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Abstract In algebraic statistics, computational techniques from algebraic geometry

become tools to address statistical problems. This, in turn, may prompt research in

algebraic geometry. The basic ideas at the core of algebraic statistics will be presented.

In particular we shall consider application to contingency tables and to design of ex-

periments.

Keywords Algebraic Statistics · Design of experiments · Contingency tables

1 Introduction

Polynomials and ratios of polynomials appear in statistics and probability under var-

ious forms, in model representations as well as in inferential procedures. Algebraic

geometry studies (ratios of) polynomials and the zero set of systems of polynomial

equations. Recent developments in computational commutative algebra and their im-

plementation made effective the application of algebraic geometry in statistics and

probability, generating what is now called Algebraic Statistics.

Algebraic statistics uses techniques from (real, computational) algebraic geometry,

commutative algebra and geometric combinatorics, to name a few, to gain insight into

the structure and properties of statistical models and to advise in model analysis. In

turn, these applications may prompt research in algebraic geometry. An example of

this synergy is given by the special issues of two international journals dedicated to

algebraic statistics, one is the Journal of Symbolic Computation [2] and the other one

is Statistica Sinica [1].

Two papers set the foundations of algebraic statistics. Paper [24] circulated in

manuscript form since 1993 and its abstract gives a clear indication of its aim. “We
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Fig. 1 A four point design in two dimensions

construct Markov chain algorithms for sampling from discrete exponential families con-

ditional on a sufficient statistic. Examples include contingency tables, logistic regres-

sion, and spectral analysis of permutation data. The algorithms involve computations

in polynomial rings using Gröbner bases.” The other paper [57] introduces the use of

computational commutative algebra in design and analysis of experiments. Its abstract

reads: “Many problems of confounding and identifiability for polynomial and multidi-

mensional polynomial models can be solved using methods of algebraic geometry aided

by the fact that modern computational algebra packages such as MAPLE can be used.

[...].”

Another prime contribution of algebraic statistics is in statistical modelling. The

basic idea of identifying some statistical models with algebraic varieties can be found

in Chapter 6 of [55] and led first into the algebra of toric models [37] and is currently

being developed in various directions.

Our paper gives a rather technical introduction to the very basics of algebraic statis-

tics. Sections 2 presents the fundamental notions from algebraic geometry. It does so

with reference to the application to design. The application to contingency tables is

build on this in Section 3, hinting to a connection between these two main applications

of algebraic statistics which is recently being developed. In Section 4 algebraic statis-

tical models are discussed. Pointers to the literature are provided throughout and a

reasoned list of references on some more advanced topics is collected in Section 5.

2 Designs and polynomials

Designs give settings for experiments. It is then of interest which models are identifi-

able/estimable from the outcome of the experiment. We consider polynomial models

which give a (purely) mathematical description of all possible models for the experi-

ment (this statement is properly qualified in Section 2.2). In common statistical prac-

tice, usually one uses some standard models and if needed modifies them. The first

contribution of algebraic statistics is to provide a systematic approach to this issue,

particularly useful for non-standard designs.

2.1 From designs to polynomial ideals

By a design here we mean a finite set of n distinct points in k dimensions on each

of which a measurement is taken or the same number of measurements are taken
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at each point. In this case the outcomes at a location are averaged. The technology

illustrated below becomes relevant for designs with no particular geometrical regularity

and n, k relatively large. But, here, consider A = {(0, 4), (2, 2), (4, 0), (3, 2)} in Figure

1 to illustrate the main points. The reader could try the computations below on the

set of points {(−1, 1), (0, 0), (1,−1), (1, 1)}.
First, observe that the points in A are solutions of the system of polynomial equa-

tions g1 = g2 = g3 = g4 = 0 with
g1 := x(x− 2)(x− 4)(x− 3)

g2 := (y − 4)(y − 2)y

g3 := (y − 2)(x+ y − 4)

g4 := (x− 3)(x+ y − 4)

(1)

and that this system has no other solution. Although the system g2 = g3 = g4 = 0

has the same set of solutions, we keep g1 to underline the fact that g3 and g4 “cut” a

subset of points out of the grid generated by g1 = g2 = 0.

Next, consider a “polynomial” combination of the gi, i = 1, . . . , 4, namely h(x, y) =∑4
i=1 fi(x, y)gi(x, y) with fi, i = 1, . . . , 4, a polynomial. Each point in A is a zero of

h. Hence, A is a subset of the zero set of any polynomial in

Ideal(A) =

{
4∑

i=1

fi(x, y)gi(x, y) : fi polynomial i = 1, . . . , 4

}
.

It can be shown that also the converse holds, i.e. if A is in the zero set of a polynomial,

then that polynomial is in Ideal(A). In this sense Ideal(A) is the algebraic object

corresponding to A. It is called the design ideal of A and the polynomials g1, g2, g3, g4
are a set of generators of Ideal(A). Generator sets are not unique. The set Ideal(A)

has the algebraic structure of an ideal; more specifically it is a polynomial ideal. A

polynomial ideal is a subset of polynomials which is closed under summation and under

product with any polynomial; for example, for f, g ∈ Ideal(A) and for any polynomial

s then both f + g and sf belong to Ideal(A).

Before generalising the above to any design, observe that by considering only the

support of a design measure, we implicitly assume that each point in the design is

counted only once. The theory we are summarising can be generalised to designs with

replicates, but we do not consider this to simplify the presentation.

In algebraic geometry the set of points in k dimensions is called the affine k-

dimensional space Ak over the ground field K (to which the point coordinates belong).

A finite set of points in Ak is a zero-dimensional, reduced, algebraic set, where, roughly,

“zero-dimensional” means “points”, “reduced” stands for “distinct” and “algebraic set”

means “zero set of a system of polynomial equations”. A polynomial ideal is associated

to an algebraic variety. As the points are distinct the ideal is radical. (For a technical

definition of radical ideal and other algebraic notions see e.g. [22,44]).

Let D ⊂ Ak be a finite set of n distinct points. Assume that the point coordinates

are in a field K, for example the real numbers R, rational numbers, or complex numbers

C. Let K[x1, . . . , xk] be the set of all polynomials in the variables x1, . . . , xk with

coefficients in K. Then define

Ideal(D) = {f ∈ K[x1, . . . , xk] : f(d) = 0 for all d ∈ D}.

Observe that Ideal(D) is a polynomial ideal. The important Hilbert basis theorem

states that any polynomial ideal is finitely generated. This means that there exist
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g1, . . . , gm ∈ K[x1, . . . , xk] such that D is the zero set of g1 = . . . = gm = 0 and

Ideal(D) = {
∑m

i=1 figi : fi ∈ K[x1, . . . , xk]}.
Importantly, Ideal(D) is computable from the coordinates of the points in D. In [57]

it is shown how to perform this computation in Maple. The freely available computer

algebra software CoCoA provides the function IdealOfPoints which receives in input

the coordinates of the design points and returns the associated ideal [3]. In these

systems of symbolic computations an ideal is represented by any of its generator sets,

that is by a finite list of polynomials. The geometric structure of the design can provide

insight on a generating set of the design ideal. For example, an obvious generator set of

a full factorial grid in k-dimensions with levels {−1, 0, 1} is a set of k polynomials each

one in a different variable, namely {t(t2 − 1) : t = x1, . . . , xk}. Actually, to perform

most computations we do not need to know the point coordinates but a generating

set is sufficient. This has potential for being exploited in the planning phase of an

experiment, before taking the actual measurements, but a systematic treatment of this

idea is not available yet in the literature.

2.2 The space of functions over a design

In Section 2.1 we identified a design with a polynomial ideal. Now, we consider the set of

polynomial functions over D with values in K, namely L = {f : D −→ K : f function}.
AsD is a finite set, L can be identified with the set of polynomial interpolating functions

over D. In algebraic geometry it is called the coordinate ring of D and is indicated with

the symbol K[D].

Importantly, K[D] is isomorphic to a computable set of polynomials (e.g. [22,

Ch.5§4]). This is the quotient ring modulo the design ideal, K[x1, . . . , xk]/ Ideal(D),

whose elements are the equivalence classes of polynomials defined by the equivalence

relationship for which f and g ∈ K[x1, . . . , xk] are equivalent modulo Ideal(D) if and

only if f(d) = g(d) for all d ∈ D. That is, two functions are in the same equivalence

class, and hence are identified over D, if they take the same values over the design

points. Computations in the quotient ring can be performed using a Gröbner basis of

Ideal(D).

Most computations in algebraic statistics rely upon Gröbner bases. Their definition

seems to be purely algebraic and not to have a direct statistical counterpart. Four

fundamental facts about Gröbner bases are: they are particular generating sets of

Ideal(D); they are computable from every generating set of Ideal(D) (e.g. in Maple and

CoCoA); their definition depends on the notion of monomial ordering; and, although

there are infinitely many monomial orderings, for any polynomial ideal there are finitely

many Gröbner bases [51]. Furthermore, if G is a Gröbner basis there exists a finite

subset of G which is a Gröbner basis.

A monomial inK[x1, . . . , xk] is a particular polynomial of the form xα = xα1
1 . . . xαk

k ,

with α1, . . . , αk non-negative integers. It is identified by the list of its exponents

α = (α1, . . . , αk), and hence, it can be visualised as a point in the k-dimensional

grid of non-negative integers.

Definition 1 A monomial ordering is a total order on this grid such that (a) (0, . . . , 0) ≺
(α1, . . . , αk) and (b) if α ≺ β then α+ γ ≺ β + γ for all α, β, γ k-dimensional vectors

with non-negative integer components.
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Item (a) means 1 ≺ xα for all α and Item (b) means that a monomial ordering is

compatible with simplification of monomials, e.g. as x2
1x2/x1x2 = x1 is a monomial,

hence x1x2 ≺ x2
1x2. Once a monomial ordering has been chosen, the leading term of a

polynomial f is the largest monomial in f , e.g. the leading term of f = x2
1x2 + 3x1x

2
2

is x2
1x2 for any monomial ordering for which x2 ≺ x1.

A polynomial ideal is called a monomial ideal if it admits a generating set formed

by monomials. A version of the Hilbert basis theorem assures that this generating

set is finite. We give the definition of a Gröbner basis for a general polynomial ideal

I ⊆ K[x1, . . . , xk]. A subset G of I is a Gröbner basis if two particular monomial ideals

are equal, one constructed from I and one from G.

Definition 2 A Gröbner basis of I is a generating set G such that the ideal generated

by the leading terms of the polynomials of G is equal to the ideal generated by the

leading terms of all polynomials in I.

So far the set of functions over D has been identified with the quotient space

K[x1, . . . , xk]/ Ideal(D) and we indicated that Gröbner bases are a tool to perform

computation over it. Observe that L is a vector space over K and that the indicator

functions in D of each of its points form a vector space basis of L. Theorem 1 describes

how to compute vector space bases of K[x1, . . . , xk]/ Ideal(D), and hence of L, formed

by monomials. For the proof see e.g. [22, Ch.5§3Prop.1]. Clearly a subset of one such

basis can be used as regression functions of an identifiable, linear, regression model.

Theorem 1 Let G be a Gröbner basis of Ideal(D) with respect to a monomial ordering.

The set of monomials which are not divisible by the leading terms of the elements of G

form a vector space basis of L.

There are three important facts about any basis obtained in Theorem 1, call it E.

It is formed by monomials; it has as many elements as there are points in D; and if it

contains a monomial then it contains any monomial that divides it. We say that the

model is hierarchical. In statistical practice often interaction terms are included in a

regression models, only in the presence of linear terms.

Example 1 It can be shown that {g1, g2, g3, g4} in Equation (1) together with g5 below

form a Gröbner basis of Ideal(A) for any term ordering. The underlined terms below

are the leading terms for any term ordering for which x ≺ y and y ≺ x3



g1 := x4 − 9x3 + 26x2 − 24x

g2 := y3 − 6y2 + 8y

g3 := y2 + yx− 6y − 2x+ 8

g4 := yx+ x2 − 3y − 7x+ 12

g5 := x3 − 6x2 + 3y + 11x− 12

For example, in g3 we have x ≺ y by assumption, and we have y ≺ xy and xy ≺ y2

by Definition 1(b). Then according to Theorem 1, E = {1, x, x2, y} is a maximal set of

linearly independent functions over A. In Figure 2 the empty dots are the (exponents

of) E and the full dots are the leading terms of g3, g4, g5; there is no need to draw the

leading terms of g1, g2. Clearly we could take K = Q, the set of rational numbers. It

can be noted that the polynomials g2, g3, g4 form a Gröbner basis if y ≺ x and that

the polynomial g1 is worthless for Gröbner basis computation
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Fig. 2 (a) A corner cut model and (b) Not a corner cut model

Display (2) gives a summary. In the left most column the design points are listed.

In the next four columns the monomials in E are evaluated at the design points giving

a 4-by-4 invertible matrix. In the sixth column it is observed that the polynomial

x3y−xy3 takes on D the same values as 30y+30x−120 which is a linear combination

of the elements of E and hence belongs to R[x, y]/ Ideal(D).

NormalForm(x3y − y3x) =

1 x x2 y 30y + 30x− 120 15
8 2x+y − 30

(0, 4) 1 0 0 4 0 0

(2, 2) 1 2 4 2 0 0

(4, 0) 1 4 16 0 0 0

(3, 2) 1 3 9 2 30 30

(2)

The “normal form” operation, which again is implemented in standard software, allows

the computation of the element of the quotient space equivalent to a given polynomial

(see e.g. [55]). It generalizes the Euclidean division to multivariate polynomials and

its usefulness is not to be underestimated, for example it is a fundamental tool in the

change of bases in L from the indicator function basis to a monomial basis.

The last column suggests the obvious observation that the non-polynomial function

30− 15
8 2x2y is identified with x3y − xy3 over D. In general, the technology described

here does not give us any information on the structure of the model outside the design

points, although it can be adapted to some special types of regression models (e.g.

see [17] for trigonometric regression models; see also [45] for wavelet models in signal

processing).

2.3 Fans of a design

In Example 1 we chose a monomial ordering for which x ≺ y and y ≺ x3. The obtained

model is a corner cut model; that is, a model where the leading terms of the Gröbner

basis in Theorem 1 are separated by a hyperplane from the E-basis. See Figure 2(a).

If we choose a monomial ordering for which y ≺ x, then by Theorem 1 we find

E = {1, x, y, y2}, again a corner cut model. For an ordering for which x ≺ y and x3 ≺ y

we would obtain E = {1, x, x2, x3}. These three cases cover all possible monomial

orderings. Note however that A = {(0, 4), (2, 2), (4, 0), (3, 2)} identifies the (saturated)

model {1, x, y, xy} in Figure 2(b). That is, {1, x, y, xy} is a monomial vector space basis

of L but it is not corner cut. The set of all hierarchical models obtained by varying the

monomial ordering is called the Gröbner fan of the design, whilst the set of saturated
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hierarchical models identified by a design is called the statistical fan of the design. The

relationship between Gröbner and statistical fans is studied in [47].

A design in Rk with n distinct points is called generic if its Gröbner fan is the set

of all corner cuts formed by n monomials in R[x1, . . . , xk] [52]. As a rule of thumb, de-

signs which present geometrical symmetries are not generic. For example, full factorial

designs are not generic, and also their statistical and algebraic fans are equal.

2.4 Example: models for compositional data

A mixture design D in Rk is a finite set of points in (k − 1)-simplex. That is, there is

a functional constraints on the treatment combinations. Hence

x1 + x2 + . . .+ xk − 1 ∈ Ideal(D).

In particular with Theorem 1 we retrieve only slack models, where one factor is not

present at all, equivalently it is totally confounded with the other factors.

The trick is to work within a projective framework as the focus is on the relative

proportions of the components in the experimental settings. There are also mathemat-

ical reasons by which some theorems and ideas are better expressed and understood

within a projective algebraic geometry set-up than an affine set-up, e.g. Bézout’s the-

orem on the number of intersection points between two plane curves. The projective

counterpart of the theory in Sections 2.1, 2.2 is fairly intuitive. For a full development,

which address issues about experiments with mixtures raised in [65,66], see [48,49],

while here we illustrate it with an example.

Example 2 The mixture design B =
{
(1, 0, 0), (0, 1, 0), (0, 0, 1), ( 1

3 ,
1
3 ,

1
3 )

}
is identified

with its “cone”, namely {(a, 0, 0), (0, b, 0), (0, 0, c), (d, d, d) : a, b, c, d real numbers}. The

role of Ideal(B) is taken by the ideal generated by the homogeneous polynomials

g1, g2, g3 with g1 = x1x3 − x2x3, g2 = x1x2 − x2x3, g3 = x2
2x3 − x2x

2
3. This is the

vanishing ideal of the cone. The projective analogue of Theorem 1 returns a set of lin-

early independent monomials over B all of the same degree. Underlined are the leading

terms with respect to any monomial ordering for which x3 ≺ x2 ≺ x1.

2.5 Indicator functions

Another polynomial representation of a design turned out to be useful. Take K = R.

Here the design F of interest is seen as a subset of a larger design D ⊂ Rkand it is

represented by the indicator function of F in D, namely F : D −→ {0, 1} defined as

F (d) =

{
1 if d ∈ F
0 if d ∈ D \ F .

Let E be a basis of R[x1, . . . , xk]/ IdealD as in Theorem 1 and let L be the set

of exponent vectors of the elements of E, e.g. for k = 2 and {1, x1, x1x2} ⊂ E then

(0, 0), (1, 0), (1, 1) ∈ L. As F is a function over D, then there exists a polynomial

representation of F of the form F =
∑

α∈L bαx
α ∈ R[x1, . . . , xk]/ Ideal(D).

Often D is a full factorial design and the levels of a factor with k levels are coded

using the kth (complex) roots of unity, solutions to zk = 1. In this case, the indi-

cator function is a real valued function with complex coefficients and K = C. The
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Fig. 3 A band and a stack for p = 3.

complex coding is not unusual in design of experiments, e.g. [7], and the group struc-

ture implied by this coding can be exploited. From a polynomial algebra viewpoint

it is advantageous as the set of complex numbers is algebraically closed; equivalently

every univariate polynomial is the product of degree one polynomials. Theorems can

be proved in algebraic geometry over algebraically closed fields which do not hold

otherwise.

The coefficient of xα can be computed from the values of the (response) function

xα at F1, namely

bα =
1

#D
∑
d∈F

xα(d)

where c is the conjugate of a complex number c and #D is the sample size. More

importantly, the coefficients of F embed statistically relevant information on F . For

example, orthogonality among factors and interactions, projectivity, aberration and

regularity correspond to the fact that suitable subsets of coefficients of F are zero [34,

56,70]. See also [35] for an overview.

2.6 Example: algebraic theory of sudoku

In a recent paper Bailey et al. [8] discuss the mathematics of sudoku puzzles and

show that their solutions are examples of “gerechte design”. These are particular Latin

square designs. A square matrix of size p2×p2 is divided in p2 regions, each containing

p2 cells; and p2 symbols are to be allocated so that each symbol occurs once in each

region. In the forthcoming paper [35], outlined below, Fontana and Rogantin study the

indicator function for the solutions to sudoku puzzles.

A sudoku game is described by four factors with p2 levels each: R,C,B and S

for rows, columns, boxes and symbols, respectively. With a typical trick in design of

experiment, a factor with p2 levels is split into two pseudo-factors with p levels each.

Figure 3 shows that R splits into (R1, R2) where R1 identifies the “band” and R2

identifies a row within a “band”. Analogously, C = (C1, C2) where C1 identifies the

“stack” and C2 the column within a “stack”. Note that the three “position” factors

are not linearly independent as the box factor B is identified by (R1, C1). The symbol

S could be coded resorting to pseudo factors (S1, S2), but here this is not necessary.

Example 3 For p = 3 the digit 5 in the top left corner of the grid in Figure 3 is encoded

by (r1, r2, c1, c2, s) = (0, 0, 0, 0, 5).

1 The abuse of notation by which xα is both a monomial in R[x1, . . . , xk] and the corre-
sponding monomial function in R[D] is typical.
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Solutions to sudoku puzzles are identified with particular fractions of a full factorial

design D in 5 factors, where the first four factors have p levels coded by the pth root

of unity and the last factor has p2 levels. Following Section 2.5 the set of exponents

L is L = {(α1, . . . , α5) : 0 ≤ αi ≤ 2 for i = 1, . . . , 4, and α5 = 0, . . . , 8} and the

indicator function of a solution to a sudoku puzzle is a linear combination of the type

F =
∑

α∈L bαx
α.

The game rules translate into values of the coefficients of F , for example “each

symbol appears exactly once in each row” if and only if R1 ×R2 × S is a full factorial

design; that is, if and only if b(r1,r2,0,0,s) = 0 for all (r1, r2, 0, 0, s) ∈ L. The other rules

are similar and listed in [35]. Let M be the collection of all these indices.

The solutions to the sudoku puzzle are all and only the solutions of the following

system of polynomial equations in the coefficients on the indicator function F{
bα =

∑
β∈L bβ b[α−β] with α ∈M

bα = 0 with α ∈ L \M.

It is known that some operations, e.g. permutation of symbols, transforms a solution

to a sudoku puzzle to another solution. In [35] it is shown that this is equivalent to

keep fixed some margins of a contingency table which again represents a sudoku puzzle.

This makes a natural link to the other paper at the foundations of algebraic statistics

which is summarised in Section 3. On this link see also [5].

3 Markov Bases of Log-linear Models

Now we turn to the application of algebraic geometry techniques to exact conditional

inference in contingency tables. Useful references are [24,26,58]. It provides an MCMC

procedure to obtain a sample from a conditional distribution of a discrete exponen-

tial family given the sufficient statistics and can be used in a variety of applications,

including hypothesis testing for log-linear models, hyper-geometric sampling, multino-

mial rule of succession with conditioning on incomplete information.

At the basis there is the so-called Diaconis-Sturmfels algorithm which provides a

method for constructing a symmetric and irreducible Markov chain on an intersection

of hyperplanes in Zk
≥0 and is used to handle practical problems in categorical tables.

(Here Z≥0 is the set of non-negative integers and Z the set of integer numbers).

The finite set D ⊂ Rk represents the cells of a contingency tables or any other finite

set of interest. We consider contingency tables to be in a familiar framework, but D
could be any finite set on which to define a statistical model. We assume the log-linear

model

p(x; θ) = Z(θ) exp(

d∑
i=1

θiTi(x)) for x ∈ D

with parameter vector θt = [θ1, . . . , θd] ∈ Rd and with sufficient statistics the integer

valued function T : D −→ Zd
≥0 \ {0}, where At is the transposed matrix of A. In

particular, for N independent draws from p(·; θ), the statistics T =
∑N

i=1 T (xi) is

sufficient for θ. At this stage of the research, it seems essential that the sufficient

statistics take non-negative integer values. Before going into the formalism of [24], in

Examples 4 and 5 we outline the very basics following Section 6 of [55].
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Example 4 For D = {(0, 0), (0, 1), (1, 0), (1, 1)} ∈ R2, from Theorem 1 and for any

monomial ordering we have E = {1, x, y, xy}. Then, the saturated exponential model

on D is exp{θ00 + θ10x+ θ01y+ θ11xy} where θ00 is the cumulant function depending

on θ10, θ01, θ11. Assume the exponential submodel

p(x, y;ψ) = exp{ψ10x+ ψ01y −K(ψ01, ψ10)} (3)

with sufficient statistics T (x, y) = (x, y) and K the normalising factor. Its intrinsi-

cally polynomial structure is evident in the parametrization ζ00 = exp{−K(ψ01, ψ10)},
ζ10 = exp{ψ10} and ζ01 = exp{ψ01} and it is

p(x, y) = ζ00ζ
x
10ζ

y
01 for(x, y) ∈ D.

Example 5 Model (3) means that the integer valued vector [log p(x, y)](x,y)∈D belongs

to the span of the following (evaluation) matrix

1 x y

(0, 0) 1 0 0

(0, 1) 1 0 1

(1, 0) 1 1 0

(1, 1) 1 1 1

Call it Z1 and consider its orthogonal, here Z2 = [1,−1,−1, 1]t. Then, Model (3) is

orthogonal to Z2 and equivalently

Zt
2[log p(x, y)](x,y)∈D = 0. (4)

Now, consider the positive and negative parts of Z2, so that Z2 = Z+
2 − Z−2 ; here

Z+
2 = [1, 0, 0, 1]t and Z−2 = [0, 1, 1, 0]t. Then, Equation (4) becomes

(Z+
2 )t[log p(x, y)](x,y)∈D = (Z−2 )t[log p(x, y)](x,y)∈D

and taking logarithm it becomes p(0, 0)p(1, 1) = p(1, 0)p(0, 1) which is a polynomial

invariant of the considered model, under the assumption of strict positivity. This leads

into the toric representation of exponential models which we shall consider again in

Section 4.

3.1 Markov bases

For a value t of T consider Ft =
{
f : D → Z>0 :

∑
x∈D f(x)T (x) = t

}
⊂ R[D] and

Yt =
{

(x1, . . . , xN ) ∈ DN : T (x1) + . . .+ T (xN ) = t
}

. The fiber Ft is the set of tables

for which the sufficient statistics is equal to t and Yt is the set of samples with fixed

values of the sufficient statistics.

One would like to enumerate Yt or sample from the uniform distribution over

Yt. This is difficult for reasonable size problems and instead one samples from the

hyper-geometric distribution over Ft. One could see that this is possible by considering

the map which associates to a sample its contingency table, ψ : Yt −→ Ft defined

by ψ(x1, . . . , xN ) =
∑

x∈D ex
∑N

k=1 1x(xi) where (ex)x∈D is the canonical basis in

RD and 1x the indicator function of x ∈ D (see [13,14,58]). The Diaconis-Sturmfels

algorithm works over Ft and hinges on Markov bases.
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Definition 3 A Markov basis is a set of functions f1, . . . , fm : D −→ Z such that

(a)
∑

x∈D fi(x)T (x) = 0 for i = 1, . . . ,m and (b) if f, f ′ ∈ Ft then there are A ∈
{1, . . . ,m} and ej = ±1 (j = 1, . . . , A) such that f ′ = f +

∑A
i=1 ejfij

and f +∑a
i=1 ejfij

≥ 0 for all a ≤ A.

Item (b) means that there is a path from f to f ′ which preserves Ft. From a Markov

basis it is possible to construct a stationary Markov chain of Ft with transition matrix

π(f, f + fi) = 1/(2m) if f + fi ≥ 0

π(f, f − fi) = 1/(2m) if f − fi ≥ 0.

This is an irreducible, aperiodic, Markov chain with stationary distribution the hyper-

geometric distribution over Ft (see [24, Lemma 2.1]).

Example 6 The margins of 2by2 tables are preserved by the basic move

[
1 −1

−1 1

]
, for

example [
2 4

3 1

]
+

[
1 −1

−1 1

]
,

where t = (6, 4, 5, 5), has the same row and column margins as

[
2 4

3 1

]
. We could have

chosen

[
−1 1

1 −1

]
. Which other basic moves preserve the margin?

3.2 Algebraic formalism and toric ideals

To x ∈ D associate an indeterminate px, define p = (px)x∈D and consider the polyno-

mial ring R[p] which has as many variables as cells in the table. The following maps

translate “statistical objects” into polynomials in R[p].

1. A non-negative, integer valued function f : D → N is represented by the monomial∏
x∈D p

f(x)
x = pf(x).

Example 7 For D = {x1, x2, x3, x4}, the function (x1, x2, x3, x4) → (2, 4, 3, 1) goes

into p21p
4
2p

3
3p4. (We simplified the notation by setting pxi = pi.) Here D could

represent the cells of a 2by2 table.

2. An integer valued function f : D → Z is represented by the binomial pf+(x)−pf (x)

where f+ is the positive part of f and f− the negative part.

Example 8 The function (x1, x2, x3, x4) → (1,−1,−1, 1) becomes p1p4 − p2p3.

3. We need to introduce other indeterminates t1, . . . , td and t = (t1, . . . , td). The

multi-valued function

T : D −→ Nd \ {0}, x 7−→ (T1(x), . . . , Td(x))

is represented by the ring-homomorphism

φT : R[D] −→ R[t1, . . . , td], 1x 7−→ t
T1(x)
1 . . . t

Td(x)
d

where x is a point in D and 1x the indicator function of x.2 Write tT (x) for the

monomial t
T1(x)
1 . . . t

Td(x)
d .

2 We could have considered the monomial function x ∈ R[D] instead of 1x.



CRiSM Paper No. 08-21, www.warwick.ac.uk/go/crism

12

Let IT be the kernel of φT , namely IT = {f ∈ R[D] : φT (f) = 0}. Three relevant

facts about IT are:
∑

x f(x)T (x) = 0 if and only if pf+(x) − pf−(x) ∈ IT ; it is the set

of polynomials in the p indeterminates that vanish on the monomials {tT (x) : x ∈ D};
and it is a polynomial ideal, which is generated by homogeneous binomials. These are

called toric ideals. Theorem 2 states that a set of generators of IT corresponds to a

Markov basis. For the proof see [24, §3]. Many papers are devoted to the computations

of Markov bases for specific applications [6,27].

Theorem 2 Let D be a finite set in Rk. The set of functions {f1, . . . , fm} : D → Z
is a Markov basis if and only if the set of monomial differences pf+

i (x) − pf−i (x),

i = 1, . . . ,m generates the ideal IT .

3.3 Contingency tables: a summary

Section 3.2 is based on identifying an integer vector of length k by a monomial difference

in k variables. Then, a contingency table with non-negative integer entries translates

into (the exponents of) a monomial in as many variables as entries in the table. Also

a normalised contingency table with n = n1 × . . . × nk cells can be translated into a

symbolic, polynomial framework in various ways. This table can be viewed as

1. a k-dimensional array with entries in [0, 1], e.g.

[
p00 p01
p10 p11

]
,

2. a point in the (n− 1)-simplex, e.g. (p00, p01, p10, p11),

3. a function defined on its cells into [0, 1] satisfying the constraints, e.g. p00 + p01 +

p10 + p11 = 1 and pij ≥ 0.

Let D be the set of cells of the table. From Item 3. above a contingency table is a

function D −→ [0, 1] ⊂ R. Hence there exists a unique polynomial in the quotient space

identifying the table, call it
∑

α∈L θαx
α ∈ R[x1, . . . , xk]/ Ideal(D). Note that Items 2.

and 3., as well as Section 3, do not require a “cross-product” structure, e.g. cells

with structural zeros can simply not be included in the representational framework.

For pointers to applications of the Diaconis-Sturmfels algorithm in the presence of

structural zeros see Section 5.

4 Algebraic statistical models

Densities, random variables, statistical models, probabilistic models, etc. are functions

defined from a sample space D to a suitable space K. We have seen in Section 2.1 that

when D is a finite set, then for each of these statistical/probabilistic objects there is an

object in the coordinate ring and a polynomial in K[x1, . . . , xk]/ Ideal(D) representing

it. This isomorphism actually holds also for other algebraic varieties, not necessarily a

finite set of points [22, Ch.5§4]. Furthermore, different polynomial representations can

be used for the same statistical object, e.g. contingency tables in Section 3.3.

Algebraic statistical models for discrete sample spaces, first introduced in [55, Ch.6],

are defined as statistical models which are algebraic varieties with respect to some

parametrization. It is required that there is a parametrization under which the model

is the solution set of a system of polynomial equations. This ignores the condition

of non-negativity required by some parametrizations and postpones the checking of
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X4

X2 X3

X1

Fig. 4 Four cycle model

non-negativity to a subsequent analysis phase. (Note that the sum-to-one condition

of probability densities is algebraic, namely the polynomial equation
∑

x∈D px = 1.)

Example 10 considers a graphical model and indicates the role of the algebraic operation

of elimination in change of parametrization.

The definition of an algebraic statistical model was refined in [30] and resorts to

real algebraic geometry [15], which studies solutions over (the field of) real numbers

of systems of polynomial equations and, in doing so, studies semi-algebraic sets. These

are solutions to a finite number of polynomial equations and polynomial inequalities.

A drawback of real algebraic geometry is that, at the moment, the computational

advantages are not as developed and widely available as for computational commutative

algebra.

Definition 4 Consider Θ ⊆ Rk with no-empty interior and {p(·, θ) : θ ∈ Θ} a family of

probability distributions on a sample space parametrised by θ. Then, {p(·, θ) : θ ∈M}
is an algebraic statistical model if there exists a semi-algebraic set A ⊆ Rk such that

M = A ∩Θ.

Example 9 Surfaces of independence are Segre varieties [68]. Bayesian networks, which

can be visualised as directed acyclic graphs, whose nodes represent random variables

and whose arcs describe a recursive factorisation for their joint distribution, are alge-

braic statistical models [10,36].

Example 10 Consider D = {0, 1}4 and the random vector X = (X1, X2, X3, X4) on

D. Assume for the moment strict positivity of the joint distribution. Strict positivity

is obtained algebraically via the operation of saturation [43, §3.5B].) The conditional

independence model in Figure 4 states the two conditions: X2 and X4 independent

given X1 and X3 and X1 and X3 independent given X2 and X4.

The quotient ring R[D] is isomorphic to the polynomial space spanned by the mono-

mials in
{
1, xi, xixj : i 6= j, xixjxk : i 6= k 6= j, x1x2x3x4 : i, j, k = 1, . . . , 4

}
. Let L be

the corresponding exponent set. ConsiderM = {1, x1, x2, x3, x4, x1x2, x2x3, x3x4, x4x1},
let M be the corresponding exponent set and M0 = M \ {(0, 0, 0, 0)}. It can be shown

that the model in Figure 4 is an exponential model of the form

p(x;ψ) = exp(ψ0000 + ψ0100x2 + ψ0001x4) exp(ψ1000x1 + ψ1100x1x2 + ψ1001x1x4)

exp(ψ0010x3 + ψ0110x2x3 + ψ0011x3x4)

which involves only terms in M.

We distinguish three parametrizations for the M model:
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(p) the raw probabilities (p(d), d ∈ D) ⊂ ∆n−1;

(θ) the vector space parametrization{
pθ = θ0000 +

∑
α∈M0

θαx
α

θ0000 = 1−
∑

α∈M0
θαmα

where mα = E0(X
α) is the first moment of Xα, α ∈ M0, with respect to the

uniform distribution over D; and

(ζ) the toric parametrization
p(x;ψ) = exp

(∑
α∈M ψαx

α)
=

∏
α∈M exp (ψαx

α)

= ζ0
∏

α∈M0
ζxα

α = p(x; ζ)

where ζα = exp(ψα). It is possible to switch parametrization using elimination theory

(e.g. [22, Ch3]) which generalises Gaussian elimination for linear polynomials and can

be handled with Gröbner basis algorithms (e.g. the macro Elim in CoCoA). For example,

elimination of ζ from the p-ζ equations gets an implicit representation of the four cycle

model, given by a set of binomials in the p(x;ψ), x ∈ D. This leads into the algebra of

toric ideals, that is ideals which admit Gröbner bases formed by binomials with terms

of the same degree. A full analysis of the four-cycle model with respect to the pairwise,

local, global Markov properties for graphical models, can be found in [37]. Below we

outline the main result of the related theory.

4.1 Toric algebra of graphical models

Let #D = n, P = (p1, . . . , pn) ∈ ∆n−1 be a probability distribution on D, A =[
aij

]
i=1,...,d,j=1,...,n

a d × n-matrix with aij ≥ 0 and
∑

i ai1 = . . . =
∑

i ain and

consider the map

ΦA : Rd
≥0 −→ Rn

≥0

(t1, . . . , td) 7−→ (
∏

i t
ai1
i , . . . ,

∏
i t

ain
i ).

In Example 5 the ti’s are the ζ parameters and Z1 is the A matrix, specifically the

columns of A coincide with the sufficient statistics. The change of notation is to follow

the literature. A probability P belongs to the model A if and only if the following three

equivalent conditions hold

1. P ∈ Image(ΦA),

2. P factors according to model A,

3. P is an exponential family

Pθ(x) = Z(θ) exp(

d∑
i=1

θiTi(x))

where Z(θ) is a normalising constant and T : D → Zd \ {0} is a sufficient statistics.

Undirected graphical models, log-linear models and other exponential models factor

according to model A for some matrix A. This is studied in [37] where it is also

shown that for decomposable graphical models those conditions are equivalent to the

Hammersley-Clifford theorem, while they are not for non-decomposable models. For
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non-decomposable models it is also shown that the maximum likelihood degree is a

non rational number and it is given the following characterisation of distributions that

factor according to A in terms of toric varieties.

A subset F of columns of A is feasible if the support of any other column is not

contained in the union of the supports of the columns in F ; for aj the j-th column of

A, and F ⊂ {1, . . . , n}, j ∈ {1, . . . , n} \F then supp(aj) 6⊂ ∪l∈F al. Let u− v ∈ ker(A);

i.e.
∑

i uiai =
∑

i viai. The non-negative toric variety associated to A is

XA =
{
(x1, . . . , xn) ∈ Rm

≥0 : xu1
1 . . . xun

n = xv1
1 . . . xvn

n

}
.

Theorem 3 The probability P factors according to the model A if and only if P ∈ XA

and the support if P is A-feasible.

The assumption of strict positivity in Example 10 can now be dropped.

4.2 Causal/intervention models

Discrete models for causal reasoning on Bayesian networks are algebraic statistical

models. This observation allows to generalise ideas in [54,67] to other graphical struc-

tures rather than Bayesian networks and to non graphical algebraic statistical models

[40,61–63]. We present the basic idea and refer for motivation and main results to the

aforementioned papers.

Consider a single rooted probability tree T with transition probabilities π. These

can be considered as labels on the directed edges of the tree which respect the laws of

probabilities: π = (π(w|v) ∈ [0, 1] : for all (v, w) directed edges in T ) and
∑

w π(w|v) =

1 where the sum runs over the children of v.

Example 11 In the tree in Figure 5 there are two natural parametrizations: the tran-

sition probabilities πi, i = 1, . . . , 22 and the probabilities of the root-to-leaf paths: pi,

i = 4, 6, 8, 10 − 12, 14 − 16, 18, 20 − 22. Linear constraints are 1 = π20 + π21 + π22,∑
i pi = 1 and inequality constraints are clearly πi, pi ∈ [0, 1]. Polynomial equations

map one parametrization into the other, e.g. p4 = π1π4, and the inverse mapping is

defined by ratios of polynomials.

Algebraic statistical models, including some commonly used models, can be im-

posed by adjoining to the probability constraints some polynomial constraints, q(π) = 0

with q polynomial, and some polynomial inequalities r(π) > 0, with r polynomial.

For example setting equal some transition probabilities, e.g. π(v4|v1) = π(v8|v3) and

π10 = π14 in Figure 5 leads to a chain event graph [61–63].

A manipulation on the tree (or a submodel) is defined as a new family of probability

densities π̂ = (π(w|v)) which is function of the transition probabilities π̂ = f(π) where

f is a polynomial map. For example, in Figure 5 the equalities π̂(v4|v1) = π̂(v8|v3) = 1

and π̂(v5|v1) = π̂(v9|v3) = 0 give a typical manipulation considered in [54]. Com-

patibility conditions have to be respected between manipulation and submodel. Some

(polynomial) functions of the π̂, m = m(π̂), are assumed observed or somehow known,

and the interest is in identifying an effect of the manipulation. Namely in checking if

a polynomial function e = e(π) can be written as e = e(m(π̂)). This type of problems

can be handles with elimination theory, although often computations are forbidding.
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Fig. 5 A tree with unusual stage set

5 Advanced topics

We conclude with hints to more advanced results and applications. The selected topics

and the provided references are an incomplete list and follow the taste and interests of

the author. Still we believe the provided pointers to the literature are useful indications

of promising research areas which have not been fully developed yet.

There is much interest in the application of computational algebra to computational

biology similar to the application in statistics in many ways. The volume [53] introduces

to the applications of computational commutative algebra in computational biology and

includes open problems, some of which have been solved in the meantime, while some

remain unanswered. Some models in computational biology, for example those used in

phylogenetic tree reconstruction, have a not dissimilar structure to causal models and

the relevant statistical problems are often of the identifiability type outlined in Section

4.2. But the amount and type of available data are often very different and present

different mathematical and inferential issues. Interesting work in computational biology

has been developed by Allman and Rhodes [4] on evolutionary models and Casanellas

and co-authors on phylogenetic invariants [19].

The connection between algebraic statistics and information geometry was, to our

knowledge, first discussed by Professor G. Pistone at the 2nd International Symposium

on Information Geometry and its Applications, Tokyo (2005). He noted that toric

models are somehow located between the class of exponential models and the class

of algebraic statistical models (see also [37]). This line of research, which considers
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simultaneously a model as a differential manifold and an algebraic variety, is currently

being investigated and a contribution in that direction is the collected volume [38];

relevant is also the forthcoming thematic year at SAMSI 2008-09 “Algebraic Methods

in Systems Biology and Statistics”.

In [12] the linear aberration for polynomial models is introduced. This is a new

concept in experimental designs for quantitative factors which is an alternative to

aberration and is strongly related to corner cut models and state polytopes. Algorith-

mic and computational aspects are related to non-linear matroid optimization [11].

Another novel idea in design of experiment is to interpret an algebraic variety, not nec-

essarily a zero-dimensional one, as a (repository of potential) designs of experiments

[9,50]. An example is the sum-to-one condition for mixture designs. The challenge is

to device methods to sample on the algebraic variety according to appropriate criteria.

The baggage of statistical techniques to analyse designs whose point coordinates are

“approximately” known, could be supplemented by transferring the algebraic notion

of border bases [44] to statistics. The techniques in Section 2 are applied to reverse

engineering in particular for the identification of biochemical networks [25].

The Diaconis-Sturmfels algorithm and Markov bases have been applied to address

a number of questions related to categorical data, requiring Markov chain Monte Carlo

techniques. These include the Bowker test for matched pair data [41], rater agreement

test [59], calibration of Fourier analysis of ranking data [23], in model selection [42],

sequential sampling in multi-way contingency tables with given constraints [21], for

quasi-independence [39] and weaken independence [18], to mention a few. The compu-

tation of Markov bases in special cases has received much attention e.g. for decompos-

able graphical models [27] and in the presence of structural zeros [60]. Fast algorithms

to compute Markov bases have been devised [46]. High degree binomials in the Markov

bases correspond to long steps in the Markov chain which should be avoided in efficient

algorithms. This technical difficulty should be overcome in order to make Markov basis

technique effective in a wide variety of applications.

One of the first applications of algebraic statistics was to disclosure limitation

problems developed by Professor S.E. Fienberg and co-authors [33]. The algebraic

notion of maximum likelihood degree introduced in [20] is arousing some interest of

algebraists [31]. Further topics within likelihood based inference have been studied in

[29] and maximum likelihood estimator for latent class models in [32].

Although this paper has been mainly concerned with discrete sample space, al-

gebraic techniques have been applied to Gaussian vectors. Polynomial conditions on

the entries of the variance-covariance matrix generate a variety in the cone of semi-

definitive positive matrices [28,69].
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