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Inference for grouped data with a truncated

skew-Laplace distribution

F. J. Rubio∗and M. F. J. Steel†

Abstract

The skew-Laplace distribution has been used for modelling particle size with

point observations. In reality, the observations are truncated and grouped (rounded).

This must be formally taken into account for accurate modelling, and it is shown

how this leads to convenient closed-form expressions for the likelihood in this

model. In a Bayesian framework, we specify “noninformative” benchmark pri-

ors which only require the choice of a single scalar prior hyperparameter. We

derive conditions for the existence of the posterior distribution when rounding and

various forms of truncation are considered in the model. We will focus mostly on

modelling microbiological data obtained with flow cytometry using a skew-Laplace

distribution. However, we also use the model on data often used to illustrate other

skewed distributions, and we show that our modelling favourably compares with

the popular and flexible skew-Student models. Further examples on simulated data

illustrate the wide applicability of the model.

Key Words: Bayesian inference; flow cytometry data; glass fibre data; posterior exis-

tence; rounding

1 Introduction

We propose a truncated skew-Laplace distribution for use with coarse (in particular

rounded) or set observations. Bayesian inference will be conducted using Markov chain
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Monte Carlo methods. Our leading example concerns microbiological data obtained

with flow cytometry, in particular forward scatter (FS) dataobtained for the Escherichia

Coli (E. Coli) bacterium. Julià and Vives-Rego (2005, 2008) use a skew-Laplace dis-

tribution to model these data, which are truncated due to thesensitivity of the flow cy-

tometer and are recorded as set data because the observations are presented as integers.

Truncation and coarsening must be formally included in the model in order to conduct

inference appropriately and to fit the data well. This application will be used throughout

most of the paper, and will serve as an important motivating example. However, later

we will use the same model for a data set on the breaking strength of glass fibres, which

has frequently been used in the statistics literature for illustrating skewed distributions.

Further examples on simulated data illustrate the general applicability of the model.

In order to define the skew-Laplace distribution, we use the general skewing frame-

work of Fernández and Steel (1998a). This leads to a skew-Laplace distribution which

is parameterised through a single skewness parameter. Thisskewness parameter has a

nice interpretation in terms of the allocation of mass to theleft and to the right of the

mode. It also leads to inferential advantages as the skewingand scale parameters have

clearly defined roles, whiche.g.facilitates specification of the prior distribution.

Despite the introduction of skewness, rounding and truncation in the model, the like-

lihood has a relatively simple closed-form expression. This makes efficient likelihood-

based inference feasible, and in this paper we will focus on Bayesian inference. Maxi-

mum likelihood estimates, profile likelihoods and confidence intervals are numerically

very close to posterior modes, posterior density functionsand Highest Posterior Density

(HPD) credible intervals, respectively. For models with various degrees of truncation,

we propose benchmark “non-informative” priors which require the choice of a scalar

prior hyperparameter. As these priors are improper, we alsoderive sufficient conditions

for the existence of the posterior. These conditions are quite mild and trivial to check.

An important advantage of the Bayesian framework is that it naturally leads to formal

model comparison on the basis of Bayes factors. We compute Bayes factors between

the various models as a function of the single prior hyperparameter and also consider

comparison based on predictive performance. For the glass fibre data, we compare the

skew-Laplace model with commonly used skew-Student specifications and find the for-

mer does better in terms of Bayes factors and matches the bestskew-Student model in

terms of predictive performance. Inference with the skew-Laplace model is not sub-

stantially complicated by the use of set observations or truncation of the sample space,

in contrast with skew-Student or skew-normal models, for which the likelihood is not

available in closed form.
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2 Set observations

Whenever we use a continuous model for the observations, theactually recorded values

are necessarily rounded, as they are recorded to some finite precision. There has been an

active literature on the quantitative effects of rounding (or grouping), as summarized in

e.g. Heitjan (1989) and more recently in Schneeweiss et al. (2010). Within a Bayesian

context, the explicit modelling of grouped data or set observations has been proposed by

Fernández and Steel (1998b, 1999a) as a way to avoid pathological situations such as the

nonexistence of a posterior with a proper prior. The reason for such behaviour is linked

to the fact that any set of point observations has zero probability under a continuous

sampling model. Set observations in our context of roundingare simple neighbourhoods

(intervals of positive Lebesgue measure) of the recorded point observations that are

chosen in accordance with the precision of the measuring process. Thus, fori = 1, . . . , n

and somed > 0, we define

P[observingyj] = P [yj ∈ Sj ] = P [yj − d < Y < yj + d] . (1)

3 The skew-Laplace distribution

In order to define the skew-Laplace distribution we use the skewness mechanism pro-

posed in Fernández and Steel (1998a). Thus, we say thatX ∼ skew-Laplace(µ, σ, γ) if

the density function ofX is

fX(x|µ, σ, γ) =











1

σ(γ+ 1
γ )

exp
[

γ(x−µ)
σ

]

for x < µ ,

1

σ(γ+ 1
γ )

exp
(

µ−x
γσ

)

for x ≥ µ ,
(2)

whereµ ∈ R, σ, γ > 0. This model (with a different, less interpretable parameterisation,

used in Julià and Vives-Rego, 2005, 2008) was called the two-piece double exponential

distribution in Lingappaiah (1988). The allocation of massto each side of the mode is

given by

1 − FX(µ|µ, σ, γ)

FX(µ|µ, σ, γ)
= γ2,

which clearly highlights the role ofγ as the skewness parameter, withµ the location

parameter (which is always the mode) andσ a scale parameter. Of course, forγ = 1

we obtain the usual Laplace distribution, whereas right (positive) skewness corresponds
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to γ > 1 and left (negative) skewness toγ < 1. Invertingγ corresponds to mirror-

ing the density function around the mode. If we measure skewness by the usual third

centered moment divided by the cubed standard deviation, the difference between mean

and mode divided by the standard deviation or the measure in Arnold and Groeneveld

(1995) (defined as one minus twice the probability mass to theleft of the mode), thenγ

and1/γ lead to equal amounts of skewness with opposing signs. All these measures are

strictly increasing functions of the skewness parameterγ.

The distribution function ofX is given by

FX(x|µ, σ, γ) =







1
1+γ2 exp

(

γ(x−µ)
σ

)

for x < µ ,

1
1+γ2

[

1 − γ2
(

exp
(

µ−x
γσ

)

− 1
)]

for x ≥ µ .

First we investigate the analysis with the skew-Laplace distribution in (2), taking

into account the fact that the actual observations are rounded as described in Section 2.

3.1 Likelihood Function

Consider an independent sample of rounded observationsy1, ..., yn from (2). The round-

ing as in (1) implies that

P[observingyj] = P [yj − d < Y < yj + d]

= FX(yj + d|µ, σ, γ) − FX(yj − d|µ, σ, γ). (3)

Suppose that there arek different observationsy∗ = {y∗
1, ..., y

∗
k} and{n1, ..., nk}

are the corresponding observed frequencies. The likelihood function for this sample is

L(y|µ, σ, γ) ∝
k
∏

j=1

[

FX(y∗
j + d|µ, σ, γ) − FX(y∗

j − d|µ, σ, γ)
]nj .

The E.Coli dataset containsn = 9, 015 observations, rounded tok = 98 integer

values (so thatd = 1/2), ranging from47 to 165 with frequencies in between1 and306.

The glass fibre data haven = 63 observations, rounded to the nearest one hundredth

(d = 0.005), ranging from0.55 to 2.24 with 49 repeated observations.

3.2 Bayesian Inference

In order to come up with a reasonable “noninformative” priorof the parameters in our

model(2), we first consider the fact that the three parameters have clearly distinct roles,
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so that a product structure for the prior seems a good choice.In the symmetric model

(i.e.γ = 1) the (noninformative) full Jeffreys prior is given byp(µ, σ) ∝ σ−2, as is the

case for any location-scale model (Fernández and Steel, 1999b). We then modify this

prior by bounding the parameter space of the locationµ, which is important in ensuring

that a posterior distribution exists (i.e. is a well-defined probability distribution). As we

are dealing with necessarily positive observations with aninternal mode in both of our

applications, we use zero as a lower bound for the modeµ, whereas we introduce a single

hyperparameterM as the upper bound. To elicit a prior for the skewness parameterγ, we

consider the skewness measure of Arnold and Groeneveld (1995), which takes values

in the interval (-1,1) and specify a uniform prior on this measure. This leads to the

following prior for the model parameters:

π(µ, σ, γ) ∝ γ

σ2 (1 + γ2)2 I(0 < µ ≤ M). (4)

Note that this density is improper inσ and the prior mass assigned to a range of positive

skewness (say,γ ∈ (a, b) with b > a > 1) is the same as that assigned to the corre-

sponding range of negative skewness (γ ∈ (1/b, 1/a)). We take the upper boundM to

be1000 in the results presented in Sections 3-5.

We obtain the following sufficient condition for the existence of the posterior distri-

bution.

Theorem 1 The posterior distribution of(µ, σ, γ) for the model(2) and the prior dis-

tribution (4) is proper if the number of different observations is at least3, i.e. k ≥ 3.

Proof. see Appendix

Inference for the E.Coli data was conducted using a Markov chain Monte Carlo

(MCMC) algorithm. In particular, we simulated a chain of length 2, 510, 000 from the

posterior using the t-walk algorithm (Christen and Fox, 2010) and after a burn-in of

10, 000 we retained every100th set of parameter values, leading to sample of 25,000

draws. Figure1 shows the marginal posterior distributions of(µ, σ, γ). Inference is

quite precise with95% Highest Posterior Density (HPD) credible intervals given as

follows: µ: (69.75, 70.93), γ: (1.03, 1.10) andσ: (10.29, 10.73). It is clear that the

relatively large dataset contains quite a lot of information on the three parameters in our

model. The evidence indicates a relatively small but quite precisely determined amount

of right skewness in the data. Prior density functions are also displayed in Figure1, but

they are virtually flat for the range of the parameter values shown (prior density values

are quite small, so the prior forµ andγ is scaled up by the most convenient power of
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ten; forσ an arbitrary scaling is applied). Figure2 shows the predictive distribution of

the data (the sampling density in(2) with the parameters integrated out with the poste-

rior distribution). However, comparing the data histogramwith this predictive density

indicates a rather poor fit of the data. For example, it seems that the slightly positive

skewness is not consistent with the perhaps more pronouncedleft “shoulder” in the data

when we limit ourselves to the range where data were actuallyobserved. On the other

hand, the far left tail of the predictive density is simply not matched by any data. Thus,

it appears truncation of the data is an issue and we will now use a model that allows us

to formally accommodate such truncation.

µ σ γ

69.5 70 70.5 71
0

0.7

1.4

10.2 10.5 10.8
0

1.75

3.5

1.02 1.07 1.13
0

10

20

Figure 1:E. Coli data: Posterior (solid line) and scaled prior (dashed line) density functions.
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Figure 2:Histogram of E. Coli data and predictive density.

4 Doubly Truncated Model

Let us considerY to be a version of the skew-Laplace distributed random variableX in

(2), truncated to the interval[θ1, θ2]. The density function ofY is then

fY (y|µ, σ, γ, θ1, θ2) =
fX(y|µ, σ, γ)I[θ1,θ2](y)

FX(θ2|µ, σ, γ) − FX(θ1|µ, σ, γ)
, (5)

whereθ1, θ2 ∈ R andθ1 < µ < θ2. Note thatµ is still a location parameter (the mode),

σ is a scale parameter,γ is a skewness parameter and(θ1, θ2) are threshold or boundary
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parameters. The allocation of mass to each side of the mode isgiven by

1 − FY (µ|µ, σ, γ, θ1, θ2)

FY (µ|µ, σ, γ, θ1, θ2)
= γ2

1 − exp
(

µ−θ2

γσ

)

1 − exp
(

γ(θ1−µ)
σ

) ,

whereFY is the distribution function ofY and is given by

FY (y|µ, σ, γ, θ1, θ2) =



















0, for y < θ1,

FX(y|µ,σ,γ)−FX (θ1|µ,σ,γ)
FX(θ2|µ,σ,γ)−FX (θ1|µ,σ,γ)

, for θ1 ≤ y ≤ θ2,

1, for y > θ2.

So the mass allocation both sides of the mode in this doubly truncated model is

affected byγ as before but also by the boundary parameters. Of course, ifθ1 → −∞
andθ2 → ∞ we retrieve the previous model in the limit, but we will assume finite values

for θ1 andθ2 in this section.

4.1 The likelihood function

An independent sampley1, ..., yn from (5) rounded as in (1) leads to

P[observingyj] = P [yj − d < Y < yj + d]

= FY (yj + d|µ, σ, γ, θ1, θ2) − FY (yj − d|µ, σ, γ, θ1, θ2).

As before, we suppose that there arek different observationsy∗
1, ..., y

∗
k, of which

the smallest isy(1) and the largest isy(n), andn1, ..., nk are the corresponding observed

frequencies. The likelihood function for this sample is

L(y|µ, σ, γ, θ1, θ2) ∝
k
∏

j=1

[

FY (y∗
j + d|µ, σ, γ, θ1, θ2) − FY (y∗

j − d|µ, σ, γ, θ1, θ2)
]nj

= [FX(θ2|µ, σ, γ) − FX(θ1|µ, σ, γ)]−n

× I(−∞,y(1)−d](θ1)I[y(n)+d,∞)(θ2)

×
k
∏

j=1

[

FX(y∗
j + d|µ, σ, γ) − FX(y∗

j − d|µ, σ, γ)
]nj .

4.2 Bayesian Inference

Consider the following improper prior for the parameters ofthe sampling model in(5)

π(µ, σ, γ, θ1, θ2) ∝
γ

σ2 (1 + γ2)2 I(0 < θ1 < µ < θ2 < M), (6)
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which is in line with the prior (4) used for the untruncated model, and is again improper

only in σ. Note that the prior assumes that the mode is contained within the range of

observed data. This may not always seem like a reasonable assumption, but we feel that

the use of a skew-Laplace model would not be natural if we werefaced with data that

look like one tail of such a model (we would then simply use a version of an exponential

model).

The existence of the posterior is warranted by the followingresult:

Theorem 2 The posterior distribution of(µ, σ, γ, θ1, θ2) for the Bayesian model in(5)

and(6) is proper if the number of different observations is at least4, i.e. k ≥ 4.

Proof. See Appendix.

We have used the same value ofM and the same MCMC algorithm (with the same

runlength) as in Section 3. Figure3 shows the marginal prior (scaled as before) and

posterior distributions for the E. Coli data. It is interesting to note the dramatically

µ σ γ

75.5 76 76.5 77
0

0.4

0.8

1.2

15 16 17
0

0.5

1

0.56 0.61 0.66
0

10

20

θ1 θ2

46.455 46.475 46.495
0

40

80

250 500 750 1000
0

0.0006

0.0012

Figure 3:E. Coli data: Posterior (solid line) and scaled prior (dashed line) density functions.

different inference on the skewness parameterγ in this truncated model. As the data

truncation is now being dealt with by the boundary parameters, we no longer needγ

to reduce the mass in the left tail, and we get evidence for strong negative skewness

instead, which is much more in line with the data histogram. The posterior distribution

of θ2 is flat (like the prior) over the range(yn + 1/2, M) indicating that the data carry

no information aboutθ2 within this range. This is in line with the classical analysis,

where the profile likelihood ofθ2 has an asymptote of≈ 0.7 times the maximum value
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for largeθ2. There is no real data evidence to distinguish between values of θ2 above

yn + 1/2 and this suggests the use of a model with only left truncation. Estimated95%

HPD credibility intervals for the other parameters areµ: (75.44, 76.77), γ: (0.57, 0.64),

σ: (15.28, 16.75) andθ1: (46.47, 46.50).

Figure4 shows the predictive density fit to the data, which is clearlymuch improved

because of the truncation.

60 80 100 120 140 160
0.00

0.01

0.02

0.03

y

Figure 4:Histogram of E. Coli data and predictive density.

5 Left truncated model

As the particular data used here seem to indicate that truncation on the right is superflu-

ous, we now consider a model with only left truncation. So, let Y be a truncated version

of X in [θ1,∞). The density function ofY is

fY (y|µ, σ, γ, θ1) =
fX(y|µ, σ, γ)I[θ1,∞)(y)

1 − FX(θ1|µ, σ, γ)
. (7)

Now θ1 ∈ R is the only threshold parameter and we restrictθ1 < µ. The allocation

of mass to each side of the mode is given by

1 − FY (µ|µ, σ, γ, θ1)

FY (µ|µ, σ, γ, θ1)
= γ2 1

1 − exp
(

γ(θ1−µ)
σ

) ,

whereFY is the distribution function ofY and is given by

FY (y|µ, σ, γ, θ1) =







0 for y < θ1,

FX(y|µ,σ,γ)−FX (θ1|µ,σ,γ)
1−FX(θ1|µ,σ,γ)

, for θ1 ≤ y.
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5.1 The likelihood function

Consider an independent sampley1, ..., yn from (7) with rounding as in (1).

The likelihood function for a sample ofk different observationsy∗
1, ..., y

∗
k with fre-

quenciesn1, ..., nk is given by

L(y∗|µ, σ, γ, θ1) ∝
k
∏

j=1

[

FY (y∗
j + d|µ, σ, γ, θ1) − FY (y∗

j − d|µ, σ, γ, θ1)
]nj

= [1 − FX (θ1|µ, σ, γ)]−nI(−∞,y(1)−d](θ1)

×
k
∏

j=1

[

FX(y∗
j + d|µ, σ, γ) − FX(y∗

j − d|µ, σ, γ)
]nj .

5.2 Bayesian Inference

Consider the following improper prior for the parameters ofthe model (5)

π(µ, σ, γ, θ1) ∝
γ

σ2 (1 + γ2)2 I(0 < θ1 < µ < M), (8)

which is the prior suggested by (6) for this reduced model.

Posterior existence is ensured by the following result:

Theorem 3 The posterior distribution of(µ, σ, γ, θ1) for the model(7) and the prior

distribution(8) is proper if the number of different observations is at least4, i.e. k ≥ 4.

Proof. See Appendix

We used the same value forM and the same MCMC strategy to obtain posterior

results. As expected, results are very close to the doubly truncated model, except that

we do not have the right truncation parameter in the model. Marginal posterior density

functions forµ, γ, σ andθ1 are virtually identical as well as the predictive distribution.

6 Model Comparison

One advantage of Bayesian methods is that model comparison can formally be con-

ducted by Bayes factors. Here Bayes factors can be computed between all three models

despite the arbitrary integrating constant (improperness) of the prior, since the prior has

a product structure with an improper factor (inσ) which is common to all models, and
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the factor corresponding to model-specific parameters is integrable and thus properly

normalised. The marginal likelihoods needed in the calculation of Bayes factors are es-

timated using importance sampling, with an importance function chosen to resemble the

posterior but with fatter tails. Results with reciprocal importance sampling (Gelfand and

Dey, 1994) are very close. Table 2 contains values for the logarithm of the Bayes fac-

tors. Information-based criteria are typically a lot easier to compute and we also present

values for the BIC (Schwarz, 1978) and the DIC (Deviance Information Criterion) of

Spiegelhalter et al. (2002). An alternative approach to model comparison is through the

predictive performance of the models; we compute the log predictive score (LPS; see

e.g. Gneiting and Raftery, 2007) based on how well the predictive distribution matches

a randomly chosen prediction subsample, not used in the posterior inference. We use

20 prediction subsamples of 450 observations each and compute the LPS as the average

over the 20 subsamples (smaller values are better).

Model

Criterion untruncated doubly trunc. left trunc.

BIC 73020.9 71553.8 71545.4

DIC 72999.6 71516.9 71517.1

log Bayes factor 0 733 732

LPS 1822.1 1785.1 1785.8

Table 1: E. Coli data: Various criteria for model comparison. In the prior for the truncated

models we chooseM = 1000. Bayes factors are computed through importance sampling and

we state the logarithm of the Bayes factor in favour of the model in the column versus the

untruncated model. Log predictive scores (LPS) are computed on the basis of 20 partitions, each

retaining 450 observations in the prediction sample.

From the results in Table 2 we immediately deduce that the truncated models are

much preferred to the untruncated version. The relative support for both truncated mod-

els is in favour of the left truncated model if we consider BIC. The DIC, LPS and the

Bayes factor all favour the doubly truncated model. Only in the case of the Bayes factor

can this be interpreted in terms of posterior model probabilities: if we assume unitary

prior odds, the posterior probability attached to the doubly truncated model is 2.5 times

as large as that of the left truncated model. Clearly, the posterior mass assigned to the

untruncated model is negligible.

Finally, we remind ourselves that the prior hyperparameterM must be selected in

specifying the prior, and we know that Bayes factors can be quite sensitive to the choice
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of prior (Kass and Raftery, 1995). Therefore, we now investigate the sensitivity of

the Bayes factor to the choice ofM . Figure 5 shows how estimates for the marginal

likelihoods of all models and the (most relevant) Bayes factor between the truncated

models vary withM . For each value ofM (in the range from 200, just above the

largest observation, to 2000) we run ten importance sampling estimates and the results

are indicated through boxplots. Clearly, estimates are quite precise for all three models.

As expected, marginal likelihood values are affected by thechoice ofM , since the

prior domain forµ is extended beyond areas with appreciable likelihood values asM

grows, so that the only real effect of largerM is that we average the likelihood with

smaller prior density values, thus leading to a smaller marginal likelihood. However,

the ratio of marginal likelihoods (the Bayes factor) is relatively stable asM varies. As a

consequence, we consistently get slightly more support forthe doubly truncated model

for reasonable values ofM , sayM > 300.

(a) (b) (c)

0.
5

1.
0

1.
5

M

200 500 1000 1500 2000 −
35

78
3.

0
−

35
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1.
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−
35

78
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0

M

200 500 1000 1500 2000
−

36
51

5.
0

−
36

51
4.

0
−

36
51

3.
0

M

200 500 1000 1500 2000

Figure 5:E.Coli data: Box plots based on 10 posterior samples using importance sampling. In

all graphs results are given as a function ofM . (a) Bayes factor in favour of the left truncated

model versus the doubly truncated one. (b) Marginal likelihood for the doubly truncated model.

(c) Marginal likelihood for the untruncated model.

7 Glass fibre data

Consider the data reported in Smith and Naylor (1987) about the breaking strength of

n = 63 glass fibres. These data were used repeatedly in the literature with a variety of

skewed distributions (Jones and Faddy, 2003; Ferreira and Steel, 2006). We compare

the skew-Laplace model with the more commonly used skew-Student model (with the
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inverse scale factor skewing of Fernández and Steel, 1998a), on the basis of set obser-

vations. This skew-Student sampling model is given by

ft(x|µ, σ, γ, ν) =



















2cν

σ(γ+ 1
γ )

[

1 + 1
ν

(

γ(x−µ)
σ

)2
]−(ν+1)/2

for x < µ ,

2cν

σ(γ+ 1
γ )

[

1 + 1
ν

(

(x−µ)
γσ

)2
]−(ν+1)/2

for x ≥ µ ,

(9)

wherecν = Γ[(ν+1)/2]
Γ[ν/2]

√

1
νπ

andν > 0 is the degrees of freedom parameter. Ferreira and

Steel (2006) find that the skew-Student withν = 2 performs well for these data, but

we will focus on the skew-Student with unknown degrees of freedom, as this retains the

flexibility to adapt the tails to the data.

These data are breaking strengths, and therefore are subject to the physical con-

straint that they can not be negative. Thus, the first skew-Laplace model we consider is

the left truncated one in (7), but withθ1 fixed to be zero. In combination with the prior

for the three model parameters in (4), this leads to the following result:

Theorem 4 The posterior distribution of(µ, σ, γ) for the skew-Laplace model left trun-

cated at zero, i.e.(7) with θ1 = 0, and the prior distribution(4) is proper if the number

of different set-observations is at least4, i.e. k ≥ 4.

Proof. See Appendix

For the skew-Student model in (9) we adopt the prior based on (4) with an extra

factor for the degrees of freedom parameter

π(µ, σ, γ, ν) ∝ γ

σ2(1 + γ2)2
I(0 < µ < M)Pν , (10)

for which we can derive the following result on posterior existence:

Theorem 5 The posterior distribution of(µ, σ, γ, ν) for the skew-Student model in (9)

and the prior distribution(10) is proper if the number of different set-observations is at

least3, i.e.k ≥ 3 andPν is a proper distribution with zero mass on(−∞, 1+ ǫ) for any

ǫ > 0.

Proof. See Appendix

The restriction on the prior support means that we want the predictive mean to ex-

ist, which may not be a very unreasonable assumption. Note that very small values of

ν are typically associated with problems in classical likelihood inference or Bayesian
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inference on the basis of point observations (Fernández and Steel, 1999a). Theorem 5

also covers the case where we fixν at any value larger than or equal to one, simply by

takingPν to be Dirac. For the priorPν in the case of unknownν we consider two pos-

sibilities: firstly, a thin-tailed gamma prior with shape parameter 2 and scale parameter

0.1, restricted to[1 + ǫ,∞) which covers a large range of values. Secondly, we adopt a

hierarchical prior constructed from putting an exponential prior on the scale parameter

of the gamma with shape parameter 2; this leads to the gamma-gamma prior, given by

π(ν) ∝ ν/(ν + d)3 with d > 0 and defined forν ≥ 1 + ǫ. This prior has a very fat

tail with no mean and shares the right-tail behaviour of the Jeffreys prior derived for

the symmetric Student-t model in Fonseca at al. (2008). Here we adoptd = 2 which

means the mode is at the boundary forν = 1 + ǫ. Throughout, we takeǫ to be machine

precision (the results are the same for anyǫ ≤ 0.0001).

Figure 6 shows the inference on the parameters of the zero truncated skew-Laplace

model usingM = 10, and it is clear that skewness is again an important aspect ofthe

data. As in other studies with this application, we find clearevidence of negative skew-

ness. Posterior predictive density functions are overplotted with a histogram (chosen

µ σ γ

1.55 1.65 1.75
0

5

10

0.15 0.25 0.35
0

5

10

15

0.4 0.7 1
0

1.5

3

4.5

Figure 6: Glass data: Posterior (solid line) and prior (dashed line) density functions for the

Laplace model.

according to Sturges’ formula) of the data in Figure 7. All models seem to fit the data

reasonably well, but there are some differences between thepredictives. It is interesting

to note that the skew-Laplace model does not lead to such a sharp peak as in the appli-

cation with the E. Coli data. The fact that the data are not very peaked means there is

some posterior uncertainty regarding the mode (see Figure 6), and this is reflected in the

posterior predictive (which is simply the sampling model integrated out with the poste-

rior). As a consequence, the skew-Laplace and the skew-Student model withν = 2 are

actually very similar. Thus, the simple skew-Laplace modeladapts to the data at hand.
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Figure 7:Histogram of glass data, predictive density for the skew-Laplace (bold line), skew-t2
(short dashes), skew-tν with gamma prior (dotted line), skew-tν with gamma-gamma prior (long

dashes).

7.1 Model comparison

In order to have a more formal comparison of the different models, we can again com-

pute the Bayes factors. Marginal likelihood estimates depend onM , as discussed in

Section 6, and this leads to the Bayes factors displayed in Figure 8. These are Bayes

factors in favour of the zero truncated skew-Laplace model as a function ofM and the

boxplots correspond to ten importance sampling estimates.Clearly, the skew-Laplace

(a) (b) (c)

2 3 4 5 6 7 8 9 10

4.
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4.
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8.
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M

Figure 8: Glass data: Bayes factors as a function ofM in favour of the zero truncated skew-

Laplace model versus (a) skew-t2 model; (b) skew-tν model with gamma prior; (c) skew-tν

model with gamma-gamma prior

model beats the skew-Student models. Among the skew-Student models, it seems best

to fix ν to be a suitable value for these data, namelyν = 2. The value ofM does not

seem to have a systematic effect on these Bayes factors. Of course, truncation is not

built into the skew-Student models, but this aspect is not that important for the Bayes
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factors, as the untruncated skew-Laplace model does almostequally well with these data

(e.g.the Bayes factor is around 1.24 in favour of the zero truncated skew-Laplace model

for M = 10). Truncation is, however, not that easily implemented in the skew-Student

models, both in terms of computational ease and proving results such as Theorem 5.

To assess the impact of the different priors onν, we overplot posterior and prior

density functions forν in Figure 9. Despite its fatter right tail, the gamma-gamma prior

has a mode closer to zero and leads to more posterior mass concentration on small values

of ν. Thus, the predictive and the marginal likelihood are closer to that of the case with

ν = 2 than with the gamma prior.

(a) (b)

10 20
0

0.15

0.3

20 40 60
0

0.06

0.12

Figure 9:Glass data: degrees of freedom parameterν for skew-Student (a) Posterior distribution

of ν (solid line) and gamma-gamma prior (dashed line). (b) Posterior distribution ofν (solid line)

and gamma prior (dashed line).

Model Skew-Laplace Skew-t gamma-gamma Skew-t gamma Skew-t2
LPS 95.76 96.28 96.08 95.74

Table 2:Glass data: Log predictive scores (LPS), computed on the basis of 20 partitions, each

retaining 20 observations in the prediction sample.

We compare the models in terms of their predictive performance by computing log

predictive scores, averaged over 20 partitions of the data where 20 randomly chosen

observations are used in the prediction subsample, and the results are presented in Table

2. The skew-Laplace and skew-t2 models predict best and are roughly equally good.
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8 Conclusions

In this paper, we describe inference with the skew-Laplace model, a flexible model for

use with unimodal data sets where rounding and truncation ofthe data are possibly im-

portant issues. We formally incorporate rounding of the data and truncation of the sup-

port in the analysis. For four versions of the model (untruncated support, finite support

with unknown boundaries, left truncated support with unknown boundary, left truncated

at zero), we specify a fairly noninformative and sensible prior which only depends on

a single hyperparameterM and we derive sufficient conditions for the existence of the

posterior. These conditions refer to the number of different observations in the sample,

are trivial to check and are very likely to be satisfied in samples of practical interest.

The particularly tractable nature of the skew-Laplace model makes it easy to introduce

rounding and truncation, both for computational implementations and for proofs of pos-

terior existence. In particular, the likelihood of the model is available in closed form, in

contrast with many other models, such as the skew-normal or skew-Student (e.g. using

the skewing ideas of Azzalini, 1985, Fernández and Steel, 1998a, or Jones and Faddy,

2003).

The skew-Laplace model behaves well in the motivating application on flow cy-

tometry data, as could perhaps be expected. However, it alsobeats the skew-Student

in the glass fibre data set, an application for which skew-Laplace modelling does not

seem the most appropriate at first sight, given the shape of the data histogram. In or-

der to further illustrate the applicability of the skew-Laplace model to various datasets,

Figure 10 shows the predictive distribution obtained with the skew-Laplace model for

three simulated samples. We have drawnn = 100 observations from the skew-normal

distribution of Azzalini (1985) (panel (a)) and a symmetricStudent-t with 2 degrees of

freedom (panel (c)). The data in panel (b) were generated from a Gamma(2,5) distribu-

tion (n = 1000) and analysed with a skew-Laplace truncated at zero. In all cases we

have recorded data up to one decimal place (so thatd = 0.05). Clearly, the skew-Laplace

fits the rather different shapes of these three data sets quite well.

Acknowledgements:We are grateful to Olga Julià for kindly providing us with the

E. Coli data. F. Javier Rubio acknowledges support from CONACYT.
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Figure 10: Simulated data: Skew-Laplace predictive (solid line) and data-generating density

(dashed line) with data histogram in grey. Data generated from (a) Azzalini skew-normal (n =

100) (b) Gamma(2,5) with zero truncated skew-Laplace (n = 1000) ; (c) t2 (n = 100).

Appendix: Proofs

Throughout, the order statistics of the observations will be denoted byy∗
(1) < y∗

(2) · · · <

y∗
(k).

Proof of Theorem 1

If 0 ≤ µ < y∗
(2) then

L(y|µ, σ, γ) ≤ FX

(

y∗
(k) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(k) − d

∣

∣

∣
µ, σ, γ

)

= 2dfX(ζk|µ, σ, γ),

whereζk ∈
(

y∗
(k) − d, y∗

(k) + d
)

then

L(y|µ, σ, γ) < 2dfX

(

y∗
(k) − d

∣

∣

∣
µ, σ, γ

)

< 2dfX

(

y∗
(k) − d

∣

∣

∣
y∗

(2), σ, γ
)

.

If y∗
(2) ≤ µ ≤ M then

L(y|µ, σ, γ) ≤ FX

(

y∗
(1) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(1) − d

∣

∣

∣
µ, σ, γ

)

= 2dfX(ζ1|µ, σ, γ),
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whereζ1 ∈
(

y∗
(1) − d, y∗

(1) + d
)

then

L(y|µ, σ, γ) < 2dfX

(

y∗
(1) + d

∣

∣

∣
µ, σ, γ

)

< 2dfX

(

y∗
(1) + d

∣

∣

∣
y∗

(2), σ, γ
)

.

Therefore we have, for some finite and positive constantC, that

∫ M

0

∫ ∞

0

∫ ∞

0

L(y|µ, σ, γ)π(µ, σ, γ) dσdγdµ =

∫ y∗

(2)

0

∫ ∞

0

∫ ∞

0

L(y|µ, σ, γ)π(µ, σ, γ) dσdγdµ

+

∫ M

y∗

(2)

∫ ∞

0

∫ ∞

0

L(y|µ, σ, γ)π(µ, σ, γ) dσdγdµ ≤ C

(

y∗
(2)

y∗
(k) − y∗

(2) − d
+

M − y∗
(2)

y∗
(2) − y∗

(1) − d

)

,

which is finite provided we have at least three distinct observations (i.e.k ≥ 3).

Proof of Theorem 2

First of all, note that for allK1 ≥ µ andK2 ≥ K1 + ǫ

FX(K2 + ǫ|µ, σ, γ) − FX(K2|µ, σ, γ)

FX(K1 + ǫ|µ, σ, γ) − FX(K1|µ, σ, γ)
= exp

[

−K2 − K1

γσ

]

,

and for allL2 ≤ µ − ǫ andL1 ≤ L2 − ǫ

FX(L1 + ǫ|µ, σ, γ) − FX(L1|µ, σ, γ)

FX(L2 + ǫ|µ, σ, γ) − FX(L2|µ, σ, γ)
= exp

[

−γ(L2 − L1)

σ

]

,

If y∗
(1) − d ≤ µ ≤ y∗

(2) + d andǫ = 2d then

L(y|µ, σ, γ, θ1, θ2) ≤
FX

(

y∗
(k) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(k) − d

∣

∣

∣
µ, σ, γ

)

FX

(

y∗
(k) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(1) − d

∣

∣

∣
µ, σ, γ

)

≤
FX

(

y∗
(k) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(k) − d

∣

∣

∣
µ, σ, γ

)

FX

(

y∗
(k−1) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(k−1) − d

∣

∣

∣
µ, σ, γ

)

≤ exp

[

−
y∗

(k) − y∗
(k−1)

γσ

]

,

19

CRiSM Paper No. 10-20, www.warwick.ac.uk/go/crism



If y∗
(2) + d < µ ≤ y∗

(k) + d andǫ = 2d then

L(y|µ, σ, γ, θ1, θ2) ≤
FX

(

y∗
(1) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(1) − d

∣

∣

∣
µ, σ, γ

)

FX

(

y∗
(k) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(1) − d

∣

∣

∣
µ, σ, γ

)

≤
FX

(

y∗
(1) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(1) − d

∣

∣

∣
µ, σ, γ

)

FX

(

y∗
(2) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(2) − d

∣

∣

∣
µ, σ, γ

)

≤ exp

[

−
γ(y∗

(2) − y∗
(1))

σ

]

.

We can then write, for some finite positiveC
∫ y∗

(1)
−d

0

∫ M

y∗

(k)
+d

∫ y∗

(k)
+d

y∗

(1)
−d

∫ ∞

0

∫ ∞

0

L(y|µ, σ, γ, θ1, θ2)π(µ, σ, γ, θ1, θ2) dσdγdµdθ1dθ2

≤ C

∫ y∗

(2)
+d

y∗

(1)
−d

∫ ∞

0

∫ ∞

0

exp

[

−
y∗

(k) − y∗
(k−1)

γσ

]

1

σ2

γ

(1 + γ2)2
dσdγdµ

+ C

∫ y∗

(k)
+d

y∗

(2)
+d

∫ ∞

0

∫ ∞

0

exp

[

−
γ(y∗

(2) − y∗
(1))

σ

]

1

σ2

γ

(1 + γ2)2
dσdγdµ

∝
y∗

(2) − y∗
(1) + 2d

y∗
(k) − y∗

(k−1)

+
y∗

(k) − y∗
(2)

y∗
(2) − y∗

(1)

< ∞, providedk ≥ 4.

Proof of Theorem 3

The proof is analogous to the proof of Theorem2 using the fact that

1 − FX

(

y∗
(1) − d

∣

∣

∣
µ, σ, γ

)

≥ FX

(

y∗
(k) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(1) − d

∣

∣

∣
µ, σ, γ

)

.

Proof of Theorem 4

The proof is analogous to the proof of Theorem2 using the fact that

1 − FX

(

0
∣

∣

∣
µ, σ, γ

)

≥ FX

(

y∗
(k) + d

∣

∣

∣
µ, σ, γ

)

− FX

(

y∗
(1) − d

∣

∣

∣
µ, σ, γ

)

.

Proof of Theorem 5

First we will prove that this result is equivalent to the properness of the posterior distri-

bution forγ = 1 and then we will prove the result forγ = 1.
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Without loss of generality let us assume thatS1∩S2 = ∅, this assumption is reason-

able given thatk ≥ 3. Then writing the Student’st as a scale mixture of normals with

mixing parametersλ = (λ1, . . . , λn)′ and applying Fubini’s theorem we get an upper

bound forP[y1 ∈ S1, ..., yn ∈ Sn] which is proportional to

∫ ∞

1+ǫ

∫

Rn
+

∫

Sn×...×S1

∫ ∞

0

∫ ∞

0

∫ M

0

(

n
∏

j=1

λ
1
2
j

)

σ−n

(γ + 1/γ)n

× exp

[

− 1

2σ2h(γ)2

n
∑

j=1

λj(yj − µ)2

]

γσ−2

(1 + γ2)2
dµdσdγdy1...dyndPλ|νdPν ,

whereh(γ) = max{γ, 1/γ}. Consider the change of variableϑ = h(γ)σ we can rewrite

this upper bound as follows

∫ ∞

0

h(γ)n+1γn+1

(1 + γ2)n+2
dγ

∫ ∞

1+ǫ

∫

R
n
+

∫

Sn×...×S1

∫ ∞

0

∫ M

0

(

n
∏

j=1

λ
1
2
j

)

1

ϑn+2

× exp

[

− 1

2ϑ2

n
∑

j=1

λj(yj − µ)2

]

dµdϑdy1...dyndPλ|νdPν . (11)

The first integral is finite and the second integral is equivalent to the marginal distri-

bution whenγ = 1. Now we will prove the properness of the posterior distribution for

γ = 1. DefiningS2(λ, y) =
∑

1≤i<j≤n λiλj(yi − yj)
2 andγ = 1 we have

∫ ∞

1+ǫ

∫

R
n
+

∫

Sn×...×S1

∫ ∞

0

∫ M

0

(

n
∏

j=1

λ
1
2
j

)

1

σn+2
exp

[

− 1

2σ2

S2(λ, y)
∑n

j=1 λj

]

× exp



− 1

2σ2

n
∑

j=1

λj

(

µ −
∑n

j=1 λjyj
∑n

j=1 λj

)2


 dµdσdy1...dyndPλ|νdPν

≤
∫ ∞

1+ǫ

∫

R
n
+

∫

Sn×...×S1

∫ ∞

0

∫ ∞

−∞

(

n
∏

j=1

λ
1
2
j

)

1

σn+2
exp

[

− 1

2σ2

S2(λ, y)
∑n

j=1 λj

]

× exp



− 1

2σ2

n
∑

j=1

λj

(

µ −
∑n

j=1 λjyj
∑n

j=1 λj

)2


 dµdσdy1...dyndPλ|νdPν

∝
∫ ∞

1+ǫ

∫

R
n
+

∫

Sn×...×S1

∫ ∞

0

(

n
∏

j=1

λ
1
2
j

)(

n
∑

j=1

λj

)− 1
2

1

σn+1

× exp

[

− 1

2σ2

S2(λ, y)
∑n

j=1 λj

]

dσdy1...dyndPλ|νdPν

(12)
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∝
∫ ∞

1+ǫ

∫

R
n
+

∫

Sn×...×S1

(

n
∏

j=1

λ
1
2
j

)(

n
∑

j=1

λj

)
n−1

2

S2(λ, y)−
n
2 dy1...dyndPλ|νdPν . (13)

Using the proof of Theorem4 in Fernández and Steel (1998b)

S2(λ, y) =
λ1λ2

λ1 + λ2

(

n
∑

j=1

λj

)

η2
2 + (η3 − ρ, ..., ηn − ρ)Q(η3 − ρ, ..., ηn − ρ)′,

whereηi = y1−yi for i = 2, ..., n, ρ = λ2η2/(λ1 +λ2) andQ = (qij)
n
i,j=3 with diagonal

elementsqii = λi

∑

j 6=i λj and off-diagonal elementsqij = qji = −λiλj. Defining

α = λ1λ2

λ1+λ2

(

∑n
j=1 λj

)

η2
2 we get

S2(λ, y)−
n
2 = α−n

2

[

1 + (η3 − ρ, ..., ηn − ρ)
Q

α
(η3 − ρ, ..., ηn − ρ)′

]−n
2

≤ α−n
2

[

1 + (η3 − ρ, ..., ηn − ρ)
Q

α
(η3 − ρ, ..., ηn − ρ)′

]−n−1
2

= α− 1
2 S2(λ, y)−

n−1
2

≤
(

λ
− 1

2
1 + λ

− 1
2

2

)

(

n
∑

j=1

λj

)− 1
2

|η2|−1S2(λ, y)−
n−1

2 .

Integrating(η3, ..., ηn)′ over the whole ofRn−2 as in Fernández and Steel (1998b)

we get the following upper bound

∫

Sn×...×S1

S2(λ, y)−
n
2 dy1...dyn ≤

(

λ
− 1

2
1 + λ

− 1
2

2

)

(

n
∑

j=1

λj

)− 1
2

|η2|−1

×
∫

Sn×...×S1

S2(λ, y)−
n−1

2 dy1...dyn ≤
(

n
∏

j=1

λ
− 1

2
j

)(

n
∑

j=1

λj

)−n−1
2

×
(

λ
− 1

2
1 + λ

− 1
2

2

)

∫

{y1∈S1,y1−η2∈S2}

|η2|−2 dy1dη2. (14)

Combining(13) and(14) we get

∫ ∞

1+ǫ

∫

R
n
+

∫

Sn×...×S1

(

n
∏

j=1

λ
1
2
j

)(

n
∑

j=1

λj

)
n−1

2

S2(λ, y)−
n
2 dy1...dyndPλ|νdPν

≤
∫ ∞

1+ǫ

∫

R
n
+

(

λ
− 1

2
1 + λ

− 1
2

2

)

dPλ|νdPν

∫

{y1∈S1,y1−η2∈S2}

|η2|−2 dy1dη2

∝
∫ ∞

1+ǫ

∫

R+

λ
− 1

2
1 dPλ1|νdPν

∫

{y1∈S1,y1−η2∈S2}

|η2|−2 dy1dη2.
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The third integral is finite sinceS1 ∩ S2 = ∅. Now, considering thatλj|ν ∼
Ga
(

ν
2
, ν

2

)

for j = 1, ..., n

∫

R+

λ
− 1

2
1 dPλ1|ν =

√
2Γ
(

ν−1
2

)

√
νΓ
(

ν
2

) ≤
√

2Γ
(

ǫ
2

)

√
ǫ + 1Γ

(

ǫ+1
2

) , given thatν ≥ 1 + ǫ.
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