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Abstract

Health care interventions which use quality of life or health scores often provide data
which are skewed and bounded. The scores are typically formed by adding up responses
to a number of questions. Different questions might have different weights, but the scores
will be bounded, and are often scaled to the range 0 to 100. If improvement in health
over time is measured, scores will tend to cluster near the 'healthy’ or ’good’ boundary
as time progresses, leading to a skew distribution. Further, some patients will drop out
as time progresses, so the scores reflect a selected population.

We fit models based on the skew-normal distribution to data from a randomised con-
trolled trial of treatments for sprained ankles, in which scores were recorded at baseline
and 1, 3 and 9 months. We consider the extent to which skewness in the data can be
explained by the clustering at the boundary via a comparison between a censored normal
and a censored skew-normal model.

As this analysis is based on the complete data only, a formula for the distortion of
the treatment effects due to informative drop-out is given. This allows us to assess under
which conditions the conclusions drawn on the complete data may be either reinforced or
reversed, when the informative drop-out process is taken into account.

1 INTRODUCTION

Some outcomes of interest in medical research can be measured directly: death, and blood
pressure are simple examples. Other outcomes, such as mental or physical health, have to be
assessed indirectly. The measures used for this range from binary, when questions such as ‘are
you in good health?’ are answered ‘yes’ or ‘no’, to (almost) continuous, when answers to a
series of questions about quality of life are summed to give a weighted average. The latter
measures have finite range. Multiple valued and continuous scores might be scaled so that the
‘population norm’ is at the centre of the range, but many scores assessing mental health or
physical activity have good health at one end of the range.

Symmetrically distributed random variables are less suited as models for such scores. Al-
though one might consider transforming the scale so that standard models with Gaussian errors
can be used, this is not always possible. Non-symmetric distributions, such as the skew-normal
or gamma are then useful. An advantage of the skew-normal model for longitudinal data is
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the elegant form of the multivariate distribution and the fact that it contains the normal dis-
tribution as a particular case [1]. Furthermore, skewness might be explained by the effect of
informative drop-out [2]. The approach proposed allows one (a) to check whether the asym-
metry in the data may be removed after accounting for the censoring mechanism and (b) to
assess the distortion in estimated treatment effect induced by a possible informative drop-out
mechanism.

2 MOTIVATING EXAMPLE

A randomised controlled trial of four treatments (1. tubigrip, i.e. elastic bandage, 2. below-
knee plaster-cast, 3. splints or 4. boots) for acute, severe ankle sprain had quality of ankle
function as the primary outcome [3]. Demographic data including age, sex, and employment
were collected on the 564 patients randomised. The protocol specified an intention to treat
analysis, which we adopt. Ankle function was measured by the Foot and Ankle Score (FAOS),
a questionnaire on pain, symptoms, activities of daily living, ability to participate in sports and
quality of life. Patients were asked to complete the questionnaire when they were randomised
(baseline) and at 1, 3 and 9 months after injury. The outcomes of FAOS are weighted averages
which are scaled to the range 0 to 100; extreme pain or limitation scores 0, and no symptoms
score 100. Two of the five domains of FAOS, sport and activities of daily living had 39%
responses missing, while the remaining three were 75% complete, so this study reports analysis
of the score based on pain, symptoms, and quality of life.

The primary question was how plaster-cast, splints and boots compared with tubigrip, and
size of any difference in FAOS. Physical healing is known to depend on age, so it is sensible
to include age in the models. As expected, the mean and skewness of the score distribution,
marginal w.r. to treatment and age, increased with time, see Figure 1, and was concentrated
at 100 in the later two times. The standard deviation is roughly constant, see Table 1. Most
improvement in FAOS occurred in the first month, as illustrated in Figure 2.

The impact of missingness on the treatment estimates should also be considered. Postal
questionnaires were received from 83%, 82% and 76% of participants at months 1, 3, and 9
respectively. The drop-out was not entirely monotone. The means for those who have missing
data are generally higher than the complete cases, indicating a possible tendency for patients
who have recovered not to return their questionnaires. Age also seems to play a role, as on
average, the age of complete cases is higher than the others. Further, a qualitative study in
which non-respondents were interviewed reported that nearly half the non-respondents thought
they had made a full recovery by 3 months, the second follow-up time [4].

3 SKEW-NORMAL MODELS

An obvious approach to a score on the range [0,100] is to transform using a scaled logit to the
range (—oo,00). However, QQ plots from fitting models on the transformed score give a poor
fit, as the transformation does not reduce the concentration at the maximum, and there is the
dis-advantage of not working on the original scale familiar to the health care professionals. The
best Box-Cox transformation for the scores at 9 months achieves an almost uniform distribution.
Other naturally skew distributions, such as the Gamma and Weibull, and the Beta distribution,
which has a finite range, do not fit well, and are not as simply generalized to the multivariate
case.
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Let Y = (Y, Y1, Ys, Y3)T be the vector of the scores at the four occasions. We estimated:
Y=XB+¢ (1)

with € ~ SN4(0,, o) and X the design matrix with covariates: 'Age’ and the indicators of the
treatment group. Figure 3 shows the matrix of the scatter plot of the residuals of the model,
with the contour level of the corresponding bivariate distribution obtained from the fitted joint
distribution after marginalization. For occasions 1 and 2 the model does not exhibit substantial
departure from the normal assumptions, while for the two subsequent occasions the skewness
increases substantially. The covariance matrix of the residuals is left unconstrained, and the
estimated correlations increase as the intervals between measurements increase; this is an effect
of the boundary.

These considerations are also supported by the comparison of the estimates with those
obtained with a multivariate regression models. For the first two occasions, the OLS estimates
are not different from the ones obtained with model (1), while they diverge substantially for the
following occasions. However, it is difficult to disentangle the true asymmetry in the distribution
from the effect due to the clustering of the residuals towards the value 0, which is induced by
the boundary at score 100.

The conclusions are also confirmed by a series of univariate regression models of score at
times 0, 1, and 2 against age, indicators for treatment groups and score at the preceding time
with skew-normal residuals. Results show a reasonably normally distribution of the residuals
of these models but not for score at months 9, which is an important measure of long-term
healing. The histogram of the residuals of such a model, see Figure 4, exhibits skewness as
well as high frequency of values around 0. We therefore focus on the score at month 9, and
consider a regression with skew-normal errors, normal errors with censoring and skew-normal
errors with censoring.

4 CENSORED MODELS

We focus here on the final outcome, i.e. the score measured after 9 months. From the previous
analysis it seems natural to build a univariate regression model for the final score that takes into
account the censoring mechanism. It would also be interesting to check whether the skewness
in the data is induced by the threshold at score 100 or is genuinely in the phenomenon under
study. Although there are many choices of skew distributions, we believe that the skew-normal
is again a suitable tool to perform this task, as it contains the normal one as a particular case.
In this section we perform a complete data analysis. We defer the discussion on the distortion
induced by the possibly informative drop-out mechanism to the next section.

Let Y be the observed score at 9 months and x be the vector of covariates, which include
"Age’ and three dummy variables Ds, D3, D, for each of the corresponding treatment group.
We therefore specify the following model:

Y= plx+ (2)

with 7 distributed as SN(0,0,a) and [ a vector of unknown regression coefficients. The
observed Y is defined as:

Y=Y* ifY* <100 (3)
Y =100 otherwise.
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The likelihood for a generic i-th patient then becomes:

1—a;

Fqﬁ <¢> - m) (a0 (yi — i) X [285(0, 0~ 1(100 — 12,); p)]“

(% o

in which a; = I[y; > 100], u; = 87%;, ¢(-) and ®(-) denotes the standard normal density
and distribution function, while ®5(-) denote the distribution function of a standard bivariate
normal with p as a correlation coefficient, p = a/v/1 + a2. As working parameters, instead of
using the direct parametrization (DP) above, we here use the so-called centred parametrisation
(CP) see [1], since the shape of the log-likelihood of the non-censored model improves greatly by
such a reparametrisation of the model. The optimization is performed with numerical methods.

In Table 2, panels (a) and (b), the estimates of the uncensored and censored skew-normal
models are presented. Note that in the CP, while the regression coefficients retain their inter-
pretation, the skewness parameter is the usual univariate index of skewness v, [5, p. 8]. The
estimated skewness under the censored model is about half that of the uncensored model, and
the standard deviation is slightly greater, as is expected. The estimated effect of the boot,
adjusted for age and previous scores becomes significant, a reduction in score of 4.4. The score
at the previous occasion is strongly predictive of the final score. Although the estimated co-
efficients for the first two scores are marginally significant at 5%, these scores cannot both be
omitted. Including an earlier score allows the final score to depend on the rate of improvement
from an earlier score, in addition to the level of the previous score.

The analysis of the residuals, evaluated by truncating at 100 the predicted values above 100,
shows some evidence of asymmetry in the data. In Figure 5 the Healy’s plot is presented when
either the normal distribution (left panel) or the skew-normal distribution (right panel) is fitted
to the residuals of the skew-normal censored model, showing a substantial improvement of the
second model. However, these naive residuals are not independent, and several alternatives
have been studied, including Cox-Snell, martingale, deviance and Schoenfeld residuals. In this
applied context, we think this definition is appropriate for assessing whether the fitted model
is adequate.

A natural comparison is with the censored normal model. In Table 2 panel (c) the details
are presented. The censored normal model has a similar dispersion to the censored skew-
normal and a smaller intercept to accommodate the symmetry. There are no major changes
in the regression coefficients and in their significance levels. Twice the difference in the log-
likelihood is 2.12, which suggests the assumption that the underlying model has normal errors
is adequate. However, the ratio of the skewness parameter, 0.271, to its Wald standard error,
0.118, is 2.3. The likely explanation of the apparent contradiction is that even with the CP, the
profile likelihood for skewness is not near a quadratic. The estimated number of scores above
100 under the two models is 43 for the censored normal and 28 for the censored skew-normal.
Both models underestimate the true number, that is 50, but it is yet another indication that
the censored model is a better model for the data at hand. The naive residuals, observed minus
fitted, from the censored normal distribution have a rather symmetric distribution.
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5 ASSESSING DISTORTION INDUCED BY THE DROP-
OoOUT MECHANISM

Let Z be the binary random variable that takes value 1 if an observation does not drop-out. A
standard model for the drop-out mechanism is the following, [6, 7]:

7= Mx+mn (4)
Y: ﬁTX+7727

with x and Z = I[Z* > 0] always observed and Y observed only if Z* > 0. We assume
Cov(m,n2) =V, with V = {v;;} an unrestricted covariance matrix.

The interest is in estimating the regression coefficient 5 of Y on x in the overall population.
Let v = v1pvy;'. Given that Y is observed only on those patients who did not drop out, the
regression coefficient § evaluated in this selected population is distorted. The amount of the
distortion depends on the correlation between the residuals n; and 7;. Let v1; = o%. Under the
assumption that 7, is Gaussian, see [6, 7]:

ElY | x, 2" > 0] = fx + yo1 A <5—X> : (5)

01

where A(+) = ¢(+)/®(+) is the well-known inverse Mill’s ratio. This equation gives rise to the well-
known two-stage estimating procedure, see [6]. Procedures to estimate the parameters based
on maximum likelihood are also available, see [8] p. 566. Due to colinearity in the explanatory
variables, the estimates are reliable mainly when some zero restrictions are imposed on the
coefficients  and 0. However, several studies have shown that results may depend heavily on
which components are restricted to be zero, a choice that is usually rather arbitrary; see [7] for
the details.

A possible alternative that we pursue here is to give bounds on the distortion induced on
the estimates of 3, when these are estimated from the complete cases only. Let 5(x) and §(x)
be the coefficients of the linear regression function of Y and Z*, respectively, in the selected
population, i.e. in the population with Z* > 0. From the derivations in [9] we know that:

B = B(x) = 7(6 — 6(x)). (6)

Note that, as expected, when 7 = vy, = 0, then G(x) = 3. Since | 0(x) |<| d |, see [11], we
notice that the distortion is bounded in modulo by 7d, so there is no distortion in the j-th
element of 3, i.e. §;, if the corresponding element of ¢§ is zero. Note that the derivations in [9]
are based on the assumption that ¥ and X are jointly Gaussian, but may be easily modified
for 1, being Gaussian and x given. A sketch of the proof is in the Appendix.

As there are repeated measurements, we let W, = (Y}, Zf)T and we assume that W; ~
N (e, Vi), with p; = (8, ;)7 %y, where x; is the vector of all the information available at time
t; Vi = {v;j¢}. Setting v19 = 0, for some ¢, corresponds to the assumption that, for occasion
t, the drop-out mechanism is random in the terminology of Diggle and Kenward [10]. We here
allow V; to be an unrestricted covariance matrix.

For each occasion, we asses which elements of d are significantly different from zero. In
doing so, we force the the pattern of missingness to be monotone. This justifies the choice of
covariates x; as x; = [Xg,y;_1], with xq the relevant covariates at t = 0, first "Age’, Dy, D3, Dy,
and all previous scores, denoted by Y;_;. Table 3 reports the estimated coefficients in the Probit
models. The only covariate which has a significant effect on the probability to drop-out is "Age’,

CRiSM Paper No. 09-39, www.warwick.ac.uk/go/crism



for occasions after 1 and 9 months. This implies that (a) the treatment contrasts are robust
and (b) the effect of age on the first and third occasion, if estimated from the complete cases
only, may be distorted.

If we now focus on the probability of drop-out at 9 months, the estimated coefficient of "Age’
is -0.021 (s.e. 0.009). By taking into account that the oy is not identified in the Probit model,
we see that this corresponds to d Age /o1. This effect is of the same magnitude as the estimated
age effect in the censored normal model, 844, = —0.014. Ignoring for now the random variation
induced by the sampling, the maximum possible distortion on (44 is —0.021v0; = —0.021v5.
It then follows that, if v15 < 0, the negative age effect previously found is larger than the true
one, i.e. if more younger people had responded, the estimated negative effect of age would
decrease in modulo. If instead v15 > 0, then the true effect of age is larger in modulo than the
effect previously found.

6 DISCUSSION

The skew-normal distribution proved to be a useful model for scores taken during the process of
healing. When sufficient time has elapse for many patients to have achieved full recovery, models
which use censoring to allow for the finite range are generally more appropriate. These models
explain a substantial part of the skewness of the distributions, and provide a good estimate of
the proportion of people achieving full health (11.5% as estimate of 13.3% in this example).
Probit regression of the missingness process indicates that the complete case estimates are
robust for the treatment contrast. Future work will jointly model the missingness and score
processes with censored skew-normal models.

APPENDIX

For simplicity let x = x be a single r.v. Let

~ dEY z*
o) - W L7 20

and dE[Z* | x, Z* > 0]
N X, sl
d(z) = T

be the derivatives w.r. x of the nonlinear regression function expressing E[Y | z, Z* > 0] and
E[Z*| z,Z* > 0]. From eq. (5):

Bla) = I gy g B

with u = g—f. Let U ~ N(0,1). We know that Var(U | U > —c¢) = 1 — A(c)[c + A(¢)], which
shows that A(c)[c + A(c)] is bounded between 0 and 1. Therefore, as 20 — —X(u)[u + A(u)],

du
then dE[Y |z, Z*>0] 5
AENZ 20 = gt oy {=A(u)u + A(w)]} 2

= B+7(5(z) — 9).
The last result follows from:

d(z) =0 — {\u)[u+ A(u)]}
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see e.g. [8], p. 522. It then follows that d(x) is always smaller in modulo than § far all z, so
the distortion is null if § = 0. Generalization to x being a vector of r.v.’s follows analogously.
See also [9] Prop. 5(ii).
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Table 1: Summary statistics for FAOS

Month of measurement

Group 0 1 3 9
1. Tubigrip Mean 377 587 68.6 78.3
St.dev. 13.0 19.1 204 20.1
Skew -0.15 -0.11 -0.36 -0.88
2. Plaster-cast Mean 372 649 753 822
St.dev. 13.8 184 179 17.6
Skew 0.32 -0.07 -0.49 -1.34
3. Splints Mean 391 60.1 756 804
St.dev. 19.1 194 189 183
Skew 146 0.13 -0.35 -1.02
4. Boot Mean 41.1 588 T72.6 789
St.dev. 18.9 204 194 20.7
Skew 0.91 -0.09 -0.71 -1.14

Table 2: Maximum likelihood estimates: ordinary and censored skew-normal models, and

censored normal model

@ ®) ©
Uncensored SN Censored SN Censored Normal
Estimate S.E. | Estimate  S.E. | Estimate S.E.
Intercept 35.248 4.553 31.315 4.729 22.727  4.636
D2 -0.579 1.804 -2.177  2.166 -2.019 2.181
D3 -0.822 1.874 -1.234 2.258 -0.696  2.275
D4 -2.670 1.802 -4.433 2.151 -4.324  2.156
Age -0.015 0.060 -0.072 0.071 -0.014  0.072
%0 0.115 0.054 0.103 0.064 0.124  0.065
Y1 0.079 0.049 0.085 0.060 0.119 0.061
Yo 0.519 0.056 0.633 0.059 0.688  0.056
s.d. 13.120 0.519 14.419 0.601 14.431  0.106
skewness -0.520 0.107 -0.271 0.118 0 -
Loglik -1488.99 -1368.387 -1369.447
S.E.: estimated standard error
8
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Table 3: Bias in regression using complete case analyses: Probit fit for missing observations at
1, 3 and 9 months

Missing at 1 month Missing at 3 months Missing at 9 months

Estimate  S.E. p-value | Estimate  S.E. p-value | Estimate S.E. p-value
D2 -0.219 0.181 0.226 -0.061 0.246 0.804 -0.242  0.236 0.305
D3 -0.036 0.174 0.824 0.335 0.235 0.154 0.076  0.225 0.736
D4 -0.197 0.178 0.267 0.001 0.236 0.997 -0.154  0.228 0.499
age -0.013  0.006 0.032 -0.005 0.008 0.550 -0.021  0.009 0.016
Yo -0.008 0.005 0.119 0.002 0.007 0.743 -0.004 0.007 0.606
Y1 0.002 0.008 0.728 0.005 0.006 0.425
Yo -0.004 0.006 0.500

3 8
S =)
S
N
o
= =
-
o
g S
. | | |
o I I Hln o
S S
0 20 40 60 80 20 40 60 80 100
Score at start Score at month 1

<t
o
o ©
o

3 S
S
N
= <
o =
o S
o
: I
o o p— N
S S

20 40 60 80 100 20 40 60 80 100

Score at month 3 Score at month 9

Figure 1: Histograms of FAOS scores
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