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SUMMARY

The main topic of this thesis is the discovery and study of a cohomological

property of the subgroups called ~ -normalizers in finite soluble groups; namely,
the property that with certain coefficient modules the restriction map in

cohomology from a soluble group to its ~ -normalizers vanishes in non-zero
degrees. Chapter 3 is devoted to a proof of this fact It turns out that in some

classes of soluble groups the ~ -normalizers are characterized by this property,
and the study of these classes occupies Chapters 4 and 5. Various connections
with cohomology and group theory are found; the approach seems to offer some
unification of disparate results from the theory of soluble groups.

The relation between g: -normalizers and cohomology was discovered through
study of the work of Jacques Thevenaz on the action of a soluble group on its
lattice of subgroups. Chapter 1 is a summary of this work and its background,
and is included to provide motivation. A link with the rest of the thesis arises
through a new result, in which certain subgroups crucial to Thevenaz's analysis of
soluble groups are shown to coincide with their system normalizers. A proof of
this is given in Chapter 2, which also contains some miscellaneous results on
soluble groups from the class considered by Thevenaz, comprising those groups
whose lattices of subgroups are complemented.

The problem of characterizing ~ -normalizers in soluble groups by the results
of Chapter 3 is proposed in Chapter 4, and in Chapters 4 and 5 two essentially
different approaches to this problem are taken, which lead to partial solutions in
different sets of circumstances. In Chapter 4, the first cohomology groups of
soluble groups are considered, and an application is given to a proof of a recent
theorem of Volkmar Welker described in Chapter 1 on the homotopy type of the
partially ordered set of conjugacy classes of subgroups of a soluble group.
Another application is to the study of local conjugacy of subgroups of soluble
groups, and these are combined in a result which shows that the set of conjugacy
classes considered by Welker is homotopy equivalent to an analogous set obtained

from local conjugacy classes.

In Chapter 5 some known results on the local conjugacy of ~ -normalizers are
exhibited, as evidence for a cohomological characterization of these subgroups.
The results are used to study groups of p-length one by a 'local' analysis, whereby

the problem of characterizing ~ -normalizers is translated into a question
concerning the action of automorphisms on the cohomology rings of p-groups. In
the study of this question a natural place to start is the case of abelian groups,
whose cohomology rings are known; calculations in this case lead to results on the

~ -normalizers of A-groups. The question is then considered for other p-groups,
revealing an elegant relationship between the cohomology of p-groups, the theory
of varieties, and some well-known results on automorphisms of p-groups.



CHAPTER 1.

The questions which are considered in this thesis arose from the work of

Jacques Thevenaz and others on topological aspects of the structure of the lattice

of subgroups of a finite soluble group. In order to provide a context for the

original part of the thesis, we begin in this expository chapter by briefly

describing the results of Thevenaz and their background.

1.1 The order complex of a partially ordered set.

Let A*(G) denote the set of subgroups of the group G. The relation of inclusion

between subgroups of G is clearly a partial ordering of A*(G), which is in fact a

lattice with this partial ordering, where the meet and join of two subgroups are

respectively their intersection and the subgroup they generate. We reserve the

simpler notation A(G) for the subset of A*(G) which consists of the proper,

nontrivial subgroups of G; in other words

A(G) = A*(G) - { 1, G }.

Unlike A*(G), the partially ordered set A(G) is not a lattice in general, because

two proper, nontrivial subgroups of G may have their intersection equal to 1, or

their join equal to G, or both. (In fact it is easy to see that A(G) is a lattice if and

only if G is cyclic of prime-power order.)

The study of partially ordered sets is a branch of combinatorics, and many

concepts are available which can be applied, in particular, to the lattices A*(G) of

subsets of groups. An early result of this kind is the well - known theorem of

Iwasawa [1], which asserts that a finite group G is supersoluble if and only if all

the maximal chains in A*(G) are of the same length. (A chain in a partially

ordered set is just a totally ordered subset.) The monograph of Suzuki [1] contains
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many interesting results of this kind.

However, a slightly different approach to the study of the lattice A*(G) has

proved particularly fruitful. This is to use a construction first given by Folkman

[1] whereby a simplicial complex called the order complex may be associated in a

natural way to any partially ordered set:

Definition 1.1.1. (The order complex.) Let ~ be a partially ordered set. Then

the order complex I~I is the simplicial complex whose n-simplices, for each n 2::

0, are the chains in ~ of length n + 1, and whose face relations are the relations of

inclusion between these chains.

Through this construction, topological ideas may be used to study partially

ordered sets. In particular, one can say that two partially ordered sets are

homotopy equivalent, meaning that there is a homotopy equivalence between their

order complexes. An order-preserving or reversing map between two partially

ordered sets induces a simplicial map between their order complexes; given two

such maps, one can therefore ask if they are homotopic. An elementary but useful

criterion for such a homotopy to exist is the following lemma, due to Quillen:

Lemma 1.1.2 (Hawkes, Isaacs and Ozaydin [1, Lemma 9.3]). If a, f3: ffJ -+ Q

are order-preservingmaps such thata(x) < f3(x) for all x € ffJ, then a is

homotopic to /3.

The simplicial homology of the order complex carries combinatorial

information about the original partially ordered set; most importantly, if the set is

finite then the order complex has an Euler characteristic X(I~I), defined as the

alternating sum of the dimensions of the rational simplicial homology groups of

1~1. This definition makes it clear that the Euler characteristic depends only on
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the homotopy type of I~I, but on the other hand X(I~I) has a well-known

combinatorial interpretation in terms of the Mobius number of a partially ordered

set associated to ~. (For the definition of the Mobius number, and a summary of

the history of this concept, see Hawkes, Isaacs and Ozaydin [1, Section 1] and the

references given there, especially Rota [1].)

Proposition 1.1.3 (See Hawkes, Isaacs and Ozaydin [1 Section 9]). Let fP* be a

finite partially ordered set with a smallest element a and a largest element b. Let

fP be the interior of fP*, i.e fP = fP* - {a, b}. Then

J1(fP*) = i(/fP/)

where i(/fP/) = X(/fP/) - 1 is the reduced Euler characteristic of IfPl.

Recall that a Galois connection between partially ordered sets ~ and Qis a

pair of order-reversing maps a: ~ -+ Qand B: Q -+ ~ such that ~ 0 a: ~ -+

~ and a o~: Q -+ Qare both increasing maps. Rota ([1, Theorem 4.1]) shows

that the Mobius numbers of two partially ordered sets with a Galois connection

are equal, but the order complex allows more information to be expressed:

Theorem 1.1.4 (Hawkes, Isaacs and Ozaydin [1, Proposition 9.5]). Let fP and Q

be finite partially ordered sets. If a and f3 constitute a Galois connection between

OJ and Q then the maps they induce between IfPl and IQI are homotopy

equivalences.

Proof. ~ 0 a and a 0 ~ are homotopic to the identity maps on ~ and Q

respectively, by Lemma 1.1.2. 0
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Corollary 1.1.5. Let 9> be a partially ordered set containing eithera smallestor a

largest element. Then /9>/ is contractible.

Proof. If bEG> is a largest element then the unique map G> ~ {b} and the

inclusion map Ibl ~ G> constitute a Galois connection. The order complex IG>I is

therefore homotopy equivalent to the point lbl. If G> has a smallest element a, then

a is the largest element in the opposite partially ordered set G>0PP, whose order

complex IG>°PPI is clearly identical with 1~1. 0

In the next section we discuss the application of these ideas to the specific case

of the order complex IA(G)I, where G is a finite group. The reduced Euler

characteristic of this space is, by Proposition 1.1.3, equal to the Mobius number of

the lattice A*(G), which is usually referred to as the Mobius number of G, written

IJ.(G). Notice that we study IA(G)I and not IA*(G)I - the latter space is

contractible, by Corollary 1.1.5.

1.2 The homotopy type of IA(G)I for soluble G.

In a paper [1] which predates the introduction of the order complex, Gaschiitz

gave implicitly a remarkable formula for the Mobius number IJ.(G) of any finite

soluble group G. This formula is stated and proved explicitly by Kratzer and

Thevenaz [1, Theorems 2.6] and by Hawkes, Isaacs and Ozaydin [1, Corollary 3.4].

We select a chief series for G,

1 = NO < Nt < ... < Nn = G,

and for each i with 1 <i < n, we let ci be the number of subgroups of G which are

(relative) complements of the chief factor Ni/Ni-t. The formula of Gaschiitz is

given in the following theorem.
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Theorem 1.2.1 (Gaschiitz). Let 0 be a finite soluble group, and let numbers Cj

be defined as above. Then the Mobius number J1(O) is given by the following

fonnula:

Note that in particular the product on the right must be independent of the chief

series chosen, although this is not in itself obvious. Clearly the Mobius number

J.l.(G) is non-zero if and only if each of the numbers ci on the right is non-zero; in

other words, for !J.(G) to be non-zero it is necessary and sufficient that each factor

of the chief series used in the formula above should have at least one complement,

and since this series was arbitrary we may simply say that all the chief factors of

G must be complemented.

Gaschiitz's formula gives the reduced Euler characteristic X(IA(G)I) = J.l.(G) in

terms of the internal structure of G, when G is a soluble group. It is natural to ask

what other topological information about IA(G)I can be obtained from the

structure of G, and this question was addressed and in a sense completely

answered by Kratzer and Thevenaz, who determined the homotopy type of IA(G)I

for any finite soluble group G. The answer turns out to be extremely simple:

Theorem 1.2.2 (Kratzer and Thevenaz [2, Corollaire 4.10]). Let 0 be a finite

soluble group. Let n be the chieflength of 0 and let m be the product Ct· . ,cn

which appeared in Theorem 1.2.1. Then the homotopy type of the space IA(O)/is

determined as follows:

(i) If m = 0, then IA(O)I is contractible;
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(ii) Ifm > 0, then !A(G)! is homotopy equivalent to a bouquet of spheres of

dimension n - 2. The number of spheres in the bouquet is precisely m.

It is easy to calculate the reduced Euler characteristic of a bouquet of spheres

using, for example, the Mayer-Vietoris theorem; if the space X is a bouquet of m

spheres of dimension n-2, as in case (ii) of the above theorem, then one finds that

X(X) is equal to (_1)nm. Since the Euler characteristic of a space is an invariant

of its homotopy type, Theorem 1.2.1 is a corollary of Theorem 1.2.2. Notice in

particular that m = 0, that is f..l(G) = 0, if and only if IA(G)I is contractible. From

Theorem 1.2.2 we can deduce not just the Euler characteristic of IA(G)I, but the

whole integral homology of that space:

Corollary 1.2.3 (Thevenaz [1, Introduction]). The integral homology of the

space !A(G)! is as follows:

Hn- 2 rA(G)V = free abelian ofrank m;

Hr rA(G)V = 0 for r unequal to 0 or n.

Thus the space IA(G)I has only one non-zero integral homology group in

dimensions greater than zero, and this is a free abelian group whose rank is equal

to the absolute value of the Mobius number f..l(G).
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1.3 The action of G on IA(G)I.

The group G acts on A(G) by conjugation, and since this action is order­

preserving there is an induced simplicial action on the order complex IA(G)I, and

therefore on the homology groups H*(IA(G)I). If G is soluble, then these

homology groups are given by Corollary 1.2.3, but their G-module structure is

not. The G-structure of H*(IA(G)I) was determined by Thevenaz [1]; in this

section we describe the results of that paper.

We restrict our attention to the non-trivial case, i.e. where IA(G)I is not

contractible. By Corollary 1.2.3 there is only one homology group to consider,

that of dimension n-2 (the action of G on Ho(IA(G)I) is trivial). Again the answer

is very elegant and satisfactory, for Hn_2(IA(G)I) turns out to be a multiple of a

permutation module of the form l[G/T], where T is a certain subgroup which

complements the derived subgroup of G. Thevenaz's description of the stabilizer

T depends on his concept of an upper - infiltrated complement to a normal

subgroup of a soluble group:

Definition 1.3.1 (Thevenaz [1, Section 2]). G be a soluble group, and let N be a

nonnal subgroup of G. Suppose that N has a complement C in G, and let

1 = NO < ... < N =Nk < ... < Nn = G

be a chief series for G which passes through N. Then C is said to be upper

infiltrated provided there exists a chain of subgroups

such that Ci complements the subgroup Ni in G, for 1 < i < k.

'rnevenaz shows ([1 Section 2]) that this definition does not depend on the
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choice of the chief series which passes through N. Furthermore, in a soluble

group whose Mobius number is non-zero, every normal subgroup has at least one

upper-infiltrated complement. Thevenaz's key result on upper-infiltrated

complements in soluble groups is the following:

Theorem 1.3.2 (Thevenaz [1, Theorem 2.2]). Let G be a finite soluble group.

Then all upper-infiltrated complements of the derived subgroup ofG are

conjugate (when they exist).

Since the G-set [G/T] only depends on the conjugacy class of the subgroup T,

the set [G/T] for T an upper-infiltrated complement to the derived subgroup of G,

is uniquely defined. By showing that ~_2(IA(G)I) is a sum of permutation

modules whose stabilizers are upper-infiltrated complements of the derived

subgroup of G, and then applying Theorem 1.3.2, Thevenaz proves the following

result:

Theorem 1.3.3 ([1, Theorem 3.2]). Let G be a finite soluble group, and suppose

that /A(G)/ is not contractible. Then the derived subgroup G' ofG has an upper­

infiltrated complement T, and as G-modules

The discovery which gave rise to most of the work below was that the upper ­

infiltrated complements of Theorem 1.3.3 coincide with the system normalizers

of the group G. We prove this in Theorem 2.2.1 below. It is well- known that

the system normalizers of a soluble group lie in a single conjugacy class, so we

obtain Theorem 1.3.2 as a corollary, but ironically Thevenaz's proof of Theorem

1.3.2 is the starting point of the work in Chapters 3, 4 and 5 of this thesis.
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1.4 The partially ordered set of conjugacy classes of subgroups.

Besides A(G) and the associated Euler characteristic J1(G), another partially

ordered set associated with finite groups has received attention in recent years.

This is the partially ordered set of conjugacy classes of subgroups of G, whose

order relation is defined by 'subconjugacy', that is, by the inclusion of a

representative for the smaller conjugacy class in a representative for the larger.

For a finite group G, we denote this partially ordered set 11*(G), and, just as for

the set of subgroups, we write I1(G) for the subset of 11*(G) consisting of

conjugacy classes of proper, nontrivial subgroups of G. If G is soluble, then the

Mobius number AG(G) of 11* (G) is directly related to that of A*(G):

Theorem 1.4.1 (Hawkes, Isaacs and Ozaydin [1, Theorem 7.2]). LetJ1(G) and

Aa(G) be the Mobius numbers of the sets A*(G) and .1*(G) respectively, where

G is a finite soluble group. Then the following equation holds:

J1(G) = AO(G)IG'l.

It can be shown that AG(G) is also equal to the product (-1)nd1...dn, where

the notation is as in Theorem 1.2.1, except that here we let dj be the number of

conjugacy classes of complements to the factor Ni/Ni-1 of the chief series of

1.2.1. As is well known, the numbers di can also be written as the orders of

certain L-dimensional cohomology groups associated with G, and in fact this is a

sign of the significance of cohomology in the study of the set I1(G), which we

exploit in Chapter 4.

The homotopy type of the complex II1(G)1 has recently been determined by

Volkmar Welker. It turns out that this complex, like IA(G)I, is homotopy

equivalent to a bouquet of spheres of dimension n-2, where n is the chief length

of G. (It should not be surprising that the common dimension of the spheres in
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this bouquet is the same as for IA(G)I, since I~(G)I is a sort of quotient of IA(G)I by

the action of the finite group G.)

Theorem 1.4.2 (Volkmar Welker [1, Satz 2.9]). Let G be a finite soluble group,

and let n be the chieflength of G. Then the complex /L1(G)/ has the homotopy

type of a bouquet ofspheres ofdimension n-2.

Welker's result is actually more general than this, and gives a determination of

the homotopy types of all 'intervals' in the partially ordered set of conjugacy

classes of G, as well as a formula for the number of spheres in the bouquet. Of

course, from the formula for the reduced Euler characteristic of any bouquet of

spheres we know that the number of spheres in the bouquet of Theorem 1.4.2 is

just the absolute value of the Mobius number AG(G), so in effect Welker's

formula is another expression for this number. Theorem 1.4.2 also follows from

the work in Chapter 4 of this thesis.

1.5 Insoluble groups.

No results on the order complex IA(G)I have been mentioned which are

supposed to be valid for insoluble groups. This is a reflection of a true dichotomy

which arises in the study of the complex IA(G)I; none of the results above are true

for insoluble groups, and in fact very little seems to be known about insoluble

groups in this context. For example, no formula is known which expresses the

Mobius number of an insoluble group in terms of the internal structure of the

group, as Theorem 1.2.1 does in the case of soluble groups. Indeed the existence

of a formula resembling that of Theorem 1.2.1 seems to be precluded by an

example of Hawkes, Isaacs and Ozaydin [1, Corollary 8.7] of a family of insoluble

groups whose Mobius numbers are divisible by arbitrary primes which do not

divide the orders of the groups. Furthermore, the complex IA(G)I does not have
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the homotopy type of a bouquet of spheres in general. An example is when G =

PSL2(Z7) (see Kratzer and Thevenaz [2, Remarquesl) - in fact this group has Jl(G)

= 0, while IA(G)I is not contractible, so that IA(G)I cannot be homotopic to a

bouquet of spheres. (The situation seems to be different for congruences

involving Mobius numbers, most of which are valid for all groups regardless of

solubility. See Hawkes, Isaacs and Ozaydin [1] for a good collection of these.)
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CHAPTER 2

2.1. The class of nC-groups.

From Theorem 1.2.1 we deduce that a soluble group has non-vanishing Mobius

number if and only if it has a chief series all of whose factors are complemented.

Kratzer and Thevenaz [2, Proposition 4.13] give a number of conditions on a

soluble group G equivalent to this one, among which is the condition that each

normal subgroup possess a complement in G. They call soluble groups satisfying

these conditions complemented, but to avoid confusion with the stronger

condition introduced by Philip Hall [1], who considered groups all of whose

subgroups have complements, we use instead a term introduced by Christiensen

[1,2] who studied the class of groups with complemented normal subgroups from

a group-theoretic point of view.

Definition 2.1.1. An nC-group is a group in which every normal subgroup has at

least one complement.

Definition 2.1.1 does not require that G be soluble - for example all simple

groups are nC-groups - but like Christiensen [1, 2] and H.Bechtell [1] we consider

only soluble nC-groups in the sequel. For convenience, we state the connection

between this definition and the non - vanishing of the Mobius number for soluble

groups:

Theorem 2.1.2 (Kratzer and Thevenaz [2, Proposition 4.13]). Let 0 be a finite

soluble group. Any two of the following conditions on 0 are equivalent:

(i) 0 is an nC-group;

(ii) The Mobius number p(O) is non-zero;

12



(iii) The order complex /A(G)/is non-contractible;

(iv) G has a chief series

all of whose factors Ni/Ni-l are complemented.

The equivalence of (ii) and (iv) is an immediate consequence of Gaschiitz's

formula (Theorem 1.2.1), and as remarked there, the formula also shows that if G

has non-vanishing Mobius number then all chief series for G have all their

factors complemented as in (iv). 0

Corollary 2.1.3. The property of being a soluble nC-group passes to quotients.

Proof. Let N be a normal subgroup of the soluble nC-group G. We may choose a

chief series passing through N, all of whose factors are complemented. The part

of this series which lies above N is also a chief series for GIN whose factors are

complemented, so GIN is an ne-group by Theorem 2.1.2, (iv).

The independence of condition (iv) above on the choice of a chief series of G

can also be deduced from the following 'generalized Jordan - Holder theorem',

which is valid for arbitrary groups. Note that in a soluble group a non-Frattini

chief factor is the same thing as a complemented one.

Theorem 2.1.4 (Doerk and Hawkes [1, Chapter I, Theorem 9.13]). Suppose that

a finite group G has chief series
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and

1 = M O< M t <. . . . < Mn < G.

Then there exists a bijective correspondence between the sets of factors of

these two series, such that a pair of corresponding factors have the same

isomorphism class and are either both Frattini or both non-Frattini. In particular,

the total number ofFrattini factors is the same for both series.

Finally we note the criterion, due to Philip Hall, for a p-group to be nC:

Theorem 2.1.5 (See Hawkes, Isaacs and Ozaydin [1, Corollary 3.5]). A p-group

Pis nCifand only if it is elementary abelian.

Proof If P is nC then <P(P) = 1, so that P is elementary abelian. On the other

hand, any subgroup of an elementary abelian p-group has a complement. 0

In the next section we summarise the parts of the theory of formations which

are used in the sequel. This theory is the setting for a generalization, due to Carter

and Hawkes [1], of the concept of the system normalizers of a soluble group, and

it turns out that all of the theory below works naturally in this general context.

2.2 Saturated and local formations.

A fonnation is a class 9=' of groups with the following two 'closure properties':

(i) If G E 9=' and N <I G then G/N E 9='

(ii) If Nt ' N2 <I G with NtnN2 = 1 and if G/Nt and G/N2 E 9=', then G E9='.

The class of nC-groups is an example of a formation (Bechtell [1, Theorem
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1.3]). For an account of the theory of formations of groups, see Doerk and

Hawkes [1], Chapter IV. We use the concepts of formation theory throughout the

sequel, but we are concerned mostly with saturated formations, that is classes of

groups which satisfy (i), (ii) and the additional condition;

(iii) (Saturation.) IfG/<1>(G) E ~ then G E ~,where <1>(G) is the Frattini

subgroup of G.

It is clear that the formation of soluble nC-groups is not saturated, since an

nC-group can have no Frattini subgroup. The central example of a saturated

formation is the class of finite nilpotent groups, which we write N'. There is a

rich theory of saturated formations, of which we need only a part in the sequel,

namely the concept, due to Gaschlitz [2], of a local formation, and the

construction, due to Carter and Hawkes [1], of the so-called ~ -normalizers of a

finite soluble group corresponding to the local formation ~. A full and recent

account is given in Doerk and Hawkes [1, Chapter IV, Section 3 and Chapter V,

Section 2], from which we extract the definition of a local formation given below.

Definitions2.2.1.

(i) A formation function I is a set of (possibly empty) formations of groups

I (p), one for each rational prime p. The support of I is the set 1t of primes p

such that I(p) is non-empty.

(ii) If I is a formation function, then a chief factor H/K of a group G is

I-central if AG(H/K) E I(p) for all p dividing IH/KI, where AG(H/K) is the

group of automorphisms of H/K induced by the conjugation action of G. A chief

factor which is not I-central is called I-eccentric. Where I(p) is empty, the

condition is interpreted as saying that a chief factor H/K is I -central if and only

if p does not divide IH/KI. Note that, if G is soluble, then H/K is an irreducible

module for Gover Zp' where p is the unique prime divisor of IH/KI. The same
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definition applies equally well to any such irreducible module, whether or not it

occurs as a chief factor of G.

(iii) If j is a formation function, then the local formation defined by I, written

LF(j), is the class of groups all of whose chief factors are j -central. 0

A key result, due to Gaschiitz, is that the class LF(I) is a saturated formation.

(Gaschiitz [2], Doerk and Hawkes [1, Chapter IV, Theorem 3.3].) For example, if

for each prime p we set j(p) = {1}, the formation consisting of the trivial group

only, then LF(j) is the formation .N' of finite nilpotent groups, because finite

nilpotent groups are characterised by the fact that all their chief factors are central.

In general, a formation ~ which can be written as LF(f) for some formation

function j is called a local formation. The function j is then called a local

definition of g:. By Gaschiitz's theorem a local formation is necessarily

saturated, but in fact a celebrated theorem, proved for formations of soluble

groups by Lubeseder and later for arbitrary formations by Schmid, shows that the

converse is also true - every saturated formation is of the form LF(j) for some

formation function j. (See Doerk and Hawkes [1, Chapter IV, Section 4].)

In general a saturated formation ~ has many local definitions j. It is always

possible to choose one which satisfies the relation f (p) < ~ for all primes p, for

the function f' defined by j'(p) = f(p)ng:, also locally defines the formation ~.

A local definition which satisfies this condition is said to be integrated Amongst

the integrated local definitions of a given formation there is a measure of

uniqueness (Doerk and Hawkes [1, Chapter IV, 3.7]); in particular the definition

(2.2.1, (iii) above) of f-central and eccentric modules does not depend on the

choice of j amongst integrated local definitions of f. (Doerk and Hawkes [1,

Chapter V, (3.1)].) In the sequel we always use integrated local definitions, and

speak of g: -central and eccentric modules, meaning those which are f -central or

eccentric for any integrated local definition of g:.
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Note. By the theorem of Lubeseder and Schmid referred to above, the concepts of

local and saturated formations actually refer to the same objects. However, in

order to keep the treatment below logically independent of this difficult theorem,

we refer throughout to 'local formations' where the existence of a formation

function is necessary for the theory. In any specific case, as in the example of

nilpotent groups, a formation function can be found without appeal to the general

existence theorem.

~-normalizers.

The g; -normalizers of a soluble group were first defined by Carter and Hawkes

[1]. They generalize the notion of a system normalizer, the system normalizers

corresponding to the case where g; is the formation of nilpotent groups. The

original definition requires that g; contain the formation of nilpotent groups, but

this is generalized to arbitrary local formations in Doerk and Hawkes [1, Chapter

5, Definition 3.1]. We summarize the construction of these subgroups below:

Suppose that g; is a saturated formation defined locally by the integrated

formation function i. Let 1t be the support of f. If G is a soluble group, then for

each prime p E 1t, we write Gf(p) for the i(p) -residual of G, that is the smallest

normal subgroup N of G with GIN E i(p). (Note that such an N exists by the

axioms for a formation.) Let 'L be a Hall system of G, and for each prime p let GP

be the Hall p-complement belonging to'L. Let G1t: be the Sylow 1t-subgroup in 'L.

Definition 2.2.2 (Doerk and Hawkes [1, Chapter V, 2.1 and 2.2]). Let the

subgroup D = Dg:('L) of G be defined by

D = G
1t
n(nNG(GPnGfCP») ).

pE7t

Then D is the g:: -normalizer of G associated to I. 0
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The g:-nonnalizers corresponding to different Hall systems form a conjugacy

class of G, because of the conjugacy of the Sylow systems. It follows from the

definition that the g:-normalizer D is a Sylow n-subgroup of the subgroup

nNG(GPrlGl(P)) (for the index of nNG(GPnGl(p)) is a product of primes in n).

g:-normalizers have many group-theoretic properties, which are discussed in

detail in Doerk and Hawkes [1, Chapter V]. We need only the following:

Theorem 2.2.3 (Doerk and Hawkes [1, Chapter V, Theorem 3.2]). The 9='­

normalizers ofa finite soluble group G have the following properties:

(i) (Cover - avoidance.) They cover all 9='-central chief factors of G and avoid

all g:-eccentric ones.

(ii) (Epimorphism - invariance.) If N <1 G then the 9='-normalizers ofG/N are

precisely the subgroups DN/N, where D is an 9='-normalizer of G;

(iii) The 9='-nonnalizers of G belong to 9=', and G is equal to its 9='-normalizers

ifand only if G E 9='.

(iv) Let S be the set of subgroups D of G which can be joined to G by a chain

of subgroups of the form

D = Gr < Gr-1 < ... < GO = G,

where Gj is an 9='-abnormal maximal subgroup of Gi+1 for 1 < i< t. Then the

minimal elements of the set S are precisely the 9='-normalizers of G. (An 9='­

abnormal1naximal subgroup of a soluble group H is one which complements an

~-eccentric chief factor of H.)
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2.3 ~-normalizersandupper-infiltratedcomplements.

In this section we establish the claim of Chapter 1 that upper-infiltrated

complements to the derived subgroup of a finite soluble group G (Chapter 1,

Definition 1.3.1) coincide, when they exist, with the system normalizers of the

group. This will provide the start for our investigation in the succeeding chapters

of the behaviour of the restriction map in group cohomology.

Upper-infiltrated complements do always exist in nC-groups (Thevenaz [1,

Section 2]), but the existence of such complements to the derived subgroup is not

a sufficient condition for a soluble group to be nCo For example, let G be the

semidirect product of a cyclic group Q of order q with a cyclic group P of order

p2 (where p divides q-1 and <PCP) = Cp(Q». Then clearly the derived subgroup Q

of G has P as an upper-infiltrated complement, but G is not an nC-group since

<p(G) = <P(P) 1= 1. Thevenaz's main interest was in the case where G is an nC­

group, but his results are valid under the weaker hypothesis that the relevant

upper-infiltrated complements exist, and we work with the same weaker

hypothesis.

Let g: be a local formation, defined by the integrated formation function i·

The following is the main theorem of this section.

Theorem 2.3.1. Suppose that in the soluble group G the ~-residualG~has an

upper-infiltrated complement C. Then C is an ~-normalizer of G.

Corollary 2.3.2. (See Theorem 1.3.2.) The set of upper-infiltrated complements

ofG~ is either empty or consists ofa single conjugacy class of G.

The derived subgroup G' of G is not in general an g:-residual, since the

fonnation of abelian groups is not saturated, but the following lemma shows that

in the case we are considering the derived subgroup is the identical with the

residual which corresponds to the formation N of nilpotent groups:
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Lemma 2.3.3. Suppose that the derived subgroup 0'of the soluble group 0 has

an upper-infiltrated complement. Then 0' = ON', the nilpotent residual ofO.

Thus by taking ~ to be the formation of nilpotent groups in Theorem 2.3.1 we

obtain the promised result that the upper-infiltrated complements to the derived

subgroup of G, when they exist, coincide with the system normalizers of G.

We begin by proving Lemma 2.3.3. We certainly have G' > GN, since abelian

groups are nilpotent. If the containment were strict we could choose a normal

subgroup N of G lying between the two subgroups, and with N/GN a chief factor

of G. This factor would lie in the derived subgroup of the nilpotent group G/GN

and therefore in its Frattini subgroup; it would therefore be a Frattini chief factor

of G. On the other hand, if C is a complement of N in G whose existence is

guaranteed by the hypothesis that G' has an upper-infiltrated complement, then

the subgroup CGN complements the factor N/GN, a contradiction. Therefore

G'=GN , as required. 0

To prove Theorem 2.3.1 we need the following lemma.

Lemma 2.3.4. Let ~ be a local formation. Suppose that 0 is a finite soluble

group having normal subgroups Hand K, with

H<K~O~<O

and K/H a chief factor of O. If K/H is ~-centrsl then it is a Frattini factor of

G.

Proof. Since H is contained in the g:-residual Gg:, we have
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and we may therefore assume that H= 1 in the remainder of the proof. Then K is a

minimal normal subgroup of a, and

where p is the prime dividing the order of K. (Recall that Ao(K) is the group of

automorphisms which a induces on K.)

Suppose that K has a complement D in a. Let M be the core of D, that is the

largest normal subgroup of G contained in D. Then it is easy to see that

and

DIM ~ a/Co(K) E l(p).

The quotient group G/M is isomorphic with the primitive group [K](D/M)

having self-centralizing minimal normal subgroup K and core-free complement

DIM. Since DIM E l(p) c ~ and K is an ~ -central chief factor of [K] (DIM),

it follows that aiM belongs to ~. Therefore

a contradiction, since D was supposed to be a complement of K in a. 0

Proof of Theorem 2.3.1.

Fix a chief series of G which passes through the s: -residual a9=', say
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The hypothesis that the complement C is upper-infiltrated means we can find

subgroups Co,. . . .C, such that Ci complements N, for 1 ~ i < r, and the ~ lie in

a chain

G = Co > C1 >. . . > Cr = C.

Write Di for the subgroup CiNi-1' for 1 S; i < r; then Di is a complement of the

factor Ni/Ni-1 of the chief series, and so by Lemma 2.3.4 the factors Ni/Ni-l'

are g:-eccentric for 1 ~ i < r. (The remaining factors are g; -central.)

The intersection of the chief series with a subgroup Ci is the series

of Ci; the factors Nj+1nc;/NjnCi are isomorphic as Ci-modules with the factors

Nj+1/Nj of the original series, and since for j ~ i we have Ci~ = G, we see that

Ci induces the same automorphisms as G on these factors. The above is therefore

a chief series of Ci.

In particular, each factor Nj+1nCi/NjnCi for i ~ j < r, is g:-eccentric, so Ci+l'

which complements the factor Ni+1nq/NinCi in Ci' is an g:-abnormal maximal

subgroup of Ci for 1 < i < r. It follows from Theorem 2.2.3 (iv) that C contains an

g:-normalizer of G. On the other hand, the order of C is equal to the product of

the orders of the g:-central factors in our chief series, because as we remark

above these are the factors between G~ and G. By Theorem 2.2.3 (i) the same is

true of the g:-normalizers of G. Therefore C is an g:-normalizer of G, as

required. 0
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2.4 Some properties of nC-groups.

In this section we study soluble nC-groups from a group - theoretic point of

view. Many results in this area have been obtained by Christiensen [1, 2], who

showed in particular that the class of soluble nC-groups is closed under taking

normal subgroups:

Theorem 2.4.1 (Christiensen [2, Theorem 3.5]). Let G be a soluble nC-group,

and let N be a normal subgroup of G. Then J.V is an nC-group.

Christiensen proves his result by showing that a soluble group is nC if and only

if all its characteristic subgroups are complemented. (This is reproved by

Kratzer and Thevenaz [2, Proposition 4.13].) Christiensen remarks that his proof

does not work for insoluble groups - I do not know whether the truth or falsehood

of Theorem 2.4.1 for insoluble groups has been established.

Gaschiitz has shown [3] that in every soluble group G there is a characteristic

conjugacy class of subgroups, the prefrattini subgroups, which respectively cover

and avoid the Frattini and complemented factors in any chief series for G. These

subgroups are epimorphism invariant and intersect in the Frattini subgroup of G.

In fact their relationship to the Frattini subgroup is similar to the relationship

between the system normalizers and the hypercentre of G - this has been

formalised in the notion of precursive subgroups; see Doerk and Hawkes [1,

Chapter V, Section 5]. It follows that a soluble group is an nC-group if and only

if its prefrattini subgroups are trivial (GaschUtz [3, Satz 6.6]); more generally, a

result of Kurzweil and Hauck [1] shows that the prefrattini subgroups of a soluble

group G are the minimal subgroups U of G for which the order complex IA(U, G)I

is non -contractible (The notation A(H, G) for a subgroup H of G, means the

partially ordered set of subgroups lying strictly between H and G.) We use the

prefrattini subgroups of soluble groups in Chapter 4: Here we describe an
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invariant 8(G) which is a measure of the failure of a soluble group G to be nC and

which is 'dual' to the measure provided by the size of the prefrattini subgroups of

G in the sense that it concerns the sizes of nC-subgroups of G, that is, subgroups

H for which lAO, H)I is non - contractible.

Definition 2.4.2. Let G be a finite soluble group. Define the set 8(G) as

follows;

erG) = (H: H < G and H is an nC-group),

and define 8(G) by

erG) = h.c.I. fG:H/; HE erG)).

Thus 8(G) is the highest common factor of the indices of the nC-subgroups of

G. Clearly if G is itself an nC-group then 8(G) = 1, but the converse is also true.

To prove this, we need a well-known result of Gaschlitz:

Theorem 2.4.3 (Gaschlitz [4]). Let G be a finite group and suppose that G has a

normal subgroup V which is an abelian p-group for some prime p. Let P be a

Sylow p-subgroup ofG (thus V <P). Then V has a complement in G if and only

jf V has a complement in P.

Corollary 2.4.4. Ifin the above situation His any subgroup ofG ofp'-index,

then V will have a complement in G ifand only if V has a complement in H.

(Theorem 2.4.3 is now thought of as a form of the 'stable element theorem' of

group cohomology, Theorem 3.2.2.) We also need the fact that the invariant e(G)

behaves well with respect to normal subgroups and quotient groups:
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Lemma 2.4.5. Let N be a nonnal subgroup of the finite soluble group G. Then

8(G) is divisible by 8(N)8(G/N).

Proof. For any subgroup H of G we have IG:HI = IG/N: HN/NI x IN: HnNI. On

the other hand, if H is an nC-group then so are HN/N and HnN, by Corollary

2.1.3 and Theorem 2.4.1 respectively. Therefore the index of an nC-subgroup of

G is of the form rs, where rand s are the indices of nC-subgroups of GIN and N

respectively. The result follows. 0

Theorem 2.4.6. Let G be a finite soluble group. Then G is an nC-group ifand

only if e(G) = 1.

Proof. If G is an nC-group then SCG) = 1, as remarked above. Conversely if

SCG)=1, then by Len1IDa 2.4.5 we also have SCG/N)=1 for each quotient GIN of

G, so that by Theorem 2.1.2 (ii) and induction on IGI, it suffices to show that G

has a complemented minimal normal subgroup. Let V be any minimal normal

subgroup of G, and let p be the prime dividing the order of V. The hypothesis

that SCG)=1 implies that G has an nC-subgroup H of p' -index. By definition V

has a complement in H, and it follows from Corollary 2.4.4 that V has a

complement in G, as required. 0

The proof of Theorem 2.4.6 shows that if a soluble group G has SCG) prime to

p, then all p-chief factors in any chief series for G must be complemented. (The

property that all p-factors be complemented is independent of the choice of chief

series, by Theorem 2.1.4, so as with nC-groups it is sufficient to check the factors

of anyone such series.) However, the converse is not true; for any prime p there

exist soluble groups all of whose p-chief factors have complements but which do

not have an nC-subgroup of pi-index, as the following example shows:
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Example 2.4.7. Let P and q be primes such that q divides p-l, let P be a cyclic

group of order p, and let N be a nontrivial irreducible module for P over the field

lq of q elements. The dual module Homzq(N,lq) is also irreducible and

nontrivial for P, so if

is nonzero, then the conjugates <px, for x E P, are pairwise distinct. We fix a

choice of (nonzero) <po Since q divides p-l we can choose an embedding of lq in

the multiplicative group lpx. By composing this embedding with <p we obtain an

action of the abelian group N on lp. We write X for lp regarded as a module for

N via this action. The conjugates of X under the action of P on N are pairwise

distinct.

Let M be the homocyclic q-group of exponent q2 whose Frattini quotient

11/<I>(M) is isomorphic to N. It is easy to find an action of P on M such that

11/<I>(M) is isomorphic to N as lqP-module. The map x ~ xP induces an

isomorphism from N:::M/<I>(M) to <I>(M), so the latter is an irreducible lqP­

module isomorphic to N. Let H be the semidirect product of M with P for this

action; thus H has a chief series

l<N<M<MP=H

with the bottom two factors isomorphic to N (as H-modules by inflation) and at

the top a central factor of order p.

Next let W be the (H/N)-module induced from the MIN-module X

constructed above. We assert that W is an irreducible (H/N)-module. Indeed,

by Nakayama reciprocity (Doerk and Hawkes [1, Chapter B, Theorem 6.5]) we

have:

while by Mackey's theorem, WMIN is the sum of the p conjugates of X by the

action of P. Since these conjugates are distinct,
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Homz (MIN/X, W(MIN)) = Homz (M/N)(X, X) ~ 71.p'p p

so that W is (absolutely) irreducible, by Schur's lemma. To complete the

construction we inflate the module\V to H and form the semidirect product,

G = [W]H.

It is clear that each p-factor in the chief series

1<W<\VN<WM<WH=G

has a complement; WN/W is the only Frattini factor. However, suppose that K is

an nC-subgroup of G of p'-index. Certainly K contains W, so that (by the

modular law) K is a semidirect product [W]E, where E = KnH. Replacing K by a

conjugate if necessary we may assume that E contains P, and so (again by the

modular law) E is of the form SP for some subgroup S of M. If K is to be an nC­

group then E, being a quotient of K, must be an nC-subgroup of H, and therefore

S, being normal in E, must also be nCo The Frattini subgroup of S is therefore

trivial, so that S has exponent p, and lies in <I>(M). The group G was constructed

so that <I>(M) acts trivially on W, so the subgroup K must have the form [(WxS)]P.

Thus S is a normal subgroup of K, and the quotient K/S is the p-group [W]p ~ Cp

wr Cpo This last group is not an nC-group, in contradiction to the hypothesis that

K is nCo So G has no nC-subgroup of p'-index. Therefore p divides e(G) in spite

of the fact that every p-chief factor of G has a complement. 0

It would be nice if Theorem 2.4.6 remained true, in terms of Mobius numbers,

for insoluble groups; unfortunately this is not the case. For example the simple

group PSL2(71.7)' is the product of the symmetric group of order 24 and a cyclic

group of order 7, which have Mobius numbers -12 and -1 respectively, but the
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Mobius number Jl(PS~(Z7» is zero. (See Section 1.5.)

In soluble groups G with abelian Sylow subgroups, or A-groups, as they are

known, the set 8(G) of nC-subgroups can be described completely. Note that the

term 'A-group' applies only to soluble groups.

Theorem 2.4.8. Let G be an A-group. Then G has a subgroup H with the

property that the nC-subgroups of G areprecisely the subgroups ofH and their

conjugates in G. Any other subgroup of G with the same property is a conjugate

ofH.

In other words, for an A-group G, there exists H ~ G such that 8(G) = {K ~ G:

K ~ G H}. The uniqueness up to conjugacy part is trivial; if H1 and H2 are two

such subgroups then by hypothesis H1 is conjugate to a subgroup of H2 and vice

versa, so that H1 and H2 are conjugate. To prove the existence of the subgroup H

we need an easy case of the Hall - Higman theorem [1, Theorem A], namely that

A-groups have p-Iength one for every prime p. This special case has a well­

known direct proof, which we give next:

Proposition 2.4.9. LetP be a Sylowp-subgroup of the soluble group G. Let

Z(P) be the centre ofP. Then Z(P) ~ 0p',p(G).

Proof. It is easy to see that Z(P) is centralizes every p-chief factor of G. On the

other hand, the intersection of the centralizers of the p-chief factors of G is the p-

Fitting subgroup 0p',p(G) (Huppert [1, Chapter VI, Satz 5.4]).0

Corollary 2.4.10. If G is soluble and has an abelian Sylow p-subgroup, then G

has p-length one. In particular, an A-group has p-Iength one for all primes p.
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Recall that a Sylow basis B of a finite soluble group G is a set consisting of the

identity subgroup together with one Sylow p-subgroup for each prime p dividing

IGI, such that the groups in B permute pairwise. (Doerk and Hawkes [1, Chapter I,

Definition 4.7].) The following result on the Sylow bases of groups of p-length

one is due to Huppert:

Theorem 2.4.11 (Huppert [1, Satz 6.11]). Let G be a finite soluble group which

has p-length one for all primes p. Let B = {1, P1, . . . ,Pk} be a Sylow basis of

G. Then for any i and j, 1 ~ i ,j~ k, any characteristic subgroup ofPi permutes

with any characteristic subgroup ofPi

Proof of 2.4.8. We first establish that an A-group G is nC if and only if its

Sylow subgroups are elementary abelian. (An equivalent form of this result has

been obtained by Bechtell [2, Theorem 2.3].) On the one hand, G has p-Iength

one for all primes p by Corollary 2.4.10, so each Sylow p-subgroup P ofG is

isomorphic to a normal subgroup of G/op,eG). Therefore if G is an nC-group

then so is P by Corollary 2.1.4 and Theorem 2.4.1. It follows that P is elementary

abelian, by Theorem 2.1.5. Conversely if the Sylow subgroups of G are

elementary abelian, or in other words nC-groups by Theorem 2.1.5, then SeG) =

1, so that G is an nC-group by Theorem 2.4.6.

We can now prove Theorem 2.4.8. Note that among A-groups the nC­

property is inherited by arbitrary subgroups. Let G be an A- group as in the

statement, let B = {1, Pi" .. ,Pr} be a Sylow basis for G, and for each i let Qi be

the characteristic subgroup nPi of Pi generated by the elements of prime order.

From Theorems 2.4.10 and 2.4.11 it follows that the product

29



is a subgroup of G; this subgroup has the required properties, as we show next.

The Sylow subgroups of H are elementary abelian; they are Q1" .. ,Qr and

their conjugates, so H and all its subgroups are nC-subgroups of G. On the other

hand, suppose K < G is an nC-group. By replacing K with a conjugate if

necessary we may assume that the Sylow basis B reduces into K, i.e. that for each

i the intersection of Pi with K is a Sylow subgroup of K. (Here we are using the

fact that the Sylow bases of G are conjugate.) Since the Sylow subgroups of K

are elementary abelian, we must have PinK ~ Qi' for each i, and it follows that

as required. 0

The Sylow subgroups of nC-groups.

In the proof of Theorem 2.4.8 we encountered a class of p-groups that cannot

be the Sylow subgroup of a soluble nC-group, namely those which are abelian but

not elementary. In fact Sylow subgroups of nC-groups are not common amongst

p-groups, for as Henn and Priddy [1] show, in a (rather technical) sense 'most' p­

groups have the 'opposite' property that they are p-nilpotent forcing, that is, any

group containing them as a Sylow p-subgroup automatically has a normal p­

complement. (A classical case is Burnside's theorem that cyclic 2-groups are 2­

nilpotent forcing.) Except for the cyclic group of order 2, a p-riilpotent forcing

group cannot be the Sylow p-subgroup of an nC-group. (It is easy to see that,

with this single exception, elementary abelian groups are not p-nilpotent forcing.)

If 'most' p-groups cannot be the Sylow subgroup of an nC-group, then one might

expect to obtain strong structural restrictions on those p-groups that can appear

in this way. A few such restrictions are given below, but first we point out a

known result in the opposite direction:
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Theorem 2.4.12 (Hawkes [1,Theorem 1]). Any finite soluble group is

isomorphic to a subgroup ofa finite soluble group which has a unique chief

series, al1 of whose factors are complemented.

The following two results are generalizations of the fact that an abelian Sylow

subgroup of a soluble nC-group is elementary:

Theorem 2.4.13. Let G be a soluble nC-group, and let P be a Sylow p-subgroup

of G. Then the centre Z(P) is elementary abelian.

Proof. By Corollary 2.1.3 we may assume that 0p'(G) = 1. Therefore 0p',p(G)

= 0p(G) is elementary abelian, by Theorem 2.4.1. But Z(P) is contained in

0p',p(G), by Proposition 2.4.9.0

Theorem 2.4.14. Suppose that the p-group Pis a Sylow p-subgroup of the nC-

group G. Then the factors in the derived series ofP are elementary abelian.

Proof. As before we may suppose that 0p,(G) = 1, and so we may assume that G

has a minimal normal p-subgroup N. Let C be a complement for N in G and let

Q = Cnp; then by the modular law P is isomorphic to the semidirect product

P~ [N]Q.
The group Q is isomorphic with a Sylow subgroup of the nC-group GIN, so

by induction the derived factors of Q are elementary abelian. This is enough to

ensure that the derived factors of P have the same property, as the following

lemma shows:

Lemma 2.4.15. Suppose that P is a semidirect product [NjQ, where N is abelian.

For r > 1 let p(r) and dry be the rh derived subgroups ofP and Q, respectively.
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Then

pr) =IN, Q, rj1), . . . ,Q(r-1)Jo<r)

and there are surjective homomorphisms

N x QIQ(1) ~ plp1)

and

IN, Q, . . . ,O<r-1)JI IN, Q, . . . ,or)Jx Q(r)IQ(r+1) ~ prJIpr+1).

In particular, ifNand cir)IQ(r+1) are elementary abelian then so is prJIpr+1).

Proof of Lemma 2.4.15. The subgroups N, [N, Q), ... ,[N, Q, ... ,QCr-l)) are

all normal in P, for clearly NQ=P, NQ(1), ... ,NQ(r-l) are normal subgroups of

P, and from the identity [n, n'q] = [n,q][n,n']q = ln.ql, which holds for any n, n' in N

and any q in Q (N being abelian) we deduce that [N, Q] = [N, p] is normal in P, and

inductively,

[N, Q, Q(l), ... ,Q(r)] = [[N, ... ,Q(r-l)], NQcr)] <1 P

(using each time that the commutator of two normal subgroups of P is itself

normal). Inductively, from

pCr) = [N, Q, Q(l), ... ,Q(r-l)]QCr)

we deduce that

pCr+l) = <[[N, Q, Q(1), ... ,Q(r-l)], Q(r)], QCr+l),

and finally that pCr+l) = [N, Q, Q(1), ... ,QCr)].Q(f+1), because the first factor is

normal in P. The assertion about per) follows by induction on r.
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The homomorphisms are just given by multiplication; they are clearly

surjective because of the form of p(r), and the last remark follows from this and

the fact that [N, Q, ... ,Q(r)] is a subgroup of N for each r. This completes the

proof of the lemma and of Proposition 2.4.14. 0

The same proof shows that the derived factors of any Hall subgroup of a

soluble nC-group have square-free exponent.

We can deduce from Theorems 2.4.13 and 2.4.14 that the factors of the upper

and lower central series of a Sylow subgroup of a soluble nC-group are

elementary abelian, because of the following result.

Proposition 2.4.16 (Huppert [1, Chapter III, Satz 2.13]). Let P be a p-group

with upper and lower central series

G = r1(G) > r2(G) > ... > rc+1(G) = 1,

and

1 = ZO(G) < Z1(G) < Z2(G) < ... < Zc(G) = G.

Then for each i, 1 <i < c, the exponent ofZi+1(G)/Zi (G) divides the exponent of

ZlG)/Zi-1 (G) and the exponentofr/G)/Yi+1(G) thatofri_1(G)/rlG).

Corollary 2.4.17. Let P be a Sylow subgroup of the soluble nC-group G. Then

the factors of the upper and lower central series ofP are elementary abelian.

Proof Apply Proposition 2.4.16 to 2.4.13 and 2.4.14 respectively. 0

The subgroup P itself can have any exponent-this is obvious from Theorem
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2.4.12. In fact, one of the theorems of Hall and Higman [1, Theorem 3.3.1] shows

that where the Sylow p-subgroup of a soluble group has exponent p, the p-Iength

of the group is usually 1; exceptions are only possible when p=2, or when p is a

Fermat prime and the Sylow 2-subgroups of G are non-abelian. An nC-group G

of p-Iength one has elementary abelian Sylow p-subgroups (see the proof of

2.4.8). On the other hand, if P is the Sylow p-subgroup of a soluble nC-group G

and if P contains an element of order p2, then P has a subgroup isomorphic to the

regular wreath product Cp wr Cp' as we show next:

Lemma 2.4.18. Let Q be a cyclic group oforderpT1 and let V be a module for Q

over the field ofp elements. Then the semidirect product[vjQ has exponento"
unless V has the regular ZpQ-module as a direct summand, in which case the

exponent of[vjQ is pfl+1.

Proof. Let Q=<y). Since the characteristic polynomial of y is (X_1)pn, which

splits completely over Zp' we may choose a lp-basis for V with respect to which

the operator y is in Jordan normal form, There is no loss in assuming that the

module V is indecomposable, or in other words that y is represented by a single

Jordan block,

1 1

1 1

1 1

1 1

1 1

1

of size r x r, where r is the dimension of V.

Thus as an endomorphism of V we have y = 1+'J, where 'J is a nilpotent linear

map with 'Jr = 0 but 'Jr-1 1= O. To find the exponent of the semidirect product we
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calculate directly the orders of elements; in this calculation there is no loss in

considering only elements of the form (v, y), for v an element of V, for y was an

arbitrary generator of Q, and elements whose Q-component is not a generator

have order at most pn by induction. For SE Z we have

(v, y)S = (v1+y+ ... +yS-t,yS)

and for s = pt we may use the polynomial identity

1+(1+X)+(1+X)2+ ... +(1+X)S-1 = XS-1,

valid over Zp' to rewrite this as

(v, y)S = (VS-1(v), yS).

Thus, since y has order pn, this will be the exponent of the semidirect product

unless there exists VEV such that vpn-1(v) 1= 0, in other words unless the Jordan

block above has dimension pn, in which case the formula shows that the exponent

will be just pn+1. Finally, if the dimension of V is pn then V must be the regular

module, for example because from the existence of the Jordan form for y we

know that there is only one indecomposable module for Q of each dimension. 0

Theorem 2.4.19. Suppose that P is a Sylowp-subgroup of the nC-group G.

where p is an odd prime. If P is not elementary abelian then at least one of the

following holds:

(i) p is a Fermat prime, and the Sylow 2- subgroups of G are non-abelian.

(ii) P has a subgroup isomorphic to the regular wreath product Q wrQ, where Q

is cyclic oforder p; therefore P is irregular and ofnilpotent class at least p.

Proof. If P has exponent p then (i) must hold, by Hall and Higman [1, Theorem

3.3.11, because the p-length of P must be greater than 1. Suppose therefore that P

contains an element of order p2. As usual, we may assume without loss of

generality that G has no p'-normal subgroup, and choose a minimal normal
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subgroup V of G, whose order is say pn, and a complement C for V in G. Let Q

be the subgroup Cnp, a complement for V in P. If Q contains an element of order

p2 then Q, and hence P, satisfy (ii) by induction, so we are left with the case

where the exponent of Q is p. If xE P has order p2 and we write x = v.g, where

VE V and gE Q, then x E V<g), and it follows from Lemma 2.4.18 that V has a

Zp<g)-direct summand W which is regular. It is easy to see that the subgroup

[W]<g) of P is isomorphic to the wreath product of <g) with itself. The other

assertions of (ii) follow from this. 0

The construction in Example 2.4.7 yields a group whose p-chief factors are

complemented and whose Sylow p-subgroup is isomorphic to ~ wr~. We can

use the same construction, but with an elementary abelian q-group in place of the

homocyclic q-group of exponent q2 used there, to give an nC-group with the

same Sylow p-subgroup Cp wr Cpo

It seems interesting to consider the difference in strength between the nC­

condition on a soluble group and its p-local analogue, that is the condition that a

soluble group have all its p-chief factors complemented. In the results about

Sylow subgroups proved above we have used only the weaker condition that the

p-group in question be the Sylow p-subgroup of a soluble group with

complemented p-chieffactors, and in fact there do exist p-groups which are the

Sylow p-subgroup of such a group, but which still cannot be embedded as a

Sylow subgroup of a soluble nC-group. For example, if P is the non-abelian

group of order 27 and exponent 3, then P is a Sylow 3-subgroup of the semidirect

extension [V]G of G = SL2(Z3) by its natural module V = (Z3)2. On the other

hand, it is easy to see that no soluble nC-group has a Sylow 3-subgroup

isomorphic to P. However, this counterexample depends on the presence of the

exceptional case of the Hall-Higman theorem-here we have the Fermat prime 3,
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and the Sylow 2-subgroups of [v]a are non-abelian. In all the exceptional cases

of Hall-Higman [1, Theorem 3.3.1] the order of the group is even; we end this

chapter with the following conjecture:

Conjecture 2.4.20. If G is a finite soluble group of odd order, all of whose p­

chief factors are complemented, then there is an nC-group H whose Sylow p­

subgroups are isomorphic with those of G.
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CHAPTER 3

3.1Introduction.

We deduced Thevenaz's Theorem 1.3.2 on the conjugacy of upper-infiltrated

complements from Theorem 2.3.1, in which it is shown that where upper

infiltrated complements to the derived subgroup of a soluble group exist, they

coincide with the system nonnalizers of the group. Thevenaz, being unaware of

Theorem 2.3.1, gave a proof of his result based on a curious cohomological

property of the upper-infiltrated complements:

Lemma 3.1.1 (Thevenaz [1, Lemma 2.2]). Suppose that T is an upper­

infiltrated complement of the derived subgroup ofa finite soluble group G. Let k

be a field and S a simple kG-module. If S is not the trivial module. then the

restriction map

is the zero map.

We may regard Lemma 3.1 as a property of system normalizers, temporarily

with the proviso that upper-infiltrated complements exist, but this proviso is

unnecessary; the main result of this chapter is a direct proof that the g; ­

nonnalizers of all soluble groups have an analogous property for any local

formation g;. In Chapters 4 and 5 we consider the extent to which the

cohomological properties of g;-normalizers proved in this chapter characterize

these subgroups. It turns out that there are interesting connections with other

questions in the theory of groups and their cohomology.
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3.2 Cohomology of groups.

This section is a review of results from the cohomology theory of groups which

are used below. Everything that we use is covered by either Brown [1] or Evens

[1]; most is standard theory and may be found in any text on homological algebra.

Throughout the sequel, 'group cohomology' means the ordinary cohomology

theory; for any group G and G-module V, we have a collection of abelian groups

Hr(G, V), one in each degree or dimension r > O. We use the standard notation

H*(G, V)

to denote the direct sum of the cohomology groups Hr(G, V), for r~ O. When V =

k is a ring on which G acts trivially (in our case k is invariably a field of

characteristic p) the additive group H*(G, V) has a natural ring structure, given by

the cup product;

which is associative and commutative in the graded sense. (This means that for ~

E Hr(G, k) and 11 E HS(G, k), we have ~ u 11 = (_1/s 11 u~. In particular, note

that the subalgebra of H*(G, k) which consists of the direct sum of the

cohomology groups of even degree, is a commutative algebra over k.) We use

the ring structure of H*(G, k) in Chapter 5.

Functorality.

The cohomology ring H*(G, V) is functorial in the pair (G, V) in the following

sense (for a fuller discussion, see Brown [1, Chapter III, Section 8] or Evens [1,

page 3]). Given another group H and an H-module W, a compatible pair(p, 1t) is

a pair of group homomorphisms p: H ~ G and n: V ~ W (note the direction of
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the map p) such that the following equation holds for all v E V and h E H:

1t (P(h)v) = h 1t(v).

This equation simply says that if V is regarded as an H-module via p, then the

map 1t: V -+ W is a homomorphism of Hi-modules. A compatible pair (p, n)

induces a map (p, 1t)* = 1t* 0 p*: H*(G, V) -+ H*(H, W). The following are the

most important cases:

(i) Restriction and Inflation. If p: H -+ G is a homomorphism, and V is a G­

module then V may be regarded as a p(H)-n10dule by restriction and then as an

H-module by inflation. The pair consisting of the inclusion map H -+ G and the

identity map V -+ V is clearly compatible, and so there is an induced map

p*: H*(G, V) -+ H*(H, V).

In the extreme case where the map p is the inclusion of a subgroup H of G, the

map p* is traditionally called restriction from G to H, and at the opposite

extreme, where p is an epimorphism, p* is the inflation map.

(ii) If V and W are modules for the same group G and 1t: V -+ W is a G­

module homomorphism then the pair (1, 1t) is compatible, where 1 is the identity

map on G. Thus there is an induced morphism 1t*: H*(G, V) -+ H*(G, W). Such

maps are collectively known as coefficient morpbisttis.

(iii) Conjugation. If H ~ G is a subgroup and V is a Gi-module then it is easy to

check that the maps
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and

given respectively by cg(h) = g-lhg and mg(v) = gv, are a compatible pair. The

induced map

is also called conjugation by G. If ~ E H*(H, V) then we write ~g for the image of

~ under this map; unfortunately then ~gh = (~h)g, but if this seems suspicious the

reader can substitute the notation g*(~), which indicates composition correctly.

In terms of the standard resolutions F*(G) and F*(H) for G and H (see Brown [1,

Chapter I, Section 5]), the map of cohomology groups induced by a compatible

pair (p, x) corresponds to the chain map

Hom(p*, n): Ho~(F/G), V) -+ HomH(F/H), W)

where p*: F*(H) -+ F*(G) is the extension by linearity of p: H -+ G. For

computations with arbitrary projective resolutions for Hand G, the map p* is

replaced by any chain map 'compatible with p' in the sense that p*(hx) = p(h)p*(x)

for all h E H and x E F*(H). If p: G -+ G is conjugation by an element g E G

then the map F/G) -+ F*(G) given by x 1--+ g-lx is compatible with p (this is not

the same as the extension of p by linearity when F*(G) is the standard resolution,

although it is easy to write down a chain homotopy between the two maps). With

this choice of compatible map the formula above shows that ~g E Hom (F*(G), V)

is the map go~og-l. In particular the conjugation action of G on its own

cohomology (with any coefficients) is trivial. In the sequel we assume implicitly

the following corollary of this fact: For any G-module V, the kernel of the
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restriction map H*(G, V) -+ H*(H, V) depends only on the conjugacy class of H

in G.

If G acts trivially on V, then given any map p: H -+ G we may regard V as a

trivial module for H as well, and then the pair (p, 1) is compatible. In particular

the group of automorphisms of G acts on the cohomology ring H*(G, k) for any

ring k.

Relation with Sylow subgroups.

The following results are proved using the transfer map in cohomology (Brown

[1, Chapter III, Section 9], Evens [1, Section 4.2]). They relate the cohomology of

a group to that of its Sylow subgroups.

Proposition 3.2.1 (Brown [1, Chapter III, Corollary 10.2], Evens [1, Corollary

4.2.3]). Let G be a finite group, and let Mbe a G-module. Then multiplication

by /G/annihilates H!(G, M) for all r > 1. In particular, ifmultiplication by /G/ is

an isomorphism from M to M, then W (G, M) = 0 for all r > 1.

If M is finitely generated, Proposition 3.2.1 implies that the groups W(G, M)

are finitely generated torsion abelian groups, hence finite. Their primary

decomposition is given by the following theorem:

Theorem 3.2.2 (Brown [1, Chapter III, Theorem 10.3]). Let G be a finite group

and let M be a G-moduJe. Let p be a prime and let P be the Sylow p-subgroup

of G. Then the restriction map

res: W (G, AI) ~ [-JT(P, M)
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is a monomorphism on the p-primary component ofW(G, M), and zero on the

other components.

The image of the restriction map in Theorem 3.2.2 is actually the subgroup of

W(P, M) consisting of G-stable elements, but we do not need this.

The inflation-restriction exact sequence.

This exact sequence of cohomology groups gives a relationship between the

cohomology of a group and that of a normal subgroup. A more sophisticated

relationship is the Lyndon-Hochschild-Serre spectral sequence, from which the

restriction-inflation sequence can be deduced.

Proposition 3.2.3. (See Evens [1, Corollary 7.2.3].) LetN be a normal subgroup

of the group G. Let M be a G-module and write MN for the module ofN-fixed

points ofM, regarded as a module for G/N by deflation. Then there is a map t:

H1(N, M) ~ IJ.2(G/N, A1N) (the transgression map) and an exact sequence:

0-+ Ht (G/N, MN) -+ Hl(G, M) -+ H1(N, M)~ IJ.2(G/N, MN) -+ FJ2(G, M).

Ifr > 1 is such that Hl(lV, M) = 0 for 1 <i < r, then the sequence

0-+ H(G/N, MN) -+ Hr(G, M) -+ Hr(N, M)

is also exact.

Corollary 3.2.4. Ifmultiplication by INI is an isomorphism from M to M, then

Hr(G/N, MN) :::: IE(G, l\f), for r ~ 1.

Proof The groups Hr(N, :\1) are zero for r ~ 1, by Proposition 3.2.1. Therefore

the restriction-inflation sequence degenerates into the claimed isomorphism. 0
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3.3 9='-nonnalizers and cohomology.

In all our results the 'module of coefficients' V will be an irreducible module

for the group algebra kG, where k is a field. We will generally restrict our

attention to the case k = Zp' since the concept of 9=' -eccentricity applies to these

modules. For modules over fields of characteristic zero (or prime to the order of

the group) all cohomology groups in dimension > 1 are zero, by Lemma 3.3.2,

while on the other hand it is easy to see that any irreducible G-module is either an

irreducible lpG-module for some prime p, or an irreducible a;}G-module; since

the latter case is not interesting cohomologically, we take the liberty of using the

term 'irreducible G-module' to mean an irreducible module over lpG, for some

pnmep.

The following is the main result of this chapter. As usual,9=" denotes a local

formation (see Chapter 2, Section 2).

Theorem 3.3.1. Let D be an g:-normelizct of the finite soluble group G. Then

the restriction map

is the zero map for all r > 1, whenever the module of coefficients V is an g:­

eccentric irreducible module for G.

We are not claiming that the cohomology groups themselves are zero; in fact it

is quite possible for both Hr(G, V) and Hr(D, V) to be non-zero for all r ~ 1, as

the following example shows:

Example 3.3.2. Let G be the product ZxS4 of a group Z of order 2 and the

symoletric group of degree 4. The system normalizers of G are of the form ZxT,
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where T is a subgroup of 54 generated by a transposition. Let V be the

vierergruppe in 54' regarded by inflation as a module for G over the field Z2 of

two elements. Then V is an irreducible, eccentric module for G. However, the

cohomology groups Hr(G, V) and Hr(Z x T, V) are non-zero for all r > 1. For

Hr(Z x T, V), this is easy to show using the long exact sequence in cohomology

associated with the sequence 0 -+ Z2 -+ V -+ Z2 -+ 0 of Z x T-modules. From

the fact that W(Z x T, Z2) has dimension r+1 over Z2 (see Proposition 5.4.1, or

Evens [1, Section 3.5]), and the sections of long exact sequence,

Hr-1(Z x T, Z2) -+ W(Z x T, Z2) -+ !F(Z x T, V),

one concludes immediately that the dimension of !F(Z x T, V) over Z2 is at least

one-in fact these groups have dimension precisely one for all r.

The calculation of H*(G, V) is more involved, and can be avoided for the first

cohomology group H1(G, V) by an appeal to Gaschiitz's theorem that all of the

complemented chief factors of a soluble group have non-zero 1-cohomology.

(See page 58 below.) However, we sketch the calculation of all the cohomology

groups H*(G, V), if only for amusement's sake.

Since V is a module over a field, the Kiinneth formula shows that

H*(G, V) = H*(Z, Z2) ®Z2H*(S4' V).(See Evens [1, page 17-18].) The ring

H*(Z, Z2) is a polynomial ring in one variable over Z2' generated by the non-zero

element ~ E H1(Z, Z2)' (Evens [1, Section 3.5].) It follows that

OSrSn

To determine the groups H*(S4' V), we think of V as the Vierergruppe, with S4

acting by conjugation. Since V acts trivially on itself and is a module over a field,

we have H*(V, V) = H*(V, Z2) ®Z2 V. (Evens [1, page 30].) Furthermore, V is

projective as an S4/V-module by deflation, so H*(V, V) = H*(V, Z2) ®Z2V is

projective as an S4/V-module also. Thus in the Hochschild-Serre spectral
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nonzero entries for p ~ 1. The spectral sequence therefore has no non-zero

differentials, and so restriction gives an isomorphism

The ring H*(V, l2) is a polynomial ring over l2 in two variables of degree 1

(Evens [1, Section 3.5]), so the right-hand side of the above, in degree n, is the

S3-fixed point subspace (l2[X, Y]n ®Z2v)S3, where the l2-span of X and Y is

an S3-module isomorphic to V, and the subscript n indicates the subspace of

l2[X, Y] consisting of homogeneous polynomials of degree n.

Let C be the subgroup of S3 of order 3, and let den) be the dimension of the

subspace of C-fixed points of l2[X, Y]n' Then l2[X, Y]n is the direct sum of the

C-fixed point subspace, and (n+1-d(n))/2 copies of V (for V is the only

irreducible l2S3-module on which C acts nontrivially, and V is projective).

After tensoring with V, using the fact that the trivial S3-module Z2 occurs once

as a submodule of V ®kV, and does not occur as a submodule of V ®kU where

U is centralized by C, we obtain

dimz 2H*(S4' V) = (n+1-d(n))/2.

Finally, we calculate den) by extending scalars to the field of four elements,

where the action of C is diagonalizable: If 1t E C is a 3-cycle, then we may

suppose that 1t(X) = AX, 1t(Y) = A-1y , where AE IF4 is a cube root of unity. The

. I x" Xn- 1y y n .Brauer character of the space generated by monomia s, ,. . ., IS

1 n n-2 '\ -n
then given by XCi) = n+1 and X(1t) = X(1t-) = A + A + ... + I\, • The

multiplicity den) of the trivial C- module in l2[X, Y]n is (XC1)+2X(1t))/3, and,

substituting this in the equation for dim z2H*(S4' V), we arrive at last at the

answers:

dimZ2HnCS4, V) = [(n+1)/3], and dim z2Hn(G, V) =I [(r+1)/3]. 0

O~r~n
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For the proof of Theorem 3.3.1 we require the following lemma:

Lemma 3.3.3. Let P be a rational prime, and let G be a group with a Sylow p­

complement H. Ifk is a field of characteristic p and V is a nontrivial, irreducible

kG-module then no non-zero element of V is fixed by H.

Proof. The assertion is equivalent to the statement that HomkH(kH, V) = 0,

where kH denotes the field kregarded as the trivial kH-module. By Nakayama

reciprocity (Doerk and Hawkes [1, Chapter B, Theorem 6.5]),

As is well known, the induced module IndG(kH) is the projective cover of the

trivial kG-module kG' (Doerk and Hawkes [1, Chapter 1]). Therefore the head

of IndO(kH) is just the trivial module kG' In other words there can be no non­

zero map from IndO(kH) to any simple G module other than kG' and since by

hypothesis V is not isomorphic with kO, the groups of homomorphisms above

must indeed be zero, as required. 0

Proof of theorem 3.3.1.

Suppose that ~ is defined by the integrated formation function 1whose

support is 1t. The construction of the ~ - normalizers of G is given in Section 2.2;

if l, is a Sylow system of G we write TP = G/(P)nGP for each prime pE1t which

divides the order of G, where GP is the Sylow p-complement belonging to l,.

Then the ~ -normalizer D = DO~.) is defined to be the intersection over p E 1t of

the normalizers No(TP) and the Sylow x-complement belonging to l,. In

particular the ~ -normalizers of G are 1t-groups so by Proposition 3.2.1 we only

have to consider ~ -eccentric simple G-modules whose characteristics lie in 1t. If
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V is such a module, of characteristic say p, we can factorize the restriction map in

cohomology according to the inclusion,

That is, the restriction map from H*(G, Y) to H*(D, Y) is the composite of two

restrictions

H*(G, Y) ~ H*(NG(TP), Y) ~ H*(D, V).

The middle cohomology group is zero in dimensions ~ 1, as we show next. The

group TP is a normal p' -subgroup of NG(TP), so by Corollary 3.2.4 we have the

following isomorphism:

Now TP is a Sylow p-complement of Gi(P), which in turn is a normal

subgroup of G. By Clifford's theorem the restriction of the irreducible module V

to Gi(P) is a semisimple Gi(P)-n10dule whose irreducible summands are

conjugate in G; furthermore, the hypothesis that V is g; -eccentric implies that

one, and therefore all, of these summands is nontrivial. By Lemma 3.3.3 applied

to each summand, the fixed-point submodule yTP is zero. Therefore W(NG(TP),

V) ~ HrCCNGCTP)/TP), yTP). is zero, as claimed. The theorem follows

immediately, since a map which factors through the zero group must be zero. 0

Remark. Theorem 3.3.1 bears a relationship with a theorem of Barnes, Schmid

and Stammbach [1] on the cohornological characterisation of saturated formations

of finite groups. They prove [1, Theorem A] that for a saturated formation g;, a
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finite group G belongs to 9=' if and only if Hl(G, V) = 0 for all irreducible 9=' ­

eccentric G-modules V, and that moreover if G E 9=', then W(G, V) = 0 for all

such modules and all r > 1. (The authors give a definition of 9=' -eccentricity

which does not mention formation functions; their paper (just) predates the

theorem of Schmid that any saturated formation is local. Theorem A is also stated

for local formations, with our definition of 9=' -eccentricity [1, Theorem B].) A

soluble group belongs to 9=' if and only if it is equal to its 9=' -normalizers, by

Theorem 2.2.3(iii), so Theorem 3.3.1 represents a generalization of part of

Theorems A and B in the case of soluble groups. Where a converse to 3.3.1 can

be proved, we have a strict generalization of these theorems, as for example in the

case of soluble nC-groups (see Corollary 4.4.5). It is interesting to note that in

Barnes, Schmid and Stammbach's results the first cohomology group 'governs' the

behaviour of the others; this is also the case in Corollary 4.4.5. In Chapter 5, we

find cases where differences appear between the behaviour of Hl(G, V) and that

of the higher cohomology groups W(G, V), r > 2.

In the special case of the second cohomology group we give another proof of

Theorem 3.3.1 which uses the description of this group in terms of extensions of

G by its module V. (See Brown [1, Chapter IV, Section 3].) For any group G and

G-module V, the elements H2(G, V) correspond to equivalence classes of short

exact sequences of groups and homomorphisms

in which the conjugation action of E on V (which can be deflated to G, since V is

abelian) agrees with the given action of G. The zero element of H2(G, V)

corresponds to the split extension, for which E is the semidirect product [V]G, and

for a subgroup of G, the restriction map H2(G, V) -+ H2(O, V) is just the map
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which takes the representative class of an extension,

1.to --+ V --+ E ) G --+ 1,

to the representative of the extension of D given by

-1 1to --+ V ~ 1t (D) ) D --+ 1.

Thus Theorem 3.3.1 (for H2(G, V)) is equivalent to the following statement:

Suppose that D is an g:-notmelizer of the finite soluble group G and that V is

an g::-eccentiic irreducible G-module. Then for any extension

o ~ V ~ E ~ G ~ 1,

the corresponding extension ofD;

-1
o ~ V ~ n (D) ~ D ~ 1,

is split.

This is a simple consequence of the covering and avoidance properties of ~ -

normalizers and the fact that they are preserved under epimorphisms. (Theorem

2.2.3.) Thus if K is an ~ -normalizer of the extension group E, the image 1t(K) of
-1

KinG is conjugate to D. Therefore 1t (D) is the product of V with K, and

moreover VnK = 1 because V is by hypothesis an ~ -eccentric chief factor of the

group E. That is to say, K splits the extension of D by V. 0

3.4 The hypercentre.

The intersection of the system normalizers of any soluble group G is the

hypercentre Zoo(G). (Doerk and Hawkes [1, Chapter I, Theorem 5.9].) Therefore

the restriction map
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is zero for a soluble group G and all eccentric irreducible G-modules V, by

Theorem 3.3.1. The hypothesis that G be soluble is unnecessary here-certainly

the definition of the hypercentre, unlike that of the system normalizers, does not

require a soluble group G, and we can give a simple direct proof that restriction to

the hypercentre is zero for eccentric coefficient modules without using the

solubility of G, as follows:

Theorem 3.4.1. Let G be a finite group and let ZexlG) be the bypercentxe of G.

If V is an eccentric, irreducible module for G then the restriction map

res: HT(G, V) ~ HT(ZOO(G), V)

is zero for all r ~ 1.

Proof. Suppose that the characteristic of V is the prime p, and let Q be the

(unique) Sylow p-subgroup of ZooCG). Since the map

is a monomorphism by Corollary 3.2.3, it suffices to prove that

is the zero map.

The image of this n1ap is contained in the subgroup of Hr(Q, V) consisting of

G-stable elements. Such an element is a fortiori stable under the action of

QP(G), the normal subgroup of G generated by the elements of p'-order. This

latter subgroup centralizes Q, and so acts trivially on the cohomology groups

Hr(Q, lp)' On the other hand, Q is contained in 0pCG), and therefore acts
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trivially on the simple module V, so that we have a factorization (Evens [1, page

30]);

which is an isomorphism of Gvrncdules if G acts diagonally on the tensor

product. It follows that as a module for Op(G), H*(Q, V) is just a sum of copies

of V. By Clifford's theorem V is a semisimple Ol'(Gj-module whose summands

are conjugate by G; since OP(G) cannot centralize V, they are all non-trivial.

Therefore there are no non-zero Ol'(Gj-stable elements, and the result follows. 0
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CHAPTER 4

4.1Introduction.

In this chapter and the next we try to find a converse to Theorem 3.3.1 in the

following form (where as usual S' is a local formation):

4.1.1 Ideal converse. Let K be a subgroup of the finite soluble group G, and

suppose that for all g:-eccentric irreducible G-modules V and all r ~ 1, the

restriction map

1S zero. Then K is contained in an g:-normalizer ofG.

It must be stressed that this statement is false in general. However there are

important classes of soluble groups for which it or something similar can be

proved. My own opinion is that this is evidence of some more complex but

universal cohomological property of 9=' -normalizers which I have been unable to

discover, and a small amount of evidence for this point of view is given in

Chapter 5. In this chapter the approach is to consider an easy case; we impose the

condition of 4.1.1 on the first cohomology groups H1(G, V) only. This is

obviously less likely to ensure that K is contained in an 9=' -riormalizer than the

full condition, but because of the tractability of the degree-1 cohomology of

soluble groups, we can identify a class of groups including the nC-groups of

Chapter 2, in which 4.1.1 is true. We begin with a brief discussion of the

properties of degree 1 cohomology of (p-)soluble groups and the related concept,

due to Gaschiitz [3, Section 4] of crowns in soluble groups.
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4.2 The I-cohomology of p-soluble groups.

The following two results are well known; they are essentially due to Gaschiitz.

(See also Stammbach [1, Theorem Al.)

Lemma 4.2.1. Let G be a p-soluble group, and let V be a faithful, simple

module for G over a field ofcharacteristicp. Then H!(G, V) = 0 for all r > 1.

Proof. The subgroup 0p(G) of G centralizes V (because by Clifford's theorem V

is a semisimple 0p(G)-module, while on the other hand 0p(G) is a p-group).

Since V is supposed to be faithful, 0p(G) = 1, and so, since G is p-soluble,

0p'(G) > 1. Therefore 0p'(G) acts nontrivially on V, so by Clifford's theorem,

VOp,(G) is zero. By Corollary 3.2.4, Hr(G, V)::::: Hr(G/Op,(G), VOp.(G») for all r ~

1, and the result follows.

Theorem 4.2.2. Let G be a p-soluble group. Let W be a homogeneous

semisimple module for G over a field ofcharacteristicp. If CG(1V) is the

centralizer of Win G then the restriction map

gives rise to an isomorphism

H1(G, W)::: Hom ZG(cG(W)ab, W).

Proof. Let V be a simple direct summand of W. Then CG(V) = CG(W) because

W is homogeneous. Write N for CG(V). Then every simple summand of W =

WN is a faithful, simple GIN-module, and so, by Lemma 4.2.1, H1(G/N, WN) =

H2(G/N, WN) = O. Consider the five-term exact sequence associated with G, N
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and V (Proposition 3.2.3); in this case, the terms are as follows:

inf res 1 't
0-+0 ) H1(G, W) ) H (N, W)G ) 0 ---+ H2(G, W).

Therefore the restriction map H1(G, W) -+ H1(N, W)G is an isomorphism. Since

N acts trivially on W, we have H1(N, W) = Homz(Nab, W)G, where Nab is the

abelianization of N. It is easy to check that

and the result follows. 0

The relationship between chief factors and 1-cohomology for a p-soluble

group G is best expressed in terms of the crowns of G, as follows.

Crowns of p-soluble groups.

Suppose that the p-soluble group G has a simple module V over the field Zp of

p elements. It is easy to see that the centralizer CG(V) has a well defined smallest

normal subgroup RG(V) with the property that the factor X = CG(V)/Ra(V) is an

elementary abelian p-group which, as a G-module, is a sum of modules

isomorphic to V. (Gaschiitz [1, Section 4].) This factor is called the crown of G

associated with V. (Gaschiitz uses the word 'Kopf'.)

We write K(V) for the crown of G corresponding to V. Thus by Theorem 4.2.2

we have

for any homogeneous module W all of whose summands are isomorphic with V.
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As a factor of G, any crown K(V) has a unique conjugacy class of complements

(Gaschiitz [1, Satz 5.1].) - this is immediate from Theorem 4.2.1, because K(V) is

a faithful homogeneous semisimple module for G/CG(V). Gaschiitz [1, Satz 5.3]

proves various properties of complements of crowns in a soluble group. We need

only a few of these properties, and since Gaschiitz assumes that G is soluble,

rather than just p-soluble, we give direct proofs here.

Lemma 4.2.3 (Gaschiitz [1]). Let V be a simple module over Zp for the p­

soluble group G, and suppose that H < G complements a factor ofG which is

isomorphic to V. Then Rc;(V) < H.

Proof. Suppose that the factor is a minimal normal subgroup of G, so that G is

isomorphic to the semidirect product [V]H. Then clearly CG(V) = V x CH(V), so

CG(V)/CH(V) is a factor of G isomorphic to V. Therefore RG(V) s CH(V) ~ H.

The general case follows similarly. 0

Corollary 4.2.4. In any chiefseries for G, the number ofcomplemented factors

which are isomorphic to V is equal to the number ofsummands in K(V).

Proof. This number is independent of the chief series, by the generalized Jordan­

Holder theorem (Theorem 2.1.4), while for a series chosen to pass through Ro(V)

and CG(V), no factor isomorphic to V can lie above CG(V), and by Theorem 4.2.3

no such complemented factor can lie below RG(V). 0

Proposition 4.2.5 (Gaschiitz [3]). Let V be a simple module over Zp for the p­

soluble group G, and let 1 < NO < N 1 <. . . < Nn = G be a chief series for G.

For each factor Ni/Ni-l of this series which is complemented and isomorphic to

V, choose any complement C; Then the intersection D of the subgroups Ci is a

complement for the crown K'(V) of G.
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Proof. Let il <. . . < ir be the indices of the factors Ni/Ni-1 above, so that by

definition D = CilnCi2n ... nCir. Clearly Nil is contained in Ci2, ... ,Ci
r'

so

by the modular law Nil(CitnCi2n ... nCi~ = (Nit Ctl)n(Ci2n ... nCi~ =

Ci2n ... nCir· By the same reasoning, Ni2Nil(CitnCi2n ... nCir) = Ni
2(q2n

... nCir) = Ci3n ... nCir' and we deduce finally that Ni/Ct
l
n Ci2n ... nCi

r)

= G. Clearly Nir < Ca(V), since Nir/Nir-1 is isomorphic to V, so we also have

DCG(V) = G. The formula Nit(Cit nCi2n ... nCir) = Ci2n nCir above

shows that Cit (Ci2n ... nCir) = G, and of course Ci2(Ct
3n

nCir) etc. = G

similarly. Therefore the index in G of D = CitnCi2n ... nCir is the product of

those of the Ci, or in other words of the orders of the chief factors complemented

by the Ci. By Corollary 4.2.4 this is just ICa(V)/RG(V)I, and now we are done

since D contains Ra(V) by Lemma 4.2.3. 0

Corollary 4.2.6. Suppose that Gis tc-soluble. and that V1, . . . ,Vr are

nonisomorphic simple modules for G over (possibly different) prime fields Zp'

where each prime p E n: Let D1, . . . ,Dr be complements of their respective

crowns. Then the index in G ofD =D1n. . . nDr is the product IG:DtI.
IG:DJ Furthermore, any two subgroups of the fonn D1n. . . nDr are

conjugate in G.

Proof. By Theorem 4.2.5, we may choose a chief series for G and express each

Di as an intersection of subgroups which complement distinct factors of this

series. Since the Di are complements of different crowns, the subgroups in the

expressions for different Di complement disjoint sets of factors of the series, so

the intersection of all of them has the stated index, as in the penultimate line of the

proof of Theorem 4.2.5. The conjugacy also follows from this line, since in

general if M and N are subgroups of a group G and MN = G, then all intersections

MgnNh are conjugate in G. 0
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The above is closely related to a theorem of Gaschiitz (Huppert and Blackburn

[1, Remark 15.6]) on the second Loewy layer of the projective covers of trivial

modules for a soluble group. To see the relationship, regard lp as a trivial

module for G and consider the first few modules in the minimal projective

resolution of lp over lpG;

Thus Po is the projective cover of lp' and because the resolution is minimal,

the head P1/ JP1 is isomorphic to the second Loewy layer JPO/J2POof this

projective cover. Again because of the minimality of the resolution, we have for

any simple lpG-module V;

By Theorem 4.2.2, the first of these is equal to HOma(K(V), V). Therefore

each simple module V over lp occurs in the modules JP0/J2p0 and K(V) with the

same multiplicity, and it follows that JPO/J2POis isomorphic to the the direct sum

of the crowns K(V), one for each simple lpG-module V. After Corollary 4.2.4,

this is the same as the sum of all complemented p-factors of G which occur in a

given chief series.

Derivations.

Recall the interpretation of the first cohomology group H1(G, M) in terms of

derivations. A derivation or 1-cocycle is a map

0: G ----+ M

from G to a (left) G-module M, which satisfies the condition

O(gh) = o(g) + g.o(h)
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for all g, h e G. A derivation is said to be inner if there exists an element m E M

such that

o(g) = m - g.m

holds for all geG. The derivations from G to M form a group Der(G, M) under

pointwise addition: the inner derivations constitute a subgroup Inn(G, M). The

first cohomology group H1(G, M) can be realized as the quotient group Der(G,

M)/Inn(G, M). We write [0] for the class of a derivation 0; that is its coset in the

first cohomology group H1(G, M).

If a group G is the semidirect product [V]H of a subgroup H with an abelian

group V on which G acts, then as is well known the map 0 given by o(vh) = v is a

derivation from G to V, and defines a class [8] e H1(G, V). (See Brown [1,

Chapter 4, Section 2].) The same formula works if V is a chief factor of G

complemented by H, and we may use this to give an explicit description of H1(G,

W) in terms of derivations from G to W, when G is a p-soluble group and W is a

sum of crowns of G. To do this we use the natural action of Homa(M, M) on

H1(G, M) for any module M; this is given by associating to <J' E Horna(M, M) the

coefficient morphism <J'*: H1(G, M) -+ H1(G, M), and in terms of derivations it

is just the action on H1(G, M) induced by composition of derivations G -+ M

with endomorphisms of M. Notice that with this action, H1(G, M) becomes a

right module over Homa(M, M).

Proposition 4.2.7. Let 1r be a set ofprimes and suppose the group Gis p-soluble

for each prime p E x. Let V1, ... ,Vr be nonisomorphic simple G-modules

over fields ZP where each prime p E n; and let W be the sum
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of the corresponding crowns of O. Then there is a surjective derivation

0: G---+ W

such that the cohomology class [81 generates n! (0, W) as a regular (right)

module over HomG(W' W).

Proof. Let Di be a complement of the crown K(Vi), and define a map 0i from G to

K(Vi) by writing

for c E Ca("i) and d e D]. Thus &is a derivation from G to 1C(Vi), as explained

above. Notice that 0i restricts to the identity map on 1C(Vi). By Theorem 4.2.2,

restriction gives an isomorphism between H1(G, K(Vi)) and HOrna(K(Vi)' K(Vi)),

which clearly commutes with the right action of Horna(W, W), and it follows that

H1(G, K(Vi)) = [Oi]Horna(W, W). Let 0: G ~ W be the diagonal sum of the 0i'

so that [0] generates H1(G, W) regularly over Horna(W, W). The kernel of 0i is

just Di' and so the kernel of 0 is the intersection of the Di' We have;

where the second equation is Corollary 4.2.6. Therefore 0 is surjective. 0

It is the surjectivity of 0 that is crucial; it is easy to see by considering minimal

resolutions that all the other properties of the first cohomology group can be

achieved for an arbitrary finite group G (where instead of 'sum of crowns' one

writes 'sum of homogeneous components of Loewy layers JPO/J2PO' for various

primes p'. See the discussion after the proof of Corollary 4.2.6.)
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If K ~ G then res: H1(G, W) ~ H1(K, W) is just the quotient of the obvious

map from Der(G, W) to Der (K, W), and is clearly a morphism of (right)

HOIl1Q(W, W)-modules for the action of HomG(W, W) described above.

Therefore the kernel of the restriction map is a HomG(W, W)-submodule of

H1(G, W), so that we have an order-reversing map from the set 11* of conjugacy

classes of subgroups of G defined in Section 1.4 to the set of HOffiG(M, M)­

submodules of H1(G, M). The next result, which is our main theorem in this

section, shows that, when M is a sum of crowns of G, there is a natural map in the

other direction. We use this in Section 3 to construct Galois connections between

subsets of 11*(G) and sets of submodules of H1(G, M).

Theorem 4.2.8. Let 0 be a finite 1C-soluble group, and let W be a G-module

which is a sum ofnonisomorphic crowns of0, whose characteristicslie in 1C.

Suppose that U < H1(0, W) is a Homo(W, W)-submodule, and consider the set

Ttll) of subgroups of0 given by

r(U) = { K < G: The kernel of (res: H1(G, W) ~ H1(K, W)) contains U }.

Then G has a conjugacy class of subgroups whose members areprecisely the

maximal elements of the set r'u.),

Proof. By Proposition 4.2.7, the first cohomology group H1(G, W) is a regular

module of the form [o].Horna(W, W), where 0 is a derivation of G onto W. The

submodules of this module are just the sets [0].1, where I is a right ideal of the ring

HomG(\V, W). Since W is semisimple, Horna(W, W) is a semisimple ring; all its

right ideals are of the form e.HomG(W' W) for some idempotent element e E

HomG(W, W). (See Curtis and Reiner [1, Proposition 3.18].) Thus we may

choose e = e2 E Horna(W, W) such that U = [o].e.Horna(W, W), or in other
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words U consists precisely of the cohomology classes of those derivations which

factor through the derivation eoO: G --+ W.

Suppose that K and L are two subgroups of G contained in I'(U), The

cohomology class [eoO] vanishes on restriction to K, or in other words there exists

an inner derivation 11: K --+ W such that

eoO(k) = l1(k)

holds for all k E K. Since e2 = e we also have

eoO(k) = eol1 (k)

for all k E K. Since 11 is inner, there exists w E W such that l1(k) = w - k.w for

all k E K, and since 0 is surjective we can find an element h of G such that w =

O(h). We calculate as follows:

h.0(h-
1kh)

= h.(0(h-
1k)+ h-

1k.0(h))

= h (O(h-1) + h-1o(k) + h-1k.0(h))

= -O(h) + O(k) + k.O(h),

where in the last line we have used the fact, valid for any derivation 0, that

-1 -1o= O(hh ) = O(h) + h.O(h ). Since w = O(h) we find that

eoo(h -1kh) = eeh-1(O(k) - 11 (k)) = h-1oe(O(k) - 11(k)) = 0,

for all k E K. Thus the derivation eoO vanishes on the subgroup Kh = h-
1Kh

of G.

The same argument gives an element t of G such that eoO vanishes on Lt, and

so, since the kernel of a derivation is a subgroup of G, e 00 vanishes on the

subgroup <Kh, Lt> generated by these two subgroups. It follows that [eool, and
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with it every cohomology class in the submodule V, vanishes upon restriction to

<Kh, Lt).

Finally, suppose that K is maximal in rcu). Then, since T(U) is a union of

conjugacy classes, Kh is also maximal. Since Kh < <Kh, Lt), which we have just

shown also to belong to I'( s--u, we must have Lt < Kh; that is, L is contained in a

conjugate of K. 0

4.3 The partially ordered set of conjugacy classes of subgroups.

For any finite G-module W, we write S*(G) for the lattice of R0ITIcJ(W, W)­

submodules of Ri(G, W). As usual, S(G) denotes the proper part of S*(G); i.e

B(G) = B*(G) - {J, Ri(G, W) }.

As in Section 1.5 we write ~*(G) for the partially-ordered set of conjugacy

classes of subgroups of G and ~(G) for the proper part of ~*(G). IfV E 3*(G),

write B(G, V) for the subset of B(G) consisting of those submodules V of Ri(G,

W) with V < V < Hi(G, W). Similarly, if (K) E ~*(G), then ~(G, K) means the

partially ordered set of conjugacy classes of subgroups H with K <G H <a G.

Corollary 4.3.1. Suppose, as in Theorem 4.2.8, that Gis x-soluble and that W is

a direct sum ofnonisomorphic crowns of G, ofcharacteristics belonging to Jr.

Then there are order-reversing maps

y: 5*(G) ~ A*(G)

G: A*(G) ~ 5*(G)

such that y 0 a: A*(G) ~ A*(G) and a 0 y: 5*(0) ~ A*(O) are increasing

maps.
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Proof. The map a is defined by letting a(K) be the kernel of the restriction map

(This kernel depends only on the conjugacy class of K - see Section 3.2.) The

existence of the other map, y, follows from Theorem ,. :.8; for a submodule U of

H1(G, W) we let y(U) be the maximal elements of the set

{ K < G; U < ker (res: H1(G, W) ~ H1(K, W))}.

Theorem4,.1.8 shows that y(U) consists of a single conjugacy class of

subgroups of G. The assertions about yo a and a 0 yare purely set-theoretic and

easy to verify. 0

Note that y(D) is just the maximal subset of the set of subgroups K of G having

a(K) > U.

The maps y and a define a Galois connection between the partially ordered sets

3*(G) and d*(G), which by Theorem 1.1.4 induces a homotopy equivalence

between their order complexes. However, we are interested not in d*(G), whose

order complex is contractible (Corollary 1.1.4), but in its proper part d(G).

Fortunately the maps we have constructed also give a Galois connection between

the proper part :::(G) and an appropriate interval d(G, K) in the proper part d(G),

where K is a subgroup of G which depends on the module W.

Theorem 4.3.2. Suppose, as above, that G is a tc-soluble group, and let W be the

direct sum ofall the crowns ofG whose characteristics lie in n: Let the maps
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r: 5*(G) ~ L1*(G)

(J: L1*(G) ~ 5*(G)

be defined as in Corollary 4.3.1. Further, define T <0 G by

T = r(H1(G, W)).

Then the restrictions of rand (J define a Galois connection between S(O) and

L1(G, T).

Proof. We have to show that y(3(G)) c ~(G, T) and cr(~(G, T)) c :=:(0). This

amounts to proving the following four things:

(i) If (K) < G, then cr((K)) is nonzero;

(ii) If (K) > (T) then cr((K)) is a proper submodule;

(iii) IfV < H1(G, W) then y(V) > (T);

(iv) IfV> 0 then y(U) < G.

Of these, (ii) follows from the definition of T and (iv) is just obvious. To prove

(iii) we find a formula for the order of y(U) in terms of that of U. Recall that

since H1(G, W) is a regular module over the semisimple ring Horno(W, W), each

submodule U of H1(G, W) is of the form [oj I, where 0 is the derivation we

constructed in Proposition 4.2.7 and I is a right ideal of HomG(W, W) generated

by some idempotent element e.

Lemma 4.3.3. Suppose that U E 5*(G) is the submodule 181.1, where I is the

right ideal generated by an idempotent e E HomO(W, W). Then the index ofa

subgroup K of G belonging to the conjugacy class r(U) is given by
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/G:K1 = /e(W)/.

In particular, the common index of the subgroups T in the conjugacy class

r(Hl(G, W)) is equal to the order of W

Proof. From Theorem 4.2.8 it is clear that y(V) is the conjugacy class in G of the

kernel of the derivation eoO: G ---+ W. In other words, K is the pre-image under

o of the G-submodule ker e of W. For any surjective derivation 0t from a group

G onto a G-module M, one has IG:ker Otl = lOt(G)I; the desired result is obtained

by applying this to the derivation 0t = 1toO above. 0

The proof of (iii) is now straightforward: IfV < R1(G, W) then the projection

e of Lemma 4.3.3 is not surjective, and we deduce from the lemma that the order

of a subgroup of G in y(U) is greater that the order of any of the subgroups T in

y(H1(G, W)).

We now deal with (i), which says that for any proper subgroup of G containing

T, the map

is not injective.

By Lemma 4.3.3 the index of Tin G is a number all of whose prime factors

belong to 1t, and so the same is true of K. We may clearly assume that K is a

maximal subgroup of G, which therefore complements a chief factor V in any

chief series for G. If V is any such factor, then CG(V)/CK(V) is a factor of G

isomorphic to V, and clearly complemented by K. (See the proof of Lemma

4.2.3.) In particular, CG(V)/CK(V) is a summand of W, because the

characteristic of V lies in 1t. The formula o(xk) = xCK(V), for x E CG(V) and k E

K, defines a derivation from G to CG(V)/CK(V), and therefore from G to W,
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which cannot be inner since it does not vanish on CG(V), but which vanishes on

K. Thus the kernel of the restriction map H1(G, W) ~ H1(K, W) contains a non­

zero class, namely [0], which is what we wanted to prove.

We have verified (i), (ii), (iii) and (iv), and the proof of Theorem 4.3.2 is

complete. 0

We next identify the conjugacy class of subgroups T defined in Theorem 4.3.2

in terms of the structure of the group G. We return to the slightly more general

situation where W may be any sum of distinct crowns of G, rather than just a sum

of all the crowns whose characteristics lie in a given set.

Lemma 4.3.4. Let G be x-soluble, let Vt , . . . ,Vr be nonisomorphic simple

modules for G over prime fields Zp, where each p belongs to x, and for 1~ i ~ r

let Wi be the crown K(Vi) of G. Let W be the direct sum of the Wi, and let T =

y(W (G, W)), as in Theorem 4.3.2. Then the subgroups in the conjugacy class of

T are the intersections of the form

where D] is a complement of Wi, for 1~ i < r.

Proof. The D] give rise to derivations Oi, as in Theorem 4.2.7 (we did not need to

make any choice among the different complements to each crown), and the

subgroup T may be taken to be the kernel of the derivation 0 of that theorem, the

other subgroups in y(Hl(G, W)) being conjugates of T by Theorem 2.4.8. The

kernel of 0i is clearly D], and the result follows. 0

If W is the sum of all the crowns whose characteristics lie in 1t, then we

67



remarked in the proof of Theorem 4.3.2 that the index of T in G is a 1t-number.

Recall that since Gis n-soluble it contains a unique conjugacy class of Sylow 1t­

complements (Gorenstein [1, Chapter 6, Section 3]):

Corollary 4.3.5. Let W be the sum ofall crowns ofG whose characteristicsare

primes in n: Then the subgroups T = y(IP(G, W)) are equal to the Sylow n­

complements of G ifand only ifin any chief series for G, each factor whose

characteristic belongs to x is complemented in G.

Proof. By Lemma 4.3.3 the common index of the subgroups T is equal to the

product of the orders of the crowns in G, or, by Corollary 4.2.4, to the product of

the orders of those complemented factors in any chief series for G whose

characteristics belong to 1t. On the other hand the index of a Sylow 1t­

complement is the product of the orders of all the n-factors in any chief series. 0

In the final result of this section we demonstrate how the Galois connection we

have defined can be used to determine homotopy types. The next result was first

proved, essentially, by Volkmar Welker, although he works with soluble groups.

Corollary 4.3.6 (See Welker [1, Satz 2.9]). Let G be a x-soluble group, and

suppose that every x-chiei factor of G is complemented. Let T be the conjugacy

class of Sylow it-complements in G. Then the order complex of the partially

ordered set L1(G, T), is homotopy equivalent to a bouquet of spheres.

Proof. By Theorem 4.3.2 and Corollary 4.3.5, the order complexes of L\(G, T)

and 2(0) are homotopy equivalent. However, 2*(G) is the lattice of submodules

of a module over a ring, and is therefore a modular lattice. It follows immediately

that 12(0)1 has the homotopy type of a bouquet of spheres, by a theorem of
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Kratzer and Thevenaz [2, Theoreme 3.4). (The result about modular lattices can

also be deduced from a theorem of Folkman; see Hawkes, Isaacs and Ozaydin [1,

page 1030) or Quillen [1, page 118) for a discussion.) 0

4.4 9='-prefrattini subgroups and g:-normalizers.

In this section we apply the theory of Section 4.3 to our problem of estabishing

a converse to Theorem 3.3.1. Once again we let g: denote a local formation, and

here we write We9=') for the sum of the crowns of a soluble group a whose

summands are 9=' -eccentric. Then in the notation of Section 4.2, the maximal

subgroups T of a for which the restriction map

res: Hi(O, W(9=')) -+ Hi(T, W(g:))

is zero, are the subgroups y(Hi(O, W(g:))) of O. They form a single conjugacy

class by Theorem 4.2.8, and by Lemma 4.3.4 we know that the subgroups in this

conjugacy class are just the various intersections of one complement from each of

the crowns of G that are summands ofW(g:). From this description we can

identify the subgroups T immediately; they are the g:-prefrattini subgroups of a
which were introduced by Hawkes [2). The description in terms of crown

complements can be taken as the definition of the 9=' -prefrattini subgroups, but

for convenience we give the original definition:

Definition 4.4.1 (See Hawkes [2, page 149l). Let I. be a Sylow system of 0, and

for each prime p, let or be the Sylow p-complement in I.. Let

1 = NO < Ni < ... < Nn = 0,

be any chief series for G, and for each complemented g: -eccentric p-factor in

this series choose a complement which contains Op. Then the intersection of

these complements is the g:-prefrattini subgroup of a corresponding to I..
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It is shown in [2] that this definition is independent of the choices of chief series

and of the complements. The definition makes it look as if an arbitrary

intersection of complements of distinct factors might not be an g:" -prefrattini

subgroup, but in fact all such intersections are conjugate; once we know that an

g:" -prefrattini subgroup can be expressed as an intersection of crown

complements, this follows from Proposition 4.2.5.

Lemma 4.4.2. IfVt,. . .,Vr are thenonisotnotphic g;--eccentric irreducible

modules for G, and 1C(Vt), . . . ,1C(Vr) are their crowns, then each intersection

Dtn . . .nDr , where D; is a complement of 1C(Vj), is an g;--prefrattini subgroup

of G, and vice-versa.

Proof. Immediate from Proposition 4.2.5. and Corollary 4.2.6 0

Corollary 4.4.3. Let G be a finite soluble group and let K be a subgroup ofO.

Then the following are equivalent:

(i) The restriction map

res: Ht(0, V) -+ H1(K, V)

is zero for all g;--eccentiic, irreducible G-modules V.

(ii) K is contained in an g;--prefrattini subgroup of G.

Proof. The g:" -prefrattini subgroups of G are the subgroups in y(Hl(G, W(g:")),

by Lemmas 4.3.4 and 4.4.2. 0

Fortunately there is a close relationship between the g:" -prefrattini subgroups

and the g:" -normalizers of a soluble group G; in particular these classes of
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subgroups coincide when G is an nC-group. When ~ is the formation consisting

of the trivial group only, the ~ -prefrattini subgroups of G are the prefrattini

subgroups defined by Gaschiitz [3], which are trivial if and only if all chief factors

of the group are complemented, that is if and only if G is an nC-group. (See page

25.) In general there is the following theorem of Hawkes:

Theorem 4.4.4 (Hawkes [2, Theorem 4.1]). Let g: be a local formation and let G

be a finite soluble group. Each g:-prefrattini subgroup of G is the permutable

product of a prefrattini subgroup and an g:-normalizer. In particular, if G is an

nC-group, then the g:-prefrattini subgroups coincide with the g:-normalizers.

From Theorem 4.4.4 and Corollary 4.4.3, we obtain

Corollary 4.4.5. Statement 4.1.1 is true for nC-groups.

4.5 Local conjugacy.

We can use the splitting of cohomology according to the Sylow structure of a

group (Proposition 3.2.1) to obtain from Theorem 4.3.2 and Corollary 4.4.3 some

new results about local conjugacy in finite soluble groups.

Definition 4.5.1. Suppose that H and K are subgroups of the finite group G.

Then H and K are locally conjugate if and only if each Sylow subgroup of H is

conjugate in G to a Sylow subgroup of K.

More generally, if every Sylow subgroup of H is conjugate to a subgroup of a

Sylow p-subgroup of K, then we will say that H is locally subconjugate to K

This is weaker in general than saying that 11 is locally conjugate to a subgroup of

1<, as the following example shows:
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Example4.5.2. Let G be the wreath product of the alternating group of degree 4

with a cyclic group of order 2, so that G is the semi-direct product [(A4x A4)]~'

Let x and t be elements of A4 with orders 3 and 2 respectively, and let H be the

subgroup of G generated by the element (x, t) of the base group A4 x A4. Then H

is cyclic of order 6. If K is the subgroup 1 x A4 of G, then clearly both the Sylow

2-and 3-subgroups of H are conjugate to a subgroup of K, so that H is locally

subconjugate to K, but on the other hand H cannot be locally conjugate to a

subgroup of K because K has no subgroup of order 6.0

Local conjugacy is a weaker relation on subgroups of a finite group than true

conjugacy. Losey and Stonehewer [1] give conditions under which two locally

conjugate subgroups of a finite soluble group must be truly conjugate, as well as

examples where they are not. Here we exploit the fact that where, as in Theorem

4.2.8, a conjugacy class of subgroups T of a soluble group is known to be

characterized by the behaviour of the restriction map H1(G, W) ~ H1(T, W) for

some module W, the splitting of cohomology allows us to deduce that the

conjugacy class of T is also a local conjugacy class:

Lemma 4.5.3. Let 0 be a finite group and let K be a subgroup of G. Let Ql" .

. ,Qr be a set ofSylow subgroups ofK, one for each prime which divides IKl.

Then for any O-module ~ the kernel of the map

res: H1 (G, W) -+ H1 (K, W)

is equal to the intersection over 1 <i < r of the kernels of the maps

res: H1 (0, W) -+ H1 (Qi, W).

Proof. By Theorem 3.2.2, the product res: H1(G, W) ~ IT H1(Qi, W) is a
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monomorphism, and the result follows immediately. 0

Corollary 4.5.4. In the notation of Theorem 4.2.8, let T = r(U) for some

submodule U ofH1 (G, W), and let K be a subgroup of G which is locally

subconjugate to T. Then K is conjugate to a subgroup of T.

Proof. By hypothesis, for every Sylow subgroup Q of K, the kernel of the map

res: H1(G, W) -+ H1(Q, W) contains U. By Lemma 4.5.3, it follows that the

kernel of res: H1(G, W) -+ H1(K, W) contains U. Therefore K~ T by

definition of T. 0

For example, from our characterisation of ~ -prefrattini subgroups, Corollary

4.4.3, we deduce the following theorem.

Theorem 4.5.5. Let T be an g;--prefrattini subgroup of the finite soluble group

G, and suppose that the subgroup K of G is locally subconjugate to T. Then K is

conjugate to a subgroup of T.

Corollary 4.5.6. The g;--prefrattini subgroups of a finite soluble group form a

conjugacy class which is closed under local conjugacy.

Another application of Corollary 4.5.4 is to the Galois connection between

6(G, T) and S(G) established in Theorem 4.3.2. We consider the simplest case,

where G is a soluble nC-group and W is the sum of all the crowns of G, so that T

= 1. (This is Corollary 4.3.5 in with 1t = all primes.) Theorem 4.3.2 says that in

those circumstances a and y define a Galois connection between ~(G) and B(G).

We introduce a new partially ordered set, written ~loc(G), whose elements are

the local conjugacy classes of subgroups of G, with the partial ordering given by
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local subconjugacy. Then there is a natural projection map n: ~(G) ---+ ~loc(G),

which associates to each conjugacy class of subgroups of G the local conjugacy

class containing it, and it is clear that 1t is order-preserving. The next result

shows that in fact 1t is a homotopy equivalence between the order complexes of

the two partially ordered sets.

Corollary 4.5.7. Suppose that G is a finite soluble nC-group. Then tt is a

homotopy equivalence between the order complexes of .1 (G) and of .11oc(G).

Proof. By Lemma 4.5.3, the map c: ~(G) -+ B(G) factors through 1t. If we

write o = cro 1t, where cr: ~loc(G) -+ E(G) is the quotient of c, then clearly 1t is

order preserving, cr is order reversing, and 't = 'Yoa: E(G) -+ ~(G) is order

preserving. It is easy to check (using the surjectivity of n) that 'toa(H) > H for all

H E ~loc(G), while for all U E E(G), ao't(U) > U, so the simplicial maps induced

by a and 't between the order complexes of rr1oc(G) and E(G) are homotopy

equivalences. (Note that a and t do not constitute a Galois connection between

rr1oc(G) and S(G), because they are order-preserving rather than order­

reversing. We therefore cannot use Theorem 1.1.3 itself, but its proof from

Lemma 1.1.2 works equally well in this case.) 0

Remark Corollary 4.5.6 can also be deduced in a straightforward way from a

special case of a theorem of Losey and Stonehewer ([1]). We sketch the argument

in the case where 9=' is the formation consisting of the trivial group only, that is

for the prefrattini subgroups of G. Since these are characterized (Gaschiitz [3,

Satz 6.2]) as the largest subgroups of G which are contained in some conjugate of

every maximal subgroup of G, it is enough to show that a conjugacy class of

maximal subgroups of a soluble group is also a local conjugacy class. Suppose,

therefore that Hand K are two subgroups of G which are locally conjugate, with
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H maximal. Let V be a minimal normal subgroup of G. If V is contained in H,

then K must also contain V, and by induction H/V and K/V are conjugate in

G/V, which shows that Hand K are conjugate in G. Otherwise V is a common

normal complement for H and K, and by Losey and Stonehewer ([1], Theorem B),

Hand K are indeed conjugate, as required.

4.6 The Frattini subgroup.

The Frattini subgroup of a soluble group is the largest normal subgroup

contained in its prefrattini subgroups (Gaschiitz [3, Satz 6.5], or Doerk and

Hawkes [1, page 422]). Therefore Corollary 4.4.3 implies that the Frattini

subgroup of a soluble group G is the unique maximal element of the set of normal

subgroups N of G for which the restriction map

is zero for all simple coefficient modules V. (When ~ consists of the trivial

group only, all simple G-modules are ~ -eccentric.) The same characterization

holds for insoluble groups:

Theorem 4.6.1. Let N be a normal subgroup of the finite group O. Then the

following are equivalent:

(i) The restriction map

res: H1(0, V) ~ H1(N, V)

is zero, for all irreducible coefficient modules V.

(ii) N is contained in the Frattini subgroup of O.
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Proof Suppose first that N satisfies (i). If V is a simple G-module with

nonvanishing 1-cohomology, then the inflation-restriction sequence

shows that VN must be non-zero, which since V is irreducible implies that N

must be in the kernel of V. The intersection of the kernels of all the simple G­

modules that have non-vanishing 1-cohomology is the Fitting subgroup of G

(Griess and Schmid [1, Theorem 1]), so at least N ~ Fit(G). To show that in fact N

< Frat(G), let

1 =NO<N1 < ... <Nr=N

be a piece of chief series of G from 1 to N. Since N is nilpotent, each factor is

abelian and is either Frattini or complemented by a maximal subgroup of G.

Suppose, for a contradiction, that there is a complemented factor V = Ni/Ni-1'

and let C be a complement for this factor in G. The map 0: G -+ V defined by

writing o(nc) = nNi-1 for n E Ni and c E C, is easily checked to be a derivation

(see page 59 above), and if [0] is the class of 0 in H1(G, V), the restriction of [0] to

H1(N, V) non-zero because 0 is not zero on N, while on the other hand any inner

deruivation for N to V is certainly zero, since N centralizes V. Therefore all the

factors Ni/Ni-1 are Frattini, so N < Frat(G), as required.

On the other hand, suppose that N satisfies (ii). Then certainly N ~ Fit(G) so by

the result on Fit(G) above, N centralizes any simple module with non-vanishing

1-cohomology. Therefore, if V is any such module, H1(N, V) = Hom (N, V) and

the image under restriction to N of H1(G, V) is contained in the G-invariant

subspace HomG(N, V). Any non-zero element of this image must be a surjective

homomorphism, because V is G-irreducible, so if 0: G -+ V is a derivation such

that [0] does not vanish on restriction to N, we have o(N) =V, and we may
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calculate that IG:ker 81 = 18(G)1 = 18(N)1 = IN:Nnker 81, or in other words N.ker 8 =

G. But ker 8 is certainly a proper subgroup of G, so the last equation contradicts

the hypothesis that N is contained in the Frattini subgroup of G. This completes

the proof. 0

In Chapter 3 we carried out a similar analysis for the hypercentre of any group;

it is amusing to note the following (well known) result as a corollary:

Corollary 4.6.2. Let G be any finite group, and let G: Z(xlG) and 4>(G) denote

the derived subgroup, hypercentre, and Frattini subgroup ofG respectively.

Then 0'nZ(xlG) s 4>(G).

Proof. If V is a central simple module for G, then an element of H1(G, V) is a

homomorphism from G to V, which therefore vanishes on G'. If V is eccentric

then 'such an element vanishes on restriction to Zoo(G), by Theorem 3.4.1. The

result now follows from Theorem 4.6.1.0

Finally, we show that Theorem 2.4.1 follows from Corollary 4.4.3. Recall that

a soluble group is an nC-group if and only if its prefrattini subgroups are trivial.

Theorem 4.6.3. LetN be a normal subgroup of the soluble group G and let D be

a prefrattini subgroup ofN. Then D is contained in a prefrattini subgroup of G.

Proof. Let V be an irreducible module for G. Then by Clifford's theorem the

restriction of V to N is a semisimple module for N. Therefore, by Corollary 4.4.3

the map res: H1(N, V) -+ H1(D, V) is zero. The restriction map from H1(G, V)

to H1(D, V) factors through H1(N, V), and is therefore also zero, so that 0 must

lie in a prefrattini subgroup of G, again by Corollary 4.4.3. 0
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CHAPTERS

5. 1Introduction.

Corollary 4.4.3 shows that the 'ideal converse' 4.1.1 is true for soluble nC­

groups, but it also shows that in groups where the ~ -prefrattini subgroups and

~ -normalizers do not happen to coincide, there is no chance of obtaining 4.1.1

by considering only first cohomology groups. To try to distinguish between ~­

prefrattini subgroups and ~ -normalizers in general we are forced to look at the

behaviour of the restriction map in higher-dimensional cohomology, which is

what we do in this chapter.

A consequence of our analysis in Chapter 4 is the fact that the ~ -prefrattini

subgroups of any soluble group form a local conjugacy class (Theorem 4.5.5). If

the ideal converse 4.1.1 were true then we could deduce the same thing about the

conjugacy class of ~ -normalizers. The truth or otherwise of this in general does

not seem to be known, but in fact special cases have been proved (without using

cohomology). For example, compare Theorem 4.5.5 with the following result,

which is due to Alperin:

Theorem 5.1.1 (Alperin [1,Theorem 9]). Let D be a system normalizer of the

finite solublegroup G. If K is a subgroup ofG, each of whose Sylow subgroups

is conjugate to a subgroup ofD, then K is conjugate to a subgroup ofD.

In Section 2 we discuss similar results, due to Chambers [1], on the ~­

normalizers of soluble groups with abelian Sylow subgroups, and we show that

the analogue of Theorem 5.1.1 is true for such groups. Our approach in this

chapter makes it necessary to use these results, a reversal of the situation in

Chapter 4 where Theorem 4.5.5 follows from the analysis there.
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To deal in this chapter with local formations g: whose support 1t is not the whole

set of primes, we will sometimes use the following result of Evens:

Theorem 5.1.2 (Evens [1, Corollary 6.1.2]). Let H be a subgroup of the finite

group G, and suppose that p is a prime which divides the order ofH. Then the

map

res: H!(G, ZpJ -+ H!(H, ZpJ

is non-zero for infinitely many even values ofr. 0

A similar result for integral cohomology was proved earlier by Swan [1]. We

derive the following easy corollary:

Corollary 5.1.3. Let G be a soluble group, and let n be a set ofprimes. If His

any subgroup of G, then the following are equivalent:

(i) Themap

res: Hr(G, V) -+ H!(H, V)

is zero for all sufficiently large even t, for all irreducible modules V over fields

whose characteristic does not belong to 7r

(ii) H is contained in a Hell n-subgroup ofG.

Proof. (i) => (ii) is immediate from Theorem 5.1.2. Conversely, (ii) => (i) follows

from Proposition 3.2.1.0

Notice how similar Corollary 5.1.3 looks to Statement 4.1.1. In fact, although we
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do not use this, the corollary can be construed as a special case of Statement 4.1.1,

if one is prepared to work with non-integrated formation functions ,. This is

because the Hall n-subgroups of a group are the' l-normalizers' corresponding to

the non-integrated formation function 1given by l(p) = {all soluble groups} for

p E n, and 1(p) empty for p rt x. (A normalizer corresponding to a non­

integrated formation function is defined the formula of Definition 2.2.2, as for the

integrated case, but the subgroups so defined share only some of the properties of

normalizers defined by integrated functions.)

Evens' proof of Theorem 5.1.2 is a simple application of the Evens norm map,

which we also use in Section 5.6. We need a result like Theorem 5.1.2 in this

chapter to ensure that subgroups which satisfy the condition of Statement 4.1.1

must be rc-subgroups, where x is the support of the relevant local formation, and

in my opinion the results of this chapter are best seen as 'equivariant' versions of

Theorem 5.1.2. Until Section 6, where we need it anyway, we avoid the use of

the norm map by essentially proving special cases of Corollary 5.1.3 as we go

along, but in Section 6 we need to use the norm map anyway, and so appeal direct

to Theorem 5.1.2.
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5.2 9=-normalizers ofA-groups.

The 9= -normalizers of A-groups were shown by Chambers [1] to have special

properties from which we can deduce all that we need concerning their behaviour.

In the case of soluble groups with elementary abelian Sylow subgroups, which

are also nC-groups, we could use Theorem 4.5.5, but the results of this section are

equally applicable in the general case. As usual, 9= is a local formation.

Definition 5.2.1 (Chambers [1, Section 2]). A subgroup H of a soluble group G is

said to be p-normally embedded if each Sylow p-subgroup of H is also a Sylow

subgroup of a normal subgroup of G. A subgroup H which is p-normally

embedded for every prime p is said to be normally embedded.

Theorem 5.2.2 (Chambers [1, Corollary 3.4]). Let G be a finite A-group. Then

the g;'-normalizers ofG are normally embedded in G.

(Chambers states his theorem under the assumption that 9= contains the

formation of nilpotent groups, because the original definition of 9= -normalizers

(Carter and Hawkes [1, Section 4]) required this condition. His proof applies

equally to the general case.)

Recall Definition 4.5.1; for K, H < G we say that K is locally subconjugate to H

if every Sylow subgroup of K is conjugate to a subgroup of H. The following

theorem is inspired by Chambers [1, Theorem 2.61.

Theorem 5.2.3. LetH be a normally embedded subgroup ofa finite soluble

group G, and suppose that the subgroup K of G is locally subconjugate to H.

Then K is conjugate to a subgroup ofH.
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Proof. We proceed by induction. Let N be a minimal normal subgroup of G, and

let p be the prime dividing the order of N. By Chambers [1, Proposition 2.2],

HN/N is a normally embedded subgroup of GIN, and the relationship between K

and H passes to quotients, so by induction we may assume, replacing K with a

conjugate subgroup if necessary, that KN < HN. Since N is a p-group, H contains

a Sylow p-complement of HN, so by replacing KN, if necessary, with a conjugate

by an element of HN, we may suppose at the same time that there is a Sylow p­

complement KP of K such that KP < H. We choose any Sylow p-subgroup ICp of

K, and a Sylow p-subgroup Hp of H such that

By hypothesis G has a normal subgroup T which contains Hp as a Sylow

subgroup. The subgroup T must also contain Kp' since Kp is supposed to be

conjugate in G to a subgroup of Hp. Therefore the join <Kp' Hp>' being a

subgroup of T, contains Hp as a Sylow subgroup, and it follows that there exists

an element x E <Kp' Hp>for which Kp < (Hp)x. Both Kp and Hp are contained

in HpN, and we deduce that x is contained in HpN also. But Hp = Tn(HpN) is

nonnal in HpN, so really Kp < Hp' Thus both l<p and KP are contained in H, and

we are done. 0

Corollary 5.2.4. Let D be an g;--nonnalizer of the finite A -group G. If K~G is

locally subconjugate to D, then K is conjugate to a subgroup ofD.

Proof. Immediate from 5.2.2 and 5.2.3. 0

If we wish to establish that a p-subgroup Q of a soluble group G belongs to an

~ -normalizer of G, we may consider instead of G the quotient GIN of G by any
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normal subgroup of G of p'-order; epimorphic maps preserve 9=" - normalizers

(Theorem 2.2.3(ii)),and it follows that Q is contained in an 9=" -normalizer of G if

and only if QN/N is contained in an 9=" -normalizer of G/N. The same applies to

9=" -prefrattini subgroups, because these are also epimorphism-invariant (Hawkes

[2, Corollary 3.5]). For convenience we record this remark in a lemma:

Lemma 5.2.5. Let Q be a p-subgroup of the soluble group G. Then Q is

contained in an g:-normalizer of G ifand only ifQOp'(G)IOp'(G) is contained

in an g:-normalizer of GIOp'(G). The same holds for g:-prefrattini subgroups.

If G has p-Iength one then G/Op'(G) has a normal Sylow p-subgroup. A

criterion for a p-subgroup of such a group to be contained in an 9=" -normalizer is

given by the next lemma, whose content is well known.

Lemma 5.2.6. Suppose that the local formation g:is defined by the integrated

formation function}. Let G be a group with a normal Sylow p-subgroup P, and

let Q < P be a p-subgroup ofG, where p belongs to the support of g:. Let K be a

p-complement of the }(p)-residual G}(P). Then the following are equivalent:

(i) Q is contained in an g:-normalizer ofG;

(ii) K centralizes a P-conjugate of Q.

Proof. By Definition 2.2.2 and the remark immediately following it, the 9="­

nonnalizers of G are the Sylow rc-subgroups of the subgroups of G of the form

nNG(GsnGf(s) ),
S E 7t

where {Gs: SE x} is any set of s-complements, s E 1t. Since Q is a p-group,
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where p e 1t, we may choose the GS to contain Q, except for s = p; then Q ~

NG(Gs(')G/(s») for all s E 1t except p. Therefore Q is contained in an g:­

normalizer of G if and only if Q normalizes GP (') G/(P) for some GP; in other

words, if and only if Q normalizes a p-complement K of Gf(p). The set of p­

complements of G/(P) is also the set of p-complements of the normal subgroup

PK = PGf(p) of G, so they are all conjugate by elements of P; furthermore, one

has

because P is normal in G. The result follows. 0

If P is abelian then condition (ii) of the above lemma simply says that K

centralizes Q.
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5.3 Reduction to p-group cohomology.

In this section we show that for a group G of p-length one, the result we seek,

4.1.1, is equivalent to a statement about the action of automorphisms on the

cohomology ring with Zp-coefficients of a Sylow p-subgroup of G. Our first

reduction of the problem is to groups with 0p'(G) = 1:

Lemma 5.3.1. Suppose that N is a normal subgroup ofp'-order of the finite

group G. Then for any G-module M ofcharacteristic p, the inflation map

is an isomorphism for all r > 1. If K is a subgroup of G then the diagram

is commutative.

H*(G/N, MN)

res

H*(KN/N, MN)

inf ) H*(G, M)

res

inf ) H*(K, M)

Proof. The first part is Corollary 3.2.4. The commutativity of the diagram

follows directly from the definitions of inflation and restriction (Section 3.2). 0

85



Corollary 5.3.2. Suppose that V1, . . . ,Vm are irreducible G-modules (of any

characteristics). Then for a p-subgroup Qof G, the following are equivalent:

(i) The map

is zero, for each i, 1 <i < m.

(ii) The map

is zero whenever Vi is ofcharacteristic p and N s: kera(Vi) (Vi is then regarded

as a GIN-module by deflation).

Proof. Since the Vi are irreducible and N is a normal subgroup of G, the N-fixed

point subgroup ViN is either zero of the whole of Vi' In the former case the

condition (i) is vacuous, by the first part of Lemma 5.3.1, and the same is true if

the characteristic of Vi is different from p, by Proposition 3.2.1. Thus we need

only consider (i) for those Vi which deflate to G/N, and for such a module (i) and

(ii) state respectively that the right and left hand verticals of the diagram of

Lemma 5.3.1 are zero. These statements are clearly equivalent, because the

diagram is commutative and its horizontal maps are isomorphisms. 0

The next theorem is the main result of this section. The study of 4.1.1 for

groups of p-length one is reduced to a problem concerning the action of

automorphisms on the cohomology ring of a p-group. The extra structure of the

cup product in this ring will be useful in the investigation in Sections 4, 5 and 6.
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Theorem 5.3.3. Let a be a finite group with a normal Sylow p-subgroup P. Let

Q be a subgroup ofP and let N be a normal subgroup of G which contains P. Let

K be a complement ofPin N. Then for any r > 1, the following are equivalent:

(i) The restriction map

res: Hr(G, V) -7 IP"(Q, V)

is zero for all simple a-modules V with N ~kera(V);

(ii) For all k E K and OJ E II!(P, ZpY, the following condition holds:

where the notation role refers to the naturalaction of a on H* (P, ZpJ.

The proof is based on the Eckmann-Shapiro lemma, which is most natural to

state in terms of the notion of a coinducedmodule (Brown [1, Chapter ill,

Section 5]). If H is a subgroup of G and M is a (left) module for Hover Zp then

the coinduced module CoindG(M) is the abelian group HomZpH(ZpG, M), made

into a left ZpG-module by writing

g(<p)(z) = <p(zg)

for <p E Homz H(ZpG, M) and all g E G and z E ZG. Note that for finite groups,
p

induced and coinduced modules are naturally isomorphic (Brown [1, Chapter III,

Proposition 5.9]); our use here of coinduction rather than induction is a matter of

convenience.
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Lemma 5.3.4 (Eckmann-Shapiro). Let G be a group with a subgroup H, and let

M be a module for H. Then for any G-module X there is a naturalisomorphism

HomJIX, M)~ HomG(X' CoineP(M))

given by f~ F, where

F(x)(g) = f(gx), for x E X, g E G.

IfX~ ZP is a projective resolution over G (and therefore also over H) then

the above map is an isomorphism of chain complexes

HomH*(X, M)~ Homa*(X, CoineP(M)).

Therefore the cohomology groups H*(H, M) and H*(q, CoincP(M)) are

naturally isomorphic.

Proof. One checks that the map f 1---+ F is an isomorphism of abelian groups and

commutes with the chain maps of the complexes. The inverse of the map f 1---+ F

is given by f(x) = F(x)(1G)' See Evens [1, Proposition 4.1.3] for the details. 0

We need the following well-known description of the G-module (co)induced

from the triviallpP-module, where P is a normal subgroup of G:

Lemma 5.3.5. Suppose that P is a normal Sylow p-subgroup of the group G.

Then the module CoindpG(Zp> is isomorphic to the inflation to G of the regular

GlP-module. It is therefore a direct sum of irreducible ZpG-modules, in which

each such module occurs with multiplicity at least one.
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Proof. There is a natural isomorphism of G-modules

given by

<p 1---+ I <p(S-1) S •

S E G/P

The group algebra Zp(G/p) is semisimple, because the order of G/p is prime

to p; it is therefore a sum, with non-zero multiplicities, of all the simple modules

for the group G/p over Zp. On the other hand, any simple module for ZpG is

centralized by P = 0p(G), and so occurs as the inflation to G of some simple

G/P-module. 0

Proof of 5.3.3.

Write W for the module CoindpG(Zp) = Homzpp(ZpG, Zp) in Lemma 5.3.5.

Let WN be the subgroup of W consisting of N -fixed points. Then WN is a lpG­

submodule of W, because N is normal in G. By Lemma 5.3.5, W is a semisimple

ZpG-module, so there exists a ZpG-submodule U of W such that

W = WN E9U.

A simple submodule V of W is contained in WN if and only if N < kerG(V). It

follows that in a decomposition of W into homogeneous components (see Doerk

and Hawkes [1, Chapter B, Definition 3.4]), the submodule WN is the direct sum

of the homogeneous components of the simple submodules V of W that have N ~

kerG(V), and U is the sum of the other homogeneous components of W. In

particular, U is unique.
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The submodule WN consists of those maps q> E Homlpp(ZpG, Zp) which

satisfy the equation q>(zn) = q>(z) for n E Nand z E ZpG. Thus the formula

q> l---+ Lq>(S-1) S
se GIN

defines an isomorphism of G-modules: WN~ Zp(G/N). This is a similar

situation to Lemma 5.3.5.

The projection 1t: W ~ WN of the decomposition W = WN EB U is given by

1t(q» = (l/IN:PI) Lt(q».
te NIP

(This makes sense because p does not divide the index of Pin N.) It is easy to

check that 1t is a map of G-modules such that 1t(q» = q> for q> E WN.

The Sylow subgroup P of G acts trivially on W; we can define an isomorphism

of ZpP-modules,

W~ EB Zp
S E GIP

by evaluation at a transversal of Gfp:

q> 1----+ (q>(S-1))s E alp·

In view of the description of the simple summands of the modules WN and U

above, assertion (i) in the statement of Theorem 5.3.3 says equivalently that the

restriction map res: W(G, U) -+ W(Q, U) is zero, or in other words:

for all co E Hr(G, W). Since restriction is transitive and 1t* commutes with

restriction, this condition may be rewritten as
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We now use the Eckmann-Shapiro isomorphism Hr(p, lp) ~ Hr(G, W)

(Lemma 5.3.4) to rewrite this condition in terms of elements of Hr(P, lp)' Thus if

11 E Hr(p, lp) is represented by a cocycle f E Hom~(Xp lp) (where as in

Lemma 5.3.4, we have chosen a lpG-projective resolution X of Zp) then the

image co of 11 under the Eckmann-Shapiro isomorphism is the cohomology class

of the map FE Homz G(Xp W), where F(x)(g) = f(gx) for all x E Xr. Using the
p

evaluation map (*) to identify W with ffi lp as P-modules, we see that resp(ro) is

represented by the cocycle F: X, ---+ ffi Zp which takes x to (f(sx))s E G/p, In

other words, resp(co) E Hr(P, ffi lp) is just the direct sum of the conjugates of 11

by the elements of G/P. (See Section 3.2.) On the other hand, 1t*(resp(ro)) is

represented by 1t 0 F: X, ---+ ffi lp. The component (1t 0 F) s' X, ---+ Zp of 1t 0 F

is the map x~ (1t 0 F)(X)(S-l), and using the formula for 1t, we obtain

(1t 0 F)(X)(S-l) = (1/IN:PI) I (f(S-ltX)).

te Nip

For each s E G/p, we therefore have;

(resp(ro))s = 11s;

(1t*(resp(ro)))s = (1/IN:PI) I (11
C1

)S.
te Nip

Condition (i) holds if and only if the two expressions are equal upon restriction

to Q, for all s E G/P. This happens if and only ifresQ(11) = reSQ(11t) for all t E

N/P and all 11 E W(P, lp)' (We have written t instead of r', which makes no

difference since {t-1} is another transversal of N/P.) This is exactly condition (ii),

since we may take K for the transversal to N/P. 0

The following is an immediate corollary of the above proof:
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Corollary 5.3.6. In the situation ofTheorem 5.3.3, the following two conditions

are equivalent:

(i) The restriction map

res: Hr(G, V) -7 I£(Q, V)

is zero for all simple G-modules V.

(li) For all OJ E H!(P, ZpJ, resQ(OJ) = O.

Proof. As in the proof of Theorem 5.3.3, we let 11 be an element of W(P, Zp) and

let co be its image under the Eckmann - Shapiro isomorphism W(P, Zp) ~ W(G,

W), where W is the coinduced module CoindsG(Zp)' In the notation of the proof

of 5.3.3,

Thus (i) holds if and only if for all s E G/p and all 11 E W(P, Zp), the element

11s vanishes on restriction to W(Q, Zp)' In other words, the restriction map from

W(P, Zp) to W(Q, Zp) must be zero, which is (li). 0

In the applications we can use Corollary 5.3.6 to deduce that the subgroup Q

must be trivial. Really we could just use Theorem 5.1.2 for this, but by essentially

proving Theorem 5.1.2 in the special cases where we require it, we avoid the

Evens norm map until Section 6.
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5.4 The cohomology rings of abelian p-groups.

Our aim is to use Theorem 5.3.3 in conjunction with Lemma 5.2.5, which is our

criterion for a p-subgroup of a group of p-Iength one to be contained in an g;­

normalizer. In order to apply 5.2.6, we need to be able to deduce from condition

(ii) of Theorem 5.3.3 that the subgroup Q of that theorem, or some conjugate of Q

by an element of P, is fixed pointwise by K. This fails in general, but when P is

abelian we can control the situation by calculating with the known cohomology

rings of abelian groups. These calculations are the subject of this section, but we

begin with two general remarks.

Remark (i). If K does fix pointwise a subgroup of P which is conjugate to Q in P,

then condition (ii) of Theorem 5.3.3 will be certainly be satisfied for Q. To see

this, first note that we may assume that Q itself is fixed by K, since the kernel of

the restriction map in question depends only on the conjugacy class of Q in P.

Then the restriction map from H*(P, Zp) to H*(Q, Zp) commutes with the action

of K, but the action of K on H*(Q, Zp) is trivial. (See the definitions of these

maps in Section 3.2.) Therefore, for all co E H*(P, Zp), we have reSQ(co-a*(co»)

= resQ(co) - a*(resQ(CO») = 0, as required.

Remark (ii). Condition (ii) of Theorem 5.3.3 still holds in the apparently weaker

circumstance that each element k of K fixes some P-conjugate of Q, where

perhaps different conjugates occur. Actually this still implies that one of the P­

conjugates of Q is fixed by the whole of K. (Write N for the product PK, as in

Theorem 5.3.3. If every element of K centralizes QP for some pEP, we find that

K is contained in the product PCN(Q). Since K is a p' -group, the Sylow p­

complements of PCN(Q) are K and its P-conjugates. However, among the Sylow

p-complements of PCN(Q) are all the Sylow p-complements of CN(Q).) Of

course, in this section P is abelian, so the question of different P-conjugates does

not arise.
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We now proceed to examine the lp-cohomology rings of abelian p-groups.

The structure of these rings is well known; they are the tensor product of a

polynomial algebra over lp with an exterior algebra in the same number of

variables. The following proposition is a detailed statement of the structure of

H*(P, lp), for any abelian p-group P:

Proposition 5.4.1. (Cohomology over lp of an abelian p-group.)

Let P = Q1 x . . . x Qn,where Qi is cyclic oforderpej, for 1 <i ~n. Then the

cohomology ring H*(P, ZpJ is the graded-commutative Zp-algebra,

where l1j E H1(p, ZpJ and ~j E H2(p, ZpJ, subject to the relations

17/ = 0 (for p odd or ej > 1);

17/ = ~j (ifp = 2 and ej = 1).

The Zp-span of the degree 2 generators ~jis the subgroup ofH2(p, ZpJ which

consists of the classes representing abelian extensions ofP by Zp' The ~i may be

chosen so that for each i from 1 to n, the class ~j represents an extension

obtained in the obvious way from a non-split extension Ei of the cyclic group Qi

Proof. Apart from the description of the generators ~i in terms of extensions, this
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is given in Evens [1, Section 3.5]. The method is to calculate H*(Q, Zp) directly

when Q is cyclic, using an explicit minimal resolution X for Zp over ZpQ.

(Evens [1, Section 3.2]. This resolution is simple to write down, but unfortunately

the formulae for a 'diagonal approximation' X ~ X ® X to calculate the ring

structure are not particularly straightforward even in this simplest case.) The

cohomology of a direct product of cyclic groups is then obtained using the

Kiinneth formula, which for cohomology with coefficients in a field simply says

that there is an isomorphism of graded rings, given by the 'outer product', H*(G,

k) ®0*(H, k) ~ H*(G x H, k). (For fields k, we may see this directly by

choosing minimal resolutions X and Y for Hand K respectively; their tensor

product X ®kY is then a resolution for G x H, and it is easy to write down an

isomorphism of chain complexes, HOl11(J(X, k) ®kHomH(Y, k) ~

HOl11(J x H(X ®kY ' k). The differentials in the left-hand complex

Horno(X, k) ®00mH(Y' k) are all zero, because of the minimality of X and Y;

therefore the same is true of the complex Hom-, x H(X ®kY ' k), and so the

above isomorphism is at the same time an isomorphism in cohomology, which

coincides with the cross product of the Kiinneth theorem.)

We must also verify the statement about the generators ~i. In the case of a

cyclic p-group Q,the second cohomology group H2(Q, Zp) is just Zp, the p-1

non-zero classes representing the p-1 inequivalent non-split central extensions of

1to --+ Zp ~ E ~ Q --+ 1,

where E = <x> is cyclic and 1t(x) may be any generator of Q, except that for t = 1

(mod p), the choices 1t(x) = y and 1t(x) = yt give equivalent extensions. If we

choose any such non-zero class, say ~(i), in H2(Qi, Zp), and write
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then these are the generators ~i of the statement (any other choice of ~i is just a

scalar multiple of this one). From this description of ~i, it follows that the

extension of P by Zp represented by ~i is just the sum of an extension of Qi which

~(i) represents, and the trivial extension 0 -+ Qj -+ Qj -+ Oof the other summands-a

complete proof of this unsurprising fact is given in Lemma 5.4.2. In particular,

each ~i represents an abelian extension of P.

On the other hand, the subgroup of H2(P, Zp) which consists of elements

representing abelian extensions of P by Zp is just Ext(P, Zp)' whose dimension

over Zp is just n in this case, because P has n cyclic summands. (To calculate the

Ext group we need a resolution of P by free Z-modules; an obvious candidate is

the direct sum of the resolutions

where ~ is multiplication by the order of Qi. We find that Ext(P, Zp) is the direct

sum of n copies of Zp.) The dimension of the subspace of H2(p, Zp) generated by

the ~i is also n, which shows that the ~i span Ext(P, Zp) as Zp-module. This

completes the proof, except for Lemma 5.4.2. 0

Lemma 5.4.2. Suppose that G and H are finite groups, and that V is a kG­

module for some commutative ring k. Suppose that ~ E H2(G, V) represents the

equivalence class of the extension

Ko~ V ---+ E ---+ G~ o.

Ifk is regarded as a trivial H-module, so that IfJ(H, k) = k, then the image of ~

Q9 1 under the extemal product map H*(G, V) @ H*(H, k)~ H*(G x H, V)

is the element ofH2(G x H, V) which represents the extension
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O~V-~}ExH (n,1) }GxH~O.

Proof. Let F*(G), F*(H) and F*(G x H) be the standard resolutions for G and H

and for G x H, respectively. The Alexander-Whitney formula gives an

augmentation preserving chain homotopy equivalence <p from F*(G x H) to F*(G)

® F*(H); in terms of the bar notation (Evens [1, Section 2.3]) the formula is

<P([(g1,h1)1. 1.1 . I(gn,hn)]) = L [g11... IgJ ® h1h2 · . ~[hp+11 ... Ihn],

where the summation runs from p = 0 to n. (Recall that, in the bar notation, HO is

spanned by the'empty bracket' [ l, where the augmentation map of the bar

resolution takes [l to 1k) We represent the cohomology class ~ by a cocycle f:

F2(G) --+ V; the values of fon the kG-basis elements lxlyl ofF2(G) determine a

function from G x G to V which is an ordinary 2-cocycle associated with the

given extension of G by V. The cocycle whose class is the image of ~ ® 1, say t,

is the composition of the map f® 1: F2(G) ® FO(H)~ V ® k = V with the map

<p of the Alexander-Whitney formula. Thus

Therefore, if the cocycle f corresponds to the section s: G --+ E then t

corresponds to the section s x 1: G x H --+ E x H in the extension of G x H by V,

as required. 0

In our calculations with abelian groups, we work with the subalgebra of H*(P, Zp)

generated by the degree-2 generators ~i of Proposition 5.4.1. For convenience we

make the following definition:

Definition 5.4.3. If P is an abelian p-group, then in the notation of Proposition

5.4.1, let R(P) be the subalgebra of H*(P, Zp) generated by the ~i, for 1 <i ~ n.
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The next proposition lists the relevant properties of the subalgebra R(P). Recall

that if P is a p-group, then QP is the subgroup of P generated by the elements of

prime order.

Proposition 5.4.4. LetP be an abelian p-group. Then R(P) has the following

properties:

(i) R(P) is a polynomial ring of the form Z/~1" . .,~d' where the degree of

each generator ~i is 2;

(ii) H*(P, ZpJ is generated by R(P) together with the elements ofdegree 1;

(iii) R(P) is invariant under any automorphism a* ofH*(P, ZpJ induced by an

automorphism a ofP;

(iv) The restriction map H*(P, ZpJ ---+ H*(QP, ZpJ induces an isomorphism of

R(P) with R(QP);

(v) If Q is a nontrivial subgroup ofP, then the restriction map R(P) ---+ R(Q) is

non-zero;

(vi) IfQ is a subgroup ofP, and a is an automorphism of P ofp'-order, then the

following are equivalent;

(I) resQ(~-a*(~)) = 0 for all ~ € R(P);

(IT) The action ofa on P fixes QQ = QnQP pointwise.
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Proof. As in Proposition 5.4.1, let P be the product of cyclic groups Qi, for 1 < i <

n. Then (i) and (ii) follow immediately from Proposition 5.4.1. To establish (iii),

it suffices to note that the linear span of the ~i in H2(P, Zp) is invariant under

automorphisms of P, or in other words that the abelian extensions of P by Zp are

permuted amongst themselves by Aut P, which is clear. (The image under an

automorphism a of P of the central extension 0 ~ Zp -+ E~ P -+ 0 is just the
-1

extension 0 -+ Zp -+ E ex 0 1t) P -+ 0: This may be seen by noting that a acts

on cocycles by composition; or see Brown [1, Chapter IV, Exercise 3.1]).

To verify (iv), note that the map res: Ext(P, Zp) -+ Ext(QP, Zp) is the direct

sum from i = 1 to n of the restriction maps

res: Ext(Qi' Zp) -+ Ext(QQi' Zp)'

Each of these maps is injective, because a non-split extension of Qi by Zp

remains non-split on restriction to any subgroup of Qi' On the other hand, both

Ext(Qi' Zp) and Ext(QQi' Zp) have order p. Therefore the restriction map is an

isomorphism from Ext(P, Zp) to Ext(QP, Zp), and so a ring isomorphism from

R(P) to R(QP), since both are polynomial rings.

It remains to verify (v) and (vi). We devote our attention to the proof of (vi),

and remark where (v) follows incidentally. To see that (II) implies (I), consider

that the restriction map from R(P) to R(QQ) can be factored into two maps

R(P) ---+ R(Q) -=-+ R(QQ)

of which the second is an isomorphism by (iv). If an automorphism a of P fixes

QQ pointwise, then it clearly acts trivially on R(Q), and since restriction

commutes with a*, we have

resQQ(~-a*(~)) = 0 for all ~ E R(P),

that is, the composite map is zero. The first map must therefore also be zero, as
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required.

Next, suppose that the subgroup Q of P satisfies (I), Then QQ also satisfies (1),

so since (IT) relates only to QQ, we may replace Q by QQ and thus assume that Q

is elementary abelian. Then Q < QP, and by (iv) we may replace P with QP and

assume that P is also elementary abelian. We may reduce further to the case

where Q is cyclic of prime order, since then in general every cyclic subgroup of

Q, sharing property (1), must be fixed pointwise by a.

Thus we have an elementary abelian p-group P, with a cyclic subgroup

Q = <x>, and an automorphism a which acts on P such that (1) holds. We can

construct an abelian extension of P by Zp by choosing any complement U for Q

in P, and defining E to be T E9 U, where T = <s> is cyclic of order p2 with a

projection 1t: T~ Q given by y~ x; the sequence

is an abelian extension of P, which clearly remains non-split on restriction to Q.

(The existence of this extension proves (v).) If this extension is represented by,

say, ~, where ~ E R(P), then as remarked above, a*(~) represents the extension

o~ 7L ~ T E9 U = E a-
1o

(1t.1) ) Q E9 U = P ----+ 0
P

whose restriction to Q is

If a(Q) 1= Q then we may choose U to contain a(Q). For this choice of U the

extension (*) splits, so that resQ(a*(~» = 0, contradicting (1). Therefore a must

stabilize Q, at least as a group. But then we may think of a as an automorphism

of Q (using the fact that the action of a commutes with the restriction map). The
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group lp)( of p' -automorphisms of Q acts regularly on Ext(Q, lp)' while our

hypothesis is now that a fixes the non-zero element resQ(~) of Ext(Q, lp)'

Therefore a centralizes Q, as required. The proof of 5.4.4 is complete. 0

101



5.5 ~-normalizers and cohomology.

In this section we use our knowledge of the cohomology of abelian groups to

study A-groups. There is an overlap with the results of Chapter 4; in particular

we find that we have a different proof of Corollary 4.4.5 in the case of groups

whose Sylow subgroups are elementary abelian, for these groups are both A­

groups and nC-groups (see Section 2.4). As usual, Wdenotes a locally defined

formation in each of the statements that follow, and 1t = 1t(~) is the support of ~.

Theorem 5.5.1. Suppose that G is a finite soluble group, each of whose Sylow

subgroups is either cyclic, or elementary abelian. Let j) be a subgroup of G.

Then any two of the following are equivalent:

(i) Themap

is zero for all irreducible, g:-eccentric G-modules V;

(ii) Themap

res: I-J!1(G, V) ~ I-J!1(D, V)

is zero for all sufficiently large n, for the same coefficients as (i);

(iii) D is contained in an g:-normalizer of G.

Of course, (iii) implies that the restriction map vanishes in all dimensions, by

Theorem 3.3.1. Notice also that the group G need not be an nC-group, since

some of its Sylow subgroups may be cyclic of non-prime order. Even for nC­

groups with abelian Sylow subgroups, we obtain the new result that the W-
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normalizers are characterized by the vanishing of the restriction map in

cohomology of degree 2; in Chapter 4 we looked only at degree-1 cohomology.

It may be that this characterization in terms of degree-2 cohomology holds true

for all nC-groups; after all, the short proof of Theorem 3.3.1 for the second

cohomology group seems to show that 2 is the most natural degree to consider for

normalizers.

Proof of Theorem 5.5.1. We divide the proof into three steps for the sake of

lucidity.

Step 1. We may assume that D is a p-group, for some prime p.

Proof. From Theorem 3.2.2 we deduce that condition (i) or (ii) has the property

that it holds for a general subgroup D of G if and only if it is satisfied by a Sylow

p-subgroup of D, for each prime p. On the other hand, Corollary 5.2.4 says

exactly that condition (iii) also has this property. Thus we may pass to the general

case from the case where D is a p-group.

Step 2. Having assumed that D is a p-group, we may assume that 0p,(G) = 1.

Proof. We demonstrate that the conditions (i), (ii) and (iii) of the statement are

respectively equivalent to the same conditions on the subgroup DOp,(G)/Op/(G)

of G/Op,(G). For conditions (i) and (ii), this is Corollary 5.3.2,(the irreducible

9=' -eccentric modules for G/Op,(G) are just the irreducible g: -eccentric modules

for G whose kernels contain 0p,(G)), while for condition (iii) it is Lemma 5.2.5.

Recall that G has p-Iength one (Corollary 2.4.10); we may therefore assume

from now on that the Sylow p-subgroup of G is normal:
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Step 3. G has a normal Sylow p-subgroup P (containing D).

First suppose that pbelongs to the support 1t of ~. Let K be a p-complement

of the !(p)-residual Gl(P) of G. Lemma 5.2.6 shows that D belongs to an ~­

normalizer of G if and only if D is centralized by K. Let N be the subgroup of G

generated by P and K; thus N = PK = PG1(P) is a normal subgroup of G

containing P, and the irreducible ~ -eccentric G-modules in characteristic p are

precisely those with N $: kerG(V) (for P, being normal, must centralize any

irreducible module of characteristic p). This is the situation of Theorem 5.3.3,

and on applying that result we find that (i) and (ii) are respectively equivalent to

(i)' and (ii)' below:

(ii)' If n is sufficiently large then for all k E K and co E Hn(p, Zp)'

resn(ro-rok) = O.

Both (i)' and (ii)' imply that resn(~-~k) = 0 for all ~ E R(P) and k E K, as we

show next. For (i)' this is obvious, since R(P) is generated by elements of degree

2. From (ii)' we deduce that, in particular,

J:pm. m
for any ~ E H*(P, Zp)' and m sufficiently large (because the degree of ~ IS P

times the degree of ~.) The map which takes pth powers is an endomorphism of

R(P) (the Frobenius endomorphism), so since restriction is a ring homomorphism,

this is equivalent to
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from which we deduce the same conclusion as for (i)', because R(D) is a

polynomial ring and has no nilpotent elements.

Next, we apply Proposition 5.4.4 to the automorphisms of P induced by the

action of K. From 5.4.4(vi), (1)* (II), we deduce that

K fixes QD.

If the Sylow p-subgroup P of G is elementary abelian, then D = nD; otherwise

P is cyclic, in which case we deduce that K fixes D anyway (the group of p'­

automorphisms of a cyclic p-group acts regularly.) Thus D satisfies the criterion

of Lemma 5.2.6, and we may deduce that D belongs to an ~ -nonnalizer of G, as

required.

Finally, if p r;. 1t, then we must deduce that D is trivial. We use Corollary 5.3.6

in place of Theorem 5.3.3, to deduce that (i) and (ii) are equivalent respectively to

(i)" and (ii)":

(i)" For all co E H2(P, Zp)' resnco = 0;

(ii)" If n is sufficiently large then for all co E Hn(P, Zp)' resnco = O.

The triviality of D follows from (i)" by Theorem 5...~-4(v) (which takes the

place of (vi) in the argument for the case p E n), and (ii)" implies (i)" just as in the

above argument. 0

The proof also yields the implication (iii) * (i); if we know in the situation of

Step 3, that D is fixed by K, we may use Theorem 5.4.2(vi), (II) ~ (I) to deduce

(i)' and therefore (i), to which (i)' is equivalent.
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The only place where the restrictions on Sylow p-subgroups of G in Theorem

5.5.1 are used in the proof is in Step 3, where we deduce that K fixes D, knowing

only that aD is fixed by K. When P is abelian, this deduction is also valid as long

as we have the additional information that D is stabilized as a group by the action

of K, a fact which we exploit in Section 6. Unfortunately it is not true in general

that an automorphism from K which acts on P so as to fix QD must fix the whole

of D, and this is entirely responsible for the fact that Theorem 5.5.1 fails to be

valid for A-groups in general. The next result shows what does happen for these

groups; not surprisingly, in view of the comments we have just made, the

statement involves the maximal nC-subgroups QK of A-groups which we

constructed in Chapter 2 (Theorem 2/t.8). (Recall that the subgroup QK of an A­

group K is really defined only up to conjugacy in K; it will be apparent in the

statement below that this ambiguity is unimportant here.)

Theorem 5.5.2. Let G be a soluble group with sbelien Sylow subgroups. Let D

be a subgroup of G. Then any two of the following are equivalent:

(i) For n = 1 and 2, the map

res: IfIl(G, V) ~ Hn(D, V)

is zero for all irreducible g:-eccentric coefficient modules V;

(ii) The map of (i) is zero for all n > 1;

(iii) D is contained in an g:-prefrattini subgroup of G, and QD is contained in

an g:-normalizer of G.

Proof. This is very similar to the proof of Theorem 5.5.1, except for a few extra
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technicalities. We cannot appeal to Theorem 3.3.1 this time because the

implication (iii) =+ (i) of the present theorem is stronger than that result. Again

there are three steps:

Step 1. We reduce to the case where D is a p-subgroup.

Proof. Again a general subgroup D satisfies (i) or (ii) if and only if each of its

Sylow subgroups does, by Theorem 3.2.2. The same holds for the first half of

(iii) (here we are using our Theorem 4.5.5 and not Corollary 5.2.4.) Next, it

follows from the construction of QD in the proof of Theorem 2.4.8 that a Sylow

subgroup of QD is equal to QQ for some Sylow subgroup Q of G. If for each

Sylow subgroup Q of D, we have QQ contained in an ~ -normalizer of G, then

given a fixed ~ -normalizer S, we know that QD is locally subconjugate to S

(Definition 4.5.1), and so conjugate to a subgroup of S by Corollary 5.2.4. Thus D

satisfies (i), (ii) or (iii) if and only if the same is true of each of its Sylow

subgroups, as in the proof of Theorem 5.5.1.

Step 2. We reduce to the case that 0p'CG) = 1.

Proof. Conditions (i) and (ii) are equivalent to the same condition on

DOp,(G)/Op,(G), by Corollary 5.3.2. To see that the same is true of (iii), we use

Lemma 5.2.5, noting that Q(DOp,(G)/Op,(G)) = (QD)Op,(G)/Op,(G).

Step 3. Since G has p-Iength one, we may now assume that G has a normal

Sylow p-subgroup P, which contains D.

First suppose that p belongs to the support 1t of ~. Let K be a p-complement

of the l(p)-residual G/(p). By Lemma 5.2.6, QD is contained in an ~-
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normalizer of G if and only if QD is centralized by K. On the other hand, as in

the proof of Theorem 5.5.1 we use Theorem 5.3.3 to deduce that (i) and (ii) are

respectively equivalent to the conditions:

(i)': resD(ro-rok) = 0 for all ro E Hr(p, Zp)' for r = 1 or 2;

(ii)': resD(ro-rok) = 0 for all co E I-f(P, Zp)t for all r > 1.

By Proposition 5.4.4, the ring H*(P, Zp) is generated over Zp by elements of

degrees 1 and 2, of which the degree 2 elements on their own generate R(P).

Therefore (i)' and (ii)' are each equivalent to:

By Proposition 5.4.4 (vi), resD(ro-rok) = 0 for all k E K and all ro E R(P) if and

only if.aD is centralized by K, that is, if and only if.aD is contained in an 9:"­

normalizer of G. By Theorem 5.3.3, resD(ro-rok) = 0 for all co E H1(p, Zp) if and

only if the map

is zero for all ~ -eccentric irreducible G-modules V, that is (by Corollary 4.4.3)

if and only if D is contained in an ~ -prefrattini subgroup of G. Thus (*) is

satisfied if and only if D is contained in an ~ -prefrattini subgroup, and QD in an

~ -normalizer of G, as required.

Finally, suppose that the prime p does not belong to the support 1t of 9:". Then

condition (iii) implies that QD, and therefore D, is trivial, so we need only show

that (i) and (ii) also imply that D is trivial. This is an application of Corollary

5.3.6, precisely as in the corresponding part of the proof of Theorem 5.5.1. 0
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We conclude this section with an example to show that condition (iii) of

Theorem 5.5.2 does not generally imply that a subgroup is contained in an ~-

normalizer.

Example 5.5.3. Let P be an odd prime, and let A and B be the cyclic groups C 2
P

=(x> and Cp3 =<s> respectively. Let P be the direct product A x B, generated

by (x, 1) and (1, y). Choose a nontrivial automorphism x H xn of A which has

prime order q dividing p-1 (the condition is that nq = 1 (mod p2), and n is not

congruent to 1 mod p), and define v: P -? P by the equations v(x, 1) = (x'', 1) and

v(1, y) = (1, y). Let G be the semidirect product [pJ<v> and let Q be the cyclic

subgroup of P generated by the element (xP,yP). Then QQ = «1,yp2» is fixed

pointwise by v, and therefore lies in the centre of G, and Q itself is contained in

the Frattini subgroup <I>G = <I>P of G. However Q does not lie in any system

normalizer of G, because its generator is not fixed by v. 0

5.6 Normal subgroups.

If G is a group of p-Iength 1, then a p-subgroup Q of G is normally embedded

in G (Definition 5.2.1) if and only if QOp,(G)/Op,(G) is a normal subgroup of

G/Op,(G). If the test subgroup D in the statement of Theorem 5.5.1 happens to

be normally embedded in G (so that each of its Sylow subgroups is also normally

embedded), then in Step 3 of the proof of that theorem we have the additional

information that D (a different D, because of the reductions of the first two steps)

is normal subgroup of G. When we have this extra knowledge, we do not need

the restrictive hypotheses about the Sylow subgroups of G that appear in that

theorem, because we can use the following well-known result:
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Theorem 5.6.1. LetD be an abelian p-group, and suppose that a is an

automorphism ofD whose order is prime to p. If a fixes !2D pointwise, then a

acts trivially on D.

Proof. See Gorenstein [1, Chapter 5, Theorem 2.4]. 0

Thus the proof of Theorem 5.5.1, with Theorem 5.6.1 used in Step 3 for the

automorphisms induced by the action of K on the normal subgroup D,

immediately yields:

Theorem 5.6.2. Let G be a finite A -group, and let D be a normally embedded

subgroup of G. Then any two of the following are equivalent:

(i) Themap

is zero for all irreducible, g:-eccentric G-modules V.

(ii) The map

res: IJ!1(G, V) -+ IJ!1(D, V)

is the zero map for the same coefficients as (i), for all sufficiently large n.

(iii) D is contained in an g:-normalizer of G.

Since the ~ -hypercentre of G is the largest normal subgroup of G contained in

any 9:" -normalizer of G (Doerk and Hawkes [1, Chapter V, Theorem 2.4]), we

obtain the following as a special case of 5.6.2:
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Corollary 5.6.3. IfD is a normal subgroup of G , then D satisfies (i) or (ii) of

Theorem 5.6.2, if and only ifD is contained in the ~-hypercentre of G.

After another, more interesting, study of the cohomology rings of p-groups we

will show that Corollary 5.6.3 holds true for any group which has p-length one

for each prime p, except for possible difficulties associated with the prime p = 2.

This perhaps marginal improvement requires considerable further work, but the

reduction to p-groups which we employed in Section 5.5 is still valid, so that the

extra difficulty comes in dealing with the p-groups themselves. The improved

version of Corollary 5.6.3 is as follows:

Theorem 5.6.4. Let G be a soluble group and let N be a normal subgroup of G.

Suppose that G has p-length one for every prime p which divides the order ofN,

and that the Sylow 2-subgroup ofN is abelian. Suppose that for every

sufficiendy large even number n the map

res: JPl(G, V) ~ JPl(N, V)

is zero for all ~-eccentric irreducible modules V, Then N is contained in the

~-hypercentre of G.

Cohomology ofp-groups again.

For any group G and field k, let ~v(G, k) be the sum of the even - degree

cohomology groups H2n(G, k), 0 < n < 00. This is a subalgebra of the whole

cohomology algebra H*(G, k), and the graded commutativity of the big ring

shows that Hev(G, k) is commutative, a fact which we use implicitly below. We

use the letter J to stand for the nilradical of ffv(G, k), although it suggests the

Jacobson radical - in fact the two radicals coincide for any finite group G,
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because the cohomology ring of a finite group over a field is a finitely-generated

algebra. However, we do not need to use this, except for the reinterpretation of

our results in terms of the theory of varieties in Section 5.6.

The remainder of this section is devoted to the proof of the following result,

and the discussion of some interesting consequences.

Theorem 5.6.5. Let P be a finite p-group, and letk be a field ofcharacteristic p.

Suppose that a is an automorphism ofP ofp'-order, and that Q is a normal

subgroup ofP for which a(Q) = Q. Suppose that at least one of the following is

satisfied:

(i) Q is abelian;

(ii) p is odd.

Then the following condition is (necessary and) sufficient for Q to be fixed

pointwise by a:

For all ~ E Flv(P, k), resQ(~ - a*(~)) E J (I1v(Q, k)). (C)

We first show how Theorem 5.6.4 follows from Theorem 5.6.5 - the line of

argument is familiar from the proofs of Theorems 5.5.1, 5.5.2 and 5.6.2.

Proof of Theorem 5.6.4.

This time we appeal to Evens' theorem, 5.1.2, which tells us immediately that N

is a x-group, where 1t is the support of ~. (Recall that for p ~ 1t, the trivial G­

module Zp is ~ -eccentric.) It is therefore sufficient to show that for each prime

p E 1t, a Sylow p-subgroup Qof N is contained in the ~ -hypercentre. By

Corollary 5.3.2, we may suppose that 0p'(G) = 1, and therefore that G has a

normal Sylow p-subgroup P. Therefore Q = pnN is normal in G.
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As usual, let GI(P) be the l(p)-residual of G, and let K be a p-complement of

GI(P). By Lemma 5.2.6, the subgroup Q is contained in the ~ -hypercentre if and

only if Q is fixed pointwise by the action of K on P. By Theorem 5.3.3, the

condition on Q in the statement is equivalent to the following:

For all k e K and ~ e HCV(P, ZpJ of sufficiently large degree, resQ(~-~k) = O.

Suppose this condition is satisfied, and let ~ E Hev(p, k). We may choose m to

make the degree of t = ~pm sufficiently large; then by hypothesis resQ('t-'tk) = O.

But resQ('t-'tk) = resQ(~ - ~k)pm, so that resQ(~ - ~k) E J ( Hev(Q, k) ). Thus

condition (C) of Theorem 5.6.5 is satisfied. By hypothesis, either Q is abelian or

p is odd, so K fixes Qpointwise, as required. 0

We turn to the proof of Theorem 5.6.5. We need several preliminary results, of

which the one which fails in general when p = 2 is the following powerful

generalisation of Proposition 5.6.1, due to Thompson:

Theorem 5.6.6. (Gorenstein [1, Chapter 5, Theorem 3.13]). Let Q be a p-group,

where p is odd. Then Q has a characteristic subgroup T ofexponent p, such that

every nontrivial automorphism of Q ofp'-order acts non trivially on T.

Notice that if Q is abelian, then this is the same as Theorem 5.6.1. Theorem

5.6.6 is a consequence of a result of Thompson from the 'odd-order paper' (Feit

and Thompson [1, Lemma 8.2]) which asserts that a p-group Q has a characteristic

subgroup T of nilpotent class 1 or 2, on which any p' -automorphism of Qacts

nontriviaUy. When p > 2 the subgroup T must be regular, so that .aT has

exponent p (this fails, of course, for p = 2, as the dihedral group of order 8

shows); Theorem 5.6.6 then follows from an earlier, similar result of Huppert ([2,
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Hilfssatz 1.5]) which asserts that for p odd, a nontrivial automorphism of p' -order

of the p-group Q, acts nontrivially on QQ. (Huppert's result is also false for p =

2; for example, the quatemionic group Qs has an automorphism of order 3 which

clearly fixes QQs since the latter has order 2.) See Gorenstein [1, Section 5.3] for

a full discussion.

These results are dual to the following more elementary result, which is due

originally to Burnside, and which is equally valid for p = 2.

Theorem 5.6.7 (Gorenstein [1, Chapter 5, Theorem 1.4]). If a is a nontrivial

automorphism of the p-group P, and the order of a is prime to p, then a acts

non trivially on P/ l1>(p).

(The relation between this result and Theorem 5.6.6 can be expressed exactly

when P is abelian, using the duality between an abelian group P and its character

group P~= Hom(p, ~/7L). The nature of the duality is more obscure in general.)

Corollary 5.6.8. Letk be a field ofcharacteristicp > O. A nontrivial p'­

automorphism a ofPacts non trivially on H1(P, k).

Proof. Since P acts trivially on k, we have H1(P, k) = Hom(P/<1>P, k), which is

the vector space dual to k ®z P/ <1>(P). If a acts trivially on the dual, then its
p

action on k ® P/ <P(P), and therefore on P/ <1>(P) since the tensor product is taken

over a field, is trivial. Therefore a acts trivially on P itself, by Theorem 5.6.7.0

Lemma 5.6.9. Let P be a p-group and let Q be a nontrivial normal subgroup of

P. IfX is a subgroup ofP which is properly contained in Q, then the union of the

subgroups ofP conjugate to X is a proper subset of Q.
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Proof. First, the union of conjugates is indeed a subset of Q, because Q is normal

in P. We may assume that X is a maximal subgroup of Q (we may have X = 1).

Suppose for a contradiction that every element of Q is contained in a conjugate of

X. Since P is a p-group, QnZ(p) is nontrivial. Let x be a nontrivial element of

order p in this intersection, and let S = <x>. Then S , being normal in P, is

contained in all the conjugates of X; therefore QIS is the union of the conjugates

in pis of its proper subgroup X/So We arrive inductively at the case where Q is

of prime order, where the hypothesis is absurd. This completes the proof. 0

Remark. If Q is elementary abelian, it is easy to see that Q is the union of p+1 of

its maximal subgroups, but not of any smaller number. In particular, when Qhas

rank 2 all of the maximal subgroups are needed.

In order to prove the next proposition we need two constructions in the

cohomology of groups. The first is the (mod p) Bockstein homomorphism,

When k = Zp' the Bockstein is defined as the connecting homomorphism in

the long exact sequence of cohomology groups which arises from the short exact

sequence of coefficient modules

For general fields k, one may define ~ by extending scalars, using the natural

algebra isomorphism (Evens [1, page 30]):
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(There is an alternative approach to defining ~, where the short exact sequence

above is replaced by a 'k-version' constructed using Witt vectors. See Evens [1,

Sections 3.3 and 3.4] for the details of this constuction, and the properties of the

Bockstein map in general, but note that Evens uses 8 to denote the mod p

Bockstein which we have called ~; his ~ is the integral Bockstein map from

H*(G, 71./p71.) to H*(G, 71.).)

We collect some standard properties of the Bockstein homomorphism:

Lemma 5.6.10. The Bockstein homomorphism 13 has the following properties:

(i) It is functorial with respect to maps ofgroups. That is, ifp: Q -+ P is a

homomorphism ofgroups then the diagram

H*(P, k)

H*(P, k)

p*

p*

is commutative. In particular, 13 commutes with restriction and inflation and with

the map ar: H*(P, k) -+ H*(P, k), where a: is an automorphism ofP.

(ii) If P is cyclic oforder p, then 13: H1(P, k) ---+ H2(P, k) is an isomorphism. In

particular, ifYiE H1(P, k) are any non-zero elements then the product of the

elements f3Yi is non-nilpotent in IFv(P, k).

Proof. (i) is proved by straightforward 'diagram chasing', using the definition of

the connecting homomorphism arising from a short exact sequence of cochain
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complexes. To verify (ii) it is sufficient to prove that in this case ~ is a

monomorphism, since both cohomology groups are 1-dimensional over k by

Proposition 5.4.1. In case k = Zp' the long exact sequence gives us

0---+ Hom(P, Z/pZ) ---+ Hom(P, Z/p2Z) --+ Hom(P, Z/pZ) ~ ) H2(P, Z/pZ).

The map directly before ~ is zero, because any map from P to Z/p2Z goes into

the kernel of the projection 7L/p27L --+ 7L/p7L, so ~ is a monomorphism by

exactness. (The same argument holds good for any group P of exponent p.) For

general k note that tensoring over a field preserves monomorphisms. The second

part of (ii) follows, because the elements of H2(p, k) generate a polynomial

subalgebra of H*(P, k), by Proposition 5.4.1 and the isomorphism k ® 7Lp[; l =

k(~], valid for arbitrary commutative rings k. 0

We need the Evens norm map or multiplicative transfer (Evens [2]). The

construction and properties of this map are described in Evens [1, Chapter 6]. If G

is any finite group with a subgroup K, and k is a field, then the norm is a map

which is multiplicative with respect to the cup-products (it is not a ring

homomorphism in general). If ~ E Hev(K, k) is homogeneous of degree n, then

N
K

-+ G(~) is a homogeneous element of Hev(G, k) of degree nIG:KI. The norm

map satisfies a multiplicative version of the 'Mackey formula' for the additive

transfer or corestriction map; we only need this in the case where K is a normal

subgroup of G, and we record it seperately for clarity.

Lemma 5.6.11 (Evens [1, Theorem 6.1.1, (N4)]). IfN K -+ G is the norm map,
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then

tEE T

where the product is taken over a transversal T to G/K (and is independent of the

choice of transversal).

Corollary 5.6.12. Let a be an automorphism ofG such that a(K) = K. Then for

any ~ E -a.ev(K, k),

Proof. By the lemma, resK NK .-+ G(a*(~)) = IT (a*(~))t, where t runs over any

transveral to K in G. The action of G (by conjugation) and of a on K combine to

give an action of the semidirect product [GJ<a> on K, so that

The result follows, because {a(t): t E T} is a transversal to o.(K) = Kin G, and

the products are taken in the commutative ring Hev(K, k). (Evens shows that the

norm map itself commutes with 0.* (Evens [1, Theorem 6.1.1, (N5)]), but we do

not need this.) 0

The proposition below, with Theorem 5.6.6, is the key to Theorem 5.6.5:

Proposition 5.6.13. Let P be a p-group and let Q be a normal subgroup ofP.

Suppose that Q has exponent p. Let k be a field ofcharacteristic p. IfYis an

element ofH1(Q, k), define X(y) E H2IP:QI(Q, k) by the formula
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IfYis nonzero, then X(y) is a non-nilpotent element of IFv(Q, k).

Proof. Since H1(Q, k) = Hom(Q, k), we are saying that y is a nonzero

homomorphism from Q to the additive group of k. Let X be the kernel of y, so

that X is a proper subgroup of Q. We observe that for t E P, the homomorphism

yt: Q -+ k is just y composed with conjugation by t, so that in particular ker (yt)

is the subgroup x' of Q. By Lemma 5.6.8, there is an element g E Q such that

yt(g) is nonzero for all t E P. Let S be the subgroup of Q that g generates. S is

cyclic of prime order, because by hypothesis Q has exponent p. We have

ress ( XQ,p(~Y) ) = resS (IT(~yi )
tE T

= IT ~( resS (yt)),
tE T

(where the multiplication is over a transversal T to P/ Q), because ~ commutes

with restriction and with the action of t and restriction is multiplicative (note that

we have not said that ~ is multiplicative; in fact ~ is a derivation of H*(Q, k)).

By the choice of S, each term resS (yt) is a nonzero element of H1(Q, k), and

so by Lemma 5.6.9 the Bocksteins of these terms are nonzero elements of degree

2 whose product cannot be nilpotent in H*(S, k). If XQ'p(~Y)were nilpotent, then

its restriction to S would certainly be nilpotent as well, a contradiction. Therefore

XQ,p(~Y) cannot be nilpotent, which is what we wished to prove. 0

Proof of theorem 5.6.5. We first show that we may assume that k is

algebraically closed. Let K be the algebraic closure of k. Then H*(P, K) is

naturally isomorphic to H*(P, k) ®k K (Evens [1, page 30]), and the maps res:

H*(P, K) -+ H*(Q, K), and a*: H*(P, K) -+ H*(P, K), are obtained from the

corresponding maps over k by extension of scalars. If condition (C) is satisfied
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over k, then for all ~ E Hev(p, k) there exists m (depending on ~) such that

(resQ(~ - a*(~)))m = O. If~' E Hev(p, K) = Hev(p, k) ®J!( is of the form ~ ®

1, we have resQ(~' - a*(~')) = resQ(~ - a*(~)) ® 1, which is clearly nilpotent. A

general element of Hev(p, K) is a sum of these terms, so the same condition (C)

holds over K. (Weare saying, in effect, that for any commutative algebra Rover

k, the nilradical of K ®k R contains the K - span of the nilradical of R.)

Next, Thompson's Theorem 5.6.6 (if P is odd), or Theorem 5.6.1 (if Q is

abelian) shows that Q has a characteristic subgroup T of exponent p on which any

nontrivial automorphism of Q of p' -order acts nontrivially. Clearly condition (C)

on Q is inherited by T, and so it is sufficient to prove that a acts trivially on T. In

effect we may assume that Qhas exponent p. This is really the crucial step in the

proof, for it enables us to employ Proposition 5.6.13 which is definitely false for

some groups of exponent greater than p.

Since we may take k to be algebraically closed, we may assume that the

eigenvalues of the action of a* on the k-vector space H1(Q, k) lie in k. Since

the order of a is prime to p this means that a is diagonalizable over k, and so we

may choose a basis Y1" .. ,yl of H1(Q, k) (where IQ/<I>(Q)I = pI) such that for

each y in this basis there is a p'-root of unity 'A in kwith a*(y) = 'A y. Since a*

commutes with the Bockstein homomorphism B, we also have a*(~y) = 'A.~y, and

so if X = XQ,P is defined as in Proposition 5.6.13, we find that

a*( X(y) ) = 'A1P:Q1X(y)·

By its definition X(y) is the restriction to Q of an element of Hev(p, k), so since

a* commutes with restriction, condition (C) says that x(y) - a* x(y) is in the

nilradical of Hev(Q, k). However,

X(y) - a* X(y) = ( 1 - 'A1P:Q1)X(y),
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which by Proposition 5.6.13 is non-nilpotent unless the coefficient 1 - ).)P:QI = 0,

or in other words unless A = 1, since IP:QI is a power of p while A. is a p' -root of

unity. This must be the case for each Yi' 1 ~ i < 1. Therefore, if condition (C)

holds, a must act trivially on H1(Q, k). Finally, Corollary 5.6.8 shows that ex

acts trivially on Q, and we are done. 0

We can deduce some results of independent interest from Theorem 5.6.5. In

particular, taking Q = P in Theorem 5.6.5 we obtain the following corollary:

Theorem 5.6.14. IfP is a group oforder apower ofp, where p is an odd prime,

and k is a field of characteristic p, then a nontrivial automorphism ofP ofp'­

order acts nontrivially on the ring WV(P, k)/J(I-FV(P, k)).

It would be interesting to have a purely cohomological proof of this result (that

is, one which does not make essential use of Thompson's Theorem 5.6.6) because

a substantial part of the strength of Theorem 5.6.6, namely Huppert's result that a

p'-automorphism which fixes QP must be trivial, can be recovered from Theorem

5.6.14 by the use of Quillen's famous characterization of the radical of Hev(p, k):

Theorem 5.6.15 (Quillen and Venkov [1], Evens [1, Corollary 8.3.4]). An

element; ofWV(P, k) is nilpotent if and only if the same is true ofits restriction

to every elementary abelian subgroup ofP.

Corollary 5.6.16. The element; is nilpotentifand only ifresnp(;) is nilpotent.

Proof The two groups P and QP have the same sets of elementary abelian

subgroups. 0
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The promised deduction of Huppert's theorem now follows:

Corollary 5.6.17. Ifp is odd and thep'-automorphism a ofP fixes QP, then a

is the identity map.

Proof. If a fixes OP, then resnp(~ - a*(~)) = resnp(~) - a* resnp(~) is zero for

all ~ E Hev(p, k). The action of a on Hev(p, k) therefore fixes that ring modulo

its radical, by Corollary 5.6.16, and it follows from Theorem 5.6.14 that a acts

trivially on P. 0

We remarked earlier that Corollary 5.6.17 is dual to Burnside's Theorem 5.6.7.

This duality is visible in Theorem 5.6.14: For p odd, a non-trivial automorphism

of P of p' -order acts non-trivially on the radical J( H*(P, k) ) of the cohomology

ring of P. This follows immediately from Corollary 5.6.7, since for odd p the

graded-commutativity of H*(P, k) shows that elements of odd degree in that ring

have their squares equal to zero - in particular the radical J( H*(P, k) ) contains

H1(p, k).

The action ofp'-automorphisms on the cohomology ring H*(P, k) itself has

been studied by Diethelm [1]). He shows that the representation of p'­

automorphisms of P on this ring is effective in a very strong sense - namely, if G

is a group of p' - automorphisms of P then (H*(P, k) being degreewise a finite­

dimensional, and therefore semisimple kG-module) every irreducible

representation of Gover k is contained with infinite multiplicity in H*(P, k).

His results are equally valid for p = 2. It is natural to ask if some combination of

these results is possible, to find representations of G on H*(P, k)/J(H*(P, k)),

but I have not pursued this question.
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5.7 Varieties.

The results above can be phrased alternatively in terms of the theory of varieties

in the cohomology theory of groups. We give the definition of varieties for finite

groups in a special case, and refer to Evens [1, Chapter 8] and the references given

there, for a full account of the theory.

Definition 5.7.1 (Evens [1, Chapter 8]). Let G be a finite group, and let k be a

field of characteristic p > O. The variety ofGover k, written XG(k), is the

prime ideal spectrum of the commutative ring H(G, k), where H(G, k) is defined

to be Hev(G, k) if P is odd, or H*(G, k) if P = 2.

The theory of varieties depends inevitably upon the deep fact that the

cohomology ring of a finite group over a field is a finitely-generated algebra.

This is the Venkov-Evens theorem (Evens [1, Corollary 7.4.6]). The proof above

of Theorem 5.6.5 does not use the Venkov-Evens theorem, or anything so deep,

but we now assume this result implicitly in order to translate Theorem 5.6.5 into

the language of varieties.

If 11: K -+ G is a group homomorphism then 11*: ~V(G, k) -+ ~v(K, k)

induces a covariant map 11*: XK(k) -+ XG(k). In particular, the automorphism

group of G acts naturally on the variety XG(k). The coordinate ring of Xp(k) is

just Hev(p, k)/J(Hev(p, k)) (for p odd), and we may translate Theorem 5.6.5 into

a result about the action of p'-automorphisms of a p-group P on the variety

Xp(k), using the following lemma, whose content is presumably well-known.

Lemma 5.7.2. Let k be an algebraically closed field (of any characteristic) and

let R and S be finitely generated algebras over k with niJradicals feR) and f(S)

respectively. Let n: R ~ S be a morphism ofk-algebras, and let a be a k-
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algebra automorphism ofR. Then the following are equivalent:

(i) n(x - a(x)) E J(S) for all x E R.

(li) The diagram

Spec S ------~) Spec R

is commutative.

1t*
a*

Spec R

Proof. It is easy to check that (i) =* (ii). To prove that (i) holds it is sufficient to

show that 1t(x-a(x)) E 0) for any x E R and maximal ideal 0) of S, because in a

finitely generated algebra over a field the nilradical is the intersection of the

maximal ideals (Atiyah and MacDonald [1, Chapter 5, Exercise 24]). Thus let 0)

be a maximal ideal of S. By Hilbert's Nullstellensatz (Atiyah and MacDonaldlt,

Chapter 5]), sf0) ~ k, so as k-spaces S = k ~ 0), and for any x E R we may

write 1t(x) = A+ t where tEO). Since a is k-linear, 1t(X-A) E 0), or X-A E 1t*(0)),

which by hypothesis implies that a(x) - AE 1t*(0)) also. Therefore 1t(x-a(x)) E

0) for all maximal ideals 0), as required. 0

To spare ourselves notational difficulties we record the varieties version of

Theorem 5.6.5 only the case where p is odd:

Theorem 5.7.3. Suppose that a is a p'-automorphism of the p-group P, where p

is odd. Then the following are equivalent:
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(i) a fixes pointwise the image ofXQ(k) in Xp(k).

(ii) a fixes Q pointwise.

Corollary 5.7.4. IfPisap-group, wherepisodd, thenanontrivialp'­

automorphism ofPacts nontrivially on XP(k).

NorE T~ ~( I> yWFJ to '1>r]). BUlMrn f;-r
poid,;".~ I1Vvt tM ~(IINin:J dwr-t pru-of o/Ih..wum SJ.1:
LuYt~o.. LeA. «: -be. a f ~ t«Al-onwrphA.~m 0{ iN P: ?l7JVf P
SlPffrN- fht.- Wvvi r/.A~ nrr1ud. P'q (o<.) acl: sn an f
MnJ ri VI Gl.'!d (1h r.d 0/ P- «t:h Vtm. Lel. 0 c ~ c. " c t(,< V '*x c t/haAn 4 svJJ spc. eM

J4;n.£.J ~ ~. /~'_I" ~ix ~ VI~_I' :'~ is Fxd 19~ P~
CleCJ-r!::J -!.tAJ. ~ 11 <-<') -fnAlfVi'~) So 0<. am non­

hivl'~_ b1'\~ ~. / ~·-t. Btvi ~h und 0/ ~:'I in ~'
11 Ci ~on. 1 P.. () -r--b as. 1J
fp4 " (,7. [y. g'1 9hL Il-wrwp~rn~ {f6'6 uhrJ,
P~ c: ch~1hT. ~Mrvf D1 f2¥fUlUvd; P(f-ecau..
p r1 odol) 5h £Jh-icJh IX- r;.cA fI,{)~'y;OJk;. IMw (PIJ»)1!..ol)
~ I1h v", 'PID' w,.ft, IX a.cj;n; rlAYl).,,'v,-o..l'1 (1-(.{ ~lK~5tJ

~/, 1M. -€e-m-mo / (X ().th ~v;.~ On~ s-d of P­
OYblh tfh P/v~

d>M i cLe-r~ >€j~ eN. 1- m elf5 of Vc4,' e-A'vl fU)1nJ-:~ WI

(.J>/1> 0 f /<) s: ~/DI -> VD -) ~ ~ \.j , (I" ).1.1 )

~IY\~ 1) 1..C0 e-/r-anurt p, Co..trlQ In ~/j)/ ~~'fL{d over ~
i{)ech IN-o vp. IhR- II'1\,!ZY IV) v,; 1- VV,V )-j JMt
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