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Adaptive Monte Carlo for Binary Regression with Many

Regressors

D. Lamnisos∗, J. E. Griffin† and M. F. J. Steel∗

Abstract

This article describes a method for efficient posterior simulation for Bayesian vari-
able selection in probit regression models with many regressors but few observations.
A proposal on model space is described which contains a tuneable parameter. An
adaptive approach to choosing this tuning parameter is described which allows auto-
matic, efficient computation in these models. The methods is applied to the analysis
of gene expression data.

1 INTRODUCTION

There are many problems that amount to the selection of a few variables, from a much
larger set, with the aim of discriminating between two classes. For example, measurements
of gene expression may be taken in a microarry experiment with the goal of finding a small
subset of the genes that allow discrimination between two conditions such as disease or
non-diseased, or two types of cancer. The standard approach compares the gene expression
levels for the two groups on a gene-by-gene basis (see e.g. Dudoit et al, 2002). In this
paper the problem is seen as variable selection in a probit regression model in a Bayesian
framework (see e.g. Lee et al (2003), Sha et al (2003, 2004) and Yeung et al (2005)). This
approach takes into account correlations between the variables and provides a measure of
uncertainty in the choice of variables which also extends to any predictions. A Markov
chain Monte Carlo (MCMC) method is used for posterior inference and our goal is to
automatically produce a Markov chain with good mixing properties which gives accurate
answers with the smallest possible run length. Alternative methods of estimation have
been proposed. Variational methods for binary regression models with Gaussian priors
have been discussed by e.g. Jaakola and Jordan (2000). Variable selection using sparsity-
inducing priors have been discussed by e.g. Qi and Jaakola (2007).

Markov chain Monte Carlo (MCMC) has become the main tool for simulating from
a target distribution, π(x), which in our case will be a posterior distribution. One of
the simplest such methods is the Random Walk Metropolis-Hastings (RWM) sampler,
which generates a Markov chain whose marginal distribution is π(x). Suppose that xn

is the current value of the chain, a potential new value of the chain, x′, is proposed as
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x′ = xn +εn where εn is a random perturbation drawn from some distribution (often taken
to be normal) with mean zero and standard deviation σ. The potential value is accepted
as the next value of the chain xn+1 = x′ or rejected xn+1 = xn with a probability given by
the Metropolis-Hastings acceptance ratio. This method is popular because careful tuning
of σ leads to the optimal RWM sampler and it can be combined with Gibbs sampling to
produce simulation schemes for a wide-range of models. For many target distributions,
the optimal RWM sampler occurs when the average acceptance probability τ̄ is 0.234
(see e.g. Roberts and Rosenthal, 2001 and Sherlock and Roberts, 2009). Tuning of the
algorithm is simple since τ̄ will typically fall as the standard deviation σ is increased. The
average acceptance rate τ̄ can be estimated from pilot runs with a fixed value of σ and
the standard deviation can be adjusted so that the estimated τ̄ is close to 0.234.

Recently, there has been interest in adaptive Monte Carlo methods where the distri-
bution of the proposal, x′, is adjusted during the MCMC run. These methods are difficult
to implement in general since the Markov property is violated and standard theory for
convergence of the chain to the target distribution does not apply. However, convergence
to the target distribution can be verified for particular forms of adjustment. The first
adaptive algorithm that could be shown to converge to the target distribution was intro-
duced by Haario et al (2001) who used methods from Stochastic Approximation. This
important idea and other methods are reviewed by Andrieu and Thoms (2008).

This paper is concerned with extending these methods to problems in variable selection
with many regressors. The posterior distribution will be complicated and vast (there will
be 2p potential models if there are p potential regressors). Adaptive methods are important
because MCMC methods often mix slowly (and so proposals that encourage good mixing
are important) and the running of many pilot runs is unsatisfactory due to the large
number of iterations needed to give good estimates of posterior summaries. Such methods
have been previously applied to variable selection problems by Nott and Kohn (2005).
They allow the probability that a particular variable is proposed to be included in or
removed from the model to adapt over the chain. This is rather different to the method
developed here where the number of variables, rather than which variables, is adapted
over the chain. The method uses a form of proposal for variable selection described by
Lamnisos et al (2009) which can be tuned in a similar way to an RWM sampler.

The paper is organised as follows: Section 2 describes the Bayesian approach to variable
selection and some MCMC algorithms for posterior exploration, Section 3 describes a
tuneable proposal for variable selection problems, Section 4 describes adaptive versions of
the algorithms, Section 5 includes some numerical examples that demonstrate the utility
of the approach and Section 6 includes some concluding comments.

2 BAYESIAN VARIABLE SELECTION

Let y1, y2, . . . , yn be observations taking values 0 and 1 where the i-th observation is
associated with a set of p regressors xi1, xi2, . . . , xip. In this paper, it is assumed that p is
much larger than n. For example, yi could be the disease status of the i-th patient and
xi1, xi2, . . . , xip is a vector of gene expression measurements or proteomic measurements
(see e.g. Lee et al (2003), Sha et al (2003, 2004) and Yeung et al (2005)). It is assumed
that only a subset of the regressors are needed to predict yi and we use the indicator
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variables γ1, γ2, . . . , γp to represent whether the i-th regressor is included in the model
(γi = 1 if a regressor is included and γi = 0 otherwise). Let pγ =

∑p
i=1 γi be the size of

model γ. It is assumed that observations are generated by the probit model:

p(yi = 1) = Φ(α + xγ
i βγ),

where Φ is the cumulative distribution function of the standard normal distribution, xγ
i

is a vector containing only the elements of xi for which γi = 1 and βγ is a pγ-dimensional
vector of regression coefficients We also define Xγ to be the submatrix of X which only
includes those columns for which γi = 1. Within a Bayesian analysis, both βγ and γ are
given prior distributions. The regression coefficients are assumed to be βγ |γ ∼ N(0, Vγ)
where Vγ might follow the so-called g-prior form Vγ = c(X ′

γXγ)−1 or the independent form
Vγ = cI where I is the identity matrix and c is a positive scalar. The prior assumes that
p(γi = 1) = w which implies that the number of included variables is binomially distributed
with mean nw and variance nw(1−w). The hyperparameter w can be interpreted as the
prior probability of including a variable in the model.

The posterior distribution of γ and θγ = (α, βγ) is not available analytically and so
computational methods are needed. Markov chain Monte Carlo methods are a popular
class of algorithms to fit the model. Several methods have been proposed in the literature.
Holmes and Held (2006) describe one algorithm, which uses data augmentation with a
vector z based on a representation described in Albert and Chib (1993):

1. Generate z = (z1, z2, . . . , zn)′ where zi ∼ N(α + xγ
i βγ , 1) where zi > 0 if yi = 1 or

zi < 0 if yi = 0.

2. Select model γ′ with probability q(γ′|γ).

3. Jump to the model γ′ with probability

α(γ, γ′) = min
{

1,
π(γ′)q(γ|γ′)π(z|γ′)
π(γ)q(γ′|γπ(z|γ)

}
.

4. If the jump is accepted, draw a sample θγ′ ∼ N((XT
γ′Xγ′ + V −1

γ′ )−1XT
γ′z, (XT

γ′Xγ′ +
V −1

γ′ )−1).

Alternatively, one can update γ and θγ jointly. Green (2003) describes an Automatic
Generic Sampler which is extended by Lamnisos et al (2009).

1. Draw a sample θγ ∼ N((XT
γ Xγ + V −1

γ )−1XT
γ z, (XT

γ Xγ + V −1
γ )−1).

2. Select model γ′ with probability q(γ′|γ).

3. Propose θγ′ in the following way. Let µγ and Σγ be an approximation of the mean and
variance of the posterior distribution of θγ and let Bγ be the Cholesky decomposition
of Σγ and v = B−1

γ (θγ − µγ). Then we propose θγ′ = µγ′ + Bγ′v
′ where

v′ =





(v1, . . . , vpγ′ )
T if pγ′ < pγ

v if pγ′ = pγ

(vT, εT)T if pγ′ > pγ

where ε = (ε1, . . . , εpγ′−pγ )T has i.i.d. N(0, 1) elements.
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4. Jump to the model γ′ and parameter θγ′ with probability α(γ, γ′, θγ , θγ′) =

min
{

1,
π(γ′, θγ′)q(γ|γ′)π(y|θγ′)|Bγ′ |

π(γ, θ)q(γ′|γ)π(y|θγ)|Bγ | ×K

}
(1)

where

K =





(2π)−
1
2
(pγ−pγ′ ) exp

{−1
2(ε′)T(ε′)

}
if pγ′ < pγ

1 if pγ′ = pγ

(2π)−
1
2
(pγ−pγ′ ) exp

{
1
2εTε

}
if pγ′ > pγ ,

and ε′ is the obvious counterpart of ε.

5. Generate z1, z2, . . . , zn where zi ∼ N(α + xγ
i βγ , 1) where zi > 0 if yi = 1 or zi < 0 if

yi = 0.

There are several methods of finding µγ and Σγ . Two are considered in this paper: the
Laplace approximation and the Iterated Weighted Least Squares (IWLS) approximation
for one iteration (see Lamnisos et al (2009) for more details).

Alternative automatic methods for moving between models are described by Brooks
et al (2003) which are applied in this context by Lamnisos et al (2009). In the case of
proposals that increase the model size, the coefficient vector is completed with uγ(υ) =
µ+συ where υ has a standard normal distribution. The Conditional Maximization method
chooses µ to maximize the posterior distribution π((θγ , uγ)|y) with respect to uγ . The
variance, σ2, is chosen to ensure that the acceptance probability of the move with uγ(υ) =
µ is 1 and is given by

σ =

(
π(y|θγ , γ) π(γ) q(γ′|γ) c(pγ′−pγ)/2 exp µTµ

2c

π(y|(θγ , µ), γ′)π(γ′)q(γ|γ′)

) 1
pγ′−pγ

.

Here

α(γ, γ′, θγ , θγ′) = min
{

1,
π(y|θγ′ , γ

′) π(γ′) q(γ|γ′)
π(y|θγ , γ)π(γ)q(γ′|γ)

B

}
(2)

where

B = exp
{

1
2

[
υTυ − (µ + σv)T(µ + σv)/c

]}(
σ2

c

) pγ′−pγ

2

.

The pseudocode representation of the Conditional Maximization method is as follows:
If at iteration t the current state is (θ(t)

γ , γ), then

1. Draw a sample θγ ∼ N((XT
γ Xγ + V −1

γ )−1XT
γ z, (XT

γ Xγ + V −1
γ )−1).

2. Select model γ′ with probability q(γ′|γ).

3. Determine the location µ and the scale σ of the proposal random variable uγ as
described above.

4. Generate uγ ∼ Npγ′−pγ (µ, σ2Ipγ′−pγ ).
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5. Set θγ′ = (θ(t)
γ , uγ).

6. Jump to the model γ′ and set θ
(t+1)
γ′ = θγ′ with probability given by (2). Otherwise

set θ
(t+1)
γ = θ

(t)
γ .

7. Generate z1, z2, . . . , zn where zi ∼ N(α + xγ
i βγ , 1) where zi > 0 if yi = 1 or zi < 0 if

yi = 0.

3 A TUNEABLE PROPOSAL ON MODEL SPACE

Lamnisos et al (2009) propose a new general model proposal qζ(γ′|γ) which draws a new
model in the following way:

1. A value N (t) is generated from a Binomial distribution with N −1 trials and success
probability ζ.

2. One of three possible moves: Add, Delete and Swap is chosen uniformly at random.
If Add is selected then N (t) + 1 regressors are chosen to be added to those included
in γ to form γ′, if Delete is selected then N (t)+1 regressors are chosen to be removed
from the model and if Swap is selected then N (t) +1 regressors are swapped without
changing the model size (provided pγ ≥ N (t) + 1; if not, the Add step is chosen).

This model proposal combines local moves with more global ones by changing simulta-
neously a block of variables. Two parameters determine this proposal: N is the maximum
number of variables that can be changed from the current model γ and ζ determines the
degree of “localness” since the mean number of variables changed is 1−ζ +Nζ. The value
of N will usually be fixed and the parameter ζ chosen to control the mixing of the chain.
The application of this proposal to microarray data by Lamnisos et al (2009) suggests
that the optimum effective sample size is obtained when the average acceptance rate fall
in the range 0.25 to 0.40. This is true for a wide-range of sampling schemes. Rather like
RWM samplers, this optimal choice of acceptance rate can be achieved by carefully tuning
the parameter ζ of the model proposal using a series of pilot runs. In each pilot run, the
sampler is run for a chosen value of ζ and the average acceptance rate calculated. If the
acceptance rate is too high then ζ is increased in the next run and if the acceptance rate
is too low then ζ is decreased in the next run. However, this tuning process is typically a
computationally expensive task since trial and error is required.

As an alternative solution, we consider adaptive MCMC algorithms which can auto-
matically handle this parameter tuning. The problem is similar to adaptation in RWM
samplers since there is a tuneable proposal and an optimal acceptance rate to be achieved.
We will extend the Adaptive Random Walk Metropolis (ARWM) algorithm proposed by
Atchadé & Rosenthal (2005) to the variable selection problem. The ARWM algorithm
automatically finds the optimal scale parameter in the RWM algorithm that results in
the optimal acceptance rate τ̄ = 0.234. Therefore, our adaptive MCMC algorithms au-
tomatically find ζ such that the resulting acceptance rate falls in the range 0.25 to 0.4.
A comprehensive survey of recent advances in adaptive MCMC methodology and their
applications can be found in Rosenthal (2008).
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4 THE ADAPTIVE ALGORITHM

The ARWM algorithm of Atchadé & Rosenthal (2005) sequentially adapts the scale param-
eter σ of the RWM with a d-variate normal proposal density centred on the current value
and with variance σ2I and for which the stationary distribution is the positive continuous
density π(x). The entire past of the stochastic process is used to adapt the scale parame-
ter σ. The resulting sequence of scale parameters

{
σ(t) : t ∈ N}

converges to an optimal
value that leads to the optimal acceptance rate τ̄ = 0.234. Atchadé & Rosenthal (2005) fix
values ε1 and A1 such that 0 < ε1 < A1 and defined the set ∆ = {σ : ε1 ≤ σ ≤ A1}. They
also assume that ∆ contains a unique value σopt which results in the optimal acceptance
rate τ̄ . Then, they define the following function of σ

ρ(σ) =





ε1 if σ < ε1

σ if σ ∈ ∆

A1 if σ > A1.

(3)

The aim of this function is to contain the adaptive algorithm inside ∆. Finally, they define
a discount factor s(t), which is a positive sequence of real numbers such that s(t) = O(t−λ)
for some constant 1/2 < λ <= 1. This assumption ensures the ergodicity of the ARWM
algorithm. The simple choice s(t) = a t−1 for some a > 0 will meet this condition. The
pseudocode of the ARWM algorithm proceeds as follows:
If at iteration t the current state is x(t) ∈ Rd and the scale parameter of the proposal
density is σ(t) ∈ ∆, then

1. Generate y ∼ N(x(t), (σ(t))2I).

2. Set x(t+1) = y with probability

α(x(t), y) = min
{

1,
π(y)

π(x(t))

}
,

otherwise take x(t+1) = x(t).

3. Compute
σ(t+1) = ρ(σ(t) + s(t)(α(x(t), y)− τ̄)). (4)

The acceptance rate is monitored by (4). The algorithm decreases the scale parameter
σ(t+1) when the acceptance rate is small and increases σ(t+1) when the acceptance rate is
high. Atchadé & Rosenthal (2005) showed under certain assumptions that the generated
stochastic process is ergodic with stationary distribution the positive continuous density
π(x).

Turning to the MCMC algorithms of Section 2 with model proposal q(γ′|γ), the pa-
rameter ζ behaves like the scale parameter σ of the RWM because values of ζ close to 0
yield more local moves and high acceptance rate and values of ζ close to 1 more global
moves and small acceptance rate. Moreover, our applications to some gene expression
datasets suggest an optimal acceptance rate τ̄ between 0.25 and 0.4. Therefore, we adopt
ideas of the ARWM to develop adaptive version of each transdimensional MCMC sampler
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described in Section 2. In our case ζ ∈ [0, 1], thus values of ε1 and A1 are chosen close to
0 and 1, respectively. In our applications of the adaptive algorithms, ε1 and A1 are set to
0.01 and 0.99, respectively. The parameter ζ can be made adaptive by updating it at the
t-th iteration in the following way, analogous to the RWM,

ζ(t+1) = ρ(ζ(t) + s(t)(α(t) − τ̄)) (5)

where α(t) is the acceptance probability at the t-th iteration of the chain.
All the algorithms of Section 2 can be made adaptive by updating ζ at each iteration

using the recursion in (5). The pseudocode representation of the adaptive Holmes and
Held algorithm adjusts the model proposal step and adds an extra step (step 4 below) in
the corresponding non-adaptive algorithm. This pseudocode representation is as follows:
If at iteration t the current state is (θ(t)

γ , γ) and ζ(t) ∈ [0, 1], then

1. Generate z1, z2, . . . , zn where zi ∼ N(α + xγ
i βγ , 1) where zi > 0 if yi = 1 or zi < 0 if

yi = 0.

2. Select model γ′ with probability qζ(t)(γ′|γ).

3. Jump to the model γ′ with probability

α(γ, γ′) = min
{

1,
π(γ′)q(γ|γ′)π(z|γ′)
π(γ)q(γ′|γπ(z|γ)

}
.

4. Compute
ζ(t+1) = ρ(ζ(t) + s(t)(α(γ, γ′)− τ̄)).

5. If γ′ is accepted, draw a sample θγ′ ∼ N((XT
γ′Xγ′ +V −1

γ′ )−1XT
γ′z, (XT

γ′Xγ′ +V −1
γ′ )−1).

We think it is a safe conjecture that the results regarding ergodicity with the correct
stationary distribution of the ARWM algorithm carry over to our model selection setting.
In Section 5 we present empirical evidence which suggests that these results hold.

5 SIMULATION RESULTS

The performance of the adaptive MCMC algorithms is evaluated using two microarray
data sets. These are the Arthritis data (Sha et al, 2003) and the Colon Tumour data
(Alon et al, 1999). Adaptive versions of all algorithms in Section 2 were tested and are
denoted as follows:

1. ADH-H : Adaptive Holmes and Held algorithm

2. ADAG-LA : Adaptive automatic generic sampler with Laplace approximation

3. ADAG-IWLS : Adaptive automatic generic sampler with Iterated Weighted Least
Squares approximation

4. ADC-M : Adaptive Conditional Maximization.
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Non-adaptive versions of the algorithms are indicated by dropping the first two letters
“AD”. All the adaptive MCMC samplers start with initial parameter value ζ0 = 0.5 and
use the positive sequence of real numbers

{
s(t) = ζ0/t : t ∈ N}

. The number of iterations
was 2,000,000, the burn-in period 100,000 and the thinning 10 resulting in an MCMC
sample size T of 190,000. Finally, we specify the value 0.3 as an optimal acceptance rate
τ̄ because the optimum effective sample size of the MCMC algorithms that explore the
model and parameter space of our problem is obtained when acceptance rates are between
0.25 and 0.4. Adopting τ̄ = 0.234 instead makes very little difference to our results.

Table 1: The effective sample size ESS, the CPU time in seconds of the adaptive and
non-adaptive algorithms with relative efficiencies of the non-adaptive algorithm over the
adaptive algorithm for the Arthritis and Colon Tumour datasets

Arthritis

Method ESS CPU R.E
H-H (ζ = 0) 35144 9795 0.99
H-H (ζ = 0.25) 35489 9880 1.00
ADH-H 34902 9668
AG-LA (ζ = 0) 58001 40135 0.75
AG-LA (ζ = 0.5) 80701 40346 1.04
ADAG-LA 80853 41966
AG-IWLS (ζ = 0) 50942 9781 0.74
AG-IWLS (ζ = 0.5) 68233 9870 0.98
ADAG-IWLS 69126 9822
C-M (ζ = 0) 55641 49173 0.95
C-M (ζ = 0.5) 66801 49993 1.12
ADC-M 64243 53944

Colon Tumour

Method ESS CPU R.E
H-H (ζ = 0) 32752 13968 0.99
ADH-H 32228 13587
AG-LA (ζ = 0) 47354 41355 0.97
AG-LA (ζ = 0.25) 53653 42345 1.08
ADAG-LA 54777 45716
AG-IWLS (ζ = 0) 45494 14165 0.88
AG-IWLS (ζ = 0.25) 51971 14246 1.00
ADAG-IWLS 51231 14066
C-M (ζ = 0) 39596 48159 0.94
C-M (ζ = 0.25) 42370 48313 1.00
ADC-M 41861 47789
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The efficiency of an MCMC sampler can be measured using the Effective Sample Size
(ESS) which is T/(1+2

∑∞
j=1 ρj) for an MCMC run of length T with lag j autocorrelation

ρj (see e.g., Liu, 2001). The interpretation is that the MCMC sampler has the same
accuracy of estimates as a Monte Carlo sampler (where all the draws are independent)
run for ESS iterations. In this paper, the ESS is estimated using the Initial Positive
Sequence Estimator (Geyer, 1992). The algorithms have different running times and so
we define the efficiency ratio for a sampler to be

ER(Sampler) =
ESS(Sampler)
CPU(Sampler)

,

which standardizes the effective sample size by CPU run time and so penalizes compu-
tationally inefficient algorithms. We are interested in the performance of each adaptive
algorithms to the non-adaptive algorithm with ζ = 0 (which is the standard MCMC pro-
posal for these types of models and represents a baseline) and with the optimal value of ζ
among five candidates (ζ = 0, 0.25, 0.5, 0.75, 0.95) which results in the highest ER. The
relative efficiency of the non-adaptive over the adaptive algorithm is defined by

R.E =
ER(Non-Adaptive)

ER(Adaptive)
.

Table 1 presents result of the adaptive algorithms and various non-adaptive algoritms
with fixed values of ζ for the Arthritis and Colon Tumour datasets. The relative efficiency
for all sampling methods against the standard proposal (ζ = 0) is always less than 1
indicating that the adaptive method is superior. The increase in performance depends
on the particular method and the form of the posterior. However, the effect can be large
in some cases. For example, the standard method only obtains 75% of the efficiency
of the adaptive method with the Arthritis data and AG-LA and AG-IWLS algorithms.
It is also clear that the Automatic Generic methods gain the most benefit. In fact, the
effective sample size of the adaptive algorithms are very similar to the optimal non-adaptive
algorithms in terms of mixing. Furthermore, the increase in CPU time of the adaptive
algorithms is small. This leads to relative efficiencies quite close to 1 and therefore the
adaptive algorithms achieve essentially the same efficiency as the optimal non-adaptive
algorithms. Crucially, however, the adaptive algorithms avoid the pilot runs needed to
tune the model proposal parameter ζ.

Figure 1 and Figure 2 show the trace plots of both the model proposal parameter ζ
(left panels) and the empirical acceptance rate (right panels) of the adaptive algorithms
for the Arthritis and Colon Tumour datasets, respectively. The parameter ζ of each
adaptive algorithm converges to a value close to the optimal one obtained by manual
tuning. Furthermore, the empirical acceptance rates converge to values quite close to the
target acceptance rate 0.3. These results illustrate that the adaptive MCMC algorithms
automatically find model proposal parameters ζ that give asymptotically the optimal
acceptance rate τ̄ = 0.3.

Figure 3 displays the scatter-plots of the log estimated posterior gene inclusion prob-
abilities of the adaptive and optimal non-adaptive algorithms for the Arthritis and Colon
Tumour datasets. The log posterior gene inclusion probabilities are very similar indicat-
ing empirically that the stationary distribution of the stochastic process generated by the
adaptive MCMC algorithms is the target joint posterior distribution π(θγ , γ|y).
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Figure 1: Trace plots of the model proposal parameter ζ and the empirical acceptance
rate of the adaptive algorithms for the Arthritis dataset

6 DISCUSSION

This paper describes an adaptive Monte Carlo algorithm for posterior simulation for vari-
able selection in probit regression models with many regressors. The algorithm leads to
Markov chains with good mixing properties and without the need for pilot runs. In fact,
the effective sample sizes for the adaptive algorithms are almost identical to those for the
algorithms run at an optimized value of the proposal parameter ζ (found using trial-and-
error). The methods are useful when there are a large number of variables that could
potentially be included in the model, which leads to high average acceptance rates for
standard algorithms. If the number of regressors is not large, then acceptance rates will
not be high and an average acceptance rate of 0.3 may not be achievable. In this case, ζ
should be close to zero and the value of ζ(t) will converge to a value close to zero show-
ing the robustness of the algorithm. Therefore, we suggest the use of adaptive MCMC
algorithms to explore efficiently the model space of Bayesian variable selection in probit
regression with many covariates. High acceptance rates for standard MCMC algorithms
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Figure 2: Trace plots of the model proposal parameter ζ and the empirical acceptance
rate of the adaptive algorithms for the Colon Tumour dataset

in variable selection are also observed with other models such as linear regression when
there are many regressors. The application of these adaptive methods to other models is
an area of future research.
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