 0,7)
wheref;, 0, € R andf; < u < 0,. Note thatu is still a location parameter (the mode),
o is a scale parametey,is a skewness parameter aifgl, 6,) are threshold or boundary

fY(y|M>U,%91>92) = (5)

6
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parameters. The allocation of mass to each side of the mayiecis by

_ p=02
1- FY(M|M7077a91792) A2 1 exXp ( yo )
Fy (p|p, 0,7,641,62) 1 — exp <'y(61—u)) ’

whereFy is the distribution function o¥” and is given by

0, for y < 64,

Fy (ylp, 0,7,01,00) = 5;&'"2:;73)__%(&11%’(;2), for 6, <y <6,

1, for y > 0s.

So the mass allocation both sides of the mode in this doublycated model is
affected byy as before but also by the boundary parameters. Of courg8e,# —oo
andf, — oo we retrieve the previous model in the limit, but we will assuinite values
for 6, andd, in this section.

4.1 The likelihood function

An independent samplg, ..., v, from (5) rounded as in (1) leads to
Plobservingy;,] = Ply; —d <Y <vy; +d
= Fy(y; +dlp,0,7,01,02) — Fy(y; — d|u,0,7,01,02).
As before, we suppose that there aréifferent observationgj, ..., y;, of which
the smallest ig(;) and the largest ig,,), andn., ..., n;, are the corresponding observed

frequencies. The likelihood function for this sample is
k

L(y|p, 0,7,01,02) o H[FY(y;+d|MaU>%91,92)—FY(y;—d|M>07%91,92)]nj
=1

J
== [FX(‘92‘M7077) _FX(‘91|M7077)]_H

X

~
S

—Oovyu)—d] (el)l[ym)—i-d,oo) (92)

nj

[Fx(y} +dlp, 0,7) — Fx(y; — dlu, 0,7)]

=

1

<.
Il

4.2 Bayesian Inference

Consider the following improper prior for the parametershef sampling model i5)
v
0% (1+72)°

7

m(u, 0,7,01,02) I0<b, <p<by< M), (6)
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which is in line with the prior (4) used for the untruncateddab and is again improper
only in 0. Note that the prior assumes that the mode is containedmiiti@ range of

observed data. This may not always seem like a reasonabiepsen, but we feel that
the use of a skew-Laplace model would not be natural if we visared with data that
look like one tail of such a model (we would then simply use @i of an exponential
model).

The existence of the posterior is warranted by the followesylt:

Theorem 2 The posterior distribution ofy, o, 7, 01, 6;) for the Bayesian model ifb)
and(6) is proper if the number of different observations is at legste. £ > 4.

Proof. See Appendix.
We have used the same valueMdfand the same MCMC algorithm (with the same

runlength) as in Section 3. FiguBeshows the marginal prior (scaled as before) and
posterior distributions for the E. Coli data. It is inteiegtto note the dramatically

1.2
20

0.8

05~

A 10
o A N _

75.5 76 76.5 7 15 16 17 0.56 0.61 0.6€

61 62

80 0.001%r -,

40 0.000€

0
46.45¢ 46.47¢ 46.49¢ 250 500 750 100¢

Figure 3:E. Coli data: Posterior (solid line) and scaled prior (daslree) density functions.

different inference on the skewness parametar this truncated model. As the data
truncation is now being dealt with by the boundary paransetee no longer need

to reduce the mass in the left tail, and we get evidence fongtnegative skewness
instead, which is much more in line with the data histograime posterior distribution

of 6, is flat (like the prior) over the ranggy,, + 1/2, M) indicating that the data carry
no information abou®, within this range. This is in line with the classical anatysi

where the profile likelihood of, has an asymptote et 0.7 times the maximum value

8
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for largef,. There is no real data evidence to distinguish between saltieé, above
yn + 1/2 and this suggests the use of a model with only left truncatitstimated’5%
HPD credibility intervals for the other parameters aré75.44,76.77), v: (0.57,0.64),
o: (15.28,16.75) andd, : (46.47,46.50).

Figure4 shows the predictive density fit to the data, which is cleanlych improved
because of the truncation.

60 80 100 120 140 160
y

Figure 4:Histogram of E. Coli data and predictive density.

5 Left truncated model

As the particular data used here seem to indicate that ttioncan the right is superflu-
ous, we now consider a model with only left truncation. SbYlde a truncated version
of X in [#1, 00). The density function oY is

~ Ixlp o, 6,00 ()

,0,7,01) = ) 7
fy(ylp, 0,7, 61) L= Fx(Bilp. o) ()

Now ¢; € R is the only threshold parameter and we resttick p. The allocation
of mass to each side of the mode is given by

1- FY(:u|luaO->’Y>01) _ 72 1
Fy (plp, 0,7, 01) 1 —exp (Lel_”)) 7

whereFy is the distribution function o¥” and is given by

0 for y < 6y,

Fx (ylp,0,7)—Fx (01]1,0,7)
1-Fx (61|p,0,7) , for b < Y

FY(y|:U’7 g,%, 91) =
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5.1 The likelihood function

Consider an independent sample..., y,, from (7) with rounding as in (1).

The likelihood function for a sample @éf different observationg;, ..., y; with fre-
guenciesuy, ..., ny is given by

'C(y*|,u7 g,7, 91) X [Fy(y;k + d|:u7 g,7, 91) - FY(y;k - d|:u7 g,7, 91)}7%

= Fx (Ouli 0] (g ) -a) (01)

Il
. — S,
> P—‘ll: >
—

nj

[Fx(y; +d|p,0,7) — Fx(y; —dlp, 0,7)]

<
Il
-

5.2 Bayesian Inference

Consider the following improper prior for the parametershaf model (5)

~

,0,7,0 — S J0< b, <pu< M), 8
(0,7 1)O<02(1+72)2( 1< p< M) (8)
which is the prior suggested by (6) for this reduced model.

Posterior existence is ensured by the following result:

Theorem 3 The posterior distribution ofu, o,~, 6;) for the model(7) and the prior
distribution(8) is proper if the number of different observations is at legste. £ > 4.

Proof. See Appendix

We used the same value féf and the same MCMC strategy to obtain posterior
results. As expected, results are very close to the doubhcaited model, except that
we do not have the right truncation parameter in the modekgMal posterior density
functions foru, v, 0 andé; are virtually identical as well as the predictive distriout

6 Model Comparison

One advantage of Bayesian methods is that model compar&sorfiocmally be con-

ducted by Bayes factors. Here Bayes factors can be compeategén all three models
despite the arbitrary integrating constant (impropenefthe prior, since the prior has
a product structure with an improper factor ghwhich is common to all models, and

10
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the factor corresponding to model-specific parameterstegiable and thus properly
normalised. The marginal likelihoods needed in the catmraf Bayes factors are es-
timated using importance sampling, with an importancetionachosen to resemble the
posterior but with fatter tails. Results with reciprocapiantance sampling (Gelfand and
Dey, 1994) are very close. Table 2 contains values for tharlthgn of the Bayes fac-
tors. Information-based criteria are typically a lot eatiiecompute and we also present
values for the BIC (Schwarz, 1978) and the DIC (Deviancermgtion Criterion) of
Spiegelhalter et al. (2002). An alternative approach to@hodmparison is through the
predictive performance of the models; we compute the lodiptige score (LPS; see
e.g. Gneiting and Raftery, 2007) based on how well the ptigdidistribution matches
a randomly chosen prediction subsample, not used in thepasinference. We use
20 prediction subsamples of 450 observations each and dertiILPS as the average
over the 20 subsamples (smaller values are better).

Model
Criterion untruncated doubly trunc.| left trunc.
BIC 73020.9 71553.8 71545.4
DIC 72999.6 71516.9 71517.1
log Bayes factor 0 733 732
LPS 1822.1 1785.1 1785.8

Table 1: E. Coli data: Various criteria for model comparison. In th@pfor the truncated
models we choos@/ = 1000. Bayes factors are computed through importance samplidg an
we state the logarithm of the Bayes factor in favour of the ehad the column versus the
untruncated model. Log predictive scores (LPS) are condputehe basis of 20 partitions, each
retaining 450 observations in the prediction sample.

From the results in Table 2 we immediately deduce that thecated models are
much preferred to the untruncated version. The relativpeuor both truncated mod-
els is in favour of the left truncated model if we consider BIe DIC, LPS and the
Bayes factor all favour the doubly truncated model. Onlyhie ¢ase of the Bayes factor
can this be interpreted in terms of posterior model proliads! if we assume unitary
prior odds, the posterior probability attached to the dgaihincated model is 2.5 times
as large as that of the left truncated model. Clearly, thégpios mass assigned to the
untruncated model is negligible.

Finally, we remind ourselves that the prior hyperparaméfemust be selected in
specifying the prior, and we know that Bayes factors can lite gensitive to the choice

11
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of prior (Kass and Raftery, 1995). Therefore, we now ingzd8 the sensitivity of
the Bayes factor to the choice 8f. Figure 5 shows how estimates for the marginal
likelihoods of all models and the (most relevant) Bayesdabietween the truncated
models vary with). For each value of\/ (in the range from 200, just above the
largest observation, to 2000) we run ten importance samqetimates and the results
are indicated through boxplots. Clearly, estimates areequicise for all three models.
As expected, marginal likelihood values are affected bydheice of M/, since the
prior domain foru is extended beyond areas with appreciable likelihood wahsd//
grows, so that the only real effect of larg&f is that we average the likelihood with
smaller prior density values, thus leading to a smaller maidikelihood. However,
the ratio of marginal likelihoods (the Bayes factor) is tielely stable as\/ varies. As a
consequence, we consistently get slightly more suppothi®doubly truncated model
for reasonable values @i/, sayM > 300.
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Figure 5:E.Coli data: Box plots based on 10 posterior samples usipgitance sampling. In
all graphs results are given as a function)éf (a) Bayes factor in favour of the left truncated
model versus the doubly truncated one. (b) Marginal likaith for the doubly truncated model.
(c) Marginal likelihood for the untruncated model.

7 Glass fibre data

Consider the data reported in Smith and Naylor (1987) abdmubteaking strength of
n = 63 glass fibres. These data were used repeatedly in the literaith a variety of
skewed distributions (Jones and Faddy, 2003; Ferreira tawl,2006). We compare

the skew-Laplace model with the more commonly used skewestumodel (with the

12
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inverse scale factor skewing of Fernandez and Steel, )96B8adhe basis of set obser-
vations. This skew-Student sampling model is given by

o7 —(w+1)/2
70(3;:1) [1 + % (—7(1’;”)) } forz < p,
ft(x|:u70-777 V) = ! 9 —(v+1)/2 (9)
2cy 1 (z=p)
o(y+1) {1+”<W)} fore = p,
wherec, = F[(lf[j/l;{ 2] % andv > 0 is the degrees of freedom parameter. Ferreira and

Steel (2006) find that the skew-Student with= 2 performs well for these data, but
we will focus on the skew-Student with unknown degrees admm, as this retains the
flexibility to adapt the tails to the data.

These data are breaking strengths, and therefore are stbjée physical con-
straint that they can not be negative. Thus, the first skepldce model we consider is
the left truncated one in (7), but with fixed to be zero. In combination with the prior
for the three model parameters in (4), this leads to theviotig result:

Theorem 4 The posterior distribution ofy, o, ) for the skew-Laplace model left trun-
cated at zero, i.g(7) with §; = 0, and the prior distribution(4) is proper if the number
of different set-observations is at least.e. &k > 4.

Proof. See Appendix

For the skew-Student model in (9) we adopt the prior basedtpmwith an extra
factor for the degrees of freedom parameter

i
—1 M)P, 1
1+ )2 0<pu< M)P,, (20)

for which we can derive the following result on posteriorst&nce:

w(p, 0,77, V)

Theorem 5 The posterior distribution ofy, o, v, v) for the skew-Student model in (9)
and the prior distribution10) is proper if the number of different set-observations is at
least3, i.e. k > 3 and P, is a proper distribution with zero mass @r oo, 1 + ¢) for any

e > 0.

Proof. See Appendix

The restriction on the prior support means that we want tediptive mean to ex-
ist, which may not be a very unreasonable assumption. Natevédry small values of
v are typically associated with problems in classical likebd inference or Bayesian

13

CRiSM Paper No. 10-20, www.warwick.ac.uk/go/crism



inference on the basis of point observations (FernanddzSaeel, 1999a). Theorem 5
also covers the case where we #ixat any value larger than or equal to one, simply by
taking P, to be Dirac. For the prioP, in the case of unknown we consider two pos-
sibilities: firstly, a thin-tailed gamma prior with shaperpaeter 2 and scale parameter
0.1, restricted tol + €, oo) which covers a large range of values. Secondly, we adopt a
hierarchical prior constructed from putting an exponémtreor on the scale parameter
of the gamma with shape parameter 2; this leads to the garamaag prior, given by
7(v) < v/(v + d)® with d > 0 and defined forr > 1 + ¢. This prior has a very fat
tail with no mean and shares the right-tail behaviour of tbiérdys prior derived for
the symmetric Studeritmodel in Fonseca at al. (2008). Here we adépt 2 which
means the mode is at the boundaryifoe 1 + ¢. Throughout, we taketo be machine
precision (the results are the same for any 0.0001).

Figure 6 shows the inference on the parameters of the zaeroated skew-Laplace
model usingM/ = 10, and it is clear that skewness is again an important aspebeof
data. As in other studies with this application, we find cleadence of negative skew-
ness. Posterior predictive density functions are ovetgdotvith a histogram (chosen

f o gl

0.1% 0.25 0.3t 0.4 0.7 1

Figure 6: Glass data: Posterior (solid line) and prior (dashed lirex)sity functions for the
Laplace model.

according to Sturges’ formula) of the data in Figure 7. Alldets seem to fit the data
reasonably well, but there are some differences betweegpréukctives. It is interesting
to note that the skew-Laplace model does not lead to suchrp pkak as in the appli-
cation with the E. Coli data. The fact that the data are nof peaked means there is
some posterior uncertainty regarding the mode (see Figuem8 this is reflected in the
posterior predictive (which is simply the sampling modeégrated out with the poste-
rior). As a consequence, the skew-Laplace and the skeweStadodel withv = 2 are
actually very similar. Thus, the simple skew-Laplace maklpts to the data at hand.
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Figure 7:Histogram of glass data, predictive density for the skeywtace (bold line), skew.
(short dashes), skety-with gamma prior (dotted line), skety-with gamma-gamma prior (long
dashes).

7.1 Model comparison

In order to have a more formal comparison of the different eldve can again com-
pute the Bayes factors. Marginal likelihood estimates ddpen M/, as discussed in
Section 6, and this leads to the Bayes factors displayedguar€&i8. These are Bayes
factors in favour of the zero truncated skew-Laplace model tunction ofA/ and the
boxplots correspond to ten importance sampling estima@ésarly, the skew-Laplace
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Figure 8: Glass data: Bayes factors as a functionm\éfin favour of the zero truncated skew-
Laplace model versus (a) skew-model; (b) skewt, model with gamma prior; (c) skew-
model with gamma-gamma prior

model beats the skew-Student models. Among the skew-Stodmtels, it seems best
to fix v to be a suitable value for these data, namebht 2. The value ofA/ does not

seem to have a systematic effect on these Bayes factors. Ubdezdruncation is not
built into the skew-Student models, but this aspect is nat itnportant for the Bayes
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factors, as the untruncated skew-Laplace model does aéqoatly well with these data
(e.g.the Bayes factor is around 1.24 in favour of the zero truritskew-Laplace model
for M = 10). Truncation is, however, not that easily implemented askew-Student
models, both in terms of computational ease and provindteesuch as Theorem 5.

To assess the impact of the different priorsignwve overplot posterior and prior
density functions for in Figure 9. Despite its fatter right tail, the gamma-gammarp
has a mode closer to zero and leads to more posterior massntmaton on small values
of v. Thus, the predictive and the marginal likelihood are aldsehat of the case with
v = 2 than with the gamma prior.

(a) q (b)

60

Figure 9:Glass data: degrees of freedom paramefer skew-Student (a) Posterior distribution
of v (solid line) and gamma-gamma prior (dashed line). (b) Piostdistribution ofv (solid line)
and gamma prior (dashed line).

Model | Skew-Laplace Skew+ gamma-gamma Skew+ gamma| Skew+,
LPS 95.76 96.28 96.08 95.74

Table 2:Glass data: Log predictive scores (LPS), computed on thie bA&0 partitions, each
retaining 20 observations in the prediction sample.

We compare the models in terms of their predictive perforredyy computing log
predictive scores, averaged over 20 partitions of the déarev20 randomly chosen
observations are used in the prediction subsample, andshés are presented in Table
2. The skew-Laplace and skewwmodels predict best and are roughly equally good.
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8 Conclusions

In this paper, we describe inference with the skew-Laplaodeth a flexible model for
use with unimodal data sets where rounding and truncatitimeoflata are possibly im-
portant issues. We formally incorporate rounding of thex@atd truncation of the sup-
port in the analysis. For four versions of the model (untedad support, finite support
with unknown boundaries, left truncated support with unkndoundary, left truncated
at zero), we specify a fairly noninformative and sensibiempwhich only depends on
a single hyperparametér and we derive sufficient conditions for the existence of the
posterior. These conditions refer to the number of diffecdsservations in the sample,
are trivial to check and are very likely to be satisfied in sE®f practical interest.
The particularly tractable nature of the skew-Laplace rhatikes it easy to introduce
rounding and truncation, both for computational impleraénohs and for proofs of pos-
terior existence. In particular, the likelihood of the mbideavailable in closed form, in
contrast with many other models, such as the skew-normalew-Student (e.g. using
the skewing ideas of Azzalini, 1985, Fernandez and St&8I84, or Jones and Faddy,
2003).

The skew-Laplace model behaves well in the motivating apfibn on flow cy-
tometry data, as could perhaps be expected. However, itbalats the skew-Student
in the glass fibre data set, an application for which skewid@pmodelling does not
seem the most appropriate at first sight, given the shapeeafidta histogram. In or-
der to further illustrate the applicability of the skew-lage model to various datasets,
Figure 10 shows the predictive distribution obtained wite skew-Laplace model for
three simulated samples. We have drawsa 100 observations from the skew-normal
distribution of Azzalini (1985) (panel (a)) and a symmeitidentt with 2 degrees of
freedom (panel (c)). The data in panel (b) were generated &6&amma(2,5) distribu-
tion (n = 1000) and analysed with a skew-Laplace truncated at zero. Inaskswe
have recorded data up to one decimal place (saitkat.05). Clearly, the skew-Laplace
fits the rather different shapes of these three data sets\galt.

Acknowledgements:We are grateful to Olga Julia for kindly providing us witreth
E. Coli data. F. Javier Rubio acknowledges support from COMA
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®

Figure 10: Simulated data: Skew-Laplace predictive (solid line) aathejenerating density
(dashed line) with data histogram in grey. Data generatau fa) Azzalini skew-normak{ =
100) (b) Gamma(2,5) with zero truncated skew-Laplaece=(1000) ; (c) t2 (n = 100).

Appendix: Proofs

Throughout, the order statistics of the observations veltienoted by/a) <Yy <

Yir-

Proof of Theorem 1

If 0 < p <y, then

L(ylu, 0,7) < Fx (yz"k) +d|p, o, 7) — Fx (yE‘k) - d’u, o, v) = 2dfx (Cklp, 0,7),
where(;, € (y{k) —d, Yy + d) then

L(ylp,0.7) < 2dfx (ya) - d’u, o, 7) < 2dfx (ya) - d’y&), o, v) :

If Yoy S M then
L(ylu,o,7v) < Fx (y21> + d’u,a, 7) — Fy (y21> - d‘u,a, 7) = 2dfx(Glu,0,7),
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where(; € <y§1) —d,yjy) + d) then

L(ylp, o,7) < 2dfx (yé) +d

u, o, 7) < 2de (yzkl) + d’ya)a g, ’7) .

Therefore we have, for some finite and positive constgrihat

M [e'e) [e%S) ya) [e%S) [e'e)
/ / / L(y|p, o,v)m(p, 0,7) dodydp = / / / L(ylp, o,7)m (1, 0,7) dodydp
0 0 0 0 0 0

Moo o< Yo M —yp)
+ L(ylp, o, v)m(p, o,7) dodydp < C' | — - pi + — " 7l
Yy /O /0 Yy Y2 — Yo =Y —

which is finite provided we have at least three distinct obetgons (.e. k£ > 3).

Proof of Theorem 2

First of all, note that for allK; > pandKy; > K + ¢

Fx(Ky + €|y, 0,7) — Fx(Ka|p, 0,7) exp [_Kz—Kl}

Fx(Ky + €|y, 0,7) — Fx(Ki|p,0,7) yoo |’
andforallL, < py—eandl; < L, —¢

Fx(Ln + el 0,7) = Px(Dalpoy) {_7(L2 - Ll)}

Fx(Ly + €|p, 0,7) = Fx(La|p, 0,7) o ’

If Yoy —d < p <y +d ande = 2d then

‘C(y|:uv a,7, 917 92) S

. Fx (y?k) + d)u, o, 7) —I'x (y@) —d|p, 0, 7)
- Fy (y*k_l) +d|u, o, 7) — Fx (ygkk_l) d\p, o, v)
Yy — Y
< exp [_ " ~ Y 1)} ’
Yo
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If yly) +d < p < yj,) +dande = 2d then

‘C<y|/“b7 a,7, 917 02)

IN

<

Yoy — i, 0,7

Fx <ya) +d|u, 0, 7)

Fx <y§k) +d\p,0,7) — Fx (y*l) —d|p, 0, 7)
Fy <y6> +dp, o, 7) — Ix <y6> —d\p, o, 7)
Fx (ya) +d|u, 0, 7) — Fx (y*Q) —d|p, o0, 7)
YWia) — ¢
exp [_ ( (2) 1))] ‘
g

We can then write, for some finite positi¢é

/y(l)_d/ /y(k)er/ / L(ylp, 0,7, 01,09)7(1, 0,7, 01, 02) dodydudtdbs
YimtdJy

1)

/y<2)+d/ / exp [ Yk — yzkk—l)} 1 v dodydy
vt I ~No o2 (1+~2)2
vrd oo oy -y 1 A
+ / / / exp | — > = 1527 dodydp
y<2)+d | v

y+2d Gy Y .
+ 0 ff) < oo, providedk > 4.

y(k) - y(k—l) Yo ~ Y0

Proof of Theorem 3

The proof is analogous to the proof of Theoremsing the fact that

1—-Fyx (yEE) —d|p, o, v) > Fx (yib + d|u, o, v) — Fx (ya) - d’u,a, 7) :

Proof of Theorem 4

The proof is analogous to the proof of Theoremsing the fact that

1_FX<0M70-77)zFX(yEkk)_l_dM)Uv’y) FX( d’%07>

Proof of Theorem 5

First we will prove that this result is equivalent to the peopess of the posterior distri-
bution fory = 1 and then we will prove the result for= 1.
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Without loss of generality let us assume than S, = (), this assumption is reason-
able given thak > 3. Then writing the Student’sas a scale mixture of normals with
mixing parameters. = (\,...,\,)" and applying Fubini’s theorem we get an upper
bound forP[y;, € Si, ..., y, € S,] which is proportional to

/+€/n/nx b // (I

-2
yo
X exp [ Z )\ ] m d,udad'ydyldyndPMl,dP,,,

“ [T

) (y+1/7)"

whereh(v) = max{~, 1/v}. Consider the change of varialle= 1(~)c we can rewrite
this upper bound as follows

e’} h n+1 n+1
A (1+7 n+2 d7/+e/n /nx ><51/ / H)\ 19"—'_2

n

1
X exp [— 5 > Ny ] dudddy...dy,d Py, dP,. (11)
j=1

The first integral is finite and the second integral is eqenato the marginal distri-
bution wheny = 1. Now we will prove the properness of the posterior distidnutor
v = 1. DefiningS*(\, y) = 371 i<, MiXi(y: — y;)* andy = 1 we have

L () e g
14e SpX...xS1 ont? 20? Z?:l )‘j

2
1 > Ay
exp |~ Z Aj (u _ ﬁ) dudody,...dy,dPy,dP,

X

j=1
o oo (A 1 1 S\ y)

< A? exp | ——= —=r—
/1+e/1/nx...x51/0 /—oo (E 7 ) ont? [ 2‘722j=1)‘j
2
D i1 Ay
X exp ~557 22 ( ﬁ dudody...dy,dPy,dP,
j=1

L) ()

1 S*(\y)
—— - dody,...dy,dPy,dP,
X exp [ 557 Z;LZI ¥ oayy...aYnaly|

(12)
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n—1

/+€/n /nX ; (ﬁ ) (;il A]) 2 S*(\,y)" % dyi...dy,dPy,dP,. (13)

]:1 =

“ ol

Using the proof of Theoren in Fernandez and Steel (1998b)

A -
2 2 — Y
S\, y) )\1 N (g A > 772 — Py s — P)Q(M3 — py ey — p)

wheren; =y, —y; fori =2,...,n, p = Xana /(M1 + A2) and@ = (gi5)7 ;-5 With diagonal
elementsy; = A Z#i A; and off-diagonal elementg; = ¢; = —\;\;. Defining

o= 2% (201 0) 73 we get

VI3

S*(\y)"E = %[H(m—p,---n —p)—(n3 — p,---,nn—p)’}

n—1
2

IO 2D

< a? [14'(773—0,---77 —p)=(n3 — p,---,nn—p)’}

= a2 (\y) T

1
2

< (WPt <ZAJ> IS0 )
j=1

Integrating(ns, ..., 7,)’ over the whole ofR"~2 as in Fernandez and Steel (1998b)
we get the following upper bound

1
2

/ S\ y) "2 dyy...dy, < (AF - AZ‘E) <Z A]) 7o) ™

SnX...xS1 j=1

X / S2(\, )T dyy..dy, < <HA;2> (ZA])
Sn><...><Sl j:1 S

X <)‘1 + Ay 2 )/{ 72| 2 dyrdno. (14)

Yy1E€51,y1—12E€S52}

Combining(13) and(14) we get

n—1

n 2
1 n
/ / / ( 2) <§ )\j> S?(N\,y) "2 dyy...dy,d Py, dP,
1+e€ SpX...xXS1 j=1 j=

7=1

> _1 _1
/ / (Al W ) dPy,dP, / o] =2 dyadiga
14e JRY {y1€51,y1—m2€52}

© _1
/ / )\1 zdP)\ﬂ,,dP,j/ ‘7}2‘_2 dyld’flz.
1+e JRy {y1€S51,y1—m2€852}
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The third integral is finite sinc&; N S, = (. Now, considering that\;|v ~

2772
1 V—_l 3
/ )\IEdPMIV _ \/if( 2 ) < V2r (2) -, giventhatry > 1 +e.
5 VIL(5) T VER ()
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