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Abstract. We consider the problem of variable selection in linear regression models. Bayesian model averaging has
become an important tool in empirical settings with large numbers of potential regressors and relatively limited numbers
of observations. We examine the effect of a variety of prior assumptions on the inference concerning model size, posterior
inclusion probabilities of regressors and on predictive performance. We illustrate these issues in the context of cross-country
growth regressions using three datasets with 41 to 67 potential drivers of growth and 72 to 93 observations. Finally, we
recommend priors for use in this and related contexts.
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1. Introduction

This paper considers model uncertainty associated with variable selection in linear regression
models. In particular, we focus on applications to cross-country growth regressions, where we
often face a large number of potential drivers of growth with only a limited number of observations.
Insightful discussions of model uncertainty in growth regressions can be found in Brock and Durlauf
(2001) and Brock, Durlauf and West (2003). Various approaches to deal with this model uncertainty
have appeared in the literature, starting with the extreme-bounds analysis in Levine and Renelt
(1992) and the confidence-based analysis in Sala-i-Martin (1997). A natural solution, supported
by formal probabilistic reasoning, is the use of Bayesian model averaging (BMA, see Hoeting et
al., 1999), which assigns probabilities on the model space and deals with model uncertainty by
mixing over models, using the posterior model probabilities as weights. Fernández et al. (2001b,
FLS henceforth) introduce the use of BMA in growth regressions. Often, the posterior probability
is spread widely among many models, which strongly suggests using BMA rather than choosing a
single model. Evidence of superior predictive performance of BMA can be found in, e.g., Raftery
et al. (1997), Fernández et al. (2001a) and FLS. Other papers using BMA in the context of growth
regression are León-González and Montolio (2004) and Masanjala and Papageorgiou (2005, MP
henceforth). Alternative ways of dealing with model uncertainty are proposed in Sala-i-Martin et
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al. (2004, SDM henceforth), and Tsangarides (2005). As we will show in the paper, the SDM
approach corresponds quite closely to a BMA analysis with a particular choice of prior.

For Bayesian (and approximately Bayesian) approaches to the problem, any differences can
typically be interpreted as the use of different prior assumptions. A casual comparison of results
can sometimes lead to a misleading sense of “robustness” with respect to such assumptions. In
particular, posterior results on inclusion probabilities of regressors reported in SDM were found
to be rather close to those obtained with the quite different prior settings of FLS, using the same
data; such similarities were noted in MP and Ley and Steel (2007). As we will show here, this
is mostly by accident, and prior assumptions can be extremely critical for the outcome of BMA
analyses. As BMA or similar approaches are rapidly becoming mainstream tools in this area, we
wish to investigate in detail how the (often almost arbitrarily chosen) prior assumptions may affect
our inference.

As a general principle, the effect of not strongly held prior opinions should be minimal. This
intuitive sense of a “non-informative” or “ignorance” prior is often hard to achieve, especially
when we are dealing with model choice, as opposed to inference within a given model (see, e.g.,
Kass and Raftery, 1995). At the very least, we should be able to trace the effect in order to inform
the analyst which prior settings are more informative than others, and in which direction they
will influence the result. “Clever” prior structures are robust, in that they protect the user against
unintended consequences of prior choices. In this paper, we focus on a general prior structure which
encompasses most priors used in the growth regression literature and allows for prior choice in two
areas: the choice of the precision factor g in the g-prior and the prior assumptions on the model
space. On the latter, we elicit the prior in terms of the prior mean model size m, which is a quantity
that users may have some subjective prior information on. Other aspects of the prior are typically
less interpretable for most applied users and would require “automatic” settings. However, these
choices have to be reasonable and robust. It is important to stress that the dependence on prior
assumptions does not disappear if we make those assumptions implicit rather than explicit. We
then merely lull the user into a false sense of security. Thus, the claim in SDM that their approach
“limits the effect of prior information” has to be taken with extreme caution.

To build priors on the model space, we shall advocate the use of hierarchical priors, since
this increases flexibility and decreases the dependence on essentially arbitrary prior assumptions.
Theoretical results on the distribution of model size and prior odds allow us to shed some light on
the relative merits of the priors on model space. Analytical results for the marginal likelihoods
(Bayes factors) are used to infer the model size penalties implicit in the various choices of g and
allow for an insightful comparison with the BACE procedure of SDM.

Using three different data sets that have been used in the growth literature, we assess the effect
of prior settings for posterior inference on model size, but we also consider the spread of model
probabilities over the model space, and the posterior inclusion probabilities of the regressors. The
latter is especially critical for this literature, as the relative importance of the regressors as drivers
of growth is often the key motivation for the analysis.

By repeatedly splitting the samples into an inference part and a prediction part, we also examine
the robustness of the inference with respect to changes to the data set and we assess the predictive
performance of the model with the various prior settings.
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Section 2 describes the Bayesian model, and Section 3 examines the theoretical consequences
of the priors in more detail. Empirical results for three data sets are provided in Section 4 (using
the full samples) and Section 5 (using 100 randomly generated subsamples of a given size). The
final section concludes and provides recommendations for users of BMA in this literature.

2. The Bayesian Model

In keeping with the literature, we adopt a Normal linear regression model for n observations of
growth in per capita GDP, grouped in a vector y, using an intercept, α, and explanatory variables
from a set of k possible regressors in Z. We allow for any subset of the variables in Z to appear
in the model. This results in 2k possible models, which will thus be characterized by the selection
of regressors. This model space will be denoted by M and we call model Mj the model with the
0 ≤ kj ≤ k regressors grouped in Zj , leading to

y |α, βj , σ ∼ N(αιn + Zjβj , σ
2I), (1)

where ιn is a vector of n ones, βj ∈ <kj groups the relevant regression coefficients and σ ∈ <+ is
a scale parameter.

For the parameters in a given model Mj , we follow Fernández et al. (2001a) and adopt a
combination of a “non-informative” improper prior on the common intercept and the scale and a
so-called g-prior (see Zellner, 1986) on the regression coefficients, leading to the prior density

p(α, βj , σ |Mj) ∝ σ−1f
kj

N (βj |0, σ2(gZ ′jZj)−1), (2)

where fq
N (w|m,V ) denotes the density function of a q-dimensional Normal distribution on w with

mean m and covariance matrix V . The regression coefficients not appearing in Mj are exactly
zero, represented by a prior point mass at zero. Of course, we need a proper prior on βj in (2),
as an improper prior would not allow for meaningful Bayes factors. The general prior structure in
(2), sometimes with small changes, is shared by many papers in the growth regression literature,
and also in the more general literature on covariate selection in linear models (see, e.g., Clyde and
George, 2004 for a recent survey).

Based on theoretical considerations and extensive simulation results in Fernández et al. (2001a),
FLS choose to use g = 1/max{n, k2} in (2). In the sequel, we shall mainly focus on the two
choices for g that underlie this recommendation.

• The first choice, g0j = 1/n, roughly corresponds to assigning the same amount of information
to the conditional prior of β as is contained in one observation. Thus, it is in the spirit of the
“unit information priors” of Kass and Wasserman (1995) and the original g-prior used in Zellner
and Siow (1980). Fernández et al. (2001a) show that log Bayes factors using this prior behave
asymptotically like the Schwarz criterion (BIC), and George and Foster (2000) show that for
known σ2 model selection with this prior exactly corresponds to the use of BIC.

• The second choice is g0j = 1/k2, which is suggested by the Risk Inflation Criterion of Foster
and George (1994). In growth regression, we typically have that k2 � n (as is the case in all
three examples here), so that the recommendation of Fernández et al. (2001a) would lead to the
use of g = 1/k2.
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In this paper, we shall not consider other choices for g, but some authors suggest making g
random—i.e., putting a hyperprior on g. In fact, the original Zellner-Siow prior can be interpreted
as such, and Liang et al. (2005) propose the class of hyper-g priors, which still allow for closed
form expressions for the marginal likelihoods.

The prior model probabilities are often specified by P (Mj) = θkj (1 − θ)k−kj , assuming that
each regressor enters a model independently of the others with prior probability θ. Raftery et
al. (1997), Fernández et al. (2001a) and FLS choose θ = 0.5, which can be considered a benchmark
choice—implying that P (Mj) = 2−k and that expected model size is k/2. The next section will
consider the prior on the model space M more carefully.

We use a Markov chain Monte Carlo (MCMC) sampler to deal with the very large model space
M (already containing 2.2 × 1012 models for the smallest example here with k = 41). Since
the posterior odds between any two models are analytically available (see Section 3), this sampler
moves in model space alone. Thus, the MCMC algorithm is merely a tool to deal with the practical
impossibility of exhaustive analysis of M, by only visiting the models which have non-negligible
posterior probability.1

3. Prior Assumptions and Posterior Inference

3.1. Model prior specification and model size

In order to specify a prior on model space, consider the indicator variable γi, which takes the value
1 if covariate i is included in the regression and 0 otherwise, i = 1, . . . , k. Given the probability of
inclusion, say θ, γi will then have a Bernoulli distribution: γi ∼ Bern(θ), and if the inclusion of
each covariate is independent then the model size W will have a Binomial distribution:

W ≡
k∑

i=1

γi ∼ Bin(k, θ).

This implies that, if we fix θ—as was done, e.g., in FLS and SDM, as in most other studies—the
prior model size will have mean θk and variance θ(1− θ)k.

Typically, the use of a hierarchical prior increases the flexibility of the prior and reduces the
dependence of posterior and predictive results (including model probabilities) on prior assumptions.
Thus, making θ random rather than fixing it would seem a sensible extension (see, e.g., Clyde and
George, 2004 and Nott and Kohn, 2005). An obvious choice for the distribution of θ is a Beta with
hyperparameters a, b > 0, i.e. θ ∼ Be(a, b), leading to the following prior moments for model size,
as a function of k, a and b:

E[W ] =
a

a + b
k, (3)

Var[W ] =
ab(a + b + k)

(a + b)2(a + b + 1)
k. (4)

1 In this paper we use Fortran code based on that used for FLS, but updated to account for data sets with more than 52
regressors, as explained in Ley and Steel (2007). This code can deal with up to 104 regressors, corresponding to a model
spaceM containing 2104 = 2× 1031 models, and is available at http://www.warwick.ac.uk/go/msteel/.
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The generated prior model size distribution is, in fact, called a Binomial-Beta distribution (see
Bernardo and Smith, 1994, p. 117), and has the probability mass function

P (W = w) =
Γ(a + b)

Γ(a)Γ(b)Γ(a + b + k)

(
k

w

)
Γ(a + w)Γ(b + k − w), w = 0, . . . , k.

In the special case where a = b = 1—i.e., we mix with a uniform prior for θ—we obtain a discrete
uniform prior for model size with P (W = w) = 1/(k + 1) for w = 0, . . . , k.

This prior depends on two parameters, (a, b), and it will facilitate prior elicitation to fix a = 1.
This allows for a wide range of prior behaviour and generally leads to reasonable prior assumptions,
as seen below. It is attractive to elicit the prior in terms of the prior mean model size, m. The
choice of m ∈ (0, k) will then determine b through equation (3), which implies b = (k −m)/m.

Thus, in this setting, the analyst only needs to specify a prior mean model size, which is exactly
the same information one needs to specify for the case with fixed θ, which should then equal
θ = m/k. With this Binomial-Beta prior, the prior mode for W will be at zero for m < k/2 and
will be at k for m > k/2. The former situation is likely to be of most practical relevance, and
then the prior puts most mass on the null model, which reflects a mildly conservative prior stance,
where we require some data evidence to favour the inclusion of regressors.

For the case of k = 67, Figure 1 contrasts the prior model size distributions2 with fixed θ (solid
lines) and random θ (dashed lines), for two choices for mean model size: m = 7, which is used in
SDM, and m = 33.5, which corresponds to a uniform prior in the random θ case. Clearly, the prior
with fixed θ is very far from uniform, even for m = k/2. Generally, the difference between the fixed
and random θ cases is striking: prior model size distributions for fixed θ are very concentrated.
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Fig. 1. Prior model size for fixed θ (solid) and random θ (dashed), with m = 7 and m = 33.5.

2 These distributions are, of course, discrete, but for ease of presentation they are depicted through continuous curves,
rather than a selection of dots. The same comment applies throughout the paper.
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With random θ and the hyperparameter choices discussed above, the prior variance of model
size is then equal to

Var[W ] = m(m + 1)
k −m

k + m
, (5)

which is roughly equal to m2 when k � m. In fact, we can illustrate the added uncertainty
introduced by the hierarchical prior structure on θ by the fact that the variance in (5) multiplies
Var[W ] of the corresponding case with fixed θ = m/k by a factor

k
m + k
k
m + 1

,

which, for k > 1 is always larger than one and is an increasing function of m, ranging from 1 (in
the limit as m ↓ 0) to (k + 1)/2 (in the limit as m ↑ k).

Thus, treating θ as random will typically imply a substantial increase in the prior uncertainty
about model size. To assess whether this increase is reasonable, consider Pearson’s coefficient of
variation, say CV[W ], given by the standard deviation divided by the mean. For fixed θ = k/m
this coefficient of variation equals

CV[W ] =

√
k −m

km
,

which is a rapidly decreasing function of m and is unity for m = k/(k + 1), which is often close
to one. Thus, for any reasonable prior mean model size, the prior with fixed θ will be far too
tight. For example, if we take m = 7 in our applications, where k ranges from 41 to 67, CV[W ]
will range from 0.344 to 0.358, which is quite small. For m = k/2, CV[W ] =

√
1/k and ranges

from 0.122 to 0.156, clearly reflecting an unreasonable amount of precision in the prior model size
distribution.

For random θ with the hyperprior as described above, we obtain

CV[W ] =

√
(m + 1)(k −m)

m(k + m)
,

which is also decreasing in m, but is much flatter than the previous function over the range
of practically relevant values for m.3 Taking m = 7 in our applications, CV[W ] will now
range from 0.900 to 0.963, which is much more reasonable. For m = k/2, we now have that
CV[W ] =

√
(k + 2)/3k, which ranges from 0.586 to 0.591.

Thus, this hierarchical prior seems quite a sensible choice. In addition, both Var[W ] and CV[W ]
increase with k for a given m, which also seems a desirable property. This holds for both prior
settings; however, limk→∞ CV[W ] =

√
(m + 1)/m for the case with random θ whereas this limit

is only
√

1/m for the fixed θ case.

3 Of course, both CV functions tend to zero for m ↑ k since then all prior mass has to be on the full model. In addition,
CV in both cases tends to∞ as m ↓ 0.
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3.2. Prior odds

Posterior odds between any two models in M are given by
P (Mi|y)
P (Mj |y)

=
P (Mi)
P (Mj)

ly(Mi)
ly(Mj)

,

where ly(Mi) is the marginal likelihood, which is discussed in the next subsection. Thus, the prior
distribution on model space only affects posterior model inference through the prior odds ratio
P (Mi)/P (Mj). For a prior with a fixed θ = 0.5 prior odds are equal to one (each model is a priori
equally probable). If we fix θ at a different value, these prior odds are

P (Mi)
P (Mj)

=
(

θ

1− θ

)ki−kj

,

thus inducing a prior penalty for the larger model if θ < 0.5 and favouring the larger model for
values of θ > 0.5. Viewed in terms of the corresponding mean model size, m, we obtain (for
θ = m/k):

P (Mi)
P (Mj)

=
(

m

k −m

)ki−kj

,

from which it is clear that the prior favours larger models if m > k/2. For the hierarchical Be(a, b)
prior on θ, we obtain the prior model probabilities:

P (Mj) =
∫ 1

0

P (Mj |θ)p(θ)dθ =
Γ(a + b)
Γ(a)Γ(b)

Γ(a + kj)Γ(b + k − kj)
Γ(a + b + k)

.

Using a = 1 and our prior elicitation in terms of E[W ] = m as above, we obtain the following prior
odds

P (Mi)
P (Mj)

=
Γ(1 + ki)Γ

(
k−m

m + k − ki

)
Γ(1 + kj)Γ

(
k−m

m + k − kj

) .
Figure 2 compares the log prior odds induced by the fixed and random θ prior structures, in the

situation where k = 67 and for m = 7, 33.5 and 50. The graphs indicate the prior odds in favour of
a model with ki = 10 versus models with varying kj .
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Fig. 2. Log of Prior Odds: ki = 10 vs varying kj .
The left panel is for fixed θ and the right panel for random θ.
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Note that the random θ case always leads to downweighting of models with kj around k/2,
irrespectively of m. This counteracts the fact that there are many more models with kj around k/2
in the model space M than for kj values nearer to 0 or k.4 In contrast, the prior with fixed θ does
not take the number of models at each kj into account and simply always favours larger models
when m > k/2 and the reverse when m < k/2. Note also the wider range of values that the log
prior odds take in the case of fixed θ.

Thus, the choice of m is critical for fixed θ, but much less so for random θ. The latter prior
structure is naturally adaptive to the data observed. This is, again, illustrated by Figure 3, which
plots the log of the prior odds of a model with ki = (kj − 1) regressors versus a model with kj

regressors as a function of kj .
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Fig. 3. Log of Prior Odds: ki = (kj − 1) vs varying kj .

Whereas the fixed θ prior always favours the smaller model Mi for m < k/2, the choice of m
for random θ only moderately affects the prior odds, which swing towards the larger model when
kj gets larger than approximately k/2. This means that using the prior with fixed θ will have a
deceptively strong impact on posterior model size. This prior does not allow for the data to adjust
prior assumptions on mean model size that are at odds with the data, making it a much more risky
choice.

3.3. Bayes factors

In the previous subsection we mentioned the marginal likelihood, which is defined as the sampling
density integrated out with the prior. The marginal likelihood forms the basis for the Bayes factor
(ratio of marginal likelihoods) and can be derived analytically for each model with prior structure
(2) on the model parameters. Provided g in (2) does not depend on the model size kj , the Bayes

4 The number of models with kj regressors in M is given by
(

k
kj

)
. For example, with k = 67, we have 1 model with

kj = 0 and kj = k, 8.7× 108 models with kj = 7 and kj = 60 and a massive 1.4× 1019 models with kj = 33 and 34.
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factor for any two models from (1)–(2) becomes:

ly(Mi)
ly(Mj)

=
(

g

g + 1

) ki−kj
2
(

1 + g −R2
i

1 + g −R2
j

)−n−1
2

(6)

where R2
i is the usual coefficient of determination for model Mi, i.e., R2

i = 1 − [y′QXi
y/(y −

ȳιn)′(y − ȳιn)] and we have defined QA = I −A(A′A)−1A′ and Xi = (ιn, Zi), the design matrix
of Mi, which is always assumed to be of full column rank. The expression in (6) is the relative
weight that the data assign to the corresponding models, and depends on sample size n, the factor
g of the g-prior and the size and fit of both models, with the latter expressed through R2.

Let us compare this with the so-called BACE approach of SDM. The BACE approach is not
totally Bayesian, as it is not formally derived from a prior-likelihood specification, but relies on
an approximation as sample size, n, goes to infinity (which may not be that realistic in the growth
context). In fact, BACE uses the Schwarz approximation to compute the Bayes factor, as was
earlier used in Raftery (1995) in a very similar context. From equation (6) in SDM, we get the
following Bayes factor:

ly(Mi)
ly(Mj)

= n
kj−ki

2

(
1−R2

i

1−R2
j

)−n
2

. (7)

This expression is not that different from the one in our equation (6), provided we take g = 1/n. In
that case, the Bayes factor in (6) becomes:

ly(Mi)
ly(Mj)

= (n + 1)
kj−ki

2

(
1 + 1

n −R2
i

1 + 1
n −R2

j

)−n−1
2

,

which behaves very similarly to the BACE procedure in (7) for practically relevant values of n (as
in the examples here). This will be crucial in explaining the similarity of the results with the FLS
and SDM prior settings mentioned before.

It also becomes immediately clear that the necessity of choosing prior settings implicit in using
BMA is not really circumvented by the use of BACE, in contrast with the claims in SDM. In fact,
BACE implicitly fixes g in the context of our BMA framework. The fact that this is hidden to the
user does not make the results more robust with respect to this choice. It even carries a substantial
risk of conveying a false sense of robustness to the applied user.

Now we can examine more in detail how the various prior choices translate into model size
penalties. From (6) we immediately see that if we have two models that fit equally well (i.e.,
R2

i = R2
j ), then the Bayes factor will approximately equal g(ki−kj)/2 (as g tends to be quite small).

If one of the models contains one more regressor, this means that the larger model will be penalized
by g1/2.

For n = 88 and k = 67 (as in the SDM data) this means that the choice of g = 1/n leads to a
Bayes factor of 0.107 and choosing g = 1/k2 implies a Bayes factor of 0.015. Thus, the model size
penalty is much more severe for g = 1/k2 in the context of these types of data. The size penalty
implicit in the BACE procedure is the same as for g = 1/n.

9
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We can also ask how much data evidence is required to exactly compensate for the effects of
prior odds under different specifications. Posterior odds will be unity if the Bayes factor equals the
inverse of the prior odds, thus if

ly(Mi)
ly(Mj)

=
P (Mj)
P (Mi)

, (8)

where the prior odds are given in the previous subsection, as a function of prior mean model size
m, as well as k and the sizes of both models.

Typically, we have no control over n and k, but we do need to select g and m. To give
more insight into the tradeoff between g and m, Figure 4 plots the contours in (g,m)-space that
correspond to n = 88, k = 67, ki = 8, kj = 7, and R2

j = 0.75 for different ratios R2
i /R2

j that would
make the two models equally probable in the posterior. These plots are provided for fixed and
random θ model priors with the Bayes factor in (6).

-9 -8 -7 -6 -5 -4
log!g"0

10

20

30

40

m

Fixed Θ

SDM

FLS

-9 -8 -7 -6 -5 -4
log!g"

10

20

30

40

m

Random Θ

Fig. 4. Equal Probability Contours for different ratios R2
i /R2

j .
Left Panel shows also the choices of (log(g),m) for FLS and SDM.

(n = 88, k = 67, ki = 8, kj = 7, and R2
j = 0.75)

It is obvious from the left figure for the fixed θ case that there is a clear trade-off between m
and g: larger m, inducing a smaller size penalty, can be compensated by a small g, which increases
the penalty. In this particular case with k and n corresponding to the SDM data, we notice that the
combination of g = 1/n with m = 7, as implicitly preferred in SDM, is on a contour rather close
to the one corresponding to the settings in FLS: g = 1/k2 with m = 33.5. These combinations
are represented in the left panel. This explains the similarity of the results with the SDM and FLS
prior settings, mentioned in the Introduction. If we adopt the hierarchical prior with random θ, the
trade-off between g and m almost disappears, as the choice of m now only has a very small role to
play.
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4. Some Illustrative Examples: Complete Sample Results

In this section we will present posterior results for three data sets that have been analysed in the
literature. All results in this section are based on MCMC runs of 2 million retained drawings after
a burn-in of 1 million.

We focus, in particular, on the effect of the prior choices on posterior model size distributions,
the spread of the posterior mass over model space, posterior model probabilities and the inclusion
of individual regressors.

Results are presented for eight combinations of prior settings, taking g = 1/n and g = 1/k2,
m = 7 and m = k/2 and using either a fixed or a random θ. The choice of m = 7 was motivated
by the restriction to models with up to 7 regressors in Levine and Renelt (1992) and exactly 7
regressors in Sala-i-Martin (1997). Choosing m = k/2 corresponds to a “vague” model size prior,
which is, as discussed in Subsection 3.1, uniform for random θ, and symmetric (but far from
uniform) for fixed θ.

4.1. The FLS Data

We first illustrate the effects of our prior choices using the growth data of FLS. The latter data set
contains k = 41 potential regressors to model the average per capita GDP growth over 1960-1992
for a sample of n = 72 countries.5

As expected, results with m = 41/2 = 20.5, fixed θ and g = 1/k2 (the FLS settings) are virtually
identical to those obtained in FLS on the basis of a chain of the same length. Figure 5 provides a
complete picture of the posterior model size distributions (overplotted with the priors) for all eight
combinations of prior settings. Summaries in the form of the first two moments are provided in
Table 1.

From these results, we immediately notice the striking influence that prior assumptions have on
model size in the posterior. Even if we fix the prior mean model size, simply changing between
random and fixed θ or choosing a different g can substantially alter the posterior distribution of
model size, W . Clearly, influence of the choice of m is massive for fixed θ, whereas its effect is
much less severe for the case of random θ. This accords with the fact (discussed in Subsection 3.1)
that the prior on model size is very concentrated for the fixed θ case, and the relative robustness
with respect to the choice of m noted for random θ in Subsections 3.2 and 3.3. Also, it appears
that the effects of prior choices are much more pronounced for the prior with g = 1/n. In fact, if
we adopt g = 1/k2 with a hierarchical prior on θ, the value chosen for m has very little impact, in
marked contrast with the other prior settings.

From Figure 5 we also deduce that the posterior of W can display bimodality if data and prior
information are in conflict. This happens when m = 20.5 and we choose g = 1/n for the case with
random θ. In the corresponding fixed θ case the prior is actually so concentrated that it dominates
and the posterior is mostly determined by the prior.

Table 1 also records some key properties of the chain: it is clear that the choice of g = 1/n always
leads to the sampler visiting many more models, indicating that the posterior mass is more spread

5 The dataset and the code used in FLS are available on the Journal of Applied Econometrics website at http://qed.econ.queensu.ca/jae/.
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Fig. 5. Model Size: Prior and Posterior Distributions for FLS data.

Table 1. FLS Data—prior and posterior moments of model size.
Properties of the chain and the best model.

m = 7 m = k/2 = 20.5

fixed θ random θ fixed θ random θ

g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2

Prior mean 7 7 7 7 20.5 20.5 20.5 20.5

Prior st. dev. 2.41 2.41 6.30 6.30 3.20 3.20 12.12 12.12

Posterior mean 9.17 6.29 10.76 5.73 19.84 9.91 12.87 6.03

Posterior st. dev. 1.54 1.30 2.67 1.65 2.57 1.63 4.43 1.64

# Models visited 141,980 20,003 329,694 19,275 522,637 150,255 436,602 23,558

# Models covering50% 1,461 40 3,569 27 9,348 1,598 5,489 36

Post. Prob. best model 0.91% 6.22% 0.65% 5.61% 0.21% 1.24% 0.54% 5.21%

kj for best model 9 6 10 5 20 10 10 6

Corr. visits and PO 0.992 0.999 0.971 0.999 0.748 0.992 0.922 0.998

Prob. mass visited 70.7% 95.2% 39.6% 95.1% 18.4% 69.7% 27.2% 93.7%

out over the model space. This is obvious when considering how many of the higher-probability
models we need to cover 50% of the probability mass. This varies dramatically with the choice
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of g, especially for random θ (where we need more than 100 times as many models for g = 1/n).
If we adopt g = 1/n, many larger models are visited and the posterior mass assigned to the best
model is much smaller than with g = 1/k2 (roughly by a factor 8). In addition, the best model is
much larger for g = 1/n. All this is in keeping with the smaller penalty for increasing model size
that is implied by adopting g = 1/n (see Subsection 3.3). An important practical consequence of
this is that the chain should run longer before convergence is ensured. Table 1 also presents the
correlation between model visit frequencies and probabilities computed on the basis of the exact
posterior odds of the visited models, which is in excess of 0.99 (indicating excellent convergence)
for all cases with g = 1/k2. For g = 1/n, where the model probability is spread more evenly over
M, the evidence in favour of convergence is slightly less convincing. For the case with m = 20.5
and fixed θ we would ideally recommend a longer run.6 However, even in this case, multiple runs
led to very similar findings. For completeness, Table 1 also displays the estimated total posterior
model probability visited by the chain, computed as suggested in George and McCulloch (1997).

For the random θ cases, the specification and the posterior probability of the best model is not
much affected by the choice of m. However, changing from g = 1/n to g = 1/k2 has a dramatic
effect on both.

Finally, the size of the best model varies in between 5 and 20, and is not much affected by m
for random θ.

Of course, one of the main reasons for using BMA in the first place is to assess which of the
regressors are important for modelling growth. Table 2 presents the marginal posterior inclusion
probabilities of all regressors that receive an inclusion probability of over 10% under any of the
prior settings. It is clear that there is a large amount of variation in which regressors are identified
as important, depending on the prior assumptions.

Whereas three variables (past GDP, fraction Confucian and Equipment investment) receive more
than 0.75 inclusion probability and a further two (Life expectancy and the Sub-Saharan dummy)
are included with at least probability 0.50 in all cases, there are many differences. If we compare
cases that only differ in m, the choice of g = 1/n with fixed θ leads to dramatic differences in
inclusion probabilities: Fraction Hindu, the Labour force size, and Higher education enrollment
go from virtually always included with m = 20.5 to virtually never included with m = 7; the
Number of years open economy has the seventh largest inclusion probability for m = 7 and drops
to the bottom of the 32 variables shown in the table for m = 20.5. In sharp contrast, the case with
g = 1/k2 and random θ leads to very similar inclusion probabilities for both values of m.

Finally, note that results for model size, chain behaviour and inclusion probabilities are quite
similar for the cases where g = 1/n with fixed θ = 7/41 (the preferred implied prior in SDM) and
where g = 1/k2 with θ = 0.5 (the prior used in FLS). This is in line with the negative trade-off
between g and m illustrated in Figure 4, which explains the similarity between empirical results
using BACE and the FLS prior on the same data. The same behaviour is observed for the other
datasets presented in the next subsections.

6 It is important for our purposes in this section that run lengths are identical, to ensure comparability of the properties of
the chains. Longer chains will typically capture marginally more of the posterior probability, but they will only add models
with very small posterior probabilities and this will not affect any of the conclusions.
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Table 2. FLS data—Marginal posterior inclusion probabilities of the covariates.
m = 7 m = k/2 = 20.5

fixed θ random θ fixed θ random θ
Regressors g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2

log GDP in 1960 1.00 0.91 1.00 0.79 1.00 1.00 1.00 0.84

Fraction Confucian 0.99 0.94 1.00 0.93 1.00 1.00 1.00 0.94

Life expectancy 0.92 0.74 0.95 0.63 1.00 0.95 0.97 0.68

Equipment investment 0.95 0.98 0.93 0.98 0.97 0.94 0.94 0.98

Sub-Saharan dummy 0.70 0.59 0.78 0.53 1.00 0.75 0.85 0.55

Fraction Muslim 0.62 0.29 0.63 0.23 0.43 0.66 0.61 0.27

Rule of law 0.41 0.17 0.56 0.15 0.93 0.52 0.67 0.17

Number of years open economy 0.56 0.60 0.46 0.54 0.07 0.50 0.36 0.56

Degree of capitalism 0.36 0.09 0.50 0.08 0.56 0.47 0.56 0.09

Fraction Protestant 0.38 0.23 0.49 0.24 0.47 0.46 0.51 0.24

Fraction GDP in mining 0.36 0.08 0.51 0.07 0.94 0.44 0.63 0.08

Non-Equipment investment 0.33 0.07 0.47 0.06 0.71 0.43 0.56 0.07

Latin American dummy 0.18 0.09 0.23 0.07 0.75 0.19 0.34 0.08

Primary school enrollment, 1960 0.19 0.10 0.21 0.08 0.63 0.18 0.29 0.09

Fraction Buddhist 0.14 0.05 0.20 0.07 0.25 0.17 0.23 0.07

Black market premium 0.11 0.02 0.22 0.01 0.69 0.16 0.34 0.02

Fraction Catholic 0.09 0.03 0.13 0.02 0.12 0.11 0.14 0.03

Civil liberties 0.09 0.03 0.13 0.02 0.54 0.10 0.22 0.03

Fraction Hindu 0.06 0.07 0.18 0.01 0.97 0.10 0.36 0.01

Political rights 0.06 0.01 0.09 0.01 0.29 0.07 0.13 0.02

Exchange rate distortions 0.06 0.03 0.06 0.02 0.12 0.06 0.08 0.03

Age 0.06 0.02 0.07 0.02 0.25 0.06 0.10 0.02

War dummy 0.05 0.02 0.06 0.02 0.14 0.05 0.08 0.02

Fraction of Pop. Speaking English 0.04 0.01 0.07 0.01 0.42 0.05 0.15 0.01

Size labor force 0.04 0.01 0.11 0.01 0.95 0.05 0.28 0.01

Ethnolinguistic fractionalization 0.03 0.01 0.09 0.01 0.87 0.03 0.24 0.01

Spanish Colony dummy 0.03 0.01 0.06 0.01 0.59 0.03 0.17 0.01

French Colony dummy 0.03 0.01 0.05 0.01 0.54 0.03 0.15 0.01

Higher education enrollment 0.02 0.01 0.08 0.01 0.91 0.02 0.24 0.01

British colony dummy 0.02 0.00 0.04 0.00 0.47 0.02 0.13 0.00

Outward orientation 0.02 0.01 0.04 0.01 0.42 0.02 0.12 0.01

Public education share 0.02 0.00 0.03 0.00 0.30 0.02 0.08 0.00

4.2. The Data Set of MP

MP investigate the role of initial conditions at independence from colonial rule on the economic
growth of African countries. They focus on the average growth rate in GDP from 1960 to 1992 and
construct a dataset for n = 93 countries with k = 54 covariates, obtained by combining 32 original
regressors and 22 interaction dummies.

Table 3 records the main characteristics of model size and the MCMC chain, and illustrates that
results are quite close to those with the FLS data, leading to the same conclusions. Probably due to
the somewhat larger model space, convergence is now even more problematic for the fixed θ case
with g = 1/n and m = 54/2 = 27. Again, however, longer runs do not lead to appreciably different
conclusions (see footnote 6).
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Table 3. MP Data—prior and posterior moments of model size.
Properties of the chain and the best model.

m = 7 m = k/2 = 27

fixed θ random θ fixed θ random θ

g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2

Prior mean 7 7 7 7 27 27 27 27

Prior st. dev. 2.47 2.47 6.57 6.57 3.67 3.67 15.88 15.88

Posterior mean 8.68 6.05 9.67 5.42 17.90 9.77 10.37 5.75

Posterior st. dev. 1.52 1.16 2.09 1.53 2.44 1.75 2.24 1.48

# Models visited 106,041 13,103 194,230 11,864 516,479 135,353 241,082 13,88

# Models covering 50% 933 31 1,549 23 3,038 1,353 2,049 28

Post. Prob. best model 1.65% 10.70% 1.14% 9.60% 0.49% 1.28% 0.90% 9.01%

kj for best model 8 6 8 4 19 8 8 6

Corr. visits and PO 0.990 0.998 0.973 0.999 0.251 0.985 0.963 0.999

Table 4. SDM Data—prior and posterior moments of model size.
Properties of the chain and the best model.

m = 7 m = k/2 = 33.5

fixed θ random θ fixed θ random θ

g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2

Prior mean 7 7 7 7 33.5 33.5 33.5 33.5

Prior st. dev. 2.50 2.50 6.74 6.74 4.09 4.09 19.63 19.63

Posterior mean 6.17 2.84 5.26 2.35 14.20 7.00 5.73 2.40

Posterior st. dev. 1.50 0.85 1.86 0.59 1.64 1.44 1.91 0.62

# Models visited 102,852 6,141 101,642 2,167 606,792 130,776 129,929 2,594

# Models covering 50% 590 4 248 1 485 744 383 1

Post. Prob. best model 6.63% 37.72% 5.74% 66.42% 1.43% 6.58% 5.22% 63.64%

kj for best model 6 2 2 2 13 6 6 2

Corr. visits and PO 0.996 1.000 0.996 1.000 0.029 0.996 0.996 1.000

4.3. The Data Set of SDM and DW

SDM and Doppelhofer and Weeks (2006) use a larger data set, and model annual GDP growth per
capita between 1960 and 1996 for n = 88 countries as a function of k = 67 potential drivers.7

Despite the larger model space (the number of models in M is now 1.5× 1020), Table 4 shows
that posterior model probabilities are more concentrated than in the previous two cases; in fact,
even in those cases where many models are visited, 50% of the posterior mass is still accounted for
through a rather small number of models. Also, model sizes tend to be smaller; in fact, the posterior
mean model size is less than 3 for three of the four cases with g = 1/k2. If we adopt a random

7 The data and the code used in SDM are available at http://www.econ.cam.ac.uk/faculty/doppelhofer/
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θ and g = 1/k2, the choice for m has little effect. The twenty best models are the same for both
values of m, with very similar posterior probabilities and only slight differences in ordering. The
best model (with over 60% posterior probability) in these cases as well as with two other settings,
is the model with only the East Asian dummy and Malaria prevalence as regressors. The same
model is also second best for the random θ case with m = 33.5 and g = 1/n, but is well down the
ordering (receiving less than 0.25% of probability) if we fix θ with m = 33.5. In fact, in the latter
case with g = 1/n, the regressors East Asian dummy and Malaria prevalence never appear together
in any model with posterior probability over 0.25%. This further illustrates the huge impact of
simply changing between the fixed and random θ cases.

Convergence is excellent, except for the case with fixed θ, m = 33.5 and g = 1/n, as in the other
examples. The difference in convergence between the cases is even more striking than with the
previous examples, and it appears that the case with convergence problems struggles to adequately
describe the posterior distribution on the model space M. While most of the mass is covered by
a relatively small number of models, the prior assumptions induce a very fat tail of models with
little but nonnegligible mass. However, inference on most things of interest, such as the regressor
inclusion probabilities is not much affected by running longer chains. For all other prior settings,
the very large model space is remarkably well explored by the MCMC chain.

5. Robustness and Predictive Analysis: Results from 100 Subsamples

In the previous section we have illustrated that the choice of, perhaps seemingly innocuous, prior
settings can have a dramatic impact on the posterior inference resulting from BMA. Posterior model
probabilities and identification of the most important regressors can strongly depend on the prior
settings we use in our analysis of growth regressions through BMA.

We now address the issue of whether small changes to the data set would result in large changes
in inference—i.e., data robustness. In addition, we want to assess the predictive performance of the
model under various prior settings. We will use the same device to investigate both issues, namely
the partition of the available data into an inference subsample and a prediction subsample. We will
then use the various inference subsamples for the evaluation of robustness and assess prediction
on the basis of how well the predictive distribution based on the inference subsamples captures the
corresponding prediction subsamples.

We take random partitions of the sample, where the size of the prediction subsample is fixed
at 15% of the total number of observations (rounded to an integer), leaving 85% of the sample
to conduct inference with. We generate random prediction subsamples of a fixed size by using
the algorithm of McLeod and Bellhouse (1983). We use 100 random partitions and compute the
posterior results through an MCMC chain of 500,000 drawings with a burn-in of 100,000 for each
partition. This led to excellent convergence, with the exception of the cases with θ fixed at 0.5 and
g = 1/n. Thus, for this combination we have used a chain of length 1,000,000 after a burn-in of
500,000, which leads to reliable results.8 To increase comparability, we use the same partitions for
all prior settings.

8 In fact, the results are very close to those obtained with 100,000 burn-in and 500,000 retained drawings, with the only
noticeable difference in the maximum LPS values.
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5.1. Robustness

Figure 6 indicates the distribution of the posterior mean model size across 100 inference subsamples
of the FLS data (left panel). Values corresponding to the full sample are indicated by vertical lines.
The right panel of the same Figure denotes the posterior inclusion probabilities of the first ten
regressors.

A striking characteristic of both panels is the sensitivity of the results to the choice of m for the
fixed θ priors, whereas the effect of m is very small for the cases with random θ. The choice of g,
however, always matters: g = 1/k2 generally leads to smaller mean model sizes and results in very
different conclusions on which regressors are important than g = 1/n, especially for random θ.

Given each choice of prior, the results vary quite a bit across subsamples, especially for the
inclusion probabilities where the interquartile ranges can be as high as 60%. It is interesting how
the combinations of g = 1/n with fixed θ = 7/41 (the setting implicitly favoured in SDM) and
g = 1/k2 with θ = 0.5 (the prior of FLS) lead to very similar results, both for model sizes and
inclusion probabilities, as also noted in Section 4. Overall, the difference between fixed and random
θ cases is small for m = 7, but substantial for m = k/2.

For the MP data, results on posterior model size are quite similar as for the FLS dataset, and we
can draw the same conclusions on the basis of the inclusion probabilities.

Finally, Figure 7 shows the robustness results for the SDM data set, where we have k = 67
potential regressors. As before, the choice of m critically affects the fixed θ results, but not the
ones for random θ. Differences between fixed and random θ cases are large for m = k/2, but
relatively small for m = 7, as with both previous datasets. Again, the choice of g always affects
the results, and inference using g = 1/n in combination with θ = 7/67 is quite similar to that using
g = 1/k2 with θ = 0.5, for both model size and inclusion probabilities. For g = 1/k2 inference on
model size is quite concentrated on small values, with the exception of the case with fixed θ and
m = 33.5.

Even though many results are not very robust with respect to the particular choice of subsample,
it is clear that the differences induced by the various prior assumptions largely persist if we take
into account small changes to the data.
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Fig. 6. Distribution of mean model size and posterior inclusion probabilities of the first ten regressors.
(FLS data, 100 inference subsamples.)
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Fig. 7. Distribution of mean model size and posterior inclusion probabilities of the first ten regressors.
(SDM data, 100 inference subsamples.)
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5.2. Prediction

In order to compare the predictive performance associated with the various prior choices, we con-
sider predicting the observable (growth) given the regressors. Of course, the predictive distribution
is also derived through model averaging, as explained in, e.g., FLS. As a measure of how well each
model predicts the retained observations, we use the log predictive score, which is a strictly proper
scoring rule, described in FLS. In the case of i.i.d. sampling, LPS can be given an interpretation in
terms of the Kullback-Leibler divergence between the actual sampling density and the predictive
density (see Fernández et al. 2001a) and smaller values indicate better prediction performance.

The prediction procedures we compare are based on: BMA, the best model (the model with the
highest posterior probability), the full model (with all k regressors) and the null model (with only
the intercept).

Panel A in Table 5 summarizes our findings for the FLS data: the entries indicating “best” or
“worst” model or how often a model is beaten by the null are expressed in percentages of the 100
samples for that particular prior setting.

1. BMA—The predictive performance of BMA is much superior to that of the other procedures—
which corroborates evidence in e.g. Raftery et al., 1997, Fernández et al., 2001a and FLS. It
is never the worst predictor and leads to the best predictions in more than half of the sampled
cases (with the exception of the prior with fixed θ = 0.5 and g = 1/n).

2. Best—Basing predictions solely on the model with highest posterior probability is clearly a lot
worse: it almost never gives the best prediction and leads to the worst prediction in 18 to 46%
of the cases; moreover, it is beaten by the simple null model in more than 35% of the cases.

3. Full—The use of the full model can lead to good forecasts, but is very risky, as it also has a
substantial probability of delivering the worst performance: in fact, for g = 1/k2 the proportion
of the latter always exceeds the fraction of best performances. This behaviour is also illustrated
by the fact that {Min, Mean, Max} for LPS of the full model is {0.74, 1.77, 3.77} for g = 1/n
and {0.67, 2.15, 5.82} for g = 1/k2. For comparison, the null model leads to {1.67, 2.05, 2.72}.

Having established that BMA is the strategy to adopt for prediction, we can focus on the forecast
performance of BMA to compare the predictive ability across the different prior settings. Mean
values of LPS (over all 100 samples) are not that different, but the maximum values indicate that
fixing θ at 0.5 is the most risky strategy. This suggests using random θ. In addition, BMA always
performs better with respect to the other prediction strategies for g = 1/k2. Indeed, the worst case
scenario for BMA appears to be θ = 0.5 with g = 1/n. Finally, the choice of m almost leaves the
random θ results unaffected, but has a substantial effect on the cases with fixed θ, in line with our
expectations.

Panel B in Table 5 presents the same quantities for the MP data (where k = 54), and the
{Min, Mean, Max} values for LPS of the full model are {1.13, 2.55, 6.05} for g = 1/n and
{1.12, 2.79, 7.48} for g = 1/k2, whereas the null model leads to {1.70, 2.03, 2.63}.

The superiority of BMA is even more pronounced, with the prior setting θ = 0.5 with g = 1/n
again being the least favourable for BMA. The performance of the full model is now considerably
worse than for the FLS data, as this model quite often leads to the worst behaviour and is soundly
beaten by the much more conservative null model. This seems in line with the fact that the number
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Table 5. Predictive performance: three datasets
Panel A. FLS Data

m = 7 m = k/2

fixed θ random θ fixed θ random θ

g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2

Best 59 65 54 66 48 63 54 67

BMA Worst 0 0 0 0 0 0 0 0

(%) Beaten by Null 7 6 11 6 19 11 11 6

Best 1 2 1 0 3 2 2 0

Best model Worst 28 18 34 18 46 31 36 17

(%) Beaten by null 35 35 41 36 52 47 45 36

Best 34 28 37 30 37 24 36 29

Full model Worst 16 42 15 41 8 31 15 42

(%) Beaten by null 25 45 25 45 25 45 25 45

Minimum 1.12 1.19 1.12 1.21 0.86 1.11 1.11 1.20

LPS of BMA Mean 1.58 1.61 1.61 1.64 1.65 1.63 1.61 1.63

Maximum 2.57 2.52 2.67 2.53 2.76 2.85 2.64 2.47

Panel B. MP Data

Best 71 70 75 73 61 78 73 72

BMA Worst 0 0 0 0 0 0 0 1

(%) Beaten by null 15 16 15 18 32 15 16 18

Best 10 8 7 2 2 5 7 3

Best model Worst 18 4 19 6 37 18 20 5

(%) Beaten by null 42 35 42 33 63 49 43 31

Best 4 7 3 9 6 2 4 9

Full model Worst 61 75 59 75 46 66 59 75

(%) Beaten by null 71 77 71 77 71 77 71 77

Minimum 1.15 1.30 1.14 1.39 1.05 1.12 1.13 1.38

LPS of BMA Mean 1.70 1.74 1.71 1.77 1.87 1.72 1.72 1.77

Maximum 3.34 3.46 3.26 3.53 3.60 3.31 3.23 3.54

Panel C. SDM Data

Best 69 53 64 48 48 63 66 46

BMA Worst 0 0 0 0 0 0 0 0

(%) Beaten by null 15 11 16 10 51 16 16 10

Best 16 36 20 42 1 21 18 44

Best model Worst 3 1 3 0 12 2 3 0

(%) Beaten by null 38 20 31 19 79 39 32 18

Best 0 0 0 0 0 0 0 0

Full model Worst 97 99 97 100 88 98 97 100

(%) Beaten by null 99 100 99 100 99 100 99 100

Minimum 1.36 1.41 1.39 1.43 1.22 1.33 1.38 1.43

LPS of BMA Mean 1.78 1.75 1.78 1.75 2.18 1.81 1.79 1.74

Maximum 3.38 2.67 3.31 2.53 3.70 3.63 3.38 2.51
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of regressors, k, is now larger, so the full model is even more overparameterized than in the FLS
case. Considering the LPS values for BMA, priors with g = 1/n seem to have a slight edge, except
for the case with a fixed θ = 0.5. Finally, the choice of m is again virtually immaterial for the
random θ cases, and affects those with fixed θ.

Finally, Panel C in Table 5 collects prediction results for the SDM data, where the number of
regressors is even larger with k = 67. This is immediately felt in the behaviour of the full model,
which is now virtually always the worst model. The {Min, Mean, Max} values for LPS of the full
model are {2.53, 5.16, 11.75} for g = 1/n and {2.65, 6.95, 23.21} for g = 1/k2, whereas the null
model leads to {1.72, 2.08, 3.09}.

As before, the case with θ = 0.5 and g = 1/n leads to the worst BMA performance, allowing
the null model to beat it more than half of the time! This is due to those cases where prediction is
relatively difficult for which the conservative null model performs better. Throughout, the choice
of g = 1/k2 does better in avoiding large values of LPS, reducing the cases for which BMA is
beaten by the null model. On the other hand, it is more conservative and lowers the percentage of
cases where BMA leads to the best predictive behaviour. As we know from Subsection 3.3, the
choice of g = 1/k2 implies a larger size penalty, and thus stays closer to the rather conservative null
model. As in the previous examples, the effect of m is far larger for fixed θ than for random θ. For
the combinations of random θ with g = 1/k2 BMA seems less dominant than for the other cases.
This is simply a consequence of the fact that the best model then accounts for more than 60% of
the probability mass (see Table 4), so that the best model also predicts very well here (albeit not
quite as well as BMA). In fact, either BMA or the best model predict best in 90 of the 100 samples,
while the null model does best for the remaining 10 samples.

To summarize the predictive behaviour in terms of the choice of prior setting, we can state that
a random θ prior seems preferable in view of the lack of sensitivity to m. Also, the combination
of fixed θ = 0.5 and g = 1/n is to be avoided as it can lead to relatively bad forecasting behaviour
and BMA is not as dominant as it is under other priors. For these other priors there seems no clear
guidance for the choice of g on the basis of predictive behaviour alone.

6. Concluding Remarks and Recommendations

The theoretical and empirical evidence provided above shows the critical importance of prior
assumptions for BMA: it clearly matters what prior settings we choose. The previously noted
similarity of results with BACE and FLS prior settings turns out to be a fluke rather than an
indication of prior robustness. Making certain prior assumptions implicit (as the choice of g = 1/n
in BACE) does not, in our view, constitute an improvement over a fully explicit Bayesian analysis
and can easily lead to a false sense of prior robustness.

A first clear recommendation on the prior structure is to use random θ rather than fixed θ, since
the hierarchical prior is much less sensitive to the (often rather arbitrary) choice of prior mean
model size, m. Only in the unlikely situation when you really have very strong prior information
on model size can a fixed θ prior be defensible. Therefore, we strongly discourage the use of the
fixed θ prior as a “non-informative” prior, as it has clearly been shown to be quite informative.

Secondly, we would recommend to avoid the choice of g = 1/n, which implies a fairly small
model size penalty and can, thus, result in convergence problems (with a very long tail of relatively
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unimportant models) and has also displayed more sensitivity to m than the alternative g = 1/k2.
In particular, we strongly advise against choosing g = 1/n with fixed θ = 0.5 as this combination
can lead to relatively bad predictions and the superiority of BMA (which has been shown to be the
best procedure to use for prediction) is less pronounced.

In conclusion: for growth-regression or other linear regression settings where we have a fairly
large number of potential regressors with relatively few observations (where k < n but of the
same order of magnitude, so that k2 � n), we would recommend to use the prior structure in (2)
with g = 1/k2 for any given model. Also, for the prior over models we strongly advise the use
of the hierarchical prior on θ described in Subsection 3.1, whenever users have no really strong
prior information on model size (which will typically be the case for growth regression). In that
situation, the actual choice of the prior mean model size, m, will almost not matter, although we
would, of course, advise to use a reasonable value for m.
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