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Summary. We study publication bias in meta analysis by supposing there is a population

(y, σ) of studies which give treatment effect estimates y ∼ N(θ, σ2). A selection function

describes the probability that each study is selected for review. The overall estimate of

θ depends on the studies selected, and hence on the (unknown) selection function. Our

previous paper, Copas and Jackson (2004, A bound for publication bias based on the

fraction of unpublished studies, Biometrics 60, 146-153), studied the maximum bias over

all possible selection functions which satisfy the weak condition that large studies (small σ)

are as likely, or more likely, to be selected than small studies (large σ). This led to a worst-

case sensitivity analysis, controlling for the overall fraction of studies selected. However,

no account was taken of the effect of selection on the uncertainty in estimation. This paper

extends the previous work by finding corresponding confidence intervals and P-values, and

hence a new sensitivity analysis for publication bias. Two examples are discussed.
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1. Introduction

The simplest set-up in meta analysis is to suppose that we have the results of n independent

research studies, each giving an estimate y of some underlying treatment effect parameter

θ. The standard fixed effects model is

y ∼ N(θ, σ2). (1)

We usually assume that the sample sizes in these studies are sufficiently large that we

can take the within-study standard deviations σ as known, and equal to the standard

errors reported in each study. Under this model, the maximum likelihood estimate of θ for

observed study results (yi, σi), i = 1, 2, · · · , n, is the weighted average

θ̂ =

∑
wiyi∑
wi

, (2)

in which the ith study is given weight wi = 1/σ2
i . The corresponding standard normal

deviate is

T (θ) = (nw̄)
1
2 (θ̂ − θ),

where w̄ =
∑

wi/n, leading to the confidence interval

{θ : |T (θ)| ≤ zα} = [θ̂ − zα(nw̄)−
1
2 , θ̂ + zα(nw̄)−

1
2 ], (3)

where zα = Φ−1(1 − α/2) is the standard normal percentage point for coverage 1 − α. To

evaluate the null hypothesis that H0 : θ = θ0 the corresponding two-sided P-value is

Pv = 2Φ{−|T (θ0)|}. (4)

Although widely used in practice, this simplistic model suffers from some very substan-

tial problems, as increasingly recognized in the meta analysis literature. First, and most

obvious, is heterogeneity: there may be systematic differences between the studies so that
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the variation between the ys is more than can be explained by the within-study variances

alone. The usual approach is to add a random effect to each study so that model (1) still

applies but with σ2 replaced by σ2 + τ 2, where τ 2 is the random effects variance. This is

the standard approach which we adopt here.

The second and more troublesome problem, which is the focus of this paper, is publi-

cation bias. This recognizes the tacit assumption in (1) that each y is randomly sampled,

equivalent to assuming that the set of studies in the review is a random sample from some

population of studies which have been, or could have been, carried out in our particular

area of interest. In reality, the studies we have in the analysis are only those which have

survived a lengthy process of selection, including the requirement that authors write up

their results and that editors and referees accept them for publication, or if unpublished,

that the studies are in a form which can be traced by the reviewer. Reviewers themselves

have to assess the comparability and quality of each study they find, and are often highly

selective in which studies they eventually choose for the meta analysis. None of these stages

of selection can be plausibly described as random: each may induce a bias which needs to

be taken into account in any inference about θ. Our aim is to suggest how we can mod-

ify (3) and (4) to allow for the extra uncertainty arising from these essentially unknown

sources of bias. This extends the results of our earlier paper, Copas and Jackson (2004),

which considered the size of the bias E(θ̂) − θ. For confidence intervals and P-values we

need to examine the effect of study selection on the whole distribution of θ̂, not just on its

expectation.

The concept of sampling studies from a population was made explicit in Copas and

Jackson (2004), and we follow their approach again here. We describe the population of

studies by a joint distribution of values of the pair (y, σ), and suppose that each population

study (y, σ) has a probability a(y, σ) of being selected. One extreme possibility is to suppose
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that a(y, σ) is constant for all y and σ: this is pure random sampling and the standard

inferences (3) and (4) remain valid. Another extreme is to suppose that only studies

reporting ‘significantly positive’ results are selected: this puts a(y, σ) = 1 when

(y − θ0)/σ ≥ zα and zero otherwise, where zα is some fixed threshold (like 1.96). If the

treatment effect actually is positive (θ > θ0), this would imply that the probability that a

study is selected decreases as σ increases. This means that small studies (large σ) are less

likely to be selected than large studies, but the small studies that are selected into the meta

analysis are more likely to be biased upwards. Equivalently, we can think of 1 − a(y, σ) as

the probability of a study being missing: we then expect a tendency for the missing studies

to be small in size (large σ) and more negative in outcome (smaller y). This model would

result in the ‘small study effect’ frequently observed in practice, the funnel plot of the data

(plot of σ−1 against y) showing a trend for the points near the bottom of the plot to be

skewed towards larger estimates of the treatment effect when compared to the points near

the top of the plot. We will note a hint of this pattern in both of the examples considered

later.

Selection models of this kind have been widely discussed in the literature. If a(y, σ) is

known, or assumed to follow a sufficiently restricted parametric form, standard methods

can be used to produce a ‘bias corrected’ inference (Hedges, 1984, Lane and Dunlap, 1978).

Greenhouse and Iyengar (1994) extend this to include an extra parameter which measures

the extent of publication bias: this parameter can be set to a range of fixed possibilities for

a sensitivity analysis. Copas and Shi (2000b, 2001) pursue a similar idea using a Heckman-

type selection model (Copas and Li, 1997). These and many other references are reviewed

in Rothstein, Sutton and Borenstein (2005) and in Chapter 7 of Sutton et al. (2000). The

latter text also serves as a good general introduction to the topic of meta analysis.

A central difficulty in all this work is the choice of the selection function a(y, σ). It is
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clearly impossible to estimate it from the available data, and so any assumptions we make

about it are essentially unverifiable. Two different selection functions give two different

inferences, and we have no means of knowing which is correct. We follow Copas and Jackson

(2004) by developing methods of inference which make the weakest possible assumptions

about a(y, σ), sufficiently weak that the assumptions are broadly acceptable, but not so

weak that inference about θ is impossible. One effect of publication bias, noted above, is

that small studies are more likely to be left out than larger studies. This is made explicit

by assuming that the conditional probability of selection given σ, say k(σ) = E{a(y, σ)|σ},
is a non-increasing function of σ. This means that, on average, large studies are more

likely to be selected than small studies, and this is the only assumption we make about

the selection process. Of course there can be no guarantee that this assumption is correct,

and we can think of circumstances in which it might not be, but on the whole it seems

reasonably plausible, and considerably weaker than the assumptions about selection which

have sometimes been made in the literature.

Copas and Jackson (2004) use this assumption to derive an inequality for |E(θ̂) − θ|
which allows us to evaluate the worst-case bias for different values of the marginal selection

probability p = E{k(σ)} = E{a(y, σ)}. If p = 1 (no selection) the bias is zero, but as

p decreases from one the bias can take increasingly large positive or negative values. In

practice, we want to use such a sensitivity analysis to find out how small p needs to be before

the conclusion of a meta analysis is compromised. If a value of p only slightly less than

one is sufficient (very few missing studies), then the conclusion is sensitive to publication

bias and so should not be trusted. On the other hand, if an implausibly small value of p

is needed to change the inference, then the conclusion is robust. To do this we need to see

how selection affects the variance of θ̂ as well as the bias. We show how this can be done

directly by deriving the analogous sensitivity analyses for (3) and (4).
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In Section 2 we define our notation and assumptions more carefully, and briefly review

the main result in Copas and Jackson (2004). Section 3 is the main section of the paper:

using an extended definition of a confidence interval as discussed in Shao (2003) we show

how the conventional confidence interval (3) can be widened to include all possible selection

functions a(y, σ) consistent with our assumptions. The corresponding result for P-values is

given in Section 4.

Two examples are discussed in Section 5. By re-analyzing the same clinical trials ex-

ample as in Copas and Jackson (2004) we compare the results with our previous work.

For a more contentious example we re-analyze the data used in the meta analysis of Hack-

shaw, Law and Wald (1997) on the lung cancer risk of passive smoking. The possibility of

publication bias in this example has been a matter of some dispute in the literature: our

analysis shows that although study selection would imply that the relative risk has been

exaggerated, it is unlikely to be sufficient to negate the main conclusion in Hackshaw et al.

(1997) that passive smoking does pose a health risk, albeit at a more modest level than has

been claimed.

Some concluding comments are given in Section 6. In order to make the presentation

of the paper reasonably concise, we state the main results of Sections 3 and 4 as theorems,

collecting the proofs together in Web Appendices associated with this paper (published as

Supplementary Materials on the journal web site).

2. Preliminaries

As in (1) we assume that the outcome y of a typical study is normally distributed

N(θ, σ2). In a fixed effects model, θ denotes the common treatment effect over all studies

whereas θ denotes the average treatment effect in a random effects model. The standard

deviation σ varies across the population of studies, with distribution f(σ), say. Each study

in the population has a probability of being selected for inclusion in the meta analysis,
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defined by

a(y, σ) = P (study selected | y, σ).

As discussed in Section 1, our only assumption about the selection procedure is that the

conditional probability

k(σ; θ, a) = P (study selected | σ) = E{a(y, σ) | σ} =
∫ ∞

−∞
σ−1a(y, σ)φ

(
y − θ

σ

)
dy

is a non-increasing function of σ, where φ is the density of the standard normal distribution.

Under this formulation, the joint distribution of (y, σ) for a selected study is

1

σp(θ, a, f)
a(y, σ)φ

(
y − θ

σ

)
f(σ), (5)

where p(θ, a, f) is the overall selection probability given by

p(θ, a, f) = P (study selected) = E{a(y, σ)} =
∫ ∞

0

∫ ∞

−∞
σ−1a(y, σ)φ

(
y − θ

σ

)
f(σ)dydσ.

The marginal distribution of σ for a selected study is then

fo(σ; θ, a, f) =
1

p(θ, a, f)
k(σ; θ, a)f(σ).

The suffix on fo(σ) is to emphasize that this is the distribution for observed studies, not to

be confused with f(σ) which is the distribution of σ over the assumed population of studies.

Our model is that the values of (yi, σi), i = 1, 2, . . . , n in the studies selected for the

meta analysis are a random sample of size n from (5). For a fixed effects analysis, σ2
i is

taken to be s2
i , the observed within study variance of yi. For a random effects analysis, σ2

i

is taken to be

σ2
i = s2

i + τ 2,

where τ2 is the between study variance. In practice, τ 2 will have to be estimated (usually

from the overall sample variance of the yis) and the values of s2
i are themselves sample

7

CRiSM Paper No. 06-01v2, www.warwick.ac.uk/go/crism



estimates. However, we follow most articles in this area by assuming that these variances

are known.

If the usual model (1) is correct, then θ̂ in (2) is an unbiased estimate of θ, but it will

suffer a bias if the data are in fact sampled from (5). Because of the simple form of θ̂ as

a weighted average of y, the asymptotic bias is just Eo{w(y − θ)}/Eo(w), where w = σ−2

and Eo denotes expectation over the distribution of observed values of (y, σ). Copas and

Jackson (2004) show that if we fix p(θ, a, f) = p and fo(σ; θ, a, f) = fo(σ), and assume that

k(σ; θ, a) is non-increasing, then

∣∣∣∣∣Eo{w(y − θ)}
Eo(w)

∣∣∣∣∣ ≤ σ̄

p
φ{Φ−1(p)}, (6)

where Φ is the standard normal distribution function and

σ̄ =
Eo(σ

−1)

Eo(σ−2)
=

∫∞
0 σ−1fo(σ)dσ∫∞
0 σ−2fo(σ)dσ

. (7)

These bounds for the bias depend on p and on fo(σ) through the moments ratio (7),

both of which are unknown. For a sensitivity analysis, Copas and Jackson (2004) suggested

taking a range of possible values for p, and taking (7) equal to its value when fo(σ) = f̂o(σ),

the empirical distribution of the values of σ actually observed in the meta analysis. This

is equivalent to taking σ̄ =
∑

σ−1
i /

∑
σ−2

i . To aid interpretation they suggested taking

p = n/(n + m) with m = 0, 1, · · ·, so that m can be thought of as the number of missing

(unpublished) studies.

It is worth emphasizing the logical steps which Copas and Jackson (2004) used in this

argument, since we will follow essentially the same sequence of ideas in the more complicated

settings of confidence intervals and P-values. The three essential steps are

Step 1: study the case when the functions a = a(y, σ) and f = f(σ) are given;

Step 2: study the results of Step 1 when (a, f) are allowed to vary over all possibilities

consistent with given values of p and fo(σ) and with the requirement that k(σ) is non-
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increasing;

Step 3: for any integer m evaluate the results of Step 2 for fo(σ) = f̂o(σ) and p =

n/(n + m), and repeat this for m = 0, 1, 2, · · ·.

3. Confidence intervals allowing for selection

Firstly, for Step 1, suppose that the selection function a(y, σ) and the marginal distribution

f(σ) are both given. Then an asymptotic confidence interval for θ follows from the log-

likelihood function under model (5), which is

l(θ) =
n∑

i=1

⎧⎨
⎩− log p(θ, a, f) + log a(yi, σi) − log(

√
2πσi) − 1

2

(
yi − θ

σi

)2

+ log f(σi)

⎫⎬
⎭ .

The corresponding standardized score statistic is

T (θ, a, f) =
∂l/∂θ√

Varo{∂l/∂θ}
=

√
n{w̄(θ̂ − θ) − B1(θ, a, f)}√
B2(θ, a, f) − {B1(θ, a, f)}2

, (8)

where Varo denotes variance with respect to the distribution (5), and

B1(θ, a, f) = Eo{w(y − θ)} , B2(θ, a, f) = Eo{w2(y − θ)2}. (9)

Since the statistic (8) converges in distribution to the standard normal distribution under

model (5), we have the score-based asymptotic confidence interval for θ,

{θ : |T (θ, a, f)| ≤ zα}. (10)

Note that in the special case when a(y, σ) = 1 for all y and σ, so there is no selection, then

B1 = 0, B2 = Eo(w) and so (10) reduces to the usual confidence interval (3) if Eo(w) is

estimated by the sample mean w̄ in the usual way.

Moving on to Step 2, we now need to expand the interval (10) to allow for all possible

choices of (a, f) consistent with chosen fixed values of p and fo(σ), and with our mono-

tonicity assumption on k(σ). To do this, denote by S be the set of all trios (θ, a, f) which

satisfy the following requirements:
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(θ, a, f) ∈ S ⇔
⎧⎪⎨
⎪⎩

p(θ, a, f) = p, fo(σ; θ, a, f) = fo(σ)
k(σ; θ, a) is a non-increasing function of σ
|T (θ, a, f)| ≤ zα

Since the distribution of T (θ, a, f) is asymptotically standard normal, the set S is a random

set which includes the true values of (θ, a, f) with (asymptotic) probability (1 − α). Now

define R to be the set of all values of θ such that there exists at least one pair (a, f) for

which (θ, a, f) belongs to S. Then, as the event (θ, a, f) ∈ S necessarily implies that θ ∈ R,

P (θ ∈ R) ≥ P ((θ, a, f) ∈ S) = P (|T (θ, a, f)| ≤ zα).

Thus

lim inf
n−→∞ P (θ ∈ R) ≥ 1 − α. (11)

Using the rather general definition of confidence region discussed in Shao (2003, p.142),

expression (11) establishes that R is a confidence region for θ with asymptotic significance

level 1 − α.

We have given a formal definition of R as a confidence region, but for this to be useful

we need firstly to confirm that it is an interval, and secondly to find its lower and upper

limits. Both are established in the following theorem:

Theorem 1. The confidence region R is an interval with lower and upper limits

θ̂ +
1

w̄
L(α, p, fo) and θ̂ +

1

w̄
U(α, p, fo)

respectively, where

L(α, p, fo) = min
λ

C∗
−(λ, α, p, fo), U(α, p, fo) = max

λ
C∗

+(λ, α, p, fo)

with

C∗
±(λ, α, p, fo) = −B∗

1(λ, p, fo) ± n− 1
2 zα

√
B∗

2(λ, p, fo) − {B∗
1(λ, p, fo)}2,
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B∗
1(λ, p, fo) = p−1Eo[σ

−1{φ(λσ + e) − φ(λσ − e)}],

B∗
2(λ, p, fo) = Eo(σ

−2[1 + p−1{(λσ + e)φ(λσ + e) − (λσ − e)φ(λσ − e)}]),

and where e = e(λ, σ, p) is defined by

Φ(λσ − e) + Φ(−λσ − e) = p.

The proof of Theorem 1 is given in Web Appendix A to this paper.

Theorem 1 is the result of Step 2. To implement Step 3, we now take fo(σ) = f̂o(σ)

and p = p̂ = n/(n + m) for some fixed non-negative integer m. The resulting confidence

interval is

[
θ̂ +

1

w̄
L̂(m), θ̂ +

1

w̄
Û(m)

]
, (12)

where

L̂(m) = L(α, p̂, f̂o) = min
λ

C∗
−(λ, α, p̂, f̂o), Û(m) = U(α, p̂, f̂o) = max

λ
C∗

+(λ, α, p̂, f̂o) (13)

and

C∗
±(λ, α, p̂, f̂o) = −B∗

1(λ, p̂, f̂o) ± n− 1
2 zα

√
B∗

2(λ, p̂, f̂o) − {B∗
1(λ, p̂, f̂o)}2.

The moments B∗
1 and B∗

2 needed here are

B∗
1(λ, p̂, f̂o) = n−2(n + m)

n∑
i=1

σ−1
i {φ(λσi + ei) − φ(λσi − ei)}, (14)

and

B∗
2(λ, p̂, f̂o)

= n−1
n∑

i=1

σ−2
i [1 + n−1(n + m){(λσi + ei)φ(λσi + ei) − (λσi − ei)φ(λσi − ei)}], (15)

where ei = e(λ, σi, p̂) is defined by

Φ(λσi − ei) + Φ(−λσi − ei) = n(n + m)−1 (16)

11
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for i = 1, . . . , n.

For the sensitivity analysis, interval (12) is calculated for m = 1, · · ·. When m = 0, the

case of no selection, (14) and (15) are 0 and w̄ respectively, so (12) is exactly the same as the

conventional confidence interval (3). For m ≥ 1, equation (16) is easy to solve numerically

as the left hand side of (16) is a strictly decreasing function of ei and so the solution for ei

is unique. The minimum and maximum required in (13) are also relatively straightforward

to evaluate numerically as in both cases the solution for λ is again unique.

We demonstrate the results of this calculation in the examples in Section 5.

4. Bound for the P-value

In many applications of meta analysis we are interested in evaluating the evidence the data

give about a null hypothesis H0 : θ = θ0 (for example that a relative risk equals one). We

now study the effect of selection on the P-value (4). For this we follow the same three steps

as before.

The solution to Step 1 follows directly from (8): if a and f are given then the two-sided

asymptotic P-value is

Pv(a, f) = 2Φ{−|T (θ0, a, f)|}. (17)

For Step 2 we want to allow a and f to vary over all possibilities consistent with given

values of p and fo and with our monotonicity requirement. The typical effect of publication

bias is that the evidence against H0 is exaggerated (P-values too small), so for a worst case

sensitivity analysis we want to evaluate the maximum value that (17) can take over these

possibilities. This bound is given in the following theorem:

Theorem 2. For given p and fo(σ), suppose that p(θ0, a, f) = p, fo(σ; θ0, a, f) = fo(σ)

and that k(σ; θ0, a) is a non-increasing function of σ. Then

Pv(a, f) ≤ 2Φ{−Tmin(θ0, p, fo)}, (18)

12
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where

Tmin(θ0, p, fo) = min
λ

∣∣∣∣∣∣
√

n{w̄(θ̂ − θ0) − B∗
1(λ, p, fo)}√

B∗
2(λ, p, fo) − {B∗

1(λ, p, fo)}2

∣∣∣∣∣∣ . (19)

The bound is attained when

a(y, σ) =

⎧⎪⎨
⎪⎩

1 if y ≤ θ0 + σ(λ∗σ − e∗)
1 if y ≥ θ0 + σ(λ∗σ + e∗)
0 otherwise

, (20)

where λ∗ is the value of λ at which (19) is attained and e∗ = e(λ∗, σ, p).

The proof of Theorem 2 is given in Web Appendix B to this paper.

For Step 3 we evaluate the bound in the theorem for fo = f̂o and p = p̂ = n/(n + m)

as before. The values of B∗
1 and B∗

2 needed in (19) are exactly the same as the previous

formulae (14) and (15). The value of λ minimizing (19) is unique, again as before. For a

sensitivity analysis we do this calculation for m = 1, 2, · · ·.
When m = 0, meaning there is no selection, the upper bound reduces to the conventional

P-value (4), as expected. The bound increases, or the evidence against H0 weakens, as m

becomes larger. If (4) is less than some conventional significance threshold (like 0.05), then

there will be a value of m for which the bound crosses above this threshold. As discussed in

Section 1, we take this value of m (the number of unpublished studies needed to discredit the

claimed significance) as an informal measure of the robustness of the evidence to publication

bias.

The two methods proposed here for sensitivity analysis, using confidence intervals and

P-values, seem at first glance to be rather different. One involves a definition of confidence

interval which is more general than the usual one, whereas the other adopts a worst case

strategy more directly by finding an upper bound. Now in simple problems the familiar

relationship between significance tests and confidence intervals is that the null hypothesis

θ = θ0 is significant at the α level if and only if θ0 lies outside the confidence interval

with confidence coefficient (1 − α). In a straightforward manner from the definition of the
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confidence interval R in Section 3, we can show that this natural relationship continues to

hold in our more general setting. If we strengthen the requirement for significance to mean

that the maximum P-value in Theorem 2 has to be less than α, then we end up rejecting

precisely those values of θ0 which lie outside the confidence interval of Theorem 1. This

consistency between Theorems 1 and 2 will be demonstrated in the examples in the next

section.

5. Examples

Clinical Trials Example

The example in Copas and Jackson (2004), taken from the Cochrane database, reports the

results of 14 randomized clinical trials concerning the use of prophylactic corticosteroids in

cases of premature birth. Briefly, if a birth is anticipated to be premature, the treatment

is administered to the mother in order to improve the chance of the infant’s survival. The

events are the deaths of the infants, and θ is the underlying log-odds ratio comparing

the probability of death in the treated group with the probability for a parallel sample of

controls. In 13 out of the 14 trials the estimate y of θ is negative i.e. the treatment appears

to be effective in reducing risk.

The raw data, and corresponding values of yi and si, are listed in Table 1 of our previous

paper, illustrated here in Figure 1. This is the funnel plot, the crosses on the graph being

the points (yi, 1/si). Notice the tendency for points near the bottom of the graph (smaller

studies) to have smaller y (stronger treatment effect) than the points near the top of the

graph (larger studies). The horizontal bars through each point indicate the individual study

confidence intervals yi ± 2si.

The natural model here is fixed effects, since the data give no evidence of heterogeneity

(the maximum likelihood estimate of τ is in fact zero). Thus we set σi = si, giving
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θ̂ = −0.48, and with α = 0.05 the confidence interval (3) is (−0.71,−0.25). The P-value

(4) is 5.3 × 10−5, indicating strongly significant evidence that the treatment is effective.

The data suggest that the treatment reduces mortality by almost 40%.

However, the clear trend in Figure 1 suggests there may be some missing studies with

larger values of yi, which would mean that the treatment effect has been exaggerated,

possibly substantially so. For a given number of unpublished studies (m), formula (12)

gives the confidence interval that takes into account the possibility of such a selection

mechanism. With α = 0.05, Figure 2 (solid lines and the left hand vertical scale) plots the

confidence limits against m. The upper limit increases from its conventional value of −0.25

to cross the null line θ0 = 0 at m = 13. This is confirmed by the dashed line in Figure 2,

which shows (using the right hand vertical scale) the corresponding bound for the P-value

(18). This increases and rises above 5% when m reaches 13. Both analyses show that if

there are 13 or more unpublished studies then the significance of the result is overturned,

in the sense that there exists a selection mechanism within our assumptions for which θ

might reasonably be positive (treatment actually harmful). If this number of unpublished

studies is judged to be unreasonably large, meaning that only half of the studies have been

selected, then the result in favour of the treatment seems reasonably safe, although the

claim of a 40% reduction in risk needs to be interpreted with considerable caution.

Figure 2 of Copas and Jackson (2004) plotted the maximum bias (6) against m, but

did not consider the effect of selection on the uncertainty of θ̂. They argued informally

that as the upper confidence limit is −0.25, a bias of +0.25 would be needed to upset the

inference. This happens when m = 9, considerably smaller (more conservative) than the

value m = 13 from our analysis here.

Epidemiological Example

The second example is the meta analysis published by Hackshaw et al. (1997) of
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the accumulated evidence on lung cancer and passive smoking (environmental tobacco

smoke), a topic of much current debate (related papers include Givens et al., 1997; Poswillo

et al., 1998; Copas and Shi, 2000a and 2000b). Hackshaw’s paper reviewed 37 pub-

lished (mostly case-control) studies of the risk of lung cancer in female non-smokers whose

spouses/partners did or did not smoke. Each of these studies reported an estimate of the

relative risk (odds ratio) and a 95% confidence interval. Most of the 37 studies found an

increased risk in the exposed group, but a few came to the opposite conclusion. The data

are listed in detail in Hackshaw et al. (1997) and shown here in Figure 3, constructed in

the same way as Figure 1 above. There is some hint of a drift to the right (greater risk)

as we read down the plot from the larger to the smaller studies, but less marked than the

trend the other way round in Figure 1.

The standard method of DerSimonian and Laird (1986) gives τ 2 = 0.0176 and so we

set σ2
i = s2

i + 0.0176. This gives the usual random effects analysis: the overall (average)

log relative risk is θ̂ = 0.21, with 95% confidence interval (0.12, 0.30). According to this,

the added risk from exposure is 23% with confidence interval (13%, 35%). The P-value

(4) is 5.2 × 10−6, leading to the claim in Hackshaw et al. (1997) that there is very strong

evidence for the risk of passive smoking. As before, the possibility of there being other

studies reporting lower levels of risk raises doubts about the validity of these figures.

Figure 4 is the analogue of Figure 2 for these data. The lower confidence limit (lower

solid line) and the bound for the P-value (dashed line) cross θ = 0 and P = 0.05 respectively

at the same point, m = 19. According to our argument, there would have to be as many as

19 other studies excluded from the meta analysis before the conclusion could be seriously

questioned. As mentioned in Section 1, the possibility of study selection here has been

the subject of some contention, but to imagine that there are as many as 19 studies of a

comparable size which have been excluded does seem rather extreme. In this sense, the
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significance of the evidence stands, although the actual size of the risk may well have been

exaggerated.

Copas and Shi (2000b) also re-analyse these data, but they use a parametric model for

selection rather than the worst case strategy adopted here. For each choice of their selection

parameter, they report a likelihood-based confidence interval for θ and an estimate of the

expected number of unpublished studies (corresponding roughly to our m). Table 1 of their

paper shows that when m reaches 28 the lower confidence limit reaches zero. As expected,

their value is greater than the m = 19 found here, because we allow for all possible selection

mechanisms which satisfy our monotonicity assumption and not just the particular selection

formula which they assume. This illustrates the difficulty with this and other parametric

approaches — it is impossible to check the validity of a selection model from the available

data, and yet we can find another model for which the critical m is smaller. Arguably,

parametric methods in this context are too sensitive to modelling assumptions to be very

useful.

6. Comments

1. We have suggested that m can be interpreted as the number of unpublished studies.

This should not be taken too literally: it is p and not the size of the population of studies

which we are controlling in the sensitivity analysis. Instead of plotting the confidence limits

and P-values against p, we use the simple transformation m = n(1/p − 1) and plot them

against m instead. Alternatively, we could think of p as an unknown parameter which

we are estimating by p̂ = n/(n + m). A completely different approach would be to fix

N = n+m as the sensitivity parameter instead of p, and base inference on the distribution

of possible choices of n studies selected out of N .

2. Similarly, the idea of a population of studies is a mathematical model for discussing

selection, and not a literal description of any particular body of research. In practice no two
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studies will be exactly the same, even if they appear to be addressing the same question.

There will always be differences in research protocol and design, and it is a matter of

judgement which studies are deemed sufficiently similar to be included. The n + m studies

in our model are those which either have been deemed comparable, or would have been had

they been published or otherwise accessible to the reviewer.

3. Our methods are based on the asymptotic distribution of θ̂ in (2) under distribution

(5), and take no account of the particular characteristics of the observed sample. Often the

data give us little or no information about selection, but consider the studies with large σ

in Figure 1. If model (1) is correct, which means that the population distribution of y is

symmetrical, then the skewness of this plot gives us some evidence that a(y, σ) for these

small studies is more likely to be a decreasing function of y than an increasing function of

y, and this is evidence which our analysis ignores. Further, extremal selection functions

such as (20) can give zero probability to certain values of y, and this could be contradicted

by observed values. One advantage of fully parametric approaches such as Copas and Shi

(2000b) is that by basing inference on the observed likelihood they retain what information

there is in the funnel plot.

4. We have already commented on the difference between the arguments used in Sections

3 and 4. The key point is that, although a(y, σ) is a function only of the estimate and

variance of each study, marginal selection probabilities derived from it, such as k(σ) and p,

depend also on θ. Thus it is not simply a matter of finding the maximum and minimum of

the confidence limits within our constraints on p and k(σ), since these constraints involve

θ which is not fixed but varies within the confidence interval. The difficulty does not arise

for P-values since we only need to consider what happens at one fixed value θ = θ0. If we

had restricted our attention to the special case where the selection function a depends on

y only through the standardized value (y − θ)/σ, then the first problem would reduce to
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that of finding the bound for the confidence limits, because the values of B1 and B2 defined

in (9) would be independent of θ. However, it seems sensible to imagine that the selection

of an individual study depends on its values of y and σ but not on the unknown quantity

θ. Our rather cumbersome notation (such as p(θ, a, f) instead of just p) is our attempt to

make these subtle dependences clear.

5. We envisage σ as a random variable across a population of studies, and allow selec-

tion to depend on σ as well as on y. This differs from most of the literature on publication

bias which considers the distribution of each observed yi, essentially conditioning on the

observed values σ1, σ2, · · · , σn. However, the difference is less than it may seem, as we end

up estimating the required moments (or functionals) of fo by their values at fo = f̂o, the

empirical distribution of the observed σis. We could rework Section 3 by evaluating the

likelihood and score statistics conditionally on the observed σis. This would give stan-

dardized score statistic |T (c)|, say. Then we can show that |T (c)| ≥ |T (θ, a, f̂)| where T is

the unconditional standardized score statistic in (8). Thus if |T (c)| ≤ zα then necessarily

|T | ≤ zα which shows that the defining confidence property (11) holds both conditionally

and unconditionally.

6. It would be interesting to extend our method to cover the case when τ 2 is estimated.

We would then lose the simplicity of our theory because w̄(θ̂−θ) would no longer simply be

a linear function of the yis. More complicated asymptotic approximations would be needed.

7. Our final comment, which applies to much of the literature on meta analysis as well

as to this paper, is to point out the approximation involved when treating si as fixed in the

case of 2 × 2 tables, as we have done in both examples in Section 5. When yi and si are

calculated from the same set of four frequencies they are correlated and so the conditional

distribution of yi given si is no longer the same as the unconditional distribution of yi.

There is no problem if the study sample sizes are large (as in our epidemiological example),
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but this can be important if any of the observed frequencies are small (as in our clinical

trials example).

Supplementary Materials

Web Appendices referenced in Sections 3 and 4 are available under the Paper Informa-

tion link at the Biometrics website http://www.tibs.org/biometrics.
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Captions for figures

Figure 1: Funnel plot for corticosteroids data. The horizontal bars through each point

indicate the individual study confidence intervals.

Figure 2: Confidence limits and P-values for corticosteroids data. The solid lines show the

upper and lower confidence limits, whereas the dashed line shows the bound for the P-value

against the number of unpublished studies.

Figure 3: Funnel plot for passive smoking data. The horizontal bars through each point

indicate the individual study confidence intervals.

Figure 4: Confidence limits and P-values for passive smoking data. The solid lines show

the upper and lower confidence limits, whereas the dashed line shows the bound for the

P-value against the number of unpublished studies.
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Figure 1: Funnel plot for corticosteroids data. The horizontal bars through each point
indicate the individual study confidence intervals.
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Figure 2: Confidence limits and P-values for corticosteroids data. The solid lines show the
upper and lower confidence limits, whereas the dashed line shows the bound for the P-value
against the number of unpublished studies.
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Figure 3: Funnel plot for passive smoking data. The horizontal bars through each point
indicate the individual study confidence intervals.

25

CRiSM Paper No. 06-01v2, www.warwick.ac.uk/go/crism



0 5 10 15 20 25

−
0.

1
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

number of unpublished studies

lo
g 

od
ds

 r
at

io

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

P
−

va
lu

e

Figure 4: Confidence limits and P-values for passive smoking data. The solid lines show
the upper and lower confidence limits, whereas the dashed line shows the bound for the
P-value against the number of unpublished studies.
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