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1 Introduction

This paper considers the nonparametric modelling of d&ideti into different groups and the
comparison of their distributions. For example, we may oles¢he results of different med-
ical treatments or the performance of firms with differentnaigement structures. Statistical
analysis will often concentrate on inference about theediffices in the distributions. Analy-
sis of Variance (ANOVA) concentrates on differences betwmeans for different groups and
links these to the effects of each factor. However, diffeesnbetween groups may not be well
modelled by restricting attention to location. For examffléhere are distinct subpopulations
within the observations then each group may contain diftepeoportions of each subpopu-
lation and a full summary of the differences would involventifying parts of the support
on which the two distributions place substantially diffgrenasses. We follow a full Bayesian
analysis by firstly placing a prior on the distributions aedandly defining a decision problem
which reports where the distributions are similar or sutisaély different.

We use a Bayesian nonparametric mixture model approachderstand the differences
between the distributions. Lét, F», . .., F;, be the distribution of observations fguifferent

groups, then an infinite mixture model assumes that the tyeiosithe g-th group is

fy= [ k(163G (6)

wherek(-|6) is a density parameterized ByandG, is a discrete random probability measure.

Since the measure is discrete, it can be represented as

[e.e]
Gg = Z wgyiéeg,i
i=1

whered,, is the Dirac delta function that places massx andd, 1,0, 2, ... andwg 1,wy 2, . ..
are infinite sequences of random variables for WiicfY ; w, ; = 1 andw,; > 0 for all . It

follows that the mixture model can be written as
o
> wg ik(10g) (1)
i=1

or, alternatively, the model can be represented hieraatthifor an observationy, ; drawn

from F}, as follows
yg,j ~ k(‘|997397j)’ p(sgvj = Z) = wgvi
wheres, ; is an allocation variable indicating to which componentriistion k(-|6) the j-th

observation in grou is allocated. The groups will often be formed by all possitbenbi-

nations of some categorical covariates and we will denaisetitovariates by, for the g-th
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group. This is a very general model and many previously peganodels fall within it. The
ANOVA-DDP model of De lorio et al. (2004) assumes that thesitgrk is a N(6, 02), while
wy,; = w; andfy; = zgﬁi whereg; is a vector of parameters. This allows the means of the
different components to change with covariates.

A popular approach allows the weights to depend on covariate setd, ; = 0; so that
the location of the components is fixed across each group.it& fimxture of normals model
along these lines was proposed by Rodriguez et al. (2009)alM the component weights
to depend on covariates. Alternatively, the weights can bdetted through combinations of
random variables, which encourages correlation betweeratidom distributions. The Matrix
Stick-Breaking process of Dunson et al. (2008) assumeszthiata two-dimensional vector

and thatw, 1, wy 2, wy 3, ... are derived using a Matrix Stick-Breaking construction rehe
wgvj = Vzg,lvlvzg,sz

andVi 1, V21, V31,... andVi o, Voo, V3o, ... areinfinite sequences of beta random variables.

Muller et al. (2004) assume that
fo =Y whk(:105:) + (1= 1) > wik(-|6:)
=1 =1

where(0 < ¢ < 1. The distribution of they-th group is a mixture of a common component
shared by all groups and an idiosyncratic component. Thenpater) is the weight placed on
the idiosyncratic component and so affects the correldi@ween distributions.

The Hierarchical Dirichlet process (Teh et al., 2006) asssjrin its simplest form, that
Gy ~DP(MGy), g=1,...,q, Go ~ DP(MyH) (2

The distributions are exchangeable and this structurgval@usters to be shared by different
groups (due to the discrete nature of the Dirichlet procédmoth levels). If the Hierarchi-
cal Dirichlet process is used as the mixture distributionhim mixture models then we have
something of the form of (1). Teh et al. (2006) derive theksticeaking construction for
Wy,1,Wg,1,Wg.2,--.. The model can be extended to more levels of hierarchy intdredard
way. This model assumes that distributions are exchangedldome level. In contrast, this
paper will mostly concentrate on the problem where groupdafined by covariates. There
is normally no natural nesting in these settings, so thathihical models will then not be
appropriate.

We propose to use a normalized superposition of random mesaguinduce dependence.

This general framework leads to dependence structuresc#imabe fairly easily controlled

3
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through the mass parameters of the underlying measures<gerdie naturally to any number
of groups. In fact, we can use this framework to separatelgahthe mass shared by any
subset of the groups or we can use simpler settings, deendithe flexibility of the depen-
dence structure we want to assume. We use shrinkage pridtefmass parameters to ensure
consistent priors across different levels of model coniple¥or posterior inference, we pro-
pose novel slice sampling Markov chain Monte Carlo (MCMC}moels, used in combination
with a split-merge move. We also discuss ways of summarittiegdifferences between the
nonparametric distributions for each group, based on iectheoretic ideas.

The paper is organized as follows. Section 2 describes thetre@tion of random proba-
bility measures by normalization and our proposed framkvfi@mrmodelling dependence using
normalized random measures, Section 3 describes effici@M® sampling methods for in-
ference, Section 4 discusses a decision theoretic apptoacimparing distributions, Section
5 analyzes simulated data and presents real data apptisatictochastic frontier analysis and

health, while Section 6 concludes.

2 Introducing Dependence in Normalized Random Mea-

sures

2.1 General Framework

Normalized Random Measures with Independent IncremeriRMIN) are a class of nonpara-
metric priors for a random probability measu€e, constructed by normalizing a positive ran-

dom measure with independent incremeGtéB), to give

G(Q)
Throughout the paper we will uge to represent the normalized version of a random measure

G. Generally, we will concentrate on random measures whithamtain jumps and write

G= i Ji%,,
i=1

wheref); are i.i.d. from some distributio®&/ and.J;, J5, J3,... are jumps of a Lévy process
with Lévy density¢ (). The process is well-defined (f < G(€) < oo almost surely which
happens iff ((z) dz is infinite. The NRMI can be employed as the prior of the mixingasure
G in an infinite mixture modef (y) = [ k(y|#) dG(#) to define an NRMI mixture. This class

4
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of processes and their use in mixture models is studied irrgéiy James et al. (2009).
Several previously proposed processes fall within thisscld he Dirichlet process (Ferguson,

1973) (DP) occurs if5 is a Gamma process, for which
((z) = Ma~ ' exp{—z}, M > 0.

The Normalized Generalized Gamma process (Lijoi et al.,72@NGG) is constructed by

normalizing a Generalized Gamma process (Brix, 1999), fuckv

M

—1—a o M 1 >0 3
T1—a)" exXpi-Az}, >0, 0<a<l, Az0 ®3)

((x) =

This process tends to the Dirichlet Processias> 0 and A = 1. The Normalized Inverse-
Gaussian process (Lijoi et al., 2005) occurs ¥ 0.5 and X = 1. Another special case is the
Normalized Stable Process of Kingman (1975), which coordp toA = 0.

Dependence between two distributiois and G» can be introduced through the unnor-
malized random measurés, andG. Intuitively, it is clear that the dependence betwégn
and G- will grow as the dependence betwe@n andG, grows. A similar approach for con-
structing processes of random probability measures aver i discussed by Griffin (2009).

Suppose that we havegroups, then the random measures can be defined in the fotjowi

way. Firstly, we can defing underlying random measurég, G5, . .., G such that

o0
G; = Z Jj,ifsé)j’“ Jj=1...,p,
=1

whered; ; are i.i.d. from some distributiodd and J; i, Jj2,J;3,... are jumps with Lévy
density(¥(z). DefiningG* = (G7,G3,...,Gp)T, the random measures in the vector=

(G1,Go,...,Gy)T will be formed as
G = DG”,

whereD is aq x p-dimensional selection matrix. Théhj is a Lévy process and the Lévy den-
sity of G is¢;(z) = D;.C*(z) whereD;. is thej-th row of D and¢*(x) = ((f(z), . .. LG (@)T.
In particular, we take; (z) = Mn(z) sothat(;(z) = [D;. M]n(x) whereM = (M, ..., M,)T.

When we normalize, we obtain

G =WGaG~, (4)
whereG = (G1,...,Gy)", G* = (Gf,...,G3)" andW is ag x p matrix with elements
Di;G5(Q >
i) andG} = 2

Y DG GH(Q)’

5
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Therefore, the distribution for each group is a mixturé&ef G, . . . , G, where the weights for
thei-th group are given by theth row of W. This process will be denoted generally as a Cor-
related Normalized Random Measure with Independent Inenésnor CNRM(M, H, D; 7).
Often, we will choose a specific functional form fpso that the marginal process@s, . . ., G,
come from a known process (for example, a Dirichlet proce¥#& will consider two pos-
sibilities: a Correlated Dirichlet Process COR, H, D) wheren(z) = x~!exp{—x} and
the marginal processes are DP and a Correlated Normalizeér@zed Gamma Process
CNGG M, H, D;a, \) wheren(z) = z~'~%exp{—Az} and the marginal processes are NGG.
The mixture form forGy, Go, ..., Gy is an important difference to the Hierarchical Dirichlet
process, which is a framework that leads to all atoms beiageshby all distributions and
assumes that all distributions aeriori equally correlated.

If we useG1, G, ..., G, as mixing measures fgrmixture models, the distribution of an

observationy, in thei-th group is now given by

fily) = / K(yl6) G (6).

Then we can write

fi
Fy(Q)
wheref;(y) = [ k(y|0)dG:(0) andF;(A) = [, fi(y) dy. Now, F; expresses an unnormalized

distribution in terms of basis functions (where the kerhg) are the basis functions) and so

fi=

)

F; is a normalized basis function model.

A natural measure of the dependence between two distritsitiothe correlation between
G;(B) andG;(B) where B is a measurable set. Using the construction in this paper, th
correlation does not depend dh and so can be used as a single measure of dependence
between distributions, which we denote by Gaiy, G;). The following results present an

expression for the correlation, using a particular formhaf framework described above for

10
g=2,p=3andD = . This is a simple, yet illustrative example.

1 01

Theorem 1 Suppose that'; = G} + G5 andGy = G + G% where the Evy measure af';
is Myn(z). Define

Ly(v) = /000(1 — exp{—vz})n(x) dx.

The covariance of/; andGs is

COV(Gl(B),GQ(B)) = H(B)(l — H(B))M1 /OOO /OOO ﬁ(’Ul,’Ug;Ml,Mg,Mg) dUld’Ug,

6
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where
B(vl,vg; My, Mo, Mg) = —L;;(’Ul +1)2) exp {—Man(vl + 1)2) — MgLn(’Ul) — MgLn(vg)} .

Proof. See Appendix
Similarly, expressions can be derived for 4@ (B)) and ValG2(B)) and so

M f(]oo fOOO ﬁ(Ul, vo; My, Mo, M3) dvidusy
V(My + M) (M + M3)B*(My + Mo)B*(My + Ms)’

p = ComGy,Gs) =

where
B (M) = / / —L%’(vl + va) exp {—M Ly (vi + v2)} dviduvs.
o Jo

In the special case whefdy, = Mp* andM,; = M3 = M (1 — p*) for 0 < p* < 1, we obtain

p=rp"[1+¢,
where
e Jo7 [T —Lip(v1 + va) exp {—M Ly (v1 + v2) } y(v1, v2) dvrduvg
B*(M) ’
with

Y(v1,v2) = exp {=M (1 — p*) [Ly(v1) + Ly(v2) — Ly(v1 + vo)]} — 1.

Therefore, the correlation betweéh andGs, p, can be well-approximated kpyf if v(v1,v2)

is close to zero for alp* which will be the case for many forms of processes. It is impor
tant to point out we do not necessarily advocate adoptingdhticted parametrization for
My, My and M3 in the special case used above, but it is a useful device terhetderstand

the properties of our models, as illustrated in the follggyvexamples:

Dirichlet process marginals (CDP)

Here
1

Ly(v) = log(1 +v), Ly(v) = T

so that

V102
= —M(1—p")1 14— -1
o= {2t e (112 )

Figure 1 plots the correlation betweéh andGs as a function op* and illustrates that*

closely approximates the correlation, especially fordany .
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1 — 1 - 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
% 05 1 % 05 1 % 05 1

Figure 1:Plot of the actual correlatiom, (solid line) ando* (dashed line) againgt* for the CDP.

Normalized Generalized Gamma process marginals (CNGG)

In this case

Ly) = = (0 N =), Lie) = (0= o+ )",

which implies that
1
~v(v1,v2) = exp {—M(l — p*)a [(v1 + A+ (vg + N — (v1 +v2 + N)* — )\a]} —1.

Figure 2 shows the relationship betweehand the actual correlatiom, for CNGG pro-
cesses with different choices of the parameters. The ebioglis close tgp* for each choice
of the hyperparameters with the largest differences fosthaller values of and \. For gen-
eral M;, M, and M3, this results suggests that increasiyig relative toM; and M3 leads to
a larger correlation betwedr; andGs.

Wheng > 2, we can always write a pair of unnormalized distribut@yl and Gy, where
j#k,as

G = G 4+ Gu
G = GO 1+ G®),

where, using (-) to denote the indicator function, the Lévy measureGdf) is given by
3P _ (Djm = 1, Dy = 1) My,] (), GY) has Levy measur® 2, 1(Djy, = 1, Dy =
0)M,,] n(x) andG™*) has Lévy measur® 2 _, 1(Dj,, = 0, Dy, = 1) M, 5(z). This sug-

gest using the general approximation

M©
Corr(G;,Gi) ~ ) 5
(G5 Gi) VMO 1 MOA/MO 1+ M® ®)
where M(©) = P _ [(Djy, = 1,Dppp = )My, MY = 3P _ |(Djyy = 1, Dpn =

0) M, andM®) = S°P _ 1(Dj,, = 0, Dg,, = 1)M,,,. Therefore, the correlation between

8
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a=05A=0
a=09,A=0
a=05 =1
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1 1 1
0.8 0.8 0.8
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0.4 0.4 0.4
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1 1 1
0.8 0.8 0.8
0.6 0.6 0.6
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1 1 1
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0.2 0.2 0.2

% 05 1 % 05 1 % 05 1

Figure 2:Plot of the actual correlatiom, (solid line) ando* (dashed line) againgt for the CNGG.

G, and G}, increases as the value 81() increases relative td/0) and M*). Generally,

increasingM}, leads to increased correlations between all distributisite a 1 in theh-th

column of D.

2.2 Modelling of Groups

In the simple case with 2 groups, there are naturally threkeiying random measure(éj*.

in our model, one modelling the common mass shared betweegrtups and two for the

idiosyncratic components. In cases with more groups, wd teeenake modelling decisions,

more fully explored in this subsection. The most flexible ®edn our class are generated by
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allocating a separate random measure for modelling the shassd by each nonempty subset
of group distributions. The most complete modelda@roups in the CRNMI class with a given
M, H andn can thus be defined by taking= 2? — 1 and letting the-th column ofD be the

binary representation affor 1 <i < 27 — 1. For example if = 3, then

0001111
D=10110011
1010101

whereG?, G andG are idiosyncratic components;, G andG% are shared by two groups
and G; is shared by all three groups. This will be called the saturamhodel. The levels of
correlation between the distributions can be accommodayechoosing appropriate values
of My,..., M, and using (5). Clearly this model becomes increasingly dwaed asq
increases. More parsimonious models can be constructednbgwing columns ofD from
the saturated model (which is equivalent to setting sdfaeto zero). A version of the model

introduced by Muller et al. (2004) would use the (¢ + 1)-dimensional matrix

wherel, is ag-dimensional vector of ones (representing the single comeomponent) and,
is theq x g-dimensional identity matrix. Alternatively, if the digiutions relate to observations

at different times then a simple model could be defined using
D=1, 1, F),
whereF is ag x (¢ — 1)-dimensional matrix for which

1 ifj=iorj=i—1
Fij = .
0 otherwise

The model then includes a common underlying measure (in tsiecblumn), idiosyncratic
underlying measures (in the nextolumns) and underlying random measures shared by con-
secutive distributions (in the next— 1 columns). More specific form of problem-specific
dependence could also be modelled. Suppose that we takevatimes from three distribu-
tions where we think that distribution 1 and 2 are more rel&teeach other than to distribution

3. A suitable model would be

1100 1
D=(10101
10010

10
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where the inclusion of the final column allows extra depecddmetween the first two distri-
butions.

In practice, we may not have prior information that leadouhnsider models simpler than
the saturated model. We suggest using regularization tinl axeerfitting (since the number
of underlying processe®, grows quickly withg). A standard approach would be Bayesian
variable selection on the columns bffor the saturated model. This is equivalent to setting
Mj,, = 0 in the Lévy measure of the underlying measa}g. We will take an alternative
approach and define a prior fa1f;, which encourages substantial shrinkage towards zero (this
is similar to the shrinkage prior approach to regressioreastibed by Scott and Polson (2011)
and Griffin and Brown (2010)). The prior fa¥ly, Ma, ..., M, is chosen in the following
way. The values of\/;, M>, ..., M, control the dependence between distributions and can be

chosen to represent prior beliefs. The additive effecteMjs is useful here. Suppose that we

0 05 1

Figure 3:The prior onp = Corr(Gy, Gs) with M; ~ Ga(M* /2, 3) whereM* = 1 (solid line), M* = 2
(dashed line) and/* = 3 (dot-dashed line) and = 1.

have one distribution witld/ chosen to take the valug*. Moving to two distributions in the
saturated model suggests tiddt + M3 = M* andM, + Mz = M*, if we assume that; and
(G are exchangeable, so that we hdve = M. If we are indifferent between an observation
being allocated to a shared cluster or an idiosyncratiagelubenidl; = M, = M3. Repeated
use of this argument allows extension to any valug ahd suggests thatl;, Mo, ..., M, are
independent and/; ~ Ga(M*/2¢~1, 3). Figure 3 shows the prior distribution induced on
p, the correlation coefficient betwe&n, andGs wheng = 2, for various values ofi/*. All
priors are centred aroung/2 with the variability decreasing a&/* increases. We will use
M* = 1in our applications. This prior is relatively flat for coragibns larger than 0.1 and has

larger mass close to zero. This will lead to some shrinkagenall correlations.

11

CRiSM Paper No. 10-24, www.warwick.ac.uk/go/crism



3 Computational Methods

This section describes an MCMC sampler for fitting the gdmagture model

Ygi ~ k(Ygilbyi),  i=1,2,...,ng
0g,i ~ Gg
G1,Gs,...,G4y ~ CNRMI(M, H, D;n)

whereM is given the prior described in Section 2 aHdandn potentially have hyperparame-
ters which also have priors.

Several slice sampling algorithms for normalized randonasuee mixture models were
introduced by Griffin and Walker (2010). We will extend th&8lice 1” algorithm. For a

single normalized random measure mixture the posteriaojggstional to
n
p(J)p(Q) H wSik (Z/z|9sz)
i=1

wherew; = ‘]Z/Z?il J, J = (Jl, Jo, I3, .. ) andf = (91, 02,03, ... ) They demonstrate
that the following posterior with additional auxiliary vablesuy , uso, . . . , u, andvy, v, ..., vy
and integrating over all jumps smaller thAn= min{w;} is a much simpler form for compu-

tational purposes:

n K 0o
p(J1, Ja, .. .,JK)p(H)HI(uZ- < Js;) exp {—viz.fl} E [exp {—vi Z Jl}] E (y:|0s,)

i=1 =1 I=K+1
whereJ; > Jo > J3 > ... > Jg > L, ui,ue,...,up, > 0andovq,ve,...,v, > 0. The

expectation can be evaluated using the Lévy-Khintchimmfda and so

E [exp {—v i J,}] = exp {—M/OL(l — exp{—vz})n(z) dx} .

i=K+1
The integral in the exponential is sometime available imt&eof special function (this is the
case for the Dirichlet process) or can be evaluated usimglatd quadrature methods.
The likelihood for a mixture model using the weights in Sexctl can be expressed in
a suitable form for computation by introducing latent varés {s;;};=1.q,i=1.., Which are
allocation variables for mixture components WHitg ; } j—1.4,i=1.n,; allocates each observation

to one ofp underlying random measuré§, G5, ..., G. Thus, the observatiop, ; is assumed

12
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to be drawn fronk(-[0,., , s, ;). Using auxiliary variables.; 1, ..., u;j,, andvj 1, ..., v;,, for
groupj, the likelihood can now be expressed as
q p
H)H‘/;ni—l Hp(Ji717Ji72"" zK HH' UJZ TJZ7SJZ) eXp{—VTDJ(+)}
i=1 i=1 j=li=1

x E [exp {—VTDJ(OO)H ) (6)

where J;1 > Jio > Jiz > ... foralli, & = {6;;}izipj=1,23,.. and Ji1,...,Jik,
are all jumps in procesé?l* which are larger tharl.. V is a ¢g-dimensional vector where
V; = 3% v, J) is ap-dimensional vector with/ ) = K, and J() is ap-
dimensional vector wheréi(oo) = > 2k, +1 Jig- Integrating outu;; from (6), the likelihood
can be expressed as

J

q p
pO) [TV ] p(ins Tizs - Jikc,) HHJfg’iexp{—VTDJ(“}
=1

i=1 j=1i=1
x E [eXp {—VTDJ(OO)H ,

wheren;; = #{(l,k)|s;x = iandr, = j, 1 <k <mny, 1 <1< q} is the size of the cluster
of observations associated with;.
Each expectation in the product can be evaluated usingékg-Khintchine formula and
SO
E [eXp {—VTDJ(OO)}] = exp {—I;{ME'} )
wherelM is ap x p-diagonal matrix withM,;, = M, and, definingD.; as thei-th column of

D, E is thep-dimensional vector witli-th element

L
E; = / (1 —exp {—VTD.Zm}) n(z) dz.
0

Therefore the posterior retains a lot of the linearity idtroed in the model. The chain can
be initialized in the following way. Choose a starting tration point and generate dif-
ferent Poisson processes where the number of jumips,in the j-th process is simulated
from a Poisson distribution with meaky/; f ;. n(z)dz. The jumps of thej-th process are

simulated by first drawmg(j random numbers{gj k}k—1 from a uniform distribution be-

tween 0 and[,” n(z) dz and ordered so thatj; < &2 < ... < gj k; and then setting
Jir=0Q~ (§j7k) fork=1,2,...,K; whereQ~ s the inverse of)(x f n(y) dy. The

locations®); 1,0, 2, . .. ,0; i, are taken to be i.i.d. front/ and the latent varlables,-v,- ands; ;

can be simulated from the discrete distributions

D Mj,
rii=k) = —=pt—— k=1,2,...,
P )= Y1 DMy’ !
13
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and
p(sji = k) o<k (yilbr, . k) Jr; ik 1<k<K,

J,i”
The slice latent variables can be takeruas~ U(L, J;; ; s, ;)-

In the following steps, we definé = {.J; ;|n;; # 0}, i.e.the jumps in thg-th component
process which have observations allocated to them. The stefhe Gibbs sampler are as

follows:

Step 1: Split-Merge move

The problem of multi-modality of the posterior distributian these models and a computa-
tional solution, a split-merge move, are described in Kailatss et al. (2010). In our model, it
is useful to link the underlying measures to their corresiiogn columns in theD matrix. For
example, in the saturated model wijh= 3 described at the start of Subsection 2.2, the un-
derlying random measu@{ will be referred to as the “underlying random meas{irg), 1)".
The split-merge move is performed in the following way. Aispiove is selected with prob-
ability 1/2, otherwise a merge move is proposed. An undeglyandom measurkg a column

of D, is selected at random from those underlying random measuneh have observation
allocated to them and a non-empty mixture compongéntfrom e is selected uniformly at
random. If the split move is selected, the members of theteriiee divided according to
their group membership into two clustersande,. For example, in the saturated model with
g = 3, if we choosee = (1, 1,0) the cluster would be split into a cluster in the underlying
measurg1,0,0) and a cluster in the underlying measuée1,0). In this case, there is only
one possible split. However, if we choose= (1, 1, 1), there are three possible splits: clusters
in (1,0,0) and(0, 1, 1), clusters in(0, 1,0) and(1,0, 1), or clusters in(0,0,1) and(1,1,0).
The patrticular split is chosen uniformly at random from ailkgpible splits. The merge move
performs the opposite operation. For this move, a set ofvalide underlying measures is
defined,C = {e*|ej = 0 forall j for whiche; = 1}, and an underlying measueé is cho-
sen uniformly at random fror@ (this happens regardless of whether there are any non-empty
clusters allocated to that measure). One of the non-empstesk,j*, in e' (if any exist) or

a “null” cluster is chosen at random with equal probabiliy.new cluster is then formed in
the underlying random measus&™ wherees”™ = 1if ef = 1 ore! = 1 andef™ = 0

if ey =0 andeZT = 0. If a “null” cluster were selected then the clusiéris moved from the
underlying measure* to e“™*, Otherwise, clusters: and;j* are combined to define a new

cluster inec™, Let (s,r) and(s’,r’) be the values of the latent allocation variables before
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and after making the move respectively. We assumeMhat- Ga(a;,b;). The acceptance
probability is calculated integrating out the jumps andtfar split move has the form

e {1, UL RAE) DSt )
" p(yls,m)p(s,m) 2D{K*(e1)M(e1)(K* (e2) +1)

whereD; and D} are the number of underlying random measures with obsenstllocated
to them before and after the move respectivéiy,(e) and K*'(e) are the number of non-
empty clusters in the random measerdefore and after the movéy/(e) is the size ofC
andS(e) is the number of pairs of underlying measures that can beddroy splittinge. In
addition, we can write

P T(a; + KJ) e T

1;[ b+ AT {mHﬂ}/ exp {~J;; V' D.ifn(Jji) dJjs,

g

where forj = 1,2,...,p we haveK; = #{k : n; > 0} and

A= /OOO (1 —exp{-VTDjz})n(z)dz.

The move is completed by samplidg from its full conditional distribution and then sampling
u, K andJ.

Step 2: UpdatingV’
Defining A = (A4,,...,4,)7, the full conditional distribution o¥/; is proportional to
nj_lH/Jn]lexp{—JjJVTD.j} ajiexp {17 MA}, V>0,

The parameter can be updated using a Metropolis—Hastimgtoma walk on the log-scale.
We also found it useful to updaté* = E;’:l V; conditional onB = (by,...,b,) where
b; = V;/V*. The full conditional distribution of’* > 0 is

el 1HH/J;’exp{ JV*BTD,} dJjyexp { 17N A}.

Jj=1l=1

The parameter can be updated using a Metropolis—Hastimg®mawalk on the log-scale. If
V*'is accepted then eadlj is updated td/;V*'/V*.
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Step 3: Updating M

The full conditional distribution of\/; is proportional to
(01 21} exp { <21, [ 70— exp (VP s}
0

and if p(M;) ~ Ga(a;, b;) then the full conditional distribution is Ga; + K;,b; + [,;°(1 —
exp{—=V;J})n(J)dJ).

Step 4: Updatingu, K and J

This set of full conditional distributions can be updatednhgsthe efficient slice sampling
method of Kalli et al. (2011) by integrating out = {u;;};=1.q,i=1:n, When updating the
jumps. The update is described for NRMI mixtures by Griffird Aflalker (2010) and can be
simply extended to our model. The elements/pf.J;, ..., J; are simulated first followed by
the elements of, (which only depends odj, through the elements of’) and finally the other

Jix,; > L. The full conditional distribution of the elemed} ; € J; is proportional to
Jertexp {=J VI Dyt n(eg),  Jra > 0.

The full conditional ofu;; is U (0, J;,, ;) and this allows us to calculate = min{u;}.

Finally, the jumps for which/,; > L andn;,; = 0 can be simulated as realizations /of
inhomogeneous Poisson processes with intensitigexp{—V 7 D .z }n(x) on (L, o) and
associating @ drawn from H with each point of the realisation. Details of simulatingrfr

these Poisson processes are given in Griffin and Walker §2010

Step 5: Updatingd

The elements of are independent under their joint full conditional disfitibn, and the density

of 4, is proportional to

h(01.x) 1T k(y;,i101k)

{(G0)lsj=k @ndr; =1}

whereh(-) is the density ofH. This is a familiar form used in samplers for many infinite

mixture models, such as DP mixtures.
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Step 6: Updatings and r

The latent variables; ; andr;; can be updated jointly and drawn from their full conditional
distribution

p(SjJ‘ =k andrm- = l) X Djl I(Jl,k > uj,i) k(yjﬂ"@l’k),

where{(l, k) : J;, > u;;} is afinite set.

3.1 Specific examples

3.1.1 Dirichlet process marginals (CDP)

The DP has the Lévy density with

n(z) =z~ texp{—z}.

Then the full conditional distribution of ; ; is Gan;;, (1 + VT D.;)) and

['(n;,)
(1 + VTD.j)TLj,i '

[ exp (=D Y ) =

3.1.2 Normalized Generalized Gamma process marginals (CN&

The Lévy density with

n(x) = T = a)x_l_a exp{—Az}

leads to
1 F(njﬂ- — a)
L(1—a) A VTD,)mi=a)

/ T3 exp {=J; VI Dy n(Jjq) dJji =

4 Comparing Distributions

Once we have a posterior distribution on the distributiGhsGo, . . . , G, it is useful to have
some graphical summaries which help us to understand tfezatites between distributions.
Most simply, we can write

G; =G +11,
whereG' = ¢ >°%_, G; is a “grand mean” distribution and; = G; — G is a signed measure
which gives measure zero £ and which represents the difference of each distributiomfr
the grand mean. Their densities will be represented land «;, respectively. This idea is

similar to the modelling of continuous responses in a ong-AMdOVA model. Analogies to
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higher order ANOVA models are also possible. Suppose tleagthups are defined by two

covariates {1 andxs) and the distribution for thé-th level ofz, (i = 1,...,n) and thej-th
level of x5 (j = 1,...,m) is represented &S; ;. Then we can decompose
Gij =G+ +11; + Ty, (1)

whereG = >0 3 Gy T = 2 >0 (G — G), L = £ 301 (Gij — G). Here

G is a probability measure afd;., IT.; andI'; ; are signed measures that put measure Q@ on
(and their densities will bg, 7;., w.; and-; ;, respectively). This separates the effect of level
i of z1 averaged over all levels af,, denoted byll;., the average effect of levglof =, (IL;)
and the interaction effects of combinations of levietsdj of both variablesI(; ;), giving us

a very useful decomposition of the differences between igtélltions.

The summaries described so far allow us to understand aerpiet the differences be-
tween distributions but we also want to say something megduliabout regions of the support
where the distributions are particularly different. Welwibnsider a pair of distributions7;
andG;, and find a partitiorP of €2 defining subset$;, and an indicator vectaf for which
d, = —1if G; places substantially more mass th@non Py, d;, = 1if G; places substan-
tially more mass thad:; on P, andd; = 0 otherwise. The choice d? andd will be made
by specifying a utility function and finding the partitionathmaximizes expected utility. The

utility function is

U(P,d) = U*(P,di),
k=1
wherePs, ..., P, are the elements ¢ and

Gi(P)-G;(P) , d=-1
U*(P,d) =4 §(Gi(P)+G;(P)) , d=0
Gi(P)-Gi(P) , d=1,

where0 < e < 2 is chosen to determine the meaning of substantial differemocreasing
values ofe lead to a utility function that increasingly favours sefti?h, = 0. To understand
the choice of utility function, consider an elemehi, of a fixed partition,P. Then,d;, = 0 if

|Gi(Pr) — G3(Py)]
35(Gi(Pr) + G5(Pr))

< €.

The left-hand side of the expression is the difference imthss of the two distributions opy,
divided by the average mass ani then interpreted as a tolerance parameter which controls

the size of that ratio which constitutes a substantial défiee. The expression naturally scales
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the difference by the mean mass under the two distributioaslarger absolute differences
will be declared “similar” in areas with larger average mass

As U(P,d) is additive over the elements in the partition, maximizihg utility over par-
titions is easily done by starting from a very fine partitifhand maximizingU* on each

element. Then we simply join the elementsifo form the partitiorP that maximizes utility.

5 [lllustrations

The methods developed in this paper are illustrated on sieaiidata, a survival analysis
example and an example from efficiency measurement. In sfiscahe model with NGG
marginals withA = 1 and unknown other hyperparameters was used. In practisdasthot a
particularly restrictive choice. Writing/ = M /A® in (3) leads to a process whexescales the
jump sizes and so has no effect on the normalized processafyeediso implemented inference
with a prior on\ and indeed found that the posterior and prior were virtuiagntical). It is
assumed thab corresponds to the saturated model with- 2¢ — 1 (even for the stochastic
frontier example in Subsection 5.3, where= 6 sop = 63). Throughout, the prior fos was

a uniform distribution or{0, 1) and the prior forM; was G&1/2¢~!, 1) which implies that the
prior for eachG, is NGG with M ~ G&(1,1).

5.1 Simulated data

We use two examples to illustrate the flexibility of the modeéie first example has two groups
which both contain 50 data points. The data for the first gremgpgenerated from the mixture
distribution

fi(x) = aaN(0,1) + (1 — a1)N(=5,1)

and in the second group from
fg(w) = OQN(O, 1) + (1 — Oég)N(E), 1).

On averagepb0a; points in group 1 and0as points in group 2 will come from a standard
normal but the other points will come from normal distriloumticentred at -5 for group 1 and 5
for group 2. The model of Miller et al. (2004) can represhaese distributions if; = as but
that model will fit worse as the values @f andasy become further apart. We first consider the

choicea; = ay = 0.5.
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The second example extends the first by defining a third geap £ 3) with observations

drawn according to the density
fg(w) = OQN(O, 1) + (1 — Oég)N(E), 1).

The third group has the same distribution as the second gtautis case, we use; = 0.5
andas = 0.9. Each data set was fitted using the model with NGG marginéals wiknown
hyperparameters.

The model is

ind.

Yg,5 ~ N(Ng,jﬂz,j)

_9,\ ind.
(/’Lgvj’ag,jz) ~ Gy
G1,Ga,...,Gy ~ CNGGM, H, D;a, \),

with H = N(u|g,0%/mo)Galc~2|1,1) wherej is the mean of all observations ane, =

0.01.
e=0.2 e=04 e=0.6
0.4 0.4 0.4
0.3 0.3 0.3
(@ o2 0.2 0.2
0.1 0.1 0.1
! y // ”/
Y 5 o 5 10 I op— 0 5 10 I g 0 5 10
0.15 — 0.15] 0.15
0.1 0.1 0.1 -
0.05 K 0.05 0.05 K
(b) o= o - o OO o= oo -
-0.05 % V -0.0sf . / \f -0.05t| 4 v
-0.1 -0.1 -0.1 '
-10 -5 0 5 10 -10 -5 0 5 10 -10 -5 0 5 10

Figure 4:Example 1 {; = as = 0.5): (a) Posterior predictive density for the two groups (Grddis solid
line and Group 2 is dashed line); (b) the differenge(solid line) andr, (dashed line) indicating the area

where Group 1 has substantially more mass than Group 2 gigly) and vice versa (dark grey).

Some results of fitting the model to data in the first exampdesiiown in Figure 4. The
model estimates the densities well (shown in Row (a)). Thelgs also show partitions of the

support found using the approach in Section 4 for severalegabf the sensitivity parameter
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€. The results are reasonably robust to the choice with ¢ > 0.2 and they indicate that
the distributions are similar between -2 and 2. This regieanss slightly too small when

e = 0.2, where the analysis reacts to the relatively small positifierencen; in between
approximately 1 and 2. Row (b) shows the density of the diffeest; andms. It is clear
from the definition thatry = —m; when we have two groups and this is illustrated in the

graphs which clearly show where the differences of the diesdior the two groups are large.

Figure 5: Example 1 g = a2 = 0.5): Prior (dashed lines) and posterior (solid lines) deesitf the

parameter, and the correlation for the NGG prior.

Figure 5 shows the posterior densities of the parametand the correlatiorp for the
NGG prior. The data favour values afsmaller than 0.5. The posterior distribution of
(calculated using the result of Theorem 1) is not very d#iférfrom the prior suggesting that
the information in the data about correlation is not strofe mass close to zero is in line

with the fact that the distributions that generated botlugsoare quite different.

(@) (b) (©)

0.3 &
i 0.05

-0.05
-0.1

10 -10

Figure 6: Example 2 {; = 0.5,a2 = 0.9): (a) Posterior predictive density for the three groupg; (b
differencesr, m andws (Group 1 (r1) is solid line, Group 243) is dashed line and Group 34) is dot-
dashed line. Results for Groups 2 and 3 are almost indishghle); (c) posterior distribution af (prior

overplotted as dashed line).
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Figure 6 shows results of fitting the model to the second elamjth three groups. The
density estimates clearly show the similarities betwearu@s 2 and 3 and the differences with
respect to Group 1. The plots af, 7, andxs in panel (b) clearly illustrate the main differ-
ences. Group 1 places more mass than Groups 2 and 3 on vasdkda -2 whereas Groups
2 and 3 place more mass than Group 1 on values larger than edgterior distribution of

is very similar to that shown in Figure 5.

Group 2 Group 3
0.4 0.4
0.3 0.3
Group 1 o ’,‘"‘ \'\‘ 0.2

Group 2 0.2

0.1

—?.0 -5 0 5 10

Figure 7:Example 2 & = 0.5, as = 0.9): Posterior mean density for the group in the row (solid)liaied
column (dashed line) and comparison of the distributiorth wark (light) grey areas indicating more mass

for the group in the column (row).

Figure 7 shows the results of making pairwise comparisonghi® three groups, using
e = 0.4. The results follow from the discussion of the differencesa®en the distributions.
In the comparisons between Group 1 and Groups 2 and 3 thete@separate regions with
important differences in the mass whereas the comparigareba Group 2 and Group 3 shows

no differences between the distributions (as we would eXpec

5.2 Survival analysis

Doss and Huffer (2003) discuss modelling interval censdegd in survival analysis using the
DP as a prior for the distribution of the survival times. Thjgplication focuses on time to
cosmetic deterioration of the breast of women with Stageehdircancer who have undergone

a lumpectomy under two treatments: radiation and radiatiitm chemotherapy. There are 46
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subjects in the radiation only group and 48 subjects in thehdoation group. The data has
been presented in Beadle et al. (1984). The indicdjgr = 1 if the j-th person in they-th
group suffers an event (in this case retraction of the by&a$ore the censoring tinig, ; and
dg,; = 0 otherwise. Ifd,; = 1 then the observation is an intervd|, ; in which the event
occured. Doss and Huffer (2003) assign a Dirichlet proceiss fo the lifetime distribution
for each group separately. Since the actual survival tinnesvdssing (due to the interval
censoring), the posterior will then be a mixture of Diridghteocesses. Denoting the survival

time of individualj in groupg by 7, ;, we extend their approach to the model
| (Tg,j S AQJ) if dg,j =1lorl (’7'973' > TgJ’) if dg,j =0
ind.
75 ~ Gy
G1,Ga,...,G, ~CNGGM, H, D;a, \),

where H is an exponential distribution with medn/¢. The paramete¢ is given a vague

Gamma prior with shape parameter 0.1 and mean 1.

e=0.2 e=04 e=10.6
1 1 1
0.8 [Ii 0.8 [N 0.8
(a) 0.6 i 0.6 i 0.6
0.4 1 0.4 0.4
02 \ 02 \ 02 \
% 50 100 % 50 100 % 50 100
months months months
0.05— 1 0.05, T 0.05, —n
0 o1 o
(b) -0.05 -0.05 -0.05
-0.1] -0.1] -0.1] N
-0.15 -0.15 -0.15
0% 50 100 0% 50 100 0% 50 100
months months months

Figure 8:Survival analysis (combination group shown as dashed hneésradiation only group shown as
solid lines): (a) the posterior mean survival functionstfoe two groups; (b) posterior mean fdr where

the radiation only group is coded as Group 1 (Dark (lightygreas indicate more mass for Group 2 (1)).

Figure 8 displays results of the analysis of the clinicalltdata. Row (a) shows that the
survival function is similar for the two groups initially bthe curves diverge around 16 months

with the combination group associated with a much largerbemof events. Row (b) shows
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the posterior mean of the difference between the survivadtfans for the groups. This also
indicates that the mass is similar until 16 months but therdifierence quickly becomes large
until the survival functions converge again. The regiorentdfied as similar change when
moving frome = 0.4 to e = 0.6 with the latter having fewer, larger and more connected
regions. The results with = 0.6 more clearly highlight the larger differences in the suaviv
functions, such as the sharp drop in the combination grooprar 16 months. Finally, for all
values ofe the radiation only group places more mass than the combimgtioup in the region

beyond 45 months.

Figure 9:Survival analysis: Prior (dashed lines) and posterioriddivies) densities of the parameteand

the correlatiory.

The posterior distributions of and p are shown in Figure 9, which indicates that the
valuea = 0 (the Dirichlet process case) is not well-supported by tha eédth a posterior
median close to the Normalized Inverse-Gaussian procdsséw = 0.5), but with substantial
posterior uncertainty. The posterior distribution of tlogrelation parametes indicates that

the groups are different, but do share some common aspects.

5.3 Stochastic Frontier analysis

Stochastic frontier analysis is a popular method in econidosefor estimating the efficiency
of firms. We will consider an application to the efficiency dfHospitals using data previously
analyzed by Koop et al. (1997). It is assumed that all holspitperate relative to a common
cost frontier, which represents the minimum cost of perfognhe functions of that hospitals
(including operations, patient care, etc.). It followsttheefficiency can be measured by how
far a hospital operates above the optimal cost level givahdfrontier. The costs are observed

for the hospitals over a number of years. The model is writteilerms of log cost(, ; ;, for
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the j-th hospital in they-th group at the-th time point
Cojt =+ mij,tﬁ tUgj + gty

wherez, ;; are variables used to define the frontier feth hospital in they-th group at the
t-th time point,u, ; > 0 is the inefficiency for thg-th hospital in they-th group and; ;; are
mutually independent, measurement errors which will berassl to be normally distributed
with mean 0 and variance®. The model assumes that the efficiency of hospitals is fixed ov
the time period (a common assumption in the applied liteedtuThe efficiency for thg-th
hospital in they-th group is defined to bexp{—u, ;}.

The main focus of this type of analysis is the distributionttué inefficienciesu, ; and
estimation of the hospital efficienciesp{—u, ;}. A Bayesian nonparametric analysis of the
stochastic frontier model is described by Griffin and St880@) who assume a DP prior for
the inefficiency distribution and apply their methods todlagéa analyzed here. The model used
here is

ind.
Cyjt ~ N(a—i—w;]—’tﬂ—i-uw,az)
ind.
ug; ~ Gy
G1,Gs,...,G; ~ CNGGM, H, D;a, \),

whereq, 3 ando? are given the priors described by Griffin and Steel (2004)Hrid an expo-
nential distribution with meam/¢, whereg is given an exponential prior with meas /log r*,

so thatr* is the prior median efficiency. In this exampfeis chosen to take the value 0.8.

a average efficiency distribution

8|

w

6

Figure 10:Stochastic Frontier Analysis: The posterior (solid linejigrior distributions (dashed line) of

a and the posterior mean of the average efficiency distributitth the NGG prior.

The data also include information about the type of hospital include two factors: the
ownership status of the hospital (For-Profit, Non-Profit @myernment) and a quality factor

in terms of staff-patient ratio or SPR (Low or High). The difom of these factors is described
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in Koop et al. (1997). Figure 10 shows some posterior resfikztending the model of Griffin
and Steel (2004) using the prior developed in this paper. pdsterior distribution of; has

a mode at around 0.4. The posterior mean of the efficiencyildition averaged over all
hospital types has three internal modes at roughly 0.65afd70.8 and a further mode at 1,
which is quite in line with the results for the efficiency obted in Griffin and Steel (2004)

without using hospital type information. Figure 11 showes iosterior mean for the efficiency

Ownership Type

For-Profit Non-Profit Government

6 6 6|
LOW 4 4 4
2 2 2,

84 0.6 0.8 1 84 0.6 0.8 1 84 0.6 0.8 1
SPR 8 8 8
6 6 6|
High ¢ 4 4
2 2 2,

84 0.6 0.8 1 84 0.6 0.8 1 84 0.6 0.8 1

Figure 11:Stochastic Frontier Analysis: The posterior mean of theiefficy distribution for each hospital

type with a NGG prior.

distribution within each group. For comparison, an analysing a product of DP is provided
by Griffin and Steel (2004). The prior developed in this pdpads to predictive distributions
which vary substantially less between groups, illustgatine model’s ability to effectively
borrow information. This is particularly important in thégoplication where group sizes are
quite small, ranging from 20 to 141. All distributions areltirmodal with most distributions
having modes at roughly 0.7 and 0.8 (and at 1). However, #es sif the modes differ between
the distributions.

Figure 12 shows the decomposition of the estimated disinibudefined in (7). These
graphs more clearly show the differences and similaritietsvben the distributions. Thes
show the effect of one factor averaging over the other factblospitals with High SPR tend
have more mass at higher efficiency than Low SPR hospitaggésting that they tend to be

more efficient). The effect of high SPR is to shift mass awaynfraround 0.65 to around
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'S

Low SPR High SPR
1.5 1.5
1 1
0.5 05
0 0
-05 -05
-1 -1
182 0.6 0.8 1 '8a 0.6 0.8 1
For-Profit Non-Profit Government
1.5 1.5 1.5
1 1 1
05 05 0.5
-05 -05 -05
-1 -1 -1
184 0.6 0.8 1 '8 0.6 0.8 1 '8 0.6 0.8 1
v's
Ownership Type
For-Profit Non-Profit Government
0.5 0.5 0.5
LOW OV\/\/\/ 0| OWW
032 0.6 0.8 1 %82 0.6 0.8 1 %82 0.6 0.8 1
SPR 0.5 0.5 0.5
High o7\ J%
032 0.6 0.8 1 %82 0.6 0.8 1 %82 0.6 0.8 1

Figure 12: Stochastic Frontier Analysis: The posterior meansrof m.; and~; ; with NGG process

marginals.

0.8. The For-Profit and Government hospitals have similstriutions and have more mass
at higher level efficiency than Non-Profit hospitals, agaostly involving shifts from regions
around 0.65 to those in the vicinity of 0.8. The densitieelate to interaction terms which

are most important for Non-Profit hospitals where Non-Piafipitals with Low SPR tend to
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have particularly low mass at high levels of efficiency (a@d®.8). Thus, the results clearly
indicate which factors (or combinations of factors) leadlisiributions that place more mass

on higher levels of efficiency.

SPR Low High
Ownership NP Gowvt FP NP Gowvt
FP 5 5 5
05 \1 005 1| %05
Low NP A | °
0 O; \wl 0 0.5
Gowvt 3
05E
High FP
NP

Figure 13: Stochastic Frontier Analysis: Graphs of pairwise compassof efficiency distributions ac-
cording to ownership type (FP=For-Profit, NP=Non-Profitv&G&overnment) and Staff-Patient Ratio. The
pairs are shown as the row (solid line) and column (dashed)iwith dark grey shading indicating higher

mass in the column and light grey shading indicating highassrin the row.

Figure 13 shows pairwise comparisons of the distributioh&lwidentify regions where
the mass placed by the two corresponding distributionddstantially different, using = 0.4.
These indicate that there is a lack of evidence of a diffexdretween the For-Profit and Gov-
ernment hospitals at both quality levels (in line with thedry similar7’s). There is also
not much difference between the Non-Profit hospitals at kjghlity and the For-Profit and
Government hospital at Low quality (thes for both factors more or less balance each other
out). The other combinations of factors lead to clear resuliere we can identify regions of
the support where one distribution places more mass thaatkiee and vice versa. Clearly,
the For-Profit and Government hospitals with high quality e most efficient combinations,

placing more mass on higher efficiencies than other casdsrestingly, the much more re-

28

CRiSM Paper No. 10-24, www.warwick.ac.uk/go/crism



strictive fully parametric model without interactions ob&p et al. (1997) leads to the very
different (and counterintuitive) conclusions that Fooftrstatus and high SPR both reduce

efficiencies.

6 Summary

This paper discusses a method for inferring differencewdsen distributions associated with
different groups of observations. A Bayesian nonparamefpproach is taken and we intro-
duce a novel form of priors, derived from Normalized Randoreaures with Independent
Increments. The prior allows the inclusion of informatidooat partial exchangeability and
S0 represents prior beliefs which could not be expresset)@sg.the Hierarchical Dirichlet
process. This allows effective borrowing of strength bemvdistributions without assuming
exchangeability, and can easily and systematically acoodate widely varying levels of com-
plexity in terms of dependence. Efficient, exact infererecpadssible using a slice sampling
method, which extends the ideas of Griffin and Walker (2000)e prior is used with a new
graphical method to compare pairs of distributions. Theroom support of any two distribu-
tions is partitioned and each element of the partition igattarized by obtaining more mass
from either distribution or being allocated roughly simitaass by both distributions. This
is an effective way of understanding the difference betwendistributions. In particular,
where the groups are defined by several covariates, we @aomformative ANOVA-type
decomposition of the differences.

We analyze applications in survival analysis and stochéstntiers with small numbers of
observations, typical of real data applications in manglfieDespite this, the models perform
very well and lead to sensible results. Interestingly, ithtapplications, models with Dirichlet
process marginal processes are not well supported by theadat Normalized Generalized
Gamma marginals are favoured. The posterior distributibn  the survival example is
centred around.5 which corresponds to the Normalized Inverse-Gaussiaregsoc

We believe the methodology proposed in this paper is higbkilile, yet widely applicable
to real data, and allows for quite informative inference be (sources of the) differences

between dependent distributions.
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A Proof of Theorem 1

We know that BG; (B)] = E[G2(B)] = H(B). To calculate the covariance, we need

E[G1(B)G2(B)] =E
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where

Vo1, v2) = (G1(B) + G5(B)) (G1(B) + G3(B))

xexp{ " ( (Q) + G3( )) v (G1(9)+é§(9))}
— (G1(B)? + G1(B)G3(B) + G3(B)Gi(B) + G3(B)G3(B))
xexp{—(vl—l—vg)Gl( ) — leQ(Q)—vgég(Q)}

The independence of the underlying proceié‘es@; andég and the independence of Lévy

processes on disjoint sets gives

E[y(v1,v2)]

=E [GT(BF eXp{ (v1 + v2)G3(B) } E [exp{ vy + v2)G3(BC) H E [exp{ 01 G5(Q }]
( 5

XE:exp{ 0G5 (O H [ *(B) exp{ (01 + v2)C }E G5(B exp{ e )}]

x E[exp {~(v1 +v2)G1(B) } | E [exp {01 Gz() } | E [ p{ 0GB}
+E|G3(B)exp {~01G3(B) }] E|Gi(B) exp {~(v1 + v2)G1(B) }| E |exp { (1 + v2)G1(B) }
XE:eXp{ nGs(B )}]E[exp{ 0 G(Q) }]—I—E[Gz exp{ nGs(B }

X E:ég(B)exp{—vgég(B)H E[exp{ (v1+v2)G1(Q)H E[exp{ 0 G5(B° )}]

x E :eXp {_v2ég(30)}]

The definition ofL, (v) implies that
Elexp{~vG}(B)}] = exp {~H(B)M;,Ly(v)}
and then

E [Gi(B) exp{—vCi(B)}] = —E [di exp{—vézw)}] = L [exp(-0G3(8))]

_ —d% exp {—H(B)MyLy(v)} = H(B)MyL(v) exp {~H(B)M, Ly (1)}

e[ (1) (oG (B))] = € |- exp(-2G1(B)} | = S5E [pl-oGir()]

- [H(B) M (L) (v))? —H(B)MkL;;(v)] exp {—H(B)MyL,(v)} .
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It follows that

E[y(v1,v2)]
_ [H(B)?Ml2 (Ll (01 +2))° — H(B)ML!!(vy +v2)| exp {—H(B)M, Ly (v1 + v2)}
x exp{—(1 — H(B))MiLy(v1 + va)} exp {—MaLy(v1)} exp {—M3zLy(v2)}
+ H(B)M, Ll (v, +v2) exp {—H(B)M; Ly (vy + v2)} H(B)MsL! (v3) exp { —H(B)Ms L, (v2)}
x exp {—(1 — H(B))M:Ly(vi + v2) } exp {—=MaLy(v1)} exp {—(1 — H(B)) M3 Ly(v2)}
+ H(B)Ma L, (v1) exp {—H(B)MaLy(v1)} H(B)M; L, (01 + v2) exp {—H (B)M; Ly(v1 + v2)}
x exp {—(1 — H(B))MiLy(v1 + va)} exp{—(1 — H(B))MaLy(v1)} exp {—M3zLy(v2)}
+ H(B)MaLl,(v1) exp {—H(B)MaLy(v1)} H(B)Ms L), (vs) exp { —H(B) MLy (v3)}
x exp {—MiLy(vi +v2)} exp{—(1 — H(B))MaLy(v1)} exp {—(1 — H(B))M3zLy(v2)}
= [H(B)* (MaLy(v1) + M1Lj (v1 + v2)) (MsL] (v2) + My Ly (v1 + v2)) — H(B)M{L; (v1 + v2)]

x exp {—Mi Ly (v + v2)} exp {—MaLy(v1)} exp {—MsL,(v2)} .

Then

Cov(G4(B),G2(B)) = H(B)? [/OOO /OOO ay dvy dvy — 1] — H(B) /OOO /OOO By dvy dvg

where
a= (MgL%(’Ul) + MlL%(Ul + 1)2)) (MgL%(Ug) + MlL%(Ul + ?)2)) ,

0= MlL%/(’Ul +wvy) and
v = exp {—MiLy(v1 + v2) — MaLy(v1) — M3Ly(v2)}.

The result follows from the fact that

/ / aydvidvy = 1—|—/ / MlL;;(’Ul—i-’Ug)eXp{—MgLn(’Ul)—MgLn(’Ug)—Man(’Ul-l-Ug)}d’Uld’Ug.
0 0 0 0
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