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Abstract

Interaction of magnetohydrodynamic (MHD) waves with various structures in a

magnetised plasma was considered theoretically in the context of the interpreta-

tion of recently observed phenomena in the corona of the Sun. The main emphasis

was put on the development of analytical models, utilising various asymptotic tech-

niques based upon the presence of a small parameter. In the consideration of waves

guided by field-aligned plasma non-uniformity, such as coronal jets and plumes, the

small parameter was the ratio of the diameter of the guiding non-uniformity to the

wavelength, the approach known as the “thin flux-tube approximation”. In the con-

sideration of nonlinear effects, the wave amplitude was taken to be finite, but small,

and hence could be treated as a small parameter too.

In the thesis, we addressed several specific timely problems of modern solar physics:

the interpretation of recently discovered transverse waves on soft X-ray coronal jets

in terms of a kink fast magnetoacoustic wave; modelling of enigmatic torsional waves

(also known as twisting waves or waves of the electric current) guided by cylindrical

coronal structures, such as loops, plumes, filaments and jets, accounting for the ef-

fects of the magnetic twisting and rotation of the equilibrium plasma configuration;

weakly nonlinear effects appearing during the propagation of the torsional waves

along coronal magnetic waveguides, concentrating on the nonlinearly induced com-

pressible perturbations; and nonlinear steepening of fast magnetoacoustic waves in

the vicinity of a magnetic null-point, in the context of the possible triggering of

magnetic reconnection by the deposition of current-driven anomalous resistivity.
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In the first Chapter, we give an overview of the solar atmosphere and dynamical

processes observed there such as MHD waves and plasma flows. Also, the set of

MHD equations is introduced, and the main modes of a basic coronal plasma struc-

ture, a magnetic cylinder, are considered by the method of dispersion relation.

In Chapter 2, we considered the long-wavelength limit in the magnetic cylinder dis-

persion relations, and derived explicit expressions, which link the phase and group

speeds for linear kink magnetoacoustic waves guided by hot plasma jets surrounded

by a static plasma. With the use of the derived expressions, we showed that trans-

verse waves recently discovered by Hinode/XRT on coronal jets are the kink waves.

In the observationally determined range of parameters, the waves are not found to

be subject to either the Kelvin-Helmholtz instability or negative energy wave insta-

bilities, and hence they are likely to be excited at the source of the jet. We also

carried out forward modelling of the observables, and demonstrated its consistency

with XRT observations.

In Chapter 3 we considered long wave-length axisymmetric magnetohydrodynamic

waves, and derived asymptotic dispersion relations linking phase speeds with the

plasma parameters using the second order thin flux tube approximation. We showed

that when uniform twist and rotation are both present, the phase speed of torsional

waves depends upon the direction of the wave propagation. In addition, the twist

and rotation causes compressibility of the torsional waves. The phase relations show

that in a torsional wave the density and azimuthal magnetic field perturbations are

in phase with the axial magnetic field perturbations and anti-phase with tube cross-

section perturbations. In a zero-β non-rotating plasma cylinder confined by the

equilibrium twist, the density perturbation is found to be about 66 percent of the

amplitude of the twist perturbation in torsional waves.

In Chapter 4, we considered the nonlinear phenomena accompanying long-wavelength

torsional waves in an untwisted and non-rotating magnetic flux tube. We showed

that propagating torsional waves induce compressible perturbations by nonlinear

vii



forces, these compressible perturbations oscillate with double the frequency of the

torsional waves. In contrast with plane shear Alfvén waves, the amplitude of com-

pressible perturbations is independent of the plasma-β. But, as in the shear Alfvén

wave, the amplitude of compressible perturbations are proportional to the torsional

wave amplitude square. It was also shown that standing torsional waves induce

compressible perturbations of two kinds, those which grow with the characteristic

time inversely proportional to the sound speed, and those which oscillate at double

the frequency of the inducing torsional wave. The growing density perturbation

saturates at the level, inversely proportional to the sound speed.

In Chapter 5, we studied the generation of fast magnetoacoustic shocks in the vicin-

ity of a magnetic null-point. In the weakly nonlinear limit, we derived a simple wave

evolutionary equation, which provided us with the qualitative information about the

nonlinear evolution of the fast wave-pulse: formation of the shock and deformation

of the initial shape of the perturbation depending upon the polar angle. We com-

pared our analytical solutions with numerical solutions and found that the speed of

the fast magnetoacoustic pulse depends on the initial amplitude of the pulse. In our

parametric studies we showed that although the initial amplitude of the magnetoa-

coustic pulse is responsible for the time the pulse overturns, the initial width of the

pulse should not be ignored. We showed that narrower and higher amplitude pulses

overturn at larger distance from the null-point. In the context of the sympathetic

flaring a stronger initial pulse does not guarantee a stronger effect.

viii



Chapter 1

Introduction

1.1 General review of the Sun

Life on Earth depends on the Sun, since it is the main source of energy in the solar

system. But the beauty and the fine and nice structures of the Sun’s atmosphere

which is accompanied by the release of energy is another important reason to study

the Sun. The Sun’s atmosphere is what we see when we look at the Sun. The solar

atmosphere is usually divided into the photosphere, chromosphere and the corona.

The temperature of the photosphere decreases with height from 6400 K to 4400 K

with an average temperature of about 5800 K and a density between 1019m−3 and

1020m−3. The average magnetic field in the photosphere is between 5 G and 10 G,

but the magnetic field could reach up to a few kG in magnetic concentrated regions

like sunspots and magnetic elements. The upper layer is the chromosphere which

lies above the photosphere, and has temperatures between 10,000 and 30,000 K, and

density between 1016m−3 and 1017m−3. The chromosphere could be seen in a total

eclipse as a thin pinkish layer around the disk of the Sun. Next is a sub-layer named

the chromosphere-corona transition region where the temperature rises from 20,000

K to 1 MK.

The outer-most part of the solar atmosphere is the corona with temperatures be-

tween 1 MK and 10 MK. In the lower corona, at height lower than a few solar radii,

the magnetic field is between 1 and 500 G, and density is between 1014m−3 and

1015m−3. The solar corona could be seen around the disk of the Sun in a total

eclipse and is extended to the edge of the solar system; in other words we could say

that we live in the part of the solar corona which is called the solar wind.
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Figure 1.1: A view of the solar atmosphere in its active period with combined EUV
(171 Å, 195 Å and 284 Å) images taken by SoHO EIT on May 31, 1998. The bright
features are active regions, formed by plasma loops.

Figure 1.2: A view of the solar atmosphere in its quiet period taken by EIT (171
Å). One active region is seen in the left edge of the solar disk. The dark regions at
the poles of the Sun are so-called coronal holes, where the magnetic field is mainly
open.
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The solar wind is the coronal plasma which extends outward of the solar atmosphere

in the solar system with densities less than the solar corona. It contains a frozen-in

magnetic flux, and moves at the speeds between 300 km/s and 800 km/s, and highly

affects the Earth. The solar wind is responsible for the space weather and it affects

telecommunications and satellites orbiting the Earth, affects the Earth’s magneto-

sphere and may cause climate changes on Earth. A very famous and beautiful effect

of the solar wind on the Earth’s atmosphere is the polar aurora. The solar wind

origin and acceleration is one of the aims of studying the Sun.

The Sun has a magnetic cycle of about 11 years, and since the solar activity highly

depends on the solar magnetic field, every 11 years the Sun becomes quiet. In Figure

1.1 and Figure 1.2 the Sun is shown while in an active period and in an inactive

period (at the time being), which shows that even in the quiet period, still some

active regions exist.

To give a deeper insight about the parameters of the solar atmosphere, we could

say that the magnetic field has its highest value in the sunspots between 2000 and

3000 G and its lowest value in coronal holes in quiet Sun regions between 0.1 and

0.5 G, gradually decreasing with the expansion of the solar wind. In the visible light

sunspots look a bit darker with temperatures about 4000 K which is a bit cooler and

less dense than the average temperature and density of the photosphere. Coronal

active regions over the sunspots have an average magnetic field between 100 and

300 G, but in some small scale pores the magnetic field could reach up to 1100 G.

The electron density in the lower solar corona is 1015m−3, which decreases with

height to 1012m−3 in the upper solar corona. The electron density is between

0.5 × 1014m−3 and 1 × 1014m−3 in the coronal holes, and is between 1 × 1014m−3

and 2× 1014m−3 in diffuse quiet Sun regions. The density is between 3× 1014m−3

and 5 × 1014m−3 at the base of steamers, and is about 1017m−3 in the loops [As-

chwanden, 2005].

Streamers are usually helmet shaped which is why they are referred to as helmet

streamers, and are large structures extending to about several coronal radii. Its

lower part looks like concentric loops (closed field lines) where its higher parts looks

like an outward flow (open field lines), which makes it overall look like the world

war I soldiers’ helmet. There are other coronal phenomena in the Sun; loops, jets,

plumes, spicules,...etc.. Loops which are closed magnetic field lines looking like a

half circle normal to the Sun’s surface, with each side on a foot-point having op-

posite magnetic polarity compared to the other. To give an idea about the size of

3



coronal loops, Nakariakov et al. [1999] observed a loop 130 × 106 m long. Plumes

are cool and dense matter ejected from areas close to the solar poles, that is why

they are usually referred to as polar plumes. Spicules are spiky structures normal to

the solar atmosphere and are originated in the photosphere or chromosphere. Jets

are matter ejecting out of the Sun like an inverse Y shape, and their foot-to-foot

distance depends on the layer of the Sun’s surface their foot-point’s is formed. Shi-

bata et al. [2007] illustrated that coronal jets are larger than chromospheric jets and

chromospheric jets are larger than photospheric jets. Jets are studied in more detail

in subsection 1.6.7 and Chapter 2. The aim of this thesis is to study the interaction

of magnetoacoustic waves with these phenomena.

1.2 Magnetohydrodynamics (MHD)

A successful analytical tool for the study of physical processes in the solar corona

is magnetohydrodynamics. In MHD the speeds of bulk plasma flows are non-

relativistic, the mass of electrons is neglected compared to the mass of ions. This

means that the relative motion of electrons with respect to ions is not considered.

In MHD characteristic times are much longer than the ion gyroperiod, the plasma

oscillation period, and the mean collision times. It is worth showing here the values

of these parameters for coronal conditions where the magnetic field is 10 G and the

electron density (ne) is 5× 1014 m−3,

fplasma ≈ 2× 108 Hz,

fgyro ≈ 1.52× 104 Hz.

(1.1)

Also, the characteristic spatial scales described by MHD are much larger than the

ion Larmour radius and mean free path length which is between 105 m and 106 m

for typical coronal conditions. Thus, MHD represents large scale, slow dynamics

and low frequency waves in plasmas.

Since in the solar atmosphere the speeds of observed plasma motions are not higher

than a few thousand km per seconds MHD theory works fine. But applying MHD

theory to astrophysical plasmas needs careful attention because sometimes the speeds

are close to the speed of light, but with some restrictions MHD theory proves ade-

quate for modelling astrophysical plasmas too.
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MHD theory is widely used to describe and model macroscopic (large scale) be-

haviour of the plasmas of the Sun’s atmosphere. It could also be applied to describe

the macroscopic behaviour of laboratory space and astrophysical plasmas. Con-

sidering the plasma as a fluid and keeping in mind that a plasma is an ionised

medium we deduce that the plasma is an electrically conducting fluid. So to obtain

a closed set of equations one may use the single-fluid approximation and equations

for mass, momentum and internal energy from fluid dynamics, and also Ohm’s law

and Maxwell’s equations. Note that due to conduction there is an electric current

and an electric current produces magnetic fields (see [Goossens, 2003]).

ρ
∂V

∂ t
+ ρ(V · ∇)V = −∇ p− 1

µ
B×∇× B + F, (1.2)

∂B

∂ t
= ∇× (V × B) + η∇2B, (1.3)

∂ ρ

∂ t
+∇ · (ρV) = 0, (1.4)

ργ

γ − 1

d

dt
(
p

ργ
) = −L, (1.5)

∇·B = 0. (1.6)

This set of MHD equations relates the plasma velocity V, the magnetic field B, the

plasma pressure p, and the plasma mass density ρ. Here γ is the ratio of the specific

heats which is usually considered as 5/3, µ is the magnetic permeability, L is the

energy loss or gain function, and η is the magnetic diffusivity:

η =
1

µσ
. (1.7)

where σ is the electrical conductivity.

The term F is an external force, e.g. of the form

F = −ρg + ν ρ[∇2V +
1

3
∇(∇ · V)] (1.8)

5



where g and ν are gravity and kinematic viscosity, respectively. However other

forces could still be present and taken into account like the centrifugal, Coriolis, etc.

Equation (1.2) is the Euler equation which is a vector equation and has three scalar

components, equation (1.3) is the induction equation and is also a vector equation

and has three scalar components, equation (1.4) is the continuity equation which

shows the conservation of mass, and equation (1.5) is the energy equation. In case

of no deposition or dissipation of energy (L=0), equation (1.5) would reduce to the

simple adiabatic equation, or in other words the adiabatic gas law.

It is worth introducing two plasma physics parameters which are very important

in describing different regions of the solar atmosphere. On the right hand side of

the induction equation (1.3) the first term is the convective and the second is the

diffusion term. These terms describe a very different behaviour of the plasma, the

ratio of these terms is called the magnetic Reynolds number,

Rm =
∇× (V × B)

η∇2B
≈ V L

η
, (1.9)

where L and V are the characteristic length and velocity scale of the considered

plasma motion, respectively. Consider two limiting regimes corresponding to differ-

ent values of Rm. If Rm << 1, the magnetic diffusivity plays a much greater role

than the convective motions, meaning in equation (1.3) the convective term could

be neglected, since its effect has become very weak compared to the diffusive effect,

∂

∂t
B = η∇2B. (1.10)

Equation (1.10) is a vector diffusion equation, it could be deduced that the magnetic

field lines diffuse from higher magnetic field regions to lower magnetic field regions.

Meaning that after a specific length scale, the magnetic field diffuses, or obtains a

constant value in all regions. On the other hand, the case Rm >> 1 means that the

magnetic diffusivity is weak in the considered length scale and could be neglected

compared to the convective term in equation (1.3)

∂

∂t
B = ∇× (V ×B). (1.11)

Equation (1.11) means, since there is no diffusivity of the magnetic field lines, the

plasma and the magnetic field lines are “glued” together and neither falls behind

or goes ahead. This is a condition named frozen-in which happens in a perfectly
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conducting regime which in such a case the magnetic flux passing through any closed

path having the same speed as the plasma velocity does not depend on time (for a

very detailed study see e.g. Goossens [2003]).

The other important parameter is the plasma-β which is defined as the ratio of the

plasma pressure to the magnetic pressure,

β =
pplasma
pmagnetic

=
C2
sρ/γ

B2/2µ
≈ C2

s

C2
A

, (1.12)

where C2
s = (γ p/ρ) is the sound speed, and C2

A = (B2/µ ρ) is the Alfvén speed. The

Alfvén speed is a characteristic speed which indicates the speed of a purely magnetic

incompressible wave named as the Alfvén wave in honour of Hannes Alfvén. In order

to show the contribution of plasma-β in the MHD equations, we use equation (1.2)

and the mathematical relation

∇
(
B2
)

= 2(B · ∇)B + 2B× (∇×B), (1.13)

we obtain

ρ
∂V

∂ t
+ ρ(V · ∇)V = −∇

(
p+

B2

2µ

)
+

1

µ
(B · ∇)B + F, (1.14)

The first term on the RHS of equation (1.14) is the force connected to the total

pressure pT , and the second term is the magnetic tension force. The total pressure

force shows the contribution of the gas pressure gradient and the magnetic pressure

gradient where the value of β gives information about the dominant pressure gradi-

ent.

In particular, in the solar corona the magnetic pressure is usually dominant over the

gas pressure and the plasma-β is much smaller than unity, between 0.01 and 0.1.

Hence, in the MHD equations the plasma pressure could be neglected for all motions

except the motion along the magnetic field. But in the photosphere the plasma-β is

greater than 1. In fact this is a very interesting feature because the propagation of

MHD perturbations highly depends on whether the magnetic pressure gradient or

the plasma pressure gradient is dominant.

Gradients of the magnetic field can be described in terms of electric current

j =
1

µ
∇×B. (1.15)
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The use of MHD equations allows one to calculate the electric field E and the

temperature T .

1.3 MHD waves in uniform medium

In this section we simplify MHD equations (1.2)-(1.5) and determine the types of

waves that exist in unbounded uniform plasmas. Consider the case when dissipative

processes are neglected, also not taking into account the term −ρg, we obtain the

ideal MHD equations

ρ
∂V

∂ t
+ ρ(V · ∇)V = −∇ p− 1

µ
B×∇× B, (1.16)

∂B

∂ t
= ∇× (V × B), (1.17)

∂ ρ

∂ t
+∇ · (ρV) = 0, (1.18)

p = C2
sρ (1.19)

Consider an equilibrium as:

−→
B0 = B0ex,

−→
V0 = 0, ρ0 = const, p0 = const, (1.20)

where the index 0 indicates the equilibrium quantities. Linearising the ideal MHD

equations around the equilibrium and neglecting the effect of gravity, we obtain two

decoupled wave equations:(
∂4

∂ t4
− (C2

s + C2
A)

∂2

∂ t2
∇2 + C2

sC
2
A(1‖ · ∇)2∇2

)
pT = 0, (1.21)

where 1‖ is the unit vector in the parallel direction.

(
∂2

∂ t2
− C2

A(
−→
1‖ · ∇)2

)
J‖ = 0, (1.22)
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which is second order in time, and J‖ is the projection of the current density on the

x-axis.

Considering plane waves propagating along ex, we make the Fourier decomposi-

tion of the perturbation of the perturbed parameters with ω the frequency and

k longitudinal wave number ∝ expi(kx − ω t), which means we could take ∂
∂ t =

−iω and ∇ = ik. Also due to symmetry, propagation along the z-direction could

be ignored (kz = 0).

The condition of the non-trivial solution of equation (1.21) is

ω

k
= ±

(
1

2
C2

A(β + 1)(1±
√

1− 4
β

(β + 1)2
cos2ϕ)

)1/2

, (1.23)

where ϕ is the angle between the wave vector and the magnetic field. Equation (1.23)

is dispersion relation linking the frequency and wave number with the parameters

of the plasma. The ratio of the frequency and the wave number ω/k, is the phase

speed. The positive and negative signs outside the brackets mean that the wave

propagates in two opposite directions and the positive and negative signs inside

the brackets refer to the phase speeds of the fast and slow magnetoacoustic waves,

respectively. In equation (1.23) the plasma-β plays an important role in the phase

speed of the fast and slow magnetoacoustic waves, which means that the magnetic

and plasma pressure forces are the restoring forces for the propagation of these wave.

These waves are compressible, as the perturbation of the total pressure in equation

(1.21) induces perturbations of the plasma density. Also from equation (1.23) we

notice that the slow wave phase speed is zero when the plasma-β is zero, this limit

is called “The cold plasma limit”.

Similarly, (1.22) gives the dispersion relation

ω

k
= ±CAcosϕ, (1.24)

which describes the phase speed of another wave, called the Alfvén wave with the

positive and negative signs meaning the Alfvén wave also propagates in two opposite

directions. Note that in equation (1.22) the current density comes into play, which

means that for the Alfvén wave the restoring force is the magnetic tension, due to

the curvature of the field lines. Note that the linear Alfvén wave propagates in the

direction of the magnetic field lines, it is a purely magnetic wave with no density and

pressure perturbations. Hence, an Alfvén wave is incompressible. Another interest-
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Figure 1.3: The left panel shows polar plots of the phase speeds and the right
panel shows polar plots of the group speeds of MHD waves. The fast and slow
magnetoacoustic waves are shown in blue and green, respectively, and the Alfvén
wave is shown in red. The speeds are all normalised by the Alfvén speed.

ing deduction from equations (1.23) and (1.24) is that since the phase speeds do not

depend on the wave number, the Alfvén wave, and the fast and slow magnetoacous-

tic waves are non-dispersive: all spectral components propagate at the same speeds.

Both equations (1.23) and (1.24) contain the dependence on the propagation angle

ϕ. Hence, the waves are anisotropic, and their properties depend on the direction of

propagation. To illustrate that, we show the dependence of phase and group speeds

on the angle ϕ in Figure 1.3. In the left-hand panel of Figure 1.3, it could be seen

from the phase speed diagram that the slow magnetoacoustic wave and the Alfvén

wave are anisotropic, meaning their properties depend upon the angle between the

wave vector and the magnetic field. Alfvén and slow waves do not propagate perpen-

dicular to the magnetic field. In contrast, the fast magnetoacoustic wave is almost

isotropic and can propagate perpendicular to the magnetic field. In the right hand

panel of Figure 1.3 which shows the group speed polar diagram and indicates the

energy propagation in the waves, shows that the energy of the slow magnetoacoustic

wave and the Alfvén wave propagates along the field line and is anisotropic, but for
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the fast magnetoacoustics wave the energy propagation is almost isotropic.

1.4 Effects of transverse structuring

In this subsection, we follow the analysis by Edwin and Roberts [1983] to consider

the different kinds of oscillations in a basic plasma structure, magnetic flux tube.

The effects of magnetic structuring are taken into account but the effects of gravity

are neglected (Figure 1.4). The cylindrical geometry is used to model a homogeneous

magnetised plasma in the solar atmosphere which is known as the magnetic flux

tube and is a very wide spread magnetic configuration. For example, it could be

used for coronal loops, plumes, spicules, jets, prominence filaments. Consider an

untwisted non-rotating plasma cylinder, extended along a straight uniform magnetic

field (Figure 1.4). If Bz0 and Bze are the equilibrium magnetic fields inside and

outside the cylinder respectively, p0 and pe the equilibrium gas pressure inside and

outside the cylinder respectively, and ρ0 and ρe the equilibrium mass density inside

and outside the cylinder respectively, the total pressure balance implies:

p0 +B2
0/2µ = pe +B2

e/2µ. (1.25)

Hence the ratio of the outside density to the inside density is:

ρe
ρ0

=
2C2

s0 + γ C2
A0

2C2
se + γ C2

Ae

, (1.26)

where Cs0 = (γ p0/ρ0)1/2 and Cse = (γ pe/ρe)
1/2 are the sound speeds inside and

outside the tube, respectively, CA0 = B0/
√
µρ0 and CAe = Be/

√
µρe are the Alfvén

speeds inside and outside the tube, respectively. Linearising the ideal MHD equa-

tions about the equilibrium we obtain:

µρo
∂ vr
∂ t

= −µ ∂p
∂ r

+B0
∂ Br
∂ z
−B0

∂ Bz
∂ r

(1.27)

µρo
∂ vϕ
∂ t

=
B0

r

∂

∂ z
(r Bϕ)− B0

r

∂ Bz
∂ ϕ

(1.28)

ρo
∂ vz
∂ t

= −∂p
∂z

(1.29)
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r

Figure 1.4: The sketch of a magnetised cylindrical flux tube with radius a, density
ρ0, and gas pressure p0 embedded in a magnetised medium with density ρe and gas
pressure pe. Both magnetic fields inside and outside the tube are parallel to the
z-direction.

∂ Br
∂ t

=
1

r

∂

∂ z
(r B0 vr) (1.30)

∂ Bϕ
∂ t

=
∂

∂ z
(B0 vϕ) (1.31)

∂ Bz
∂ t

= −1

r

∂

∂ r
(r B0 vr)−

1

r

∂

∂ ϕ
(B0 vϕ) (1.32)

∂ρ

∂ t
+

1

r

∂

∂ r
(rρ vr) +

1

r

∂

∂ ϕ
(ρ vϕ) +

1

r

∂

∂ z
(rρ vz) = 0 (1.33)

∂

∂ t
p− C2

s

∂ρ

∂ t
= 0, (1.34)

after some algebra two partial differential equations. One is a second-order partial

differential equation for the Alfvén wave(
∂2

∂t2
− C2

A

∂2

∂z2

)
Γ = 0, (1.35)
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where

Γ =
1

r

∂

∂r
(rvϕ)− 1

r

∂

∂ϕ
vr, (1.36)

where it is also known as the torsional wave which is discussed in Chapters 3 and 4.

The other is a fourth-order differential equation which is for magnetoacoustic waves

[Edwin and Roberts, 1983],

∂2

∂ t2

(
∂2

∂ t2
− (C2

s0 + C2
A)∇2

)
∆ + C2

s0C
2
A

∂2

∂ z2
∇2∆ = 0, (1.37)

where ∇2 is the Laplacian operator in cylindrical coordinates (r, θ, z).

∇2 ≡ ∂2

∂ r2
+

1

r

∂

∂ r
+

1

r2

∂2

∂ ϕ2
+

∂2

∂ z2
, (1.38)

and

∆ = ∇ ·V. (1.39)

Equation (1.37) is a cylindrical analogue of equation (1.21). Note that the divergence

of V is a measure of the plasma compressibility. This could be shown from equation

(1.4),

∂

∂t
ρ = −ρ∇ ·V −V · ∇ρ, (1.40)

where for ρ being constant (incompressible case) we obtain

∇ ·V = 0. (1.41)

Hence equation (1.37) describes compressible perturbations. Consider all the per-

turbed quantities proportional to expi(ω t + mϕ + kz) and since we are looking at

transverse structuring, only take into account the variations in the radial direction,

we could write

∆ = R(r)expi(ω t+mϕ+ kz), (1.42)

where m is the azimuthal wave number. We cannot make the Fourier transform with

respect to the radial coordinate r, as the equilibrium quantities are non-uniform

in this direction. Substituting equation (1.42) in equation (1.37) for the internal
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medium, we obtain
d2R

dr2
+

1

r

dR

dr
−
(
m2

0 +
m2

r2

)
R = 0, (1.43)

which is a Bessel equation in terms of R(r) and

m2
0 =

(k2C2
s0 − ω2)(k2C2

A0 − ω2)

(C2
s0 + C2

A0)(C2
T0 k

2 − ω2)
, C2

T0 =
C2
s0C

2
A0

C2
s0 + C2

A0

. (1.44)

A similar equation describes the perturbations in the external medium with m0

substituted by me

m2
e =

(k2C2
se − ω2)(k2C2

Ae − ω2)

(C2
se + C2

Ae)(C
2
Te k

2 − ω2)
, C2

Te =
C2
seC

2
Ae

C2
se + C2

Ae

, (1.45)

where CTe is the outside tube speed. Its solutions depend on the sign of m2
0, the

solutions could be either the Bessel functions J±m(r), Ym(r) in case of a negative

sign for m2
0, or modified Bessel functions I±m(r), Km(r) in case of a positive sign

for m2
0 [Abramowitz et al., 1988]. The bounded solution for the internal medium in

coronal conditions would be

R(r) =

{
A0Im(m0r), if m2

0 > 0

A0Jm(n0r), if m2
0 = −n2

0 < 0

}
, (1.46)

where Im(m0r) is the solution for surface waves and CT0 is the inside tube speed

and Jm(nor) is the solution for body waves [Roberts et al., 1984].

For the external medium the solution would be:

R(r) = AeKm(mer), (1.47)

Note that in order to have oscillatory behaviour of trapped modes in the tube and

evanescent behaviour of them outside the tube we need to have m2
e > 0. So body

waves oscillate inside the tube and are evanescent outside, but surface waves are

evanescent in both regimes. In this stage in order to eliminate the two coefficients

A0 and Ae we apply the two boundary conditions which are the continuity of the

Lagrangian displacement across the boundary and the total pressure balance at the

boundary of the cylinder with radius a, we obtain as the condition for the existence
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of a non-trivial solution

ρ0

ρe

(k2C2
A0 − ω2)

(k2C2
Ae − ω2)

me

m0

K ′m (me a)

Km (me a)
=
I ′m (m0 a)

Im (m0 a)
, (1.48)

for surface waves (m2
0 > 0), and

ρ0

ρe

(k2C2
A0 − ω2)

(k2C2
Ae − ω2)

me

n0

K ′m (me a)

Km (me a)
=
J ′m (n0 a)

Jm (n0 a)
, (1.49)

for body waves (n2
0 = −m2

0 > 0). Equations (1.48) and (1.49) are dispersion re-

lations which relate the frequency ω to the longitudinal wave number k and the

parameters of the flux tube. Equations (1.48) and (1.49) are transcendental implicit

algebraic equations that do not have general exact analytical solutions.

There is another category which the magnetoacoustic waves are divided into and

that is slow and fast. If β < 1, fast refers to a magnetoacoustic wave whose dy-

namics are controlled by the gradient in the magnetic pressure, and slow refers to

a magnetoacoustic wave whose dynamics are controlled by the plasma gas pressure

gradient.

The shape of the eigen-functions is largely determined by the parameter m through

the order of the Bessel function and the angular dependence expi(mϕ). In case

of m = 0, the mode of oscillation has a symmetrical (in respect to the axis of the

tube) sausage shape without any displacement of the tube axis, hence it is called the

sausage mode. In case of m = 1 the mode of oscillation has an oscillation around

the axis of the tube which is called the kink mode; in this mode the axis of the

tube has a transverse oscillation. In case of m = 2, 3, .. the oscillations unlike the

m = 0 mode are not symmetric and the value of m indicates the number of nodes; in

this mode the tube axis has no transverse displacement and is called the ballooning

mode. The observation and dispersion relation of the kink mode is discussed in

subsection 1.6.1 and Chapter 2, and the observation and dispersion relation of the

sausage mode is discussed in subsection 1.6.2 and Chapter 3.

Figure 1.5 shows the dispersion curves for the trapped fast and slow sausage

m = 0, kink m = 1, and ballooning modes m > 1 for typical coronal conditions

(β < 1, Cse < Cs0, CAe > CA0) using equation (1.49). It shows that except the

fundamental sausage mode, all other fast fundamental modes approach the kink
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Figure 1.5: Dispersion curves for the phase speeds of the fast and slow magne-
toacoustic waves [Nakariakov and Verwichte, 2005] plotted using equation (1.49)
for coronal conditions normalised by the internal sound speed. The values for the
characteristic speeds are CA0 = 2Cs0, CAe = 5Cs0, and Cse = 0.5Cs0. The solid,
dotted, dashed and dash-dotted curves correspond to the sausage, kink, and flute
or ballooning modes, respectively. The solid straight line with ω/kz = 2, is for the
torsional Alfvén wave.
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speed

C2
k =

ρ0C
2
A0 + ρeC

2
Ae

ρ0 + ρe
, (1.50)

in the long wave-length (ka→ 0) limit. Also the curves show that the phase speeds

of the trapped fast magnetoacoustic modes are situated between the inside and out-

side Alfvén speeds and the slow modes only exist in a narrow band between the

inside tube and sound speeds. Note that using the cylindrical geometry for mod-

elling the coronal loops (β � 1) in an untwisted plasma cylinder, no surface waves

exist [Edwin and Roberts, 1983]. But in case of the slab geometry, if there exists

a shear between the magnetic field and the fast magnetoacoustic wave there are

surface waves [Nakariakov and Verwichte, 2005].

It could be noticed that the fast modes are highly dispersive in the long wave length

limit and only the fundamental kink mode survives at k = 0 and travels with the

characteristic kink speed which depends on the inside and outside densities and

Alfvén speeds. An important feature in Figure 1.5 is that except for the fundamen-

tal kink mode all other modes have speeds tending to infinity in the long wave-length

limit ka → 0. Trapped waves need to be within the internal and external Alfvén

speeds, hence the maximum speed that trapped modes could obtain is the external

Alfvén speed. Modes with speeds above the external Alfvén speed leak out. Hence,

the cutoff values are the values for ka where each mode is about to exceed the ex-

ternal Alfvén speed and could be obtained using the roots of the Bessel function.

These values are 1.17, 1.87, and 2.51 for the first harmonic of the sausage, kink,

and ballooning modes for typical coronal conditions respectively. For values higher

than the cutoff we would have leaky waves. Trapped modes may become leaky

modes (or in other words radiate out) by changing the boundaries of the cylinder

or any physical parameter, leaky modes have complex frequencies. Thus the main

four modes of a plasma cylinder are: sausage, kink, ballooning, and longitudinal.

However, torsional or rotational waves which travel at the Alfvén speed also exist

in coronal structures and could be considered as Alfvén waves. Properties of these

waves are discussed in detail in Chapters 3 and 4.

It was shown that magnetoacoustic waves are guided by cylindrical plasma struc-

tures. This introduces wave dispersion, making different spectral harmonics propa-

gate at different speeds. In general, transverse structuring of the plasma introduces

guided propagation of magnetoacoustic waves. The phase speed diagram showed

that the wave guide could make the fast magnetoacoustic wave propagate parallel
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to the magnetic field which would not be the case in a uniform structure. In the

next subsection the effects of longitudinal stratification will be taken into account.

1.5 Effects of parallel structuring

1.5.1 Linear wave solution

In this subsection we follow the analysis by Ofman et al. [1999].

The solar corona is structured not only across the magnetic field, but also along.

In this section we illustrate how this structuring can be taken into account, using a

simple example. A one dimensional model in spherical coordinates is considered to

describe linear slow magnetoacoustics waves propagating radially along the magnetic

field in the solar atmosphere. The magnetic field is normal to the solar surface, and

the gravity causes longitudinal structuring. The equilibrium density is:

ρ0 = ρ00 exp

[
−R�
H

(
1− R�

r

)]
, (1.51)

where ρ00 is the equilibrium density amplitude and R� is the Sun’s radius, H =

2kBTR
2
�/(GM�mH) is the scale height, with M�, kB, T , G and mH being the Sun’s

mass, Boltzman’s constant, temperature which is taken constant here, gravitational

constant, and hydrogen mass respectively. The coordinate system is the spherical

(r, ϕ, θ) and the waves are assumed spherical and propagate in the radial direction.

In this case ∂/∂θ and ∂/∂ϕ are both zero.

Linearising the ideal MHD equations and considering only the perturbations of ρ and

vr, meaning that the perturbations of vθ and vϕ and the corresponding components

of the magnetic field are zero, we obtain:

ρ0
∂ vr
∂ t

+ C2
s

∂ ρ

∂ r
+ ρ g = 0, (1.52)

which is the radial component of the Euler equation (1.2) with g = GM�/r
2 being

the gravity, and
∂ ρ

∂ t
+

1

r2

∂

∂ r
(r2ρ0vr) = 0, (1.53)

which is obtained from the continuity equation (1.4). In equation (1.52) we assumed

the equilibrium temperature and hence the sound speed to be constant.

Note that the equilibrium value of vr0 is taken zero, thus the plasma up flows are
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neglected. Eliminating vr from equations (1.52) and (1.53) we obtain the spherical

wave equation,
∂2ρ

∂ t2
− C2

s

r2

∂

∂ r

(
r2∂ ρ

∂ r

)
− g∂ ρ

∂ r
= 0, (1.54)

which describes slow magnetoacoustic waves. Because of the symmetry of the prob-

lem, the waves propagate strictly along the field, they degenerate to acoustic waves.

A similar expression to equation (1.54) has been derived by Torkelsson and Boynton

[1998]. The amplitude of wave, propagating upwardly at the constant speed Cs, can

be approximated as:

ρ ≈ R�
r

exp

[
−R�

2H

(
1− R�

r

)]
. (1.55)

Equation (1.55) shows that the amplitude of the density perturbations decreases

with the increase in altitude. The ratio of the density perturbation and the equilib-

rium density could be obtained by equations (1.55) and (1.51):

ρ

ρ0
≈ R�
rρ00

exp

[
R�
2H

(
1− R�

r

)]
. (1.56)

Equation (1.56) shows that the ratio of the density perturbation amplitude and the

equilibrium density is growing with altitude. Since the relative amplitude is growing

and the nonlinear effects depend on the amplitude, the nonlinear effects could not

be neglected any longer and they need to come into play.

We would like to point out that the density profile given by equation (1.51) does not

tend to zero when r/R� → ∞. Hence this model is applicable in the lower corona

for r/R� < 5, where the solar wind begins, only.

1.5.2 Nonlinear effects

In this subsection we follow the analysis by Ofman et al. [2000].

Taking into account weakly nonlinear effects, meaning ρ/ρ0 � 1, where ρ is a

perturbation of density, and considering only the quadratically nonlinear terms,

equations (1.52) and (1.53) should be modified:

ρ0
∂ vr
∂ t

+ C2
s

∂ ρ

∂ r
+ ρ g = N1, (1.57)

∂ ρ

∂ t
+

1

r2

∂

∂ r
(r2ρ0vr) = N2, (1.58)
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where

N1 = − ∂

∂ t
(ρ vr)−

1

r2

∂

∂ r
(r2ρ0v

2
r ), (1.59)

N2 = − 1

r2

∂

∂ r
(r2ρ vr). (1.60)

Combining equations (1.57) and (1.58), we obtain:

∂2ρ

∂ t2
− C2

s

r2

∂

∂ r

(
r2∂ ρ

∂ r

)
− g∂ ρ

∂ r
=
∂ N2

∂ t
− 1

r2

∂

∂ r
(r2N1). (1.61)

Equation (1.61) reduces to equation (1.54) in case of neglecting the nonlinear terms.

Note that vr can be excluded from the RHS of equation (1.61), if one takes the

linear dependence vr on ρ from equation (1.57).

If we consider the wavelength small compared to the scale height ( λH � 1), and

consider the modification of the waves to be slow, we may use the WKB approx-

imation to find the asymptotic solution to equation (1.61). If the nonlinear terms

are neglected, one solution of equation (1.61) is the linear wave propagating up-

wards, with the amplitude given by equation (1.55) at the sound speed. In the

WKB approximation we can consider the slow evolution of the wave amplitude and

shape caused by the weak nonlinearity on the RHS of equation (1.61). We introduce

new variables to indicate the slow modification by the weak nonlinearity and non

uniformity gravity, and change the running frame of reference as:

ξ = r − Cst, R = ε r, (1.62)

where ε� 1 is a small parameter at the same order as ρ/ρ0. Choosing the negative

sign in front of the term with Cs, we restrict our attention to the waves propagating

outwards in the radial direction. In the new frame of reference, the derivatives are

∂

∂ r
= ε

∂

∂ R
+

∂

∂ ξ
,

∂

∂ t
= −Cs

∂

∂ ξ
. (1.63)

In the new frame of reference by neglecting smaller terms in equations (1.57), (1.59),

and (1.60) we obtain:

vr =
Cs
ρ0
ρ, N1 = 0, N2 = −Cs

ρ0

∂ ρ2

∂ ξ
. (1.64)
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Writing the nonlinear wave equation (1.61) in the new frame of reference, and sub-

stituting expressions (1.64) we obtain:

∂ ρ

∂ R
+

[
1

R
+

Rg

2C2
s

]
ρ+

ρ

Rρ0

∂ ρ

∂ ξ
= 0, (1.65)

we see in equation (1.65) that ρ depends on R, meaning that the perturbation evolves

with height. That is a simple wave equation in the spherically stratified medium.

To find the solution to equation (1.65) we first make the parameters dimensionless

by:

ξ′ =
ξ

R�
, R′ =

R

R�
, ρ′ =

ρ

ρ00
, H ′ =

H

R�
, ρ′0 =

ρ0

ρ00
, (1.66)

and get:
∂ ρ

∂ R
+

(
1

R
+

1

2HR2

)
ρ+

ρ

Rρ0

∂ ρ

∂ ξ
= 0. (1.67)

For simplicity we have omitted the prime. If we neglect the third term in the left

hand side of equation (1.67), the solution would be:

ρ =
ρ(R = 1)

R
exp

[
− 1

2H

(
1− 1

R

)]
. (1.68)

Expression (1.68) shows that the amplitude of the density perturbation decreases

with altitude, the same as expression (1.55) which is for the simple wave. Note that

in case of λ << H and taking small amplitude oscillations the solution for equation

(1.67) would be harmonic in the form

ρ =
ρ(R = 1)

R
exp

[
− 1

2H

(
1− 1

R

)]
exp(ikξ), (1.69)

where k is the dimensionless wavenumber. Ofman et al. [2000] taking into account

the effects of compressive viscosity showed that for different initial wave amplitudes,

the relative amplitude ρ(1)/ρ0(1) increases from unity and reaches a maximum value

before it decreases. Smaller initial amplitudes reach their maximum value further

away from the Sun, for example the maximum value for the initial wave amplitude

about 0.02 increases with height until 1.2 solar radii, but then starts to decrease.

21



1.6 Observational evidence of MHD waves in the solar

atmosphere

It has been made clear by various observations and theoretical models that MHD

waves play an important role in the physics of the solar corona. MHD waves of

different kinds have been detected in the solar corona with high spatial and tem-

poral resolution in structures like loops, plumes, spicules, filaments, jets, etc., by

both imaging and spectral devices onboard satellites and on ground which are sum-

marised in this Chapter.

There are several important reasons for the intensive study of MHD waves in the

corona. It is connected with the possible role the waves play in the enigmatic prob-

lems of solar physics such as coronal heating, solar wind acceleration and flaring

energy release, and also because of the possibility of the plasma diagnostics, pro-

vided by waves as natural probes of coronal plasmas.

Roberts et al. [1984] proposed the possibility that MHD waves may be good candi-

dates for coronal seismology (diagnostics of the physical parameters of solar coronal

plasmas by means of MHD waves). They showed that MHD oscillations take place

in coronal structures for example a coronal loop, and stated that sausage waves of

solar coronal plasma structures are similar to Perkins waves in oceanography and

kink waves are similar to Love waves in seismology. Thus, studying these waves is

a reliable approach on understanding the corona, since the radio band pulsations

observed could be due to fast magnetoacoustic oscillations.

Possible mechanisms of coronal heating are put into two categories, AC and DC. AC

mechanisms include Alfvén wave phase mixing and magnetoacoustic wave resonant

absorption and DC mechanisms includes magnetic reconnection. The key ingredi-

ent of both phase mixing and resonant absorption is the creation of small transverse

scales, which are subject to enhanced dissipation by viscosity or resistivity (e.g.

Walsh and Ireland [2003], Nakariakov and Verwichte [2005], e.g. Priest and Forbes

[2000]). Both mechanisms are being widely studied by scientists all over the world

to finally give exact answers to the solar coronal heating problem, but the problem

still remains open.

Possible mechanisms for acceleration of the solar wind plasma by MHD waves are re-

viewed in e.g. Ofman [2004] and Cranmer [2009]. These mechanisms include nonlin-

ear cascade of wave energy to shorter scales, gyroresonances with minor species, and

nonlinearly induced upflows. Both comprehensive numerical simulations and state-
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of-art low-dimensional analytical models are present in the literature, e.g. Cranmer

and van Ballegooijen [2005], Ofman [2010]. For example, in a model proposed by

Suzuki [2008], using a one dimensional MHD model it was suggested that the solar

wind acceleration could be due to the dissipation of low-frequency nonlinear Alfvén

waves. However, there is still no clear evidence of the operation of those mechanisms

in coronal plasmas. Also observational knowledge of MHD waves in the regions of

the solar wind acceleration (1-3 solar radii) as well as in other coronal plasma struc-

tures is fragmented and inconclusive, despite recent progress in the field. These

waves are studied in Chapter 4

In the next subsections we summarise the observational evidence of coronal MHD

waves.

1.6.1 Transverse oscillations

The kink (m = 1, see Section 1.4) mode, is one of the main four MHD modes.

This mode is transverse and shows itself, for example, in a coronal loop as peri-

odic displacements of the loop axis across the field of view. This mode is weakly

compressible. In a coronal loop, this mode can form a standing pattern. The fun-

damental (or global) mode of a loop has the maximum displacement at the top of

the loop and zero perturbations at the loop foot points. The period of the global

(or fundamental) standing kink mode which is the longest period of this mode is

obtained by:

P =
2L

Ck
, (1.70)

where L is the loop length and Ck (see equation (1.50)) is the kink speed introduced

in Roberts et al. [1984].

Transverse waves had been known to exist in the solar atmosphere for years. The

first periodic Doppler shift of coronal emission lines, most likely caused by the peri-

odic variation of the line of sight velocity of the plasma, was observed by Koutchmy

et al. [1983]. Their observations showed Doppler velocity oscillations for short pe-

riod coronal waves without any noticeable intensity fluctuations. The periods of

the waves were found about 43 s, 80 s, and 300 s, and were initially interpreted as

resonant Alfvén waves. Roberts et al. [1984] demonstrated that these observations

are associated with the standing kink modes.

Recently, this discussion was continued by Van Doorsselaere et al. [2008b] in the

context of observations of transverse waves detected by Tomczyk et al. [2007], De
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Pontieu et al. [2007], and Okamoto et al. [2007]. It was argued by Van Doorsselaere

et al. [2008b] that the observations have to be interpreted in terms of fast magne-

toacoustic kink waves and not the Alfvén wave.

Continuing this discussion Van Doorsselaere et al. [2008a] performed a numerical

simulation to model the time evolution of a velocity pulse transverse to the mag-

netic field, in both a homogeneous medium and a medium with transverse density

structuring. This was done to compare the numerical results with the observations

of transverse waves by Tomczyk et al. [2007], who detected coronal waves with

phase speeds between 1000 km/s and 4000 km/s, and periods of about 300 s with

the Coronal Multi-Channel Polarimeter (CoMP). Van Doorsselaere et al. [2008a]

showed, that in case of a homogeneous medium, the transverse velocity perturba-

tion localised in the transverse direction propagates perpendicular to the magnetic

field, which means that the wave has no energy flux along the magnetic field and

can not produce the observed pattern. On the other hand in a structured medium,

there exists propagation of transverse waves along the magnetic field. These are

fast magnetoacoustic kink waves which have been described by Edwin and Roberts

[1983] and in section 1.4.

The first spatially resolved transverse oscillations, which are standing kink waves,

were observed almost simultaneously by Aschwanden et al. [1999] and Nakariakov

et al. [1999], studying the 14 July 1998 coronal loop event. These waves which

were interpreted as standing kink oscillations were observed with the EUV imager

onboard the Transition Region and Coronal Explorer (TRACE). These oscillations

were generated by a flare and dissipated very quickly after a few periods.

Aschwanden et al. [1999] studied oscillations of five loops with a distance between

60 Mm and 70 Mm from the epicentre of the flare, with an average length of

130, 000 ± 30, 000 km, a transverse displacement amplitude of about 4100 ± 1300

km, and a period of about 280± 30 s. Since this period is very close to the period

of the fast kink mode found analytically for coronal conditions, namely 205 s, they

interpreted these oscillations as fast magnetoacoustic kink modes.

Nakariakov et al. [1999] studied oscillations of another loop, with a foot point dis-

tance of about (83 ± 4) × 106 m, the displacement amplitude of 2030 ± 580 km, a

frequency of 3.90 ± 0.13 mHz, and a decay time of about 12.1 ± 6.7 min. In these

conditions the period of oscillations was estimated 256 s and the arc length of the

loop would be about (130 ± 6) × 106 m. Then the phase speed of the waves was
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calculated,
ω

k
=

2L

P
≈ 1020± 132 kms−1. (1.71)

Since this value is close to the expected phase speed of the fast kink mode, these

oscillations were interpreted as the fast magnetoacoustic kink mode.

Williams et al. [2001] observed short period MHD waves with periods about 6 s

(frequencies about 0.16 Hz), while studying coronal loops in the 1999 eclipse event

with the Solar Eclipse Coronal Eclipse Imaging System (SECIS) instrument. The

phase speed of the waves was about 2,000 km/s observed as propagating intensity.

Cooper et al. [2003] showed that the observed variation in the emission intensity

was consistent with the modulation of the observed column depth of the loop by a

kink wave due to a line-of-sight integration effect.

Propagating transverse waves were also observed in flaring supra-arcade regions by

Verwichte et al. [2005] with TRACE. The observed periods were about 90-220 s. The

observed apparent phase speeds were several hundred km/s, decreasing with height.

These waves are interpreted as propagating, fast magnetoacoustic kink waves guided

by a plasma structure. Propagating kink waves have been recently observed in other

coronal structures such as coronal jets which will be discussed and modelled in full

detail in Chapter 2. Note that the presence of kink waves is only possible in case of

transverse structuring of the medium or in other words having a wave guide.

1.6.2 Sausage oscillations

The sausage mode (m = 0) is compressible and shows itself as periodic symmetric

changes in the cross section of a structure, for example a loop or a jet. The period

of the global sausage mode of a coronal loop is estimated as

Psausage =
2L

Cp
, (1.72)

where Cp is the phase speed of the global sausage mode with wave number kz = π/L,

which is between the internal and external Alfvén speeds. Note that as stated by

Edwin and Roberts [1983] the global sausage mode reaches a cutoff value as k

decreases, meaning that for the existence of a trapped global sausage mode the loop

length must be smaller than π/kcutoff not to violate the k > kcutoff , where kcutoff is

a certain cutoff value determined by physical conditions in the plasma cylinder, see

Figure 1.5. The 14 − 17 s oscillations observed by the Nobeyama Radioheliograph
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were studied by Nakariakov et al. [2003] and interpreted as the global sausage mode.

Inglis et al. [2009] studied the sausage oscillations of coronal loops and proved that

the cutoff frequency is almost independent of the values of the internal and external

plasma-β. Srivastava et al. [2008] detected oscillations in chromospheric loops with

periods about 587 s near the loop apex, and 349 s near the loop foot-points and

referred these oscillations to the global and second harmonic sausage oscillations,

respectively.

1.6.3 Longitudinal oscillations

Two types of longitudinal waves have been observed in the solar atmosphere. These

waves are compressible, and are seen to be either standing or propagating. The slow

magnetoacoustic waves which are propagating longitudinal waves are sometimes

called acoustic, since their speed is close to the sound speed. In Figure 1.3, the

propagation of this mode has been shown to be parallel to the magnetic field in a

homogeneous medium. In a plasma cylinder, this mode propagates at a speed a bit

lower than the sound speed see Figure 1.5. This mode is predominantly longitudinal.

This means that the longitudinal mode does not affect the transverse components

of the velocity and only perturb the parallel component of the velocity. Also it

perturbs the density and hence is essentially compressible.

The period of the global slow magnetoacoustic mode of a coronal loop is

Pslow =
2L

CT0
, (1.73)

where CT0 = CsCA/(C
2
s + C2

A)1/2 is the tube speed inside loop which in a low-β

corona is very close to the sound speed inside the loop.

Strongly damped standing Doppler shift oscillations in coronal loops with temper-

atures above 106 K were observed by Wang et al. [2002] with SoHO/SUMER. The

periods were between 14 and 18 min and the decay time between 12 and 19 min,

with average amplitude speeds about 77 km/s. These oscillations were modelled by

Ofman and Wang [2002] with a 1D numerical model using typical observed param-

eters and taking into account the thermal conduction, obtained the period and the

fast decay time in the range of the observations and interpreted these oscillations

as standing slow magnetoacoustic waves.

Wang et al. [2003a] studied this phenomenon statistically, using both the Doppler

shift velocity and intensity observations. The average oscillation period for the in-
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tensity was about 17 min with a decay time about 21 min, but for the Doppler

velocity the period was 17 min with decay time of about 37 min. They deduced

that, since the observed oscillations for the Doppler velocity and the intensity were

the same but with a quarter of a period phase difference, these oscillations coin-

cide with the analytical prediction of the standing slow magnetoacoustic waves.

Moreover, the analytical value for the period of the standing waves for typical loop

parameters made by Roberts et al. [1984] was consistent with the observations. In

a more detailed study Wang et al. [2003b] found the periods of these oscillations

to be between 7 and 31 min, with decay times between 5.7 and 36.8 min, and the

average amplitude velocity about 200 km/s. The phase speed of these oscillations

was consistent with the sound speed 370 km/s for temperatures about 6 MK.

Numerical modelling of this phenomenon performed by Nakariakov et al. [2004b]

concluded that quasi periodic pulsations with periods between 10 s and 300 s ob-

served in the radio, visible, and X-ray bands could be created by the second harmonic

of the standing slow magnetoacoustic wave.

In addition to standing magnetoacoustic slow waves, propagating magnetoacoustic

slow waves were also detected in the solar atmosphere. De Moortel et al. [2002]

performed a comprehensive review of physical properties of these waves observed

near foot-points of large coronal loops of propagating speeds from 80 km/s to 160

km/s with variations of intensity about 4.1 ± 1.5 percent of the background loop

brightness. Similarly to the standing waves propagating waves were observed to

be very strongly damped with periods between 281 s and 283 s. Propagating slow

magnetoacoustic waves are regular events in large coronal loops (e.g. de Moortel

[2009]).

Nakariakov et al. [2000c] proposed a theoretical one dimensional model of propagat-

ing longitudinal waves in a coronal loop taking into account the density stratification,

the effects of thermal conductivity along the magnetic field and viscosity. They ob-

tained an evolutionary equation being able to deduce that the waves with periods

between 5 and 15 minutes experience amplitude growth as they propagate up the

loop and after reaching a maximum amplitude, they quickly dissipate which was

consistent with observations (not seeing downward propagation).

Studying propagating slow waves is important because these waves travel at the

speed close to the sound speed, which is related to the local plasma temperature.

Thus, they provide us with a tool for the diagnostics of the thermal structure. Also,

as these waves propagate predominantly along the field their observations allow one
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to determine the magnetic field directivity.

1.6.4 Attempts to observe torsional oscillations

Torsional waves propagate along field-aligned plasma structures (e.g. loops, fila-

ments or jets) at the local Alfvén speed and manifest themselves as twisting of the

structure. These waves could not be detected by coronal imagers in an initially

untwisted loop because of the incompressible nature of these waves, but may be

detected with spectrometers. In a coronal loop, the resonant period of the global

torsional mode is:

Ptorsional =
2L

CA0
. (1.74)

If the Alfvén speed is non-uniform across the magnetic field, different magnetic sur-

faces oscillate with different periods. This leads to the creation of steep gradients

across the field, which grow with time. This effect dramatically increases the wave

dissipation by viscosity, and is known as phase mixing Heyvaerts and Priest [1983].

Recently, Jess et al. [2009] claimed to have observed torsional waves in the lower

solar atmosphere, but it is unclear whether alternative interpretations due to the

complicated nature of the observed spectral line are excluded. They detected oscil-

lations in a 430,000 square km area located near the centre of the solar disk. The

waves observed by Jess et al. [2009] have periods between 126 s and 700 s, and

amplitude velocities about 2.6 km/s which are coupled with the chromospheric line

of site Doppler velocities about 23 km/s. They claim, since there is neither any

co-spatial intensity variations which is a possible feature of sausage oscillations, nor

transverse displacements which is a feature of kink oscillations, magnetoacoustic

waves are not the case, meaning this could be an Alfvén torsional wave. However,

the interpretation in terms of a sausage wave can not be ruled out too, in this mode

the decrease in the density is accompanied by the increase in the loop radius, and

their product responsible for the line intensity can be nearly constant.

Banerjee et al. [2009] studying polar coronal holes observed non-thermal broadening

and since the velocity broadening was inversely proportional to the square root of

the electron density they deduced it is associated to Alfvén waves. The increasing

attention and applications of the torsional modes in the solar atmosphere’s active

regions made two Chapters of this work be dedicated to torsional modes of coro-

nal structures. The properties and concepts of linear torsional waves are discussed

in Chapter 3 and nonlinearly induced flows by the torsional waves are studied in
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Chapter 4.

1.6.5 Anomalous resistivity and magnetic reconnection

Magnetic reconnection is a hot topic in both solar and space plasmas and laboratory

plasmas. This phenomenon can cause release of energy, liberating the energy stored

in the magnetic field and converting it into the internal energy of the plasma, and

the kinetic energy of bulk flows (e.g., jets), various waves and nonthermal particles

[Priest and Forbes, 2000]. In section 1.2 it was mentioned that ideal MHD leads

to frozen-in condition, which takes place in a highly conductive regime. Finite

magnetic diffusivity violates the frozen-in condition, allowing for topological changes

in the magnetic configuration and hence the possibility of evolution of the plasma

system to a state with lower potential energy. In the solar coronal context, the

released energy can lead to plasma heating, generation of jets, flares and coronal

mass ejections (CME).

The classical value of the plasma resistivity of the solar corona is very small, just

10−4 Ωm (e.g. Boyd and Sanderson [2003]). It is very difficult to explain a number of

observed phenomena, e.g. flares, without the use of the concept of anomalously high

resistivity. For the violation of the frozen-in condition, enhancement of resistivity by

several orders of magnitude, at least at some specific locations and during some time

intervals, is required. This could be achieved by electric current driven anomalous

resistivity. For example, the concept of enhanced, in comparison with the classical

value, resistivity, is often employed in massive numerical simulations of flaring energy

releases in the form of a piece-wise current-dependent function,

η(x, t) =

{
0, if |vD| ≤ vcr
ηanomalous, if |vD| > vcr

}
, (1.75)

see Ugai [2001]. For example ηanomalous could be taken as

ηanomalous ∝
vD(x, t)− vcr

vD(0)
, (1.76)

where vD and vcr are the drift and threshold velocity, respectively, see Kliem et al.

[2000]. The anomalous resistivity in this piece-wise form is often used in numerical

simulations of solar coronal dynamics (e.g. Nishida et al. [2009]). In those numerical

simulations, the current-dependent resistivity was necessary for the initial trigger-
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ing of magnetic reconnection, and for the interpretation of preferable locations of

reconnecting current sheets.

Anomalous resistivity is a feature of collisionless plasmas; where the instabilities and

turbulence create electromagnetic field perturbations causing wave-particle interac-

tions, resulting in the increase in electric current which causes anomalous resistivity.

In MHD, the sudden increase in the resistivity when the current density exceeds a

certain threshold cannot be explained. However, this effect is well known in plasma

physics, the stages of this phenomenon are as follows; first the electric current density

must exceed the threshold; second, this causes plasma instability (e.g. ion-acoustic

instability, streaming instability, ion-cyclotron instability) which leads to the onset

of micro-turbulence, which dramatically enhances the plasma transport coefficients

in the region of the high electric current density [Büchner and Elkina, 2005]. Thus,

essentially, the effect of anomalous resistivity is described in terms of wave-particle

interaction with the use of the Vlasov equation, usually solved numerically. For ex-

ample, the enhanced resistivity generated by current-driven ion-acoustic waves was

numerically studied by Watt et al. [2002] and Petkaki et al. [2003], who showed the

increase in the resistivity by several orders of magnitude in a time scale about a few

hundred electron plasma periods. As the period of plasma oscillations in MHD is

infinitely small, the onset of the anomalous resistivity occurs practically instantly

on the MHD time scales.

In a further study Büchner and Elkina [2006] and Büchner [2007], extended the pre-

vious studies with more realistic boundary conditions and concluded that if only cur-

rents are concentrated in thin sheets, anomalous resistivity caused by wave-particle

interaction is a candidate for coronal reconnection. Still this phenomenon is not yet

fully understood, since 2D and 3D simulations need to be carried out e.g. Büchner

[2007].

Nakariakov et al. [2006] proposed a model where an externally generated fast mag-

netoacoustic wave, causes variations of current, seeding anomalous resistivity in the

vicinity of a potential site for magnetic reconnection. This model will be discussed

in subsection 1.6.6 in the context of quasi period pulsations. Also, this effect is

interesting in the context of sympathetic flare phenomenon. The ejected fast mag-

netoacoustic wave from one flare could somehow trigger the magnetic reconnection

at another site and hence trigger another solar flare.

A possible evidence of the phenomenon of sympathetic flares was presented by Moon

et al. [2002], who studied “chains ” of flares occurring at different, spatially separated
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locations, and found that there are pairs of flares which occur almost simultaneously.

Flares are violent releases of energy, and hence can generate a propagating pertur-

bation that can trigger another flare. A possible scenario could be as follows: the

first, “mother”, flare generates a fast magnetoacoustic wave, which approaches a

region where the magnetic field configuration is about to reconnect, and seeds there

anomalous resistivity. It can trigger the “daughter” flare. In Chapter 5, we study

the interaction of a fast wave pulse with a magnetic null-point and determine the

position where the current density spikes, which can generate anomalous resistivity,

for different initial parameters of the pulse.

1.6.6 Quasi-periodic pulsations in solar flares

Another common example of oscillating processes in the corona is quasi periodic

pulsations (QPP) in the emission generated in solar flares. Quasi-periodic pulsa-

tions have been detected in the solar atmosphere from radio to the γ-ray band with

various periods ranging from a fraction of a second to a few minutes [Nakariakov

and Melnikov, 2009]. For example, Svestka et al. [1982], while studying the two-

ribbon flare on November 1980, detected QPP in the active region below the arch

of the flare in the X-ray band with the hard X-ray imaging spectrometer on board

the Solar Maximum Mission (SMM). The period of the observed pulsations, about

1200 s, was one of the longest, reported in solar literature. Harrison [1987] studied

pulsations observed by SMM in the foot-point of a loop with periods about 1440

s in the soft X-ray band and concluded the pulsations are possibility due to MHD

wave oscillations. Svestka [1994] also suggested that the quasi-periodic X-ray bright-

ening observed in a large-scale loop with periods about 1200 s may be caused by

MHD oscillations. There is also abundant evidence of short period (less than 1 s)

and medium period (from 1 s to a few minutes) oscillations in flares. For example,

Nakariakov et al. [2003] observed 13-17 s QPPs with Nobeyama Radioheliograph.

Kai and Takayanagi [1973] with the interferometer of the Nobeyama solar radio

station while studying the 5th November 1970 complex outburst, observed smaller

than 1 s periods. For a detailed table of observed QPPs, see Aschwanden [2005].

The main current question connected with quasi-periodic pulsations is understand-

ing the physical mechanism responsible for their generation with a specific period.

According to Nakariakov and Melnikov [2009] there could be two groups of mecha-

nisms responsible for the generation of long quasi period oscillations: MHD oscilla-

tions and load/unload mechanisms. MHD oscillations could either affect the energy
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Figure 1.6: Sketch of a possible mechanism for the generation of quasi-periodic
pulsations by MHD oscillations in a neighbouring plasma structure (Nakariakov
et al. [2006]). The leaking MHD waves from the oscillating cooler loop interact with
the current sheet above the X-point of a nearby arcade causing periodic variations
of the electric current density, triggering magnetic reconnection, resulting in quasi
periodic pulsations in radio, visible, and X-ray bands.

release and electron acceleration in the flaring site coming from external oscilla-

tions [Foullon et al., 2005] or by modes inside the emitting flare itself [Asai et al.,

2001]. Load/unload mechanisms include oscillatory magnetic reconnection [Kliem

et al., 2000; Murray et al., 2009] or thermal over-stability [Kuin and Martens, 1982;

Müller et al., 2004].

Nakariakov et al. [2006] proposed a model in which QPP were generated by a non-

flaring loop oscillating either with the fast kink or sausage mode, situated in the

neighbourhood of a flaring arcade. If by any chance a leaky wave from the cooler

loop could interact with the X-point above the flaring arcade (or a current sheet),

the interaction would cause periodic variations in the electric current density, which

creates instabilities that causes anomalous resistivity (see subsection 1.6.5) being

able to trigger magnetic reconnection. This results in quasi periodic pulsations in

radio, visible, and X-ray bands.

To understand the type of MHD wave which is responsible for the QPP, spatially
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resolved observations are a need. The first imaging observation of quasi periodic

pulsations was analysed by Asai et al. [2001] with the Nobeyama Radioheliograph

and the Yohkoh soft and hard X-ray telescopes while studying the C7.9 flare on

10th, November 1998. The pulsations were observed in the X-ray and microwave

bands and since the Alfvén transit time along the loop was found almost equal to

the period of the QPP they deduced that oscillations of coronal loops affect the

efficiency of particle injection and acceleration.

1.6.7 Observations of plasma jets in the corona

An important element of the magnetic reconnection theory are fast plasma jets

(about the Alfvén speed) which are generated at the reconnection site. The search

for such jets aims to prove the basic theories of coronal plasma heating by reconnec-

tion, and hence attracts great attention. The typical speeds of the jets, predicted

by MHD theories, are about the Alfvén speed. Recently, the X-ray Telescope on-

board Hinode (Hinode/XRT) made a great progress in studying high temperature

coronal events specially coronal jets [Golub et al., 2007]. Hinode/XRT revealed the

appearance of up to 10 jets per hour in the corona [Cirtain et al., 2007] with an

average temperature of about 6 MK. Such a frequency of appearance is an order

of magnitude greater than determined with previously available X-ray imagers, e.g.

Yohkoh/SXT.. The typical lifetime of jets was found to be about between 100 s

and 2500 s. This is consistent with the results obtained for the lifetime of jets with

SXT. The size of the X-ray jets are in the range 2×103 km and 2×104 km in width

and 1 × 105 km in length. The speeds of the outflows which were estimated to be

in the range from 200 to 800 km/s, and the number of detected jets made [Cirtain

et al., 2007] deduce that this could be a contribution to solar wind acceleration.

A detailed forward modelling of waves in the X-ray jets observed by Cirtain et al.

[2007] is presented in Chapters 2 and 3.

1.7 Present solar missions

In order to study various events taking place on the Sun and also performing mea-

surements on various physical parameters of the events on the Sun, in addition

to successful ground-based instruments like e.g. Nobeyama Radioheliograph, and

the Coronal Multi-channel Polarimeter (CoMP), space missions are crucial. Space-

borne instruments provide us with the continuous, usually uninterrupted flux of
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data, which is free of atmospheric effects (while can be affected by the Earth’s ra-

diation belts). But, more importantly, space-borne observational facilities can use

observational bands, which are not available from ground, e.g. EUV, X-ray and

gamma-ray. Here the aims and abilities of some current effective solar missions are

mentioned.

The Solar and Heliospheric Observatory (SoHO) was launched on December 2, 1995

as a joint mission between the European Space Agency (ESA) and NASA, aiming to

study all the regions of the Sun from core to outer atmosphere which helps under-

stand the origin of the solar outbursts and wind. Note that SoHO is not a satellite,

since it does not orbit the Earth, instead it is placed at the neutral gravity point

between the Sun and Earth, the Lagrangian 1 point.

There are twelve instruments onboard SoHO: the Coronal Diagnostic Spectrometer

(CDS); the Charge, Element, and Isotope Analysis System (CELIAS); the Com-

prehensive Suprathermal and Energetic Particle analyser (COSTEP); the Extreme

Ultraviolet Imaging Telescope (EIT); the Energetic and Relativistic Nuclei and Elec-

tron experiment (ERNE); the Global Oscillations at Low Frequencies (GOLF), the

Large Angle and Spectrometric Coronagraph (LASCO); the Michelson Doppler Im-

ager (MDI), the Solar Ultraviolet Measurements of Emitted Radiation (SUMER),

the Solar Wind Anisotropies (SWAN), the Ultraviolet Coronagraph Spectrometer

(UVCS), and the Variability of Solar Irradiance and Gravity Oscillations (VIRGO).

The main part of the data is in the open access.

A few years after SoHO, the Transition Region and Coronal Explorer (TRACE) was

launched in April 1998, aiming to study the solar photosphere, chromosphere, and

corona in order to identify relations between the fine-scale magnetic fields and the

associated plasma structures on the Sun. This aim would be achieved by studying

the 3D magnetic field structure, the temporal evolution of the magnetic field due

to photospheric flows, and studying the thermal topological effects on the magnetic

field. Note that the spatial resolution of images observed by TRACE is very high,

about 1 arc second, with the pixel size being 0.5 arc second, which corresponds to

the spatial size of about 318 km on the solar disk.

Another small but also effective mission is the Reuven Ramaty High Energy Solar

Spectroscopic Imager (RHESSI) which was launched in February 2002 aiming to

study the solar flares in the context of particle propagation and acceleration, ex-

plosive energy releases, and coronal heating. Its temporal resolution is 4 seconds

having an energy range between 3 keV and 17 MeV.
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Another revolutionary mission is the Solar Terrestrial Relations Observatory (STEREO)

which was launched in October 2006 to study the Sun-Earth system. This mission,

aiming to study the flow erupted from the Sun which envelopes the Earth, involves

two twin satellites one travelling ahead of the Earth around the Sun (STEREO A),

and the other travelling behind the Earth, orbiting the Sun in a direction opposite

to Earth’s (STEREO B). Combination of the images obtained with STEREO A

and B with images obtained from the Earth satellites or the L1 point allow one to

reconstruct 3D images of the heliosphere. In particular, 3D images from the mass

eruptions of the Sun give us clues for their triggering. There are four instruments

on board STEREO: the Sun Earth Connection Coronal and Heliospheric Investiga-

tion (SECCHI), which itself contains of a EUV imager, 2 white-light chronographs,

and a heliospheric imager, SWAVES which is a radio wave tracker, IMPACT which

does 3D measurements of plasma characteristics of solar energetic particles and lo-

cal magnetic field, and PLASTIC which provides plasma characteristics of protons,

alpha particles and heavy ions.

Hinode (Solar-B) launched in September 2006, is a Japanese funded mission having

United States and United Kingdom as collaborators. The aim of Hinode is to under-

stand the solar activity by studying the Sun’s magnetic field. Hinode carries three

instruments, the Solar Optical Telescope (SOT), The X-ray telescope (XRT), and

the Extreme Ultraviolet Imaging Spectrometer (EIS). XRT is able to capture X-ray

images of the outer solar atmosphere which has temperatures above 1 million K.

XRT provides coronal images at different temperatures, both full disk and partial

disk of view. There are 10 filters which can be used on XRT, this provides excellent

temperature coverage, which ranges as 6.1 < log T < 7.5. The temperature discrim-

ination of XRT is log T = 0.2 and the angular resolution is 2 arc second, also it has

a field of view for a full disk greater than 30 arc min.

The combination of observations by SOT and XRT on board Hinode, give the abil-

ity to study how the erupted solar events are triggered by the changes of the solar

magnetic field. EIS onboard Hinode is able to measure the flow speeds and density

changes in the chromosphere-corona transition region, meaning that it could some-

how find relations between the photosphere and the corona.

A recent mission to study the solar atmosphere and specially solar flares was the

complex orbital observations near-Earth of activity of the Sun, Coronas Photon.

It was a Russian mission with collaborations from Ukraine and India launched in

January 2009 and stopped on November 2009. The main aim of this mission was
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to understand the energy transport by accelerated particles during solar flares. In

addition this mission had astrophysical and solar-terrestrial aims too. On board

Coronas Photon there was a solar telescope/imaging spectrometer (TESIS) which

monitored the solar activity in the X-ray band with temporal resolution of 1 second

and spatial resolution about 1 arc sec with a field of view about 45 arc min (full

disk).

The most recent solar mission is the Solar Dynamic Observatory (SDO) which was

launched on February 2010. Its aims are to help understand the magnetic field

generation and structuring of the Sun, and also help understand the solar activity

which accelerates the solar wind and effects the space weather. There are three

instruments onboard SDO, the Atmospheric Imaging Assembly (AIA) which gives

images in ten wave lengths every 10 seconds, making full-Sun images of 4096x4096

pixels, with the pixel size of 0.6 arc seconds, the Extreme Ultraviolet Variability ex-

periment (EVE), and the Helioseismic and Magnetic Imager (HMI) witch provides

a full disk coverage of the Sun. Note that the image resolution of SDO/AIA is twice

the resolution of STEREO and four times the resolution of SOHO. Also, in the fast

cadence mode, SDO could take an image a second which is 180 times faster than

STEREO and 720 times faster than SOHO, which is showing the advances of SDO

compared to previous solar missions.
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Chapter 2

Propagating kink waves in soft

X-ray coronal jets

The work in this Chapter is also published in Vasheghani Farahani et al. [2009].

2.1 Introduction

Hot jets are often observed in the solar corona in the soft X-ray band as transient,

collimated features with apparent high-velocity outflows in the direction of colli-

mation [Shibata et al., 1992; Alexander and Fletcher, 1999]. Statistical analysis of

jets observed with Yohkoh/SXT [e.g., Shimojo et al., 1996] revealed that most jets

are associated with flaring energy releases, mainly small flares and microflares. The

typical observed lengths of hot jets, defined as the distance from base to where its

intensity drops below some certain value, are in the range of between a few tens

and several hundred thousand km, and their diameters are one to two orders of

magnitude smaller. The typical aspect ratio of length to width was measured to be

about ten. The lifetime is typically in the range from several minutes to an hour.

About half of the observed jets showed a constant width, and about a third had a

width decreasing with height.

The observed flow speeds are several hundred km/s, reaching in some cases about

a thousand km/s. The estimate of the speed is affected by the projection effect, and

by the obvious difficulties connected with the measurement of a physical speed with

an imaging instrument. The majority of jets are situated over regions of mixed po-

larity. Shibata et al. [1992] suggested that hot jets are associated with reconnection
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Figure 2.1: Hinode XRT false-colour images of three stages of a jet’s evolution
[Cirtain et al., 2007]

outflows. Numerical MHD modelling [Yokoyama and Shibata, 1995] showed that

an anemone jet could result from the interaction of an emerging magnetic flux with

a vertical or oblique background magnetic field. Figure 2.1 shows three snapshots

of an X-ray coronal jet observed by Hinode/XRT, the features and advantages of

Hinode/XRT has been discussed in section 1.7.

The theoretical model of MHD waves guided by a plasma structure of steady flow

was developed by Roberts [1987], Goossens et al. [1992] and Terra-Homem et al.

[2003] for the cylindrical geometry and by Nakariakov and Roberts [1995a] for the

slab geometry. The main new feature introduced by the flow was the modification

of the dispersion relations and wave-flow interaction effects associated with negative

energy [Joarder et al., 1997]. The latter can cause instabilities at steady flow speeds

well below the KHI threshold, which occurs when the flow-speed shear exceeds the
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Alfvén speed by a factor of about two [Ruderman et al., 1996].

Note that the concept of negative energy waves is related to the context of back-

ward waves, Riutova [1988] showed that in the existence of fast flows, negative

energy waves come into play. Cairns [1979] stated that negative energy waves could

reduce the energy of the system if excited. Nakariakov and Roberts [1995a] and

Nakariakov et al. [1996] made a clear study on backward waves for various modes

in the solar atmosphere. They took into account the effect of internal and external

flows and mentioned that, whenever the difference between the flows inside and out-

side a structure is more than the phase speed of a mode travelling in the opposite

direction for the same wave number without a flow, backward waves are of negative

energy [Riutova, 1988]. Meaning, increase in the amplitude of the wave decreases

the total energy of the steady flow and wave. In other words dissipation could cause

over-stability [Joarder et al., 1997].

In this Chapter we adapt the theoretical model for MHD waves guided by a plasma

cylinder with a steady flow in interpreting the transverse waves observed by Cirtain

et al. [2007] in soft X-ray coronal jets. Cirtain et al. [2007] observed and studied

the fine structure of the jets, revealing the presence of transverse (kink) oscillations,

which were periodic displacements in the jet axis with a period of about 200 s and

a displacement amplitude of about 4000 km. The latter value is half of the given

value for the peak-to-peak magnitude. The question arises about the nature of these

waves.

The aim in this Chapter is to answer this question by forward modelling of transverse

oscillations of a soft X-ray jet directed from an off-limb coronal loop seen by Hin-

ode/XRT. We do not consider the jet formation or collimation, but restrict ourselves

to the analysis of linear MHD perturbations of the observed plasma configuration.

We demonstrate by expansions of the dispersion relation in the long wave-length

limit that the observed properties of waves are consistent with guided, fast magne-

toacoustic, kink waves. The basic concepts and properties and observations of kink

waves were discussed in section 1.4 and subsection 1.6.1.

2.2 Model and equilibrium conditions

We consider a hot jet as a uniform cylinder of radius a which was discussed in section

1.4 with the equilibrium, internal, magnetic field B0ẑ parallel to the axis of the jet.

Outside the cylinder, the magnetic field is Beẑ. The gas pressure and density within
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Figure 2.2: The sketch of a magnetised cylindrical flux tube with radius a, density ρ0,
and gas pressure p0 with a flow U0 parallel to the z axis, embedded in a magnetised
medium with density ρe and gas pressure pe. Both magnetic fields inside and outside
the tube are parallel to the z-direction.

the cylinder are p0 and ρ0, respectively, and outside the cylinder, they are pe and

ρe, respectively.

Total pressure balance implies that,

p0 +B2
0/2µ = pe +B2

e/2µ, (2.1)

where µ is the magnetic permeability. Hence, the densities ρ0 and ρe are related by

ρe
ρ0

=
2C2

s0 + γ C2
A0

2C2
se + γ C2

Ae

, (2.2)

with

Cs0 = (γ p0/ρ0)1/2 , CA0 = B0/
√
µρ0 (2.3)

and

Cse = (γ pe/ρe)
1/2 , CAe = Be/

√
µρe (2.4)

where Cs0, Cse are the sound speeds inside and outside the cylinder, respectively.

CA0, CAe are the Alfvén speeds inside and outside the cylinder, respectively, and γ

is the ratio of the specific heats.

Inside the cylinder, there is a field-aligned steady flow with
−→
V = U0ẑ. Outside the
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jet, there is no steady flow, Ue = 0. In both regions, the plasma-β is taken to be

below unity. So our MHD equations here are as mentioned in section 1.4 but with

addition of terms with the equilibrium steady flow U0, which is not absent in this

model.

2.3 Dispersion relations

We consider linear kink perturbations to the steady-flow equilibrium, of azimuthal

wave numberm = 1 because they are the only ones perturbing the jet axis. Following

Goossens et al. [1992], the general dispersion relation linking the frequency ω to the

longitudinal wave number k of an m = 1 mode is

ρ0

ρe

(k2C2
A0 − Ω2

0)

(k2C2
Ae − ω2)

me

n0

K ′1 (me a)

K1 (me a)
=
J ′1 (n0 a)

J1 (n0 a)
, (2.5)

where Ω0 = ω − U0 k is the Doppler-shifted frequency,

n2
0 = −(k2C2

s0 − Ω2
0)(k2C2

A0 − Ω2
0)

(C2
s0 + C2

A0)(C2
T0 k

2 − Ω2
0)
, C2

T0 =
C2
s0C

2
A0

C2
s0 + C2

A0

, (2.6)

and

m2
e =

(k2C2
se − ω2)(k2C2

Ae − ω2)

(C2
se + C2

Ae)(C
2
Te k

2 − ω2)
, C2

Te =
C2
seC

2
Ae

C2
se + C2

Ae

. (2.7)

where CT0 and CTe are the inside and outside tube speeds, respectively. Equa-

tion (2.5) is a transcendental implicit algebraic equation that does not have exact

analytical solutions. Since the wavelengths of transverse perturbations observed by

Cirtain et al. [2007] are significantly longer than the radius a of the jet, it is sufficient

to consider the limiting case of long wave-lengths | k| a � 1. From equation (2.5),

the phase and group speeds can be approximated by the explicit expressions:

ω/k ≈ vG + αk2a2ln(|k|a), (2.8)

dω/dk ≈ vG + 3αk2a2ln(|k|a), (2.9)

where

vG =
ρ0 U0

ρ0 + ρe
+ vcm, (2.10)
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α = −1

2

ρ0(C2
A0 − (vG − U0)2)(C2

Ae − v2
G)

(ρ0 + ρe)C2
Ae vcm

, (2.11)

vcm =

√
C2
k −

ρ0ρe
(ρ0 + ρe)2

U2
0 , Ck =

√
ρ0C2

A0 + ρeC2
Ae

ρ0 + ρe
. (2.12)

For k = 0, equation (2.8) reduces to:

ω/k ≈ vG, (2.13)

which is the result found by Goossens et al. [1992]. For U0 = 0, equation (2.8)

becomes

ω

k
= Ck

{
1− ρ0ρe(C

2
Ae − C2

A0)(C2
Ae − C2

k)

2(ρ0 + ρe)2C2
AeC

2
k

k2a2K0(|k| a)

}
, (2.14)

which coincides with the expression given in Edwin and Roberts [1983], but here in-

stead of the modified second-order Bessel function, we use the logarithmic expression

as its asymptotic equivalent,

ω

k
= Ck

{
1 +

ρ0ρe(C
2
Ae − C2

A0)(C2
Ae − C2

k)

2(ρ0 + ρe)2C2
AeC

2
k

k2a2ln(|k| a)

}
. (2.15)

Using the observational fact that the jet is significantly denser than the background

plasma [Culhane et al., 2007], ρe/ρ0 � 1, we can further simplify equations (2.8)-

(2.12) to

vG ≈ U0 + CA0

√
1 + (Be/B0)2, α ≈ CA0

2

(Be/B0)2√
1 + (Be/B0)2

. (2.16)

In Figure 2.3, the dependence of the phase and group speeds on the wave number is

shown, which is calculated numerically with the use of the full dispersion relation of

equation (2.5), and analytically with the use of asymptotic expressions in equations

(2.8)-(2.12) and (2.16). All three approaches show satisfactory consistency. Both

asymptotic expressions are independent of the sound speeds inside and outside the

jet. This is consistent with the conclusion of Edwin and Roberts [1983] that the kink

wave phase speed depends very weakly upon the value of the sound speed, provided

Cs0 < CA0.
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Figure 2.3: Dependence of the phase and group speeds of the kink mode upon the
wave number. The speeds are normalised to the Alfvén speed inside the jet, and
the wave number to the reciprocal of the jet radius. The solid lines correspond
to the numerical solution of the exact dispersion relation, the upper and lower
being the phase and group speeds, respectively. The dashed lines correspond to the
asymptotic expressions utilising the limit ka→ 0, where the higher and lower curve
are the phase and group speeds, respectively. The dotted line shows the asymptotic
expression with both ka → 0 and ρe/ρ0 → 0. In the calculations, U0 = 580 km/s,
CAe = 2400 km/s, CA0 = 800 km/s, Cs0 = 360 km/s, Cse = 120 km/s, and
ρe/ρ0 = 0.13.
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2.4 Expressions for the perturbations of the physical

parameters

Linear perturbations of macroscopic physical parameters in the kink wave are ex-

pressed in terms of the divergence of the plasma velocity perturbation in the zero-β

limit,

ρ = −
ρ{0,e}

Ω
∆(r) sin Θ,

Bz = −
B{0,e}

Ω
∆(r) sin Θ,

vθ =
C2

A

(Ω2 − k2C2
A) r

∆(r) sin Θ,

Bθ = −
k B{0,e}C

2
A

(Ω2 − k2C2
A)Ω r

∆(r) sin Θ,

vr =
C2

A

(k2C2
A − Ω2)

d

dr
∆(r) cos Θ,

Br = −
C2

A k B{0,e}

(k2C2
A − Ω2)Ω

d

dr
∆(r) cos Θ, (2.17)

where Θ = ω t+ θ − kz, and

∆(r) = A0J1(n0r), r < a (2.18)

inside the jet, and

∆(r) =
A0J1(n0a)K1(mer)

K1(mea)
, r > a (2.19)

outside the jet, where A0 is the amplitude of the perturbations. Note that the z

component of the velocity perturbations is zero in the zero-β limit.

The transverse perturbations in the kink wave are essentially compressible, since

they perturb the plasma density and the divergence of the velocity. The relations in

equation (2.17) together with the dispersion relations provide a complete description

of transverse perturbations caused by a linear kink wave guided by a field-aligned

plasma jet. It can be used in the forward modelling of the observational manifesta-

tion of this phenomenon.

The emission intensity recorded by XRT is proportional to the integration of the
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plasma density squared along the line-of-sight:

I0 =

∫ z

0
K(T, ne)n

2
e(z
′)dz′, (2.20)

where K(T, ne) is the contribution function [Aschwanden, 2005]. This expression

is used in the forward modelling of the observation of kink waves on jets with XRT.

First, a 4D (spatial 3D and time) data cube of the plasma density in the oscillating

jet is created. Specifying the line-of-sight, we obtain a time sequence of 2D images

(snapshots), showing the distribution of intensity to be observed. Some random

variations in the intensity were added to represent e.g., the electronic noise and

other processes missing in the model. The jet radius was 5 pixels, which should

correspond to a jet of radius 3.6 Mm observed with Hinode/XRT.

In Figure 2.4, we show results for the forward modelling of an off-limb coronal loop

with a dense vertical jet, as it would be seen with Hinode/XRT, with the jet ex-

periencing transverse oscillations described by equation (2.17). Different snapshots

correspond to different phases of the oscillation. The snapshots agree well with the

observational results of Cirtain et al. [2007].

A standard approach to the analysis of kink waves is the method of a time-distance

plot. Figure 2.5 shows a time-distance plot of the oscillation constructed with the

use of the model developed in this Chapter. A one-pixel-wide slit across the oscil-

lating jet is selected, and the intensity distribution along the slit is determined in

each snapshot. The measure of intensity along the slit is plotted as a column. By

stacking the columns from sequential snapshots along the horizontal axis of the plot,

a representation of the intensity variation in distance and time is created.

2.5 Estimation of the damping time of kink waves in

jets due to resonant absorption

If there is a variation in the Alfvén or flow speed across the jet, the kink perturbations

are subject to resonant absorption. From basic physics we know that when ever the

frequency of an incident wave entering a medium equals the natural frequency of

the medium, resonance appears. For instance, this phenomena is responsible for the

absorption of ultra-violet waves by glass. Since the frequency of ultra-violet waves

is close to the natural frequency of oscillations in glass, resonance appears, resulting

in absorption of ultra violet waves by glass.
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Figure 2.4: Forward modelling of transverse oscillations of a soft X-ray jet directed
from an off-limb coronal loop seen by Hinode/XRT (with the pixel size about 727
km, the inverse colour table is used). The region in the bottom of the top row Figures
shows the solar disk. The jet is the vertically positioned linear feature directed from
the loop. The top row shows snapshots of the side view of an oscillating jet at times
t = 0, t = 0.125P , and t = 0.25P , where P is the period of the oscillations. The
jet oscillates in the plane perpendicular to the line-of-sight. The perturbation of
the jet corresponds to the analytical solution of linearised MHD. The bottom row
shows the density distribution over the jet cross-section at the location of the black
slit indicated in the corresponding top panels. The jet radius is 3.6 Mm, and the
oscillation displacement amplitude is 1.5 Mm, and other parameters as in Figure
2.3.
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Figure 2.5: Time-distance plot of the oscillating jet, as it would be seen by Hin-
ode/XRT (with the pixel size about 727 km, the inverse colour table is used). The
slit position is shown in Figure 2.4. The spatial axis is normalised to the loop radius,
and the time axis is normalised to the oscillation period. The perturbation of the
jet corresponds to the analytical solution of the linearised MHD. The parameters of
the simulation are the same as in Figure 2.4.

In MHD waves, if for example a fast magnetoacoustic wave in a jet is incident to

the local Alfvén wave, in case the frequency of the magnetoacoustic wave equals

the frequency of the Alfvén wave, we experience mode conversion due to resonance.

Due to the fact of phase mixing of the Alfvén waves, rapid dissipation comes in to

play which is called resonant absorption.

To calculate the damping of the oscillation, we use equation (76) from Goossens

et al. [1992],

γdamp =
ρ2

0(Ω2
0 − ω2

A0)2

2(ρ0 + ρe)ωcm

SignΩ

ρ(rA)∆

mπ

rA
, (2.21)

with

∆ =
ω2

Ae − ω2
A0

2δ
, (2.22)

where

ωA0 = CAk, ωAe = CAek, (2.23)
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MAW

Figure 2.6: A global magnetoacoustic wave (blue lines) incident to a local Alfvén
wave (red lines) on a flux tube surface. The slope is showing the resonant layer with
thickness δ, and wherever the frequency of the fast magnetoacoustic wave is equal
to the frequency of the Alfvén wave, we experience resonant absorption.

and δ is the thickness of the transition layer and rA is the distance of the resonant

layer from the jet axis. The transition layer is a layer between two media with

different magnetic fields and density. These differences cause the Alfvén wave to

have different frequencies in the two medium separated by the transition layer (see

Figure 2.6).

If ρ(rA) = ρ0 and a being the tube radius, we would have:

γdamp =
(Ω2

0 − ω2
A0)2

2(1 + ρe/ρ0)ωcm

π

a

2δ

ω2
Ae − ω2

A0

. (2.24)

To estimate the damping time tdamp of the kink oscillations in a jet, taking the

normalised parameters used in Figures 2.3 and 2.4 we obtain:

γdamp
ωA0

=
(((2− 0.725)2 − 12)2) k3

2(1 + 0.13)(1.365) k

π

a

2δ

(32 − 12) k2
, (2.25)

which gives

γdamp
ωA0

= 0.099
δ

a
. (2.26)
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The damping time would be the inverse of the damping,

tdamp =
1

γdamp
, (2.27)

substituting equation (2.26) in (2.27), we obtain:

tdamp =
10

ωA0

a

δ
, (2.28)

which gives the expression for the damping time in terms of the tube radius and the

wave number. For the period of oscillations we know:

P =
1

f
=

2π

ω
. (2.29)

The ratio of the damping time to the period of oscillations would be easily obtained

by dividing equation (2.28) by (2.29):

tdamp
P

=
10

π
≈ 3, (2.30)

where the ratio of ω/ωA0 has been taken 2. In addition, if we would like to see

the dependence of the damping time on the geometry of the tube using observed

data, we can take 800 km for the inside Alfvén speed and 200 seconds for the period

and from Figure 2.3 we see the phase speed is about twice the inside Alfvén speed

meaning we should take the phase speed about 1600 km per second. we could write:

γdamp = 79.679

(
km

s

)
× δ

a
k, (2.31)

the wave length would be:

λ =
ω

k
P = 1600× 200 = 320000 km, (2.32)

resulting in

γdamp = 0.00156
δ

a
s−1, (2.33)

giving the damping time:

tdamp/s ≈ 640(a/δ), (2.34)
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where

a/δ > 1 (2.35)

is the ratio of the jet radius a to the width δ of the resonant layer and the wave

phase speed coincides with the local Alfvén speed. For the observed period of about

200 s, the damping time is several times longer than the wave period. Hence, in the

field-of-view of just one wave-length, no decrease in the wave amplitude could be

observed. This justifies the model developed.

2.6 Excitation of transverse waves in jets

The origin of the transverse oscillations of soft X-ray jets has not yet been under-

stood. One possible candidate mechanism could be the Kelvin-Helmholtz instability

[Ferrari et al., 1981]. For a plasma cylinder of the observed geometry with the typical

values of the Alfvén speed (CAe = 3CA0, which correspond to the density contrast

ρe/ρ0
∼= 0.13), the instability threshold value of the steady flow speed would be

C2
k −

ρ0ρe U
2
0

(ρ0 + ρe)2
> 0, (2.36)

U2
0 <

ρ0

ρe
C2

A0 + C2
Ae + C2

A0 +
ρe
ρ0
C2

Ae, (2.37)

We get:

U0 < 4.47CA0. (2.38)

This means the Kelvin-Helmholtz instability threshold is:

U0 = 4.47CA0. (2.39)

Since the observed values of the jet speeds do not exceed the Alfvén speed inside the

jet, the instability threshold is not reached and this possibility should be excluded.

Another option is related to negative energy wave instabilities. However, according

to Joarder et al. [1997] in the considered situation, sub-Alfvénic flow speeds can lead

to the instability of longitudinal modes only, which does not explain the generation

of the transverse perturbations. Also, the periodicity could appear because of ge-

ometric dispersion [Roberts et al., 1984; Murawski and Roberts, 1994; Nakariakov

et al., 2004a]. However, the typical wavelength generated by this mechanism would
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be comparable to the jet diameter and hence we exclude this option too.

Consequently, we deduce that the observed transverse waves are excited somewhere

at the origin of the jet, possibly by oscillatory magnetic reconnection [Murray et al.,

2009] where an outflow of one reconnecting site provides the inflow for the other

reconnecting site and vice versa, and then propagate according to the dispersion

and phase relations discussed above.

2.7 Discussions and conclusions

We have demonstrated that transverse waves observed in soft X-ray coronal jets

[Cirtain et al., 2007] are adequately described in terms of fast magnetoacoustic kink

(m = 1) modes of a straight magnetic cylinder embedded in a magnetic environment.

It is shown that these waves are collective, since they are coherent perturbations of

all magnetic surfaces inside the jet, and compressible, since the flow-perturbation

divergence is finite. Phase and group speeds are determined by the density contrast

of the jet, the flow speed, and the internal and external Alfvén speeds. Forward

modelling performed with the use of theoretically determined phase relations was

found to be consistent with the observational findings obtained with Hinode/XRT.

The expressions used in this Chapter are written for the azimuthal mode number

m = 1. However, a transverse displacement of the axis of the cylinder, such as the

transverse motion of the jet, can, in general, have two opposite senses, m = ±1. The

azimuthal modes m = ±1 manifest themselves as a cork-screwing motion travelling

along the cylinder. The m = +1 mode has a right-hand twist, whereas the m = −1

mode has a left-hand twist. Physically, the plane-polarised wave can be constructed

by superposition of the m = +1 mode with an m = −1 mode of an equal amplitude.

An elliptical cork-screwing motion may be constructed by superposing m = +1 and

m = −1 modes with unequal amplitudes.

However, it is impossible to distinguish observationally between a pure m = ±1

mode or a superposition of these modes. Most of the solar observation facilities

(except for STEREO) observe only the plane of the sky displacements (imaging

telescopes) or the line-of-sight velocities (spectrographs). As such, it is only possible

to measure the projected motion of the jet. It is impossible to quantify the motion

in the other direction and thus to assess the nature (pure or superposition) of the

observed oscillation. For Figure 2.4 we have displayed the plane polarisation, but it
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is indistinguishable from that of an m = ±1 mode.

The jets are observed at heights of up to 100 Mm, while for plasmas of temperature

e.g., 10 MK, the density scale height is about 500 Mm. This comparison allows us to

ignore the stratification. However, in a more detailed study, effects of stratification

and longitudinal structuring should be considered. It is unclear how the wave evolves

past the physical extent of the jet, which will depend on the transverse structuring

that is not visible in the observations.

Observation of transverse waves guided by soft X-ray jets is interesting in terms

of coronal seismology. According to equations (2.8) and (2.16), the phase speed of

these waves is about:

ω/k ≈ vG ≈ U0 + CA0

√
1 + (Be/B0)2, (2.40)

which is determined by the flow speed and the Alfvén speed inside the jet.

Another constraint is given by the equilibrium condition (equation 2.2), which can

be rewritten as:

ρe/ρ0 ≈ (6/5 + C2
A0/C

2
s0)/(C2

Ae/C
2
s0), (2.41)

where we have assumed that the external β is very small and γ = 5/3. These ex-

pressions contain observables: the phase speed of transverse waves, the flow speed

[Cirtain et al., 2007], the density-contrast ratio (which can be obtained from the

emission-measure contrast) and the sound speed (which is connected with the tem-

perature). The use of the observed values in the theoretical constraints allows us to

estimate the internal and external Alfvén speeds, and the magnetic fields.
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Chapter 3

Long wave-length torsional

modes of coronal plasma

structures

The work in this Chapter is also published in Vasheghani Farahani et al. [2010].

Note that in Chapters 3 and 4 the CGS unit has been used.

3.1 Introduction

In Chapter 2 the model of a cylindrical plasma structure embedded in a plasma of

different properties was used to study the kink oscillation in a coronal jet. This

model could be applied to several other astrophysical objects, in particular coronal

loops and plumes in the solar corona. Such a structure is known to support a number

of magnetohydrodynamic (MHD) modes of oscillation, which can be divided into

several classes according to their observational manifestation. In low-β plasmas,

typical for the solar corona, the modes of plasma cylinders are kink, sausage, lon-

gitudinal, ballooning and torsional [e.g. Edwin and Roberts, 1983; Nakariakov and

Verwichte, 2005]. In Chapter 1 the properties of these modes were discussed in the

case of a straight magnetic field parallel to the axis of the cylinder in detail. The first

four modes are compressible (modified slow or fast magnetoacoustic waves), while

torsional modes (also known as rotational modes) are the only truly incompressible

perturbations of the plasma [e.g., Van Doorsselaere et al., 2008b] and propagate at

the Alfvén speed, and hence should be considered as Alfvén waves. Torsional modes
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are propagating azimuthal (rotational) motions of the plasma, accompanied by the

perturbations of the azimuthal component of the magnetic field. Also, torsional

modes can be considered as an alternating electric current aligned with the axis of

the cylinder. Strictly speaking, in a plasma cylinder with a straight magnetic field,

torsional waves are not modes, as perturbations of neighbouring magnetic surfaces

are independent of each other and hence do not constitute a collective phenomenon.

However, if the Alfvén speed is sufficiently uniform across the plasma structure and

if the perturbations of the neighbouring magnetic surfaces are excited in phase, tor-

sional perturbations manifest themselves in observations as a quasi-collective mode-

like perturbation. Thus, from the point of view of the interpretation of observed

phenomena the term “torsional mode” in our opinion is sufficiently justified.

A useful tool for the analytical study of long-wavelength axisymmetric (torsional

and longitudinal, and, perhaps, sausage) perturbations of magnetic flux tubes is

the second order thin flux-tube approximation derived by Zhugzhda [1996]. This

approximation generalises the classical thin flux tube theory of Roberts and Webb

[1978], accounting for the flux tube rotation and twist, and also the variation of its

cross-section. In particular, it allows to consider the effects of the long-wavelength

dispersion, connected with the presence of the characteristic spatial scale, the tube

diameter, on the wave propagation [Zhugzhda, 1996]. It has been pointed out that

in twisted magnetic flux tubes, the torsional modes become compressible. Soliton

solutions appears because of the combination of weakly dispersive and weakly non-

linear corrections to the sausage wave propagation were found in Zhugzhda and

Nakariakov [1999]. An intensive following-up discussion [Zhugzhda and Goossens,

2001; Zhugzhda, 2002; Ruderman, 2005; Zhugzhda, 2005] revealed the necessity to

pay attention to the induced perturbations in the external medium. However, this

is of course not necessary if the external medium is a vacuum, and the plasma con-

finement is fulfilled by the internal magnetic twist.

The aim of this Chapter is to study long-wavelength (in comparison with the trans-

verse size of the plasma cylinder) axisymmetric torsional modes in twisted and ro-

tating plasma structures surrounded by vacuum, developing the work of Zhugzhda

[1996] and Zhugzhda and Nakariakov [1999]. The paper is organised as follows. In

the next section we discuss the manifestation of torsional modes and in section 3.3

we discuss the model and the equilibrium. In section 3.4 we consider the general

dispersion relation in several asymptotic cases. In section 3.5 we derive phase re-

lations between the perturbed physical quantities and study the compressibility of
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torsional waves. The results obtained are summarised in conclusions.

3.2 Manifestation of torsional modes in the corona

In solar coronal studies, torsional modes have attracted great attention for several

important reasons. Tapping [1983] considered this mode for the interpretation of

high quality oscillations of the microwave emission generated in flaring loops by the

gyrosynchrotron mechanism. The modulation of the emission can be produced by

the change of the angle between the magnetic field and the line of sight modelled by

a torsional wave. Another possible interpretation of quasi-periodic pulsations in so-

lar flares, in terms of the oscillations in an equivalent LCR-circuit [e.g. Khodachenko

et al., 2009, and references therein], links the pulsations with the alternating electric

current in a flaring loop. The alternating field-aligned current can be described in

terms of torsional waves. Hence, the development of the LCR-circuit model requires

the understanding of the torsional wave dynamics.

Another popular research avenue is the role of torsional modes in coronal heating and

solar wind acceleration, based upon the ability of torsional waves to penetrate easily

into the corona [e.g. Ruderman, 1999; Copil et al., 2008]. In particular, Moriyasu

et al. [2004] and Antolin et al. [2008] paid special attention to nonlinear effects and

shock formation. It was demonstrated numerically that the observed spiky intensity

profiles due to impulsive energy releases could be obtained from nonlinear torsional

waves. Recently, Fletcher and Hudson [2008] proposed that a flare-generated large-

scale torsional wave could be responsible for the bulk acceleration of electrons to

high energies. Copil et al. [2008] suggested that propagating torsional waves could

produce localised heating in coronal plasma threads. Also, torsional modes have

been intensively studied in the context of the astrophysical jet collimation [e.g.

Bisnovatyi-Kogan, 2007], where the periodic alternate magnetic twist provides the

force that counteracts the total pressure and the centrifugal forces.

Despite the huge interest in torsional modes, unequivocal observational evidence of

their presence in solar coronal plasma structures is absent due to intrinsic difficul-

ties in their detection. Promising methods of their detection are based upon the

Doppler shift of coronal emission lines and the modulation of the gyrosynchrotron

emission. Unfortunately, the lack of the necessary spatial resolution in solar coronal

observations does not allow one to resolve simultaneously the periodically varying

red and blue Doppler shifts in different parts of a plasma structure. Spatially un-
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resolved torsional modes manifest themselves as periodic non-thermal broadening.

Zaqarashvili [2003] interpreted the variation of non-thermal broadening of the coro-

nal “green” line along a coronal loop, with the period about 6 min, as the global

(standing) torsional mode. Grechnev et al. [2003] suggested that 6-s oscillations

of the hard X-ray and microwave emission in a solar flare could be produced by a

torsional oscillation of the flaring loop. In the chromosphere, possible detection of

torsional perturbations with the periods between 126 s and 700 s and an amplitude

of 23 km/s was recently reported by Jess et al. [2009].

Theoretical investigation of torsional modes of magnetic plasma structures has been

concentrated on various aspects of the wave propagation. In a non-rotating plasma

cylinder with a straight magnetic field, torsional perturbations which are indepen-

dent of the azimuthal angle (m = 0, where m is the azimuthal wave number, see

section 1.4) propagate at the Alfvén speed inside the cylinder and are incompress-

ible and dispersionless [e.g. Edwin and Roberts, 1983]. Transverse non-uniformity

of the Alfvén speed and/or field-aligned steady flow profile leads to phase mixing of

torsional perturbations [e.g. Ryutova and Habbal, 1995]. The effects of longitudinal

variation of the Alfvén speed on the resonant frequencies of standing torsional modes

of corona loops has been investigated by Zaqarashvili and Murawski [2007]. How-

ever, effects of the magnetic field twisting and the plasma rotation on the torsional

modes are still not understood. There is still no direct observational evidence of the

magnetic twisting of coronal plasma structures. On the other hand, this is often

seen in numerical simulations of magnetic flux emergence [e.g., see Hood et al., 2009,

for a recent discussion]. In addition, rotation of coronal plasma structures has been

seen, e.g., in macrospicules [Pike and Mason, 1998] also known as solar tornados,

and one can expect solar coronal hot jets to be rotating.

3.3 Model and equilibrium conditions

In this work, we consider a rotating straight cylinder of a uniform plasma (a straight

magnetic flux tube) with a twisted magnetic field (see Figure 3.1). A similar (while

non-rotating) model was used in the study of Erdélyi and Fedun [2007]. Our govern-

ing set of equations is the second order thin flux tube approximation of Zhugzhda

[1996]. This model allows us to take into account the equilibrium twist and rotation.

In its derivation, the Taylor expansion of the physical variables with respect to the
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radial coordinate r was used

ρ ≈ ρ̃, p ≈ p̃+ p2r
2, vr ≈ V r, vϕ ≈ Ω r, vz ≈ u,

Br ≈ Br1r, Bϕ ≈ Jr, Bz ≈ B̃z, (3.1)

where Br, Bϕ and Bz are the radial, azimuthal and longitudinal components of the

magnetic field, vr, vϕ and vz are the radial, azimuthal and longitudinal components

of the velocity, ρ is the mass density, p is the gas pressure, V is the radial derivative

of the velocity, J and Ω are the zeroth-order values of the current density and

vorticity, respectively. Note that the 1 and 2 indices in Br1 and p2 indicate the first

and second order derivatives of the variables with respect to r. The quantities with

the overtilde are the zeroth order terms of the expansions and their overtilde will be

omitted here after. The linear dependencies of the twist and rotation on the radial

coordinate correspond to the uniform twist and rotation. Applying expansion (3.1)

to the MHD equations for a uniform medium, the set of second order thin flux tube

approximation equations is obtained

∂ Ω

∂ t
+ u

∂ Ω

∂ z
+ 2V Ω +

J

4πρ

∂ Bz
∂ z
− Bz

4πρ

∂ J

∂ z
= 0,

ρ

(
∂ u

∂ t
+ u

∂ u

∂ z

)
+
∂ p

∂ z
= 0,

∂ ρ

∂ t
+
∂(ρ u)

∂ z
+ 2ρ V = 0,

∂ J

∂ t
+
∂(uJ)

∂ z
−Bz

∂ Ω

∂ z
+ 2V J = 0,

∂ Bz
∂ t

+ u
∂ Bz
∂ z

+ 2BzV = 0,(
∂

∂ t
+ u

∂

∂ z

)
p

ργ
= 0,

p+
B2
z

8π
− A

2π

[
ρ

(
∂ V

∂ t
+ u

∂ V

∂ z
+ V 2 − Ω2

)
+

1

4π

(
J2 − 1

4

(
∂ Bz
∂ z

)2

+
Bz
2

∂2Bz
∂ z2

)]
= pext

T ,

BzA = const, (3.2)

where A = πR2 is the cross-sectional area of the tube of radius R, and pext
T is

the external total pressure. Note that in equation (3.2) the relation containing the

internal and external pressure terms is obtained by combining the radial component
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of the Euler equation with the pressure balance condition [Zhugzhda, 1996]. Here

the external plasma is taken to be non-rotating and without the magnetic twist.

The effect of the gravitational force is neglected. All considered physical parameters

are independent of the azimuthal coordinate. As it was stressed in Zhugzhda [1996],

in the case of a twisted and rotating magnetic flux tube the second order term p2 in

the radial Taylor expansion (3.1) needs to be taken into account because it depends

on the first order magnetic twist J , and could not then be neglected. This is also

why we need to take into account the second order approximation of the pressure

balance at the tube boundary mentioned in equation (24) of Ferriz-Mas et al. [1989].

The equilibrium pressure balance condition is

p0 +
B2
z0

8π
+
A0

2π
(ρ0Ω2

0 −
J2

0

4π
) = pext

T0 , (3.3)

where J0, Ω0, Bz0, and A0 are the equilibrium twist, rotation, magnetic field in

the z-direction and the cross-section of the cylinder, respectively; and pext
T0 is the

equilibrium external total pressure. The equilibrium cross-section is connected with

the equilibrium radius of the cylinder, a, A0 = πa2. The twist of the external

magnetic field and the rotation of the external plasma are neglected. In the case

without rotation and twist, equation (3.3) reduces to the standard total pressure

balance condition (1.25). It is interesting that in the absence of the external total

pressure, pext
T0 = 0, i.e. when the external medium is treated as a vacuum without

strong magnetic field, there is a possibility for an equilibrium. In this case, the

magnetic tension force connected with the twist J0 can counteract the internal total

pressure and the centrifugal forces. Making use of the conservation of magnetic flux

Φ = BzA, we obtain the following relationship between the equilibrium parameters:

Bz0A0 = Φ, J0A0 = Jtotal, Ω0A0 = const, (3.4)

where the last expression comes from the conservation of angular momentum. Lin-

earising the thin flux tube equations with respect to the equilibrium we obtain:

∂ Ω

∂ t
+ 2V Ω0 +

J0

4πρ0

∂ Bz
∂ z
− Bz0

4πρ0

∂ J

∂ z
= 0, (3.5)

ρ0
∂ u

∂ t
+
∂ p

∂ z
= 0, (3.6)
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z

Figure 3.1: The sketch of a magnetised cylindrical flux tube with radius R, density
ρ0, and gas pressure p0 embedded in a non-magnetised medium. The cylinder has
an equilibrium magnetic field parallel to the z axis Bz0, and an azimuthal magnetic
field Bϕ0. Also the cylinder is rotating with the equilibrium angular speed Ω0.

∂ρ

∂t
+ ρ0

∂u

∂z
+ 2ρ0V = 0, (3.7)

∂ J

∂ t
+ J0

∂ u

∂ z
−Bz0

∂ Ω

∂ z
+ 2V J0 = 0, (3.8)

∂ Bz
∂ t

+ 2Bz0V = 0, (3.9)

∂ p

∂ t
− C2

s

∂ ρ

∂ t
= 0, (3.10)

p+
2Bz0Bz

8π
− A0 ρ0

2π

∂ V

∂ t
+
A0Ω2

0ρ

2π
+
ρ0Ω2

0A

2π

+
A0Ω0ρ0Ω

π
− J2

0A

8π2
− A0J0J

4π2
− A0Bz0

16π2

∂2Bz
∂ z2

= pext
T . (3.11)

In general, the set of equations (3.5)-(3.10) should be supplemented by an equation

describing the perturbation of the external total pressure pext
T (see Roberts and Webb

[1979]) and radial velocity. The external and internal solutions are linked by the

total pressure balance and the continuity of the transverse displacement boundary

conditions applied at the cylinder boundary r = a. However, in the following con-
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sideration, we restrict our attention to the plasma structures embedded in vacuum,

and hence neglect the external pressure. Note that this is not a good assumption

for coronal loops, but can be used for various jets, plumes and macrospicules.

3.4 Dispersion relations

Considering linear perturbations which are proportional to exp(iω t+ ikz), one gets

the dispersion relation:

A0

4π(C2
A + C2

s )

[
ω6 +

(
2C2

Aα
2 − 4Ω2

0 − k2(2C2
A + C2

s )
)
ω4

+4Ω0kC
2
Aαω

3 − 8Ω0k
3C2

AC
2
sαω

+
(
2(Ω2

0C
2
s + C2

AC
2
sα

2 − C4
Aα

2)k2 + k4C2
A(2C2

s + C2
A)
)
ω2

+k4C2
AC

2
s (2Ω2

0 + 2C2
Aα

2 − k2C2
A)
]

−(ω2 − k2C2
A)(ω2 − k2C2

T ) = 0, (3.12)

where

α =
J0

Bz0
, C2

s = γ
p0

ρ0
, C2

T =
C2

AC
2
s

C2
A + C2

s

. (3.13)

The axial Alfvén speed is determined by the longitudinal component of the magnetic

field, CA = Bz0/
√

4πρ0. This 6-th order polynomial equation describes torsional,

longitudinal and sausage perturbations in twisted and rotating magnetic flux tubes

[Zhugzhda, 1996] in vacuum. In general, this equation does not have exact analytical

solutions. In the following, we consider several useful limiting cases, which allow us

to understand the dispersive properties of the modes.

3.4.1 Case J0 = 0, Ω0 = 0

In the case of an untwisted (J0 = 0) and non-rotating (Ω0 = 0) tube, the dispersion

relation equation (3.12) reduces to

A0

4π
(ω2 − C2

Ak
2)2(ω2 − C2

sk
2)

−(C2
A + C2

s )(ω2 − C2
Ak

2)(ω2 − C2
Tk

2) = 0. (3.14)
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which describes three MHD modes. The familiar dispersion relation of the torsional

modes readily separates (c.f. equation (1.35)),

ω2 = C2
Ak

2. (3.15)

The remaining bi-quadratic equation describes longitudinal and sausage modes,

ω2 = C2
Tk

2 +
A0

4π(C2
A + C2

s )
(ω2 − C2

Ak
2)(ω2 − C2

sk
2), (3.16)

where the terms proportional to the tube cross-section A0 are weak dispersion correc-

tions, and in the long-wavelength limit the longitudinal scale of MHD perturbations

is much bigger than its transverse scale, A0k
2 � 1. Assuming that

ω2 ≈ C2
Tk

2, (3.17)

equation (3.16) becomes,

ω2 ≈ C2
Tk

2

(
1 +

A0

4π

C2
Tk

2

C2
A + C2

s

)
. (3.18)

Equation (3.18) coincides with equation (77) of Zhugzhda [1996] in case of an un-

twisted and non rotating flux tube. In the zero-order thin flux tube approximation

[Roberts and Webb, 1978], this expression simplifies to the familiar dispersion rela-

tion for slow magnetoacoustic modes in the long-wavelength limit,

ω2 = C2
Tk

2. (3.19)

The concept and observations of the slow magnetoacoustic waves were discussed in

section 1.4 and subsection 1.6.3.

Equation (3.18) describes the dispersive corrections connected with the finite tube

radius effects. In addition, in a general case it is necessary to account for the disper-

sive effects connected with the external medium [see Zhugzhda and Goossens, 2001;

Zhugzhda, 2002; Ruderman, 2005; Zhugzhda, 2005]. Another solution of equation

(3.16) corresponds to sausage fast magnetoacoustic perturbations. Note that the

concepts and observations of sausage modes in the solar atmosphere was discussed

in section 1.4 and subsection 1.6.2. It can be easily seen in the zero-β limit, in which
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the dispersion relation reduces to

ω2 − C2
Ak

2 − C2
A

A0/4π
= 0. (3.20)

The last term of this equation is proportional to the reciprocal transverse wavelength

in the situation when the rigid wall boundary conditions are applied. Hence in this

case we have the dispersion relation that describes fast magnetoacoustic sausage

waves in a plasma cylinder with a rigid wall. In the case of the soft boundary given by

the balance of the total pressures inside and outside the tube, which is more typical

for astrophysical applications, behaviour of the long-wavelength sausage mode is

determined by the external medium [see, e.g. Pascoe et al., 2007].

3.4.2 Case J0 6= 0, Ω0 = 0

The case of a non-rotating twisted tube has been discussed in detail in Zhugzhda

[1996]; Zhugzhda and Nakariakov [1999]. The dispersion relation is

−(C2
A+C2

s−KC2
A)(ω2−C2

+k
2)(ω2−C2

−k
2)+

A0

4π
(ω2−C2

Ak
2)2(ω2−C2

sk
2) = 0, (3.21)

where

C2
± = C2

A

C2
A + 2C2

s +K(C2
s − C2

A)±
√
S

2(C2
A + C2

s )− 2C2
AK

, (3.22)

and

S = C4
A + 2K(3C2

AC
2
s + 4C4

s − C4
A) +K2(C4

s − 6C2
sC

2
A + C4

A),

K =
J2

0A0

2π B2
z0

=
A0α

2

2π
. (3.23)

Equation (3.21) could be written in an explicit version,

ω2 ≈ C2
±k

2 ± A0

4π

(C2
± − C2

A)2(C2
± − C2

s )

C2
A

√
S

k4. (3.24)

The second term on the right hand side of equation (3.24) is the dispersive correction

term. Equation (3.22) indicates the modification of the propagation speeds of the

longitudinal (with the negative sign) and torsional (with the positive sign) waves

by the equilibrium magnetic twist. Note that equation (3.24) indicates that the
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Figure 3.2: Dependence of the phase speeds of the torsional wave upon the wave
number for β = 0.1. The speeds are normalised to the Alfvén speed, and the

wave number is dimensionless which is (k
2

= k2A0/4π) where we have dropped the
overline. The solid lines correspond to the numerical solution of the exact dispersion
relations, and the dashed lines correspond to the analytical approximations. The
black curves are for the case where we have no equilibrium twist (K = 0) and no
rotation (R = 0), and the blue curves show the effects of the equilibrium twist with
K = 0.08, and no rotation (R = 0).

equilibrium twist modifies the wave speeds even in the limit k = 0. Also, mind a

misprint in equation (19) of Zhugzhda and Nakariakov [1999]. In Figure 3.2 the

dependence of the phase speeds on the wave number is shown. The solid blue line

curve is obtained numerically using the exact dispersion relation (3.12), and the

solid dashed line is obtained from the explicit approximation for the phase speed

of the torsional wave (3.24). Figure 3.2 is showing the modification of the Alfvén

speed to the fast magnetoacoustic speed by the equilibrium twist. Also it shows

how good the approximation works, since the curves diverge at k > 1.

3.4.3 Case Ω0 6= 0, J0 6= 0, zero-β limit

Consider the equilibrium with both twist and rotation to be non-zero (Ω0 6= 0, J0 6=
0). A useful simplification can be obtained in the zero-β limit. In this case, disper-
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sion relation (3.12) reduces to

(C2
A + 2RC2

A −KC2
A)(ω − C(+)

+ k)(ω − C(−)
+ k) =

A0

4π
(ω2 − C2

Ak
2)2, (3.25)

where

C
(±)
+ = CA

√
KR±

√
Q

1 + 2R−K
, (3.26)

R =
A0Ω2

0

2π C2
A

(3.27)

and

Q = 1−KR+K2 − 2K + 2R. (3.28)

Taking that the dispersion is weak, we obtain

ω ≈ C
(±)
+ k ± A0

8πC3
A

(C2
+ − C2

A)2

√
Q

k3. (3.29)

Equation (3.29) generalises equation (81) of Zhugzhda [1996] (corrected for a mis-

print). Thus, the equilibrium twist and rotation modify the propagation speeds in

the k = 0 limit.

In Figure 3.3 the dependence of the phase speeds on the wave number is shown.

The solid blue line curve is obtained numerically using the exact dispersion relation

(3.12), and the solid dashed line is obtained from the explicit approximation for the

phase speed of the torsional wave (3.29). Figure 3.3 is showing the modification of

the Alfvén speed to the fast magnetoacoustic speed by the equilibrium twist and

rotation. Also it shows how good the approximation works, since the curves diverge

at k > 1.

Equation (3.29) shows that the torsional waves propagate in opposite directions

along the tube at different speeds. The difference in the speeds is governed by

the term
√
KRCA. This is similar to the case of untwisted non-rotating tubes with

equilibrium field-aligned steady flows, when the asymmetry is caused by the Doppler

shift [e.g. Nakariakov et al., 1996; Vasheghani Farahani et al., 2009]. In equation

(3.29) the equilibrium steady flow is in the direction perpendicular to the direction

of the wave propagation, but locally the Alfvénic perturbations propagate along the

twisted magnetic field either downstream or upstream of the flow. Hence, in the

considered case, the speed asymmetry is caused by the Doppler shift, too.
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Figure 3.3: Dependence of the phase speeds of the torsional wave upon the wave
number in the case where the equilibrium twist and rotation have been taken into
account. The speeds are normalised to the Alfvén speed, and the wave number

(k
2

= k2A0/4π) is dimensionless, where we have dropped the overline. The solid
line corresponds to the numerical solution of the exact dispersion relation, and the
dashed line correspond to the analytical approximation in the zero-plasma pressure
limit (β → 0). The normalised equilibrium twist and rotation parameters have been
taken to be (K = 0.08), and (R = 0.18).
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3.4.4 Standing oscillations of an infinite tube

Consider the k = 0 limit. In this case, dispersion relation (3.12) reduces to:

A0

4π(C2
A + C2

s )
[ω6 + 2C2

Aα
2ω4 − 4Ω2

0ω
4] = ω4 (3.30)

Equation (3.30) has two solutions, one is ω4 = 0, which corresponds to the longitu-

dinal and torsional perturbations, and the other is

ω2 =
4π(C2

s + C2
A)

A0
− J2

0

2πρ0
+ 4Ω2

0, (3.31)

which is the sausage oscillation of a twisted and rotating magnetic cylinder in a

vacuum. The frequency of the sausage oscillations depends upon the ratio of the

fast magnetoacoustic speed to the radius of the tube, as well as upon the twist and

the rotation.

A sufficiently twisted magnetic flux tube is subject to instability. Equations (3.31)

describes the threshold of the sausage (m = 0) instability, ω2 = 0. In particular, in

the zero-β non-rotating plasma equation (3.31) would be simplified to

4πC2
A

A0
=

J2
0

2πρ0
=

B2
ϕ0

2πa2ρ0
(3.32)

where we have used

J0 =
Bϕ0

a
, (3.33)

finally we get

B2
z0 = B2

ϕ0/2. (3.34)

Equation (3.34) is the threshold of the sausage instability, meaning the stability

condition is

B2
z0 > B2

ϕ0/2, (3.35)

which coincides with the expression obtained by other methods [e.g. Miyamoto,

2005].
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3.5 Compressibility of the torsional mode

In an untwisted, non-rotating tube, the equations describing linear perturbations of

the twist and rotation, equations (3.5) and (3.8) and governing the torsional mode,

are decoupled from the rest of the linearised MHD equations. Thus, the torsional

modes are incompressible and can be considered as true Alfvén waves in contrast

with other modes. In the case of a twisted (J0 6= 0) and rotating (Ω0 6= 0) tube,

equations (3.5) and (3.8) are not independent of the other linear perturbations

anymore. Thus, in this case, torsional perturbations become compressible: they

perturb the plasma density and the absolute value of the magnetic field, induce

longitudinal flows and perturb the tube cross-sectional area. The latter leads to the

coupling of the torsional motions with the external medium, if it is not a vacuum.

Consider the compressible perturbations in the torsional modes of a twisted (J0 6= 0)

and rotating (Ω0 6= 0) tube. We assume that the perturbations of the twist in the

torsional wave are in the form

J = Ja exp i(ω t+ kz), (3.36)

where Ja is the amplitude of the twist perturbation, ω and k are related by equation

(3.12).

Substituting expression (3.36) to equations (3.5)-(3.10) we obtain the following re-

lations between the compressible variables with the amplitude of the torsional wave:

(
ρa
ρ0

)
= αρJa,

(
Va
Vphk

)
= −iαV Ja,

(
Bza
Bz0

)
= αBzJa,(

Aa
A0

)
= αAJa,

ua
CA

= αuJa, (3.37)

where

αV =
1

2

[
1−

(
C2

A

C2
+

)
β

]
αρ, αBz =

[
1−

(
C2

A

C2
+

)
β

]
αρ,

αA = −
[
1−

(
C2

A

C2
+

)
β

]
αρ, αu =

(
CA

C+

)
βαρ,

and

αρ = Bz0

√
2π

A0

(√
K − π CA

C+

√
R
)
×
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{
ρ0

(
1−

(
C2

A

C2
+

)
β

)[
4π2C2

+

A0
((
C2

+/C
2
A

)
− β

) (β +R)

+

(
4π2C2

A

A0

)
(1 +K)− π k2

(
C2

+ − C2
A

)

+

(
4π2C2

A

√
R

A0C+

)(√
RC+ − 2

√
KCA

)]}−1

,

where ua, ρa, Ba are amplitudes of perturbations of the z-component of flow, den-

sity, and magnetic field, respectively, Aa is the amplitude of the perturbation of the

cross-section, Va is the amplitude of the radial velocity; and Vph is the phase speed

of the torsional wave, given by equation(3.12). The coefficients αu, αρ, αV , αB, and

αA are parameters, which depend on the difference between the phase speed of the

torsional wave Vph and the longitudinal Alfvén speed CA. Clearly, in the untwisted

and non-rotating limit Vph = CA, and the torsional wave becomes incompressible

and independent of the external medium. We would also like to point out that Va in

equation (3.37) has the dimension s−1 (see equation (3.1)). The induced compress-

ibility is associated with the departure of the perturbation from magnetic surfaces,

as Va is not zero. Hence, in this case the torsional wave cannot be considered as

the true Alfvén wave and is rather a fast magnetoacoustic wave. More rigorously,

in the case of a twisted and/or rotating tube, Alfvén torsional modes are linearly

coupled with essentially compressible sausage and longitudinal modes. Consider the

compressibility of the torsional waves in the zero-β limit (β = 0). Expressions (3.37)

become (
ρa
ρ0

)
= αρJa,

(
Va
Vphk

)
= −iαV Ja,

(
Bza
Bz0

)
= αBzJa,(

Aa
A0

)
= αAJa, ua = 0, (3.38)

where

αρ = Bz0

√
2π

A0

(√
K − π CA

C+

√
R
)
×{

ρ0

[(
4π2C2

A

A0

)
(1 +K)− π k2

(
C2

+ − C2
A

)

+

(
8π2C2

A

√
R

A0C+

)(√
RC+ −

√
KCA

)]}−1

, (3.39)
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and

αBz = αρ, αA = −αρ, αV = αρ/2, (3.40)

with

C2
+ = C2

A

(
1− 2R+ 2

√
RK

)
. (3.41)

For a non-rotating tube in the zero-β limit we obtain

αρ = Bz0

√
2π

A0

(√
K
)
×{

ρ0

[(
4π2C2

A

A0

)
(1 +K)− π k2

(
C2

+ − C2
A

)]}−1

. (3.42)

Also, in this case the phase speed of the torsional mode reduces to the Alfvén speed

CA (see equation (3.41)). Hence

αρ = Bz0

√
2πK
A0

{
ρ0

[(
4π2C2

A

A0

)
(1 +K)

]}−1

, (3.43)

or

αρ =
2J0A0

8π2ρ0C2
A + J2

0A0
. (3.44)

The equilibrium condition (3.3) in case of zero-β and zero rotation would be

B2
z0

8π
=
A0J

2
0

8π2
, (3.45)

which gives Bz0 = Bϕ0, so equation (3.43) can be simplified to

αρ =
2a

3Bz0
, (3.46)

and the ratio of the density perturbation amplitude to the equilibrium density is

written as:

ρa
ρ0

=
2

3

Bϕa
Bz0

. (3.47)
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Equation (3.43) is consistent with the straight magnetic field limit, when the twist

J0 goes to zero, we get

αρ = 0, (3.48)

meaning the torsional mode becomes incompressible. In Figure 3.4 the parameters

αρ is shown as a function of the twist K and rotation R parameters. According

to (3.37), in the zero-β limit the torsional oscillations do not induce plasma flows

along the tube. The induced variations of the plasma density are in phase with the

variations of the twist and the absolute value of the magnetic field, and in anti-phase

with the variations of the loop radius. These phase relations should be taken into

account in the estimation of observational manifestation of torsional waves in twisted

and possibly rotating plasma structures, e.g. in the gyrosynchrotron emission by

the fashion similar to applied by Tapping [1983] to torsional modes and Nakariakov

and Melnikov [2006] to longitudinal modes of straight non-rotating flux tubes. Also,

these relations should be used in forward modelling of torsional waves observed with

spectrometers.

3.6 Conclusions

We considered torsional axisymmetric (m = 0) long-wavelength MHD modes of a

cylindrical plasma structure with the use of the second order thin flux tube approx-

imation. The analysis was restricted to the case when the effect of the external

medium was ignored. In this case, the equilibrium force balance is fulfilled by

the balance of the total pressure and the centrifugal forces and the magnetic tension

force. Such a model can describe various plasma structures in the corona of the Sun,

e.g. coronal jets and plumes, as well as segments of coronal loops and filaments. A

more general consideration accounting for the effect of the external medium, which

is definitely more cumbersome and hence excluded from this paper, will be published

elsewhere. According to the Kruskal–Shafranov theory, a twisted plasma column is

unstable to sufficiently long-wavelength kink (m = 1) perturbations. However, in

the case of jets, development of the instability takes some time and hence it will be

seen at some distance downstream from the origin of the jet. Hence, it is possible to

consider the propagation of torsional waves in jets which are kink-unstable, provided

the waves are excited somewhere near the jet’s origin.

The general dispersion relation, linking frequencies of the MHD modes with their
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Figure 3.4: Dependence of the compressibility parameters αρ (top), αV (middle),
and αA (bottom) which measures (a/Bz0), upon the dimensionless equilibrium twist
and rotation parameters. Representing the twist K and rotation R, in the zero-
β limit. The wave number is taken to be (k = 0) and the z component of the
equilibrium magnetic field is taken to be (Bz0 = 1) with the Alfvén speed (CA = 1).
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wave numbers and parameters of the medium (the Alfvén and sound speeds, rota-

tion and twist) is a sixth order polynomial. It describes all three MHD modes of

the m = 0 symmetry: the torsional, sausage fast magnetoacoustic and longitudinal

(slow magnetoacoustic) modes. In the untwisted non-rotating flux tube, sausage

and longitudinal modes are dispersive, with the dispersion proportional to the ratio

of the equilibrium radius of the tube to the wavelength. We would like to stress that

in the untwisted limit the proper treatment of these waves requires consideration

of the external medium, while in the twisted case considered here the equilibrium

does not necessarily require the presence of the external plasma. In any case, both

sausage and longitudinal modes are compressible and hence magnetoacoustic. In

the untwisted non-rotating case, the torsional mode is dispersionless, and hence is

the true Alfvén wave.

Equilibrium twist and rotation of the tube modify the torsional mode making it

dispersive. Assuming the dispersion being weak, we derived asymptotic dispersion

relations for the phase speeds of the modes. Interestingly, the phase speeds of the

torsional waves propagating in the opposite directions along the tube have different

absolute values, which is connected with the local Doppler shift.

In twisted magnetic flux tubes torsional waves become compressible, perturbing the

plasma density, the absolute value of the magnetic field, and the tube cross-section.

The induced variations of the plasma density and the absolute value of the mag-

netic field are in phase with the variations of the twist in the torsional wave, and

in anti-phase with the variations of the loop radius. The compressibility vanishes

in the limit when the equilibrium twist goes to zero, as it should be in the familiar

case of the straight magnetic field.

Using the observations by Cirtain et al. [2007] for hot coronal jets, one could take the

jet density and the magnetic field (along the jet axis) at equilibrium as 3×108 cm−3

and 10 G respectively, which for the Alfvén speed we would have

CA =

(
B2

0

µρ0

)1/2

≈ 1200 km/s, (3.49)

and the sound speed could be estimated from

Cs =

(
2γkT

mp

)1/2

≈ 370 km/s, (3.50)
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where γ = 5/3 is the adiabatic constant, k ≈ 1.38× 10−23 m2kgs−2k−1 is the Boltz-

mann constant, and mp ≈ 1.67 × 10−27 kg is the proton mass, and T the coronal

temperature is taken about 5× 106 MK. Having the values for the Alfvén speed be-

tween 1000− 1200 km/s and the sound speed about 370 km/s, β could be obtained

as

β =
2

γ

C2
s

C2
A

≈ 0.16, (3.51)

Hence, the plasma can be treated as low-β. According to equation (3.47), a torsional

wave of the relative amplitude 10 percent will be accompanied by a perturbation of

about 7 percent. Our results provide theoretical basis for the search for torsional

waves in coronal plasma structures, and, in particular, for the forward modelling of

the EUV, soft X-ray and microwave observables.
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Chapter 4

Nonlinear long-wave length

torsional Alfvén waves

The work in this Chapter is also published in Vasheghani Farahani et al. [2011]

4.1 Introduction

Alfvén waves are often considered as the primary candidate for the acceleration of

solar (e.g. Cranmer [2009]) and stellar (e.g. Charbonneau and MacGregor [1995];

Suzuki [2007]) winds and coronal heating (e.g. Ofman [2005]). Also, Alfvén waves

are also considered in core-collapse supernova explosions [Suzuki et al., 2008]. How-

ever, observational evidence of Alfvén waves in astrophysical plasmas still remains

indirect, e.g. as a possible interpretation of non-thermal broadening of coronal emis-

sion lines (e.g. Banerjee et al. [2009]) in coronal holes.

In non-uniform plasma structures, Alfvén waves are situated on magnetic surfaces.

In the field-aligned structured coronal plasmas, Alfvén waves can be present in the

form of torsional modes [see discussion in Van Doorsselaere et al., 2008a,b]. Tor-

sional waves are intensively studied theoretically in the context of coronal heating

[e.g. Antolin et al., 2008; Copil et al., 2008; Antolin and Shibata, 2010], coronal

seismology [Zaqarashvili and Murawski, 2007; Verth et al., 2010] and particle accel-

eration in solar flares [Fletcher and Hudson, 2008].

There is some indirect evidence of torsional standing modes [Zaqarashvili, 2003]

and propagating waves [Banerjee et al., 2009] in spectroscopic data, and also in mi-
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crowave emission [Tapping, 1983; Grechnev et al., 2003]. Recently, torsional waves

were suggested for the interpretation of propagating disturbances observed in the

solar wind [Gosling et al., 2010].

The torsional Alfvén wave was studied in Chapter 3, in this Chapter we study

compressible perturbations induced by long-wavelength weakly-nonlinear torsional

waves which are essentially non-plane. One of the forces which is due to nonlinearity

and is of crucial importance in our study here is the ponderomotive force.

4.2 Nature of the MHD ponderomotive force

The ponderomotive force is a feature of inhomogeneous oscillating electromagnetic

fields. It is a nonlinear force which acts on a charged particle and tends it towards

regions with weaker average fields. The nature and aspects of this force in MHD

waves with examples of its applications are described in this Chapter.

The ponderomotive force is an alternative for the Lorentz force for studying the

acceleration of charged particles by electromagnetic force. Simply because applying

the Lorentz force to problems with even very little complexities, for example dy-

namical systems, may result in non-analytical solutions. Instead, if we average over

the oscillation period (of oscillating electromagnetic fields) we obtain the pondero-

motive forces which look more complicated since they are nonlinear compared to

the Lorentz force which is linear, but the dynamics become simpler since they are

approximated (see Lundin and Guglielmi [2006]).

For example, a charged particle moving in an oscillating electric field and a ho-

mogeneous magnetic field which are normal to each other, obeys a trajectory with

eccentricity
√

1− ω2/Ω2, where Ω is the gyroperiod frequency of the particle, ω

is the frequency of the electric oscillations and Ω >> ω. In physics, the effective

magnetic moment of a charged particle could be obtained by averaging over the

electric oscillating period. The effective interaction of the magnetic moment of a

charged particle comes into play when the magnetic field is inhomogeneous. Hence,

the average acceleration of the charged particle along the magnetic field is obtained

by the ponderomotive force

F‖ = −mc
2

2

(
E

B

)2

∇‖lnB, (4.1)
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where m is the mass of the charged particle. Hence, the electromagnetic waves

oscillate the charged particle along the magnetic field lines giving it an average

acceleration (e.g. Lundin and Guglielmi [2006]).

Likewise, the introduction of a ponderomotive force in MHD allows one to study

nonlinear flows, e.g. induced by MHD waves of finite amplitude. In the following,

the manifestion of the ponderomotive force in MHD is demonstrated. Consider a

uniform plasma with the equilibrium magnetic field B0 in the x-direction, and the

plane Alfvén waves polarised in the z-direction. Take in to account the Cartesian

geometry (x, y, z), with no dependencies of the physical parameters on the y and

z coordinates (∂/∂y = 0, ∂/∂z = 0) where the longitudinal direction is x. Ideal

MHD equations in the weakly nonlinear regime in the low-β limit for typical coronal

conditions are used, see equation (1.16)-(1.19). We obtain

∂ρ

∂t
+ ρ0

∂vx
∂x

= − ∂

∂x
(ρvx), (4.2)

ρ0
∂vx
∂t

= − 1

2µ

∂B2
z

∂x
− ρ∂vx

∂t
− ρ0vx

∂vx
∂x
− ρvx

∂vz
∂x

, (4.3)

ρ0
∂vz
∂t
− B0

µ

∂Bz
∂x

= −ρ∂vz
∂t
− ρ0vx

∂vz
∂x
− ρvx

∂vz
∂x

, (4.4)

∂Bx
∂t

= 0, (4.5)

∂Bz
∂t
−B0

∂vz
∂x

= − ∂

∂x
(vzBz). (4.6)

Where the nonlinear terms have been taken to the RHS of each equation (Bz =

Bz1 + εBz2 + ...). If only linear terms are taken into account, equations for the

perturbations of vz and Bz decouple, and the Alfvén wave equation is obtained[
∂2

∂t2
− C2

A

∂2

∂x2

]
Bz1 = 0, (4.7)

with the d’Alembert solution describing two waves travelling in opposite directions,

Bz1 = aB0[f(x+ CAt) + g(x− CAt)], (4.8)
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where f and g are arbitrary functions which are twice differentiable. If expression

(4.8) is substituted in the equation for the perturbations of the longitudinal flow

(equation 4.3), we obtain a force

1

2µ0

∂B2
z1

∂x
=

1

2
ρ0a

2C2
A×

∂

∂x

[
f2(x+ CAt) + g2(x− CAt) + 2f(x+ CAt)g(x− CAt)

]
. (4.9)

This expression describes a ponderomotive force associated with the plane Alfvén

wave (see Verwichte et al. [1999]). It could be noticed from equation (4.9) that the

ponderomotive force is directed along the longitudinal magnetic field. Hence, this

force would induce flows and density perturbations in the longitudinal direction. An

important effect on MHD waves by the ponderomotive force is related to the third

term on the RHS of equation (4.9) which is the cross-ponderomotive force. This

force is responsible for the locally large density perturbations in time since there is

no force to counteract its induced flows and density perturbations (see Verwichte

et al. [1999] for details). However, the cross-ponderomotive force appears only in the

situations when the Alfvén wave is either standing, or there are two Alfvén waves

propagating in opposite directions, or one considers an initial stage of the evolution

of an initially static Alfvénic pulse.

Rankin et al. [1994] performed a theoretical and numerical study on the ponderomo-

tive force connected with magnetospheric standing MHD waves. In their analytical

study they showed that the ponderomotive force generates higher harmonics of the

fundamental waves and creates a secularly growing frequency for the perturbation of

physical parameters. They showed that shear Alfvén waves couple nonlinearly with

the slow magnetoacoustic wave in the low-β regime creating large amplitude shear

Alfvén waves. In a similar study Tikhonchuk et al. [1995] considered the effect of

the ponderomotive force on the evolution of the shear Alfvén wave in a cold plasma

and concluded that the ponderomotive force causes steepening of the plasma density

and the shear Alfvén wave.

Litwin and Rosner [1998] showed that the ponderomotive force associated with

Alfvén waves upwardly propagating from the solar surface in coronal plasma struc-

tures can be significant to counter-act the gravitational force, and hence increase

the density scale height. This result was applied to the explanation of the observed

effect of “over-dense” cool coronal loops, discovered with the Coronal Diagnostic
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Spectrometer (CDS) onboard SoHO . The effect is the observed enhancement in

the density scale height in cool coronal loops by a factor of two, deduced from the

soft X-ray emission measure. This effect was recently confirmed by the method of

coronal seismology Van Doorsselaere et al. [2008c].

Another model, proposed by Shukla and Bingham [2004] showed that the MHD

ponderomotive force causes density enhancements which act as waveguides for the

transmission of localised Alfvén waves from the photosphere to the corona.

Terradas and Ofman [2004] studied the nonlinear effects of standing MHD kink

waves on the density perturbations in coronal loops and showed that the pondero-

motive force creates flows along the loops and enhances mass on the loop apex.

4.3 The Cohen-Kulsrud equation

One of the key ingredients of the theoretical modelling of Alfvén waves in solar and

stellar atmospheres is the concept of the nonlinear cascade. It is needed to explain

the transfer of wave energy from the low-frequency injection range (that is 1-3 mHz,

the typical times of the granulation motion and of 5-min oscillations, in the solar

atmosphere) to the high-frequency dissipation range. In one-dimensional models, the

nonlinear cascade is connected with nonlinear generation of higher harmonics, and

hence steepening of the waves, causing the onset of nonlinear dissipation or of non-

MHD dissipative processes. Spectrally, it is accompanied by the transfer of energy

across the spectrum, from the energy injection range up to the dissipative range.

In a uniform plasma, this process is analytically described by a weakly-nonlinear

evolutionary equation, known as the Cohen–Kulsrud equation [Cohen and Kulsrud,

1974]

∂B1

∂t
= −1

2

∂

∂x
(u2B1) = −1

4

CA

(1− β)B2
0

∂

∂x

(
(B2

1 − 〈B2
1〉)B1

)
, (4.10)

where u and B0 are the x components of the velocity and magnetic field perturbed

by the wave respectively and the index 1 and 2 represents the first and second

order terms. The cubically-nonlinear term in this equation accounts for the nonlin-

ear self-interaction of linearly or elliptically polarised, plane Alfvén waves via the

wave-induced perturbation of the local Alfvén speed. These perturbations are of-

ten referred to as the nonlinearly-induced compressible motions in Alfvén waves.

In contrast with the parallel magnetoacoustic waves (e.g., slow waves in the low-β
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plasma of the solar corona), these perturbations exist even in the zero-β regime.

Circularly polarised plane Alfvén waves are not subject to this effect.

4.4 Nonlinear flows induced by Alfvén waves

The compressible flows induced by nonlinear Alfvén waves have been intensively

studied in the context of solar wind acceleration [e.g. Ofman and Davila, 1998]. A

modified Cohen-Kulsrud equation describing spherical Alfvén waves in a stratified

atmosphere with a radial magnetic field was derived in Nakariakov et al. [2000b] in

application to coronal holes. Their analytical results are consistent with numerical

MHD modelling performed in Torkelsson and Boynton [1998].

More advanced one-dimensional models for nonlinear Alfvén waves in solar and stel-

lar atmospheres in open-field regions include up-flows, super-radial magnetic field

geometry, non-adiabatic effects and various dissipation mechanisms [Suzuki, 2004;

Suzuki and Inutsuka, 2005; Suzuki, 2007, 2008]. Secularly growing compressible per-

turbations, induced by standing Alfvén waves, have been considered in the context

of coronal loop hydrostatics by Litwin and Rosner [1998], and in connection with

magnetospheric field-line resonances by Tikhonchuk et al. [1995]. Secular compress-

ible effects associated with travelling in opposite directions Alfvén waves were found

in Verwichte et al. [1999]. All those studies were carried out in terms of a shear

Alfvén wave model.

One-dimensional models mentioned above are based upon the assumption that the

waves are plane. For long-period Alfvén waves, with periods of the order of the typi-

cal time scales of atmospheric dynamics, this condition is not fulfilled. For example,

for a wave period of 10 minutes and an Alfvén speed of 1 Mm/s, the longitudinal

wavelength is 600 Mm. In a plane wave, the transverse wavelength should be much

larger than the longitudinal wavelength. Hence, for the generation of a plane Alfvén

wave of period 10-minute period, the wave driver should be of the size exceeding

the solar diameter. Also there should be no transverse structuring of the plasma in

the Alfvén speed, otherwise the wavefront is distorted, and the wave becomes non-

planar [e.g. Botha et al., 2000]. Thus, the study of the initial stage of the nonlinear

cascade in the corona requires consideration of non-planar Alfvén waves.
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4.5 Compressible flows induced by torsional waves

We are interested in torsional waves of wavelength much longer than the diameter

of the wave-guiding magnetic flux tube with cylindrical coordinates (r, ϕ, z). In

an untwisted and non-rotating tube with the equilibrium magnetic field Bz0, mass

density ρ0, and circular cross-section area A0, linear torsional waves are twisting

azimuthal motions vϕ accompanied by the appearance of the azimuthal component

of the magnetic field Bϕ. At the axis of the flux-tube, both quantities vanish, and

hence cannot be described by the first order thin magnetic flux theory of Roberts and

Webb [1978], while they appear in the second-order thin flux-tube approximation

of Zhugzhda [1996], see Chapter 3. Linear torsional waves are governed by the

equations for the quantities Ω = vϕ/r and J = Bϕ/r, which in the thin flux tube

approximation correspond to the vorticity and electric current density, respectively,

∂ Ω

∂ t
− Bz0

4πρ0

∂ J

∂ z
= 0, (4.11)

∂ J

∂ t
−Bz0

∂ Ω

∂ z
= 0, (4.12)

where r is the radial coordinate. Also it is worth mentioning that in the magnetic

cylinder, a torsional wave could exist on any cylindrical shell (magnetic surface),

having an arbitrary dependence on r, provided vϕ and Bϕ are zero on the axis of the

cylinder. In the thin flux tube approximation, those dependencies are approximated

by linear functions.

Equations (4.11) and (4.12) are readily combined in the wave equation,[
∂2

∂t2
− C2

A

∂2

∂z2

]
J = 0, (4.13)

where CA = Bz0/
√

4πρ0 is the Alfvén speed, see Chapter 3. In the linear regime,

these motions are decoupled from compressible motions. The latter are described

by the variables u and V , the longitudinal and radial components of the velocity, re-

spectively, ρ the mass density, Bz the longitudinal component of the magnetic field,

p the gas pressure and A the perturbation of the cross-sectional area of the flux

tube. A long-wavelength torsional wave of a finite amplitude induces compressible

motions by three forces: the centrifugal force connected with the azimuthal rotation

of the plasma, the magnetic tension force caused by the magnetic field curvature,
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and the ponderomotive force that is connected with the longitudinal gradients of

the magnetic pressure perturbation in the torsional wave. The first two forces are

absent from the plane wave theory of Alfvén waves and appear because of plasma

structuring. These forces can modify the flux-tube cross-sectional area, hence in-

ducing compressible plasma motions in the longitudinal and radial directions. In

the second-order thin flux-tube approximation, these effects are taken into account

in the transverse force-balance equation. The ponderomotive force causes the non-

linear self-interaction of Alfvén waves in the Cohen–Kulsrud equation formalism.

We consider a weakly-nonlinear torsional wave and restrict our attention to the

linear terms of the compressible variables, described by the equations

p+
1

4π
Bz0Bz −

A0ρ0

2π

∂V

∂ t
− A0Bz0

16π2

∂2Bz
∂ z2

=

pext
T +

A0J
2

8π2
− A0 ρ0 Ω2

2π
, (4.14)

ρ0
∂ u

∂ t
+
∂ p

∂ z
= − 1

4π
JR2∂J

∂z
, (4.15)

where pext
T is the total pressure in the external medium, and R =

√
A0/π is the

flux-tube radius. The nonlinear terms associated with the torsional wave are on the

right hand side. In equation (4.15) the term responsible for the ponderomotive force

appears after accounting for the higher-order terms in the thin flux-tube expansion.

Note that equation (4.15) shows that the longitudinal velocity perturbation is not

zero when β = 0, while in the linear case (Chapters 2 and 3) the longitudinal velocity

perturbation was zero.

The compressible variables are expressed through the longitudinal component of the

magnetic field perturbation Bz, with the use of the linear expressions

∂ ρ

∂ t
+ ρ0

∂ u

∂ z
+ 2ρ0V = 0, (4.16)

∂ Bz
∂ t

+ 2Bz0V = 0, (4.17)

∂ p

∂ t
− C2

s

∂ ρ

∂ t
= 0, (4.18)
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where Cs is the sound speed. Equations (4.16)-(4.18) are readily combined in a

driven wave equation for the density perturbation,

(C2
s + C2

A)DTρ+
A0

4π
DsDAρ =

∂2pext
T

∂t2
+
A0

2π

∂2

∂t2

(
J2

4π
− ρ0Ω2

)

+
R2C2

A

4π

∂

∂z

(
J
∂J

∂z

)
+
A0R

2

16π2
DA

∂

∂z

(
J
∂J

∂z

)
, (4.19)

where

DT,s,A =
∂2

∂t2
− C2

T,s,A

∂2

∂z2
, and C2

T =
C2

AC
2
s

C2
A + C2

s

. (4.20)

The last term on the right hand side of equation (4.19) can be neglected in com-

parison with the other terms, as it is proportional to A0/λ
2 � 1, where λ is the

longitudinal wavelength. The second term on the left hand side, responsible for

wave dispersion, can be neglected too. Equation (4.19) describes the excitation of

compressible motions by weakly nonlinear, long-wavelength torsional waves in a thin

magnetic flux tube. In the following we ignore the perturbation of the total pres-

sure in the external medium, pext
T , concentrating on the compressible flows inside

the flux-tube.

(C2
s + C2

A)DTρ =
A0

2π

∂2

∂t2

(
J2

4π
− ρ0Ω2

)
+
R2C2

A

4π

∂

∂z

(
J
∂J

∂z

)
, (4.21)

also, the back-reaction of the induced compressible flows on the torsional waves

through the modification of the local Alfvén speed and the flux-tube diameter is not

considered. The latter assumption is justified by the consideration of the quadrati-

cally nonlinear terms only, while the consideration of the Alfvén wave self-interaction

appears when the cubic nonlinearity is taken into account.

The first term on the right hand side of equation (4.21) has two terms associated

with the nonlinear torsional wave, which have opposite signs. Hence, their combined

effect on the compressible flows depends upon the phase relations between the twist

and the rotation of the plasma in the torsional waves. Consider separately the cases

of propagating and standing waves.
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4.6 Propagating torsional waves

We take a propagating solution of equation (4.21),

J = ja cos(ω t− kz), (4.22)

where ja is the amplitude of the magnetic twist, and ω and k are the frequency

and the wavenumber, respectively, for which ω = ±CAk. We use equation (4.11) to

express the associated rotation of the flux-tube as

Ω = − ja
(4πρ0)1/2

cos(ω t− kz). (4.23)

For such a solution, the first term on the right-hand side of equation (4.21) vanishes:

J2

4π
− ρ0Ω2 =

(
j2
a

4π
− ρ0

(−ja)2

4πρ0

)
cos2(ω t− kz) = 0. (4.24)

This means that the effects of nonlinear magnetic twist and plasma rotation in the

travelling wave cancel out each other, and do not add new effects to the nonlinear

compressibility of propagating torsional waves. Thus, the induced compressible

motions are described by the equation

(C2
s + C2

A)DTρ = −R
2C2

A

4π
k2j2

a cos[2(ωt− kz)]. (4.25)

with the driven solution

ρ =
R2j2

a

16πC2
A

cos[2(ωt− kz)]. (4.26)

Thus, we obtain that the right hand side of equation (4.26) is independent of the

value of the sound speed. Compare equation (4.26) with the case without transverse

structuring, i.e. with plane shear Alfvén waves. Consider waves propagating in the

z-direction, taking

∂

∂x
= 0, and

∂

∂y
= 0. (4.27)

Restrict our attention to the linearly polarised Alfvén waves, vy and By. Following

the formalism developed in Nakariakov et al. [2000a], we obtain the equivalent of

83



equation (4.21)

Dsρ =
1

4π

∂

∂z
By

∂By
∂z

. (4.28)

Taking

By = Byacos(ωt− kz), (4.29)

we get

Dsρ = − 1

4π
B2
yak

2cos(2ωt− 2kz), (4.30)

with the solution

ρ =
B2
yak

2

16π(ω2 − C2
Ak

2β)
cos(2ωt− 2kz), (4.31)

where β = C2
s/C

2
A. With

ja ≈ Bϕa/R, (4.32)

we observe that the right hand side terms in equations (4.26) and (4.31) are of the

similar order. However, there is an important difference between solutions (4.26)

and (4.31) is that in the case of torsional waves, there is no possibility for a reso-

nance of the Alfvén waves with the sound wave. Note that in the zero-β limit, both

solutions coincide. This could be illustrated in Figure 4.1 where for typical coronal

conditions the Alfvén, sound, and tube speeds are plotted in respect to the distance

from the Sun. For Cs = 220 km/s and β = 0.07 and the initial Alfvén speed equal

to 800 km/s, it could be seen that the sound speed has resonance with the Alfvén

speed in about 20 solar radius, but the tube speed never approaches the Alfvén

speed and is always smaller.

Above, we found that the centrifugal and the magnetic tension forces are exactly

cancelling each other in a long-wavelength propagating torsional wave. It is worth

checking whether this effect is an artifact of the long-wavelength approximation.

Consider the full MHD equations (see section 1.4), considering axisymmetric per-

turbations (m = 0). Equations (1.28) and (1.31) reduce to

µρo
∂ vϕ
∂ t

=
B0

r

∂

∂ z
(r Bϕ), (4.33)

∂ Bϕ
∂ t

=
∂

∂ z
(B0 vϕ), (4.34)
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Figure 4.1: The logarithmic dependence of the Alfvén speed (blue curve), sound
speed (black curve), and the tube speed (red curve) on the distance from the solar
surface. The curves have been plotted using equation (23) of Nakariakov et al.
[2000b]. The sound speed for typical coronal conditions would be about 0.22 Mm/s
with β = 0.07 and CA initially 0.8 Mm/s. It could be seen that the sound speed
eventually crosses the Alfvén speed which could cause resonance, but the tube speed
is always slower than the Alfvén speed.

linking vϕ and Bϕ. Combining equations (4.33) and (4.34) we obtain the wave

equation

∂2Bϕ
∂t2

− C2
A

∂2Bϕ
∂z2

= 0. (4.35)

By taking

Bϕ = Rjacos(ωt− kz), (4.36)

and ω = CAk, the phase relation between the variables vϕ and Bϕ could be found

from equation (4.33) or (4.34)

vϕ = − Bϕa√
4πρ0

cos(ωt− kz). (4.37)
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The centrifugal and magnetic tension forces per volume are

Fcentrifugal =
ρ0v

2
ϕ

R
, Ftension =

B2
ϕ

4πR
. (4.38)

From equation (4.37) the magnetic tension force per volume could be obtained in

terms of vϕ

Ftension =
ρ0v

2
ϕ

R
. (4.39)

Equations (4.38) and (4.39) show that the forces are also equal when using the full

MHD model, which justifies the results obtained for the long-wavelength torsional

waves in the second order thin flux tube approximation.

4.7 Standing torsional waves

We consider standing torsional waves that can exist in closed magnetic structures,

e.g. coronal loops with k = π/L where L is the loop length

J = 2ja cos(ω t) cos(kz),

Ω = −2
ja

(4πρ0)1/2
sin(ω t) sin(kz), (4.40)

where the phase relations between the perturbed magnetic twist and the vorticity are

obtained from equations (4.11) and (4.12). Substituting equations (4.40) in equation

(4.21), and neglecting dispersive effects, higher order terms and the perturbations

of the external medium, we obtain

(C2
s + C2

A)DTρ = −R
2C2

A

2π
j2
ak

2 (1 + cos(2ωt)) cos(2kz)

−A0j
2
aω

2

π2
cos(2ωt). (4.41)

The first term on the right hand side represents the ponderomotive effect, and the

second term contains the magnetic tension and centrifugal effects. In the finite-β

case with the constraint β � 1 the solution for equation (4.41) is

ρ = − R2j2
a

8πC2
s (1 + β)

(1− cos(2Cskt)) cos(2kz)
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+

(
R2

4πC2
A(1 + β)

+
R2cos(2kz)

8πC2
A

)
× j2

acos(2ωt), (4.42)

where ω = CAk. Equation (4.42) is similar to equation (13) of Tikhonchuk et al.

[1995] obtained for shear Alfvén waves. In the zero plasma-β limit, equation (4.42)

simplifies to

ρ = −R
2(ωt)2

4πC2
A

j2
acos(2kz) +

(
R2

4πC2
A

+
R2

8πC2
A

cos(2kz)

)
j2
acos(2ωt). (4.43)

Equation (4.43) is an analogue of equation (4) of Tikhonchuk et al. [1995]. In Figure

4.2 the ratio of the density perturbations to the equilibrium density has been plotted

against the dimensionless time scale t = CAkt, where we have omitted the overline

in Figure 4.2. Also the ratio Bϕa/Bz0 has been taken equal to 0.1. From equation

(4.43) we obtain the black curve which is for the case β = 0, and from equation (4.42)

we obtain the coloured curves where the red, green, and blue curves correspond to

the values 0.01, 0.1 and 0.5 of the plasma-β. It could be seen that as the plasma-β

increases, the oscillatory behaviour of the density ratio is more pronounced.

According to equation (4.42), standing torsional waves induce growing compressible

perturbations, similarly to standing shear Alfvén waves [Tikhonchuk et al., 1995;

Verwichte et al., 1999; Litwin and Rosner, 1998] and standing kink modes of coronal

loops [Terradas and Ofman, 2004]. The growth is connected with the ponderomotive

term on the right hand side of equation (4.41). Finite-β effects cause saturation of

the compressible perturbation. Using the results obtained for shear Alfvén waves,

we obtain that the highest value of the density perturbation,

ρ

ρ0
=
R2j2

a

4πρ0

1

C2
s (1 + C2

s/C
2
A)
, (4.44)

is reached at the time

tmax '
L

2Cs
, (4.45)

where L is the loop length.

Also, in the case of standing waves, the centrifugal and magnetic tension terms do

not cancel each other, and produce compressible perturbations oscillating at the

double frequency of the torsional wave. However, those terms do not cause the

secular growth of compressible perturbations.
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Figure 4.2: Dependence of the ratio of density perturbations to the equilibrium
density against the dimensionless characteristic time scale t = CAkt where we have
omitted the overline in the figure. The black curve is plotted using expression (4.43),
showing the secular growth of the density perturbation. The red, green and blue
curves have been plotted using expression (4.42) for different values of the plasma-β,
0.01, 0.1, and 0.5 respectively. Note that the ratio of the azimuthal magnetic field
amplitude in respect to the equilibrium longitudinal magnetic field Bϕa/Bz0 has
been taken equal to 0.1.

4.8 Conclusions

We considered compressible perturbations induced in straight untwisted and non-

rotating magnetic flux tubes by weakly-nonlinear long-wavelength torsional waves.

We can summarise our findings as follows: Long-wavelength torsional waves induce

compressible perturbations by the ponderomotive, centrifugal and magnetic twist

forces. The perturbations have double the frequency of the inducing torsional wave.

The efficiency of the excitation depends upon the spatial (standing and propagat-

ing) structure of the inducing torsional wave.

The efficiency of the generation of compressible perturbations by long-wavelength

torsional waves is independent of the plasma-β (see equation (4.26)). This result

is different from the excitation of compressible perturbations by plane shear Alfvén
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waves, in which case the efficiency grows when the Alfvén and sound speeds ap-

proach each other. The difference is connected with the fact that the tube speed is

always lower than the Alfvén speed. The relative amplitude of the induced density

perturbation is
ρ

ρ0
=

B2
ϕ

4B2
z0

, (4.46)

where Bϕ is the perturbation of the magnetic field at the boundary of the flux tube.

There are two kinds of compressible perturbations induced by standing torsional

waves: the perturbations which grow with the time scale

t ∝ 1

2Csk
, (4.47)

where k is the longitudinal wave number of the torsional wave, and the perturbations

oscillating at the double frequency of the driving torsional mode. The growing

density perturbations saturate at the level inversely proportional to the sound speed.

Thus we conclude that nonlinear compressible effects which accompany standing

weakly-nonlinear long-wavelength torsional waves are similar to those derived for

plane shear Alfvén waves. For propagating waves, the efficiency of the nonlinear

generation of compressible perturbations does not grow with the plasma-β. This

effect should be taken into account in one-dimensional models of the solar and

stellar wind acceleration by Alfvén waves.
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Chapter 5

Fast magnetoacoustic waves

approaching an X-point

The work in this Chapter is also published in M. Gruszecki, S. Vasheghani Farahani,

V.M. Nakariakov, T.D. Arber [2011]

5.1 Introduction

In subsection 1.6.5 the concept of magnetic reconnection and its relevance to solar

coronal physics was mentioned. In this Chapter our aim is to study analytically

and numerically (using the Lare2D code), the dynamics of fast magnetoacoustic

waves approaching a magnetic reconnection site which is modelled as a magnetic

null-point (x-point) without the guiding field. In a null-point, magnetic field lines

change direction as getting close to the middle cross, never crossing it (see Figure

5.1). The lines that create the cross are called separatrices which divide the plane

into four regions. Since there is no magnetic fields on the null-point in the absence

of the guiding field, the Alfvén speed approaches zero at exactly on the null-point.

Coronal magnetic fields, extrapolated from photospheric magnetograms show the

possible existence of magnetic null-point-structures [Brown and Priest, 2001]. De-

tailed discussion of structures of magnetic field in solar corona could be found in

e.g. Brown and Priest [2001] and Longcope [2005].

The aim of this Chapter is to investigate the generation of shocks in fast magne-

toacoustic waves with various initial amplitudes and width, as they approaching

the magnetic null-point in order to study the possibility of the triggering of solar
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flares by fast magnetoacoustic waves. This can be achieved by the deposition of the

anomalous resistivity (see subsection 1.6.5) in the nearest vicinity of the null-point

by the current density spike generated by the wave.

From the point of view of the fast magnetoacoustic wave, the vicinity of a magnetic

null-point is a potential well, as the fast magnetoacoustic speed usually decreases

towards the null-point. Hence, inwardly, with respect to the null-point, propagating

fast waves experience the amplitude growth because of their focusing and because

of the nonuniformity of the fast speed, as the energy should conserve. The am-

plitude growth leads to various nonlinear effects which cause the wave steepening

and fast shock formation. If the wave shocks at some large distance from the null-

point it cannot form a current spike near the null-point, and hence cannot trigger

reconnection. We shall study this phenomenon in detail.

5.2 Analytical and numerical models of magnetic null-

point dynamics

Various models for the magnetic null-point dynamics have been put forward, and

here we summarise the most widely accepted models. Craig and McClymont [1991]

considered the magnetoacoustic m = 0 (where m is the azimuthal wave number)

mode disturbing an equilibrium null-point. They took into account the magnetic

diffusivity and showed that the decay of the m = 0 mode oscillations on the null-

point is limited by the dissipation time scale of the fundamental mode with no

dependency on the number of radial nodes. The magnetic reconnection was found

to show oscillatory dynamics. It was deduced that oscillatory reconnection is caused

by the dissipation of free magnetic energy. In addition, waves in the neighbourhood

of a 2D null point have been investigated by Craig and Watson [1992]. They con-

sidered the radial propagation of the m = 0 mode in the zero-β regime and stated

that reconnection could only take place if the disturbances are purely radial. Also,

they confirmed that the reconnection is oscillatory and fast, with a logarithmic de-

pendency on magnetic resistivity η.

McLaughlin and Hood [2004] in a 2D study in the zero-β regime, studied the be-

haviour of a single fast magnetoacoustic wave-pulse approaching a null point. They

showed that the wave-pulse never exactly gets to the null point in this model, since

the Alfvén wave looses speed getting closer to the null-point. Due to refraction

[Nakariakov and Roberts, 1995b], the wave-pulse bends around the null-point cre-
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ating a density spike normal to the null-point plane in both directions. Later,

McLaughlin and Hood [2006] extended their model to the finite-β regime and no-

ticed coupling between slow and fast magnetoacoustic waves and mode conversion

at locations where the sound and Alfvén speed get close to each other. Note that

similar effects were studied by Zhugzhda and Dzhalilov [1982] and Cally [2001] in

the context of wave energy transport in an isothermal magneto-atmosphere.

Longcope and Priest [2007] studied the resistive dissipation of a 2D current sheet

above the null-point due to anomalous resistivity (see subsection 1.6.5). They used

Cartesian geometry to describe a planar equilibrium magnetic field for the null-point

and a two dimensional current sheet which is placed in the equilibrium magnetic

field. They deduced that due to the disruption of the current sheet by diffusion, fast

magnetoacoustic waves could be launched by null-point reconnection. Note that the

dynamics of fast magnetoacoustic waves is our interest in this Chapter.

In a very recent study McLaughlin et al. [2009] by taking into account nonlinear

effects, observed both fast and slow magnetoacoustic shocks. Their study extended

their previous investigations, considering the developed stage of the wave evolution.

The distance of the shock generation of the fast magnetoacoustic wave in respect to

the null-point and its dependence on the initial conditions of the pulse is studied in

this Chapter.

5.3 Theorectical analysis

5.3.1 Model and equilibrium conditions

Ideal MHD equations for typical coronal conditions in the low-β regime are taken

in to account using the cylindrical coordinate system (r, ϕ, z), see equations (1.16)-

(1.19), taking γ = 5/3 as the ratio of specific heats. Our choice of equilibrium is

(Craig & McClymont 1991)

B0 = (B0
r

L
sin2ϕ, B0

r

L
cos2ϕ, 0), (5.1)

where L is a characteristic length scale, r is the radial distance from the null-point

and ϕ is the azimuthal angle (Figure 5.1). Also we consider the gas pressure, density,

and temperature to be constant around the null point.
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Figure 5.1: The null-point configuration showing the equilibrium magnetic field lines
(curved lines) and the separatrices (red lines) which separate the configuration into
four quarters (left panel). The Alfvén speed dependence on the distance to the null-
point (right panel). The parameters are normalised by the distance of the initial
pulse to the null-point (r1).

In this equilibrium, the radial dependence of the Alfvén speed is

CA(r) =
B0r√
µρ0L

. (5.2)

Linearising the MHD equations with respect to the equilibrium and considering no

azimuthal dependency (∂/∂ϕ = 0) and also no dependency on the z coordinate

(∂/∂z = 0), that is the coordinate perpendicular to the plane of the null-point, we

obtain:

µρ0
∂ vr
∂ t

= −B0cos2ϕ

L

∂ (rBϕ)

∂ r
, (5.3)

µρ0
∂ vϕ
∂ t

=
B0sin2ϕ

L

∂ (rBϕ)

∂ r
, (5.4)

µρ0
∂ vz
∂ t

= +
B0 rsin2ϕ

L

∂ Bz
∂ r

, (5.5)

∂ Br
∂ t

= 0, (5.6)
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∂ Bϕ
∂ t

=
B0

L

∂ (vϕrsin2ϕ)

∂ r
− B0

L

∂ (vrrcos2ϕ)

∂ r
, (5.7)

∂ Bz
∂ t

=
B0

r

sin2ϕ

L

∂ (vzr
2)

∂ r
, (5.8)

∂ρ

∂ t
+

1

r

∂ (rρ0 vr)

∂ r
= 0. (5.9)

Combining equations (5.4) and (5.7) we obtain:

∂ 2Bϕ
∂ t2

=
C2

A0

L2

∂

∂ r

(
r
∂

∂ r
(rBϕ)

)
, (5.10)

where CA0 is the background Alfvén speed with no dependency on r. Note that

when the radial distance of the wave r is equal to the characteristic length L, we

have

CA0 = CA(r). (5.11)

By assuming

r =
r

L
,Bϕ =

Bϕ
B0

, t =
tCA0

L
; (5.12)

we have the normalised form of equation (5.10) as:

∂ 2Bϕ
∂ t2

=
∂

∂ r

(
r
∂

∂ r
(rBϕ)

)
, (5.13)

where we have omitted the overline. The solution for the perturbations of the

azimuthal magnetic field is:

Bϕ =
1

r
(F (t− ln r) +Q(t+ ln r)) , (5.14)

where functions F and Q describe the shape of the inwardly and outwardly propa-

gating waves, respectively [Craig and McClymont, 1991]. Since we are considering

the magnetoacoustic wave propagating towards the null-point we are only interested

in the first term of expression (5.14) which shows the incoming wave. Since we work

in the zero-β approximation, this model is valid at some distance from the null-point

only, far from the radius of β being unity. It is seen that the perturbations of the

magnetic field propagates independently of the polar angle ϕ. Combining equations

(5.3) and (5.14) and normalising the radial velocity as vr = vr/CA0 where we again
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omit the overtilde, the solution for the normalised radial velocity in the inwardly

propagating wave is

vr =
cos2ϕ

r
F (t− ln r). (5.15)

Later in this Chapter in subsection 5.4.4, this solution is compared with the nonlin-

ear numerical plots for different wave amplitudes, showing its time evolution as the

wave approaches the null-point.

5.3.2 Nonlinear approach

Consider weakly nonlinear fast waves approaching the null-point. Restricting our-

selves to the analysis of the quadratically nonlinear effects only, we obtain

∂2Bϕ
∂t2

− C2
A

L2

∂

∂ r

(
r
∂

∂ r
(rBϕ)

)
=

∂

∂t
N5 +

B0

µρ0L
sin(2ϕ)

∂

∂r
(rN2)− B0

µρ0L
cos(2ϕ)

∂

∂r
(rN1), (5.16)

where the quadratic nonlinear terms N1, N2, and N5 have been added to the RHS

of equations (5.3), (5.4). and (5.7) respectively. The expressions for the nonlinear

terms are

N1 = −µρ ∂
∂t
vr −

Bϕ
r

∂

∂r
(rBϕ)− µρ0vr

∂

∂r
vr + µρ0

v2
ϕ

r
, (5.17)

N2 = −µρ ∂
∂t
vϕ − µρ0vr

∂

∂r
vϕ − µρ0

vrvϕ
r

, (5.18)

N5 = − ∂

∂r
(vrBϕ). (5.19)

We change the frame of reference using the linear solution (equation (5.14))

tCA

L
− ln

(
r

L

)
= ξ, τ = εt, (5.20)

where ε is a small parameter which represents the smallness of the nonlinear terms

in equation (5.16), meaning that τ is slow time. Equation (5.16) in the new frame
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of reference is

∂Bϕ
∂τ
− 3

2

cos(2ϕ)

L
√
µρ0

exp (ξ)Bϕ
∂Bϕ
∂ξ

= 0. (5.21)

Equation (5.21) is similar to equation (52) of Nakariakov et al. [2000a] which is a

Burgers type equation without the dissipative term. The dependence on the po-

lar angle ϕ shows that the nonlinear effects affect different polar-angle segments

of the inwardly propagating fast pulse differently. The strongest nonlinear effects

appear for the polar angles where the pulse propagates across the magnetic field.

The quadratically nonlinear terms vanish when the wave propagates along the sep-

aratrices, where the wave vector is parallel to the magnetic field, as in this case

the fast wave degenerates into the Alfvén wave which is not subject to quadratic

nonlinearity and the cubically nonlinear terms should be taken into account. But,

most importantly, the dependence of the nonlinear coefficient on the azimuthal angle

in equation (5.21) makes the further analytical approach impossible. Since, equa-

tion (5.21) was derived under the assumption that the perturbations of the physical

parameters are independent of the angle (∂/∂ϕ = 0). However, equation (5.21)

gives an important qualitative information about the azimuthal dependence of the

fast wave evolution, which can be used for the understanding of numerical results.

This encourages us to treat the problem numerically, in the following we choose to

solve numerically the full set of MHD equations which is more robust, rather than

the approximated equation (5.21). The study in the next section is based on the

numerical study of the ideal MHD equations.

5.4 Numerical study

5.4.1 Numerical methods

The MHD equations (1.16)-(1.19) are solved numerically using the Lagrangian-

remap code, Lare2d [Arber et al., 2001]. Lare2d operates by taking a Lagrangian

predictor-corrector time step, after each Lagrangian step all variables are conser-

vatively re-mapped back onto the original Eulerian grid using Van Leer gradient

limiters. The code was designed for the simulation of nonlinear dynamics of low-β

plasmas with steep gradients and hence, suits the problem of interest very well.

The magnetic field B is defined on cell faces and is updated with a constrained trans-

port to keep ∇ ·B = 0 to machine precision. In our studies we simulate the plasma
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Table 5.1: Parameters of the initial numerical equilibrium. The values are for typical
coronal conditions.

ρ0 [kg/m3] B0 [T] T0 [K] Cs [Mm/s] CA [Mm/s] β

10−12 10−3 6 · 105 0.129 0.892 0.025

dynamics in a domain (0, 10)× (0, 10) Mm covered by 3000× 3000 grid points. We

performed grid convergence studies to check the numerical results. Zero gradient

boundary conditions have been set for all simulations, which allows a propagating

perturbation signal leave freely, without reflection.

5.4.2 Initial setup

Our configuration is a simple 2D null-point model with a fast magnetoacoustic pulse

on the (x, y) plane initialised at some distance from the null-point. Our choice of

the equilibrium magnetic field is

B = B0[x/L,−y/L, 0], (5.22)

c.f. equation (5.1), where B0 is strength of the magnetic field and L is a characteristic

length scale for magnetic field variations. Configuration of the magnetic field lines

is illustrated in Figure 5.1. The initial fast magnetoacoustic pulse is circular as in

McLaughlin et al. [2009] and is initiated in the region r1 <
√
x2 + y2 < r1 + r0:

Vx = A0sin

(
π

√
x2 + y2 − r1

r0

)
By

B2
x +B2

y

, (5.23)

Vy = −A0sin

(
π

√
x2 + y2 − r1

r0

)
Bx

B2
x +B2

y

, (5.24)

where the amplitude has been taken A0 = 103 m/s, with r1 = 5 Mm and r0 = 1 Mm.

The specific quantitative values of the initial equilibrium are taken to be consistent

with the typical parameters of the solar coronal plasma (see Table 5.1).
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5.4.3 Phase relations in magnetoacoustic modes

It is instructive to consider fast magnetoacoustic waves propagating in a uniform

medium penetrated by a straight and uniform magnetic field. Consider the equi-

librium magnetic field in the z-direction Bz0 and a plane wave propagating in the

x-direction with no dependencies on other components (∂/∂y = 0, ∂/∂z = 0) in the

zero-β limit. Hence the linearised MHD equations around the equilibrium are

∂

∂t
Bx = 0,

∂

∂t
By = 0, ρ0

∂

∂t
vy = 0, ρ0

∂

∂t
vz = 0, (5.25)

∂

∂t
Bz = −Bz0

∂

∂x
vx,

ρ0
∂

∂t
vx = − 1

µ
Bz0

∂

∂x
Bz,

∂

∂t
ρ = −ρ0

∂

∂x
vx, (5.26)

applying the Fourier decomposition (∂/∂x = ik, ∂/∂t = iω) of the expressions in

equation (5.26), we obtain

Bz
Bz0

=
ρ

ρ0
, (5.27)

and

Bz
Bz0

= −ω
k

vx
C2

A0

. (5.28)

Equations (5.27) and (5.28) are the relations between the perturbations of different

physical quantities, which show that the perturbations are related to each other by

the phase speed (which in the considered case is just CA0). Hence the direction of

the wave propagation would affect the phase relations between the perturbations

of the physical parameters like density and velocity. To illustrate this, it is worth

reproducing the results of McLaughlin et al. [2009], where a fast magnetoacoustic

pulse runs toward the null-point. The results of the simulation are shown in Figure

5.2. The top left and middle panels show the vx and vy profiles respectively, and

the top right panel shows the initial density perturbation which is blank in t = 0 s.

The arrows show the direction of the initial velocity profile, and the blue and red

colours indicate the negative and positive signs, respectively. The opposite signs

98



of the perturbations are showing their effects in the bottom row, each panel shows

the ingoing and outgoing pulses at t = 8 s where the radial shape of the pulse and

density perturbation has been deformed to an elliptical shape by the nonlinearity.

This could also be explained in the linear regime by Figure 5.2 and equations

Figure 5.2: Top row, contours of the parameters vx, vy, and ρ at t = 0 and bottom
row, the corresponding parameters at t = 0.8 s. The arrows on the top left figure
show the initial velocity profile. The red and blue colours in the figures indicate
positive and negative signs respectively. In the bottom row the ingoing and outgoing
pulses could be seen.

5.27 and 5.28; from the first two top panels of Figure 5.2 it could be noticed that

the direction of the velocity perturbation is outward for the second and fourth

quarters and inward for the first and third quarters. From the phase relations

obtained in equations (5.27) and (5.28) which shows the dependency of the density

perturbation on the direction of the velocity through the magnetic field perturbation,

the density perturbation is anti-phase in quarters 1 and 3 compared to quarters 2 and

4. Hence we experience the antisymmetry of the density perturbation seen in Figure

5.2 and McLaughlin et al. [2009]. This antisymmetry explains the backward and
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front overturn of different segments of the wave-top seen in McLaughlin et al. [2009].

Hence, the density perturbation has azimuthal dependency and is not propagating

with the azimuthal wave number m = 0, meaning that the perturbation of the radial

speed would also depend on the angle and is not an m = 0 mode, but an m = 2

mode.

5.4.4 Parametric studies

We performed a series of numerical experiments, in order to study the generation of

fast magnetoacoustic shocks in the vicinity of a null-point. Figure 5.3 demonstrates

the consistency of the numerical results, as they reproduce the analytical solution

given by equation (5.15). Also, it shows the departure of the nonlinear results from

the linear solution, as the wave amplitude grows. This means that the pulse speed

towards the null-point is proportional to the wave initial amplitude, with higher

amplitude pulses having higher speeds.

Figure 5.4 shows contour plots of velocity at four different instants of time. We

Figure 5.3: Comparison of numerical results simulating incoming fast magnetoa-
coustic waves of different amplitude with the analytical solution equation (5.15).
Solid line (points) corresponds to analytical (numerical) solution. Amplitude of ini-
tial pulse was A0 for triangles, 0.5A0 for squares 0.1A0 for stars and 0.01A0 for
crosses. The spatial coordinate is measured in units of r1.
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show only the region (x > 0, y > 0) of the simulation. The white curve shows the

position of the linear solution. It is clearly visible and was illustrated in subsection

5.4.3 that the pulse begins to change from circular to an elliptical shape, due to the

dependence of the nonlinear coefficient upon the azimuthal angle.

Figure 5.5 displays the radial velocity of the pulse

Figure 5.4: Two dimensional plots of the radial velocity Vr =
√
V 2
x + V 2

y at t=0 s

(top left panel), t=0.4 s, (top right panel), t=1.6 s, (bottom left panel), and t=2.4 s
(bottom right panel). White curves show the linear solution. The spatial coordinates
are measured in units of r1 that is the initial position of the fast wave-pulse.

Vr =
√
V 2
x + V 2

y (5.29)
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Figure 5.5: Perturbations of the radial velocity in the inwardly propagating pulse,

Vr =
√
V 2
x + V 2

y as a function of the radial position r. Different colours correspond

to two different initial amplitudes of the pulse. Different lines correspond to different
times: t = 0.4 s (solid red line), t=0.6 s (dotted red line), t=0.8 s (dashed red line),
t=0.7 s (solid blue line), t=1.0 s (dotted blue line), and t=1.4 s (dashed blue line)
respectively. The radial coordinate is measured in units of r1.

versus the radius r at three instants of time. The blue and red profiles correspond

to two different amplitudes. It is clearly visible that the higher amplitude pulse

“overturns” - forms the shock - faster than the smaller amplitude pulse. In addi-

tion, the radial velocity is accompanied by current density spikes [McLaughlin and

Hood, 2004] as the wave amplitude increases in time, which gives rise for anomalous

resistivity (see subsection 1.6.5). This is shown in the three snapshots of Figure 5.6.

In order to estimate the position of the shock formation we calculated the

derivative of velocity. When the radial derivative of the velocity exceeds the thresh-

old value (about 100), we assume that shock appears. We observe that the gradient

in a narrow pulse is higher than for a wider pulse, thus the shock should create

faster.

Figure 5.7 illustrates the dependence of the shock formation distance from the

null-point on the initial width and amplitude of the pulse. The left panel shows the

shock generation for different amplitudes of the initial pulse for all other parameters
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Figure 5.6: Perturbations of the radial velocity in the inwardly propagating pulse,

Vr =
√
V 2
x + V 2

y as a function of the radial position r. The spikes (red spikes)

correspond to the current density j and the blue curves correspond to vr at times
t = 0.4 s, t = 0.7 s, t = 1.4 s. The parameters are normalised by the maximum
values of vr and t at t = 1.4 s, and the radial coordinate is measured in units of r1.

Figure 5.7: Distance from the null-point to the position of the fast shock formation
as a function of the amplitude of initial pulse (left panel) and width of initial pulse
(right panel). We fit two curves into the points, red curve 25.82x0.32 and blue curve
0.31x−0.46. Spatial coordinates and amplitude are measured in units of r1 and Alfvén
speed CA(r1).

103



of the run fixed. The right panel shows the shock generation in respect to the initial

width of the pulse. The spatial coordinates are normalised by the initial distance

of the pulse form the null-point r1, and the velocity amplitude is normalised by the

local Alfvén speed. It could be seen that higher amplitude pulses generate shocks

further away from the null-point, while pulses with larger width form the shock

closer to the null-point.

5.5 Summary and discussion

We have performed an analytical study accompanied by numerical simulations of

the behaviour of a fast magnetoacoustic pulse as approaching a null-point. Using

ideal MHD equations in the zero-β regime (hence, at some sufficiently large distance

from the radius β = 1), we developed a 1D analytical model of an initially radially

symmetric fast pulse in the weakly nonlinear regime. We showed the expression for

the radial velocity of the fast magnetoacoustic pulse and obtained that the evolution

of the pulse leads to the departure from the azimuthally symmetric m = 0 mode,

but is rather of the symmetry of the m = 2 mode. Consideration of the excitation

conditions and of the phase relations in the numerical experiments of McLaugh-

lin et al. [2009] supported that observation. Numerical simulations confirmed the

azimuthal dependency of the fast magnetacoustic pulse for a quarter of a circle jus-

tifying our analytical explanation for the m = 2 mode. Also in our simulations we

showed that small amplitudes pulses coincide with the linear analytical solution of

Craig and McClymont [1991]. In addition, it was shown that waves of higher initial

amplitudes propagate faster.

Moreover, our numerical studies of a fast wave evolution in the vicinity of a mag-

netic null-point showed that not only the initial amplitude is responsible for the time

that the pulse overturns, but also the initial width of the pulse is responsible. Thus,

initially lower amplitude and broader fast wave-pulses form fast shocks - “overturn”

- closer to the null-point. As the shock formation is accompanied by the generation

of electric current density spikes, in the vicinity of the shock formation region we

can expect onset of plasma micro-turbulence, and hence appearance of anomalous

electrical resistivity.

Our finding has interesting implications to the problem of sympathetic flares (see

subsection 1.6.5 and references therein). It was shown that as the amplitude of the
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initial pulse increases the overturning takes place further away from the null-point

and as the width of the pulse increases the overturning takes place at a closer dis-

tance to the null-point having more effect. In other words, only wider and small

amplitude pulses can reach magnetic null-point before overturning and ignite mag-

netic reconnection. Narrower and high amplitude pulses overturn quicker and do

not reach the null-point and hence cannot ignite magnetic reconnection. The shock

is accompanied with a spike of current density; hence anomalous resistivity can be

generated (subsection 1.6.5).

Without accounting for this effect, the physical picture of the phenomenon of sym-

pathetic flares is incomplete. Indeed, for the effective ignition of a “daughter” flare

by a “mother” flare, the triggering fast wave should be of the right initial amplitude

and width. Hence, more powerful “mother” flares do not necessarily have higher

probability to ignite a “daughter” flare. Similarly, the probability of the excitation

of a “daughter” flare is not inversely proportional to the distance between the sites

of the “mother” and “daughter” flares.
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Chapter 6

Conclusions

In this thesis we performed a theoretical study of the dynamics of MHD waves in

structured plasmas of the solar corona, and used the theoretical results for interpre-

tation of recent solar observations, and prediction of new physical effects.

In Chapter 2 we demonstrated that transverse waves observed in soft X-ray solar

coronal jets [Cirtain et al., 2007] are adequately described in terms of fast magnetoa-

coustic kink (m = 1) modes of a straight magnetic cylinder embedded in a magnetic

environment. It was shown that these waves are collective, since they are coherent

perturbations of all magnetic surfaces inside the jet, and compressible, since the

flow-perturbation divergence is finite. Phase and group speeds were determined by

the density contrast of the jet, the flow speed, and the internal and external Alfvén

speeds. Forward modelling performed with the use of theoretically determined phase

relations was found to be consistent with the observational findings obtained with

Hinode/XRT.

The expressions written in Chapter 2 were obtained for the azimuthal mode num-

ber m = 1. However, we pointed out that a transverse displacement of the axis

of the cylinder, such as the transverse motion of the jet, can, in general, have two

opposite senses, m = ±1. The azimuthal modes m = ±1 manifest themselves as

a cork-screwing motion travelling along the cylinder. However, it is impossible to

distinguish observationally between a pure m = ±1 mode or a superposition of these

modes. As such, it is only possible to measure the projected motion of the jet. It

is impossible to quantify the motion in the other direction and thus to assess the

nature (pure or superposition) of the observed oscillation.

If there is a variation in the Alfvén or flow speed across the jet, the kink perturba-
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tions are subject to resonant absorption. The damping time of the kink oscillations

in a jet for typical coronal parameters was estimated to be several times longer

than the wave period which is consistent with observations. It is unclear how the

wave evolves past the physical extent of the jet, which will depend on the transverse

structuring that is not visible in the observations.

It was shown in Chapter 2 that although the origin of transverse oscillations of soft

X-ray jets could possibly be due to the Kelvin-Helmholtz instability, but it is not

consistent with the observations. For a plasma structure of the observed geometry

with the typical values of the Alfvén speed and the density contrast, the instability

threshold value of the steady flow speed is a few times greater than the internal

Alfvén speed. Since the observed values of the jet speeds do not exceed the Alfvén

speed inside the jet, the instability threshold is not reached and this possibility

should be excluded.

Also, in Chapter 2 we pointed out that the other candidate for the origin of trans-

verse oscillations, which is related to negative energy wave instabilities is also not

the case. According to Joarder et al. [1997] in the considered situation, sub-Alfvénic

flow speeds can lead to the instability of longitudinal modes only, which does not

explain the generation of the transverse perturbations. Also, the periodicity could

appear because of geometric dispersion [Roberts et al., 1984; Murawski and Roberts,

1994]. However, the typical wavelength generated by this mechanism would be com-

parable to the jet diameter and hence we exclude this option too. Consequently,

we deduced that the observed transverse waves are excited somewhere at the origin

of the jet, possibly by oscillatory magnetic reconnection [Murray et al., 2009], and

then propagate according to the dispersion and phase relations discussed in Chapter

2.

Observation of transverse waves guided by soft X-ray jets is interesting for coro-

nal seismology. Since, the phase speed of the waves obtained in Chapter 2 were

in terms of the flow speed and the Alfvén speed inside the jet. Also the density

ratio of the internal and external medium showed that there is a constraint given by

the equilibrium condition, where we have assumed that the external β is very small

and γ = 5/3. These expressions contain observables: the phase speed of transverse

waves, the flow speed [Cirtain et al., 2007], the density-contrast ratio (which can

be obtained from the emission-measure contrast) and the sound speed (which is

connected with the temperature). The use of the observed values in the theoretical

constraints allows us to estimate the internal and external Alfvén speeds, and the
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magnetic fields.

In Chapter 3, torsional axisymmetric (m=0) long-wavelength MHD modes of a cylin-

drical plasma structure were studied with the use of the second-order thin flux tube

approximation. The approximation and model could be used to describe various

plasma structures in the corona of the Sun, e.g. coronal jets and plumes, as well as

segments of coronal loops and filaments.

The general dispersion relation obtained in Chapter 3 is a sixth order polynomial

which describes all three MHD modes of the m = 0 symmetry: the torsional, sausage

fast magnetoacoustic and longitudinal (slow magnetoacoustic) modes. In the un-

twisted non-rotating flux tube, sausage and longitudinal modes are dispersive. We

stressed that in the untwisted limit the proper treatment of these waves requires

consideration of the external medium, while in the twisted case considered here the

equilibrium does not necessarily require the presence of the external plasma. In any

case, both sausage and longitudinal modes are compressible and hence magnetoa-

coustic. In the untwisted non-rotating case, the torsional mode is dispersionless,

and hence is the true Alfvén wave.

It was shown that the equilibrium twist and rotation of the tube modifies the tor-

sional mode making it dispersive. Assuming the dispersion being weak, we derived

asymptotic dispersion relations for the phase speeds of the modes. Interestingly, it

was shown that the phase speeds of the torsional waves propagating in the opposite

directions along the tube have different absolute values, which is connected with the

local Doppler shift. In twisted magnetic flux tubes torsional waves become com-

pressible, perturbing the plasma density, the absolute value of the magnetic field,

and the tube cross-section. The induced variations of the plasma density and the

absolute value of the magnetic field are in phase with the variations of the twist in

the torsional wave, and in anti-phase with the variations of the loop radius. The

compressibility vanishes in the limit when the equilibrium twist goes to zero, as it

should be in the familiar case of the straight magnetic field.

Using the observations by Cirtain et al. [2007] for physical parameters in hot coronal

jets, we see that the corona could be taken as a cold plasma region and according

to equation (3.47), a torsional wave of the relative amplitude 10 percent will be ac-

companied by a density perturbation of about 7 percent. Our results in Chapter

3 provides theoretical basis for the search for torsional waves in coronal plasma

structures, and, in particular, for the forward modelling of the EUV, soft X-ray and

microwave observables.
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In straight untwisted and non-rotating magnetic flux tubes, long-wavelength tor-

sional waves could induce compressible perturbations by the ponderomotive, cen-

trifugal and magnetic twist forces. The perturbations have double the frequency

of the inducing torsional wave. The efficiency of the excitation depends upon the

spatial (standing and propagating) structure of the inducing torsional wave. The ef-

ficiency of the generation of compressible perturbations by long-wavelength torsional

waves is independent of the plasma-β. This result is different from the excitation of

compressible perturbations by plane shear Alfvén waves, in which case the efficiency

grows when the Alfvén and sound speeds approach each other. The discrepancy is

connected with the fact that the tube speed, which is the speed of the longitudinal

mode in a flux tube, is always lower than the Alfvén speed. The relative amplitude

of the induced density perturbation was obtained in Chapter 4.

In addition, in Chapter 4 it was shown that there are two kinds of compressible

perturbations induced by standing torsional waves: the perturbations which grow

with the time scale 1/(2Csk), where k is the longitudinal wave number of the tor-

sional wave, and the perturbations oscillating at the double frequency of the driving

torsional mode. The growing density perturbations saturate at the level inversely

proportional to the sound speed.

Thus we conclude that nonlinear compressible effects which accompany standing

weakly-nonlinear long-wavelength torsional waves are similar to those derived for

plane shear Alfvén waves. For propagating waves, the efficiency of the nonlinear

generation of compressible perturbations does not grow with the plasma-β. This ef-

fect should be taken into account in one-dimensional models of the solar and stellar

wind acceleration by Alfvén waves.

In Chapter 5 it was shown that although the amplitude of the initial fast magnetoa-

coustic pulse propagating towards a magnetic null-point, affects the shock formation

position, but the width of the initial pulse needs to be considered too. It was shown

that as the initial width of the pulse gets larger the pulse manages to get closer

to the null-point and could cause ignition of magnetic reconnection. The results of

Chapter 5 could be important for sympathetic flares, as having a stronger pulse does

not mean the effects would be greater. It was shown that large amplitude pulses

never get closer to the null-point and overturn very quickly compared to lower am-

plitude pulses. Hence, waves with lower amplitudes and larger width could overturn

closer to the null-point, and seed there the anomalous resistivity, which can trigger

fast reconnection. In nature this phenomena could be observed in a tsunami which
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it has much more effects than an ordinary wave since the wavelength of the tsunami

is much larger than the wavelength of an ordinary storm wave.
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