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1 Overview of the chapter

This article develops a class of Monte Carlo (MC) methods for simulating con-
ditioned diffusion sample paths, with special emphasis on importance sampling
schemes. We restrict attention to a particular type of conditioned diffusions,
the so-called diffusion bridge processes. The diffusion bridge is the process ob-
tained by conditioning a diffusion to start and finish at specific values at two
consecutive times t0 < t1.

Diffusion bridge simulation is a highly non-trivial problem. At an even more el-
ementary level unconditional simulation of diffusions, that is without fixing the
value of the process at t1, is difficult. This is a simulation from the transition
distribution of the diffusion which is typically intractable. This intractability
stems from the implicit specification of the diffusion as a solution of a stochastic
differential equation (SDE). Although the unconditional simulation can be car-
ried out by various approximate schemes based on discretizations of the SDE,
it is not feasible to devise similar schemes for diffusion bridges in general. This
has motivated active research in the last 15 years or so for the development of
MC methodology for diffusion bridges.

The research in this direction has been fuelled by the fundamental role that dif-
fusion bridge simulation plays in the statistical inference for diffusion processes.
Any statistical analysis which requires the transition density of the process is
halted whenever the latter is not explicitly available, which is typically the case.
Hence it is challenging to fit diffusion models employed in applications to the
incomplete data typically available. An interesting possibility is to approximate
the intractable transition density using an appropriate MC scheme and carry
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out the analysis using the approximation. It is of course desirable that the MC
scheme is such that the approximation error in the analysis decreases to 0 as
the MC effort increases. It turns out that basically all such MC schemes require
diffusion bridge simulation.

We have been vague about the nature of “statistical analysis” mentioned above,
since a range of statistical problems can be tackled using the diffusion bridge
simulation methodology we develop here: parameter estimation of discretely
observed diffusions, on-line inference for diffusions observed with error, off-line
posterior estimation of partially observed diffusions etc. Additionally a range of
computational statistics tools can be combined with the simulation methodology
to give answers to the aforementioned problems: the EM algorithm, simulated
likelihood, Sequential Monte Carlo, Markov chain Monte Carlo etc. Given the
wide range of applications where diffusions are employed, it is not surprising that
important methodological contributions in bridge simulation are published in
scientific journals in statistics, applied probability, econometrics, computational
physics, signal processing etc. Naturally, there is a certain lack of communi-
cation across disciplines and one of the aims of this chapter is to unify some
fundamental techniques.

In this article we concentrate on two specific methodological components of the
wide research agenda described above. Firstly, we derive importance sampling
schemes for diffusion bridge simulation. We refer to diffusion bridge simulation
as an imputation problem, since we wish to recover an unobserved path given
its end points. Secondly, we demonstrate how the samples can provide estima-
tors of the diffusion transition density. Such estimators can be directly used
in a simulated likelihood framework to yield approximations to the maximum
likelihood estimator for the parameters of a discretely observed diffusion. We
refer to estimation of the transition density as an estimation problem.

A fundamental complication in this context is that the diffusion bridge is an
infinite dimensional random variable. One strategy to tackle this issue is to first
approximate the stochastic process with a finite-dimensional vector, a so-called
skeleton of the bridge obtained at a collection of n intermediate time points in
[t0, t1]. This step adds a further approximation error in the analysis, which to
be eliminated n has to be chosen large enough. Subsequently, one has to devise
a MC sampling scheme for the corresponding n-dimensional distribution. Let
us for convenience call this paradigm the projection-simulation strategy. The
problem with this approach is that typically reducing the approximation bias
(increasing n) leads to an increase of the MC variance.

An alternative strategy is to design an appropriate MC scheme which operates
on the infinite dimensional space, hence in principle it returns diffusion bridges.
In our specific framework, we are interested in importance sampling for diffusion
bridges. There is a certain mathematical hurdle in this direction since it requires
changes of measure in infinite dimensional spaces. For practical implementation
we might have to approximate the output of the simulation algorithm using a
skeleton of the bridge based on n intermediate points. Again, the approximation

2



CRiSM Paper No. 09-28, www.warwick.ac.uk/go/crism

bias is eliminated as n → ∞. Let us refer to this paradigm as the simulation-
projection strategy.

There are two main advantages of this strategy over the projection-simulation.
Firstly, it often results in a much better bias/variance tradeoff. Roughly speak-
ing, the fact that by construction a valid MC scheme exists in the limit n→∞
avoids the curse of dimensionality from which they often suffer the projection-
simulation strategies. Secondly, in some contexts the approximation step is
unnecessary and unbiased MC methods can be devised. The retrospective sim-
ulation technique is instrumental in this context, and from an operational point
of view the output of the algorithm consists of a skeleton of the diffusion bridge
unvailed at a collection of random times.

The organisation of the chapter is as follows. In Section 2 essential introductory
material is presented on diffusions and Monte Carlo methods. Sections 3 and 3
consider the fundamental problem of Importance Sampling and related methods
for diffusion bridges. Finally in Section 5, the use of all the methodology of
previous sections in conjunction with exact and unbiased methods for diffusion
simulation are briefly described.

2 Background

2.1 Diffusion processes

Diffusion processes are extensively used for modelling continuous-time phenom-
ena in many scientific areas; an indicative list includes economics (Merton, 1971;
Bergstrom, 1990), finance (Cox et al., 1985; Sundaresan, 2000; Chan et al., 1992)
biology (McAdams and Arkin, 1997; Wilkinson, 2006), genetics (Kimura and
Ohta, 1971; Tan, 2002), chemistry and physics (van Kampen, 1981), dynamical
systems (Arnold, 1998; Givon et al., 2004) and engineering (Bar-Shalom et al.,
2002). Their appeal lies in the fact that the model is built by specifying the
instantaneous mean and variance of the process through a stochastic differen-
tial equation (SDE). Specifically, a d-dimensional diffusion process V ∈ Rd is a
strong Markov process defined as the solution of an SDE of the type:

dVs = b(s, Vs) ds+ σ(s, Vs) dBs, s ∈ [0, T ] , V0 = v0; (1)

B is an m-dimensional standard Brownian motion, b(·, ·) : R+ × Rd → Rd is
called the drift, σ(·, · ) : R+×Rd → Rd×m is called the diffusion coefficient. We
will treat the initial point v0 as fixed by the design, although it is straightforward
to model it with a distribution on Rd. In applications the drift and the diffusion
matrix are only known up to some parameters, which have to be estimated. It
is convenient to introduce also Γ = σσ∗. We assume that all coefficients are
sufficiently regular so that (1) has a unique weak non-explosive solution, and
(crucially) that the Cameron-Martin-Girsanov theorm holds. Details of these
conditions can be found for example in Rogers and Williams (2000).
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The popularity of SDEs in time-series modelling is due to various reasons: they
provide a flexible framework for modelling both stationary processes with quite
general invariant distributions and non-stationary processes; in many applica-
tions they arise as limits of discrete-time and/or discrete-space Markov pro-
cesses; they are a natural stochastic counterpart to deterministic modelling
using Ordinary Differential Equations (ODEs); the Markov property is par-
ticularly convenient from a computational perspective allowing fast statistical
inference for long time-series; smooth processes can also be modelled by allowing
the drift and diffusion coefficient to depend on the past of the process.

The SDE (1) describes the microscopic behaviour of the process, i.e. its dynamics
in infinitesimal time increments. One the other hand, the exact macroscopic
dynamics of the diffusion process are governed by its transition density:

ps,t(v, w) = P [Vt ∈ dw | Vs = v ] /dw, t > s, w, v ∈ Rd . (2)

There are very few examples of SDEs with tractable transition densities. One
generic class of such processes is the so-called linear SDEs, where the drift is
linear in the state variable and the diffusion matrix is constant with respect to
the state variable, see the corresponding subsection of this section. This class
incorporates the Ornstein-Uhlenbeck process, a special case of which is a model
due to Vasicek (1977) for the term structure of interest rates. Also in the context
of interest rate modelling Cox et al. (1985) proposed a non-linear SDE, which
however has a known transition density.

Although typically intractable, the transition density has various representations
which suggest different approaches for its approximation. We could identify two
main representations. First, it is given as a solution of the Fokker-Planck partial
differential equation (PDE) with appropriate initial and boundary conditions.
There are various methods to solve the PDE numerically, see for example Hurn
and Lindsay (2007) for a recent article which investigates this possibility in
the context of estimation of diffusions. Second, it can be expressed in various
ways as an expectation, and these expressions lend themselves to Monte Carlo
approximation. It is this second approach which is pursued in this article and
linked with diffusion bridge simulation.

Numerical approximation

The core of Monte Carlo methodology for SDEs is the simulation of a skeleton
of the process {Vt0 , Vt1 , . . . , Vtn}. In fact, there are two types of simulations
which can be considered for SDEs. Simulating the strong solution essentially
corresponds to jointly constructing V , the solution of (1), and B, the Brownian
motion which drives it. On the other hand, simulating the weak solution only
asks for simulating V according to the probability law implied by (1).

Note that due to the strong Markov property, exact simulation of a skeleton en-
tails sequential simulation from the transition density (2), which however is typ-
ically intractable. Exact simulation of strong solutions is clearly an even harder
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problem. Nevertheless, a vast collection of approximate simulation schemes are
available based on discretizations of the SDE (1). The simplest approximation
scheme is the Euler-Murayama approximation (Maruyama, 1955):

Vt+∆t ≈ Vt + b(t, Vt)∆t+ σ(t, Vt)
√

∆t · (Bt+∆t −Bt) . (3)

In this form the discretisation tries to approximate the diffusion in a strong sense.
A weak Euler method is not constrained to have Gausian innovations, but it
will have innovations with the correct mean and variance (up to a certain order
of ∆t). Let V ∆

T denote an approximate solution based on a ∆-discretization of
[0, T ]. We say that a strong approximation scheme is of order γ if

E[|VT − V ∆
T |] ≤ K∆γ

and correspondingly a weak approximation scheme is of order γ if

|E[g(VT )]− E[g(V ∆
T )]| ≤ K∆γ

for suitable test functions g. Under suitable regularity conditions on the coef-
ficients of the SDE, a strong Euler scheme is of order 1/2 in the strong sense,
whereas in general Euler schemes are of order 1 in the weak sense. Many higher
order schemes exist. Some are based on the Itô-Taylor expansion, and there
are also implicit and split-step methods (which are particularly important in
the construction of MCMC methods using diffusion dynamics). For a detailed
exposition of numerical approximation of SDEs we refer to Kloeden and Platen
(1995).

Diffusion bridges

We now consider the dynamics of the process V not only conditioned on its
initial point, V0 = u, but also on its ending point, VT = v. The conditioned
process, which we will also denote by V (the distinction from the unconditioned
process will be clear from the context), is still Markov, and the theory of h-
transforms (see for example Rogers and Williams, 2000, Chapter IV.39) allows
us to derive its SDE:

dVs = b̃(s, Vs) ds+ σ(s, Vs) dBs, s ∈ [0, T ] , V0 = u;
b̃(s, x) = b(s, x) + [σσ∗](s, x)∇x log ps,T (x, v) (4)

where σ∗ denotes the matrix transpose. There are three main remarks on this
representation. First, note that the local characteristics of the unconditioned
and conditioned processes are the same, in the sense that they share the same
diffusion coefficient. Second, the drift of the conditioned process includes an
extra term which forces the process to hit v at time T . Third, although insightful
for the bridge dynamics, (4) is typically intractable since the drift is expressed
in terms of the transition density.
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Therefore, the diffusion bridge solves an SDE whose drift is intractable, hence
even approximate simulation using the schemes described above is infeasible.
Application of that technology would require first the approximation of the
transition density, and consequently a discretization of (4). This is clearly im-
practical, and it is difficult to quantify the overall error of the approach. In-
stead, we will consider alternative Monte Carlo schemes for simulating diffusion
bridges.

Data and likelihood

In some contexts we can observe directly a path of the modelled process V =
(Vs, s ∈ [0, T ]). More realistically we might be able to observe a skeleton of the
process {Vt0 , Vt1 , . . . , Vtn}, but where the frequency of the data can be chosen
arbitrarily high. A typical example is molecular dynamics modelling, where
the data is simulated according to a complex deterministic model (Stuart and
Pokern, 2009, see for example). A rich mathematical framework is available for
statistical analyses in this high frequency regime, see for example Prakasa Rao
(1999). Two main components of this theory is the quadratic variation identity
and the Cameron-Martin-Girsanov change of measure. According to the for-
mer, the local characteristics of the SDE can be completely identified given an
observed path. In particular, for any t ∈ [0, T ],

lim
∆→0

∑
tj≤t

(Vtj+1 − Vtj )(Vtj+1 − Vtj )∗ =
∫ t

0

[σσ∗](s, Vs)ds (5)

in probability for any partition 0 = t0 ≤ t1 ≤ · · · ≤ tn = t, whose mesh is ∆.
This implies that from high frequency data we can consistently estimate the
diffusion coefficient. A further implication is that the probability laws which
correspond to SDEs with different diffusion coefficient are mutually singular. On
the contrary, under weak conditions the laws which correspond to SDEs with
the same diffusion coefficient but different drifts are equivalent and a simple
expression for the Radon-Nikodym derivative is available. This is the context
of the Cameron-Martin-Girsanov theorem for Itô processes, see for example
Theorem 8.6.6 of Øksendal (1998).

In the context of (1) consider functionals h and α of the dimensions of b and
assume that u solves the equation:

σ(s, x)h(s, x) = b(s, x)− α(s, x) .

Additionally, let Pb and Pα be the probability laws implied by the (1) with drift
b and α respectively. Then, under certain conditions Pb and Pα are equivalent
with density (continuous time likelihood) on Ft = σ(Vs, s ≤ t), t ≤ T , given by

dPb
dPα

∣∣∣∣
t

= exp
{∫ t

0

h(s, Vs)∗dBs −
1
2

∫ t

0

[h∗h](s, Vs)ds
}
. (6)
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In this expression, B is the Pα Brownian motion, and although this is the
usual probabilistic statement of the Cameron-Martin-Girsanov theorem, it is
not a natural expression to be used in statistical inference, and alternatives are
necessary. For example, note that when σ can be inverted, the expression can
be considerably simplified. Recall that Γ = σσ∗, then the density becomes

exp
{∫ t

0

[(b− α)∗Γ−1](s, Vs)dVs −
1
2

∫ t

0

[(b− α)∗Γ−1(b+ α)](s, Vs)ds
}
. (7)

Appendix contains a simple presentation of change of measure for Gaussian
multivariate distributions, which might be useful for the intuition behind the
Girsanov theorem. For statistical inference about the drift (1) the Girsanov
theorem is used with α = 0. Any unknown parameters in the drift can be
estimated by using (6) as a likelihood function. In practice, the integrals in the
density are approximated by sums, leading to an error which can be controlled
provided the data are available at arbitrarily high frequency.

Nevertheless, in the majority of applications V can only be partially observed.
The simplest case is that of a discretely observed diffusion, where we observe
a skeleton of the process {Vt0 , Vt1 , . . . , Vtn}, but without any control on the
frequency of the data. As a result, the approach described above is not feasi-
ble since it might lead to large biases (see for example Dacunha-Castelle and
Florens-Zmirou, 1986). From a different persective, we deal with data from a
Markov process, hence the joint Lebesgue density of a sample (discrete time
likelihood) is simply given by the product of the transition densities

n−1∏
i=0

pti,ti+1(Vti , Vti+1) . (8)

Unknown parameters in the drift and diffusion coefficient can be estimated work-
ing with this discrete-time likelihood. Theoretical properties of such estimators
are now well known in particular under ergodicity assumptions, see for example
Kessler (1997); Gobet (2002); Kutoyants (2004). Unfortunately the discrete-
time likelihood is not practically useful in all those cases where the transition
density of the diffusion is analytically unavailable.

More complicated data structures are very common. In many applications V
consists of many components which might not be synchroneously observed, or
there the observation might be subject to measurement error, or there might be
components completely latent. However, likelihood estimation of discretely ob-
served diffusions will serve as a motivating problem throughout the subsequent
methodological sections.

Linear SDEs

A great part of the diffusion bridge simulation methodology is based on the
tractability of linear SDEs and uses this class as a building block. Hence, it is
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useful to include a short description of this class. This is a large family of SDEs
characterised by state-independent diffusion coefficient and drift which is linear
in the state variable. In the most general form we have

dVs = (D(s)Vs +G(s)) ds+ E(s) dBs ; (9)

hence b(s, x) = D(s)x + G(s), and σ(s, x) = E(s), where D,G,E are matrix-
valued functions of appropriate dimensions, which are allowed to depend only
on time. Linear SDEs constitute one of the few families of equations which can
be solved analytically. We define P (s) to be the solution of the linear ODE

dP
ds

= D(s)P (s) , P (0) = I . (10)

Then the SDE is solved by

Vt = P (t)
∫ t

0

P (s)−1(G(s)ds+ E(s)dBs) + P (t)v0 . (11)

It follows that V is a Gaussian process with mean mt := E(Vt) and covariance
matrix Ct := Cov(Vt, Vt), which solve the systems of ODEs

dmt

dt
= D(t)mt +G(t) , m0 = v0

dCt
dt

= D(t)Ct + CtD(t)∗ + Γ(t) , C0 = 0 .

where Γ(s) = E(s)E(s)∗. In various contexts these ODEs can be solved analyt-
ically.

The transition density is Gaussian with mean and variance derived from the
previous expressions. A consequence of this is a further appealing feature of
linear SDEs. The corresponding bridge processes have tractable dynamics. This
can be seen directly from the h-transform, since the gradient of the log-density
is a linear function of the state, hence from (4) we have that the bridge process
is also a linear SDE. This can be proved also from first principles working with
the finite-dimensional distributions of the conditioned process, see for example
Theorem 2 of Delyon and Hu (2006). In the simplest setup where b = 0 and σ
is the identity matrix, the linear SDE is the Brownian motion and the bridge
process conditioned upon VT = v is known as Brownian bridge, which solves the
time-inhomogeneous SDE

dVs =
v − Vs
T − s

ds+ dBs , (12)

and has macroscopic dynamics specified, for 0 < t1 < t2 < T , as

Vt2 | Vt1 ∼ N
(
Vt1 +

t2 − t1
T − t1

(v − Vt1),
(t2 − t1)(T − t2)

T − t1

)
. (13)
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2.2 Importance sampling and identities

Importance sampling (IS) is a classic Monte Carlo technique for obtaining
samples from a probability measure P using samples from another probabil-
ity measure Q, see for example Chapter 2.5 of Liu (2008) for an introduc-
tion. Mathematically it is based on the concept of change of measure. Suppose
that P is absolutely continuous with respect to Q with Radon-Nikodym density
f(x) = P(dx)/Q(dx). Then, in its simplest form IS consists of constructing a
set of weighted particles (xi, wi), i = 1, . . . , N , where xi ∼ Q, and wi = f(xi).
This set gives a Monte Carlo approximation of P, in the sense that for suitably
integrable functions g, we have that∑N

i=1 g(xi)wi
N

. (14)

is an unbiased and consistent estimator of

EP[g] :=
∫
g(x)P(dx) .

However, IS can be cast in much more general terms, an extension particularly
attractive in the context of stochastic processes. First, note that in most ap-
plications f is known only up to a normalising constant, f(x) = cfu(x), where
only fu can be evaluated and

c = EQ[fu] . (15)

The notion of a properly weighted sample (see for example Section 2.5.4 of Liu,
2008) refers to a set of weighted particles (xi, wi), where xi ∼ Q and wi is an
unbiased estimator of fu(xi), that is

EQ[wi | xi] = fu(xi) .

In this setup we have the fundamental equality for any integrable g

EQ[gw] = EP[g] EQ[w] . (16)

Rearranging the expression we find that a consistent estimator of EP[g] is given
by ∑N

i=1 g(xi)wi∑N
i=1 wi

. (17)

When wi is an unbiased estimator of f(xi) we have the option of using (14),
thus yielding an unbiased estimator. However, (17) is a feasible estimator when
c is unknown.

Although the first moment of w (under Q) exists by construction, the same is
not true for its second moment. Hence it is a minimal requirement of a “good
proposal distribution Q that EQ[w2] < ∞. In this case, and using the Delta
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method for ratio of averages it can be shown that (17) is often preferable to
(14) in a mean square error sense because the denominator acts effectively as a
control variable. Therefore it might be preferable even when c is known. The
same analysis leads to an interesting approximation for the variance of (17).
Assume for simplicity that EQ[w] = 1. Then exploiting the fact that

EP[w] = varQ[w] + 1 ,

using a further Taylor expansion for we obtain the following approximation for
the variance of (17):

1
N

varP[g](1 + varQ[w]) . (18)

Although this might be a poor approximation when the residual terms are sig-
nificant, the expression motivates the notion of the effective sample size (ESS),
1/(varQ[w] + 1). This corresponds to an approximation of the ratio of variances
of a Monte Carlo estimator of EP[g] based on independent samples from P, and
the IS estimator (17). The most appealing feature of the above approximation
is that it does not depend on the function g, hence ESS can be used as a rough
indication of the effectiveness of the IS approximation of P. N×ESS can be
interpreted as the equivalent number of independent samples from P. For more
details see Section 2.5.3 of Liu (2008) and references therein.

The general framework where w is an unbiased estimator of the Radon-Nikodym
derivative between P and Q, opens various possibilities: constructing new Monte
Carlo schemes (e.g Partial Rejection Control, see Section 2.6 of Liu, 2008),
devising schemes whose computational complexity scales well with the number
of particles N (e.g. the auxiliary particle filter of Pitt and Shephard, 1999), or
applying IS in cases where even the computation of fu is infeasible (e.g. the
random weight IS for diffusions of Beskos et al., 2006; Fearnhead et al., 2008,
which is also covered in detail in this article).

IS includes exact simulation as a special case when Q = P. Another special case
is rejection sampling (RS), which assumes further that fu(x) is bounded in x
by some calculable K < ∞. Then, if we accept each draw xi with probability
fu(xi)/K, the resulting sample (of random size) consists of independent draws
from P. This is a special case of the generalised IS where wi is a binary 0-1
random variable taking the value 1 with probability fu(xi)/K.

The IS output can be used in estimating various normalising constants and
density values involved in the costruction. It follows directly from the previous
exposition that c = EQ[w]. Moreover, note that

f(x) = EQ[w | x]/EQ[w] . (19)

3 IS estimators based on bridge processes

Let V be a multivariate diffusion (1) observed at two consecutive time points
V0 = u, VT = v, and consider the following two problems: a) (imputation) the

10
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design of efficient IS scheme for the corresponding diffusion bridge, and b) (esti-
mation) the MC estimation of the corresponding transition density (2). In this
section we consider these problems for a specific class of diffusions: those for
which the diffusion coefficient is indepedent of V . In this context the method-
ology is much simpler and important developments have been made since the
mid-80s. Furthermore, under additional structure exact simulation of diffusion
bridges is feasible (see Section 5).

Before detailing the approach let us briefly discuss the restriction imposed by
the assumption that the diffusion coefficient is independent of V . For scalar
diffusions when σ(·, ·) is appropriately differentiable, by Itô’s rule the transfor-
mation Vs → η(s, Vs) =: Xs, where

η(s, u) =
∫ u 1

σ(s, z)
dz, (20)

is any anti-derivative of σ−1(s, ·), yields a diffusion X with diffusion coefficient
1. A particle approximation of the diffusion bridge of X directly implies one
for V and the transition densities of the two processes are linked by a change of
variables formula. Therefore, the methodology of this section effectively covers
all scalar diffusions, as well as a wide variety of multivariate processes used
in applications. At the end of this section we discuss the limitations of the
methodology based on bridge processes.

Let Pb be the law of the diffusion V on [0, T ] with V0 = u (abusing slighlty
the notation set up in Section 2.1). Similarly, let P0 denote the law of the
driftless process dVs = σ(s)dBs. Crucially, in this setting the driftless process
is a linear SDE and P0 is a Gaussian measure. Additionally, let p0,T (u, v) and
G0,T (u, v) denote the transition densities of the two processes. Let P∗b and P∗0
denote the laws of the corresponding diffusion bridges conditioned on VT = v.
As we discussed in Section 2.1, the conditioned driftless process is also a linear
SDE.

We present a heuristic argument for deriving the density dP∗b/dP∗0. Consider the
decomposition of the laws Pb and P0 into the marginal distributions at time T
and the diffusion bridge laws conditioned on VT . Then by a marginal-conditional
decomposition we have that for a path V with V0 = u,

dPb
dP0

(V ) 1[VT = v] =
p0,T (u, v)
G0,T (u, v)

dP∗b
dP∗0

(V ) . (21)

The term on the left-hand side is given by the Cameron-Martin-Girsanov the-
orem (see Section 2.1). Hence, by a rearrangement we get the density between
the diffusion bridge laws:

dP∗b
dP∗0

(V ) =
G0,T (u, v)
p0,T (u, v)

exp

{∫ T

0

h(s, Vs)∗dBs −
1
2

∫ T

0

[h∗h](s, Vs)ds

}
, (22)

where h solves σh = b (see Section 2.1), and B is Brownian motion.
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Additional structure on b and σ can lead to further simplifications of (22). We
emphasize the setting where σ is the identity matrix, the diffusion is time-
homogenous and of gradient-type, i.e. there exists a field H such that b(v) =
∇vH(v). When the function ρ(v) ∝ exp{H(v)/2} is integrable, the diffusion
is a reversible Markov process with ρ as the invariant density. In this setting,
we can use Itô’s rule to perform integration by parts in the exponent of (22) to
eliminate the stochastic integral, and obtain

dP∗b
dP∗0

(V ) =
G0,T (u, v)
p0,T (u, v)

exp

{
H(v)−H(u)− 1

2

∫ T

0

(
||b(Vs)||2 +∇2H(Vs)

)
ds

}
.

(23)

(22) forms the basis for a particle approximation of the law of P∗b using proposals
from P∗0. An idealized algorithm proceeds by first generating a linear SDE
according to P∗0, and subsequently, by assigning weight according to (22). Note
in particular that B in (22) is the Brownian motion driving the proposed linear
bridge. The weights are known only up to a normalizing constant due to the
presence of p0,T (u, v). However, as we saw in Section 2.2 this poses no serious
complication in the application of IS. Note that G0,T (u, v) is a Gaussian density
which can be computed and be included explicitly in the weights, although this
is not necessary for the IS.

Practically, we will have to simulate the proposed bridge at a finite collection of
M times in [0, T ] and approximate the integrals in the weights by sums. This
is an instance of the simulation-projection strategy outlined in Section 1. It
introduces a bias in the MC approximations which is eliminated as M →∞. It
is a subtle and largely unresolved issue how to distribute a fixed computational
effort between M and N in order to minimize the MC variance of estimates of
expectations of a class of test functions. However, a qualitative and asymptotic
result is given in Stramer and Yan (2007) according to which one should choose
N = O(M2). In Section 5 we will see that in the more specific case of (23) the
approximations can be avoided altogether and construct a properly weighted
sample using unbiased estimators of the weights.

It follows directly from the general development of Section 2.2 that the diffusion
transition density can be consistently estimated using a particle approximation
of P∗b . From (15) it follows the key identity

p0,T (u, v) = G0,T (u, v)EP∗0

[
exp

{∫ T

0

h(s, Vs)∗dBs −
1
2

∫ T

0

[h∗h](s, Vs)ds

}]
(24)

In the case where b is of gradient form we can correspondingly write

p0,T (u, v) = G0,T (u, v) exp{H(v)−H(u)}EP∗0

[
exp

{
−
∫ T

0

φ(Vs)ds

}]
. (25)

where φ(z) = (||b(z)||2 +∇2H(z))/2. Hence, the transition density is estimated
by the average of the IS weights. It is at this stage where the explicit computa-
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tion of the Gaussian density in the denominator of (22) becomes indispensable:
if it were unknown we could only estimate the ratio of the two transition den-
sities, but not p0,T (u, v).

Historical development

The expressions (22) and (24) have been derived several times in the literature
with different motives. Remarkably, there is almost no cross-referencing among
the papers which have derived the expressions. To our best knowledge, the ex-
pressions appear for the first time for scalar diffusions in the proof of Theorem
1 of Rogers (1985). The context of the Theorem is to establish smoothness
of the transition density. Again for scalar diffusions the expressions appear in
the proofs of Lemma 1 of Dacunha-Castelle and Florens-Zmirou (1986). The
context of that paper is a quantification of the error in parameter estimates
obtained using approximations of the transition density. Since both papers deal
with scalar diffusions, they apply the integration by parts to get the simpli-
fied expression (23). More recently, Durham and Gallant (2002) working in a
projection-simulation paradigm, derive effectively an IS for P∗b and an estimator
of p0,T (u, v), which in the case of constant diffusion coefficient are discretizations
of (22) and (24) (see also Section 4 below). The context here is MC estimation
of diffusion models. Since the authors work in a time-discretized framework
from the beginning, the possibility to perform integration by parts when pos-
sible, is not at all considered. Nicolau (2002) uses the Dacunha-Castelle and
Florens-Zmirou (1986) expression for the transition density as a basis for MC
estimation using approximation of the weights based on M intermediate points.
Beskos et al. (2006) used (23) as a starting point for the exact simulation of
diffusions and (24) as a basis for unbiased estimation of the transition density
(see also Section 5). Finally, Delyon and Hu (2006) state (22) as Theorem 2
and prove it for mutivariate processes.

Limitations of the methodology

The outline of the methodology we have described in this section for IS approx-
imation of P∗b is to find a probability measure P0 which is absolutely continuous
with respect to the unconditional measure Pb, and probabilistically condition the
former on the same event that the latter is conditioned upon. Hence, the pro-
posed random variables are indeed bridge processes. The same development can
be carried out even when σ depends on the state variable. In the more general
setup P0 is the law of dVs = σ(s, Vs)dBs, which is now a non-linear diffusion.
Hence the corresponding bridge process will be typically intractable (see Section
2.1) and the IS practically infeasible. Therefore, the methodology of this section
applies only to diffusions which can be transformed to have state-independent
diffusion coefficient.

For multivariate diffusions with V -dependent volatility the generalized version
of transformation (20) involves the solution of an appropriate vector differential

13
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equation which is often intractable or insolvable, see for example Aı̈t-Sahalia
(2008). A very popular class of models which have state-dependent volatil-
ity are stochastic volatility models employed in financial econometrics. The
methodology of space transformation can be generalised to include time-change
methodology to allow models like stochastic volatility models to be addressed,
(see Kalogeropoulos et al., 2009).

Summarising, constructing valid and easy to simulate proposals by condition-
ing is difficult when we deal with multivariate processes with state-dependent
diffusion coefficient. Instead, the next section considers a different possibility
where the proposals are generated by a process which is explicitly constructed
to hit the desired end-point at time T . We call such processes guided.

4 IS estimators based on guided processes

In this section we consider the same two problems described in the beginning
of Section 3 but for processes with state-dependent diffusion coefficient. We
consider IS approximation of the law of the target diffusion bridge, P∗b , using
appropriate diffusion processes as proposals. The design of such proposals is
guided by the SDE of the target bridge, given in (4), and the Cameron-Martin-
Girsanov theorem. Hence, the diffusion coefficient of any valid proposal has to
be precisely σ(s, v), and the drift has to be such that it forces the process to
hit the value v at time T almost surely. The following processes are natural
candidates under these considerations:

[G1] dVs = −Vs − v
T − s

ds+ σ(s, Vs) dBs (26)

[G2] dVs = −Vs − v
T − s

ds+ b(s, Vs) ds+ σ(s, Vs)dBs (27)

Note that the drift of [G1] (“G” stands for “Guided”) is precisely the one of
the Brownian bridge (12); the one of [G2] mimics the structure of the drift of
the target bridge process (4) but substitutes the intractable term in the drift by
the Brownian bridge drift. Let QG1 and QG2 denote the laws of [G1] and [G2]
correspondingly. We will use [G] to refer to a generic guided process.

The mathematical argument which yields the IS is formally presented in Section
4 of Delyon and Hu (2006). The construction requires for tractability that σ
is invertible so that we can work with (7) and introduce explicitly V (instead
of the driving B) in the weights. To simplify the exposition, we present the
argument when d = 1; the formulae extend naturally to the multidimensional
case, under the same assumptions.

We define for any z and s ≤ T ,

A(s, z) = (σ(s, z))−2 .

14
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Up to any time t < T , QG2|t (resp. QG1|t) is absolutely continuous with respect
to P∗b |t, and we can apply the Cameron-Martin-Girsanov theorem (7). The
resulting likelihood ratio, although of expected value 1, it converges almost
surely to 0 as t→ T . To identify the leading term which drives the weights to 0
(denoted ψt below) we apply an integration by parts to the stochastic integral
in the exponent. Let us define the following functionals

ψt = exp
{
− 1

2(T − t)
(Vt − v)2A(t, Vt)

}
Ct =

1
(T − t)1/2

log(φG1
t ) = −

∫ t

0

(Vs − v)
T − s

A(s, Vs)b(s, Vs)ds−
∫ t

0

(Vs − v)2

2(T − s)
� dA(s, Vs)

log(φG2
t ) =

∫ t

0

b(s, Vs)A(s, Vs)dVs −
1
2

∫ t

0

b(s, Vs)2A(s, Vs)ds−
∫ t

0

(Vs − v)2

2(T − s)
� dA(s, Vs)

where the �-stochastic integral is understood as the limit of approximating
sums where the integrand is evaluated at the right-hand time-points of each
sub-interval (as opposed to the left-hand in the definition of the Itô stochastic
integral). Then, we have that

dQG2

dPb

∣∣∣∣
t

=
√
T exp

{
(u− v)2A(0, u)

2T

}
Ctψt/φ

G2
t

dQG1

dPb

∣∣∣∣
t

=
√
T exp

{
(u− v)2A(0, u)

2T

}
Ctψt/φ

G1
t .

Therefore, for any measurable (with respect to the filtration of V up to t) non-
negative function ft, we have that

EPb
[ft(V )ψt] = C−1

t T−1/2 exp
{
− (u− v)2A(0, u)

2T

}
EQG2 [ft(V )φG2

t ]

= C−1
t T−1/2 exp

{
− (u− v)2A(0, u)

2T

}
EQG1 [ft(V )φG1

t ]

EPb
[ψt] = C−1

t T−1/2 exp
{
− (u− v)2A(0, u)

2T

}
EQG2 [φG2

t ]

= C−1
t T−1/2 exp

{
− (u− v)2A(0, u)

2T

}
EQG1 [φG1

t ] ,

where the expressions for EPb
[ψt] is obtained from the first expression with

ft = 1.

Hence, we derive the key equality, that for any positive measurable ft,

EPb
[ft(V )ψt]

EPb
[ψt]

=
EQG2 [ft(V )φG2

t ]
EQG2 [φG2

t ]
=

EQG1 [ft(V )φG1
t ]

EQG1 [φG1
t ]

, .
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The final part of the argument consists of taking the limit t → T on each part
of the previous equality (this requires a careful non-trivial technical argument,
see proof of Theorem 5 and related Lemmas of Delyon and Hu (2006)). The
limit on the left hand side converges to the regular conditional expectation
EP∗b [fT (V )] = EPb

[fT (V ) | VT = v]; intuitively this can be verified by the form
of ψt given above. The other two terms converge to EQG2 [fT (V )φG2

T ]/EQG2 [φG2
T ]

and EQG2 [fT (V )φG1
T ]/EQG1 [φG1

T ], respectively. Therefore, we have that

dP∗b
dQG2

(V ) =
φG2
T

EQG2 [φG2
T ]

(28)

dP∗b
dQG1

(V ) =
φG1
T

EQG1 [φG1
T ]

(29)

where the denominators on the right-hand side in each expression are normalis-
ing constants. These two expressions are all is needed for the IS approximation
of the diffusion bridge. Practically, as in Section 3, we will have to simulate the
proposed bridge at a finite collection of M times in [0, T ] and approximate the
integrals in the weights by sums, which introduces a bias in the MC approxi-
mations which is eliminated as M →∞.

We now address the problem of deriving a transition density identity, as we did
in (24). To our best knowledge, this is the first time that such an expression
appears in the literature. Note, however, that our argument is informal and
certain technical conditions (outside the scope of this article) will have to be
imposed for a formal derivation. Working with guided processes, this derivation
is much less immediate than in Section 3.

Since ψt is a function of Vt only, we have that

EPb
[Ctψt] =

∫
1√
T − t

exp
{
− 1

2(T − t)
(w − v)2A(t, w)

}
p0,t(u,w)dw

=
∫

exp
{
−1

2
z2A(t, z

√
T − t+ v)

}
p0,t(u, z

√
T − t+ v)dz

→t→T p0,T (u, v)
∫

exp
{
−1

2
z2A(T, v)

}
dz =

√
2π p0,T (u, v)√
A(T, v)

where taking the limit we have used dominated convergence (which clearly re-
quires certain assumptions). We can use this epxression, together with the
identities which link EPb

[Ctψt] with EQGi
[φGit ], i = 1, 2 given above, and the

fact that the latter converge as t→ T to EQGi
[φGiT ], i = 1, 2 (which is shown in

Delyon and Hu (2006)), to establish the fundamental identity

p0,T (u, v) =

√
A(T, v)

2πT
exp

{
− (u− v)2A(0, u)

2T

}
EQGi

[φGiT ] , i = 1, 2, . (30)

Therefore, given the IS output the transition density can be estimated.
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Connections to the literature and to Section 3

The first major contribution to IS in this context was made in the seminal
article of Durham and Gallant (2002) in the context of estimating the transition
density of non-linear diffusions for statistical inference. They took, however, a
projection-simulation approach, they first discretized the unobserved paths and
then considered discrete-time processes as proposals. They suggest two different
discrete-time processes as proposals, the so-called “Brownian bridge” proposal
and the “modified Brownian bridge”. They both are inspired by (and intend to
be a type of discretization of) (26). Indeed, their “Brownian bridge” proposal
is precisely a first-order Euler approximation of (26). The Euler approximation
is not very appealing here since it is unable to capture the inhomogeneity in the
variance of the transition distribution of (26). To see this more clearly, consider
the simplified case where σ = 1 and contrast (12) with (13) when t2−t1 is small.
The Euler approximation suggests constant variance for the time-increments of
the process, which is a very poor approximation when t ≈ T . To mitigate
against this lack of heteroscedasticity, Durham and Gallant (2002) use Bayes’
theorem together with heuristic approximations to find a better aproximation
to the transition density of (26). The process with the new dynamics is termed
“modified Brownian bridge”, and it corresponds to the exact solution of the
Brownian bridge SDE when σ = 1. Generally, due to various approximations
at various stages the connection between IS for paths and estimation of the
transition density is not particularly clear in their paper.

It is important to observe that the samplers and identities in this section become
precisely those of Section 3 when σ is constant. An interesting deviation, is the
use of (27) when σ is constant, which does not correspond to the setup of
Section 3, and has the effect of making non-linear the proposal process (hence
exact skeletons cannot be simulated in this case) but removes the stochastic
integral from the weights (which typically has as a variance reduction effect).

As a final remark note that when possible it is advisable to transform the dif-
fusion to have unit volatility. Apart from facilating the methodology Section
3 the tansformation has been empirically shown to be a good variance reduc-
tion technique even for schemes which do not require it (see for example the
discussion in Durham and Gallant, 2002).

5 Unbiased Monte Carlo for diffusions

In many cases (including most all one-dimensional diffusions with sufficiently
smooth coefficients) the need to use a fine discretisation for the diffusion sam-
ple path (and the associated approximation error) can be completely removed.
This section will very briefly describe some of the basic ideas behind this ap-
proach, though for detailed account the reader is referred to Beskos et al. (2006);
Fearnhead et al. (2008). The methodology here is closely related to allied exact
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simulation algorithms for diffusions as described in Beskos and Roberts (2005);
Beskos et al. (2004, 2005b).

For simplicity we shall focus on the problem of estimating (unbiasedly) the
diffusion transition density. The use of this approach in Monte Carlo maximum
likelihood and related likelihood inference methodology is described in detail
in Beskos et al. (2006). We shall assume that the diffusion can be reduced to
unit diffusion coefficient, and that the drift b can be expressed in gradient form
b = ∇H. We can therefore express the transition density according to 25.

Here we describe the so-called generalised Poisson estimator for estimating
p0,T (u, v). A simple Taylor expansion of 25 gives

p0,T (u, v) = G0,T (u, v) exp{H(v)−H(u)}EP∗0

 ∞∑
κ=0

(∫ T
0
φ(Vs)

)κ
κ!

 . (31)

A simple observation we can make is that for an arbitrary function g(·), E(
∫ T

0
g(Xs)ds)

is readily estimated unbiasedly by Tg(U ) where U ∼ U(0, T ). This idea is easily
generalised to consider E((

∫ T
0
g(Xs)ds)κ) for arbitrary positive integer κ. In

this case the unbiased estimator is just Tκ
∏κ
i=1 g(XUi

) where {Ui} denote an
independent collection of U(0, T ) variables.

Therefore, letting {qi} denote positive probabilities for all non-negative integers
i, and unbiased estimator for p0,T (u, v) is given for arbitrary constant c by

p̂0,T (u, v) = G0,T (u, v) exp{H(v)−H(u)− cT}T I
I∏
i=1

(c− φ(VUi
))q−1

I (32)

where I ∼ q. The choice of the importance proposal q is critical in determining
the efficiency of the estimator p̂0,T (u, v), and this is discussed in more detail in
Beskos et al. (2006); Fearnhead et al. (2008).

For the purposes of parameter estimation, it is critical to be able to obtain
density estimates simultaneously for a collection of plausible parameter values.
This is one important advantage of the form of the estimator in 32 since the esti-
mator can be applied simultaneously to provide unbiased estimators of densities
at a continuum of parameter values in such a way that the estimated likelihood
surface is itself continuous (and of course unbiased for each parameter choice).
As well as being of practical use, these properties are indispensible for proving
consistency of Monte Carlo MLEs for large sample sizes (Beskos et al., 2005a)
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Appendix 1: typical problems of the projection-
simulation paradigm in MC for diffusions

In this article we have advocated a simulation-projection paradigm, that is de-
signing Monte Carlo methods on the path space which are then, if necessary,
discretized for practical implementation. Apart from the transparency of the
resulting methods, the motivation for adopting this paradigm is also due to typ-
ical problems faced by the projection-simulation alternative. In this Appendix
we mention two typical problematic cases. The first concerns the estimation
of the transition density by Monte Carlo, and the the simultaneous parameters
estimation and imputation of unobserved paths using the Gibbs sampler. A
common characteristic in both is that decrease in approximation bias comes
with an increase in Monte Carlo variance. For the sake of presentation we only
consider scalar homogeneous diffusions.

The problem of estimating the transition density by Monte Carlo and use the
approximation for likelihood inference for unknown parameters was first consid-
ered by Pedersen (1995). Using the Chapman-Kolmogorov equation and Euler
approximation he obtained

p0,T (u, v) = EPb
[pt,T (Vt, v)]

≈ EPb

[
Ctψt

1√
2π
A(t, Vt)1/2 exp

{
−1

2
A(t, Vt)(b(t, Vt)2(T − t) + 2(v − Vt)b(t, Vt))

}]
(33)

with the definitions as in Section 4. This suggest an IS approximation where
we generate (unconditionally) paths up to time t < T and associate weights to
each path given by

ψtA(t, Vt)1/2 exp
{
−1

2
A(t, Vt)(b(t, Vt)2(T − t) + 2(v − Vt)b(t, Vt))

}
.

Due to the Euler approximation on [t, T ] the weights have a bias which is elim-
inated as t→ T . On the other hand, the leading term in the weights for t ≈ T
is ψt, thus the variance of the weights tends to infinity as t → T . (There is of
course additional potential bias in simulating Vt using a discretization method,
this however can be eliminated with increasing Monte Carlo effort without in-
flating the variance of the weights). The approach we expose in Sections 3 and
4 is designed to overcome this problem.

The problem of Bayesian inference for unknown parameters in the drift and the
volatility of the SDE and the simultaneous imputation of unobserved paths for
discretely observed diffusions was originally considered by Elerian et al. (2001);
Eraker (2001); Roberts and Stramer (2001) (and remains a topic of active re-
search). The first two articles work in a projection-simulation framework, hence
the unobserved path between each pair of observations (i.e each diffusion bridge)
is approximated by a skeleton of, M say, points. The joint distribution of the
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augmented dataset can be approximated using for example the Euler scheme
(which gets increasingly accurate as M increases). This is effectively equiva-
lent to using a Riemmann approximation to the continuous-time likelihood (7).
Therefore, we deal with a missing data problem where, given additional data
(the imputed values in-between the observations) the likelihood is available, al-
though here the missing data (for each pair of obsevrations) are in principle
infinite-dimensional and are approximated by an M -dimensional vector. Hence
the computations are subject to a model-approximation bias which is eliminated
in the limit M → ∞. The Gibbs sampler is a popular computational tool for
parameter estimation and simultaneous imputation of missing data in such a
context. It consists of iterative simulation of missing data given the observed
data and current values of prameters, and the simulation of the parameters ac-
cording to their posterior distribution conditionally on the augmented dataset.

There are two main challenges in designing a Gibbs sampler for discretely ob-
served diffusions: how to efficiently simulate the M intermediate points given
the endpoints for each pair of observations, and how to reduce the dependence
between the missing data and the parameters. As far as the first problem is con-
cerned, note that it is directly related to the diffusion bridge simulation, and it
is best understood thinking of the simulation in the infinite-dimensional space.
For diffusions which can be transformed to have unit volatility (as in Section
3) Roberts and Stramer (2001) describe a Markov chain Monte Carlo (MCMC)
scheme which uses global moves on the path space, an approach very closely
related to that described in Section 3. More recently, global moves MCMC
using the processes discussed in Section 4 as proposals has been considered by
Golightly and Wilkinson (2008); Chib et al. (2004). For local moves MCMC
designed on the path space see for example Beskos et al. (2008).

However, it is the second challenge we wish to emphasize in this section, i.e. the
dependence between the imputed data and the parameters. Strong posterior
dependence between missing data and parameters is known to be the principal
reason for slow convergence of the Gibbs sampler and results in high variance of
the estimates based on its output (see for example Papaspiliopoulos et al., 2007).
The dependence between imputed data and parameters in this application can
only be understood by considering a Gibbs sampler on the infinite-dimensional
space, i.e the product space of parameters and diffusion bridges. This approach
was adopted in Roberts and Stramer (2001) where it was noticed that due to
the quadratic variation identity (5) there is complete dependence between the
missing paths and any parameters involved in the volatility. Hence, an ideal-
ized algorithm (M = ∞) would be completely reducible, whereas in practical
applications where M is finite we observe that decreasing the bias (increasing
M) causes an increase of the mixing time of the algorithm and a corresponding
increase in the variance of estimates based on its output. A solution to this
problem is given in Roberts and Stramer (2001) by appropriate transformations
in the path space which break down this dependence. It turns out that the
strong dependence between parameters and unobserved processes is very com-
mon in many hierarchical models and a generic methodology for reducing it,
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which includes the one considered in Roberts and Stramer (2001), is known as
non-centred parametrisations, see Papaspiliopoulos et al. (2003, 2007).

Appendix 2: Gaussian change of measure

The concept of change of measure is very central to the approaches we have
treated in this article. The aim of this section is to give a simplified presentation
of the change of measure between two Gaussian laws, and to the various ways
this result might be put in use. It is easy to see the correspondence between the
expressions we obtain here and those of Section 2.1, but the greatly simplified
context of this section has the educational value of pointing out some of the
main elements of the construction, which can be understood without knowledge
of stochastic calculus.

Let (Ω,F) be a measure space with elements ω ∈ Ω, B : Ω → Rm a random
variable on that space, let σ be a d×m matrix, Γ = σσ∗, a, b, be d× 1 vectors,
and define a random variable V via the equation

V (ω) = b+ σB(ω) .

Let Rb be the probability measure on (Ω,F) such that B is a standard Gaussian
vector. Therefore, under this measure V is a Gaussian vector with mean b (hence
the indexing of the measure by b). Assume now that we can find a m× 1 vector
h which solves the equation

σh = (b− a) , (34)

and define B̂(ω) = B(ω) + h. Thus, we have the alternative representation

V (ω) = a+ σB̂(ω) ,

which follows directly from the definitions of V and h. Let Ra be the measure
defined by its density with respect to Rb,

dRa
dRb

(ω) = exp {−h∗B(ω)− h∗h/2} , (35)

which is well-defined since the right-hand side has finite expectation with respect
to Rb. Notice that under this new measure, B̂ is a standard Gaussian vector.
To see this, notice that for any Borel set A ⊂ Rm,

Ra[B̂ ∈ A] =
∫
{ω:B̂(ω)∈A}

exp {−u∗B(ω)− u∗u/2}dR[ω]

=
∫
{y:y+u∈A}

exp {−u∗y − u∗u/2− y∗y/2} (2π)−m/2dy

=
∫
A

e−v
∗v/2(2π)−m/2dv ,
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where the last equality follows from a change of variables.

Notice that directly from (35) we have

dRb
dRa

(ω) = exp{h∗B(ω) + h∗h/2} = exp{h∗B̂ − h∗h/2} . (36)

Let Eb and Ea denote expectations with respect to Rb and Ra respectively.
Thus, for any measurable Rb-integrable function f defined on Rd,

Eb[f(V )] = Ea [f(V ) exp{h∗B + h∗h/2}] = Ea
[
f(V ) exp{h∗B̂ − h∗h/2}

]
.

Let X be another random variable, defined as X(ω) = a+ σB(ω). Since under
Ra, the pair (V, B̂) has the same law as the pair (X,B) under Rb, we have that

Eb[f(V )] = Eb[f(X) exp{h∗B − h∗h/2}] .

If further σ is invertible we get

Eb[f(V )] = Eb

[
f(X) exp

{
(b− a)∗Γ−1X − 1

2
(b− a)∗Γ−1(b+ a)

}]
. (37)

Let Pb and Pa be the law of V implied by Rb and Ra respectively. Then,
assuming that σ is invertible and taking α = 0, we can obtain from the previous
expression the likelihood ratio between the hypotheses that V has mean b against
that it has mean 0, but a Gaussian distribution with covariance Γ in both cases.
Therefore, we get the likelihood function for estimating b on the basis of observed
data V , while treating Γ as known:

L(b) =
dPb
dP0

(V ) = exp
{
b∗Γ−1V − 1

2
b∗Γ−1b

}
. (38)

It is interesting to consider the cases where (34) has many or no solutions. We
will do so by looking at two characteristic examples. We first consider the case
where (34) has multiple solutions and take d = 1, m = 2, σ = (1, 1), in which
case (34) has infinite solutions. Notice that in this case there are more sources
of randomness than observed variables. To simplify matters (and without loss of
generality) we take a = 0. Then, for any φ ∈ R, u = (φ, b−φ)∗ solves (34), and
the measure Rφ0 defined by (35), makes B̂ a standard Gaussian vector. Then,
writing B = (B1, B2), the importance weights in (37) become

exp{(b− φ)B1 + φB2 − φ2 − b2/2 + φb} . (39)

Direct calculation verifies that the change of measure in (37) holds for any φ;
it is instructive to do directly the calculations using a change of variables and
check that the right hand side of (37) does not depend on φ. Additionally, using
the moment generating function of the Gaussian distribution, one can verify
that the expected value of the importance weights (39) under Rφ0 is 1. However,
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the second moment of the importance weights is exp{2(φ− b/2)2 + b2/2}, which
is minimized for φ = b/2. Additionally, we can re-express (39) in terms of V as

exp{(b− φ)V + (2φ− b)B̂1 − φ2 − b2/2 + φb} .

In a statistical application only V will be observed whereas B̂1 will be unob-
served, therefore we cannot use the expression directly to estimate b. Notice
that for φ = b/2 the B̂1 terms cancels out from the density.

We now consider the case where (34) has no solution. An example of that is
produced under the setting d = 2, m = 1, σ = (0, 1)∗. Writing V = (V1, V2)∗

and a = (a1, a2), b = (b1, b2)∗, notice the example implies that V1 = b1. There-
fore, it is expected that Rb will be mutually singular with any measure which
implies that V1 = a1, if b1 6= a1. However, notice that (34) can be solved by
u = b2 − a2 provided that a1 = b1. Then, (35)-(37) hold. Moreover, defining
P(b1,b2) and P(b1,0) analogously as before, and noticing that B = V2 − b2, we
have the following likelihood ratio which can be used for the estimation of b2:

L(b2) =
dP(b1,b2)

dP(b1,0)
(V ) = exp

{
b2V −

1
2
b22

}
.
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