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Abstract 

Range of motion of the hip joint is a major contributor to dislocation post total hip replacement. 

Impingement is often treated as a surrogate for dislocation and occurs – prosthetically – when the 

neck of the femoral component contacts with the rim of the pelvic acetabular cup. This impingement 

is caused by movement of the leg during activities of daily living. This article analyses hip joint range 

of motion and its implication for impingement.   

A systematic literature review was undertaken with the purpose of establishing a range of motion 

benchmark for total hip replacement. This paper proposes a method by which a three-dimensional 

range of motion boundary established from the literature can be presented. The nominal boundary 

is also validated experimentally using a number of configurations of a neutral hip joint coordinate 

frame. 

1. Introduction 

Total Hip Arthroplasty (THA) is regarded as a successful technique which restores lost mobility to 

patients, suffering from osteoarthritis (OA), rheumatoid arthritis (RA) and acute trauma [1, 2]. THA 

procedures which permit the patient to walk, climb stairs and sit on a chair without pain or 

dislocation are often considered adequate [3]. However, humans can assume more than a thousand 

positions that are used in combination with movement to perform various Activities of Daily Living 

(ADL) [4]. Consequently, there are more demanding postures that a patient can assume, but these 

increase the demands placed on THA in terms of its resistance to dislocation [3].   
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Dislocation is one of the most common complications for a patient post THA, with an acknowledged 

failure rate of 1-5% for primary THA procedures for patients presenting with OA or RA [5-11]. A 

series of retrievals, from THA patients who had dislocated, found that 90% of dislocations had 

evidence of impingement [12]. Impingement related dislocations are associated with contact 

between the two prosthetic components, femur on pelvis contact or combination of prosthetic and 

bone contact [6]. Consequently, there is an interactive effect between the surgical technique, the 

prosthetic options available to surgeon and the prosthetic design which need to be understood [13-

19].  

Prosthetic impingement, occurs when a patient’s desired Range of Motion (ROM) causes the neck of 

the femoral component to contact with the rim of the acetabular cup. If motion continues, the hip 

joint centre of rotation moves from the femoral head centre to the rim of the acetabular cup. 

Further motion leads to subluxation of the femoral head until it ‘jumps out’ of the acetabular cup 

and dislocation occurs [5, 6, 15]. Therefore, improving the ROM to impingement is directly 

correlated to improved resistance to dislocation [14].  Determining a boundary for an impingement-

free ROM would allow surgeons to plan the operative procedure to achieve optimum positioning 

[17].  

The aim of this study is to construct a three-dimensional ROM boundary from which THA procedures 

can be assessed. A systematic review of the literature is used to obtain kinematic data for pure joint 

motion in each of the anatomical planes - (pure flexion/extension, abduction/adduction, 

internal/external rotation) [13, 16, 18-20] and for specific ADLs. Based on this data a ROM boundary 

is constructed and validated experimentally. The discussion section also outlines how this ROM 

boundary can be used in the assessment of THA. 
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2. Establishing range of motion values 

A systematic review of the literature was conducted to obtain information defining typical ADLs and 

experimental data with regard to pure joint motion and ADL joint motion angles. Fig. 1, provides a 

schematic of the systematic review process. The MEDLINE database was used for the systematic 

search of the literature, with articles from 1950 onwards being searched. A total of 30 relevant 

articles were yielded from the systematic search of the literature [3-6, 13, 17, 18, 19, 21-42]. 

Subsequently, the references and citations of these 30 articles were reviewed to produce a further 

22 articles [16, 20, 43-62]. Therefore, a total of 52 articles were used to obtain hip joint kinematic 

data for pure joint motion and ADLs.  

2.1 Establishing pure joint motion values 

Articles relating to measurement or benchmark values for pure joint motion were identified from 

the systematic search of the literature. The purpose was to determine reference pure joint motion 

boundary conditions – flexion/extension in the sagittal plane, abduction/adduction in the coronal 

plane and internal/external rotation in the transverse plane – to ensure impingement free motion. 

The values for pure joint motion presented in these articles were categorised into three classes. 

 [Clinical] – Clinical measurements of hip joint motion using goniometer or photographic 

techniques [20, 22, 23, 28, 37, 38, 48, 51, 61, 62]. 

 [Reference] – Reference values of hip joint motion without indication of distribution, from 

orthopaedic and physical therapy literature [39, 43-45, 47, 49, 50, 52, 53, 55]. 

 [Simulation] – Pure joint motion benchmarks for use in computer simulations [13, 16-19, 32, 

40-42, 60]. 

The [Simulation] category was excluded from the study as their values for pure joint motion were 

derived as a basis from which to assess THA procedures in computer simulations, rather than 

actively measuring the amount of pure joint motion. Therefore, these values are likely to over-



Page | 4  
 

estimate the ROM requirement and are larger in all anatomical planes when compared with the 

other two categories [60].  

To be able to derive a prosthetic ROM benchmark for all anatomical planes, it was required to infer a 

boundary within which patients would be impingement-free post-THA, during their ADL.  It was 

found that owing to the ability of subjects to compensate through inter-joint adaptation, many 

ADLs including those at the higher end of the demand scale could be done by THA patients 

within a tighter mean boundary than many of defined [Reference] values [20, 22]. Based on this 

finding and the elimination of the [Simulation] articles, the [Clinical] measures were compared 

further to the [Reference] figures.  

All [Reference] values, excluding one paper [39], made recommendations for the maximum amount 

of joint excursion in each of the clinical planes. These recommendations for pure joint motion differ 

by 5o in the coronal plane to a discrepancy of 20o in the sagittal plane. [Clinical] measurements were 

evaluated for suitability to providing a good comparison with the [Reference] figures. 

Measurements of healthy individuals between the ages 20-70 provide the most stable and realistic 

sample from which base a ROM benchmark [38, 51]. To obtain samples of pure joint motion that can 

be compared, measurements of healthy male subjects from Europe and North America were used. 

From the papers which presented clinical measurements of pure joint motion, four satisfied the 

criteria [28, 37, 38, 62]. Two of these studies were active ROM studies [28, 38] and two were passive 

ROM studies [37, 62]. Passive and active ROM measurements differ by the way the joint is 

manipulated during measurement. An active ROM study is characterised by the examinee moving 

their joint under their own effort. In a passive ROM study it is the examiner that manipulates the 

limb by applying a force until it is felt the peak amplitude is reached [48]. Therefore, active-ROM 

studies were selected because pure joint motions are performed under the motivation of the 

subject, aligning the method closer to the way ADLs are performed. Therefore, the two active ROM 

measurement studies were compared with the [Reference] values. These studies fell within the 5-
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20o range of the [Reference] values in both the coronal and sagittal planes. In the transverse plane, 

one of the studies fell below the lower limit of the [Reference] range [38]. Therefore, based on this 

alignment between the [Clinical] and [Reference] values, the articles quoting the higher pure joint 

motion values within the [Reference] group were taken to be the recommended mean pure joint 

motion values for a healthy population. Distribution was estimated by pooling the standard 

deviation values from the two active ROM [Clinical] studies for each element of pure joint motion. 

Table 1, provides these benchmark figures. 

2.2 Defining activities of daily living and establishing their values 

A dislocation event occurs, in 90% of cases, when the ROM of a patient moves outside the boundary 

which the THA can accept [12]. The direction of dislocation has been traced to particular types of 

movement or posture [6, 35]. As well as these risk manoeuvres, there are other movements and 

postures that a person is likely to assume during the course of their daily activities. These range from 

high demand postures considered to be advanced activities [3, 4], to activities which are less 

demanding but are essential for a person’s mobility and ability to care for themselves [3]. ADL 

literature within the selected articles were categorised for the purposes of this study, as follows. 

 [Gait] – Motion analysis studies of particular ADL [3, 6, 20, 21, 30, 36, 46, 58, 59]. 

 [Model] – Simulation of function with coupled joint motions [5, 13, 17, 19, 24-27, 29, 31, 33, 

34, 42, 54, 60]. 

 [Definition] – Articles which define ADL [4, 35, 56, 57]. 

In total, 31 separate ADLs were defined. However, in the [Model] category many of the benchmark 

motions could be directly or indirectly traced back to the gait analyses conducted by Johnston & 

Smidt [20] - [5, 13, 19, 24, 25, 31, 34, 42, 54]. Therefore, based on this duplication of data, only the 

[Gait] group – where the Johnston & Smidt study is included – was used to obtain joint angle 

information for ADL. Data for a total of 15 ADLs could be obtained from six of the nine [Gait] sources 
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[3, 6, 20, 21, 58, 59]. The remaining 3 articles could not be used, owing to the measured subjects 

having already undergone THA [30], or data was only presented for a limited number of clinical 

planes [36, 46]. Table 2, provides details of the 15 ADLs, plus a colour and a code for each particular 

ADL which will be used when the data is presented in section 3.  

The change in joint angles over the movement cycle has led some researchers to divide manoeuvres 

into distinct stages, for example in level walking – heel-strike, foot-flat, heel-off and toe-off [58]. For 

the referenced ADLs, key points were selected by identifying the points of maximum 

flexion/extension, abduction/adduction and internal/external rotation and then recording the 

corresponding joint angles at this point in the two other anatomical planes [3, 6, 20, 21, 58, 59]. The 

key points which represented the mean of the sample of cohorts measured were taken from the gait 

cycles. Of those ADLs which had one referenced article, the standard deviation of the manoeuvre 

could be obtained from that article. Those having two referenced articles, the standard deviations 

were obtained from the second reference. Section 3, will use the pure joint motions presented in 

Table 1 and the ADL motion data in Table 2 in the construction of a ROM boundary.  
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3. Defining the range of motion boundary 

Using the joint coordinate system developed by Grood and Suntay [63] and adapted for the hip by 

Wu et al., [64]. An anatomical reference frame was constructed, with the following axes definitions. 

 X-axis – Anterior/posterior axis. 

 Y-axis – Superior/inferior axis. 

 Z-axis – Medial/lateral axis. 

Clinical rotations occur in a strict temporal order in a joint coordinate frame. The first rotation (f) 

occurs around the pelvic Z-axis (flexion/extension). The second rotation (a) around a ‘floating-axis’ 

constructed as the vector cross-product of the pelvic Z-axis and the femoral y-axis 

(abduction/adduction). The third rotation (r) is the internal/external rotation occurring about the 

femoral y-axis. The ‘floating-axis’ compromises the rotation matrix property of orthogonality, unless 

the coordinate frames of the pelvis and femur are coincident in the neutral posture. If this is the 

case, then the second rotation coincides with the x-axis of the femur, producing the rotation matrix 

detailed in eq. (1) [65, 66]. 

  (1) 

Using eq. (1), when the body is posed in neutral, the knee centre position at the distal femur would 

lie on the femoral y-axis and have position vector, P = (0, -1, 0). To visualise the ROM of this knee 

centre, as a representation of the ROM of the hip joint, its position in three-dimensional space for 

any given manoeuvre would be defined by eq. (2). Consequently, in three-dimensional space, the 

clinical rotations of flexion/extension and abduction/adduction define the position of the knee 

centre, while the internal/external rotation defines the long-axis orientation within that space [67].  
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      (2) 

An initial ROM boundary was constructed based on the pure joint motions of flexion/extension and 

abduction/adduction, shown in Fig. 2. This initial representation shows an anatomical coordinate 

frame centred at the hip joint. As it is assumed that there are no translational effects in the hip joint, 

the position of the knee centre in three-dimensional space will appear as points on a sphere [68]. To 

construct the initial boundary, the 3D positions of the knee centre for the reference pure joint 

motion values of flexion, extension, abduction and adduction defined in Table 1 were plotted using 

eq. (2) and a curve was interpolated between these values to produce a sphere segment. The knee 

centre positions correlating to key points in the movement cycle of the 15 ADLs defined in Table 2 

were also plotted on the 3D representation using eq. (2) using the colour code detailed. 

Fig. 2 does not consider the impingement due to long-axis orientation within the boundary occurring 

because of internal/external rotation. To account for the effect of internal/external rotation upon 

the initial three-dimensional ROM representation, the axes of rotation for the researched ADLs were 

calculated. To maintain congruency with the right-hand rule, the researched internal/external 

rotation joint angles were multiplied by a factor of -1, as this would orientate the femur in the 

correct spatial context using eq. (1) for a left hip. The axes of rotation and the rotation about each 

axis were calculated using eq. (3) and eq. (4), respectively [69-71]. Taking the composite rotation 

matrix constructed in eq. (1) as matrix A and the fixed axis of rotation as V.  

QV = [A – AT]V =  .         (3) 

θ = arccos           (4) 

The angle of the calculated fixed axes of rotation away from the anatomical transverse plane were 

plotted to see whether there were any similarities between the different phases of the movement 

cycle for the ADLs. This plot is detailed in Fig. 3, which shows that 70% of manoeuvres have their 
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rotation axes within 15o of the transverse plane, showing that flexion/extension and 

abduction/adduction are the dominant joint rotations for many activities, with the exception of 

standing while turning the upper body away (PIVOT) and lying supine then rolling over (ROLL). To 

simulate the effect of daily activities upon the initial three-dimensional ROM boundary three axes of 

rotation were defined, eq. (5a)-(5b), based on this finding. 

Transverse plane rotation axes (V1) =       (5a) 

15o above transverse plane axis (V2) =  (5b) 

15o below transverse plane axis (V3) =   (5c) 

The angle α in eq. (5) distinguishes individual rotation axes where α was stepped around in 5o 

increments producing 72 separate rotations axes in each of the three defined planes, the transverse 

plane, 15o above transverse plane (β = 15o) and 15o below transverse plane (β = -15o). For each of 

the calculated rotation axes the knee centre was rotated in 1o (angle γ) increments around the 

rotation axis until it had reached the initial three-dimensional ROM boundary, shown in Fig. 2. This 

produced a point cloud draped over the initial ROM boundary for the three defined planes. For each 

knee position, Rodrigues’ rotational formula was used to construct the composite rotation matrix in 

eq. (1) as follows [72]. 
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If Matrix A takes the form  =   

  

Then ,  ,   

 , ,  ,   

Flexion/Extension = atan2 ,  

Abduction/adduction = atan2 ,  

Internal/External Rotation = atan2       (6) 

The restriction with regard to  is placed due to Euler angles exhibiting a singularity known as 

gimbal lock when the knee centre is as 90o abduction [65]. The joint angles for all knee centre 

positions were plotted on two, two-dimensional plots. These plots, plotted (a) flexion, extension, 

internal and external rotation and (b) abduction, adduction, internal and external rotation. A curve 

was interpolated between these values to produce a ROM boundary. Those ADL joint angle positions 

which breached any of the constructed ROM boundaries were designated impingement points, as 

shown in red for the abduction/adduction-internal/external rotation plot in Fig. 4. The Cartesian 

impinged knee centre positions were then plotted on the initial three-dimensional plot. This 

produced a ROM boundary accounting for internal/external rotation, as shown in Fig. 5a-5c, for the 

three defined planes. The areas in red show those positions on the initial three-dimensional plot 

which cause impingement due to internal/external rotation. It can be seen from these plots that 

rotating about the 15o above transverse plane axes increases the amount of external rotation in the 

hip joint, while the 15o below transverse plane increases the amount of internal rotation. 

 



Page | 11  
 

4. Experimental validation 

The three-dimensional boundaries shown in Fig. 5a-5c were investigated further. It was found that if 

the nominal areas of all ROM boundaries shown in gold, when overlaid, the nominal ROM boundary, 

shown in Fig. 5a, would include the ROM areas shown in Fig. 5b-5c and encompass all 15 defined 

ADLs within its boundary. To test whether this single ROM boundary is sufficient to be considered as 

the nominal ROM requirement, a Sawbones model of an adult male pelvis and left femur were used 

for experimental validation. On the pelvic model, an Orthopaedic surgeon marked the landmark 

points which define the Transverse Pelvic Plane (TPP) and the Anterior Pelvic Plane (APP). These 

planes are used as a basis from which to construct the pelvic coordinate system [8, 64]. The TPP 

coordinate frame uses the following landmarks to construct the pelvic coordinate frame - Anterior 

Superior Iliac Spines (ASISRight
 & ASISLeft) and Posterior Superior Iliac Spines (PSISRight

 & PSISLeft). Where 

the origin is coincident with the left hip joint centre, the z-axis runs parallel to the two ASIS with the 

positive direction running from left to right. The x-axis lies parallel to a line in the plane formed by 

the two ASIS and two PSIS, formed by the midpoint of the PSIS and orthogonal to the line formed by 

the two ASIS. The y-axis is orthogonal to the x-axis and the y-axis [64]. The APP coordinate frame 

uses the following landmarks - Anterior Superior Iliac Spines (ASISRight
 & ASISLeft) and Symphysis Pubis 

(SPUBRight & SPUBLeft). The z-axis is again parallel to a line formed between the two ASIS. The y-axis 

lies parallel to a line in the plane formed by the two ASIS and the two SPUB, formed by the midpoint 

of the SPUB and orthogonal to the line formed by the two ASIS. The z-axis is orthogonal to the x-axis 

and the y-axis [8]. 

Similarly, the epicondyles of the Femur were marked, along with the border between the femoral 

neck and articular surface of the femoral head. Again, two femoral coordinate frame were defined, 

the first incorporating the femoral epicondyles, recommended by [64], the second the femoral 

condyles. The origin of the femoral coordinate system is located at the hip joint centre, with the y-

axis running in the positive direction from the centre of the two epicondyles to the hip joint centre. 
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Where the condyles are used in place of the epicondyles, a circular section was placed through the 

posterior of the medial and lateral condyles. The y-axis runs from the midpoint of the line running 

between the centres of the two circular condyle sections to the hip joint centre. The z-axis is 

perpendicular to the y-axis lying in a plane formed by the hip joint centre and the two epicondyles in 

the first femoral coordinate frame and the hip joint centre and the centre of the two condyle 

sections in the second femoral coordinate frame. The x-axis is a line perpendicular to the y-axis and 

the z-axis [64]. The neutral position of the femur was considered to be where the femoral and pelvic 

coordinate frames are coincident. Therefore, combining the different coordinate frame definitions 

four specifications of hip joint neutral were tested.  

The surface of the sawbones models were scanned using a Nikon K610 Optical Coordinate 

Measuring Machine with a MMD100 laser line scanner. Prior to scanning, the landmarks and the 

border between the femoral neck and the articular surface of the femoral head were etched into the 

model so that they could be identified in the 3D virtual environment. From the point cloud, 

generated from the laser scan, a triangular surface mesh of the sawbones model was constructed. 

The surface mesh generated was imported into Rhinoceros 4.0 NURBS modelling package and 

aligned to the respective pelvic and femoral coordinate frames. The hip joint centre was determined 

by best-fitting a sphere to the acetabulum of the pelvis and femoral head and determining its centre 

[68]. The articular surface of the femoral head was then removed from the 3D mesh at the border 

defined by the orthopaedic surgeon. The RhinoScript VBScript language was then used to rotate the 

femur around the axes defined in eq. (5a) which defined the ROM boundary shown in Fig.5c. The 

femur was rotated around each axis, located at the hip joint centre, until collision occurred between 

the pelvis and femur. This allowed a ROM boundary to be constructed for comparison with Fig. 5c. 

Further, to test for impingement specific to individual ADLS the femur was rotate according to the 

fixed axis of rotation and the rotation about that axis for each manoeuvre defined by eq. (3) and eq. 

(4). These two tests were done when the pelvis was situated according the TPP coordinate frame 

and the APP coordinate frame. The angle between the TPP and APP was measured in the sagittal 
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plane to be 112o, similar to average reported by [73].  This difference had a significant effect upon 

the resulting ROM boundary, shown in Fig. 6a-6b. Locating the femoral coordinate centre according 

the epicondyles or condyles had little effect on the resulting ROM boundaries. The TPP joint 

coordinate systems proved most representative of the nominal ROM boundary shown in Fig. 5a. 

Only the red area of the ROM boundary in Fig. 6a was not incorporated in the Sawbones ROM. 

However, all four combinations of joint coordinate systems were characterised by large degrees of 

adduction and extension which are not characteristic of the nominal ROM boundary. Impingement, 

in these circumstances did not occur at the rim of the acetabulum but rather contact with the 

greater trochanter of the femur with the ilium of the pelvis, or the femoral shaft with the ischium of 

the pelvis. 

The experiment where the manoeuvres of the 15 defined ADLs at key points along their movement 

cycle were tested again showed significant differences between when the pelvis was aligned 

according to the TPP or the APP. In regard to the TPP out of 46 separate movements, 5 impinged, 

relating to two ADLS, STOOP and TIE. Therefore, impingement occurred for these two activities 

within the nominal ROM boundary. These activities are characterised by a high degree of flexion, 

above 90 degrees coupled with internal rotation. This particular type of manoeuvre is symptomatic 

of dislocation [5, 19]. The APP coordinate frame suffered 10 Impingement events, relating to SNN, 

STOOP, TIE and XLG. There were no differences in impingement events when the femur was aligned 

according to the condyles or epicondyles when used with the TPP and APP coordinate frames.  
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5. Discussion 

To have a representation of the required ROM for the hip joint which can be used as a comparator 

to assess prosthetic ROM so that it graphically represents any loss of motion can be a powerful tool 

in the treatment of hip joint disorder [17]. The hip joint range of motion boundary constructed in 

this study can be combined with surgical navigation to represent any loss of motion due to the 

prosthetic positioning in THA. As an example, if the Sawbones ROM in Fig. 6a is reinterpreted as the 

prosthetic ROM of a particular THA procedure. If this information was presented intra-operatively, it 

would give the surgeon the option to change prosthetic component options to correct the loss of 

motion, shown in red in Fig. 6a, so that the prosthetic ROM incorporates the entire ROM boundary. 

These options could include changing the modular femoral neck to alter the position of the 

prosthetic ROM area, or to change the acetabular liner to one with a more lateralised rotation 

centre to increase the size of the prosthetic ROM area.  

Representing loss of motion graphically is difficult for the hip joint because of the three rotational 

degrees of freedom inherent in the joint, which means that there are numerous motion pathways to 

get to a particular position. This complexity is increased by the fact that there is an interactive nature 

between joints which allow an ADL to be performed in a number of different ways [20, 22]. 

However, being able to represent hip joint range of motion as a three dimensional continuum has 

the advantage of allowing the surgeon to see where impingement occurs for numerous coupled 

motions particularly with regard to flexion/extension and abduction/adduction. Consequently, the 

surgeon is not just limited to testing for discrete impingement locations, which may miss potential 

impingement events elsewhere during the course of a patient’s daily activities.  

The nominal ROM boundary shown in Fig. 5a has been produced by linking measurements of the 

extents of pure joint motion with the activities that a person is likely to perform in the course of 

their daily activities. However, the experimental validation has shown that there are a number of 

issues which need to be addressed. The first is with regard to the neutral position of the femur, 
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which as the experimental methodology has shown can produce significant differences with regard 

to the ROM boundary produced. In gait analysis measurements this presents a conflict with regard 

to experimental reliability and its validity. By this it is meant that a geometric defined neutral 

position where the pelvis and femoral coordinate frames are coincident would allow consistency and 

comparability of results as long as the coordinate frames are defined in the same way. However, a 

naturally non-orthogonal anatomical neutral position will mean that the reported amount of joint 

rotation in each of the anatomical planes, aligned via a geometric approach, will differ from what the 

patient undertakes in their day-to-day activities. The construction of the ROM boundary has 

attempted to address some of this ambiguity through its construction and experimental validation. 

The constructed boundary has been based from the pure joint motions of flexion/extension, 

abduction/adduction and internal/external rotation, which were obtained from clinical rather than 

gait analyses. Active ROM tests measure motion of the femur relative to the pelvis from a standing 

neutral position until the subject cannot extend their limb further, removing the ambiguity of pelvic 

frame definitions. The ROM boundary shows that measurements based on the TPP coordinate frame 

with the femoral frame coincident are more aligned with clinical measurements of ROM. The 

validation also signifies that caution should be applied when inferring ROM from surgical based 

measurements of the pelvis and femur which are based from the APP plane [8]. This coordinate 

frame convention can underestimate the amount of flexion within the hip joint and this can be 

exaggerated if the APP plane is not aligned with the whole body, which provides a further ambiguity 

with regard to the anatomical neutral position. 

The experimental validation, if the TPP coordinate frame is to be used as the standard, shows that 

the nominal ROM boundary should be integrated with a further test. This test should assess the 

amount of internal/external rotation at 90o flexion. Taking rotations around axes based in the 

transverse plane could miss impingement events in this area. Therefore, there is the option to colour 

code the ROM boundary to signify whether the prosthetic ROM has failed this further discrete test, 

thus, incorporating it into the ROM boundary continuum. Further validation and addressing the 
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issues raised would allow a minimum tolerance for prosthetic ROM to be defined and allow the 

clinical community to maximise patient ability to perform ADL.  
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Tables 

Table 1. Recommended reference and distribution figures for pure joint motion of the hip. 

 Flexion Extension Abduction Adduction 
Internal 

Rotation 

External 

Rotation 

Reference Value 120o 30o 45o 35o 45o 45o 

+1 SD 130o 37.5o 55o 40o 52.5o 52.5o 

+2 SD 140o 45o 65o 45o 60o 60o 
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Table 2. Defined activities of daily living. 

Colour Code Description 

 FXLG Sitting on the floor cross-legged [3]. 

 KNEEL 1 Kneeling with ankles dorsi-flexed [3]. 

 KNEEL 2 Kneeling with ankles plantar-flexed [3]. 

 LEVEL Level walking [59]. 

 PIVOT Standing while turning the upper body away [6, 21]. 

 ROLL Lying supine and rolling over, for example, when in bed [21]. 

 SQUAT 1 Squatting with feet flat [3]. 

 SQUAT 2 Squatting balancing on flexed toes [3]. 

 SSL Stand-sit-stand from a low seat (~40cm high) [6, 21]. 

 SSN Stand-sit-stand from a normal seat (~46cm high) [6, 21]. 

 STAIR Ascending and descending stairs [20]. 

 STOOP Standing then bending to retrieve an object from floor [6, 21]. 

 SWING Swinging leg back and forth [21]. 

 TIE Sitting on a normal seat and bending to tie shoe laces [6, 20]. 

 XLG Sitting on a normal seat while crossing legs [6, 20]. 
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Captions for illustrations 

Fig. 1: The systematic review search strategy. 

Fig. 2: Initial three dimensional range of motion representation. 

 Fig. 2a: View of the initial range of motion boundary in the sagittal plane. 

 Fig. 2b: View of the initial range of motion boundary in the coronal plane. 

Fig. 3: Deviation of ADL fixed axis of rotation away from the transverse plane. 

Fig. 4: Knee centre joint angles in the coronal-transverse plane, impinged motion shown in red. 

Fig. 5: Effect of internal/external rotation of the nominal range of motion boundary. 

Fig. 5a: Transverse plane rotation axis nominal boundary plot. 

Fig. 5b: 15o above transverse plane axis nominal boundary plot. 

Fig. 4c: 15o below transverse plane axis nominal boundary plot. 

Fig. 6: Experimental validation of the nominal range of motion boundary. 

 Fig. 6a: Comparison with the transverse pelvic plane coordinate frame. 

 Fig. 6b: Comparison with the anterior pelvic plane coordinate frame 
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List of notations 

 ADL – Activities of daily living. 

 APP – Anterior pelvic plane. 

 OA – Osteoarthritis. 

 RA – Rheumatoid arthritis. 

 ROM – Range of motion. 

 THA – Total hip arthroplasty. 

 TPP – Transverse pelvic plane. 
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