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Abstract

A methodology for the simultaneous Bayesian nonparametricmodelling of several dis-

tributions is developed. Our approach uses normalized random measures with independent

increments and builds dependence through the superposition of shared processes. The proper-

ties of the prior are described and the modelling possibilities of this framework are explored in

some detail. Efficient slice sampling methods are developedfor inference. Various posterior

summaries are introduced which allow better understandingof the differences between distri-

butions. The methods are illustrated on simulated data and examples from survival analysis

and stochastic frontier analysis.
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1 Introduction

This paper considers the nonparametric modelling of data divided into different groups and the

comparison of their distributions. For example, we may observe the results of different med-

ical treatments or the performance of firms with different management structures. Statistical

analysis will often concentrate on inference about the differences in the distributions. Analy-

sis of Variance (ANOVA) concentrates on differences between means for different groups and

links these to the effects of each factor. However, differences between groups may not be well

modelled by restricting attention to location. For example, if there are distinct subpopulations

within the observations then each group may contain different proportions of each subpopu-

lation and a full summary of the differences would involve identifying parts of the support

on which the two distributions place substantially different masses. We follow a full Bayesian

analysis by firstly placing a prior on the distributions and secondly defining a decision problem

which reports where the distributions are similar or substantially different.

We use a Bayesian nonparametric mixture model approach to understand the differences

between the distributions. LetF1, F2, . . . , Fq be the distribution of observations forq different

groups, then an infinite mixture model assumes that the density for theg-th group is

fg =

∫

k(·|θ)dGg(θ)

wherek(·|θ) is a density parameterized byθ andGg is a discrete random probability measure.

Since the measure is discrete, it can be represented as

Gg =

∞
∑

i=1

wg,iδθg,i

whereδx is the Dirac delta function that places mass 1 atx andθg,1, θg,2, . . . andwg,1, wg,2, . . .

are infinite sequences of random variables for which
∑∞

i=1wg,i = 1 andwg,i > 0 for all i. It

follows that the mixture model can be written as
∞

∑

i=1

wg,ik(·|θg,i) (1)

or, alternatively, the model can be represented hierarchically for an observationyg,j drawn

from Fg as follows

yg,j ∼ k(·|θg,sg,j
), p(sg,j = i) = wg,i

wheresg,j is an allocation variable indicating to which component distribution k(·|θ) thej-th

observation in groupg is allocated. The groups will often be formed by all possiblecombi-

nations of some categorical covariates and we will denote those covariates byzg for the g-th
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group. This is a very general model and many previously proposed models fall within it. The

ANOVA-DDP model of De Iorio et al. (2004) assumes that the density k is a N(θ, σ2), while

wg,i = wi andθg,i = zT
g βi whereβi is a vector of parameters. This allows the means of the

different components to change with covariates.

A popular approach allows the weights to depend on covariates and setsθg,i = θi so that

the location of the components is fixed across each group. A finite mixture of normals model

along these lines was proposed by Rodriguez et al. (2009) whoallow the component weights

to depend on covariates. Alternatively, the weights can be modelled through combinations of

random variables, which encourages correlation between the random distributions. The Matrix

Stick-Breaking process of Dunson et al. (2008) assumes thatzg is a two-dimensional vector

and thatwg,1, wg,2, wg,3, . . . are derived using a Matrix Stick-Breaking construction where

wg,j = Vzg,1,1Vzg,2,2

andV1,1, V2,1, V3,1, . . . andV1,2, V2,2, V3,2, . . . are infinite sequences of beta random variables.

Müller et al. (2004) assume that

fg = ψ

∞
∑

i=1

w⋆
g,ik(·|θ

⋆
g,i) + (1 − ψ)

∞
∑

i=1

wik(·|θi)

where0 ≤ ψ ≤ 1. The distribution of theg-th group is a mixture of a common component

shared by all groups and an idiosyncratic component. The parameterψ is the weight placed on

the idiosyncratic component and so affects the correlationbetween distributions.

The Hierarchical Dirichlet process (Teh et al., 2006) assumes, in its simplest form, that

Gg ∼ DP(MG0), g = 1, . . . , q, G0 ∼ DP(M0H) (2)

The distributions are exchangeable and this structure allows clusters to be shared by different

groups (due to the discrete nature of the Dirichlet process at both levels). If the Hierarchi-

cal Dirichlet process is used as the mixture distribution inthe mixture models then we have

something of the form of (1). Teh et al. (2006) derive the stick-breaking construction for

wg,1, wg,1, wg,2, . . . . The model can be extended to more levels of hierarchy in the standard

way. This model assumes that distributions are exchangeable at some level. In contrast, this

paper will mostly concentrate on the problem where groups are defined by covariates. There

is normally no natural nesting in these settings, so that hierarchical models will then not be

appropriate.

We propose to use a normalized superposition of random measures to induce dependence.

This general framework leads to dependence structures thatcan be fairly easily controlled
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through the mass parameters of the underlying measures and extends naturally to any number

of groups. In fact, we can use this framework to separately model the mass shared by any

subset of the groups or we can use simpler settings, depending on the flexibility of the depen-

dence structure we want to assume. We use shrinkage priors for the mass parameters to ensure

consistent priors across different levels of model complexity. For posterior inference, we pro-

pose novel slice sampling Markov chain Monte Carlo (MCMC) methods, used in combination

with a split-merge move. We also discuss ways of summarizingthe differences between the

nonparametric distributions for each group, based on decision theoretic ideas.

The paper is organized as follows. Section 2 describes the construction of random proba-

bility measures by normalization and our proposed framework for modelling dependence using

normalized random measures, Section 3 describes efficient MCMC sampling methods for in-

ference, Section 4 discusses a decision theoretic approachto comparing distributions, Section

5 analyzes simulated data and presents real data applications to stochastic frontier analysis and

health, while Section 6 concludes.

2 Introducing Dependence in Normalized Random Mea-

sures

2.1 General Framework

Normalized Random Measures with Independent Increments (NRMIs) are a class of nonpara-

metric priors for a random probability measure,G, constructed by normalizing a positive ran-

dom measure with independent increments,G̃(B), to give

G(B) =
G̃(B)

G̃(Ω)
.

Throughout the paper we will useG to represent the normalized version of a random measure

G̃. Generally, we will concentrate on random measures which only contain jumps and write

G̃ =

∞
∑

i=1

Jiδθi
,

whereθi are i.i.d. from some distributionH andJ1, J2, J3, . . . are jumps of a Lévy process

with Lévy densityζ(x). The process is well-defined if0 < G̃(Ω) < ∞ almost surely which

happens if
∫

ζ(x) dx is infinite. The NRMI can be employed as the prior of the mixingmeasure

G in an infinite mixture modelf(y) =
∫

k(y|θ) dG(θ) to define an NRMI mixture. This class

4
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of processes and their use in mixture models is studied in general by James et al. (2009).

Several previously proposed processes fall within this class. The Dirichlet process (Ferguson,

1973) (DP) occurs if̃G is a Gamma process, for which

ζ(x) = Mx−1 exp{−x}, M > 0.

The Normalized Generalized Gamma process (Lijoi et al., 2007) (NGG) is constructed by

normalizing a Generalized Gamma process (Brix, 1999), for which

ζ(x) =
M

Γ(1 − a)
x−1−a exp{−λx}, M > 0, 0 < a < 1, λ ≥ 0. (3)

This process tends to the Dirichlet Process asa → 0 andλ = 1. The Normalized Inverse-

Gaussian process (Lijoi et al., 2005) occurs ifa = 0.5 andλ = 1. Another special case is the

Normalized Stable Process of Kingman (1975), which corresponds toλ = 0.

Dependence between two distributionsG1 andG2 can be introduced through the unnor-

malized random measures̃G1 andG̃2. Intuitively, it is clear that the dependence betweenG1

andG2 will grow as the dependence betweenG̃1 andG̃2 grows. A similar approach for con-

structing processes of random probability measures over time is discussed by Griffin (2009).

Suppose that we haveq groups, then the random measures can be defined in the following

way. Firstly, we can definep underlying random measures̃G⋆
1, G̃

⋆
2, . . . , G̃

⋆
p such that

G̃⋆
j =

∞
∑

i=1

Jj,iδθj,i
, j = 1, . . . , p,

whereθj,i are i.i.d. from some distributionH andJj,1, Jj,2, Jj,3, . . . are jumps with Lévy

densityζ⋆
j (x). Defining G̃⋆ = (G̃⋆

1, G̃
⋆
2, . . . , G̃

⋆
p)

T , the random measures in the vectorG̃ =

(G̃1, G̃2, . . . , G̃q)
T will be formed as

G̃ = DG̃⋆,

whereD is aq×p-dimensional selection matrix. TheñGj is a Lévy process and the Lévy den-

sity of G̃j is ζj(x) = Dj·ζ
⋆(x) whereDj· is thej-th row ofD andζ⋆(x) = (ζ⋆

1 (x), . . . , ζ⋆
p(x))T .

In particular, we takeζ⋆
h(x) = Mhη(x) so thatζj(x) = [Dj·M ]η(x) whereM = (M1, . . . ,Mp)

T .

When we normalize, we obtain

G = WG⋆, (4)

whereG = (G1, . . . , Gq)
T ,G⋆ = (G⋆

1, . . . , G
⋆
p)

T andW is aq × p matrix with elements

Wij =
DijG̃

⋆
j (Ω)

∑p
k=1DikG̃

⋆
k(Ω)

andG⋆
j =

G̃⋆
j

G̃⋆
j (Ω)

.
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Therefore, the distribution for each group is a mixture ofG⋆
1, G

⋆
2, . . . , G

⋆
p where the weights for

thei-th group are given by thei-th row ofW . This process will be denoted generally as a Cor-

related Normalized Random Measure with Independent Increments, or CNRMI(M,H,D; η).

Often, we will choose a specific functional form forη so that the marginal processesG1, . . . , Gq

come from a known process (for example, a Dirichlet process). We will consider two pos-

sibilities: a Correlated Dirichlet Process CDP(M,H,D) whereη(x) = x−1 exp{−x} and

the marginal processes are DP and a Correlated Normalized Generalized Gamma Process

CNGG(M,H,D; a, λ) whereη(x) = x−1−a exp{−λx} and the marginal processes are NGG.

The mixture form forG1, G2, . . . , Gq is an important difference to the Hierarchical Dirichlet

process, which is a framework that leads to all atoms being shared by all distributions and

assumes that all distributions area priori equally correlated.

If we useG1, G2, . . . , Gq as mixing measures forq mixture models, the distribution of an

observation,y, in thei-th group is now given by

fi(y) =

∫

k(y|θ) dGi(θ).

Then we can write

fi =
f̃i

F̃i(Ω)
,

wheref̃i(y) =
∫

k(y|θ)dG̃i(θ) andF̃i(A) =
∫

A
f̃i(y) dy. Now, F̃i expresses an unnormalized

distribution in terms of basis functions (where the kernelk(·) are the basis functions) and so

Fi is a normalized basis function model.

A natural measure of the dependence between two distributions is the correlation between

Gi(B) andGj(B) whereB is a measurable set. Using the construction in this paper, this

correlation does not depend onB and so can be used as a single measure of dependence

between distributions, which we denote by Corr(Gi, Gj). The following results present an

expression for the correlation, using a particular form of the framework described above for

q = 2, p = 3 andD =





1 1 0

1 0 1



. This is a simple, yet illustrative example.

Theorem 1 Suppose that̃G1 = G̃⋆
1 + G̃⋆

2 andG̃2 = G̃⋆
1 + G̃⋆

3 where the Ĺevy measure of̃G⋆
k

isMkη(x). Define

Lη(v) =

∫ ∞

0
(1 − exp{−vx})η(x) dx.

The covariance ofG1 andG2 is

Cov(G1(B), G2(B)) = H(B)(1 −H(B))M1

∫ ∞

0

∫ ∞

0
β(v1, v2;M1,M2,M3) dv1dv2,
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where

β(v1, v2;M1,M2,M3) = −L′′
η(v1 +v2) exp {−M1Lη(v1 + v2) −M2Lη(v1) −M3Lη(v2)} .

Proof: See Appendix

Similarly, expressions can be derived for Var(G1(B)) and Var(G2(B)) and so

ρ = Corr(G1, G2) =
M1

∫ ∞
0

∫ ∞
0 β(v1, v2;M1,M2,M3) dv1dv2

√

(M1 +M2)(M1 +M3)β∗(M1 +M2)β∗(M1 +M3)
,

where

β∗(M) =

∫ ∞

0

∫ ∞

0
−L′′

η(v1 + v2) exp {−MLη(v1 + v2)} dv1dv2.

In the special case whereM1 = Mρ⋆ andM2 = M3 = M(1− ρ⋆) for 0 < ρ⋆ < 1, we obtain

ρ = ρ⋆ [1 + ǫ] ,

where

ǫ =

∫ ∞
0

∫ ∞
0 −L′′

η(v1 + v2) exp {−MLη(v1 + v2)} γ(v1, v2) dv1dv2

β∗(M)
,

with

γ(v1, v2) = exp {−M(1 − ρ⋆) [Lη(v1) + Lη(v2) − Lη(v1 + v2)]} − 1.

Therefore, the correlation betweenG1 andG2, ρ, can be well-approximated byρ⋆ if γ(v1, v2)

is close to zero for allρ⋆ which will be the case for many forms of processes. It is impor-

tant to point out we do not necessarily advocate adopting therestricted parametrization for

M1,M2 andM3 in the special case used above, but it is a useful device to better understand

the properties of our models, as illustrated in the following examples:

Dirichlet process marginals (CDP)

Here

Lη(v) = log(1 + v), L′′
η(v) = −

1

(1 + v)2
,

so that

γ(v1, v2) = exp

{

−M(1 − ρ⋆) log

(

1 +
v1v2

1 + v1 + v2

)}

− 1.

Figure 1 plots the correlation betweenG1 andG2 as a function ofρ⋆ and illustrates thatρ⋆

closely approximates the correlation, especially for largerM .
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Figure 1:Plot of the actual correlation,ρ, (solid line) andρ⋆ (dashed line) againstρ⋆ for the CDP.

Normalized Generalized Gamma process marginals (CNGG)

In this case

Lη(v) =
1

a
((v + λ)a − λa) , L′′

η(v) = (a− 1)(v + λ)a−2,

which implies that

γ(v1, v2) = exp

{

−M(1 − ρ⋆)
1

a
[(v1 + λ)a + (v2 + λ)a − (v1 + v2 + λ)a − λa]

}

− 1.

Figure 2 shows the relationship betweenρ⋆ and the actual correlation,ρ, for CNGG pro-

cesses with different choices of the parameters. The correlation is close toρ⋆ for each choice

of the hyperparameters with the largest differences for thesmaller values ofa andλ. For gen-

eralM1, M2 andM3, this results suggests that increasingM1 relative toM2 andM3 leads to

a larger correlation betweenG1 andG2.

Whenq > 2, we can always write a pair of unnormalized distributionG̃j andG̃k, where

j 6= k, as

G̃j = G̃(c) + G̃(j)

G̃k = G̃(c) + G̃(k),

where, using I(·) to denote the indicator function, the Lévy measure ofG̃(c) is given by

[
∑p

m=1 I(Djm = 1,Dkm = 1)Mm] η(x), G̃(j) has Lévy measure[
∑p

m=1 I(Djm = 1,Dkm =

0)Mm] η(x) andG̃(k) has Lévy measure[
∑p

m=1 I(Djm = 0,Dkm = 1)Mm] η(x). This sug-

gest using the general approximation

Corr(Gj , Gk) ≈
M (c)

√

M (c) +M (j)
√

M (c) +M (k)
, (5)

whereM (c) =
∑p

m=1 I(Djm = 1,Dkm = 1)Mm, M (j) =
∑p

m=1 I(Djm = 1,Dkm =

0)Mm, andM (k) =
∑p

m=1 I(Djm = 0,Dkm = 1)Mm. Therefore, the correlation between

8
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Figure 2:Plot of the actual correlation,ρ, (solid line) andρ⋆ (dashed line) againstρ⋆ for the CNGG.

Gj andGk increases as the value ofM (c) increases relative toM (j) andM (k). Generally,

increasingMh leads to increased correlations between all distributionswith a 1 in theh-th

column ofD.

2.2 Modelling of Groups

In the simple case with 2 groups, there are naturally three underlying random measures̃G⋆
j

in our model, one modelling the common mass shared between the groups and two for the

idiosyncratic components. In cases with more groups, we need to make modelling decisions,

more fully explored in this subsection. The most flexible models in our class are generated by
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allocating a separate random measure for modelling the massshared by each nonempty subset

of group distributions. The most complete model forq groups in the CRNMI class with a given

M ,H andη can thus be defined by takingp = 2q − 1 and letting thei-th column ofD be the

binary representation ofi for 1 ≤ i ≤ 2q − 1. For example ifq = 3, then

D =









0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1









whereG̃⋆
1, G̃⋆

2 andG̃⋆
4 are idiosyncratic components,̃G⋆

3, G̃⋆
5 andG̃⋆

6 are shared by two groups

andG̃⋆
7 is shared by all three groups. This will be called the saturated model. The levels of

correlation between the distributions can be accommodatedby choosing appropriate values

of M1, . . . ,Mp and using (5). Clearly this model becomes increasingly complicated asq

increases. More parsimonious models can be constructed by removing columns ofD from

the saturated model (which is equivalent to setting someMh to zero). A version of the model

introduced by Müller et al. (2004) would use theq × (q + 1)-dimensional matrix

D = (1q Iq) ,

where1q is aq-dimensional vector of ones (representing the single common component) andIq

is theq×q-dimensional identity matrix. Alternatively, if the distributions relate to observations

at different times then a simple model could be defined using

D = (1q Iq F ) ,

whereF is aq × (q − 1)-dimensional matrix for which

Fij =







1 if j = i or j = i− 1

0 otherwise
.

The model then includes a common underlying measure (in the first column), idiosyncratic

underlying measures (in the nextq columns) and underlying random measures shared by con-

secutive distributions (in the nextq − 1 columns). More specific form of problem-specific

dependence could also be modelled. Suppose that we take observations from three distribu-

tions where we think that distribution 1 and 2 are more related to each other than to distribution

3. A suitable model would be

D =









1 1 0 0 1

1 0 1 0 1

1 0 0 1 0









10
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where the inclusion of the final column allows extra dependence between the first two distri-

butions.

In practice, we may not have prior information that leads us to consider models simpler than

the saturated model. We suggest using regularization to avoid overfitting (since the number

of underlying processes,p, grows quickly withq). A standard approach would be Bayesian

variable selection on the columns ofD for the saturated model. This is equivalent to setting

Mh = 0 in the Lévy measure of the underlying measureG̃⋆
h. We will take an alternative

approach and define a prior forMh which encourages substantial shrinkage towards zero (this

is similar to the shrinkage prior approach to regression as described by Scott and Polson (2011)

and Griffin and Brown (2010)). The prior forM1,M2, . . . ,Mp is chosen in the following

way. The values ofM1,M2, . . . ,Mp control the dependence between distributions and can be

chosen to represent prior beliefs. The additive effect of theM ′
js is useful here. Suppose that we

0 0.5 1
0

1

2

3

4

Figure 3:The prior onρ = Corr(G1, G2) with Mi ∼ Ga(M∗/2, β) whereM∗ = 1 (solid line),M∗ = 2

(dashed line) andM∗ = 3 (dot-dashed line) andβ = 1.

have one distribution withM chosen to take the valueM∗. Moving to two distributions in the

saturated model suggests thatM1 +M3 = M∗ andM2 +M3 = M∗, if we assume thatG1 and

G2 are exchangeable, so that we haveM1 = M2. If we are indifferent between an observation

being allocated to a shared cluster or an idiosyncratic cluster thenM1 = M2 = M3. Repeated

use of this argument allows extension to any value ofq and suggests thatM1,M2, . . . ,Mp are

independent andMi ∼ Ga(M∗/2q−1, β). Figure 3 shows the prior distribution induced on

ρ, the correlation coefficient betweenG1 andG2 whenq = 2, for various values ofM∗. All

priors are centred around1/2 with the variability decreasing asM∗ increases. We will use

M∗ = 1 in our applications. This prior is relatively flat for correlations larger than 0.1 and has

larger mass close to zero. This will lead to some shrinkage ofsmall correlations.
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3 Computational Methods

This section describes an MCMC sampler for fitting the general mixture model

yg,i ∼ k(yg,i|θg,i), i = 1, 2, . . . , ng

θg,i ∼ Gg

G1, G2, . . . , Gq ∼ CNRMI(M,H,D; η)

whereM is given the prior described in Section 2 andH andη potentially have hyperparame-

ters which also have priors.

Several slice sampling algorithms for normalized random measure mixture models were

introduced by Griffin and Walker (2010). We will extend their“Slice 1” algorithm. For a

single normalized random measure mixture the posterior is proportional to

p(J)p(θ)

n
∏

i=1

wsi
k (yi|θsi

)

wherewi = Ji/
∑∞

l=1 Jl, J = (J1, J2, J3, . . . ) andθ = (θ1, θ2, θ3, . . . ). They demonstrate

that the following posterior with additional auxiliary variablesu1, u2, . . . , un andv1, v2, . . . , vn

and integrating over all jumps smaller thanL = min{ui} is a much simpler form for compu-

tational purposes:

p(J1, J2, . . . , JK)p(θ)

n
∏

i=1

I(ui < Jsi
) exp

{

−vi

K
∑

l=1

Jl

}

E

[

exp

{

−vi

∞
∑

l=K+1

Jl

}]

k (yi|θsi
)

whereJ1 > J2 > J3 > ... > JK > L, u1, u2, . . . , un > 0 andv1, v2, . . . , vn > 0. The

expectation can be evaluated using the Lévy-Khintchine formula and so

E

[

exp

{

−v
∞
∑

i=K+1

Ji

}]

= exp

{

−M

∫ L

0
(1 − exp{−vx})η(x) dx

}

.

The integral in the exponential is sometime available in terms of special function (this is the

case for the Dirichlet process) or can be evaluated using standard quadrature methods.

The likelihood for a mixture model using the weights in Section 2 can be expressed in

a suitable form for computation by introducing latent variables {sj,i}j=1:q,i=1:nj
which are

allocation variables for mixture components while{rj,i}j=1:q,i=1:nj
allocates each observation

to one ofp underlying random measures̃G⋆
1, G̃

⋆
2, . . . , G̃

⋆
p. Thus, the observationyg,i is assumed
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to be drawn fromk(·|θrg,i,sg,i
). Using auxiliary variablesuj,1, . . . , uj,nj

andvj,1, . . . , vj,nj
for

groupj, the likelihood can now be expressed as

p(θ)

q
∏

i=1

V ni−1
i

p
∏

i=1

p(Ji,1, Ji,2, . . . , Ji,Ki
)

q
∏

j=1

nj
∏

i=1

I
(

uj,i < Jrj,i,sj,i

)

exp
{

−V TDJ (+)
}

× E
[

exp
{

−V TDJ (∞)
}]

, (6)

whereJi,1 > Ji,2 > Ji,3 > . . . for all i, θ = {θi,j}i=1:p,j=1,2,3,... and Ji,1, . . . , Ji,Ki

are all jumps in process̃G⋆
i which are larger thanL. V is a q-dimensional vector where

Vj =
∑nj

i=1 vj,i, J (+) is a p-dimensional vector withJ (+)
i =

∑Ki

l=1 Ji,l and J (∞) is a p-

dimensional vector whereJ (∞)
i =

∑∞
l=Ki+1 Ji,l. Integrating outuj,i from (6), the likelihood

can be expressed as

p(θ)

q
∏

i=1

V ni−1
i

p
∏

i=1

p(Ji,1, Ji,2, . . . , Ji,Ki
)

p
∏

j=1

Kj
∏

i=1

J
nj,i

j,i exp
{

−V TDJ (+)
}

× E
[

exp
{

−V TDJ (∞)
}]

,

wherenj,i = #{(l, k)|sl,k = i andrl,k = j, 1 ≤ k ≤ nl, 1 ≤ l ≤ q} is the size of the cluster

of observations associated withθj,i.

Each expectation in the product can be evaluated using the L´evy-Khintchine formula and

so

E
[

exp
{

−V TDJ (∞)
}]

= exp
{

−1
T
p M̃Ẽ

}

,

whereM̃ is ap × p-diagonal matrix withM̃hh = Mh and, definingD·i as thei-th column of

D, Ẽ is thep-dimensional vector withi-th element

Ẽi =

∫ L

0

(

1 − exp
{

−V TD·ix
})

η(x) dx.

Therefore the posterior retains a lot of the linearity introduced in the model. The chain can

be initialized in the following way. Choose a starting truncation pointL and generatep dif-

ferent Poisson processes where the number of jumps,Kj, in the j-th process is simulated

from a Poisson distribution with meanMj

∫ ∞
L
η(x) dx. The jumps of thej-th process are

simulated by first drawingKj random numbers{ξj,k}
Kj

k=1 from a uniform distribution be-

tween 0 and
∫ ∞
L
η(x) dx and ordered so thatξj,1 < ξj,2 < . . . < ξj,Kj

and then setting

Jj,k = Q−1(ξj,k) for k = 1, 2, . . . ,Kj whereQ−1 is the inverse ofQ(x) =
∫ ∞
x
η(y) dy. The

locationsθj,1, θj,2, . . . , θj,Kj
are taken to be i.i.d. fromH and the latent variablesrj,i andsj,i

can be simulated from the discrete distributions

p(rj,i = k) =
DjkMk

∑p
l=1DjlMl

, k = 1, 2, . . . , p
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and

p(sj,i = k) ∝ k
(

yi|θrj,i,k

)

Jrj,i,k, 1 ≤ k ≤ Krj,i
.

The slice latent variables can be taken asuj,i ∼ U(L, Jrj,i,sj,i
).

In the following steps, we defineJ∗
j = {Jj,i|nj,i 6= 0}, i.e. the jumps in thej-th component

process which have observations allocated to them. The steps of the Gibbs sampler are as

follows:

Step 1: Split-Merge move

The problem of multi-modality of the posterior distribution in these models and a computa-

tional solution, a split-merge move, are described in Kolossiatis et al. (2010). In our model, it

is useful to link the underlying measures to their corresponding columns in theD matrix. For

example, in the saturated model withq = 3 described at the start of Subsection 2.2, the un-

derlying random measurẽG⋆
1 will be referred to as the “underlying random measure(0, 0, 1)”.

The split-merge move is performed in the following way. A split move is selected with prob-

ability 1/2, otherwise a merge move is proposed. An underlying random measuree, a column

of D, is selected at random from those underlying random measures which have observation

allocated to them and a non-empty mixture component,i⋆, from e is selected uniformly at

random. If the split move is selected, the members of the cluster are divided according to

their group membership into two clusterse1 ande2. For example, in the saturated model with

q = 3, if we choosee = (1, 1, 0) the cluster would be split into a cluster in the underlying

measure(1, 0, 0) and a cluster in the underlying measure(0, 1, 0). In this case, there is only

one possible split. However, if we choosee = (1, 1, 1), there are three possible splits: clusters

in (1, 0, 0) and(0, 1, 1), clusters in(0, 1, 0) and(1, 0, 1), or clusters in(0, 0, 1) and(1, 1, 0).

The particular split is chosen uniformly at random from all possible splits. The merge move

performs the opposite operation. For this move, a set of allowable underlying measures is

defined,C = {e⋆|e⋆
j = 0 for all j for whichej = 1}, and an underlying measuree† is cho-

sen uniformly at random fromC (this happens regardless of whether there are any non-empty

clusters allocated to that measure). One of the non-empty clusters,j⋆, in e
† (if any exist) or

a “null” cluster is chosen at random with equal probability.A new cluster is then formed in

the underlying random measureecomb wheree
comb
i = 1 if e

⋆
i = 1 or e

†
i = 1 ande

comb
i = 0

if e
⋆
i = 0 ande

†
i = 0. If a “null” cluster were selected then the clusteri⋆ is moved from the

underlying measuree⋆ to e
comb. Otherwise, clustersi⋆ andj⋆ are combined to define a new

cluster ine
comb. Let (s, r) and(s′, r′) be the values of the latent allocation variables before
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and after making the move respectively. We assume thatMj ∼ Ga(aj , bj). The acceptance

probability is calculated integrating out the jumps and forthe split move has the form

max

{

1,
p(y|s′, r′)p(s′, r′)

p(y|s, r)p(s, r)

D1K
∗(e)S(e)

2D′
1K

∗′(e1)M(e1)(K∗′(e2) + 1)

}

whereD1 andD′
1 are the number of underlying random measures with observations allocated

to them before and after the move respectively,K∗(e) andK∗′(e) are the number of non-

empty clusters in the random measuree before and after the move,M(e) is the size ofC

andS(e) is the number of pairs of underlying measures that can be formed by splittinge. In

addition, we can write

p(s, r) =

p
∏

j=1

Γ(aj +K∗
j )

(bj + Ãj)
aj+K∗

j

∏

{i|nj,i 6=0}

∫

J
nj,i

j,i exp
{

−Jj,iV
TD·i

}

η(Jj,i) dJj,i,

where forj = 1, 2, . . . , p we haveK∗
j = #{k : nj,k > 0} and

Ãj =

∫ ∞

0

(

1 − exp
{

−V TD·jx
})

η(x) dx.

The move is completed by samplingM from its full conditional distribution and then sampling

u,K andJ .

Step 2: UpdatingV

DefiningÃ = (Ã1, . . . , Ãp)
T , the full conditional distribution ofVj is proportional to

V
nj−1
j

Kj
∏

l=1

∫

J
nj,l

j,l exp
{

−Jj,lV
TD·j

}

dJj,l exp
{

−1
T
p M̃Ã

}

, Vj > 0.

The parameter can be updated using a Metropolis–Hastings random walk on the log-scale.

We also found it useful to updateV ⋆ =
∑p

j=1 Vj conditional onB = (b1, . . . , bp) where

bj = Vj/V
⋆. The full conditional distribution ofV ⋆ > 0 is

V ⋆n−1
p

∏

j=1

Kj
∏

l=1

∫

J
nj,l

j,l exp
{

−Jj,lV
⋆BTD·j

}

dJj,l exp
{

−1
T
p M̃Ã

}

.

The parameter can be updated using a Metropolis–Hastings random walk on the log-scale. If

V ⋆′ is accepted then eachVj is updated toVjV
⋆′/V ⋆.
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Step 3: UpdatingM

The full conditional distribution ofMj is proportional to

p(Mj)M
Kj

j exp

{

−Mj

∫ ∞

0
(1 − exp{−VjJ})η(J) dJ

}

and ifp(Mj) ∼ Ga(aj , bj) then the full conditional distribution is Ga(aj +Kj , bj +
∫ ∞
0 (1 −

exp{−VjJ})η(J) dJ).

Step 4: Updatingu, K and J

This set of full conditional distributions can be updated using the efficient slice sampling

method of Kalli et al. (2011) by integrating outu = {uj,i}j=1:q,i=1:nj
when updating the

jumps. The update is described for NRMI mixtures by Griffin and Walker (2010) and can be

simply extended to our model. The elements ofJ∗
1 , J

∗
2 , . . . , J

∗
p are simulated first followed by

the elements ofu (which only depends onJk through the elements ofJ∗
k ) and finally the other

Jk,l > L. The full conditional distribution of the elementJk,l ∈ J∗
k is proportional to

J
nk,l

k,l exp
{

−Jk,lV
TD·k

}

η(Jk,l), Jk,l > 0.

The full conditional ofuj,i is U
(

0, Jrj,i,sj,i

)

and this allows us to calculateL = min{uj,i}.

Finally, the jumps for whichJk,l > L andnk,l = 0 can be simulated as realizations ofk

inhomogeneous Poisson processes with intensitiesMk exp{−V TD·kx}η(x) on (L,∞) and

associating aθ drawn fromH with each point of the realisation. Details of simulating from

these Poisson processes are given in Griffin and Walker (2010).

Step 5: Updatingθ

The elements ofθ are independent under their joint full conditional distribution, and the density

of θk is proportional to

h(θl,k)
∏

{(j,i)|sj,i=k andrj,i=l}

k(yj,i|θl,k),

whereh(·) is the density ofH. This is a familiar form used in samplers for many infinite

mixture models, such as DP mixtures.
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Step 6: Updatings and r

The latent variablessj,i andrj,i can be updated jointly and drawn from their full conditional

distribution

p(sj,i = k andrj,i = l) ∝ Djl I(Jl,k > uj,i) k(yj,i|θl,k),

where{(l, k) : Jl,k > uj,i} is a finite set.

3.1 Specific examples

3.1.1 Dirichlet process marginals (CDP)

The DP has the Lévy density with

η(x) = x−1 exp{−x}.

Then the full conditional distribution ofJj,i is Ga(nj,i, (1 + V TD·j)) and
∫

J
nj,i

j,i exp
{

−Jj,iV
TD·j

}

η(Jj,i) dJj,i =
Γ(nj,i)

(1 + V TD·j)nj,i
.

3.1.2 Normalized Generalized Gamma process marginals (CNGG)

The Lévy density with

η(x) =
1

Γ(1 − a)
x−1−a exp{−λx}

leads to
∫

J
nj,i

j,i exp
{

−Jj,iV
TD·j

}

η(Jj,i) dJj,i =
1

Γ(1 − a)

Γ(nj,i − a)

(λ+ V TD·j)(nj,i−a)
.

4 Comparing Distributions

Once we have a posterior distribution on the distributionsG1, G2, . . . , Gq, it is useful to have

some graphical summaries which help us to understand the differences between distributions.

Most simply, we can write

Gi = Ḡ+ Πi,

whereḠ = 1
q

∑q
j=1Gj is a “grand mean” distribution andΠi = Gi − Ḡ is a signed measure

which gives measure zero toΩ and which represents the difference of each distribution from

the grand mean. Their densities will be represented byḡ andπi, respectively. This idea is

similar to the modelling of continuous responses in a one-way ANOVA model. Analogies to
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higher order ANOVA models are also possible. Suppose that the groups are defined by two

covariates (x1 andx2) and the distribution for thei-th level ofx1 (i = 1, . . . , n) and thej-th

level ofx2 (j = 1, . . . ,m) is represented asGi,j . Then we can decompose

Gi,j = Ḡ+ Πi· + Π·j + Γi,j, (7)

whereḠ = 1
nm

∑n
i=1

∑m
j=1Gi,j, Πi· = 1

m

∑m
j=1(Gi,j − Ḡ), Π·j = 1

n

∑n
i=1(Gi,j − Ḡ). Here

Ḡ is a probability measure andΠi·, Π·j andΓi,j are signed measures that put measure 0 onΩ

(and their densities will bēg, πi·, π·j andγi,j, respectively). This separates the effect of level

i of x1 averaged over all levels ofx2, denoted byΠi·, the average effect of levelj of x2 (Π·j)

and the interaction effects of combinations of levelsi andj of both variables (Γi,j), giving us

a very useful decomposition of the differences between the distributions.

The summaries described so far allow us to understand and interpret the differences be-

tween distributions but we also want to say something meaningful about regions of the support

where the distributions are particularly different. We will consider a pair of distributions,Gi

andGj , and find a partitionP of Ω defining subsetsPk and an indicator vectord for which

dk = −1 if Gi places substantially more mass thanGj onPk, dk = 1 if Gj places substan-

tially more mass thanGi onPk anddk = 0 otherwise. The choice ofP andd will be made

by specifying a utility function and finding the partition that maximizes expected utility. The

utility function is

U(P, d) =

r
∑

k=1

U∗(Pk, dk),

whereP1, . . . ,Pr are the elements ofP and

U∗(P, d) =















Gi(P) −Gj(P) , d = −1

ǫ
2(Gi(P) +Gj(P)) , d = 0

Gj(P) −Gi(P) , d = 1,

where0 < ǫ < 2 is chosen to determine the meaning of substantial difference. Increasing

values ofǫ lead to a utility function that increasingly favours setting dk = 0. To understand

the choice of utility function, consider an element,Pk of a fixed partition,P. Then,dk = 0 if

|Gi(Pk) −Gj(Pk)|
1
2 (Gi(Pk) +Gj(Pk))

< ǫ.

The left-hand side of the expression is the difference in themass of the two distributions onPk

divided by the average mass andǫ is then interpreted as a tolerance parameter which controls

the size of that ratio which constitutes a substantial difference. The expression naturally scales
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the difference by the mean mass under the two distributions and larger absolute differences

will be declared “similar” in areas with larger average mass.

As U(P, d) is additive over the elements in the partition, maximizing the utility over par-

titions is easily done by starting from a very fine partitioñP and maximizingU∗ on each

element. Then we simply join the elements ofP̃ to form the partitionP that maximizes utility.

5 Illustrations

The methods developed in this paper are illustrated on simulated data, a survival analysis

example and an example from efficiency measurement. In all cases, the model with NGG

marginals withλ = 1 and unknown other hyperparameters was used. In practice, this is not a

particularly restrictive choice. WritingM = M̌/λa in (3) leads to a process whereλ scales the

jump sizes and so has no effect on the normalized process (we have also implemented inference

with a prior onλ and indeed found that the posterior and prior were virtuallyidentical). It is

assumed thatD corresponds to the saturated model withp = 2q − 1 (even for the stochastic

frontier example in Subsection 5.3, whereq = 6 sop = 63). Throughout, the prior fora was

a uniform distribution on(0, 1) and the prior forMi was Ga(1/2q−1, 1) which implies that the

prior for eachGg is NGG withM ∼ Ga(1, 1).

5.1 Simulated data

We use two examples to illustrate the flexibility of the model. The first example has two groups

which both contain 50 data points. The data for the first groupare generated from the mixture

distribution

f1(x) = α1N(0, 1) + (1 − α1)N(−5, 1)

and in the second group from

f2(x) = α2N(0, 1) + (1 − α2)N(5, 1).

On average,50α1 points in group 1 and50α2 points in group 2 will come from a standard

normal but the other points will come from normal distribution centred at -5 for group 1 and 5

for group 2. The model of Müller et al. (2004) can represent these distributions ifα1 = α2 but

that model will fit worse as the values ofα1 andα2 become further apart. We first consider the

choiceα1 = α2 = 0.5.
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The second example extends the first by defining a third group (soq = 3) with observations

drawn according to the density

f3(x) = α2N(0, 1) + (1 − α2)N(5, 1).

The third group has the same distribution as the second group. In this case, we useα1 = 0.5

andα2 = 0.9. Each data set was fitted using the model with NGG marginals with unknown

hyperparameters.

The model is

yg,j
ind.
∼ N(µg,j, σ

2
g,j)

(µg,j, σ
−2
g,j )

ind.
∼ Gg

G1, G2, . . . , Gq ∼ CNGG(M,H,D; a, λ),

with H = N(µ|ȳ, σ2/m0)Ga(σ−2|1, 1) where ȳ is the mean of all observations andm0 =

0.01.

ǫ = 0.2 ǫ = 0.4 ǫ = 0.6
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Figure 4:Example 1 (α1 = α2 = 0.5): (a) Posterior predictive density for the two groups (Group 1 is solid

line and Group 2 is dashed line); (b) the differenceπ1 (solid line) andπ2 (dashed line) indicating the area

where Group 1 has substantially more mass than Group 2 (lightgrey) and vice versa (dark grey).

Some results of fitting the model to data in the first example are shown in Figure 4. The

model estimates the densities well (shown in Row (a)). The graphs also show partitions of the

support found using the approach in Section 4 for several values of the sensitivity parameter
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ǫ. The results are reasonably robust to the choice ofǫ with ǫ > 0.2 and they indicate that

the distributions are similar between -2 and 2. This region seems slightly too small when

ǫ = 0.2, where the analysis reacts to the relatively small positivedifferenceπ1 in between

approximately 1 and 2. Row (b) shows the density of the differencesπ1 andπ2. It is clear

from the definition thatπ2 = −π1 when we have two groups and this is illustrated in the

graphs which clearly show where the differences of the densities for the two groups are large.

a ρ
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Figure 5: Example 1 (α1 = α2 = 0.5): Prior (dashed lines) and posterior (solid lines) densities of the

parametera and the correlationρ for the NGG prior.

Figure 5 shows the posterior densities of the parametera and the correlationρ for the

NGG prior. The data favour values ofa smaller than 0.5. The posterior distribution ofρ

(calculated using the result of Theorem 1) is not very different from the prior suggesting that

the information in the data about correlation is not strong.The mass close to zero is in line

with the fact that the distributions that generated both groups are quite different.
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Figure 6: Example 2 (α1 = 0.5, α2 = 0.9): (a) Posterior predictive density for the three groups; (b)

differencesπ1, π2 andπ3 (Group 1 (π1) is solid line, Group 2 (π2) is dashed line and Group 3 (π3) is dot-

dashed line. Results for Groups 2 and 3 are almost indistinguishable); (c) posterior distribution ofa (prior

overplotted as dashed line).
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Figure 6 shows results of fitting the model to the second example with three groups. The

density estimates clearly show the similarities between Groups 2 and 3 and the differences with

respect to Group 1. The plots ofπ1, π2 andπ3 in panel (b) clearly illustrate the main differ-

ences. Group 1 places more mass than Groups 2 and 3 on values less than -2 whereas Groups

2 and 3 place more mass than Group 1 on values larger than -2. The posterior distribution ofa

is very similar to that shown in Figure 5.

Group 2 Group 3
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Figure 7:Example 2 (α1 = 0.5, α2 = 0.9): Posterior mean density for the group in the row (solid line) and

column (dashed line) and comparison of the distributions with dark (light) grey areas indicating more mass

for the group in the column (row).

Figure 7 shows the results of making pairwise comparisons for the three groups, using

ǫ = 0.4. The results follow from the discussion of the differences between the distributions.

In the comparisons between Group 1 and Groups 2 and 3 there aretwo separate regions with

important differences in the mass whereas the comparison between Group 2 and Group 3 shows

no differences between the distributions (as we would expect).

5.2 Survival analysis

Doss and Huffer (2003) discuss modelling interval censoreddata in survival analysis using the

DP as a prior for the distribution of the survival times. Thisapplication focuses on time to

cosmetic deterioration of the breast of women with Stage 1 breast cancer who have undergone

a lumpectomy under two treatments: radiation and radiationwith chemotherapy. There are 46
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subjects in the radiation only group and 48 subjects in the combination group. The data has

been presented in Beadle et al. (1984). The indicatordg,j = 1 if the j-th person in theg-th

group suffers an event (in this case retraction of the breast) before the censoring timeTg,j and

dg,j = 0 otherwise. Ifdg,j = 1 then the observation is an intervalAg,j in which the event

occured. Doss and Huffer (2003) assign a Dirichlet process prior to the lifetime distribution

for each group separately. Since the actual survival times are missing (due to the interval

censoring), the posterior will then be a mixture of Dirichlet processes. Denoting the survival

time of individualj in groupg by τg,j, we extend their approach to the model

I (τg,j ∈ Ag,j) if dg,j = 1 or I (τg,j > Tg,j) if dg,j = 0

τg,j
ind.
∼ Gg

G1, G2, . . . , Gq ∼ CNGG(M,H,D; a, λ),

whereH is an exponential distribution with mean1/ξ. The parameterξ is given a vague

Gamma prior with shape parameter 0.1 and mean 1.
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Figure 8:Survival analysis (combination group shown as dashed linesand radiation only group shown as

solid lines): (a) the posterior mean survival functions forthe two groups; (b) posterior mean forΠ1 where

the radiation only group is coded as Group 1 (Dark (light) grey areas indicate more mass for Group 2 (1)).

Figure 8 displays results of the analysis of the clinical trial data. Row (a) shows that the

survival function is similar for the two groups initially but the curves diverge around 16 months

with the combination group associated with a much larger number of events. Row (b) shows
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the posterior mean of the difference between the survival functions for the groups. This also

indicates that the mass is similar until 16 months but then the difference quickly becomes large

until the survival functions converge again. The regions identified as similar change when

moving from ǫ = 0.4 to ǫ = 0.6 with the latter having fewer, larger and more connected

regions. The results withǫ = 0.6 more clearly highlight the larger differences in the survival

functions, such as the sharp drop in the combination group around 16 months. Finally, for all

values ofǫ the radiation only group places more mass than the combination group in the region

beyond 45 months.

a ρ

0 0.5 1
0

1

2

3

4

0 0.5 1
0

1

2

3

4

5

Figure 9:Survival analysis: Prior (dashed lines) and posterior (solid lines) densities of the parametera and

the correlationρ.

The posterior distributions ofa and ρ are shown in Figure 9, which indicates that the

valuea = 0 (the Dirichlet process case) is not well-supported by the data with a posterior

median close to the Normalized Inverse-Gaussian process (wherea = 0.5), but with substantial

posterior uncertainty. The posterior distribution of the correlation parameterρ indicates that

the groups are different, but do share some common aspects.

5.3 Stochastic Frontier analysis

Stochastic frontier analysis is a popular method in econometrics for estimating the efficiency

of firms. We will consider an application to the efficiency of US hospitals using data previously

analyzed by Koop et al. (1997). It is assumed that all hospitals operate relative to a common

cost frontier, which represents the minimum cost of performing the functions of that hospitals

(including operations, patient care, etc.). It follows that inefficiency can be measured by how

far a hospital operates above the optimal cost level given bythe frontier. The costs are observed

for the hospitals over a number of years. The model is writtenin terms of log cost,Cg,j,t, for
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thej-th hospital in theg-th group at thet-th time point

Cg,j,t = α+ xT
g,j,tβ + ug,j + εg,j,t,

wherexg,j,t are variables used to define the frontier forj-th hospital in theg-th group at the

t-th time point,ug,j > 0 is the inefficiency for thej-th hospital in theg-th group andεi,j,t are

mutually independent, measurement errors which will be assumed to be normally distributed

with mean 0 and varianceσ2. The model assumes that the efficiency of hospitals is fixed over

the time period (a common assumption in the applied literature). The efficiency for thej-th

hospital in theg-th group is defined to beexp{−ug,j}.

The main focus of this type of analysis is the distribution ofthe inefficienciesug,j and

estimation of the hospital efficienciesexp{−ug,j}. A Bayesian nonparametric analysis of the

stochastic frontier model is described by Griffin and Steel (2004) who assume a DP prior for

the inefficiency distribution and apply their methods to thedata analyzed here. The model used

here is

Cg,j,t
ind.
∼ N(α+ xT

g,j,tβ + ug,j, σ
2)

ug,j
ind.
∼ Gg

G1, G2, . . . , Gq ∼ CNGG(M,H,D; a, λ),

whereα, β andσ2 are given the priors described by Griffin and Steel (2004) andH is an expo-

nential distribution with mean1/ξ, whereξ is given an exponential prior with mean−1/log r⋆,

so thatr⋆ is the prior median efficiency. In this exampler⋆ is chosen to take the value 0.8.

a average efficiency distribution
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Figure 10:Stochastic Frontier Analysis: The posterior (solid line) and prior distributions (dashed line) of

a and the posterior mean of the average efficiency distribution with the NGG prior.

The data also include information about the type of hospitaland include two factors: the

ownership status of the hospital (For-Profit, Non-Profit andGovernment) and a quality factor

in terms of staff-patient ratio or SPR (Low or High). The definition of these factors is described
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in Koop et al. (1997). Figure 10 shows some posterior resultsof extending the model of Griffin

and Steel (2004) using the prior developed in this paper. Theposterior distribution ofa has

a mode at around 0.4. The posterior mean of the efficiency distribution averaged over all

hospital types has three internal modes at roughly 0.65, 0.7and 0.8 and a further mode at 1,

which is quite in line with the results for the efficiency obtained in Griffin and Steel (2004)

without using hospital type information. Figure 11 shows the posterior mean for the efficiency
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Figure 11:Stochastic Frontier Analysis: The posterior mean of the efficiency distribution for each hospital

type with a NGG prior.

distribution within each group. For comparison, an analysis using a product of DP is provided

by Griffin and Steel (2004). The prior developed in this paperleads to predictive distributions

which vary substantially less between groups, illustrating the model’s ability to effectively

borrow information. This is particularly important in thisapplication where group sizes are

quite small, ranging from 20 to 141. All distributions are multi-modal with most distributions

having modes at roughly 0.7 and 0.8 (and at 1). However, the sizes of the modes differ between

the distributions.

Figure 12 shows the decomposition of the estimated distribution defined in (7). These

graphs more clearly show the differences and similarities between the distributions. Theπ’s

show the effect of one factor averaging over the other factors. Hospitals with High SPR tend

have more mass at higher efficiency than Low SPR hospitals (suggesting that they tend to be

more efficient). The effect of high SPR is to shift mass away from around 0.65 to around
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π’s
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Figure 12: Stochastic Frontier Analysis: The posterior means ofπi·, π·j and γi,j with NGG process

marginals.

0.8. The For-Profit and Government hospitals have similar distributions and have more mass

at higher level efficiency than Non-Profit hospitals, again mostly involving shifts from regions

around 0.65 to those in the vicinity of 0.8. The densitiesγ relate to interaction terms which

are most important for Non-Profit hospitals where Non-Profithospitals with Low SPR tend to
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have particularly low mass at high levels of efficiency (around 0.8). Thus, the results clearly

indicate which factors (or combinations of factors) lead todistributions that place more mass

on higher levels of efficiency.
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Figure 13: Stochastic Frontier Analysis: Graphs of pairwise comparisons of efficiency distributions ac-

cording to ownership type (FP=For-Profit, NP=Non-Profit, Govt=Government) and Staff-Patient Ratio. The

pairs are shown as the row (solid line) and column (dashed lines) with dark grey shading indicating higher

mass in the column and light grey shading indicating higher mass in the row.

Figure 13 shows pairwise comparisons of the distributions which identify regions where

the mass placed by the two corresponding distributions is substantially different, usingǫ = 0.4.

These indicate that there is a lack of evidence of a difference between the For-Profit and Gov-

ernment hospitals at both quality levels (in line with theirvery similarπ’s). There is also

not much difference between the Non-Profit hospitals at highquality and the For-Profit and

Government hospital at Low quality (theπ’s for both factors more or less balance each other

out). The other combinations of factors lead to clear results where we can identify regions of

the support where one distribution places more mass than theother and vice versa. Clearly,

the For-Profit and Government hospitals with high quality are the most efficient combinations,

placing more mass on higher efficiencies than other cases. Interestingly, the much more re-
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strictive fully parametric model without interactions of Koop et al. (1997) leads to the very

different (and counterintuitive) conclusions that For-Profit status and high SPR both reduce

efficiencies.

6 Summary

This paper discusses a method for inferring differences between distributions associated with

different groups of observations. A Bayesian nonparametric approach is taken and we intro-

duce a novel form of priors, derived from Normalized Random Measures with Independent

Increments. The prior allows the inclusion of information about partial exchangeability and

so represents prior beliefs which could not be expressed using e.g.the Hierarchical Dirichlet

process. This allows effective borrowing of strength between distributions without assuming

exchangeability, and can easily and systematically accommodate widely varying levels of com-

plexity in terms of dependence. Efficient, exact inference is possible using a slice sampling

method, which extends the ideas of Griffin and Walker (2010).The prior is used with a new

graphical method to compare pairs of distributions. The common support of any two distribu-

tions is partitioned and each element of the partition is characterized by obtaining more mass

from either distribution or being allocated roughly similar mass by both distributions. This

is an effective way of understanding the difference betweentwo distributions. In particular,

where the groups are defined by several covariates, we propose an informative ANOVA-type

decomposition of the differences.

We analyze applications in survival analysis and stochastic frontiers with small numbers of

observations, typical of real data applications in many fields. Despite this, the models perform

very well and lead to sensible results. Interestingly, in both applications, models with Dirichlet

process marginal processes are not well supported by the data and Normalized Generalized

Gamma marginals are favoured. The posterior distribution of a in the survival example is

centred around0.5 which corresponds to the Normalized Inverse-Gaussian process.

We believe the methodology proposed in this paper is highly flexible, yet widely applicable

to real data, and allows for quite informative inference on the (sources of the) differences

between dependent distributions.
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A Proof of Theorem 1

We know that E[G1(B)] = E[G2(B)] = H(B). To calculate the covariance, we need

E[G1(B)G2(B)] = E

[

G̃1(B)

G̃1(Ω)

G̃2(B)

G̃2(Ω)

]

= E





(

G̃⋆
1(B) + G̃⋆

2(B)
) (

G̃⋆
1(B) + G̃⋆

3(B)
)

(

G̃⋆
1(Ω) + G̃⋆

2(Ω)
) (

G̃⋆
1(Ω) + G̃⋆

3(Ω)
)





=

∫ ∞

0

∫ ∞

0
E [γ(v1, v2)] dv1 dv2
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where

γ(v1, v2) =
(

G̃⋆
1(B) + G̃⋆

2(B)
) (

G̃⋆
1(B) + G̃⋆

3(B)
)

× exp
{

−v1

(

G̃⋆
1(Ω) + G̃⋆

2(Ω)
)

− v2

(

G̃⋆
1(Ω) + G̃⋆

3(Ω)
)}

=
(

G̃⋆
1(B)2 + G̃⋆

1(B)G̃⋆
3(B) + G̃⋆

2(B)G̃⋆
1(B) + G̃⋆

2(B)G̃⋆
3(B)

)

× exp
{

−(v1 + v2)G̃
⋆
1(Ω) − v1G̃

⋆
2(Ω) − v2G̃

⋆
3(Ω)

}

The independence of the underlying processesG̃⋆
1, G̃

⋆
2 andG̃⋆

3 and the independence of Lévy

processes on disjoint sets gives

E [γ(v1, v2)]

=E
[

G̃⋆
1(B)2 exp

{

−(v1 + v2)G̃
⋆
1(B)

}]

E
[

exp
{

−(v1 + v2)G̃
⋆
1(B

c)
}]

E
[

exp
{

−v1G̃
⋆
2(Ω)

}]

× E
[

exp
{

−v2G̃
⋆
3(Ω)

}]

+ E
[

G̃⋆
1(B) exp

{

−(v1 + v2)G̃
⋆
1(B)

}]

E
[

G̃⋆
3(B) exp

{

−v2G̃
⋆
3(B)

}]

× E
[

exp
{

−(v1 + v2)G̃
⋆
1(B

c)
}]

E
[

exp
{

−v1G̃
⋆
2(Ω)

}]

E
[

exp
{

−v2G̃
⋆
3(B

c)
}]

+ E
[

G̃⋆
2(B) exp

{

−v1G̃
⋆
2(B)

}]

E
[

G̃⋆
1(B) exp

{

−(v1 + v2)G̃
⋆
1(B)

}]

E
[

exp
{

−(v1 + v2)G̃
⋆
1(B

c)
}]

× E
[

exp
{

−v1G̃
⋆
2(B

c)
}]

E
[

exp
{

−v2G̃
⋆
3(Ω)

}]

+ E
[

G̃⋆
2(B) exp

{

−v1G̃
⋆
2(B)

}]

× E
[

G̃⋆
3(B) exp

{

−v2G̃
⋆
3(B)

}]

E
[

exp
{

−(v1 + v2)G̃
⋆
1(Ω)

}]

E
[

exp
{

−v1G̃
⋆
2(B

c)
}]

× E
[

exp
{

−v2G̃
⋆
3(B

c)
}]

The definition ofLη(v) implies that

E[exp{−vG̃⋆
k(B)}] = exp {−H(B)MkLη(v)}

and then

E
[

G̃⋆
k(B) exp{−vG̃⋆

k(B)}
]

= −E

[

d

dv
exp{−vG̃⋆

k(B)}

]

= −
d

dv
E

[

exp{−vG̃⋆
k(B)}

]

= −
d

dv
exp {−H(B)MkLη(v)} = H(B)MkL

′
η(v) exp {−H(B)MkLη(v)}

E

[

(

G̃⋆
k(B)

)2
exp{−vG̃⋆

k(B)}

]

= E

[

d

dv2
exp{−vG̃⋆

k(B)}

]

=
d

dv2
E

[

exp{−vG̃⋆
k(B)}

]

=
[

H(B)2M2
k

(

L′
η(v)

)2
−H(B)MkL

′′
η(v)

]

exp {−H(B)MkLη(v)} .
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It follows that

E [γ(v1, v2)]

=
[

H(B)2M2
1

(

L′
η(v1 + v2)

)2
−H(B)M1L

′′
η(v1 + v2)

]

exp {−H(B)M1Lη(v1 + v2)}

× exp {−(1 −H(B))M1Lη(v1 + v2)} exp {−M2Lη(v1)} exp {−M3Lη(v2)}

+H(B)M1L
′
η(v1 + v2) exp {−H(B)M1Lη(v1 + v2)}H(B)M3L

′
η(v2) exp {−H(B)M3Lη(v2)}

× exp {−(1 −H(B))M1Lη(v1 + v2)} exp {−M2Lη(v1)} exp {−(1 −H(B))M3Lη(v2)}

+H(B)M2L
′
η(v1) exp {−H(B)M2Lη(v1)}H(B)M1L

′
η(v1 + v2) exp {−H(B)M1Lη(v1 + v2)}

× exp {−(1 −H(B))M1Lη(v1 + v2)} exp {−(1 −H(B))M2Lη(v1)} exp {−M3Lη(v2)}

+H(B)M2L
′
η(v1) exp {−H(B)M2Lη(v1)}H(B)M3L

′
η(v2) exp {−H(B)M3Lη(v2)}

× exp {−M1Lη(v1 + v2)} exp {−(1 −H(B))M2Lη(v1)} exp {−(1 −H(B))M3Lη(v2)}

=
[

H(B)2
(

M2L
′
η(v1) +M1L

′
η(v1 + v2)

) (

M3L
′
η(v2) +M1L

′
η(v1 + v2)

)

−H(B)M1L
′′
η(v1 + v2)

]

× exp {−M1Lη(v1 + v2)} exp {−M2Lη(v1)} exp {−M3Lη(v2)} .

Then

Cov(G1(B), G2(B)) = H(B)2
[∫ ∞

0

∫ ∞

0
αγ dv1 dv2 − 1

]

−H(B)

∫ ∞

0

∫ ∞

0
βγ dv1 dv2

where

α =
(

M2L
′
η(v1) +M1L

′
η(v1 + v2)

) (

M3L
′
η(v2) +M1L

′
η(v1 + v2)

)

,

β = M1L
′′
η(v1 + v2) and

γ = exp {−M1Lη(v1 + v2) −M2Lη(v1) −M3Lη(v2)} .

The result follows from the fact that
∫ ∞

0

∫ ∞

0
αγdv1dv2 = 1+

∫ ∞

0

∫ ∞

0
M1L

′′
η(v1+v2) exp{−M2Lη(v1)−M3Lη(v2)−M1Lη(v1+v2)} dv1dv2.
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