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ABSTRACT

We present results from 2.5D numerical simulations of the emergence of magnetic flux from the upper convection zone through the photosphere
and chromosphere into the corona. Certain regions of the solar atmosphere are at sufficiently low temperatures to be only partially ionised,
in particular the lower chromosphere. This leads to Cowling resistivities orders of magnitude larger than the Coulomb values, and thus to
anisotropic dissipation in Ohm’s law. This also leads to localised low magnetic Reynolds numbers (Rm < 1). We find that the rates of emergence
of magnetic field are greatly increased by the partially ionised regions of the model atmosphere, and the resultant magnetic field is more diffuse.
More importantly, the only currents associated with the magnetic field to emerge into the corona are aligned with the field, and thus the newly
formed coronal field is force-free.
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1. Introduction

The evolution of the solar atmosphere, in particular the corona,
is strongly influenced by the presence of magnetic field. This
coronal field is believed to originate beneath the surface, where
dynamo action at the base of the convection zone can generate
large scale toroidal fields (Spiegel & Weiss 1980; Hughes &
Proctor 1988; Gilman et al. 1989). The instabilities present in
these fields gives rise to the formation of magnetic flux tubes
which are driven by buoyancy through the convection zone up
to the surface and emerge into the atmosphere above. This pro-
cess is known as flux emergence. Flux emergence is widely
regarded as the process by which new active regions on the
Sun’s surface are formed. The emerging fields evolve to form
the complex structures we see in the Sun’s atmosphere, such
as coronal loops and prominences, and strongly influence dy-
namic events such as flares and coronal mass ejections.

Emerging magnetic field in the photosphere has been mea-
sured by MDI. Vector magneto-grams have been used to re-
construct the resultant 3D magnetic field in the corona (Berton
2000). Associated with the observed emergence at photo-
spheric levels bright coronal loops are observed in the corona,
as detected by the SOHO and TRACE X-ray and EUV instru-
ments. These loops appear to have foot-points of opposite po-
larity in the active region below.

Following the work of Parker (1954, 1979) which showed
that the instability of large scale magnetic field at the base of
the convection zone could lead to sunspot formation, there has
been a wealth of theoretical and numerical studies concerning

the evolution of magnetic flux tubes in both the convection zone
and the atmosphere above.

These magnetic fields held in the overshoot region of the
solar interior can be generated to strengths of up to kG by dy-
namo actions and once the field strengths exceed 105G undu-
lar instabilities lead to the formation of loops which rise up to
the surface on time-scales of months (Moreno-Insertis 1986;
D’Silva & Choudhuri 1993; Caligari et al. 1995; Fan et al.
1994).

Emonet & Moreno-Insertis (1998) investigated the effect
of surrounding flows on the flux tube’s rise to the surface and
demonstrated that a minimum twist was required in the tubes
in order to suppress the conversion of the tube into vortex
pairs. Fan et al. (1998) investigated flux tubes unstable to the
m = 1 kink instability in the convection zone. For flux tubes
to survive the crossing of the convection zone their twist must
be large enough to avoid fragmentation but small enough to
not be kink unstable. This gives a range of twist for flux tubes
in order that they survive the rise though the convection zone.
However, the kink instability may also present a mechanism for
emergence through the photosphere, once the magnetic field
has reached the top of the convection zone.

The emergence of magnetic field from the photosphere into
the atmosphere above has also been studied extensively in re-
cent years (Matsumoto & Shibata 1992; Matsumoto et al. 1993;
Magara & Longcope 2001; Shibata et al. 1989). These authors
studied the emergence of magnetic field held at the photosphere
by the convectively stable stratification. It was shown that these
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fields were unstable to mixed modes of the magnetic buoy-
ancy instability. The resulting expansion of magnetic field was
shown to match certain observational data of active regions.
Nozawa et al. (1992), and Matsumoto et al. (1993) modified
the analysis by looking at the effect of convection on the insta-
bility, showing how field held beneath the photosphere could
emerge into the atmosphere.

More recent simulations have combined the buoyant and
expansive phases of the emergence process, simulating ris-
ing magnetic flux tubes in the convection zone followed by
the expansion through the photosphere into the corona via the
magnetic buoyancy instability (Fan 2001; Magara & Longcope
2003; Manchester 2001). In these simulations an isolated
twisted flux tube is inserted into the upper part of the convec-
tion zone which rises by magnetic buoyancy until it reaches the
stable layers of the photosphere. The resulting, predominantly
horizontal, expansion leads to the formation of a magnetic layer
which is unstable to the magnetic buoyancy instability and this
drives magnetic field into the atmosphere above.

Archontis et al. (2004) and Galsgaard et al. (2005) showed
how this emerging field would interact with a pre-existing coro-
nal field, the formation of current sheets and jets occurring as
a by-product of reconnection. This reconnection with coronal
field helps the flux tube to emerge through the lower atmo-
sphere as field lines from beneath the surface are reconnected
to coronal field lines.

All these numerical simulations use a standard model
for the solar atmosphere. The model consists of an
adiabatically stratified convection zone, isothermal photo-
sphere/chromosphere, isothermal corona and a transition re-
gion between the two isothermal regions. Furthermore the sim-
ulations are performed under the MHD approximation. Under
this assumption the atmosphere of the Sun is represented by
a fully ionised plasma, consisting of electrons and ions only.
Under this and other limiting assumptions the governing set of
equations are:

∂ρ

∂t
= −∇.(ρu) (1)

∂

∂t
(ρu) = −∇.(ρuu) + ( j ∧ B) − ∇P + ρg + ∇.S (2)

∂B
∂t
= ∇ ∧ (u ∧ B) − ∇ ∧ (η j) (3)

∂

∂t
(ρε) = −∇.(ρεu) − P∇.u + η j2 + ςi jS i j (4)

where ρ is the mass density, P is the gas pressure, ε is the inter-
nal specific energy density, u is the bulk velocity of the plasma,
B the magnetic field, and j the current density. g is gravitational
acceleration, and η is the resistivity. S is the stress tenor which

has components S i j = ν(ςi j − 1
3δi j∇.u), and ςi j =

1
2

(
∂vi
∂x j
+
∂v j

∂xi

)
.

Here we are operating in the S.I. unit system. These four equa-
tion are closed with an equation of state.

This paper aims to improve this basic model of flux emer-
gence in two distinct ways. Firstly the governing equations take
into account the partial ionisation of certain regions of the solar
atmosphere. The lower chromosphere of the Sun’s atmosphere
is partially ionised, and depending on the local magnetic field

can be weakly ionised (Khodachenko et al. 2004). This is not
taken into account in the standard MHD model. The effect of
the possible presence of neutrals in a plasma on the governing
equations is investigated, and a new set of equations is derived
to simulate flux emergence through the lower atmosphere of the
Sun. As the presence of neutrals will affect momentum transfer
due to relative velocities, we expect the emergence and evolu-
tion of magnetic field to be affected by these improvements to
the model. We present results on the rates of flux emergence
and the nature of emerging flux tubes as they pass through the
partially ionised region of the atmosphere, as well as the resul-
tant structure of the fields.

Secondly, we model the heat transfer mechanisms present
in the solar atmosphere that cannot be simulated directly. The
above equation for energy includes only adiabatic terms (repre-
senting no heat transfer), a Joule heating term from ion-electron
collisions, and viscous terms. Thus in the current models the
reaction of the atmospheric plasma to the emergence of mag-
netic fields is unrealistic in that none of the heating terms, such
as radiative losses, thermal conduction and shock dissipation of
short scale, unresolved acoustic modes are present (Wedemeyer
2004). We present a simple way of modeling these mechanisms
which results in a more realistic reaction of the atmosphere to
flux emergence.

The results shown here are for 2.5D simulations. A com-
plete treatment must be 3D in order to capture the full dynamics
associated with the emergence of magnetic fields into the solar
atmosphere. However, the implementation of the methods in-
cluded in this work are simpler in 2.5D and act as a prelude to
future 3D work. The restricted geometry adopted here is still
capable of demonstrating the importance of partially ionised
layers and improved energy equation modeling.

The structure of the paper is as follows. Section 2 de-
scribes the theoretical basis for this work and the derivation
of the governing equations, for both the partial ionisation of
the atmosphere (2.1) and the non-adiabatic terms in the energy
Eq. (2.2). Section 3 describes the numerical code (3.1), imple-
menting the Eqs. (3.2) and (3.3), and the model used (3.4).
Section 4 presents the results, firstly when the non-adiabatic
heating terms are modelled (4.1), and then for the inclusion of
partial ionisation in the model atmosphere (4.2). Section 5 con-
tains summaries and conclusions of the work.

2. Section 2

2.1. Partially ionised plasma in the lower solar
atmosphere

The MHD equations given in the introduction are the equations
for a fully ionised plasma consisting of ions and electrons. The
simplified Ohm’s law is used to derive the induction equation
for the magnetic field. In this paper all equations used are given
in SI units unless stated otherwise.

E + u ∧ B =
1
σ

∇ ∧ B
µ0

=
1
σ

j (5)

where j = ∇∧ B/µ0 is the current density and σ is the conduc-
tivity. This is the one-fluid approach to a fully ionised plasma
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of ions and electrons. The Hall term and electron pressure term
have all been neglected. Combining this with Faraday’s law

∂B
∂t
= −∇ ∧ E (6)

gives the equation for the evolution of the magnetic field.

∂B
∂t
= ∇ ∧ (u ∧ B) − ∇ ∧ (η j) (7)

where η = 1/σ is known as the resistivity. Diffusion of mag-
netic field is assumed to be due to collisions of electrons and
ions. However the lower atmosphere of the Sun, where the tem-
perature is below the ionisation temperature of hydrogen, is not
fully ionised and in some places is weakly ionised. This means
that neutrals must be included in the equations describing the
plasma.

In order to simulate the solar atmosphere the MHD equa-
tions must be modified to include the possibility of the presence
of neutral hydrogen. This involves recasting Ohm’s law to in-
clude the momentum transfer due to collisions with neutrals.

The generalised Ohm’s law for a fluid containing ions, elec-
trons and neutral atoms is given by (Cowling 1957; Braginskii
1965)

E + (u ∧ B) =
1
σ

∇ ∧ B
µ0

(8)

− ξ
2
n

αn

[
((∇ ∧ B) ∧ B) ∧ B

µ0

]

=
1
σ

j +
ξ2n B0

2

αn
j⊥ (9)

where u is the fluid velocity, B is the magnetic field, and B0 its
magnitude. E is the electric field, and

j⊥ =
B ∧ ( j ∧ B)

|B|2 (10)

is the component of the current density perpendicular to the
magnetic field.

The conductivity is defined by

σ =
nee2

me(ν′ei + ν′en)
(11)

and

αn = meneν
′
en + miniν

′
in. (12)

The number densities of species (ion, electron, neutral) are
given by ni, ne, nn respectively, and the masses by mi,me,mn.

ξn =
mnnn

mnnn + mini
(13)

is the relative density of neutrals, and ν′ie, ν′in and ν′en are the
effective collisional frequencies defined by

ν′kl =
ml

ml + mk
νkl (14)

where k = e, i, l = i, n. Following the example of Spitzer (1962),
the collisional frequencies of ions and electrons with neutrals
are estimated by

νin = nn

√
8KBT
πmin

Σin (15)

νen = nn

√
8KBT
πmen

Σen (16)

where

min =
mimn

mi + mn
(17)

and KB is Boltzmann’s constant. The collisional frequency of
electrons and ions is given by

νei = 3.7 × 10−6 niΛZ2

T 3/2
(18)

(Spitzer 1962). Σin = 5 × 10−19 m2 and Σen = 10−19 m2 are
the ion-neutral and electron-neutral cross-sections respectively.
Here Λ is the Coulomb logarithm.

In the generalised Ohm’s law (9) the pressure term has been
neglected, as the chromospheric plasma is relatively cold, and
the Hall term is also neglected. The Hall term can be dropped
from the generalised Ohm’s law if the plasma is magnetised,
i.e. if the ions and electrons are tightly bound to the magnetic
field. Khodachenko & Zaitsev (2002) showed that in the upper
photosphere where the plasma is more weakly ionised the pos-
itive ions may not be magnetised, i.e. not tightly bound to the
magnetic field for certain field strengths. In these simulations
the Hall term is neglected throughout. The justification for this
approach is shown in Sect. 4, where for a typical simulation
the Hall term is compared to the other terms in the generalised
Ohm’s law.

If the plasma is assumed to be entirely composed of hy-
drogen then the expressions can be simplified by taking min =

mn/2, ξn = ρn/ρ resulting in

αn =
1
2
ξn(1 − ξn)

ρ2

mn

√
16kBT
πmi

Σin. (19)

Using the definition for the Cowling conductivity as

σc =
σ

1 + ξn
2 B0

2σ
αn

(20)

and defining the Coulomb and Cowling resistivity as η = 1/σ
and ηc = 1/σc respectively, it is trivial to show that

ξn
2B0

2

αn
= ηc − η. (21)

Thus Eq. (9) can be be written as

E + (u ∧ B) = η j + (ηc − η) j⊥
= η j‖ + ηc j⊥ (22)

and the frictional Joule heating term for this plasma (Braginskii
1965) is then given by

Q = (E + (u ∧ B)). j

= η j‖2 + ηc j⊥2 (23)
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with j⊥ and j‖ being the components of j perpendicular and
parallel to B.

The induction Eq. (7) now becomes

∂B
∂t
= ∇ ∧ (u ∧ B) − ∇ ∧ (η j)

−∇ ∧ (ηc − η)( j⊥) (24)
∂B
∂t
= ∇ ∧ (u ∧ B) − ∇ ∧ (η j‖)

−∇ ∧ (ηc j⊥). (25)

The generalised Ohms law used here (Eq. (22)) neglects the
electron pressure and Hall terms. In this approximation, where
ions and electrons are tightly bound to the magnetic field, the
only difference to Ohm’s law for a fully ionised plasma is
in the resistivities parallel and perpendicular to the field. The
( j∧ B)∧ B term corresponds to a genuine increase in the resis-
tivity normal to the field, and if the neutral fraction is apprecia-
ble dominates over the other terms (Cowling 1957). This man-
ifests in the above equation for the evolution of the magnetic
field. Note that due to the anisotropic nature of the dissipation
mechanism, i.e. ηc � η, it is not possible to cast the equation
for the evolution of magnetic field, or that for the current den-
sity, in the form of a simple diffusion equation.

Inserting the joule heating into the energy Eq. (4) gives

∂

∂t
(ρε) = −∇.(ρεu) − P∇.u

+η j‖2 + ηc j⊥2 + ςi jS i j. (26)

The equations for time variation of the bulk plasma velocity
and the continuity equation (Eq. (1)) remain unchanged. So the
system of equations for a hydrogen plasma with any degree of
ionisation is

∂ρ

∂t
= −∇.(ρu) (27)

∂

∂t
(ρu) = −∇.(ρuu) + ( j ∧ B) − ∇P + ρg + ∇.S (28)

∂B
∂t
= ∇ ∧ (u ∧ B) − ∇ ∧ (η j‖)

−∇ ∧ (ηc j⊥) (29)
∂

∂t
(ρε) = −∇.(ρεu) − P∇.u

+η j‖2 + ηc j⊥2 + ςi jS i j. (30)

When the plasma is fully ionised there are no neutrals so ξn = 0,
ηc = η and the equations return to the standard non-ideal
MHD equations. Where the plasma is not fully ionised we
must evaluate ηc. In order to evaluate the expression for the
Cowling conductivity ηc an estimate for the neutral fraction ξn
is required as a function of density and temperature. Following
the method of De Pontieu (1999) an electro-neutral hydrogen
plasma is assumed.

The solar chromosphere is not in LTE, hence a simple one-
level model for the hydrogen atom is inadequate for these con-
ditions (Pottasch & Thomas 1959). A two-level model is used
instead for the hydrogen atom, as this is a good approximation

to the hydrogen ionisation at chromospheric densities and tem-
peratures (Thomas & Athay 1961). Under this approximation
the ionisation equation (Brown 1973) is

n
∂x
∂t
=

∑
(C j + P j +C j

∗ + P j
∗) (31)

where n is the local number density and x is the ionisation de-
gree. C j and P j are the ionisation rates from level j due to ther-
mal collisions and local radiation field respectively. C j

∗ and P j
∗

are the ionisation rates by non-thermal particles and external
radiation field. In the first approximation photoionisation from
level 2 to level 1 is provided by the external field alone, so that
P1 = P1

∗ = 0. This external field is simply the photospheric
radiation field at temperature TR, diluted by a factor w (Brown
1973). The ionisation equation can be further simplified by not-
ing that thermal collision ionisation is unimportant when com-
pared to photoionisation (Ambartsuyan 1958). Thus the ioni-
sation equation is balanced by photoionisation from level 2 to
level 1 and spontaneous recombination for the return route.

n
∂x
∂t
= P2+

∗ − P2−. (32)

The steady state solution to this equation is given by (Thomas
& Athay 1961)

ni
2

nn
=

f (T )
b(T )

(33)

f (T ) =
(2πmeKBT )

3
2

h3
exp

(
− Xi

KBT

)
(34)

b(T ) =
T
wTR

exp

[
Xi

4KBT

(
T
TR
− 1

)]
(35)

where TR is the temperature of the photospheric radiation field
and w = 0.5 is its dilution factor. Using this equation, the ratio
of the number density of neutrals to ions is given by

r =
nn

ni
=

1
2

⎛⎜⎜⎜⎜⎜⎜⎝−1 +

√⎛⎜⎜⎜⎜⎝1 +
4ρ/mi

n2
i /nn

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ (36)

and the neutral fraction ξn = ρn/ρ is

ξn =
r

1 + r
(37)

where mi = mn has been used as the atmosphere is assumed to
be pure hydrogen. So from the plasma variables ρ, T and B the
neutral fraction and thus the value of ηc can be calculated.

To demonstrate how the profile of ηc looks for the quiet
Sun, the solar atmospheric plasma variables given by the
VAL C model (Vernazza et al. 1981) are used to calculate the
neutral fraction ξn and ηc for a given magnetic field profile as a
function of height. For this calculation the magnetic field model
used is that of a vertical expanding flux tube representing mag-
netic field in the chromosphere (Martinez-Pillet et al. 1997).
The form is given by

|B| = Bph

(
ρ

ρph

)α
(38)

with an exponent value of α = 0.3. The strength falls
from 1000 G at 1000 km to 10 G at 3000 km above the sur-
face. The profile of ηc is shown in Fig. 1, it has a maximum of
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Fig. 1. The Cowling conductivity as a function of height using the
VALC model for density and temperature and a magnetic field strength
using Eq. (38) and an exponent of α = 0.3.

approximately 40 Ωm at a height of 2000 km. A typical value
of η at this height is of the order of 10−10 Ωm (Khodachenko
et al. 2004).

2.2. The energy equation

The energy equation used thus far (Eq. (4)) has only included
the adiabatic terms and the joule heating term. To simulate the
solar atmosphere realistically the many other heat transfer ef-
fects that are present must be included.

Dε
Dt
=−P
ρ
∇.u + η j‖2 + ηc j⊥2 + ςi jS i j + S h − ∇.q − LR+H. (39)

The non-adiabatic terms on the right hand side include the
Joule heating, as derived in Sect. 2.1. The other non-adiabatic
terms are viscous heating, shock heating, thermal conduc-
tion, radiative transfer and the unknown coronal heating term.
Thermal conduction is given by∇.q, where q = κ∇T is the heat
flux, and κ the thermal conductivity. S h is small scale shock dis-
sipation of acoustic waves present in the chromosphere. These
waves are generated by convective motions at the top of the
convection zone and propagate upwards, and due to the strati-
fication, shock, dissipate and heat the local plasma (Narain &
Ulmschneider 1990). LR represents all radiative losses. As well
as these diagnosed heating effects there are many others asso-
ciated with the coronal heating problem, which include recon-
nection, and the propagation and dissipation of MHD waves,
represented here by H.

All these heating effects give the observed temperatures
in the solar atmosphere, and thus a complete numerical study
must include them to accurately simulate the emergence of
magnetic flux from the convection zone through the photo-
sphere, chromosphere and into the corona. However, simulat-
ing these effects directly is extremely problematic. Small scale
effects are difficult to include in large scale MHD simulations.
Although effects such as thermal conductivity could be added
to the governing equations, the undiagnosed effects such as

those associated with coronal heating, which are not known ex-
plicitly would be almost impossible to simulate directly.

For this reason a simplified approach to modeling these
effects is suggested, following the work of Abbet & Fisher
(2003). The non-adiabatic heating terms mentioned above act
to force the temperature profile of the Sun to that which is ob-
served. Rather than include the terms individually it would be
simpler to model their effects, namely that of forcing the tem-
perature to the observed profile, by applying a forcing or re-
laxation term to the temperature profile. Thus when the local
temperature of the plasma deviates form the pre-defined value,
it is forced back to this pre-defined value, on a time-scale which
reflects the different mechanisms of heating/cooling present lo-
cally. This can be done by a simple Newton-cooling equation,
which given in terms of the specific energy density, ε, is

dε
dt
= − ε − ε0(ρ)

τ
(40)

where τ is the time-scale of the relaxation. The equilibrium
specific energy density ε0 is chosen to be a function of the den-
sity ρ. The reasoning for this is related to the nature of these
simulations. The buoyancy force drives magnetic field in the
convection zone upwards into the photosphere, where the field
then expands into the atmosphere above. Thus as a parcel of
plasma from the convection zone of density ρ is moved up-
wards into the photosphere, its temperature should be relaxed
to its own initial temperature, rather than the local plasma tem-
perature, which is of a different density.

A form for the time-scale of this relaxation is required. For
this the approach of Gudiksen & Nordlund (2005) is adopted.
In simulating coronal heating they chose τ to depend on some
power of the density

τ =

(
ρ

ρ ph

)−1.7

(41)

so that at the relatively dense photosphere (ρ = ρph) the time-
scale is about 0.1 s and is large enough that the effect becomes
negligible in the sparse corona.

2.3. The equation of state

The specific energy density ε for a partially ionised hydrogen
plasma containing ions, neutrals and electrons is given by

ε =
P

ρ(γ − 1)
+

niχi

ρ
(42)

where P is the pressure, ρ the density, ni the number density of
the ions, χi the ionisation energy of hydrogen and γ is the ratio
of specific heats. Using the ideal gas law for the pressure

P = nkBT (43)

where T is the temperature and n is the total number density
n = ni + nn + ne, and using the definition of the neutral fraction

ξn =
nn

nn + ni
(44)

Eq. (42) can be written as

ε =
kBT

µm(γ − 1)
+ (1 − ξn)

χi

mi
(45)
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were µm is the reduced mass. The approximation ρ ≈ mini +

mnnn = mi(ni + nn) is used as the mass of the electron is small
compared with the proton/neutron.

The MHD equations solve for the state variables ε and ρ
and so at any point in the main update the temperature T and
pressure P must be derived from Eq. (45). This equation is ac-
tually a formula for T in terms of ε and ρ, because the neutral
fraction, ξn is a function of T and ρ. Hence, in order to obtain
the temperature, this equation must be solved for T at every
step, given the values of ρ and ε. The pressure at this time-step
can then be found from

P = nkBT =
ρkBT
µm
· (46)

Equation (42) contains two terms, the gas pressure term and
the ionisation term. In the photosphere and corona the gas pres-
sure term is dominant, but in the partially ionised region of the
lower chromosphere these terms are comparable, so both terms
should be included in a complete simulation. However, the sim-
ulations presented here use only the gas term in Eq. (42) for a
number of reasons. Firstly, this approach allows direct compar-
ison with the previous emergence simulations in the literature
(Magara & Longcope 2001; Archontis et al. 2004; Shibata et al.
1989), which neglect both the effect of partial ionisation in the
equation of state and the increased resistivity perpendicular to
the field in the induction equation.

Secondly, although pressure gradients are important for the
buoyant rise of flux tubes, the emergence of magnetic field
through the atmosphere in these simulations is dominated by
the enhanced dissipation of field through the partially ionised
region, not buoyancy. As a result the exact nature of the pres-
sure calculations is unimportant with regards to the results pre-
sented here, and the pressure term is not included in Eq. (42).
However, the precise effect of the form of Eq. (42) on flux
emergence is not known, and future work, which will include
3D simulations, will quantify this effect.

3. Numerical method

3.1. Numerical code

The modified MHD equations (Eqs. (27) to (30)) are solved
numerically using the Lagrangian remap code Lare2d (Arber
et al. 2001). The MHD equations, modified to include the pos-
sible presence of neutrals are presented below in Lagrangian
form

Dρ
Dt
= −ρ∇.u (47)

Du
Dt
= −1
ρ
∇P +

1
ρ

j ∧ B + g + ∇.S (48)

DB
Dt
= (B.∇)u − B(∇.u) − ∇ ∧ (η j‖) − ∇ ∧ (ηc j⊥) (49)

Dε
Dt
= −P
ρ
∇.u + η j‖2 + ηc j⊥2 + ςi jS i j − ε − ε0(ρ)

τ
(50)

with the same definitions as in Sect. 2.
In 2.5D the density, specific energy density and magnetic

field in the ignorable direction (z) are defined at the centre of

the grid. The velocities are defined at the vertices, while Bx is
defined on the right hand side edge and By on the top edge of
the cell. This staggered grid preserves ∇.B in the simulation.
The code uses linear and quadratic artificial viscosities to pre-
serve shock structure moving obliquely across the grid (Arber
et al. 2001).

3.2. Implementing the induction equation for a partially
ionised plasma

The components of the current parallel and perpendicular to the
magnetic field are calculated at each step by

j‖ =
( j.B)B

|B|2 (51)

j⊥ =
B ∧ ( j ∧ B)

|B|2 (52)

respectively.
The value of η is calculated from Eq. (11). ηc is evaluated

at each step as a function of x and y from the local values of
density, temperature and magnetic field using the equations for
the ionisation degree (Eqs. (34) to (37)) and the relationship
between the neutral fraction and ηc (Eq. (21)).

Khodachenko et al. (2004) showed that for certain magnetic
field models, and using the VALC model for plasma variables
that the ratio ηc/η can be orders of magnitude. Thus the value
of ηc becomes the dominant effect on the condition for stability
of the numerical solution to the induction equation

∆tdiff ≤ ∆x2

ηc
≤ ∆x2

MAX(η, ηc)
(53)

where ∆x is the minimum cell size in either direction. Given
typical values for the solar atmosphere, the condition for sta-
bility for the diffusion equation for a partially ionised plasma
is more dominant than the CFL condition for advection associ-
ated with the ideal update.

∆tdiff < ∆tadv (54)

where

∆tadv ≤ ∆x
c
· (55)

Here c is the maximum local velocity in the system.
To avoid subjecting the whole scheme to this diffusion

time-step condition the resistive update for a partially ionised
plasma should be done separately from the main update for
ideal MHD. To do this the resistive update is sub-cycled inside
each ideal step. For every ideal step,which is subject to the ad-
vective CFL condition, the resistive step is performed n times,
where

n = INT

(
∆tadv

∆tdiff

)
+ 1. (56)

Now the Lagrangian step is not restricted by the smaller diffu-
sion limit and this decreases the overall run time of the simula-
tion, but also keeps the resistive update stable. This sub-cycling
code was tested against the same code using the minimum of
both time-step conditions for the entire scheme. There was no
difference in the two sets of solutions and thus sub-cycling is
both accurate and efficient.
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3.3. Implementing the Newton cooling term

The non-adiabatic terms in the energy equation due to mecha-
nisms such as shock heating and thermal conduction are being
modeled by using a Newton-cooling equation for the internal
specific energy density.

Dε
Dt
= − (ε − ε0(ρ))

τ
(57)

where τ is the relaxation time-scale and as mentioned in
Sect. 2.2 has been chosen to be negligible in the corona and
most important at photospheric levels. To apply this relaxation
to the internal specific energy density this equation must be
solved numerically at each time-step in the code in addition
to the MHD equations. A first order implicit finite difference
method is used.

εn+1 − εn
dt

= −
(
εn+1 − ε0(ρ)

)
τ

(58)

where the superscript represents the discrete time sequence.
The update for the specific energy density is then given by

εn+1 =
εn + dt

τ ε0(ρ)

1 + dt
τ

· (59)

The reason for choosing the method shown is that it is uncondi-
tionally stable, Applying the standard Von-Neumman stability
analysis the multiplication factor g is always less than unity.

g =
1

1 + dt
τ

< 1. (60)

3.4. Initialisation

The modified MHD Eqs. (27) to (30) are normalised by divi-
sion of SI variables by photospheric values. The basic units are

yph = 150 km

vph = 6.5 km s−1

ρph = 2.7 × 10−4 kg/m3

which gives the derived units

tph = 23 s

Tph = 6420 K

Pph = 1.2 × 104 Pa

Bph = 1200 G.

From here on unless stated all quoted values are internal code
variables and should be multiplied by the above values to re-
cover the SI variables.

The physical domain simulated extends vertically from−20
(3000 km below the surface) to 80 (12 000 km above). The hor-
izontal extend is 50 (7500 km) about the centre of the domain.

The initial stratification is a simple 1D model of the tem-
perature profile of the Sun, which includes the upper 3000 km
of the convection zone, photosphere/chromosphere, transition
zone, and corona. The temperature profile consists of a linear

Fig. 2. Distribution of temperature (dashed line), density (solid line)
and gas pressure (dot-dashed line) all values are normalised.

polytrope for the convection zone with a vertical gradient at the
critical adiabatic value

dT
dy
=
γ − 1
γ

T
P

dP
dy
· (61)

The temperature in the photosphere and chromosphere is as-
sumed to be constant at 1, as is the temperature in the corona
at a temperature of 150. These two regions are connected by a
transition region of width wtr = 5.

T (y) = Tph − g

m + 1
y, y < 0 (62)

= Tph +
(Tcor − Tph)

2

[
tanh

(
y − ycor

wtr

)
+ 1

]
, y > 0 (63)

m = 1
γ−1 is the adiabatic index for a polytrope, ycor = 25 is

the height of the corona, Tph is the photospheric temperature
and Tcor = 150.

The density and gas pressure are specified by assuming hy-
drostatic equilibrium initially

dP
dy
= −ρg (64)

and the ideal gas law

P = ρT (65)

which is given in normalised form. Figure 2 shows the initial
stratification in the normalised units. The numerical grid is uni-
form in the horizontal direction and stretched in the vertical.
More cells are inserted in the centre of the domain where the
flux tube emerges into the atmosphere, as this is the area of
most interest As the sound speed increases towards the top of
the domain, larger cells are used to keep the CFL condition
(Eq. (55)) from unnecessarily slowing the running of the code.
Using larger cells at the top of the domain is acceptable as there
is no magnetic field so the solution is of little interest. A typical
cell size near the flux tube is ∆x = ∆y = 0.2.
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The evolution of a magnetic flux tube is initiated by insert-
ing a uniformly twisted magnetic field profile in the convection
zone, centred about y = −12.

Bz = B0 exp

(
− r2

a2

)
(66)

Bφ = qrBr (67)

where r is the radial distance from the centre of the tube, Bz is
the magnetic field component in the axial direction (z), and Bφ
is the azimuthal component. The width of the tube a is chosen
to be 2, and the strength of the field at the centre of the tube,
B0, is 5. Following the approach of Archontis et al. (2004), the
value of the twist, q, is chosen so that the tube is stable to drag
in the convection zone which would otherwise fragment an un-
twisted tube (Moreno-Insertis & Emonet 1996). In these simu-
lations this corresponds to a value of q = −1/a. This initialisa-
tion is a 2D cross-section of the 3D initialisation described in
Fan (2001) and Archontis et al. (2004).

The plasma pressure inside the tube differs from the field-
free pressure by p1(r), where

dp1(r)
dr

êr = j ∧ B, (68)

so that the pressure gradient matches the Lorentz force. The
change in density inside the flux tube relative to the field free
atmosphere is specified by assuming the tube to be in thermal
equilibrium with its surroundings.

T0(y) =
p0(y)
ρ0(y)

=
p0(y) + p1(r)
ρ0(y) + ρ1(r)

· (69)

The density inside the tube differs from the field-free atmo-
sphere by

ρ1(r) =
p1(r)
T0(y)

· (70)

It is worth noting that this is only one method to initiate the rise
of a flux tube in the convection zone. Other emergence simula-
tions such as Magara (2001), use a force-free field inserted into
a hydrostatic atmosphere. This equilibrium is then perturbed
by vertical velocities for a short time to initiate the evolution
of the flux tube. This initialisation is given the name mechani-
cal equilibrium (MEQ). The method described in this paper is
known as temperature balance (TBL). A third option as used
by Moreno-Insertis & Emnonet (1996) assumes equal entropy
across the flux tube (EET).

Particular interest in this paper is taken in the nature of the
force-free approximation. This approximation is used by many
authors when dealing with coronal magnetic field, as the ratio
of gas pressure to magnetic pressure, β, is low so that magnetic
forces dominate and the equilibrium is given by j ∧ B = 0.
However below the surface of the Sun, where β is greater than
unity, magnetic fields cannot be assumed to be force-free. For
this reason the MEQ method, which assumes a force-free sub-
surface magnetic field, is not used in these simulations. Instead
a non-force-free field is used, which leaves two choices for the
initialisation, TBL or EET. For simplicity, the TBL approach is
used over the EET. It enables the tube to be made less dense

Fig. 3. Axial field strength as a function of height through the cen-
tre of the tube at t = 0, 10, 20, 30, 40. All values are normalised to
photospheric values.

than its surroundings and thus initiates buoyant rise in the con-
vection zone.

The Coulomb resistivity η is calculated from the model
density and temperature and turns out to be less than round-
off in the code so all simulations are therefore run with η = 0.
The viscosity is set to 0.01 (internal units), while the linear
and quadratic shock viscosities are both set to 0.5. As the sim-
ulation domain has coronal conditions at the top and photo-
spheric/convection zone conditions at the base, the left, right
and top boundaries are open, allowing the free flow of plasma
and magnetic flux out of the domain. The lower boundary is
line-tied, so at each step the gradients in magnetic field, density
and internal specific energy density are zero, while the veloc-
ities are set to zero. This most accurately represents the situa-
tion in the convection zone, where the plasma beneath is more
dense.

4. Results

4.1. Evolution of the magnetic field in the upper
convection zone and photosphere

The initially buoyant tube is driven vertically through the adia-
batically stratified convection zone. This rise is similar to the
2.5D simulations of Emonet & Moreno-Insertis (1998) and
Magara (2001). The axial field strength decreases as the tube
cross section increases during the rise, due to flux conservation
inside the tube (Fig. 3).

Bz(y) = Bz(y0)
ρ(y)
ρ(y0)

· (71)

As the flux tube meets the convectively stable photosphere, its
vertical motion is halted and horizontal expansion spreads the
flux tube out to form a contact layer with the plasma above
(Fig. 4).

Now the majority of magnetic field is horizontal, i.e. Bx.
This layer is holding up denser plasma than if there was no
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Fig. 4. Contours of magnetic field strength at times t = 20, 30, 35,
40 showing the horizontal expansion of the tube as it meets the stable
photosphere (y = 0).

magnetic field and is unstable to a Rayleigh-Taylor like insta-
bility known as the magnetic buoyancy instability (Archontis
et al. 2004; Newcomb 1961; Thomas & Nye 1975; Acheson
1979). Gilman (1970) derived criteria for the onset of this in-
stability in an isothermal adiabatic atmosphere. The criteria for
onset of the magnetic buoyancy instability can be regarded as
a competition between the destabilising effect of the gradient
in the magnetic field and the convectively stable temperature
gradient.

For modes that do not twist field lines the criteria for onset
is given by

− g
γCs

2

d
dy

ln

(
B
ρ

)
>

N2

CA
2

(72)

while for modes that twist field lines the criteria is

− g
γCs

2

d
dy

ln(B) > k2

(
1 +

l2

n2

)
+

N2

CA
2
· (73)

Here B, ρ, γ have the usual meanings, CA is the local Alfvén
speed and Cs the local sound speed. N is the Brunt-Wäisälä
frequency given by

N2 =
g

γ

d
dy

ln

(
p
ργ

)
(74)

which is a measure of the convective stability of the atmo-
sphere. k, l and n are the wave-numbers of the mode where k is
the wave number parallel to the magnetic field.

The criteria (Eq. (73)) can be rewritten as

−Hp
∂

∂y
ln(B) > k2

(
1 +

l2

n2

)
− γ

2
βδ (75)

where Hp is the local scale height and δ is called the super-
adiabatic excess, which is the difference between the logarith-
mic temperature gradient and its adiabatic value (Stix 2002)
and is negative.

The stabilising term, which depends on the plasma beta β,
prevents further rise of magnetic field above the contact layer.

After the upper part of the flux tube forms the horizontal mag-
netic layer at the base of the photosphere, more and more flux
from the bottom of the tube is pushed up below it. Thus β de-
creases and the stabilising effect of this term becomes less and
less important until the instability sets in and magnetic field can
expand into the atmosphere above. For the simulations here, the
onset of the instability does occur when the local value of β at
the contact layer falls below the critical value, and the growth
rates match that of the 2.5D simulations of Shibata et al. (1989)
and Magara & Longcope (2001).

4.2. Effect of heating mechanisms in the lower
atmosphere

The effect of including heating phenomena in the solar atmo-
spheric model is investigated by comparing the standard model
with the model mentioned in Sect. 2.2 which forces the tem-
perature in the lower atmosphere to relax to its initial value.
The effects are investigated separately from the effects of par-
tial ionisation which are undertaken in Sect. 4.3. Thus when
investigating the effects of extra heating terms, the models are
fully ionised and the only difference is in the energy equation.

The simple interchange derivation for the onset of the mag-
netic buoyancy instability assumes that as a parcel of gas moves
upwards into its new surroundings, the motion is adiabatic and
no heat transfer occurs. However by attempting to simulate the
effects of various non-adiabatic terms in the energy equation
the criteria for the instability to occur must be modified. Gilman
(1970) applied the same argument as above but instead of as-
suming adiabatic motion, the displaced parcels of gas instan-
taneously acquire the temperature of their new surroundings
(this corresponds to the thermal conductivity being infinite).
The criteria for the onset of the magnetic buoyancy instability
for modes that twist field lines is then

− g
γCs

2

d
dy

ln(B) > k2

(
1 +

l2

n2

)
· (76)

It can be seen by comparison with Eq. (73) that the stabilising
effect of the convectively stable gradient of the photosphere has
been destroyed by this instantaneous heat transfer. In these sim-
ulations, although the heat transfer is not instantaneous, there
is heat transfer on a finite time-scale, represented by the relax-
ation term for the energy (Eq. (40)).

It is expected that with the heat transfer present in these
simulations the stabilising term in Eq. (73) will be reduced by
some amount, just as for instantaneous transfer it was nullified
completely. So the onset of the magnetic buoyancy instabil-
ity should occur earlier in the simulation than in the adiabatic
case. This is because less magnetic field is needed to decrease
the effect of the competing stabilising term, which is now less
important.

The magnetic field in the centre bends upwards and drags
flux into the atmosphere. Thus to measure the growth of the
instability the vertical velocity at the centre of the domain just
above the magnetic layer at a height of 10 (1500 km) is plotted
as a function of time. Figure 5 shows these plots for both the
adiabatic case and the non-adiabatic case. As can be seen the
non-adiabatic atmosphere allows onset of the instability much
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Fig. 5. Plasma velocity at a height of 1500 km above the surface as a
function of time showing the onset of the magnetic buoyancy insta-
bility. The solid line is the adiabatic case and the dashed line is the
non-adiabatic case.

earlier in the simulation. This is because less magnetic field
has to build up to nullify the stabilising term in Eq. (73). The
growth rates are also different, the one for the non-adiabatic
case being larger. The instability quenches earlier for the non-
adiabatic case. The magnetic field is emerging at a greater rate
than the adiabatic situation and so the velocities at this height
will decrease quicker to background values as the instability
quenches.

As the magnetic buoyancy instability develops magnetic
field expands into the chromosphere and corona above. As
this happens cold dense plasma is brought up. Associated with
this expansion is a cooling of the plasma, brought on by the
P∇.u term in the energy equation. Without any non-adiabatic
terms such as heat conduction and radiative heating to counter
this rapid cooling the resulting atmosphere would be unphysi-
cal. By modeling the effect of these non-adiabatic terms a more
realistic atmosphere during emergence can be achieved.

Figure 6 shows the vertical temperature profile up the cen-
tre of the domain at t = 75 in the simulation, representing the
final stratification. Also shown is the initial profile from the
model. In the adiabatic case the cold dense plasma brought up
with the magnetic field has expanded and cooled to tempera-
tures an order of magnitude lower than the initial photospheric
temperature. By modeling the non-adiabatic terms using the re-
laxation method, the photospheric temperatures remain similar
to the initial values as the heat transfer relaxes the temperature
to its quasi-equilibrium.

As can be seen from Fig. 7, dense plasma is still being
brought up into the atmosphere in both simulations. However
when the effects of non-adiabatic heating are modeled this
dense plasma is heated to its original temperature rather than
being cooled as it expands. This is not only important in itself,
but as will be shown in later sections, this is important for the
calculation of other parameters in the simulations, such as the
Cowling resistivity which depends on local values of ρ and ε.

Fig. 6. Temperature as a function of height. The upper solid line shows
the initial profile, the lower solid line is the resultant profile at t = 75
for the adiabatic case, and the dashed line is for the simulation where
non-adiabatic effects are included. The temperature is normalised to
the photospheric value of 6420 K.

Fig. 7. Density as a function of height. The lower solid line shows the
initial profile, the upper solid line is the resultant profile at t = 75
for the adiabatic case, and the dashed line is for the simulation where
non-adiabatic effects are included. The density is normalised to the
photospheric value of 2.7 × 10−4 kg/m3.

4.3. Effect of a partially ionised atmosphere

The effect of including a partially ionised atmosphere when
simulating flux emergence is investigated by comparing results
for two simulations. The first is where the model is a fully
ionised plasma (FIP). This means ηc is zero and so the standard
MHD equations apply. The second is where the model contains
the partially ionised plasma in the chromosphere (PIP). Here,
the ionisation level and ηc are evaluated as functions of the lo-
cal density, temperature and magnetic field strength.

For a partially ionised plasma ηc dissipates cross-field
currents. As the simulation progresses the local density and
temperature change and thus so does the local value of ηc.
In Sect. 4.2 it was shown that by modeling the effects of
various heat transfer mechanisms, the atmosphere reacted to
the emerging plasma without the vast cooling seen when the
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Fig. 8. Total unsigned flux at constant heights as a function of time in
the simulation. The two plots on the left are at heights 500 km, and
the two plots on the right are at 2500 km above the surface. The solid
lines are for the FIP model and the crosses are for the PIP model.

effects were ignored. Thus the change in ηc during the simu-
lation represents a realistic variation during the formation of
an active region. For all following simulations, the Newton-
cooling approach described in Sect. 3.3 is applied.

4.3.1. Emergence of magnetic flux

The profile of ηc (Fig. 1) represents a diffusive region of ap-
proximately 10 scale heights. As the magnetic buoyancy drives
magnetic flux and plasma through the model chromosphere and
into the corona, the presence of a diffusive layer in the chromo-
sphere should affect the rate of emergence of this flux. By com-
paring the amount of flux emerging through various heights of
the atmosphere for the two models, the importance of this layer
can be evaluated. This is done using the amount of unsigned
vertical flux∫
|By|dx (77)

where the integral is over the horizontal extent of the domain.
Figure 8 shows the total flux emerging at two different heights
for the two models, as a function of time. The lower height
is 500 km, in the photosphere below the diffusive layer, and the
upper height is 2500 km, above the diffusive layer. At the lower
height the flux emerging for the FIP model (crosses) and the
PIP model (solid) are almost identical, as at this height ηc = 0.
At 2500 km the flux emerging is greatly increased by the pres-
ence of the diffusive layer in the PIP model (crosses) com-
pared to the FIP model (solid line). As the magnetic field passes
through this layer it is diffused on a time-scale

td =
L2µ0

ηc
(78)

where L is the vertical extent of the region. The profile of ηc is
changing during the simulation as the plasma variables change.
Using the maximum values of ηc in these simulations, gives

Fig. 9. Field-lines in x and y given by contours in Az where B = ∇∧A.
The left panel is the FIP model, the right is the PIP model. Both plots
use the same contour levels.

a diffusive time-scale of td ≈ 5 s which compares to the lo-
cal transit time of flux across this region of tt ≈ 500 s. Hence
the magnetic field takes many diffusive time-steps to transit the
partially ionised layer. Hence, locally, the magnetic Reynolds
number (using ηc rather than the standard definition of resistiv-
ity) is well below unity, even though the majority of the domain
is high Reynolds number.

The resultant magnetic field structure is therefore different
for the two models. Figure 9 shows 2D field-lines in x and y
for the two different models. The field-lines are given by the
contours in Az where B = ∇ ∧ A. The resultant field is more
diffuse in the PIP model, and the field-lines extend higher into
the atmosphere, which is as expected when an extra diffusive
layer is added. The inclusion of the presence of neutrals in the
simulation of emerging flux yields more rapid emergence and
a greater amount of flux in the corona.

4.3.2. Cross-field and field-aligned currents

Observations of magnetic fields in the solar atmosphere suggest
that the solar corona is predominantly force-free (Georgoulis &
Labonte 2004). The low β plasma of the solar corona is mag-
netically dominated, and the pressure and gravity terms in the
momentum equation (Eq. (28)) are small in comparison to the
Lorentz force. The equilibrium equation is then given by

j ∧ B = 0. (79)

This is equivalent to saying that the current is aligned with the
magnetic field, j ‖ B, or that there are no cross-field currents,
j⊥ = 0.

Beneath the surface the plasma β is much greater than unity,
and therefore pressure forces dominate magnetic forces. The
field in this region cannot be assumed to be force-free. If in-
deed, active regions are the product of emerging sub-surface
field as evidence suggests (Zwann 1977), then the force-free
coronal field must be formed from non force-free fields. This
raises an important question. How is the magnetic field of sub-
surface flux tubes converted into force-free magnetic coronal
field?

As stated in Sect. 2.1, for a partially ionised plasma, the
current is not dissipated isotropically. The Coulomb resistiv-
ity η acts parallel to the field, and ηc acts perpendicular to it
(Eq. (25)). However, it has been shown that for the solar chro-
mosphere ηc/η can be orders of magnitude. In fact η is less than
numerical round-off throughout the whole domain for these
simulations. So the approximation η = 0 is reasonable. This
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Fig. 10. Total perpendicular current across the domain as a function of
height for the FIP model (dashed line) and the PIP model (solid line).
All values are given in normalised units.

means that as the magnetic field emerges through the partially
ionised region of the model atmosphere, the only component of
the current to be dissipated directly is the cross-field current.

This gives a mechanism for the formation of force-free cur-
rent during flux emergence. As magnetic field is driven though
the partially ionised layer by the magnetic buoyancy instabil-
ity, the energy of cross-field currents are dissipated by the ion-
neutral interactions. While the field-aligned currents are not di-
rectly affected. Hence if the value of ηc is large enough the field
that emerges through the partially ionised region will have no
cross-field currents and will therefore be force-free.

By comparing the amount of cross-field current emerging
into the corona for the two models, the efficiency of this mech-
anism in forming force-free currents can be investigated. A
measurement of the amount of cross-field current is obtained
by performing the integral

J⊥(y) =
∫
| j⊥(x, y)|dx, (80)

over the horizontal extent of the domain.
Figure 10 shows this as a function of height at t = 75, for

both the fully ionised model (dashed line) and the PIP model.
The fully ionised plasma does not destroy cross-field currents
and they are allowed to emerge into the corona with the mag-
netic field, giving a non force-free configuration. However,
when the field emerges through a partially ionised plasma,
nearly all of the cross-field current is destroyed, which cor-
responds to a force-free magnetic field. Figure 11 shows the
integral

J‖(y) =
∫ ∣∣∣ j‖(x, y)

∣∣∣ dx, (81)

as a function of height at t = 75 for both models.
Although η = 0, there is a difference in J‖(y) for the two

models. The equation for j‖ and j⊥ are coupled to each other,
and as the two models have different values of ηc, it is expected
that the amount of j‖ emerging will differ slightly. Evidently,

Fig. 11. Total parallel current across the domain as a function of height
for the FIP model (dashed line) and the PIP model (solid line). All
values are given in normalised units.

the presence of a partially ionised region in the solar atmo-
sphere has destroyed the cross-field current but allowed the
same amount of field-aligned current to emerge as in the case
for a fully ionised plasma. Hence the field has been converted
from a general configuration to one approaching a force-free
state.

Calculations of the force-free nature of atmospheric mag-
netic field have been made based on observations using MDI
(Georgoulis & Labonte 2004; Metcalf et al. 1995). Vector
magneto-grams have been extrapolated to reconstruct coronal
field. Estimates of the height at which the field becomes force-
free are typically 400−1000 km above the photosphere. A typi-
cal height for these simulations based in Fig. 10 is much larger
than this, around 2000 km. This discrepancy may lie in the
2D nature of the simulations, and further 3D work will be per-
formed to better diagnose the height at which field becomes
force-free. However, these results show that in 2D at least, the
emerging field is not force-free unless the partially ionised re-
gions of the atmosphere are included in the models.

Throughout these simulations the Hall term has been ne-
glected from Ohm’s law. Figure 12 shows the magnitudes of
the Hall term (| j∧B

ene
|), the advection term (|u ∧ B|) and the dif-

fusive term for ion-neutral collisions (|ηc j⊥|), as functions of
height at the centre of the horizontal domain for a simulation
run at t = 75. These plots represent typical values for the en-
tire domain. The Hall term is always orders of magnitude lower
than the advection term. Figure 12 also shows that the magnetic
Reynolds number for the partially ionised plasma can reach
values less than unity.

5. Conclusions

2.5D simulations of the emergence of magnetic flux into the
solar atmosphere have been performed. The standard model
used was that of a weakly twisted flux tube inserted into an
adiabatically stratified convection zone. The atmosphere of the
Sun was modeled by two isothermal layers, representing the
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Fig. 12. Vertical profile of terms in Ohm’s law in the centre of the
horizontal domain at t = 75. The solid line is the advection term, the
dashed line is the Hall term, and the dash-dot line is the diffusive term
due to ion-neutral collisions.

photosphere/chromosphere and corona, separated by a transi-
tion region. The flux tube evolution was initiated by dropping
the density inside to start a buoyant rise to the surface. The re-
sultant evolution agrees with previous work of flux tubes in the
convection zone (Magara & Longcope 2001; Fan 2001).

Having briefly investigated the emergence mechanism, we
then added to the standard model the effects of heating/cooling
mechanisms in the solar atmosphere. Rather than simulate
these effects (such as radiative heating, thermal conduction,
and shock heating) directly in the model equations, we used
a simple approach to model their effects. Direct simulation of
these effects is difficult in large scale models, and as stated, not
all heating mechanisms are known well enough to simulate di-
rectly. All these mechanisms, both known and unknown, give
the temperature we observe through emission lines (Vernazza
et al. 1981). Thus, a simple ad-hoc approach is to relax the
temperature to these observed values, or in the case of these
simulations, the model temperature profile. This was done by a
Newton-cooling like term in the equations.

By modeling these heating/cooling mechanisms, we
showed that the criteria for onset of the magnetic buoyancy
instability was modified. The onset of the instability, which
drives flux into the corona, occurred earlier. Also the resul-
tant rate of expansion of magnetic field into the corona was
larger for this new model. More importantly the reaction of the
plasma to the expansion was much more realistic. In the adi-
abatic case, there was no competing terms to the cooling of
plasma from P∇.u expansion. This lead to vastly lower tem-
peratures of the photospheric plasma, which is unrealistic. By
including heating/cooling effects, the expansion of the plasma
as the magnetic buoyancy instability develops did not lead to
unrealistic cooling when dense plasma was brought up through
the photosphere. The resultant temperature was more realistic
for this new model.

As stated in Sect. 2.3, the equation of state used here
does not include the ionisation term in the equation of state
(Eq. (42)). A simpler equation of state was used to allow direct

comparison with the literature, which are ideal MHD simula-
tions, and use no resistivities in their simulations. The main
results of this paper, concerning flux emergence and current
dissipation, should be unaffected by the choice in equation of
state, as they are not directly affected by pressure gradients.

The next set of simulations investigated the effect of the
partially ionised regions of the solar atmosphere. The rela-
tively low temperatures in the chromosphere mean that the fully
ionised approximation used in standard MHD is not valid ev-
erywhere in the simulation domain. The model was modified
to include the effects of a partially ionised region. Assuming a
pure hydrogen plasma, we derived ionisation and neutral frac-
tions. The MHD equations were then modified using a three-
fluid approach to Ohm’s law.

For a partially ionised plasma, the Coulomb resistiv-
ity η acts parallel to the magnetic field, and the Cowling re-
sistivity ηc acts perpendicular to the magnetic field. Using the
model values for density and temperature, η and ηc were eval-
uated locally. η was effectively zero throughout the whole sim-
ulation domain, whereas ηc was largest at heights of 1500 km
above the surface.

We investigated the effect on the emergence of magnetic
flux for the fully ionised (FIP) and partially ionised (PIP)
plasma models. The profile of ηc represented a large diffusive
region, and as the magnetic field expanded throughout this re-
gion, the field became more diffuse than the FIP case, where
ηc = 0. The resultant field structure was different, with field-
lines extending further into the model corona for the PIP model,
as the field was diffused more then the FIP magnetic field.

As already mentioned, coronal field is predominantly force-
free, due to the low value of β, the ratio of gas pressure to mag-
netic pressure. However, field originating in the high β con-
vection zone is not necessarily force-free. The main thrust of
this work was to provide a mechanism for the conversion of
non-force free sub-surface field into force-free coronal field. To
do this we examined the amount of cross-field current emerg-
ing as the field expanded into the corona. For the FIP model,
substantial cross-field currents emerged into the solar corona.
However, in the PIP model less cross-field currents emerged.

The presence of neutrals in the PIP model lead to a large
resistivity ηc perpendicular to the field, and so reduced the
amount of cross-field currents emerging. Conversely η = 0
meant that similar amounts of field aligned current emerged
in both the FIP and PIP models. We suggest that the presence
of neutrals in a partially ionised model of the atmosphere is
very important when investigating the nature of the emerging
magnetic field. The ion-neutral collisions in the plasma cause
an increased resistivity perpendicular to the field. This is a vi-
able mechanism for the conversion of a general field configura-
tion to one approaching force-free as it preferentially dissipates
cross-field currents.

The work presented here is a first attempt at simulating
flux emergence through a partially ionised solar atmosphere.
The initial stratification is an over simplified model of the Sun,
with no pre-existing convection beneath the surface. In addi-
tion these results are from 2.5D simulations. To fully under-
stand flux emergence it is necessary to work in 3D. The impor-
tance of shear forces and plasma draining in rising flux tubes
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has already been shown to be important for flux emergence
(Manchester 2001; Manchester et al. 2004), as has the inter-
action with pre-existing coronal field (Archontis et al. 2004).
Future work will have to include all these along with the meth-
ods applied in this work. Also the effect of joule heating, as
given by ηc j‖2, needs to be investigated relative to the other
dynamics and thermal effects involved.
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