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Abstract: We present a systematic way to construct solutions of the (n = 5)-reduction of the BKP
and CKP hierarchies from the general 7 function 7("**) of the KP hierarchy. We obtain the one-soliton,
two-soliton, and periodic solution for the bi-directional Sawada-Kotera (bSK), the bi-directional Kaup-
Kupershmidt (bKK) and also the bi-directional Satsuma-Hirota (bSH) equation. Different solutions such
as left- and right-going solitons are classified according to the symmetries of the 5th roots of e’. Fur-
thermore, we show that the soliton solutions of the n-reduction of the BKP and CKP hierarchies with
n=2j+1,7=1,23,..., can propagate along j directions in the 1 + 1 space-time domain. Each such
direction corresponds to one symmetric distribution of the nth roots of ¢?. Based on this classification,
we detail the existence of two-peak solitons of the n-reduction from the Grammian 7 function of the sub-
hierarchies BKP and CKP. If n is even, we again find two-peak solitons. Last, we obtain the ”stationary”
soliton for the higher-order KP hierarchy.

Key words. KP hierarchy — BKP hierarchy — CKP hierarchy — 7-function — gauge transformation —
bSK equation — bKK equation — bSH equation — periodic solution — bidirectional soliton

1. Introduction

The Kadomtsev-Petviashvili (KP) hierarchy is of central interest for integrable systems and includes sev-
eral well-known partial differential equations such as the Korteweg-de Vries (KdV) and the KP equation.
With pseudo-differential Lax operator L given as [1-3]

L=0+u0 " +ug0?+---, (1.1)
the corresponding generalized Lax equation

oL
aT:[BTHL]? 7742172,3,"', (12)

gives rise to the infinite number of partial differential equations (PDEs) of the KP hierarchy with dynam-

ical variables {u;(t1,t,t3,--+)} with i =2,3,4,---. Here B,, = Y b, ;0° = (L") denotes the differential
i=0
part of L™ and in following we will use L™ = L™ — B,, to denote the integral part.
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sub-hierarchy Lax operator example equation

BKP [1,4] L* = -9Lo ! SK [6,7], bSK [10,11]

CKP [4] L* =—-L KK [8,9], bKK [10,11]

n-thKdV [5] L™ =0 KdV [12], Boussinesg-type [2], SH [13]
n =234

constrained KP(cKP) [17,21] L =0+ ¢d~'¢% YO [14], MKAV [15], NLS [16]

Table 1. Examples of sub-hierarchies of the KP hierarchy, Lax operators used to construct them and resulting equations.
The symbol * indicates the conjugation, for example, 0* = —0. There are some abbreviations used in Table: Sawada-Kotera
(SK), bi-directional Sawada-Kotera (bSK), Kaup-Kupershmidt (KK), bi-directional Kaup-Kupershmidt (bKK), Satsuma-
Hirota (SH), Yajima-Oikawa (YO), Modified KAV (MKdV), Non-linear Schrédinger (NLS).

The simplest nontrivial PDE constructed from (1.2) is the KP equation given as

d . Ous duy  DPusy 0*uy
P T Pl e A T

=0 . (1.3)

In Table 1 we show the Lax operator and corresponding (1 4 1)-dimensional examples of sub-hierarchies
of the KP hierarchy. An alternative way to express the KP hierarchy is given by the Zakharov-Shabat
(ZS) equation [22],

0B, 0B,

- — BnaBm :0, 5 :2a3747"' . 1.4

o, or, T ] m,n (1.4)
The eigenfunction ¢ and the adjoint eigenfunction ¢ of the KP hierarchy associated with Eq. (1.4) are

defined by
9 _ o _

where ¢ = ¢(\;t) and ¢ = (A t) and & = (1,12, ).

The n-reduction of the KP hierarchy corresponds to the situation L™ = 0 such that L™ = B, =
O™ + vy 20" 2+ -« + 010 + vg. Then the vy, i = 0,1,--- ,n — 2, are independent of (t,,ta,,t3n, ). In
this way the Lax pair of the (1 + 1)-dimensional integrable system can be found. Well-known examples
of such n-reductions include the 4-reduction of the KP hierarchy [13] with Lax pair

(0% + 4ud? + 4u, 0, + 2upy + 4u* +0)d = A, (1.6)

01 = (0 + 3udy + guz)¢57 fo—z =t (1.7)
corresponding to the Satsuma-Hirota (SH) equation [13]
—Auy + 120ty + Uggr + 3V =0, 20; + 6uvy + Vyppr = 0. (1.8)
Furthermore, eliminating v in the above equations, we can obtain a 6th order equation (u = z,)
—82st + Zogwzwe — 22zwnt + 1820 Zsses + 362z0Zoge + 1225220 = 0, (1.9)

which has been called bi-directional Satsuma-Hirota (bSH) equation [23]. Naturally, there also exist n-
reductions of the BKP and CKP hierarchies. For example, the 5-reduction of the BKP hierarchy with
u = ug is given as

1
05 + 5ud? + 5u, 0% + (5u® + Eoum + gzt)ﬁm =\, (1.10)

01 = (02 + 3udy) b, u =z t3 =11 =z, (1.11)
which is the Lax pair corresponding to bi-directional Sawada-Kotera (bSK) equation [10, 11]
(Za;xxxa: + 1524 2400 + 1525’. —152,2¢ — 52'3;9;,5)30 — 5z = 0. (1.12)
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The 5-reduction of the CKP hierarchy (u = ug) with Lax pair [10,11]

15 35 5 5 5
[82 + 5u8§ + ?ugﬁg + (5u2 + Eum + gzt)am + Suuy, + gumz + 674 b = Ao, (1.13)
3 3
Op = (0, + 3ud, + 5%)([), U= 2g,t3 =1t =T, (1.14)

gives the bi-directional Kaup-Kupershmidt (bKK) equation

45
<zmm + 152 Zpge + 1523 — 152,2¢ — D2gwt + Zz@) — 52 = 0. (1.15)
An essential characteristic of the KP hierarchy is the existence of the 7-function and all dynamical
variables {u;}, i = 2,3,..., can be constructed from it [1,2], e.g.,
82
ur =5 logT (1.16)
_ 1 1 (1.17)
ogT .
) 8333 (995(’% &h

So it is a central task to construct the 7-function in order to solve the nonlinear PDEs associated with
the KP hierarchy. In the following, we will show that ¢ and 1 play a key role in this construction.

Gauge transformations [24,25] offer an efficient route towards the construction of the 7 function of the
KP hierarchy. In Ref. [26] two kinds of such a gauge transformation have been proposed, namely,

Tp(¢) = 696", Tr(y) =419 (1.18)

resulting in a very general and universal 7 function (see Eq. (3.17) of [26] and also IW}, in [27]).
The determinant representation of the gauge transformation operators with (n + k) steps is given in
Ref. [27]. In particular, the Grammian 7 function [28] of the KP hierarchy can be generated by an
iteration of the transformation [26,29,30]. This is straightforwardly understood from Chau’s 7 function
and the determinant representation [27] if we impose a restriction on the generating functions of the gauge
transformation. Grammian 7 function have also been used to solve the reduction of the constrained BKP
and CKP hierarchies [31-33, 36].

There are two issues that arise when one wants to study the solutions of the (1 + 1)-dimensional
solitons equations given by the n-reduction of the BKP and CKP hierarchies. The first is how it retain
the restrictions, i.e. L* = —9LO~for BKP and L* = —L for CKP, for the transformed Lax operators

LW = TLT~! In other words, the problem is how to obtain the 7-functions Té}?%k)and T((;(—;k) from the
general T-function rntk) — 1 kar(o) with the gauge transformation 7,45 of the KP hierarchy. Here

7(9) is the initial value of the 7-function of the KP hierarchy. Also, the generating functions ¢;, 1; of
the gauge transformation will be complex-valued and related to the n-th roots of e*. The second issue
therefore is how to choose generating functions ¢; = ¢(\;; x,t) and t; = ¥(p;; x,t)) such that T]grfjpk) and

e’ correspond to a physical 7-function T(T;Jr )

In fact, the bKK and bSK equations have been introduced recently by Dye and Parker [10,11] when
looking for the bidirectional soliton analogues of the Sawada-Kotera (SK) [6,7] and Kaup-Kupershmidt
(KK) [8,9] equations. The Lax pairs of bKK and bSK related similarly as the Lax pairs of KdV and
Boussineq equation, thus ensuring their integrability. Both bKK and bSK equation have a bidirectional
soliton solution [10,11] which have been obtained by the Hirota bilinear method [37]. The profile of the
bKK solitons depend on their direction of propagation. The right-going solitons of bKK are standard

which is real and positive on the full (z,t) plane.
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one-peak solitons, but the left-going solitons have two peaks. Very recently, Verhoeven and Musette [23]
have plotted the bi-directional solitons for the bKK and bSH equation based on the Grammian 7 function.

In this paper, we want to study why the 5-reduction of the BKP and CKP hierarchies have bidirec-
tional soliton solutions, whereas their 3-reduction does not. As a first step, we will therefore exhibit the
relationship between the periodic, left-going and right-going solitons of the 5-reduction and the 5-th roots
of €. In order to do so, we derive the 7 functions of the BKP and CKP hierarchies in sections 2-4. The
explicit formulas of the corresponding T-functions for solitons as well as for the periodic solutions of bSK
and bKK are given and the two-peak soliton is discussed in detail. In section 5, we will prove that no
two-peak solitons exist for the bSH equation. The one-peak soliton has bi-directional motion and we also
obtain the periodic and two-soliton solutions. In section 6, we will discuss the lower and higher-order
reductions of BKP and CKP hierarchies and also the n =even-reductions of the KP hierarchy. We will
show that the soliton of the (2j 4 1)-reduction of BKP and CKP hierarchies can move along j directions
(j =1,2,...), investigate the relationship with the symmetric distribution of the (25 + 1)-th roots of e
In particular, we will obtain the ”stationary” soliton for the higher reduction of the KP hierarchy. For
the higher-order equation and even-reduction of KP hierarchy, we can again find a two-peak soliton.

2. 7 functions for BKP and CKP hierarchies

Let us first define the generalized Wronskian determinant

IWk,n EIWk,n(g}E;O)vgl(QO)lv"' agg()), 1(0)7f f(o )
g <oo>) f(O) [9 f(OO) /g <(00> f3<00)> fg('(%? ' f%)
Jar2s fgklfz Jar” SR B SSR )
= fgﬁo)((;)ffo) 9 (O (0 fg§0)6 fs(o) f9£0)6 f7(10) (2.1)
fi I B Y
(0) (0) f(o . (0)
1,z 2,z 3,z n,xr
(fl(o))(nfkfl) (fz(o))(nflcfl) (féo))(nfkfl) (féo))(nfkfl)

0) (0 0 oy ® 94 £
In particular, IWy,, = W, (f1( ), fg( )7 e ,fr(L )) with (fi( )) = .k is the usual Wronskian determi-
nant of functions {£{”, £{”, -+, £5”}. We shall also use the abbreviation | f = | fdz with integration

constant equal to zero.

Lemma 1 [26,27]. The 7 function of the KP hierarchy generated by the gauge transformation Ty 1y is
given as

T(n+k) = IWk,n(,(/)l(cO)’ l(c(l)l" Ty 1 a 0) ¢2 [ 7¢’$LO))T(O)7 (22)

where (¢§O)7 ¢§0)> = ((;5()\2-; 1), ¥ (py; 1_5)) are solutions of Eq. (1.5) with initial value (%) for the T-function
and the initial values of the {u;} are {ugo)}.

Let us now discuss how to reduce the 7("**) in (2.2) to the 7 function of the BKP hierarchy. The

key problem is how to keep the restriction (L(”+k))* = —9L"*tF)9~1 under the gauge transformation
Ty vk [27]. Tt should be noted that ¢ = (t1,t3,¢5,---) in BKP hierarchy.

Proposition 1 [30,39].
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1. The Lax operator transforms as L("+k) = T,H_;gLT 1 under the gauge transformation Ty, ) withn =k
and generating functions wz@ = gi)z(?gg fori=1,2,--
2. The T function 71(37;;") of the BKP hierarchy is

é%@=fwwmmm¢nlw 752;9, )

-6 [k -o [k ¢@ . f&“ o L))

f¢$%x ¢$)I¢Slx w’f¢$%m w>-- <¢”)>2 f¢$%1 e

= : Thiep(2.3)
f¢é?; B0 1Dy ffbé?l : f¢ f¢<°> 0

L) J o) o f¢ﬁs f¢L Sl 6l

Proof. 1. It is clear that a single step of the gauge transformations Tp or 77 can not keep the restriction.
So we use

T=Ti =11 (") o (4”) (2.4)
such that the lax operator is L(2) = TLT~!. Let us check whether it satisfies the required restriction
(L®)* = —oL@ o=t (2.5)

which means in terms of 7" that
Tp ( §1)) 17 (42550)) 0 =0Ty (1/19)) Tp (¢EO)) . (2.6)

Based on the determinant representation of T' [27] we see from (2.6) that

(0) (0) (0)
rhs=0-— i _1w1 . L (2.7)

¢(0)¢(0) f¢(0 s (0)°
Lhs =8+ <i> ol — ﬂ. (2.8)
TP ) TP
This implies wgo) = (1025 So we have seen that in order to keep the restriction of the Lax operator,

we have to regard T' = Ty as basic building block in iteration of the gauge transformations T}, 1. In
particular,
To2 =T1 (¢>(3)> Tp (@552)) Ty <¢§1}E) Tp (¢§0)) ;

T = 1 (427 (o) 2 (68 (57) 7 612) 7 4).

and so on such that kK = n and %@) = (bz(-f)z) fori=1,2,...,n

2. According to the determinant of T, 4 [27] and 7("**) [26,27] with k& = n and 7,/11(0) = gbl(»gz, i =

1,2,--- ,n, T](gK—;) "™ can be obtained directly from 7("**) as in Lemma 1. a

For the CKP hierarchy, we have again t = (t1,ts,t5,...) and the restriction is (L("T*)* = —L(n+k),
Proposition 2 [30,39].

1. The appropriate gauge transformation T,y is given by n = k and generating functions %(0) = ¢£0
fori=1,2....n
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2. The T function Té’?i,n) of the CKP hiemrchy has the form

Tgl?l;n) = IWn,n(¢(0) ¢n 107" 1 7 ¢(0) : »¢(0))

f s (0) ¢(0) f ¢(0) ¢g0 f ¢(0) 0 f qi)(o) (0) f ¢(0) . ¢7(10)
f¢(0)1 ¢§0) f¢(0) . 50) f¢(0) . gO) f (0) (0)1 f¢£0)1. 510)
= : 8L (2.9)
f o 0" f ¢é°>~<z>é°> J ¢é0>~¢§,°> e [ [y 6l
J R R R Y B R O I N W RS

Proof. 1. Similar to the BKP hierarchy we have to try the two-step gauge transformation

T=T =T ( §1>) Tp (¢>§°)) . (2.10)
With L®) = TLT', the restriction (L(Q))* = —L® then implies
Tp (V) 70 (6”) =10 (087) o (8”). (2.11)
Based on the determinant representation of 7' [27], we find from (2.11) that
¢§O) -1,,(0)
rhs=0- —>L 9 (2.12)
0),,(0 10
J o wi”
go) 14(0)
lhs=8— —21 9714, (2.13)
0),,(0 1
J ot

Then w§0) = qﬁgo). Again, we have to regard T = Tt ( 51)) Tp (¢§0)> as basic building block such that

Toyo =T; ( (3)) Tp (¢(22)) Ty (¢(11)> Tp ( §O)> ;
a1 () 1 (41) 1 () o () 1 (07 5 (4

so k =n and wzgo) :gbgo) fori=1,2,...,n
2. According to the determinant of T),,; [27] and 7("*%) [26,27] with k = n and wi(o) = gzﬁz(.o), i =

1,2,---,n, Tgf(';n) is obtained directly from 7("**) in Lemma 1. O

In fact, we can let 1/}1(0) = ciqﬁg?x) (or wzgo) = cirj)l(o)) with constants ¢;. However, the new T](BK';, ) (or TC(;IL:;L) )

associated with @[11(0) = clqbgom) (or ¢£0) = ciqbgo)) is equivalent to the ones in Proposition 1 (or Proposition
2). Although Refs. [30,39] have results similar to our Propositions 1 and 2, our approach is more direct

and simpler for the construction TE(;KJ;") and Té?:i)") If the initial values of dynamical variables {u;} of

BKP(CKP) hierarchy are zero, then the equations in (1.5) of (¢§0)7¢§0)) = (¢(Nis 1), ¥(py3t)) become

more simpler as

dp(A;t)

o = (i), t= (ttats, o), (2.14)
PUSD _ (Cayt (opuiusd)) . = (ot o1s)

and T(O) = 1(T, O - 1). Last, we note that for the generalized KP (gKP) hierarchy with Lax operator
BKP TCKP ) g g y P

L= L™ n=2,4,6,8,..., and L* = L the 7 function T(KP ) generated by gauge transformations 7,y
has the same form as for the CKP hlerarchy This result will afford a simple way to construct the 7
function of bSH equation in Section 5.
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3. Soliton solutions of the bSK equation

As pointed out in the introduction, there are two steps en route from a 7 function 7("+%) generated by
the gauge transformations 7,4 of the KP hierarchy to the 7 function of equations as the n-reduction of

BKP or CKP hierarchies. The second step is to build physical 7 functions from the complex-valued TB?I;")

and T((:K_; ™) constructed in the last section. In the following Sections, we will illustrate our approach by
computing the 7 function for the 5-reduction of BKP and CKP, i.e., for the bSK and bKK equations.
The 5-reduction of the BKP hierarchy is the bSK equation (1.12). Assume for the initial value u = 0 in

Egs. (1.10) and (1.11), then qSEO) = ¢(\;;,t) are solutions of

Op(A\i; x,t)

No(Nis . 1) = Nid(Ais 2, t), 9

— (@30(nin. 1) (3.1)

So proposition 1 with 7'](3&13 = 1 implies that the 7 function of bSK is given as follows.

Proposition 3. The 7 function of the bSK equation generated by Ty1, from initial value 1 is

T}E”Sl;'{‘") - IW”” <¢n L7¢£LO—)1,z7 T 1 xv (O) ¢(0) ’ O)> (32)

and the solution of the bSK equation generated by Ty, from initial value 0 is
u=02 (log ri3") (3.3)
Here ¢Z(-O) = ¢(Ai;x,t) are solutions of Eq. (3.1).

In general, this 7 function Tb”+”) for bSK is complex and related to 5-th roots of €. We have to find
the real and non-zero 7 function from it such that « in Eq. (3.3) is a real and smooth solution of bSK.
This is main task of this section. We start by analysing the solution ¢(\;z,t) of Eq. (3.1)and make the
universal ansatz

o\, t) ZA Pt with pl = . (3.4)

Here p; = kexp (€+2”z), E° = A,k € R,0 < e < 2rand j = 0,1,2,3,4. There are two important
ingredients which we can use to find the desired solution. The first is that the 5-th roots e; = exp (=2744)
of €% are distributed uniformly on the unit circle in C. So for a suitable value of ¢ there exist combinations
of p;’s which are symmetric upon reflection on the x-axes; similarly for the y-axes for other values of €. The
second ingredient is that sk and exp (ax + 5t) Thsk will imply the same solution u since u = (’“)% log ThsK -
Here, a and 3 are arbitrary, complex constants. Therefore we can obtain the desired real and smooth
solutions of the bSK if gk can be expressed as Tpsx = e P4 gk = 7psk, in which 7pgk is a real and
nonzero function although 7,5k is complex. We call 7,gk the physical 7 function for the bSK equation.
Based on the above arguments, let us make the refined ansatz

Cb()\l, :E>t) = Aleplx-i_p?t + BI€QIx+q§t7 pP1 = kleiEIaql = _k/)le_iEl?k? = |)‘1|a kl S Ra (35)
or

d)()q; Qf,t) = A1€plz+p?t + Bleqlz+q§t’ pP1 = kleisl,ql = k1€_i61,ki5 = |/\1‘7 k‘l S R, (36)

B
and in the next step we need to fix the ratio —1 We stress that the above analysis is also true for the
1
derivation of the bKK equation.
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Proposition 4. Define £, = wky coseq + tk$ cos 3e1. Then the physical T function of bSK generated by

T1+1 8 9
B B
72]5;;;1) = 6261 + <A—1> 67251 + 2 (A—i) (37)

and the corresponding one soliton u = 92 log 7:]:();;1) 18 given as

2
16 (i k? cos? e

(3.8)

cos 31

Here % > 0. The velocity of the moving soliton is v = —k? and can be both positive and negative

cos ey
depending on the choice of €1. Specifically, we have v_ = v|€1:% <0 and vy = v|81:31_7r > 0.

Proof.
2
Tl%;l) _ (ngo))? _ A%eQi(azkl sine14tk? sin 3e1) o261 + & 26 +2 & (3_9)
Ay Ay
and ¢\*) = ¢(A1; 2, 1) defined by Eq. (3.5). O

Let us point out a relation between the distribution of the 5-th roots of e** and the direction of movement
for the soliton.

1. (eial les = /10 —eTie1 |€1:,r/10) — one distribution of 5-th roots of € — (p; = kje' le1 = /10
¢ = —kje~iE |51:,,‘/10) in Eq. (3.5)— v|c,=r/10 < 0, left-going soliton u‘in Eq. (3.8) ; _

2. (e”l ey =37 /10, —€ "} |51=3W/10) — another distribution of 5-th roots of e’ — (p1 = k1" |, =37 /10,
g1 = —k1e7 " Z3./10) in Eq. (3.5) — 0|, =3./10 > 0, right-going soliton u in Eq. (3.8) .

We can see from Eq. (3.8) that the one-soliton of bSK has only one peak in its profile. The process of
generating a two-soliton by 7549 is more complicated.

Lemma 2. With ¢(A1;x,t) and ¢p(No;x,t) as in Eq. (3.5), and using Proposition 3, Téé;z) is given by

(2+2) _ A%Age%[z(kl sine1+kaea)+t(k] sin3e1+kj sin 3e2)] o

ThsK
ST fr)eXEte) (42 = fr)e 2@ +E) <B_> (B;)
A[K2 + k2 + 2k1ky cos(e1 — €2)]° 4 [k2 + k2 + 2k ko cos(ey — £2)] \ A1 Ao
— (423 + fy)e2 &= By\? —(42] + fa)e~ 26— B\’
A[k? + k2 — 2k1 ks cos(eq + £2)]° (A—z) T (k2 + k2 — 2k1 ks cos(eq + £2)]° (A_l)

(2iZ5 - f5)€2£1 32

(k% + k3 + 2k1ko cos(ey — 2)] [k? + k3 — 2k1 ks cos(e1 + £2)]
(—2izz — f5)e 2

(k% + k3 + 2k1ko cos(er — 2)] [k? + k3 — 2k1 ks cos(e1 + £2)]

()
(=2iz7 — f5)e*= (Bl>
()

T3

T3

3 (k3 + k3 4 2k1ka cos(e1 — €2)] [k? + k3 — 2k ko cos(eq + £2)]

(2iz% — fs5)e= 22
(k3 + k3 4 2k1ka cos(e1 — €2)] [k? + k3 — 2k1 ko cos(eq + £2)]

T3
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—(k? + k3)? & @ } (3.10)
2[k? + k2 + 2k1ka cos(e1 — e2)] [k? + k32 — 2k1ko cos(e1 + €2)] \ A1 As ’

Here the z;, i = 1,3,5,7 are given in Appendiz A and f1 = [k%+k%+2k1k2 cos(eq —52)]2, f3 =

[k? + k3 — 2k1ko cos(eq +62)}2 and fs = \/f1f3, as well as & = wk; cose; + tk} cos3e; for i = 1 and
2.

B; . . .

We now need to find a suitable solution of X,z = 1,2 such that the summation of terms in the {}
i

bracket of Eq. (3.10) is a positive function on the whole (x,t) plane. The following two lemmas is useful.

Let 21 =4z1 — f1,25 = 4zs+ f3, 2L = 2iz5 — f5, 25 = —2iz7 — f5, and 2z;,4 = 1,3,5,7 given in Appendix A.

Lemma 3. For z,i =1,3,5,7 there exist relations

—heh = ()"~ () = () (3.11)
Bz By _ 2 2112 1
L 4. Let — = — == d gy = = = th
emina € Al Zrlr’ A2 2/5} an 92 |Zé|2, 96 98 | 5|27 9 |Zé| en
2 1\ * 2
z5 ( B2 (z3)" (B1
_= =1, — — | =1, 3.12
= ( > 4\ (312
(1) By ~1 (B, (B
22 (= I .1
2 A,) — 9 a\ A4 )\ 4,)) 9 (3.13)
(25)" By (22)* (B1\ [ B2\’
B\ _ 2 (22 = 3.14
2 A, ) ~ 9% 2 \4 ) \4,) —%® (3.14)
hold.
B;
The —,7 = 1,2 in Lemma 4 are what we are looking for, and then the physical 7 function Tés;_( ) is give
by followmg proposition.
Proposition 5.
(242
TIESK )=
{ e2(81+62) goe 261 1E2)
_|_
4(]@’% + ki% + 2k ko COS(€1 — 82))2 4(/4% + k‘% + 2k1ko COS(El - 62))2
e2(61—62) e—(261—¢2)
+
4(k? 4 k% — 2k1 ko cos(eq + 52))2 4(k? + k3 — 2k1ko cos(er + 82))2
e261
2(k? + k3 + 2k1ko cos(e1 — €2)) (k? + k3 — 2k1ko cos(e1 + €2))
N 966—251
2(k? + k3 + 2k1ko cos(eq — €2)) (kT + k3 — 2k1ka cos(er + €2))
N 262
2(]{}% + k% + 2]411]62 COS(e’:‘l — 62)) (]{1% + k‘% — 2](51]4:2 COS(El + 82))
—2&2
+ gge

2(/@’% + ]f% + 2k1ko COS(El — 82)) (k% + k‘% — 2k1ko COS(€1 + 52))
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N (k% + k3)%99 } (3.15)
2(]6% + k% + 2k1ko COS(€1 — 52)) (k?% + k% — 2k1 ko COS(El + 62)) '
the two soliton solution is u = (02 log ﬂ%;r{?)) In particular, 1 = €3 = {5 results in two overtaking

solitons and moving in negative direction; €1 = €9 = % produces two overtaking solitons and moving in

positive direction; €1 = {5,€2 = ?i—g results in two head-on solitons.

We have plotted the one solitons in Fig. 1 associated with parameters Ay = By = 1,k; = 1 of Eq. (3.8).
The two solitons in Proposition 5 are shown in Fig. 2 associated with parameters k1 =2 and ky = 1.3.

3
Fig. 1. Single left- and right-going solitons for the bSK equation (1.12) : g1 = 17r_0 (left), e1 = 1—7(; (right).

4. Periodic and soliton solutions of bKK equation

The 5-reduction of the CKP hierarchy yields the bKK equation Eq. (1.15). Let the initial value be u =0
in Egs. (1.13) and (1.14), then ¢§0) = ¢(A\i; x, t) are solutions of
ot

So the Proposition 2 implies the 7 function of bKK equation.

Rp(Nizz,t) = Nip(Nis 2, 1), = (020(\is 2, t)). (4.1)

Proposition 6. The 7 function of the bKK equation generated by Ty, from initial value 1 is

Térll(—il_{n) = IWn,”(¢£LO)’ ¢’E’LO—)1? T 50); 50)7 ¢g0)’ ) ¢(0))

0 0 0 0 0 0 0 0
f d)%oi . ¢g()0) f ¢(%)) . f (i))) . (bg((:) N f ¢(0) ((3) f d)( ) ¢((3)
fn—l' 1 fn1'2 fnl'?) f 1f¢n 1°¥n

Fof o 7o .o f¢ : f¢1 N MR
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Fig. 2. Two left- and right-going as well as head-on colliding solitons for the bSK equation (1.12): e1 = e2 = {5 (left),
€1 = €9 = ?I—g (right) and €1 = 1”—0,52 = %' (collision).

and the solution u of the bKK from initial value zero is
u= (82 log Té?&_{n)) . (4.3)
Here ¢§0) = ¢(Ni;x,t) are solutions of Eq. (4.1).

As before, T

7 function %é;g(”) such that u in Eq. (4.3) is real and smooth solution includes solitons and periodic

solutions. The case of n = 1 and n = 2 will be discussed in detail. Similar to the bSK equation, we should
assume the solutions of Eq. (4.1) as

is complex and related to the 5-th roots of e¥* and again we have to find a physical

S(A1; 1) = AP Tt L Bttty = ket g = ke " k] = (M| Ry €R, (44)
or

¢(>\1§ x, t) = flleplﬂc—‘_p:;i5 + Bleq1z+q:ft, pP1 = kleisl,ql = kle_iel, k5 = |>\1|, kl € ]R, (45)
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to extract physical T function TbKK ") from Té"JFn) At first, we would like to give the two simple cases

which are generated by the gauge transformations 7741.

Proposition 7. Let £, = zk; cosey + ths cos 3¢, % =ie ! qnd qbgo) = ¢(\1;,t) defined by Eq. (4.4),

then the physical 7 function of bKK extracted from Tb"+n) 18
n=1
(1+1) 281 —2&1 4.6
ThKK +e + sine; (4.6)
. . o 2 ~(141)
and the corresponding one soliton u = ( 0Zlog T’ ) 18
sh 2
4k2 (coseq)? (1 TRt 51)
B sineg A7
u= TN ? (4.7)
(cosh 26 + — >
sin ey
_ ™ 3m 5 €08 3¢e1 . ) ;
with €1 = 0 ° 1o The velocity of the soliton is v = —kj . In particular, the left-going soliton
cos e
have two peaks in its profile and the negative speed v_ = v\ﬁ:lﬂ_o; the right-going soliton have only one

peak and positive speed vy = v|€1_3_7r.
— 10

Proof. Taking (bgo) = ¢(A1;x,t) of Eq. (4.4) and n = 1 back into Proposition 6, the straightforward
calculation leads to

2 2i(xky sin ey +tk sin 3e1)
(14+1) _ ( (o>)2 _ Aie 21 4 -2 48
ThKK / ) 2p1 e e + sineq (4.8)
Here & = xkqcoser + tki” cos 3eq. O

If let ¢§O) = ¢(A1;z,t) defined by Eq. (4.5), then we can get a periodic solution as following proposition.

Proposition 8. Let n; = xk; siney +tk3 sin 3¢1, and ¢§O) = ¢(Ay;2,t) defined by Eq. (4.5), A1 = By =1

in ¢§0>, then the physical T function of bKK extracted from Téﬁﬂ") ) 18
. 1
k) = —— +cos(2m — e1) (4.9)

cos €1

and the corresponding solution

2n1 — 2
4k sine; (M + 1)
. cose
u= (85 logTé;(}l)) = . ! 5 (4.10)
< + cos(2m; — 51)>
cos e
. o 2 T . L 58in 3e; )

is periodic. Here e = 0 or 0 The velocity for the solution is v = —ky fer = 1’5, u in FEq.

sineq

(4.10) is a left-going periodic wave. If 1 = win Eq. (4.10) is a right-going periodic wave.

ar
107
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Proof.
2 2(xk1 cos al—i—tk‘;' cos 3e1) 1
1+1 0 €
TéKK) = / ((155 )) = s p— +cos(2m —e1)| . (4.11)
Here 1y = xk; sine; + tk$ sin 3¢1, and ¢§0) = ¢(A1;x,t) is defined by Eq. (4.5) O

Based on Propositions 7 and 8, we can find following corresponding relationship between symmetrical
distributions of 5-th roots of e** and moving direction of solutions.

1. (e, —e7%1)|c,— = — the first distribution of 5-th roots of e’* — (p1 = k1€’',q1 = —k1e™"")|¢, = =
in Eq. (4.4) — left-going two-peak soliton in Eq. (4.7); ‘ ‘ _
2. (e, 76’151)|€1:% — the second distribution of 5-th roots of €' — (p1 = k1", q1 = —kie™"1)|_ _

in Eq. (4.4) — right-going one-peak soliton in Eq. (4.7);

3. (eisl,e_i€1)|51:zl_g — the third distribution of 5-th roots of € — (p; = k1e’',q1 = k1e™ )|, _2

3

-
o

in Eq. (4.5) — left-going periodic wave in Eq. (4.10);

4. (e, e‘i51)|51:% — the fourth distribution of 5-th roots of € — (p; = k1!, q; = kle_iel)\slzzi

5

o

in Eq. (4.5) — right-going periodic wave in Eq. (4.10).
There are only four distributions of 5-th roots of e, which are symmetric respect with x-axes or y-
axes. However, there exist several other pairs of roots in the above four distributions which will result in
divergent solutions of bKK through the above procedure. For example, p1 = kie' 16, q; = —kje "6 or
p1= klei%7fh = ke 5.
Let us now concentrate on the two-peak soliton solution in Eq. (4.7).

Lemma 5. Let x > 1, constant a > 0 and function

x
1+ -
y=y(x) = N (4.12)
a
then 5
. Y
1 1/2, == < 0;
)ifa>1/2, = <a,
) Y
2 =1/2, then =|,=1 =0;
) if o =1/2, then ooy 6
3) zf% > a > 0, then there exists one point x1 > 1 such that 8_y =0, =1 is one extreme mazimum
€ T=T1
0
point of y, and il > 0.
Ox r=1
Proof. We have
0 Ll _9q—»
oo _alG2—) (4.13)

T0r T (a4 1)

a
Firstly, y» < 0 if a > 1/2. Secondly, if a = 1/2, y, = 0 when z = 1. At last, if 1/2 > a > 0, there exist
21 > 1 such that y, = 0. Note that y, > 0if x € (1,21), y, < 0if z > x1. So x; is one extreme maximum
point of y. a0
Proposition 9. Let a,b, k be positive constants, £ = kx + ct,c € R, for following kind of solution

cosh 2¢ )

1.2
(costh + Z)

b(1+
(4.14)

u = B

3
1

o
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1) if a > 1/2, u has one peak in its profile defined by & = 0;
2)if0<a< %, then there exist two peaks in profile;
3) There exist no more than two peaks in a soliton give by Eq. (4.14).

Proof. By calculation, we have

1
2kb sinh 2¢& (— — 2a — cosh 2§>
a

B
a <cosh 26 + —)
a
According to the Lemma 5, we have
1
1) a > 1/2, there exist £ = 0 such that u, = 0 because sinh 2§“|5=0 = 0. Note | = — 2a — cosh 25) < 0.
a

Uy =

2) a = 1/2, there exist £ = 0 such that u, = 0 because sinh 2£|¢—y = 0 and (2 — 2a — cosh 25) ‘ =0.
£=0

However, let [£| be sufficiently small, we have u, < 0if £ >0and u, >0if£<0.Sof =kx+ct=0
defines one extreme maximum line of u(x,t) on (x,t) plane.

3) 1/2 > a > 0, there exist £ =0 and & > 0 and & = —&; < 0 such that u, = 0. But u, > 0if £ < —¢3;
Uy < 0if & € (=£1,0); up > 0if € € (0,&1); up < 0if € > &. So £ = kx + ¢t = 0 defines one extreme
minimal line on (x,t) plane; 0 < & = kx + ¢t and 0 > —&; = —(kx + ct) define two extreme maximum
lines on the (x,t) plane. Using v — 0 if |£| — oo, conclusions are proven. O

Comparing Eq. (4.14) with Eq. (4.7) we get a = sine;, and then can understand why sineq |, — /10 Will
lead to two peaks in one soliton of bKK but sinei|.,—3x/10 will lead only to one peak in one soliton of
bKK. On the other hand, one soliton solution of v in Eq. (4.7) have one peak or two peaks(maximum
case) in its profile. According to analysis above, we can claim from the point of view of reduction in KP
hierarchy that the existence of two peaks in the soliton is traced to three facts:

1. The Grammian 7 function in Proposition 6 which determines the form of soliton in Eq. (4.7);
2. The order of n-reduction, i.e. n > 5 can produce two peaks soliton in KP hierarchy;
3. The phase 1 of n-th root(n > 5) of e*¢, such that 0 < a =sine; < 1/2.
Now we turn to the more complicated Té?&f) from Proposition 6, which generates the two soliton and
periodic solution with two spectral parameters of bKK equation. The first case is the two soliton solution.

Lemma 6. Let ¢§0) = ¢(N\i;x,t),i = 1,2, defined by Eq.(4.4), & = xk; cose; +tk3 cos 3e;,m; = wk; sine; +

th?sin3e;,i = 1,2, then Té?&'{"”nﬂ gives out

(242) _ 42 42 ,2i(n1+n2)
Toxr = A1Ajze X

{ Zre2(61+) N 2o 2(&+E2) (&Y (@)2
A(k2 + k3 + 2k ks cos(er — £2))° 4(k2 + k3 + 2k ks cos(er — £5))° VA1) \ Az

—pre2(61—62) B, 2 —zge~(21-¢2) B 2
+ 2 - + —
4i/€1]€2 (k% + k% - 2]61]{2 COS(El + 52))2 A2 4Zk1]€2 (k% + k% - 2k1k2 COS(El + 52))2 Al

. e (%)
2ik ko sin ey (k% + k3 + 2k1ks cos(e1 — 52)) (k% + k3 — 2k1 ks cos(eq + 52)) Ay

+ o
2ik1ko sin eo (k% + k‘g + 2k1ko COS(El — 82)) (k‘% + k‘% — 2k1ko COS(€1 + 62)) Aq Ao
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N zje%e <&>
2ik1ko sine; (k% + k3 + 2k ko cos(e1 — 52)) (k% + k3 — 2k1 ks cos(eq + 62)) 1

: (3 (&)
2ik1 kg sine; (k;f + k2 + 2k ko cos(e1 — 52)) (k% + k2 — 2k1 ko cos(eq + 52)) Ay Asy

N —((k? + k3)? — 4k3k3(cos? €1 cos? €5 + sin® g1 sin® &) (Bl) <Bg) }
2k ko siney sines (kf + k3 + 2k1ko cos(e1 — €2)) (k3 + k3 — 2k1 ko cos(eg + €2))

Here z;,1=1,2,3,4, are given in Appendiz B. z means the complex conjugation of z;.

B,
In order to extract physical 7 function ﬂ(jg;f), we need following two Lemmas for suitable f,z’ =1,2.

T

Lemma 7. For z;,i = 1,2,3,4, are given in Appendix B, the following identities

22 =mzs, 22 =27 (4.16)
hold.
By .z By, 2t Eh |21 [*
emma € Al lZZ7 A2 2257 ana gs ‘23|7 gde gs ‘ZQ|2, 99 ‘22|4; en
2 2

Z§ BQ z3 Bl
B =) =1 ——= == =1 4.17
() - Fl) - e

2 2
z1 Bl B2 -1 Bl BQ
ity (22 2 Sy (22 - 41
2 (Al) (Az) 9 2 <A1) <A2> % (4.18)
2 2
2 (B By (z4)* ( B1 By
-1 Z2 ) = —_ —_= = 4.1
—7;251< <A1> <A2> g8 —izf A1 A2 ge ( 9)

B,
Taking —*,i = 1,2, and relations in Lemma 8 back into Lemma 6, the physical 7 function %éf{;{z) i

hold.

S

obtained. '

Proposition 10.

~(242) _
ThKK = —
e2(61+€2) N 996—2(51+52)
4k1 ks (kf + k3 + 2k1 ko cos(e1 — 52))2 4k1ko (k% + k3 + 2k ks cos(e1 — 52))2
e2(61—¢2) e—(261—¢2)
+ 2 + 2
4]€1/€2 (k% + k% - 2k1k2 COS(:Sl + 52)) 4]61]%‘2 (k% + k% - 2]61]62 COS(El + 52))
e261
T
2k1kosines (k3 + k2 + 2k ko cos(e1 — €2)) (k2 + k3 — 2k1 ko cos(e1 + €2))
i gse >
2k1 ko sineq (k)% + kg + 2k1 ko COS(61 — 62)) (k% + k‘% — 2k ko COS(€1 + 62))
e262

+ 2k1ko sineq (kj% + k‘g + 2k1ko COS(El — 82)) (k’% + k‘% — 2k1ks COS(El + 62))
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—2&
ge€
_|_
2k1kosines (k3 + k2 + 2k ko cos(e1 — €2)) (k3 + k3 — 2k1ky cos(e1 + €2))
95 ((k3 + k3)? — 4k?k3 (cos® £1 cos? e2 + sin® &1 sin® ) }
kikosiney siney (k? + k3 + 2k ko cos(e1 — €2)) (k3 + k3 — 2k1ks cos(e1 + €2))

(4.20)

) o (242 . . ‘

The two solitons solution is u = (02 log Té;K)). In particular, 1 = €2 = {5 results in two overtaking

soltions moving in negative direction; €1 = €9 = % results in two overtaking soltions moving in positive
us

direction; €1 = {5,62 = ?{—0 results in head-on colliding two soltions.

The second case is a periodic solution with two spectral parameters of bKK equation from Proposition 6.

Lemma 9. Let ¢l(-0) = ¢(N\i;x,t),i = 1,2, defined by Eq.( 4.5), & = xk; cose;+tk3 cos 3e;,m; = xk; sing;+
tk? sin3e;(i = 1,2), then Tt()?{{")

gives
2

R = A A

zre2i(m+n2) 2 e~ 2i0m+n2) Bi1\? [/ By\?>
{4(143% + k3 + 2k1 ko cos(e1 — 52))2 * 4(1@ + k3 + 2k1ko cos(e1 — 52))2 (A_1> <A_2>
. 23 e2i(m—nz2) (%>2 . zge—12m—m2) <&>2
Ak ko (k3 + k3 + 2k1ko cos(er + 52))2 Az Ak1ko (kF + k3 + 2k1ko cos(er + 82))2 Ay

. zhem (Bg)
2k1ko coseg (k% + k32 + 2k1ko cos(e1 — 62)) (k% + k32 + 2k1ks cos(e1 + 52)) A,

: 2y (2)
2ky ks coseg (k3 + k3 + 2k1kg cos(e1 — €2)) (k2 + k3 + 2k ko cos(e1 + €2)) \ A1 A,

N z5 e (Bl)
2k1ko coseq (k% + k3 + 2kq ko cos(e1 — 52)) (k:% + k3 + 2k1ks cos(e1 + 52)) Ay

+ ) ()
2k1ks coseq (k% + k‘% + 2k1 ko COS(El — 62)) (k‘% + k?% + 2k1ko COS(El + 52)) Ay As

((k? + k3)? — 4k3k3(cos? €1 cos? e5 + sin® g1 sin® &) (Bl> (Bz> } (4.21)
kyks cosey cosea (k? + k3 + 2k1ko cos(er — e2)) (k3 + k3 + 2ki ko cos(e1 +£2)) \ As '

Ao
Here z;,i=1,2,3,4, are given in Appendiz C. z} indicates the complex conjugation of z;.
Similar to the two solitons solution of bKK equation, we need following two Lemmas to find suitable
B,
fJ = 1,2, to extract physical ﬁg&f) from Eq. (4.21) for periodic solution.
7

Lemma 10. For z;,i = 1,2, 3,4, are given in Appendiz C, the following identities

22 =mz3, 22 =27 (4.22)
hold.
0 . . . Bl —i6 BQ —i0
Lemma 11. Let 2z, = |zx|e' k = 1,2, 3,4, are given in Appendiz C, and 1. -° 2, T, 4, and
1 2

z9 z3 zZ4
gzzu,gszu;fhzuu%:—, then

|21 |21 |21 |21

2 2
z3 [ Ba z3 ( B1

23 = 2) = 4.23
& <A2) 2 <A1> 9 (4:23)
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2 2
21 (B By 1 (B By
z1 =1. — (= =\ = 4.24
27 <A1) (Az) B (Al) (A2) 9 (4.24)

B B\’ (B B B\’ (B
% 222 () (22) oy, 21 oA () (22) 2y, (4.25)
Zl A2 21 A1 AQ Zl Al Z1 Al AQ
hold.
We can get the physical 7 function TéKK) by taking I ¢ = 1,2 and relations in Lemma 11 back into
Lemma 9.
Proposition 11.
~(2+2) _
ThKK = =
{ 2cos2(m + n2) n 2g3 cos 2(n1 — 12)
4(](1% + k‘g + 2k1ko COS(El — 82))2 4k1ko (k?2 + k% + 2k ko COS(€1 + 82))2
2go cos 21
2k1k2 cosea (k? 4 k3 + 2k1ka cos(er — €2)) (k3 + k% + 2k ko cos(e + €2))
2g4 cos 212
2k1k2 cosey (k? + k3 + 2k ko cos(e1 — €2)) (k? + k3 + 2k1 ko cos(e1 + £2))
95 ((k? + k3)? — 4k?k3(cos? &1 cos? £5 + sin® &1 sin® &) } (4.26)
kiko coseq cosea (k3 + k3 + 2k ko cos(e1 — €2)) (k3 + k3 + 2k1 ks cos(e1 + €2)) '
The periodic solution with two parameters ki1 and ko is u = (82 log 7'152“)) Furthermore, €1 = €9 = %
results in two overtaking waves moving in negative direction ; €1 = €3 = % results in two overtaking

waves moving in positive direction; €1 = 10,52 % results in two head-on colliding waves.

We have plotted soliton solutions of bKK in Fig. 3, and there periodic solutions with two spectral
parameters in Fig. 4.

5. Periodic and soliton solutions of bSH equation

The 7 function of the bSH equation is still in the form of a Grammian although the bSH equation does

not belong to the CKP hierarchy, which is obtained in [38] through the Béacklund transformation. Similar

to the bKK equation, its 7 function is in the form of Grammian, we can find 7 function Tééﬁl) and

Téé;mof bSH from Grammian 7 function. Let the initial value be v = 0 in Egs. (1.6) and (1.7), then

¢§0) = ¢(\i; z, t) are solutions of

8¢(A17 x, t)

= (agqﬁ(/\i;x,t)) ) (5.1)

Proposition 12 [38]. The 7 function of bSH equation generated by Backlund transformation from initial
value u =0 is

n4+n 0 0 0
éSI-iI_ )_IW7ln(¢7l ’d)f(’Lll".'? g); ()7¢ ) 7¢(0)
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10 —1

Fig. 3. Soliton solutions of the bKK equation (1.15). Top left: one left-going (two-peak) soliton when €1 = 75 and k1 = 1.2.
Top right: two left-going soliton when k1 = 2,k = 1.3,e1 = g2 = 1“—0. Bottom: Head-on collision of left- and right-going

solitons when k1 = 1.8, ko = 1.3,e1 = %’52 = 1”—0.

Lo B T8 2, Lo [0y T,
fn—1‘1f¢ : f¢ 3f 1f¢n1‘n

_ L (5:2)
R e
Jor7 17 [er- J & O I SRR P R
and the solution u of bSH from initial value zero is
u= (83 log Tég;l_n)) (5.3)

Here ¢§0) = ¢(Ni;,t) are solutions of Eq. (5.1).

In fact, T,E’SLIJ{F can be generated by gauge transformation 7,4, _;. The Lax pair of bSH is

3
Listt = 0} + 400 + dugds + e +4u” + v, Mysi = 03 + 3uds + Sua,



Solving bi-directional soliton equations ... 19

Fig. 4. Periodic solutions with two spectral parameters of bKK equation (1.15). Top left: left-going periodic solution with
k1 =0.2,ko = 03,61 = e2 = 2m Top right: right-going periodic solution when k1 = 0.4, kg = 0.5,61 = €2 = %. Bottom:

10
Collision of left- and right-going periodic solution when k1 = 1,ko = 1.5,61 = %, €9 = %.

and satisfy Ligy = Lvsu, My = —Mpsnu. Similar to the CKP hierarchy, let T' = T 1 = Tj(wgl))TD( go)),
and do gauge transformation Ll()QS)H = TLysuT~!. So (L](OQS)H)* = L](OQS)H requires T (wgl))TI( 50)) =
Tl(wgl))TD( go)) as we have seen in CKP hierarchy. The remaining procedure is the same as the gauge
transformation of the CKP hierarchy as well as the bKK equation. Of course, the generating functions

(¢§0),w(0)) = (¢(Ai;x,t), Y (Ai; x, t)) satisty Eq. (1.6) and Eq. (1.7) if the initial values are u # 0,v # 0,

orqu. 65.1) if the initial values are u = 0,v = 0.

Remark 1. We should note that Lysul|,_, = 0% + 4ud? + 4y 0y + 2ugy + 4u? = (8% 4 2u)? = L 4. The
Lax pair of the KdV equation is

3
Lyav = 8% + 2u, Mxgav = 82 + 3ud, + ium

TD(gi)gO)) generates a single soliton solution of the KdV from zero initial value. Here ¢§0) = ¢(M\1;2,t)

A x,t
satisfy LKdV(ZS()\l;fE,t) = )\1(]5()\1;1;’15) and M
multi-soliton can be produced by using repeated iteration of Tp.

= Mkavd(Ai;z,t) simultaneously. The left-going
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In order to get real and smooth solutions, such as soliton and periodic solution, we should construct

physical T function T,gy from Tég;{rn) which is complex and related to 4-th roots of e**. The case of n = 1

and n = 2 will be discussed in detail. Let us start to discuss the single soliton with two directional
propagation. To do this, similar to the above two sections, we should assume the solution of Eq. (5.1) as

G(A1;a,t) = AP oIl 4 Bl it ) = kel g = —kie T k] = (A k€ R, (5.4)
or
(ﬁ()\l; J),t) = A1€p1$+p?t + Bleqlz—i-q?t’ p1 = kleisl,Ch = k’le_iel,kil = |/\1‘7 k‘l € R. (55)

For ¢(\i;z,t),i = 1,2, the difference between here and above two sections is the kf = |\, i = 1,2, instead

of kY = |\|,i = 1, 2. From Proposition 12 we can extract physical T function ﬂ%ﬂl) from Téggn)

n=1

Proposition 13. Let & = zk; cosey + tk3 cos 3ey, % =1e” ', and ¢§0) = ¢(\1;2,t) as defined by Eq.
(5.4), then the physical T function of bSH extracted from Tég;{rn”n:l 18

L1 oo ag 2 5.6
ThsH el +e + Sne (5.6)

and the corresponding single soliton u = (8% log ﬂ%ﬁlo 18

h2
4k%(coseq)? <1 + M)

sin €1

u= T2 (5.7)
(Cosh2§1 + — )
simméeqp
3
Here 1 = 7. The velocity of the soliton is v = —k? o8 91 le,== > 0.
cos €1
Proof.
2 ,2i(xky sin e1+tk3 sin 3e1)
(1+1) _ (0)y2 _ Ate ! 2, 26 2 5.8
ThSH /( 1) 7 <€ te +sin51 (5.8)
O

As we discussed in Remark 1, the left-going soliton can also be generated by Tp.

Proposition 14. Let & = (wky cosey + tk3 cos 3e1)|e,—0, and ¢§0> = ¢(A1;2,t)|e,=0 as defined by Eq.
(5.4), then the physcial T function of bSH generated by TD(nggo)) 18

A
D =14 3_16251 (5.9)

and the corresponding single soliton u = (8% log %éé)H) 18

e
we— B (5.10)
(e=& + é651)2
By

Here % > 0. The velocity of the soliton is v = —k? < 0.



Solving bi-directional soliton equations ... 21

Proof.
A
Tk()é)H = go) = Bl <€_£1 + _1€€1> (511)
By
, oy To@) 1 _ 1) _ 40
It can be clarified by (u = 0,v =0) ———= (u!*) # 0,0 =0), and then Thsg = P1 - U

On the other hand, if ¢§0) = ¢(A\1;2,t) as defined by Eq. (5.5), then we can get periodic solution from
Proposition 12.

Proposition 15. Let 1 = zk; sine; + thisin3e;, Ay = By =1 in ¢§0)7 then the physical T function of

bSH equation for periodic solution extracted from Téggn)|n:1 18

L+ 1
TosH = cose, T cos(2m —e1) (5.12)

and the corresponding peroidic solution u = (83 log %éé—};lv is

2m — 2
A2 sin® e, (M N 1)
Ccos €1

uw= : : (5.13)
2 — 2
(Cosgl + cos(2m — 1))
in 3
Here e1 = 5. The velocity of the solution is v = —ki s1.n = le,== <O.
sSin ey
Proof.
2(zk1 cos eq+tk? cos 3e1)
(1) _ [ (4@y2 _ € ' 1
TosSH —/((]51 ): = 7 (COS€1 +cos(2m —e1) ). (5.14)

O

There are some relationship between the distributions of 4-th roots of e** and moving direction of solutions.

1. (e, —e7%1)|., ¢ the first distribution of 4-th roots of e —— > (p; = k11, q1 = —k1e™ )|, =0
in Eq. (5.4) —— > left-going soliton in Eq. (5.10); _ _ _
2. (e, —e7"1)[, == the second distribution of 4-th roots of €'® —— > (p; = k1e*t,q1 = —k1e™ )|, ==

in Eq. (5.4) —— > right-going soliton in Eq. (5.7); ' , '
3. (e*1,e7"1)|e,== the third distribution of 4-th roots of ' —— > (p1 = k1e"t, q1 = k1e™"1)|c
Eq. (5.5) —— > left-going periodic wave in Eq. (5.13).

1:% m

In the above discussion, we know the right-going soliton and left-going periodic wave of of bSH have

the completely same form with the bKK equation, except £; = 7/4 instead of €1 = 7/10 and ¢, = 37/10.
The reason is that the 7 function of two equations is in the same Grammian of generating functions ¢§O),
and generating functions ¢§0) for two equations satisfy analogous linear partial differential equations with
constant coefficients, i.e. Eq. (4.1) for bKK equation, Eq. (5.1) for bSH equation. These relations between

bKK and bSH are still true for their two soliton and two parameters periodic solutions.

Proposition 16. The two right-going solitons are given

u= (85 log %éé;z)) (5.15)
in which ﬁ%‘{f) 18

(242 (242

7-IE»S—}FI = TigK-;()|a1:52:7r/4 (5.16)

and ﬁgf{?) is given by Proposition 10.
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Proposition 17. The right-going periodic wave with two spectral parameters ki1 and ko is given by

u= (83 log ﬂg?{f)) (5.17)
in which TI%EQ) 18

L (242 (242

7—IES—I!_I )= TtEK_;{)|61:E2:W/4 (518)

and %,5?;%2) is given by Proposition 11.

According to the analysis in Remark 1, two left-going solitons of bSH equation can be generated by a

(0) M
ELIG YN (™ # 0,00 =0) ELICION (u® # 0,0 = 0)(using
the notation of [27]), ¢§0) = ¢(Ai; 2, t)|e;=0,% = 1,2, are defined by Eq. (5.4). Their 7 function of bSH
generated by Ty = TD(¢51))TD(¢§O)) is

chain of gauge transformations (u = 0,v = 0)

(0) ,(0)
2) o1 @
TkESH ’ (10) (20) (5.19)
1,z Y2,x
From Téé)H we can obtain the physical 7 function ﬂg?H and two soliton solution.
Proposition 18. Let (bz(- = ¢(Ni;2,t)|e,=0 are defined by Eq. (5.4), & = ki + k3t,i = 1,2. If A
1
B
0, A_i < 0,ky > ky, then the physical T function TéS)H is given by
By B
TIES)H — (k'2 _ k1)651+§2 _ 1 A2 (kl 4 k2) —(&1+€2)
ky — k) D26 ky + kg)e~ (1762), 5.20
—(ka — k1) — 4 + A, S (ky + ko )e (5.20)

The two soliton solution is u = (3% log %éS)H), which is left-going.

0

The collision of two soliton is generated by gauge transformation chain (v = 0,v = 0) M (u®) 75 0,0 = 0)
(2) 1)

LiS MirdS 0N (u® # 0,0 #£0), (bgo) = ¢(A\1;2,t)|e,=0 is defined by Eq. (5.4), ¢2 , 2

d(Ag;x,t) is defined by Eq. (5.4). The corresponding 7 function of bSH is

J 65" 01" 65" 0y

o
o o

(2+1) ‘ fw O)(b(o 1/) 0)¢(0) (5'21)

ThSH
65

Taking (;5( i = 1,2, back into Eq. (5.21), we have its explicit expression as following Lemma.

Lemma 12. Let & = xky —|—tkif, & = xkocoseg —|—tk§’ cos 3e3, M2 = xkosines —|—tk§’ sin3eq, z; = ¢;+d;, i =
1,3,5, are given in Appendix D.

(2+1) _ e2im2 A2
TbSH A2A1 X

{ 2reb11+282 B zi€ £1—2&2 (%) (&)
2ko (kj% + k‘g + 2k ks cos 82) 2ko (k’% + k‘g + 2k1ks cos €2> Ay A
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N zpe~ 61126 (Bl> zzeb1—262 <B2>2
2ko (]{i% + k% — 2k ko cos 82) Ay 2ko (k% + k% — 2k ko cos 82) Ay

N z5est (@)
ikgsines (kf + k3 + 2k1ka coses) (k3 + k3 — 2k1ka cosez) \ Az

2*6_51 B2 Bl
— — (—) (—) } (5.22)
iko sin eo (k1 + k5 + 2k1 ks cos 52) (k:l + k5 — 2k ko cos 52) A, Ay

Lemma 13. For z; = |z|e% (i = 1,3,5), the following identities

2125 = 2323, eH(8a=61) — 20 (5.23)
are true.
B * B * 2
Lemma 14. Let z;,i = 1,3,5, are given by Appendiz D, if—l = Z—i, =2 = iz—l, go = g4 = %, g6 =1,
A1 2’3 A2 z5 |Z5|
then
2 2
Z1 BQ Bl z3 BQ Z; Bg Bl
- = - =_22 (== — —= —_— 5.24
2= <A2> <A1>’ =0 <A2 90T (4, ) 4, ) (5.24)
hold.

With the help of Lemmata 13 and 14, we deduce the physical 7 function of colliding two soliton of bSH
equation from Lemma 12.

Proposition 19. Let go, 94 are given in Lemma 14, then

72(2+1) B { eb1+262 N 926—51—252
bSH 2ko (k? + k3 + 2kikycosea)  2ko (kP + k3 + 2k ko coses)
e—&11+282 94651—252
+ +
2ko (k% + ]{i% — 2k ko cos 52) 2ko (k% + k% — 2k ks cos 52)
eét

+ ko sin eo (k‘% + /{2% + 2k1ks cos 52) (kj% + k% — 2k1ks cos 62)

6751
+ } 5.25
kosines (k? 4 k3 + 2k1ka coses) (k3 + k3 — 2ky ks coses) (5.25)

We have plotted the two soliton solutions of bSH equation in Fig. 5, and periodic solutions with one
spectral parameter and with two spectral parameters of the same equation in Fig. 6.

6. Lower and Higher order reductions

In this section, we want to discuss the general character of soliton equation from lower order to higher
order in one same sub-hierarchy. The purpose is to show the relation between propagation of soliton on
(x,t) plane and the order of Lax pair, and show the difference between the lower reduction and higher
reduction. Let Lax pair of soliton equation is (L, M), which defines ¢(\; z,t) by

dp(N\; x,t)

Lo x,t) = Ap(\; z, 1), 5t

= Mp(X\; z,t). (6.1)
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3
0

Fig. 5. Two left- and right-going as well as head-on colliding solitons for the bSH equation (1.9). Parameters are chosen
as: Ay = B1,As =2,By = —1,k1 = 1.5,ko =2 (left); k1 =15,ko = 13,61 = €9 = % (I‘ight); k1 =0.8,ka =0.9,e0 = %
(collision).

Fig. 6. Left-going periodic solutions with one (left) and two (right) spectral parameters for the bSH equation (1.9).
Parameters: k1 = 1,1 = F(left); k1 = 0.2, k2 = 0.3,e1 = £2 = 7 (vight).
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There are some examples of n-reduction of the KP hierarchy. For the BKP hierarchy,

Lax pair  3-reduction 5-reduction 7-reduction 9-reduction

L Bg B5 B7 B9
M Bs B3 B3 Bs (6.2)
Equation SK bSK higher order higher order
Here
5 3 2 2, 10
= 95 + bud? + buyd? + (5u + gum)az, (6.3)
SK [6,7] 1 9us + 450Uy + Upzzee + 15UUzpe + 15UpU, = 0. (6.4)
By and Bjs are given by Egs. (1.10) and (1.11). For the CKP hierarchy,
Lax pair  3-reduction 5-reduction 7-reduction 9-reduction
L Bs Bs By By
M B By By Bs (6.5)
Equation KK bKK higher order higher order
Here
15 35 5
=0 + 5ud + 5 —u, 0% + (5u2 + Fum>6x + buu, + §u$”’ (6.6)
75
KK [8,9]:  9uy + 450Uy + Upprer + 15Uz0s + 3 Uallas = 0, (6.7)

Bs and Bj are given in Egs. (1.13) and (1.14). There are several even-reductions of the KP hierarchy as
following,
Lax pair  2-reduction 4-reduction 6-reduction 8-reduction
L B, B, Bg B

M Bs Bs Bs Bs (6.8)
Equation KdV bSH higher order higher order
Now we start to discuss the BKP hierarchy.
Lemma 15. Let 51 = xky cosey + th] cosbey, then ’7'( ) s expressed by
2041 _ 2(141)
TSk = Thsk |§1 >& (6.9)
55
and the corresponding single soliton is u = (82 log TS(1+1)> The velocity of solitonv_= —ki o891 =
COSEY | _x

ki > 0. Here TéSE ) s given by Proposition 4.

Proof. Because the SK equation and bSK equation belong to the same sub-hierarchy BKP, so the results
of bSK are also hold by SK equation only if we replace &1 in bSK by & = xk; cosey + tk} cos be1. For SK
) — d(A\i; x,t) of gauge transformation satisfy
oA, 1)
ot
which are different with Eq. (3.1) for bSK equation. So k3 = |A1]. This difference determines replacement

in Eq. (6.9). Of course, similar to the bSK, we also should assume the solutions of Eq. (6.10) be the form
of

equation, the generating functions ¢§(

Gro(Na,t) = ANz, 1), = 0pp(X\;a,t), (6.10)

(;5()\1;36, t) = Aleplerp?t + Bleqlx+q?t,p1 - k’leiel,ql = —kleiisl,k? = ‘/\1|, ]{11 S R, (611)
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or
S(Ai; 2, 1) = AePr =PIt | Blen Tt b = ket gy = ke kD = M| By € R (6.12)

Taking the generating functions ¢ (©) ip Eq. (6.11) back into the Proposition 1, then we can extract

L (141) (141) (1) () B . .

7ok from 7g /. The relation 7g ' = Tgk | ¢1—>E, 18 given by comparison. O

In particular, there are two distributions of roots of third-order of €% on circle, which is symmetric with
respect to y-axes. However, they are corresponding to same single soliton solution.

1. (ei%7—e_i%) one distribution of 3-order root of ¢ on unit circle — (p1 = k1e'%,q = —kle_i%) in
Eq. (6.11) — a single soliton in Lemma 15.
2. (eiuTﬂ, —et 716M) one distribution of 3-order root of ¢ on unit circle — (p1 = kyet's", g = —kp e_"nTﬂ>

in Eq. (6.11) — one soliton as 1.

Lemma 16. The higher order equations of the BKP hierarchy are defined by Eq.~(6.2). For the n-

reduction equation of the BKP hierarchy (nBKP), n=2j41,5=3,4,5,---, and let &yp = Tk cosep +
th3, cos 3y, kI, = k2Tt = |\,,,|, then the physical T function of the nBKP generated by Ti41 s

A(1+1) _ A(1+1)
ThBKP = ThSK |§1,>glp7 (6.13)
. . . . _ 2 (1+1) _ 2p—1__ _ 2p—1 _
and the corresponding single soliton of the nBKP is u = (93 log 7,pxp). Here e, = J=m = {mm, p =
1,2,3,---,7, %éé;l) is given by Proposition 4. So the single soliton can move along j directions in (,t)

plane, which are given by &1, = 0 associated with j-value of €, given before.

Proof. Comparing the nBKP with the bSK equation, the main change here is the Lax pair (L,M). The
Lax pair of the nBKP defines the generating functions qbz(-(o)) = ¢(\;; x,t) are slight different as

P(\; )

e Nz, t) = Ap(X; . 1), b BN, t) (6.14)
and then we assume
S(Ai; 2, 1) = AP =PIt 4 Bttt b — ket g = —kje T kY = |\ |k € R, (6.15)
or
d(A;x,t) = Ale”lrﬂ’?t + Ble‘““'q?t,pl = ki1e®r, gy = kye P kT = |A1], k1 € R. (6.16)
In order to avoid the divergence of u, we only take 0 < ¢, < 7, and then ¢, = 22;171' = i‘?;;ﬂ"p =
1,2,3,---,7. This change results to the emergence of §mp = xky, cose, +th3 cos3e,, kT = k2L = |\,

The %(gf{g, and single soliton solution u = (92 log %r(ﬂngf{lF),) can be derived directly from the Proposition 1

and the generating functions gzﬁ((o)) in Eq. (6.15) associated with Ay for the gauge transformation. Further,

for a given p, flp = ( determines one moving direction of the smgle soltion on (x,t) plane, then the single
soliton solution have j directions for propagation because p =1,2,--- ,j. O

From Lemmata 15, 16 and the results of the bSK equation, we have

Proposition 20.
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1. The single soliton u = (8% log %1511;(1]2) of the nBKP equation, n = 25+ 1,5 = 2,3,4,---, can move
along a direction defined by Elp =0 on (z,t) plane for a given p.
2. (eigp, —6’i5p) one distribution of n-th order roots of e on circle — (p1 = ke, q = 7]{1645;,) n
Eq. (6.15) — The single soliton moves along a line §~1p =0 on (z, t) plane. Heree, € {J?, %,
5w (2j — Dm
45427 7 4j+2 }

3. For a given n = 2j + 1, the single soliton of the nBKP have j directions to propagate on (x,t) plane,
which are defined &, =0,p=1,2,3,---j.

Note that the result of j = 1 in above Proposition is given by Lemma 15.

Now we turn to the lower and higher reductions of the CKP hierarchy. Similar to the discussion of the
BKP hierarchy in this section, we can obtain parallel results in the CKP hierarchy, so we write out the
results without proof in the following to save space.

Lemma 17. Let §~1 = wky cosey + tk} cos beq, then %{1}2—1) can be expressed by
A(14+1) A (141)
TKK = = TbKK lg,—>& (6.17)
cos be
and the corresponding single soliton is u = (5@ log %I(ggl)). The velocity of soliton is 0. = —k} PO
COSEL |x
6

k{ > 0. Here %é%{;l) is given by Proposition 7.

Lemma 18. The higher order equation oi CKP defined by Eq. (6.5). For n-reduction of CKP hierarchy
(mCKP), n =25+ 1,j = 3,4,5,---. Let &np = ky, cosep, + th3, cos 3e,, k7 = k2T = |\,|, then the T
function of the nCKP generated by T141 is

L(141) (141

)
TnckP = TbKK ‘517>§1p’ (6.18)

and the corresponding single soliton of the nCKP equation is u = (6% log %rEéJ}r{lrz) Here e = 4-m =

4j%w,p =1,2,3,---,7, and ﬂg;;(l) is given by Proposition 7. So the single soliton can move along j

directions on (z, t) plane, which are given by Elp = 0 associated with j-value of €, given before.

Using the Lemmata 17, 18 and results for the bKK equation, we get

Proposition 21.

1. The single soliton u = (8% log%ﬁé}ﬁ» of the nCKP, n = 25+ 1,5 = 2,3,4,---, can move along a

direction defined by glp =0 on (z, t) plane for a given p.

2. (e'®», —e~») one distribution of n-th order roots of €' on circle — (p; = kie®»,q = —kje~ ) in
~ 3
Eq. (6.15) — the single soliton moves along a line {1, = 0 on (z, t) plane. Here g, € {J?, 4],%,

5m (25 — 1)7r}
47 +2° 7 45+2 )

3. For a given n = 2j + 1, the single soliton of the nCKP can move along j directions on (z,t) plane,
which are defined by &1, =0,p=1,2,3,---,j.

4. In particular, if 0 < e, <7/6, u = (3% log %r(lé—’}_{?,) s a two-peak soliton.
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In above Proposition, the case of j = 1 is given by Lemma 17. This Proposition shows there exist several
single two-peak solitons for nCKP if n > 11 .

Corollary 1. There are two single two-peak solitons for 11-reduction of CKP hierarchy, i. e. 11CKP
equation, U11CKp = (83 log A(Hl)), in which 1 = w/22 and 1 = 37 /22 respectively. Here f'é;;) s given

THhKK

in Eq. (4.6)

We have plotted it out in Fig. 7 with k; = 0.8.
0.6 oo ST
05 |I I':l ; / I|| II| , II| |I 'I
0.4 AR )' o

=03 SRS L .

0.2 T L '.
0.1 ,'I /f' '-.\ ;j' 1 :f ".I\ 'a

0 — = _
-15 -10 -5 0 5 10 15

Fig. 7. Left-going two-peak soliton with dashed line (1 = 7/22) is faster, left-going two-peak soliton with full line
(e1 = 371/22). The left is plotted when ¢ = 10, the right is plotted when ¢t = —10

We have known that ¢ = 1/2 in Lemma 5 and Proposition 9 is one crucial point to exist one-peak
soliton or two-peak soliton. It is more interesting that a = 1/2 will lead to ”stationary” soliton of higher
reductions of the BKP and the CKP hierarchy, which is not moving on (x,t) plane. When &1].,—/6 =
(k17 cosey + tk3 cos 3¢1])ey=n/6 = (k1w cosey), & is independent with . So u is independent with ¢ by
taking this £; into Proposition 4 and Proposition 7.

Corollary 2.

1. There exists ”stationary” single soliton for the 9-reduction of BKP hierarchy, which is ugpkp =

(8% log ﬂ%ﬂl)) |€1:3ﬂ/18. Here ﬂgé;l) is giwen by Proposition 4;

2. There exists 7stationary” single soliton for the 9-reduction of CKP hierarchy, which is ugckxp =
(8% log ﬂgg{l)) |61:37r/18' Here ﬂgg{l) is given by Proposition 7.

We have plotted out ”stationary” soliton for the 9-reduction of CKP in Fig. 8 when k1 = 1.

Corollary 3. There is single two-peak soliton u = (8% logf'é;;» |61:7r/8 for 8-reduction of the KP

hierarchy; there is "stationary” single one-peak soliton u = (8% log ﬂgéﬁ”) |€1:ﬂ/6 for the 6-reduction of

the KP hierarchy. Here féé—ﬁl)) is given by Proposition 18.
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Fig. 8. Left: "stationary” soliton for 9-reduction of CKP, Right: Single two-peak soliton for 8-reduction of KP.

The two-peak soliton for the 8-reduction of KP hierarchy is plotted in Fig. 8 when k7 = 1. For our best
knowledge, this is first time to report the even-reduction of the KP hierarchy also has two-peak soliton
solution. The possession of two-peak soliton solution is not sole property of CKP hierarchy.

7. Conclusions and Discussions

We have presented a systematic way in which to obtain the solution of the n-reduction (n = 4,5) from
the general 7 function of the KP hierarchy. Our approach is based on the determinant representation of
gauge transformations T}, 1, [27] and 7("*%) [26]. Tt may be summarized as follows:

ints of ing functi d k= — i
T(n+k) constraints of generating functions an n__(n+k) ( (n+k) ) m Téz+k)|k=n(Eq — bSK’bKK)

Tgkp \OT Tckp

assume the form of ¢;and find suitable% . . ~ (n+k) . .
efficient 7 function 7 |k=n=1,2. We have applied this approach to

various equations. The one soliton, two soliton and perio&ic solution are constructed for bSK, bKK and
bSH. We show the corresponding relation between the distribution of 5-th (or 4th) roots of ¢’ on the
unit circle and several types of solutions (left-going one soliton, right-going one soliton, left/right-going
periodic solutions). We also show the reason for the existence of the two-peak soliton. Furthermore, the
lower reduction and higher reduction of BKP, CKP, and the even-reductions are explored by this method.
Our results show that the soliton of the n-reduction (withn =25+ 1, 7 =1,2,3,...) of BKP and CKP

can move alone j directions, which are defined by &1, = 0. Each direction corresponds to one symmetry
distribution of n-th roots of e’ on the unit circle. This supplies a very natural explanation why the
5-reduction BKP (or CKP) has bi-directional solitons whereas the 3-reduction of BKP (or CKP) has
only single-directional solitons. At last, the two-peak soliton is not a monopolizing phenomena of only
the CKP hierarchy. Rather, we find that the higher-order even-reduction of KP also exhibits two-peak
solitons and we elucidate the criterion for its existence from the Grammian 7 function. At the same time,
we show there is not three and more peak soliton from Grammian 7 function. The ”stationary” soliton
for higher order reduction of KP hierarchy is also obtained.

We think that it is possible to construct an N-soliton solution of the bSK, bKK and bSH equations

B; . :
by this approach. Namely, there exist suitable T (i =1,2,---,N) such that we can find a physical T
function 7NN )|Eq for these equations from a complex-valued 7( )|Eq, which is symmetric because
we have assumed generating functions ¢,; in Eq. (3.5) and Eq. (3.6) with symmetric form. Here Eq =
bSK, bKK, bSH. Additionally, it is worthy to discuss the phase shift in the collision of one-peak soliton

N+N
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and two-peak soliton. Furthermore, it is possible to construct solutions for bSK, bKK and bSH from
constant initial value u = constant # 0, which is parallel to present results.

Upon completion of this work, Prof. V. Sokolov kindly pointed out Ref. [40] where Eqs. (1.8, 6.4, 6.7) and their Lax
operators as well as the Lax operator L = 9 + ud~1u for KdV equation have been obtained for the first time.
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bSK equation

Take z, = cx + idi(k=1,3,5,7)

B.

c1 = kika cos(e1 + €2) [k% cos2e1 + k% cos 2e9 + 2k1 ko cos(e1 + 82)]
)

+kikasin(er + e2) [k% sin 21 + k% sin 2e9 + 2k1 ko sin(e1 + €2 } (A.1)
d1 = —kika cos(e1 + €2) [k% sin 2e1 + k% sin 2e9 + 2k1 ko sin(e1 + 52)}

+kikasin(er + e2) [k% cos2e1 + k% cos 2eg + 2k1 k2 cos(e1 + 52)] (A.2)
c3 = kika cos(e; — €2) [kf cos2e1 + k% cos 2eg — 2k1 ko cos(e1 — 52)]

+kikasin(er — e2) [k% sin 2e1 — k% sin 2e9 — 2k1 ko sin(e1 — 82)} (A.3)
ds = —ki1ka cos(e1 — €2) [k% sin 2e1 — k% sin 2e9 — 2ki ko sin(e1 — 52)}

+kikosin(er + €2) [kf cos2e1 + k% cos 2e — 2k1ka cos(e1 — 52)] (A.4)
cs = 2ki1kasines [COS 1 (k% cos2e1 — k:% — 2k1ks sineq sin 82)]

+2k1ko sineg [2k1 coseg sineg (k1 sineq + ko sin 52)] (A.5)
ds = —2k1kosineg [2k1 cos? g1 (kl sine] + ko sin 52)]

+2k1kso sineg [sin £1 (k% cos2e1 — k% — 2k1ko sine; sineg)] (A.6)

c7 = 2k1kosine; [cos €2 (k% — k% cos 2eg + 2k1 ks sineq sin 52)]
—2k1ko sineq [2k2 coseo sines (k1 sineq + ko sin 52)] (A7)
d7 = 2k1ko siney [ng cos? £9 (k1 sineq + ko sin 52)]

+2k1ko siney [sin £o (k% — k% cos 2es + 2k1 ks sineq sin 52)] (A.8)

bKK equation(two solitons)

Take z = ¢ + tdi(k =1,2,3,4)

c1 = cos(e1 + €2) [k% + k% + 2k1ko cos(e1 — 62)}2

—4k1ko [k1 cos 2e1 + ko cos 2e2 + 2ki1 ko cos(e1 + 52)} (B.1)
di = sin(e1 +€2) [k% + k2 + 2k1kg cos(eq — 52)}2

—4kiko [k% sin 2e1 + k% sin 2e9 + 2k1 ko sin(e1 + 52)] (B.2)
Cco = coseq [k% + k% + 2k ko cos(e1 — 52)] [k% + kg — 2k1ka cos(e1 + 52)]
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da

c3

ds

C4

dy
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—4k1ko sineg (k% sin 2e1 + 2k1 ko sines cos 81)

= siney [k% + k% + 2k1ka cos(e1 — 52)] [k% + k% — 2k1k2 cos(e1 + 62)]

+4k1ko sines (k% cos2e1 — k% — 2k1ks sineq sin 52)

= cos(e1 — €2) [k% + k% — 2k1ko cos(e1 + 52)} 2

+4k1 ko [k% cos2eq + k% cos 2eg — 2k1ka cos(e1 — 52)}

= sin(e1 — e2) [k% + k2 — 2k1ko cos(er + 52)}2

+4k1ko [k% sin 2e1 — k% sin 2eg — 2k1 ko sin(e1 — 52)}

= coseg [k% + k% + 2k1 ko cos(e1 — 52)] [k% + kg — 2k1ka cos(e1 + 52)]

—A4k1 kg sineq (k% sin2e3 + 2k1 kg sine cosea)

= sinea [kf + k3 + 2k1ka cos(e1 — e2)] [kT + k3 — 2k1ka cos(e1 + £2)]

+4k1ko sineq ( — k% + k% cos 2e9 — 2k1 ks sineq sin 52)

C. bKK equation(periodic solutions)

Take zx = ¢cx + idi(k =1,2,3,4)

C1

di

Cc2

do

c3

ds

Cq

dy

D. bSH equation

cos(e1 + €2) [k% + k2 + 2k ko cos(eq — &2)] 2
—4k1ko [kf cos 21 + k% cos 2eg + 2k1 k2 cos(e1 + 52)}

= sin(e1 + €2) [k% + k2 + 2k ko cos(eg — e2)] 2

—4k1ko [k7 sin 21 + k3 sin 22 + 2k1 ko sin(er + €2)]

= cosel [k’f + kg + 2k1 ko cos(e1 — 52)] [k% + k% + 2k1ko cos(e1 + 82)]

—4k1 ko cosea (k% cos2¢e1 + k% + 2k1 ko coseq cos 52)

= siney [k% + k% + 2k1 ko cos(e1 — 52)] [k% + k% + 2k1k2 cos(e1 + 82)]

78’9%]62 coseg sineq (k1 cosel + ko cos 82)

= cos(e1 — €2) [k% + k2 + 2k1 ko cos(eq + €2)] 2

—4k1ko [k% cos2e1 + kg cos 2eg + 2k1 k2 cos(e1 — 52)}

= sin(e1 — €2) [k] + k3 + 2k1 k2 cos(e1 + €2)] 2

—4k1 ko [k% sin 2e1 — k% sin 2e9 + 2k1 ko sin(e1 — 82)}

= cosé€2 [k’% + k‘% + 2kt ko COS(El — 62)] [k‘% + k:% + 2k1 ko COS(El + 82)]

—4k1 ko coseq [k% + k’g cos 2e9 + 2k1 ks cos e1 cos 82]

= sineg [k% + k% + 2k1 ko cos(e1 — 52)] [k% + k% + 2k1k2 cos(e1 + 52)]

78k1k% cos €1 sineg (k1 cosel + ko cos 82)

Take zx = cx + idi(k=1,3,5)

c1 =
dy =
c3 =
ds =
c5 =

d

ot

2ko (ko cosea + k1) — (k% + k% + 2k1k2 cosez) cosea

2k3 sineg — (k2 + k3 + 2k1ka cose2) sineg

2ko (ko cosea — k1) — (k% + k% — 2k1ka coseg) coseg

2k§ sines — (kf + kzg — 2k1ko cosea) sines

2k32 (k3 + k3)sin? e3 — (k% + k3 4 2k1ka cosea)(k? + k3 — 2k1k2 cosea)
k2 siney [2k1 (k2 4 k3) — 4k k3 cos? e2]
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