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Abstract

We dedicate this paper to Sir John Kingman on his 70th Birthday.

In modern mathematical population genetics the ancestral history of

a population of genes back in time is described by John Kingman’s

coalescent tree. Classical and modern approaches model gene frequencies

by diffusion processes. This paper, which is partly a review, discusses

how coalescent processes are dual to diffusion processes in an analytic

and probabilistic sense.

Bochner (1954) and Gasper (1972) were interested in characterizations

of processes with Beta stationary distributions and Jacobi polynomial

eigenfunctions. We discuss the connection with Wright-Fisher diffusions

and the characterization of these processes. Subordinated Wright-Fisher

diffusions are of this type. An Inverse Gaussian subordinator is inter-

esting and important in subordinated Wright-Fisher diffusions and is

related to the Jacobi Poisson Kernel in orthogonal polynomial theory.

A related time-subordinated forest of non-mutant edges in the Kingman

coalescent is novel.

1.1 Introduction

The Wright-Fisher diffusion process {X(t), t ≥ 0} models the relative

frequency of type a genes in a population with two types of genes a and

A. Genes are subject to random drift and mutation over time. The

generator of the process is

L =
1

2
x(1 − x)

∂2

∂x2
+

1

2

(
− αx + β(1 − x)

) ∂

∂x
, (1.1)

1
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2 R. C. Griffiths and D. Spanó

where the mutation rate A → a is 1
2α and the rate a → A is 1

2β. If α

and β are zero then zero and one are absorbing states where either A or

a becomes fixed in the population. If α, β > 0 then {X(t), t ≥ 0} is a

reversible process with a Beta stationary density

fα,β(y) = B(α, β)−1yα−1(1 − y)β−1, 0 < y < 1. (1.2)

The transition density has an eigenfunction expansion

f(x, y; t) = fα,β(y)
{
1 +

∞∑

n=1

ρθ
n(t)P̃ (α,β)

n (x)P̃ (α,β)
n (y)

}
, (1.3)

where θ = α + β,

ρθ
n(t) = exp

{
− 1

2
n(n + θ − 1)t

}
, (1.4)

and
{
P̃

(α,β)
n (y), n ∈ Z+

}
are orthonormal Jacobi polynomials on the

Beta (α, β) distribution, scaled so that

E

[
P̃ (α,β)

m (Y )P̃ (α,β)
n (Y )

]
= δmn, m, n ∈ Z+

under the stationary distribution (1.2). The Wright-Fisher diffusion is

also known as the Jacobi diffusion because of the eigenfunction expansion

(1.3). The classical Jacobi polynomials, orthogonal on

(1 − x)α(1 + x)β , −1 < x < 1,

can be expressed as

P (α,β)
n (x) =

(α + 1)(n)

n!
2F1(−n, n + α + β + 1; α + 1; (1 − x)/2), (1.5)

where 2F1 is a hypergeometric function. The relationship between the

two sets of polynomials is that

P̃ (α,β)
n (x) = cnP (β−1,α−1)

n (2x − 1),

where

cn =

√
(2n + α + β − 1)(α + β)(n−1)n!

α(n)β(n)
.

Define

L̄ =
1

2

∂2

∂x2
x(1 − x) − ∂

∂x

1

2

(
− αx + β(1 − x)

)
, (1.6)
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Diffusion Processes and Coalescent trees 3

the forward generator of the process. The Jacobi polynomials are eigen-

functions satisfying, for n ∈ Z+,

LP̃ (α,β)
n (x) = −1

2
n(n + θ − 1)P̃ (α,β)

n (x)

L̄fα,β(x)P̃ (α,β)
n (x) = −1

2
n(n + θ − 1)fα,β(x)P̃ (α,β)

n (x). (1.7)

The well known fact that the Jacobi polynomials
{
P̃

(α,β)
n (x)

}
satisfy

(1.7) implies that they are eigenfunctions with corresponding eigenvalues{
ρθ

n(t)
}
.

In modern mathematical population genetics the ancestral history of a

population back in time is described by John Kingman’s elegant coales-

cent process [19]. The connection between the coalescent and Fleming-

Viot diffusion processes is made explicit by Donnelly and Kurtz in [7],

[8] by their lookdown process. An approach by Ethier and Griffiths [10]

uses duality to show that a ’non-mutant lines of descent’ process which

considers a forest of trees back in time to their first mutations is dual

to the Fleming-Viot infinitely-many-alleles diffusion process. The two-

allele process {X(t), t ≥ 0} is recovered from the Fleming-Viot process

by a 2-colouring of alleles in the infinitely-many-alleles model. If there

is no mutation then the dual process is the same as the Kingman coa-

lescent process with an entrance boundary of infinity. The dual process

approach leads to a transition density expansion in terms of the tran-

sition functions of the process which counts the number of non-mutant

lineages back in time. It is interesting to make a connection between

the eigenfunction expansion (1.3) and dual process expansion of the

transition densities of {X(t), t ≥ 0}. Bochner [6] and Gasper [13] find

characterizations of processes which have Beta stationary distributions

and Jacobi polynomial eigenfunctions. Subordinated Jacobi processes

{X
(
Z(t)

)
, t ≥ 0}, where {Z(t), t ≥ 0} is a Lévy process, fit into this

class, because subordination does not change the eigenvectors or the

stationary distribution of the process. The subordinated processes are

jump diffusions. A particular class of importance is when {Z(t), t ≥ 0}
is an Inverse Gaussian process. Griffiths [18] obtains characterizations of

processes with stationary distributions in the Meixner class, as well as for

Jacobi processes. The current paper is partly a review paper describing

connections between Jacobi diffusions, eigenfunction expansions of tran-

sition functions, coalescent trees, and Bochner characterizations. Novel

results describe the subordinated non-mutant lines of descent process

when the subordination is with an Inverse Gaussian process.
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4 R. C. Griffiths and D. Spanó

1.2 A coalescent dual process

A second form of the transition density (1.3) derived in Ethier and Grif-

fiths [10] is

f(x, y; t) =
∞∑

k=0

qθ
k(t)

k∑

l=0

B(l; k, x)fα+l,β+k−l(y), (1.8)

where

B(l; k, x) =

(
l

k

)
xk(1 − x)l−k, k = 0, 1, . . . , l

is the Binomial distribution and
{
qθ
k(t)

}
are the transition functions of

a death process with an entrance boundary of infinity, and death rates

k(k + θ − 1)/2, k ≥ 1. The death process represents the number of non-

mutant ancestral lineages back in time in the coalescent process with

mutation. The number of lineages decreases from k to k − 1 from coa-

lescence at rate
(
k
2

)
or mutation at rate kθ/2. If there is no mutation,

{q0
k(t), t ≥ 0} are transition functions of the number of edges in a King-

man coalescent tree. There is an explicit expression for the transition

functions beginning with the entrance boundary of infinity [16, 21, 17]

of

qθ
k(t) =

∞∑

j=k

ρθ
j (t)(−1)j−k (2j + θ − 1)(k + θ)(j−1)

k!(j − k)!
, (1.9)

recalling that ρθ
n(t) is defined by (1.4). A complex variable represen-

tation of (1.9) is found in [17]. Let {Xt, t ≥ 0} be standard Brownian

motion so Xt is N(0, t). Denote Zt = eiXt and ωt = e−
1
2
θt, then

qθ
k(t) = e

1
8
t Γ(2k + θ)

Γ(k + θ)k!
E

[ (ωtZt)
k(1 − ωtZt)√

Zt(1 + ωtZt)2k+θ

]
, (1.10)

for k = 0, 1, . . .. The transition functions for the process beginning at n,

rather than infinity, are

qθ
nk(t) =

n∑

j=k

ρθ
j (t)(−1)j−k (2j + θ − 1)(k + θ)(j−1)n[j]

k!(j − k)!(n + θ)(j)
, (1.11)

for k = 0, 1, ..., n. An analogous complex variable representation to

(1.10) is

qθ
nk(t) =

Γ(n + θ)Γ(2k + θ)

Γ(k + θ)Γ(n + k + θ)

(
n

k

)
e

1
8
(θ−1)2t

E
[
Z

k+(θ−1)/2
t (1 − Zt)

× 2F1(−n + k + 1, θ + 2k; n + k + θ; Zt)
]

(1.12)
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Diffusion Processes and Coalescent trees 5

for k = 0, 1 . . . , n. The expansion (1.8) is derived from a two-dimensional

dual death process
{
Lθ(t) ∈ Z

2
+, t ≥ 0

}
which looks back in time in the

diffusion process
{
X(t), t ≥ 0

}
. A derivation in this paper is from [9],

which follows more general analytic derivations in [10] for a Fleming-

Viot model and [3] for a diffusion model with selection. Etheridge and

Griffiths [9] give a very clear probabilistic derivation in a Moran model

with selection that provides an understanding of earlier derivations. A

sketch of a derivation of (1.8) from [9] is the following. Let x1 = x, x2 =

1 − x and define for k ∈ Z
2
+

gk(x) =
θ(|k|)

α(k1)β(k2)
xk1

1 xk2

2 ,

then

Lgk(x) =
1

2
(|k| + θ − 1)

[
k1gk−e1

(x) + k2gk−e2
(x) − |k|gk(x)

]
. (1.13)

Here and elsewhere we use the notation |y| =
∑d

j=1 yj for a d-dimensional

vector y. In this particular case |k| = k1 + k2. To obtain a dual process

the generator is regarded as acting on k = (k1, k2), rather than x. The

dual process is a two-dimensional death process {Lθ(t), t ≥ 0} the rates

of which are read off from the coefficients of the functions g on the right

hand side of (1.13);

k → k − ei at rate
1

2

ki

|k| · |k|(|k| + θ − 1). (1.14)

The total size, |Lθ(t)|, is a 1-dimensional death process in which

|k| → |k| − 1 at rate
1

2
|k|(|k| + θ − 1)

with transition functions denoted by
{
qθ
ml(t), t ≥ 0

}
. There is hyperge-

ometric sampling of types which do not die, so

P
(
L(t) = l | L(0) = m

)
= qθ

ml(t) = qθ
|m||l|(t)

(
m1

l1

)(
m2

l2

)
(|m|
|l|

) , (1.15)

where qθ
|m||l|(t) is defined in (1.11). The dual equation obtained by

regarding L as acting on x or k in (1.13) is

EX(0)

[
gL(0)

(
X(t)

)]
= EL(0)

[
gL(t)

(
X(0)

)]
, (1.16)

where expectation on the left is with respect to the distribution of X(t),

and on the right with respect to the distribution of L(t). Partitioning

CRiSM Paper No. 09-40, www.warwick.ac.uk/go/crism



6 R. C. Griffiths and D. Spanó

the expectation on the right of (1.16) by values taken by L(t),

Ex

[(|m|
m1

)
X1(t)

m1X2(t)
m2

]
(1.17)

=

(|m|
m1

)
α(m1)β(m2)

θ(m1+m2)

∑

l≤m

xl1
1 xl2

2

θ(|l|)

α(l1)β(l2)
qθ
|m||l|(t)

(|l|
l1

)
m1[l1]m2[l2]

|m|[|l|]
.

The transition distribution of X(t) now has an expansion derived from

an inversion formula applied to (1.17). Letting m1, m2 → ∞ with

m1/|m| → y1, m2/|m| → y2 gives

f(x, y; t) =
∑

l∈Z
2
+

qθ
|l|(t)

(|l|
l1

)
xl1

1 xl2
2 B(α + l1, β + l2)

−1yl1+α−1
1 yl2+β−1

2 ,

which is identical to (1.8).

The two-allele Wright-Fisher diffusion is a special case of a much more

general Fleming-Viot measure-valued diffusion process which has P(S),

the probability measures on S, a compact metric space, as a state space.

The mutation operator in the process is

(Af)(x) =
θ

2

∫

S

(
f(ξ) − f(x)

)
ν0(dξ),

where ν0 ∈ P(S) and f : S → R. The stationary measure is a Poisson

Dirichlet (Ferguson-Dirichlet) random measure

µ =

∞∑

i=1

xiδξi
,

where {xi} is a Poisson Dirichlet point process, PD(θ), independent of

{ξj} which are i.i.d. ν0 ∈ P(S). A description of the PD(θ) distribution

is contained in Kingman [20].

Denote the stationary distribution of the random measure as

Πθ,ν0
(·) = P(µ ∈ ·).

Ethier and Griffiths [10] derive a transition function expansion for P (t, µ, dν)

with given initial µ ∈ P(S) of

P(t, µ, .) = qθ
0(t)Πθ,ν0

(·)

+

∞∑

n=1

qθ
n(t)

∫

Sn

µn(dx1 × · · · × dxn)

× Πn+θ,(n+θ)−1{nηn(x1,...,xn)+θν0}(·), (1.18)

CRiSM Paper No. 09-40, www.warwick.ac.uk/go/crism



Diffusion Processes and Coalescent trees 7

where ηn(x1, . . . , xn) is the empirical measure of points x1, . . . , xn ∈ S,

ηn(x1, . . . , xn) = n−1(δx1
+ · · · + δxn

).

There is the famous Kingman coalescent process tree [19] behind the

pretty representation (1.18). The coalescent tree has an entrance bound-

ary at infinity and a coalescence rate of
(
k
2

)
while there are k edges in

the tree. Mutations occur according to a Poisson process of rate θ/2

along the edges of the coalescent tree.
{
qθ
n(t)

}
is the distribution of the

number of non-mutant edges in the tree at time t back. The number of

non-mutant edges is the same as the number of edges in a forest where

coalescence occurs to non-mutant edges and trees are rooted back in

time when mutations occur on an edge. If the time origin is at time

t back and there are n non-mutant edges at the origin then the leaves

of the infinite-leaf tree represent the population at t forward in time

divided into relative frequencies of families of types which are either the

n non-mutant types chosen at random from time zero, or mutant types

chosen from ν0 in (0, t). The frequencies of non-mutant families, scaled

to have a total frequency unity, have a Dirichlet distribution with unit

index parameters, and the new mutation families, scaled to have total

frequency unity are distributed according to a Poisson Dirichlet random

measure with rate θ and type measure ν0. The total frequency of new

mutations has a Beta (θ, n − 1) distribution. An extended description

of the tree process is in Griffiths [17].

A d-dimensional reversible diffusion process model for gene frequencies

which arises as a limit from the Wright-Fisher model has a backward

generator

L =
1

2

d∑

i=1

d∑

j=1

xi(δij − xj)
∂2

∂xi∂xj
+

1

2

d∑

i=1

(ǫi − θxi)
∂

∂xi
, (1.19)

where θ = |ǫ|. In this model mutation is parent independent from type

i → j at rate 1
2ǫj , i, j = 1, . . . , d. Assuming that ǫ > 0, the stationary

density is the Dirichlet density

Γ(θ)

Γ(ǫ1) · · ·Γ(ǫd)
xǫ1−1

1 · · ·xǫd−1
d , (1.20)

for x1, . . . xd > 0 and
∑d

1 xi = 1. Griffiths [15] shows that the transition

density in the model has eigenvalues

ρ|n|(t) = e−
1
2
|n|(|n|+θ−1)t

CRiSM Paper No. 09-40, www.warwick.ac.uk/go/crism



8 R. C. Griffiths and D. Spanó

repeated
(|n| + d − 2

|n|

)

times corresponding to eigenvectors
{
Q◦

n(x), n ∈ Z
d−1
+

}
which are multi-

type orthonormal polynomials of total degree |n| in x. As eigenfunctions

the polynomials satisfy

LQ◦
n(x) = −1

2
|n|(|n| + θ − 1)Q◦

n(x). (1.21)

The eigenvalues {ρk(t), k ∈ Z+} do not depend on the dimension d. The

transition density with X(0) = x, X(t) = y has the form

f(x, y, t) = D(y, ǫ)
{
1 +

∞∑

|n|=1

ρ|n|(t)Q|n|(x, y)
}

. (1.22)

The kernel polynomials on the Dirichlet {Q|n|(x, y)} appearing in (1.22)

are defined as

Q|n|(x, y) =
∑

{n:|n| fixed}

Q◦
n(x)Q◦

n(y) (1.23)

for any complete orthonormal polynomial set {Q◦
n(x)} on the Dirichlet

distribution (1.20). If d = 2

Q|n|(x, y) = P̃
(ǫ1,ǫ2)
|n| (x)P̃

(ǫ1,ǫ2)
|n| (y)

where
{
P̃

(ǫ1,ǫ2)
|n| (x)

}
are orthonormal Jacobi polynomials on the Beta

distribution on [0, 1]. In general n is just a convenient index system for

the polynomials since the number of polynomials of total degree |n| is

always the same as the number of solutions of n1 + · · · + nd−1 = |n|,
(|n| + d − 2

|n|

)
.

Q|n|(x, y) is invariant under the choice of which orthonormal polynomial

set is used. The individual polynomials Q◦
n(x) are uniquely determined

by their leading coefficients of degree |n| and Q|n|(x, y). A specific form

is

Q|n|(x, y) = (θ + 2|n| − 1)

|n|∑

m=0

(−1)|n|−m (θ + m)(|n|−1)

m!(|n| − m)!
ξm, (1.24)

CRiSM Paper No. 09-40, www.warwick.ac.uk/go/crism



Diffusion Processes and Coalescent trees 9

where

ξm =
∑

|l|=m

(
m

l

)
θ(m)∏d
1 ǫi(li)

d∏

1

(xiyi)
li . (1.25)

An inverse relationship is

ξm = 1 +

m∑

|n|=1

m[|n|]

(θ + m)(|n|)
Q|n|(x, y). (1.26)

The transition distribution (1.22) is still valid if any or all elements of

ǫ are zero. The constant term in the expansion then vanishes as the

diffusion process is transient and there is not a stationary distribution.

For example, if ǫ = 0,

f(x, y, t) =

d∏

j=1

y−1
j

{ ∞∑

|n|≥d

ρ|n|(t)Q
0
|n|(x, y)

}
, (1.27)

where

Q0
|n|(x, y) = (2|n| − 1)

n∑

m=1

(−1)|n|−m (m)(|n|−1)

m!(|n| − m)!
ξ0
m, (1.28)

with

ξ0
m =

∑

{l:l>0,|l|=m}

(
m

l

)
(m − 1)!

∏d
1(li − 1)!

d∏

1

(xiyi)
li . (1.29)

The derivation of (1.22) is a very classical approach. The same process

can be thought of as arising from a infinite-leaf coalescent tree similar to

the description in the Fleming-Viot infinitely-many-alleles process. The

coalescent rate while there are k edges in the tree is
(
k
2

)
and mutations

occur along edges at rate θ/2. In this model there are d types, 1, 2, . . . , d

and the probability of mutation i → j, given a mutation, is ǫj/θ. This

is equivalent to a d-colouring of alleles in the Fleming-Viot infinitely-

many-alleles model. Think backwards from time t back to time 0. Let

y = (y1, . . . , yd) be the relative frequencies of types in the infinite number

of leaves at the current time t forward and x = (x1, . . . , xd) be the

frequencies in the population at time 0. Let l be the number of non-

mutant edges at time 0 which have families at time t in the leaves of the

tree. Given these l edges let U = (U1, . . . , Ul) be their relative family

sizes in the leaves, and V = (V1, . . . , Vd) be the frequencies of families

derived from new mutations on the tree edges in (0, t). The distribution

of U ⊕ V = (U1, . . . , Ul, V1, . . . , Vd) is D(u ⊕ v, (1, . . . , 1) ⊕ ǫ). The type

CRiSM Paper No. 09-40, www.warwick.ac.uk/go/crism



10 R. C. Griffiths and D. Spanó

of the l lines, and therefore their families, is chosen at random from the

frequencies x. The distribution of the number of non-mutant lines at

time 0 from the population at t is qθ
l (t). The transition density in the

diffusion (1.22) is identical to the mixture distribution arising from the

coalescent

f(x, y, t) =

∞∑

|l|=0

qθ
|l|(t)

∑

{l:|l| fixed}

M(l, x)D(y, ǫ + l), (1.30)

by considering types of non-mutant lines, and adding Dirichlet variables

and parameters according to li non-mutant families being of type i.

M(l, x) is the multinomial distribution describing the choice of the initial

line types from the population at time 0. The expansion when d = 2

corresponds to (1.3). The argument is valid if any elements of ǫ are zero,

considering a generalized Dirichlet distribution D(x, ǫ) where if ǫi = 0,

then Xi = 0 with probability 1.

The algebraic identity of (1.30) and (1.22) is easy to see by expressing

Q|n|(x, y) in terms of {ξm}, then collecting coefficients of ξ|l| in (1.22) to

obtain (1.30). Setting ρ0(t) = 1 and Q0(x, y) = 1, the transition density

is

f(x, y, t) = D(y, ǫ)

∞∑

|n|=0

ρ|n|(t)Q|n|(x, y)

=

∞∑

l∈Z
d

+




∞∑

|n|=|l|

ρ|n|(t)(θ + 2|n| − 1)(−1)|n|−|l| (θ + |l|)(|n|−1)

|l|!(|n| − |l|)!




× D(y, ǫ)ξl(x, y)

=

∞∑

|l|=0

qθ
|l|(t)

∑

{l:|l| fixed}

M(l, x)D(y, ǫ + l). (1.31)

The non-mutant line of descent process with transition probabilities

{qθ
n(t)} appears in all the Wright-Fisher diffusion processes mentioned

in this section as a fundamental dual process. The process does not de-

pend on the dimension of the diffusion, partly because the d-dimensional

process can be recovered from the measure-valued process as a spe-

cial case by colouring new mutations into d classes with probabilities

(ǫ1/θ, ǫ2/θ, . . . , ǫd/θ) with θ =
∑d

j=1 ǫj . It is also interesting to see the

derivation of the d-dimensional transition density expansion as a mix-

ture in terms of {qθ
n(t)} via the orthogonal function expansion of the

transition density in (1.31).

CRiSM Paper No. 09-40, www.warwick.ac.uk/go/crism
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1.3 Processes with Beta stationary distributions and Jacobi

polynomial eigenfunctions

In this section we consider 1-dimensional processes which have Beta sta-

tionary distributions and Jacobi polynomial eigenfunctions, and their

connection with Wright-Fisher diffusion processes. We begin by consid-

ering Bochner [6] and Gasper’s [13] characterization of bivariate Beta

distributions.

A class of bivariate distributions with Beta marginals and Jacobi poly-

nomial eigenfunctions has the form

f(x, y) = fαβ(x)fαβ(y)
{

1 +

∞∑

n=1

ρnP̃ (α,β)
n (x)P̃ (α,β)

n (y)
}

, (1.32)

where {ρn, n ∈ Z+} is called a correlation sequence. The transition

density (1.3) in the Jacobi diffusion has the form of the conditional

density of Y given X = x in (1.32) with ρn ≡ ρθ
n(t). Bochner [6] and

Gasper [13] worked on characterizations of sequences {ρn} such that the

expansion (1.32) is positive, and thus a probability distribution. It is

convenient to normalize the Jacobi polynomials by taking

R(α,β)
n (x) =

P̃
(α,β)
n (x)

P̃
(α,β)
n (1)

so that R
(α,β)
n (1) = 1; denote

h−1
n = E

[
R(α,β)

n (X)2
]

=
(2n + α + β − 1)(α + β)(n−1)β(n)

α(n)n!
,

and write

f(x, y) = fαβ(x)fαβ(y)
{
1 +

∞∑

n=1

ρnhnR(α,β)
n (x)R(α,β)

n (y)
}
. (1.33)

Bochner [6] defined a bounded sequence {cn} to be positive definite with

respect to the Jacobi polynomials if
∑

n≥0

anhnR(α,β)
n (x) ≥ 0,

∑

n≥0

|an|hn < ∞

implies that
∑

n≥0

ancnhnR(α,β)
n (x) ≥ 0.

Then {ρn} is a correlation sequence if and only if it is a positive definite
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sequence. The only if proof follows from

∑

n≥0

anρnR(α,β)
n (x) = E




∑

n≥0

anhnR(α,β)
n (Y ) | X = x


 ≥ 0,

where (X, Y ) has the distribution (1.33). The if proof follows at least

heuristically by noting that

∑

n≥0

hnR(α,β)
n (x)R(α,β)

n (y) =
δ(x − y)

fα,β(x)
≥ 0,

where δ(·) has a unit point mass at zero, so if {ρn} is a positive definite

sequence then
∑

n≥0

ρnhnR(α,β)
n (x)R(α,β)

n (y) ≥ 0

and (1.33) is non-negative. A careful proof is given in [14].

Under the conditions that

α < β and either 1/2 ≤ α or α + β ≥ 2, (1.34)

it is shown in [13] that a sequence ρn is positive definite if and only if

ρn = E
[
R(α,β)

n (Z)
]

(1.35)

for some random variable Z in [0, 1]. If the conditions (1.34) do not hold

then there exist x, y, z such that K(x, y, z) < 0. The sufficiency rests on

showing that under the conditions (1.34) for x, y, z ∈ [0, 1],

K(x, y, z) =

∞∑

n=0

hnR(α,β)
n (x)R(α,β)

n (y)R(α,β)
n (z) ≥ 0. (1.36)

The sufficiency of (1.35) is then clear by mixing over a distribution for

Z in (1.36) to get positivity. The necessity follows by setting x = 1 in

ρnR(α,β)
n (x) = E

[
R(α,β)

n (Y ) | X = x
]
,

and recalling that R
(α,β)
n (1) = 1, so that Z is distributed as Y conditional

on X = 1. This implies that extreme correlation sequences in exchange-

able bivariate Beta distributions with Jacobi polynomial eigenfunctions

are the scaled Jacobi polynomials
{
R

(α,β)
n (z), z ∈ [0, 1]

}
. Bochner [6]

was the original author to consider such problems for the ultraspherical

polynomials, essentially orthogonal polynomials on Beta distributions

with equal parameters.

A characterization of reversible Markov processes with stationary Beta
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distribution and Jacobi polynomial eigenfunctions, from [13], under (1.34),

is that they have transition functions of the form

f(x, y; t) = fαβ(y)
{

1 +

∞∑

n=1

cn(t)hnR(α,β)
n (x)R(α,β)

n (y)
}
, (1.37)

with cn(t) = exp{−dnt}, where

dn = σn(n + α + β − 1) +

∫ 1−

0

1 − R
(α,β)
n (z)

1 − z
ν(dz), (1.38)

σ ≥ 0, and ν is a finite measure on [0, 1). If ν(·) ≡ 0, a null measure,

then f(x, y; t) is the transition function of a Jacobi diffusion.

Eigenvalues of a general reversible time-homogeneous Markov process

with countable spectrum must satisfy Bochner’s consistency conditions:

(i) {cn(t)} is a correlation sequence for each t ≥ 0,

(ii) cn(t) is continuous in t ≥ 0,

(iii) cn(0) = c0(t) = 1, and

(iv) cn(t + s) = cn(t)cn(s) for t, s ≥ 0.

If there is a spectrum {cn(t)} with corresponding eigenfunctions {ξn}
then

cn(t + s)ξn

(
X(0)

)
= E

[
ξn

(
X(t + s)

)
| X(0)

]

= E

[
E
[
ξn

(
X(t + s)

)
| X(s)

]
| X(0)

]

= cn(t)E
[
ξn

(
X(s)

)
| X(0)

]

= cn(t)cn(s)ξn

(
X(0)

)
,

showing (iv). If a stationary distribution exists and X(0) has this distri-

bution then the eigenfunctions can be scaled to be orthonormal on this

distribution and the eigenfunction property is then

E

[
ξm

(
X(t)

)
ξn

(
X(0)

)]
= cn(t)δmn.

{X(t), t ≥ 0} is a Markov process such that the transition distribution

of Y = X(t) given X(0) = x is

f(x, y; t) = f(y)
{
1 +

∞∑

n=1

cn(t)ξn(x)ξn(y)
}

, (1.39)

where f(y) is the stationary distribution. In our context {ξn} are the

orthonormal Jacobi polynomials. A Jacobi process {X(t), t ≥ 0} with
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14 R. C. Griffiths and D. Spanó

transition distributions (1.37) can be constructed in the following way,

which is analogous to constructing a general Lévy process from a com-

pound Poisson process. Let {Xk, k ∈ Z+} be a Markov chain with sta-

tionary distribution fαβ(y) and transition distribution of Y given X = x

corresponding to (1.32), with (1.34) holding, and {N(t), t ≥ 0} be an

independent Poisson process of rate λ. Then (X0, Xk) has a correlation

sequence {ρk
n} and the transition functions of X(t) = XN(t) have the

form (1.39), with

dn = λ

∫ 1

0

(
1 − R(α,β)

n (z)
)
µ(dz), (1.40)

where µ is a probability measure on [0, 1]. The general form (1.38) is

obtained by choosing a pair (λ, µλ) such that

dn = lim
λ→∞

λ

∫ 1

0

(
1−R(α,β)

n (z)
)
µλ(dz) =

∫ 1

0

1 − R
(α,β)
n (z)

1 − z
ν(dz). (1.41)

Equation (1.41) agrees with (1.38) when any atom ν({1}) is taken out

of the integral because

lim
z→1

1 − R
(α,β)
n (z)

1 − z
= cn(n + θ − 1),

where c ≥ 0 is a constant.

1.4 Subordinated Jacobi diffusion processes

Let {X(t), t ≥ 0} be a process with transition functions (1.37), and

{Z(t), t ≥ 0} be a non-negative Lévy process with Laplace transform

E
[
e−λZ(t)

]
= exp

{
−t

∫ ∞

0

1 − e−λy

y
H(dy)

}
, (1.42)

where λ ≥ 0 and H is a finite measure. The subordinated process

{X̃(t) = X(Z(t)), t ≥ 0} is a Markov process which belongs to the same

class of processes with correlation sequences

c̃n(t) = E
[
cn

(
Z(t)

)]
= exp

{
−t

∫ ∞

0

1 − e−dny

y
H(dy)

}
, (1.43)

where H is a finite measure. c̃n(t) necessarily has a representation as

e−d̃nt, where d̃n has the form (1.41) for some measure ν̃. We describe

the easiest case from which the general case can be obtained as a limit.
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Suppose

λ =

∫ ∞

0

H(dy)

y
< ∞,

and write

G(dy) =
H(dy)

λy
,

so that G is a probability measure. Let

K(dz) = fαβ(z)dz
{
1 +

∞∑

n=1

hnR(α,β)
n (z)

∫ ∞

0

e−dnyG(dy)
}

.

Then K is a probability measure and

λ

∫ 1

0

(
1 − R(α,β)

n (z)
)
K(dz) = λ

∫ ∞

0

(
1 − e−dny

)
G(dy).

The representation (1.41) is now obtained by setting

ν̃(dz) = λ(1 − z)K(dz).

We now consider subordinated Jacobi diffusion processes. The subor-

dinated process is no longer a diffusion process because {Z(t), t ≥ 0}
is a jump process and therefore {X̃(t), t ≥ 0} has discontinuous sample

paths. It is possible to construct processes such that (1.43) holds with

dn = n by showing that e−tn is a correlation sequence and thus so is

E
[
e−Z(t)n

]
. The construction follows an idea in [6]. The Jacobi Poisson

kernel in orthogonal polynomial theory is

1 +

∞∑

n=1

rnhnR(α,β)
n (x)R(α,β)

n (y), (1.44)

which is non-negative for all α, β > 0, x, y ∈ [0, 1], and 0 ≤ r ≤ 1, for

which see [1], p112. The series (1.44) is a classical one evaluated early in

research on Jacobi polynomials (see [2]). In terms of the original Jacobi

polynomials (1.5)

∞∑

n=0

rnφnP (α,β)
n (x)P (α,β)

n (y)

=
Γ(α + β + 2)(1 − r)

2α+β+1Γ(α + 1)Γ(β + 1)(1 + r)α+β+2

×
∞∑

m,n=0

(
(α + β + 2)/2

)
(m+n)

(
(α + β + 3)/2

)
(m+n)

(α + 1)(m)(β + 1)(m)m!n!

(
a2

k2

)m (
b2

k2

)n

,

(1.45)
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16 R. C. Griffiths and D. Spanó

where

φ−1
n =

2α+β+1

2n + α + β + 1

Γ(n + α + 1)Γ(n + β + 1)

Γ(n + 1)Γ(n + α + β + 1)
,

x = cos 2ϕ, y = cos 2θ, a = sin ϕ sin θ, b = cosϕ cos θ, k = (r1/2 +

r−1/2)/2. The series (1.45) is positive for −1 ≤ x, y ≤ 1, 0 ≤ r < 1 and

α, β > −1.

A Markov process analogy to the Jacobi Poisson kernel is when the

eigenvalues cn(t) = exp{−nt}. Following [6] let X̃(t) = X
(
Z(t)

)
, where

{Z(t), t ≥ 0} is a Lévy process with Laplace transform

E

[
e−λZ(t)

]

= exp
{
− t

[√
2λ + (θ − 1)2/4 −

√
(θ − 1)2/4

]}
(1.46)

= exp
{
− t√

2π

∫ ∞

0

e−x(θ−1)2/8

x3/2

(
1 − e−xλ

)
dx

}
.

{Z(t), t ≥ 0} is a tilted positive stable process with index 1
2 such that

Z(t) has an Inverse Gaussian density

IG
( 2t

|θ − 1| , t
2
)
, θ 6= 1,

that is
t√

2πz3
exp

{
− 1

2z

( |θ − 1|
2

z − t
)2}

, z > 0. (1.47)

The usual stable density is obtained when θ = 1 and (1.47) is a tilted

density in the sense that it is proportional to exp
{
− z(θ− 1)2/8

}
times

the stable density. See [12] XIII, §11, Problem 5 for an early derivation.

Z(t) is distributed as the first passage time

Tt = inf
{

u > 0; B(u) +
|θ − 1|

2
u = t

}
,

where
{
B(u), u ≥ 0

}
is standard Brownian motion. The eigenvalues of

X̃(t) are

c̃n(t) = E

[
exp

{
− 1

2
n(n + θ − 1)Z(t)

}]

= exp
{
− t

[√
n(n + θ − 1) + (θ − 1)2/4 −

√
(θ − 1)2/4

]}

= exp
{
− t

[
n + (θ − 1)/2 − |θ − 1|/2

]}

=

{
exp{−nt} if θ ≥ 1

exp{−nt} × exp{t(1 − θ)} if θ < 1.
(1.48)
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The process {X̃(t), t ≥ 0} is a jump diffusion process, discontinuous at

the jumps of {Z(t), t ≥ 0}. Jump sizes increase as θ decreases. If θ < 1

then for n ≥ 1

E

[
exp

{
− 1

2
n(n + θ − 1)Z(t)

}]
= exp{−nt} × exp{t(1 − θ)},

so subordination does not directly produce eigenvalues e−nt. Let f̃(x, y; t)

be the transition density of X̃(t), then the transition density with eigen-

values exp{−nt}, n ≥ 0 is

e−t(1−θ)f̃(x, y; t) +
(
1 − e−t(1−θ)

)
fαβ(y).

The subordinated process with this transition density is X(Ẑ(t)), where

Ẑ(t) is a similar process to Z(t) but has an extra state infinity. Z(t) is

killed by a jump to infinity at a rate (1− θ). Another possible construc-

tion does not kill the process X̃, but restarts it in a stationary state

drawn from the Beta distribution. It is convenient to use the notation

that a process {Z◦(t), t ≥ 0} is {Z(t), t ≥ 0} if θ ≥ 1, or {Ẑ(t), t ≥ 0}
if 0 < θ < 1 and use the single notation {X(Z◦(t)), t ≥ 0} for the sub-

ordinated process. The transition density (1.37), where cn(t) has the

general form

exp

{
−t

∫ ∞

0

(
1 − e−ny

)

y
H(dy)

}
,

can then be obtained by a composition of subordinators from the Jacobi

diffusion with any α, β > 0.

There is a question as to which processes with transition densities

(1.37) and eigenvalues cn(t) described by (1.38) are subordinated Jacobi

diffusion processes. We briefly consider this question. Substituting

R(α,β)
n (y) = 2F1(−n, n + θ − 1; β; 1 − y)

in the eigenvalue expression (1.38),

∫ 1−

0

1 − R
(α,β)
n (y)

1 − y
ν(dy)

= −c

n∑

k=1

(−n)(k)(n + θ − 1)(k)

β(k)

µk−1

k!

= −c

n∑

k=1

∏k−1
j=0

(
− n(n + θ − 1) + j(j + θ − 1)

)

β(k)

µk−1

k!
,
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18 R. C. Griffiths and D. Spanó

where
∫ 1−

0 (1−y)kν(dy) = cµk. The generator corresponding to a process

with these eigenvalues is

L̂ = c

∞∑

k=1

∏k−1
j=0

(
2L + j(j + θ − 1)

)

β(k)

µk−1

k!
,

where L is the Jacobi diffusion process generator (1.1). The structure

of the class of stochastic processes with the generator L̂ needs to be

understood better. It includes all subordinated Jacobi diffusion pro-

cesses, but it seems to be a bigger class. A process with generator L̂ is

a subordinated Jacobi diffusion process if and only if the first derivative

of

−
∞∑

k=1

∏k−1
j=0

(
− 2λ + j(j + θ − 1)

)

β(k)

µk−1

k!
(1.49)

is a completely monotone function of λ. Factorizing

−2λ + j(j + θ − 1) = (j + r1(λ))(j + r2(λ)),

where r1(λ), r2(λ) are

(θ − 1)/2 ±
√

2λ + (θ − 1)2/4,

(1.49) is equal to

−
∫ 1−

0

[
2F1(r1(λ), r2(λ); β; 1 − y) − 1

]
(1 − y)−1ν(dy). (1.50)

1.5 Subordinated coalescent process

Subordinating the Jacobi diffusion process {X(t), t ≥ 0} leads to subor-

dinating the coalescent dual process, which we investigate in this section.

A subordinated process {X̃(t) = X(Z(t)), t ≥ 0} has a similar form for

the transition density as (1.8), with qθ
l (t) replaced by E(qθ

l (Z(t)), which

are transition functions of the subordinated death process Aθ(Z(t)). The

subordinated process comes from subordinating the forest of non-mutant

lineages in a coalescent tree.

If Ãθ(t) = Aθ(Z◦(t)), with Z◦(t) defined in the last section, we will

show that the probability distribution of Ãθ(t), θ > 0 is
(

2k + θ − 1

k

)( z

1 + z

)k( 1

1 + z

)k+θ

(1 − z), (1.51)

for k ∈ Z+, where z = e−t. The distribution (1.51) is the distribution of

the number of edges in a time-subordinated forest. Note that if 0 < θ < 1
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we still invoke a subordinator with a possible jump to infinity at rate

1 − θ, so

E
[
qθ
k(Z◦(t))

]
= e−(1−θ)t

E
[
qθ
k(Z(t))

]
+ (1 − e−(1−θ)t)δk0,

because qθ
k(∞) = δk0. Although θ is greater than zero in (1.51), it is

interesting to consider the subordinated Kingman coalescent with no

mutation. Then A0(t) ≥ 1, and

E
[
q0
k(Z◦(t))

]
= e−t

E
[
q0
k(Z(t))

]
+ (1 − e−t)δk1,

because a jump to infinity is made at rate 1, and q◦k(∞) = δk1. The

distribution of Ã0(t) is then, for k ≥ 1,
(

2k − 1

k

)( z

1 + z

)k( 1

1 + z

)k

(1 − z) + δk1(1 − z). (1.52)

The proof of (1.51) (θ > 0) and (1.52) (with θ = 0) follows directly from

the expansion (1.9).

E
[
qθ
k(Z◦(t))

]
=

∞∑

j=k

zj(−1)j−k (2j + θ − 1)(k + θ)(j−1)

k!(j − k)!

=
Γ(2k + θ)

k!Γ(k + θ)
zk

×




1 +

∞∑

j=1

(−1)j(2j + 2k + θ − 1)
(2k + θ)(j−1)

j!
zj






=
Γ(2k + θ)

k!Γ(k + θ)
zk(1 − z)(1 + z)−(2k+θ)

=

(
2k + θ − 1

k

)( z

1 + z

)k( 1

1 + z

)k+θ

(1 − z). (1.53)

Effectively in the expansion (1.9) of qθ
k(t), terms ρj(t) = exp{− 1

2j(j +

θ − 1)t} are replaced by zj = exp{−jt}. The third line of (1.53) follows

from the identity, with |z| < 1 and α = 2k + θ, that

(1 − z)(1 + z)−α = 1 +

∞∑

j=1

(−1)j(2j + α − 1)
α(j−1)

j!
zj ,

proved by equating coefficients of zj on both sides. Of course for any

|z| < 1 since (1.51) is a probability distribution

∞∑

k=0

(
2k + θ − 1

k

)( z

1 + z

)k( 1

1 + z

)k+θ

(1 − z) = 1. (1.54)
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The probability generating function of (1.51) is

GÃθ(t)(s) =
(1 − 4pqs

1 − 4pq

)− 1
2
(1 −√

1 − 4pqs

2ps

)θ−1

, θ > 0, (1.55)

where p = e−t/(1 + e−t) and q = 1/(1 + e−t). The calculation needed

to show (1.55) comes from the identity

∞∑

k=0

(
2k + θ − 1

k

)
wk = 2θ−1

(
1 +

√
1 − 4w

)−(θ−1)

√
1 − 4w

, (1.56)

which is found by substituting

w =
z

(1 + z)2
or z =

1 −
√

1 − 4w

1 +
√

1 − 4w

in (1.54), then setting

w =
sz

(1 + z)2

in (1.56). The calculations used in obtaining the distribution and prob-

ability generating function are the same as those used in obtaining the

formula (1.10) in Griffiths [17]. There is a connection with a simple

random walk on Z with transitions j → j + 1 with probability p and

j → j− 1 with probability q = 1− p and q ≥ p. Let the number of steps

to hit −θ, starting from 0 be ξ. Then ξ has a probability generating

function of

H(s) =
( 1 −

√
1 − 4pqs2

2ps

)θ

and 1
2 (ξ + θ) has a probability generating function

K(s) =
( 1 −√

1 − 4pqs

2p

)θ

.

Ãθ(t) + θ has the same distribution as the size-biased distribution of
1
2 (ξ + θ), with probability generating function

GÃθ(t)(s) =
sK ′(s)

K ′(1)
,

identical to (1.55). In the random walk interpretation θ is assumed to

be an integer, however H(s) is infinitely-divisible, so we use the same

description for all θ > 0. Another interpretation is that K(s) is the

probability generating function of the total number of progeny in a

Galton-Watson branching process with geometric offspring distribution
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qpk, k ∈ Z+, and extinction probability 1, beginning with θ individu-

als. See [11] Chapters X13 and XII5 for details of the random walk and

branching process description. An analogous calculation to (1.53) which

is included in Theorem 2.1 of [17] is that

P

(
Ãθ(s + t) = j | Ãθ(s) = i

)

=

(
i

j

)
Γ(i + θ)Γ(2j + θ)

Γ(j + θ)Γ(i + j + θ)
zj(1 − z)

× 2F1(−i + j + 1, 2j + θ; i + j + θ; z), (1.57)

where z = e−t. The jump rate from i → j found from (1.57) is
(

i

j

)
Γ(i + θ)Γ(2j + θ)

Γ(j + θ)Γ(i + j + θ)
2F1(−i + j + 1, 2j + θ; i + j + θ; 1),

=

(
i

j

)
B(j + θ, i − j)−1

∫ 1

0

x2j+θ−1(1 − x)2(i−j)−2 dx

=





(
i
j

)Γ(2i−2j−1)Γ(2j+θ)Γ(i+θ)
Γ(i−j)Γ(j+θ)Γ(2i+θ−1) j = i − 1, i − 2, . . .

Γ(2j+θ)
Γ(j+θ)j!

(
1
2

)2j+θ

if i = ∞.
(1.58)

Bertoin [4],[5] studies the genealogical structure of trees in an infinitely-

many-alleles branching process model. In a limit from a large initial

population size with rare mutations the genealogy is described by a con-

tinuous state branching process in discrete time with an Inverse Guas-

sian reproduction law. We expect that there is a fascinating connection

with the process {Ãθ(t), t ≥ 0}. A potential class of transition functions

of Markov processes {q̂θ
k(t), t ≥ 0} which are more general than subor-

dinated processes and related to Bochners’ characterization come from

replacing by ρθ
n(t) by cn(t) described by (1.38), however it is not clear

that all such potential transition functions are positive, apart from those

derived by subordination.
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Department of Statistics

University of Warwick

Coventry CV4 7AL, UK

D.Spano@warwick.ac.uk

CRiSM Paper No. 09-40, www.warwick.ac.uk/go/crism


