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Missing Covariate Data in Parametric Survival Analysis -
Modelling the Missing Data Mechanism.

KL Boyd and JL Hutton

March 2, 2006

Abstract

Aims and Motivation To examine the effect of level of disability on the survival
of children with cerebral palsy using a cohort taken from Bristol. The data
is subject to, possibly not missing at random (NMAR), unobserved covariate
data.

Methods A joint survival model for the log-survival times and missing data mech-
anism is introduced. This approach enables us to model the missing data
mechanism. This is then used to model the effect of level of ambulatory dis-
ability on survival in the cerebral palsy data. Extensions to the model are
discussed to include continuous and multiple covariates.

Results Analysis suggests that the effect of severe ambulation on survival in in-
dividuals with cerebral palsy is underestimated if no account is taken of the
missing data mechanism. Simulations show that this model, under various
distribution assumptions, performs well in comparison to basic exclusion tech-
niques.

Conclusions It is very important to consider the mechanism behind any missing
data when studying survival. Slight deviances from the less restrictive assump-
tions can effect parameter estimates in survival models. In our data, we see an
increased effect of severe ambulation on survival in those with cerebral palsy.
A severe level of ambulatory disability causes a decrease in survival.

Key words: Survival analysis, missing data, NMAR, cerebral palsy.

1 Introduction

Survival analysis is an area of statistics in which primary observations correspond to
the time from a well-defined time origin until the occurrence of some particular event
or end-point. The aim of a survival analysis is often to investigate the association of
recorded covariates with survival times.

Data are often not perfect and, in medical settings in particular, often have a pro-
portion of covariate information missing. Previous work has looked at this issue but
has focused on the less restrictive assumptions usually considered in a missing data
framework.

Here we develop a method for modelling survival data in a parametric framework
based on a model for the missing data mechanism that allows for the most restrictive
of assumptions. Work is motivated by an example data set from Bristol concerning the
survival of children with cerebral palsy in which there is concern regarding the form of
the missing data mechanism.

After introducing the data in Section 2 we discuss the model in Section 3. Initially,
we base ideas on a log-normal model but in Section 4 we extend this to other commonly
used distributions in survival analysis.
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An example is taken from the Bristol cerebral palsy data and results are displayed
and discussed in Section 5. We then consider implications of the likelihood in Section 6.

We discuss initial results from an investigation in to the effect of factors on survival
in our cerebral palsy data and in Section 7 provide results from a simulation study to
investigate the reliability of these findings.

Finally, we again extend the model in Section 8 to allow for alternative covariate
structures and truncation which feature in our motivating data and will be of importance
in future analysis and conclude with discussion in Section 9.

2 The Bristol Data

The motivating data were ascertained from a part retrospective and part prospective
1940s and 1960s birth cohort based on a consultant paediatrician’s case referral in the
Bristol region of the UK. Each individual was diagnosed with cerebral palsy (CP). From
1951 to 1964, all cases under the care of the paediatrician Dr Woods were recorded
on professionally designed punch cards. This later became the subject of her MD the-
sis (Woods 1957). The cohort is said to include all cerebral palsied children from Bristol
and the surrounding area. The issue of left truncation arises as children are only included
in the cohort if they survived until the study period and could be seen by Dr Woods.

The information held on the punch cards was subsequently compiled into an elec-
tronic database. Individuals were included if they met certain criteria and could be
clearly diagnosed with CP. Only those with early impairment CP were included. In-
evitably, some cases were excluded as there was not enough information to allow for
diagnosis.

The data consist of information on birth weight, gestational age, mother’s age at
birth, and several disability covariates. These include levels of ambulation, manual
dexterity, vision, and IQ. All can be grouped into severe and non-severe groups. Previous
research (Hutton & Pharoah 2002) suggests that this distinction provides the greatest
significant difference in survival. Information is also available on date of birth, date of
death (where appropriate), and the age at first assessment. For those individuals in the
study who are still alive, lifetimes are defined as timed from birth until the censoring
date, September 2003. Full information on the available data can be found in Hemming,
Hutton & Pharoah (2006).

We wish to consider the survival prospects of children diagnosed with cerebral palsy.
However, there are complications with our data that mean that standard methods for
coping with missing covariate data are not applicable. Firstly, we do not believe that the
covariate data are missing at random (MAR) (Little & Rubin 2002). Most of the previous
approaches require this assumption (e.g. Ibrahim, Chen & Lipsitz (1999) and Meng &
Schenker (1999)). Also, the majority of methods are applied to the Cox proportional
hazards model (e.g. Lipsitz & Ibrahim (1998) and Herring & Ibrahim (2001)). We would
like to be able to allow for a parametric hazard (Collett 1999) as accelerated failure time
models appear to be useful in modelling cerebral palsy survival. Finally, our data is
subject to left truncation which is not considered in any previous research on missing
data.

3 Modelling the Missing Data Mechanism

3.1 Notation

An individual i, i = 1...n, enters the target study population at time t0i and reaches the
end-point at time t0i + xi. However, this xi may be right censored by time ci, which is
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independent of i. Therefore, for subject i, observed data on survival consists of (ti, δi)
where ti = min(xi, ci) and δi = I(xi < ci). Here, δ indicates whether an individual is
uncensored. Left truncation occurs if an individual enters a study, not at the time that
they enter the target population but, at some time wi, where t0i < wi < ti. This means
that those individuals who experience an event before time wi are not recorded in the
data. Additionally, covariate data for individual i are denoted by zi.

3.2 Missing Data Mechanisms

In order to analyse data with missing observations we must first consider the missing data
mechanism acting upon the data set. The role of this mechanism was widely overlooked
until the idea was formalized by Rubin. This is fully discussed in Little & Rubin (2002).
He introduced notation based upon the concept of treating missing data indicators as
random variables.

Assume, for simplicity, that the same mechanism applies to the whole data set. We
define the complete true data as Y ∈ Y and note that we observe Y = (yij). This
is, in reality, not entirely observed. With regards to survival analysis we can consider
Y = (T, δ, Z) where T, δ, and Z are the observed survival times, the censoring indicator,
and the recorded covariates respectively. Rubin introduced a missing data indicator
matrix M ∈ M. We construct M = (mij), of the same dimension as Y , where mij = 1
if yij is missing and mij = 0 if yij is observed. The missing data mechanism can then
be characterized by the conditional distribution of M given Y ,

P (M = m|Y = y, Φ) = f(m|y) for all m ∈M and y ∈ Y
where Φ are unknown parameters.

The most restrictive missing data mechanism is defined to be when the probability
of missingness does not depend on any of the values in Y and is called the missing
completely at random (MCAR) assumption. This occurs if

f(m|y, Φ) = f(m|Φ) for all y ∈ Y and Φ.

A slightly less restrictive mechanism is in operation if the data is missing at random
(MAR). Here, missingness is allowed to depend upon the observed values of Y but not
on the unobserved values. Define the class of matrices Y∗, in which each matrix shares
observed entries with Y but has alternative values for those that we do not observe i.e.

Y∗(m, y) = {y∗ ∈ Y : y∗ij = yij for all i,j with mij = 0}.
We can then write the definition for MAR data as

f(m|y, Φ) = f(m|y∗, Φ) for all y ∈ Y, y∗ ∈ Y∗(m, y) and Φ.

Finally, if missingness is allowed to depend on both the observed and unobserved data
(i.e. the full data, Y = y) then the data is said to be not missing at random (NMAR).
This is the least restrictive of the three assumptions and to allow for it we must model
the mechanism that causes the missing data.

3.3 Modelling the Mechanism

The majority of likelihood based methods for dealing with missing data in parametric
survival analysis require the MAR assumption. However, this does not seem to be a
sensible assumption for our cerebral palsy data. Therefore, we must build a model that
allows us to model the missing data mechanism. The aim is to embed the MAR model
within a range of plausible models that allow the NMAR assumption. We can follow
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ideas already used in meta-analysis to deal with issues of publication bias (Copas &
Shi 2001). The issue there is that there are likely to be a number of studies that are
not published, and hence cannot be included in the meta-analysis. The reason for non-
publication may depend on the outcome of the study. For example, studies that do not
include a significant outcome may be less likely to be published.

There are two main approaches to formulating models for non-ignorable data. As-
sume that the observations to be modeled are independent. Selection models have the
joint distribution of M and Y in the form

f(m, y|θ, Φ) = f(y|θ)f(m|y, Φ)

where θ and Φ are distinct. Here, conditioning on any complete covariates is suppressed.
The model that we go on to formulate is of this form. Alternatively, pattern mixture
models have the form

f(m, y|η, ω) = f(y|m, η)f(m|ω)

where η and ω are again distinct parameter vectors.

3.4 The Joint Model for Survival and the Missing Data Mechanism

We can now go on to describe our joint model for survival and missing covariate data.
Note that we are only considering the case when we have fully observed survival time
and censoring information on n individuals. For simplicity, assume we observe just one
binary covariate, z = (z1, ..., zn), which has some missing data. Firstly, we construct a
model for the survival times, T :

T ′i = log(Ti) = η + γzi + σεi, εi ∼ N(0, 1), i = 1, ..., n. (3.1)

We allow the survival of individual i to depend on the value of the covariate. The choice
of a log-normal model for survival times is a sensible choice here as previous evidence
suggests that survival in cerebral palsy follows a log-logistic distribution (Hutton, Cooke
& Pharoah (1994)) and there are very strong similarities between the logit and probit
forms (Cox (1966)). However, we can easily consider the log-logistic model itself as well
as other parametric distributions (see Section 4.1). We present the log-normal model
first to highlight the comparisons with the publication bias sensitivity analysis of Copas
& Shi (2001). Here, η is the baseline log-survival (when zi = 0), γ is the effect of the
covariate on log-survival, and σ is the cohort variance of the log-survival times. Secondly,
we construct a model for the missing data mechanism using a latent variable:

Mi = a + bzi + cT ′i + ωi, ωi ∼ N(0, 1). (3.2)

We can, without loss of generality, state that an individual i has missing data if mi > 0.
Assume the residuals (ε, ω) are independent and jointly normal with corr(εi, ωi) = 0.

We must also construct a model for the covariate. As we are using a simple binomial
covariate here we can use the model P (z = 0) = θ0 = 1− θ1 = 1− P (z = 1).

This model allows for all three missing data assumptions. For example, if we set
b = 0 and c = 0 then we are assuming data are missing completely at random or, if all
parameters, a, b, and c are non-zero then we are allowing the data to be not missing at
random. We assume data are missing at random if b is zero. We can have prior beliefs
about the values of b and c. If the covariate in question is a disability covariate then
we might expect those with more severe forms of the disability to have a higher chance
of missing data because children are more likely to die before their disability levels can
be ascertained so, therefore, b < 0. Conversely, data are more likely to be observed
if the individual has a longer lifetime which implies that c > 0. However, we can use
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the likelihood to find estimates for all these parameters. This is further discussed in
Section 6.

3.4.1 Comparison to the Meta-Analysis approach

As previously mentioned, this approach is adapted from the approach of Copas & Shi
(2001) to the issue of publication bias. Publication bias occurs when a study’s conclusions
affect its probability of publication and hence, its inclusion in a meta-analysis. Here they
assume that the ith study in the population has parameter estimate of interest yi with

yi ∼ N(µi, σ
2
i )

and
µi ∼ N(µ, τ2).

This is the standard random effects population model.
They also have a selection model where they assume that the probability of publi-

cation or selection depends upon the reported standard deviation s of y in such a way
that

P (select|s) = Φ
(

a +
b

s

)
.

Here Φ is the standard normal cumulative distribution function. This can be written
in an equivalent way using the model

zi = a +
b

si
+ ωi, where ωi ∼ N(0, 1).

Where, without loss of generality we can say that a model is selected if and only if
z > 0.

Noting that we can model y as

yi = µi + σiεi, where εi ∼ N(0, 1)

they combine the models by using the jointly normal errors (εi, ωi) and defining that
the corr(yi, zi) = ρ. Therefore, the joint distribution of y and z is multivariate normal.

Note the similarities with our missing data model. However, we can combine these
models in a slightly different way to avoid complex multivariate distributions.

3.5 Construction of the Model Likelihood

The likelihood can now be constructed. We can include right-censoring in our likelihood,
but we do not as yet look at left truncation. This is possible, and likelihood contributions
would be of a similar form to those in left truncated survival data with full information.
We must start by looking at the joint distribution P (M = m, T ′ = t′, Z = z). Note that,

P (M = m,T ′ = t′, Z = z) = P (M = m|T ′ = t, Z = z)P (T ′ = t′|Z = z)P (Z = z)

where

P (M = m|T ′ = t′, Z = z) =
1√
2π

exp
{
−1

2
(m− a− bz − ct′)2

}
,

P (T ′ = t′|Z = z) =
1

σ
√

2π
exp

{
− 1

2σ2
(t′ − η − γz)2

}
, and

P (Z = z) = θz such that
1∑

z=0

θz = 1.
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Therefore,

P (M = m,T ′ = t′, Z = z) =
1

2πσ
θz exp

[
−1

2

{
(m− a− bz − ct′)2 +

1
σ2

(t′ − η − γz)2
}]

.

Now that we have the complete joint distribution we can think about the construction
of the likelihood. We can divide the data set up into four subgroups based on their
censoring indicator and their missing data indicator. The contribution to the likelihood
for an individual in each group is then considered.

Group 1) Individual, i, with complete covariate data and failure time, total number of
individuals= n1

L1(η, γ, σ, a, b, c, θ|t′i, zi) =P (M < 0, T ′ = t′i, Z = zi)

=
∫ 0

−∞
P (M = m,T ′ = t′i, Z = zi) dm

=
∫ 0

−∞

1
2πσ

θzi exp
[
−1

2

{
(m− a− bzi − ct′i)

2 +
1
σ2

(t′i − η − γzi)
2
}]

dm

=
1

σ
√

2π
θzi exp

{
− 1

2σ2
(t′i − η − γzi)2

}

∫ 0

−∞

1√
2π

exp
{
−1

2
(m− a− bzi − ct′i)

2

}
dm

=
1

σ
√

2π
θzi exp

{
− 1

2σ2
(t′i − η − γzi)2

}
Φ(−a− bzi − ct′i).

This is the contribution from each individual in this group. Therefore, the group
contribution is

∏
(

i:mi<0
δi=0

)
L1(η, γ, σ, a, b, c, θ|t′i, zi) =

(
1

σ
√

2π

)n1 ∏
(

i:mi<0
δi=0

)
θzi exp

{
− 1

2σ2
(t′i − η − γzi)

2

}
Φ(−a− bzi − ct′i).

Group 2) Individuals with complete covariate data but censored survival time, total
number of individuals = n2 i.e. i : zi obs, δi = 0.

L2(η, γ, σ, a, b, c, θ|t′i, zi) = P (M < 0, T ′ > t′i, Z = zi)

=
∫ ∞

t′i

P (M < 0, T ′ = u,Z = zi) du

=
1

σ
√

2π
θzi

∫ ∞

t′i

exp
{
− 1

2σ2
(u− η − γzi)2

}
Φ(−a− bzi − cu) du.

This integration can be evaluated using numerical Gaussian quadrature methods. These
will be further discussed in Section 6.1. Again the full contribution from this group is
the product of the individual contributions from all individuals within the group.

Group 3) Individuals with recorded failure time but missing covariate, total number of
individuals = n3 i.e. i : zi missing, δi = 1.

Now we need to consider the distribution of survival times given that the covariate
information is unknown. We must look at

P (M > 0, T ′ = t′) =
1∑

z=0

P (M > 0, T ′ = t′|Z = z)P (Z = z).
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Therefore,

L3(η, γ, σ, a, b, c, θ|t′i) = P (M > 0, T ′ = t′i)

=
1∑

z=0

P (M > 0, T ′ = t′i|Z = z)P (Z = z)

=
1∑

z=0

(∫ ∞

0

P (M = m,T ′ = t′i|Z = z)P (Z = z) dm
)

=
1∑

z=0

1
σ
√

2π
θz exp

{
− 1

2σ2
(t′i − η − γz)2

}
Φ(a + bz + ct′i)

Group 4) Individuals with incomplete data and censored failure time, total number of
individuals = n4 i.e. i : zi missing, δi = 0.

Using our previous calculations we arrive at the following log-likelihood contribu-
tion...

L4(η, γ, σ, a, b, c, θ|t′i) = P (M > 0, T ′ > t′i)

=
1∑

z=0

P (M > 0, T ′ > t′i|Z = z)P (Z = z)

=
1∑

z=0

(∫ ∞

t′i

P (M > 0, T ′ = u|Z = z)P (Z = z) du

)

=
1∑

z=0

[∫ ∞

t′i

1
σ
√

2π
θz exp

{
− 1

2σ2
(u− η − γz)2

}
Φ(a + bz + cu) du

]
.

Now that we have the full log-likelihood (which can be found from the sum of the
natural logs of these group contributions) we can use this to fit the model described to
our cerebral palsy data via Newton Raphson methods. These are implemented using the
nlminb function within S-Plus.

4 Alternative survival distributions

The previous section, Section 3, gives details of our joint model based on a log-normal
distribution. However, it is possible to use other survival distributions instead. These
include the exponential, the Weibull, and the log-logistic. All of these distributions are
commonly used in parametric survival analysis.

Changing the distribution used changes the likelihood function. Note that we use
the same distribution for the survival and missing data mechanism errors. However, this
is not necessary.

4.1 The log-logistic distribution

The log-logistic has proved to be useful when modelling the survival of cerebral palsy as
the hazard initially reaches a peak and then declines. We start with the same model form
but change the distribution of the error to change the survival distribution. Therefore,

T ′i = log(Ti) = η + γzi + σεi, εi ∼ log(0, 1), i = 1, ..., n.

Similarly, we construct the missing data mechanism model as

Mi = a + bzi + ct′i + ωi, ωi ∼ log(0, 1).
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Note that now the errors have logistic distributions. This means that the distribution
of ti, given zi, is log-logistic with mean η + γzi and variance σ2. The density function
for the logistic distribution is

f(ε) =
exp(−ε)

{1 + exp(−ε)}2 .

As before, we assume for now that we are working with one binary covariate. We
can now construct the likelihood as before using the full joint distribution

P (M = m,T ′ = t′, Z = z) =
exp {− (m− a− bz − ct′)} exp {− (t′ − η − γz) /σ} θz

σ (1 + exp {− (m− a− bz − ct′)})2 (1 + exp {− (t′ − η − γz) /σ})2 .

The formulation of the likelihood can continue in a similar fashion to that shown in
Section 3. We can split the data into four groups based on their censoring and missing
data indicators and calculate their individual contributions to the likelihood within these
groups. The full log-likelihood is then the sum of the natural logarithms of the individual
contributions.

l(η, γ, σ, a, b, c, θ|t′i, mi, zi) =
∑

(
i:mi<0

δi=1

)
log

[
θzi exp

{− (
t′i − η − γzi/σ

)}
[
1 + exp

{− (
t′i − η − γzi

)
/σ

}]2
{

1

1 + exp
(
a + bzi + ct′i

)
}]

+
∑

(
i:mi<0

δi=0

)
log

[∫ ∞

t′

θzi exp {− (ui − η − γzi/σ)}
[1 + exp {− (ui − η − γzi/σ)}]2

{
1

1 + exp
(
a + bzi + cu′i

)
}

du

]

+
∑

(
i:mi>0

δi=1

)
log

[
1∑

z=0

θz exp
{− (

t′i − η − γz/σ
)}

[
1 + exp

{− (
t′i − η − γz/σ

)}]2
{

exp
{
a + b + ct′i

}

1 + exp
(
a + b + ct′i

)
}]

+
∑

(
i:mi>0

δi=0

)
log

[
1∑

z=0

∫ ∞

t′

θz exp {− (ui − η − γz/σ)}
[1 + exp {− (ui − η − γz/σ)}]2

{
exp (a + bz + cui)

1 + exp (a + bz + cui)

}
du

]
.

4.2 The Weibull and exponential distributions

Another distribution used commonly in survival analysis is the Weibull distribution (and
its restricted form, the exponential distribution). To use this distribution the survival
model errors must follow a Gumbel distribution (See Collett (1999) for details) This is
a type of extreme value distribution and has the density function

f(ε) = exp {ε− eε} .

The joint distribution for the survival times and latent missing data variable is there-
fore...

P (M = m,T ′ = t′, Z = z) =
1
σ

exp
{

m− a− bz − c′t +
t′ − η − γz

σ
− em−a−b−ct′ − e

t′−η−γz
σ

}
.
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Using the same methodology as previously we can calculate the log-likelihood...

l(η, γ, σ, a, b, c, θ|t′i, mi, zi) =
∑

(
i:mi<0

δi=1

)
log

[
θzi

σ
exp

(
t′i − η − γzi

σ
− e

t′i−η−γzi
σ

) {
1− exp

(
−e−a−bzi−ct′i

)}]

+
∑

(
i:mi<0

δi=0

)
log

[∫ ∞

t′i

θzi

σ
exp

(
ui − η − γzi

σ
− e

ui−η−γzi
σ

) {
1− exp

(
−e−a−bzi−cu

)}
du

]

+
∑

(
i:mi>0

δi=1

)
log

{
1∑

z=0

θz

σ
exp

(
t′i − η − γz

σ
− e

t′i−η−γz

σ − e−a−bz−ct′i
)}

+
∑

(
i:mi>0

δi=0

)
log

{
1∑

z=0

∫ ∞

t′

θz

σ
exp

(
ui − η − γz

σ
− e

ui−η−γz
σ − e−a−bz−cui

)
du

}
.

The exponential is a specific case of the Weibull distribution. It occurs when σ = 1.
This means that its hazard function is constant and does not depend on time. The
log-likelihood can be easily derived from the Weibull model log-likelihood.

We can, therefore, consider a variety of survival distributions and whilst details
are given here for only three types of distribution we are not restricted to just these.
However, problems arise in calculating the likelihood. The main problem occurs in the
numerical integration. Perhaps allowing the distribution of the missing data mechanism
latent variable to differ from the survival model would mean that we could find analytic
forms of the integrals.

5 Example - Bristol Cerebral Palsy Data

As discussed in Section 2 one of our main motivations for this work is a large data set
from Bristol, UK which looks at the survival of children diagnosed with cerebral palsy.
This data set has a large amount of missing covariate data. Previous research suggests
that the level of ambulatory disability has one of the most significant effects on survival
time. Indeed, the largest effect seems to come from a distinction between not severe
and severe level disability. Approximately, one sixth of the information on this binary
variable is missing. A Kaplan-Meier estimate of survival by ambulatory group is given
in Figure 1.

From Figure 1 we can see that severe ambulation has a large negative effect on
survival except during approximately the first five years. This may be because those
most at risk in the severe disability group do not survive until diagnosis. Those with a
missing disability level have considerably lower survival in the first seven years. This is
probably because those with short lifetimes failed or were censored before measurements
could be taken. It is also probable that these were the most severely disabled because
then it is harder to measure the level of disability.

Table 1 compares survival model estimates from our model using a missing data
mechanism to those of a complete case analysis (when individuals with missing data are
ignored in analysis). Complete case analysis assumes MCAR. We consider a range of
possible survival distributions.

If we look at Table 1 we can see that regardless of the survival distribution used a
complete case analysis noticeably underestimates the effect of a severe level of ambula-
tory. This obviously leads to consistently different fitted survival models.

We can also use the maximum likelihood to consider the most appropriate parametric
model the log-logistic or Weibull distribution suggesting that there is little difference
between the two models. Hutton & Monaghan (2002) discuss the choice of parametric
models in survival analysis. They compare theoretical parameter values for fitted Weibull
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Figure 1: Non-parametric survival of subjects with cerebral palsy with relation to level
of ambulation.

and log-logistic models and highlight that the shape of the log-logistic hazard, which
switches from being monotonic to non-monotonic, can lead to model misspecification.

6 Considering the Likelihood

Before we continue with this work there are issues within the likelihood concerning its
practical implementation that must be discussed. Consider here only the log-normal
model. Discussions hold for the other distributions discussed.

6.1 Numerical integration and implementation

As discussed, the one of the main complication with implementing the model is the
numerical integration required for the likelihood. Most methods for numeric integration,
or quadrature, are based on the idea of adding up the value of the integrand at a
sequence of abscissas within the range of the integration. One of the simplest of these
is Simpson’s rule. Romberg integration generalizes this to a higher order. In these the
integral is approximated by the sum of its functional values at a set of equally spaced
points, multiplied by suitably chosen weighting coefficients. Gaussian quadrature allows
us the freedom of choosing the abscissas as well as the weighting coefficients. Thus we
have twice the number of degrees of freedom at our disposal. One additional feature is
that we can choose the weights and abscissas to make the integral exact for integrals
of the form ”some known function W multiplied by a polynomial”. We implement 10-
point Gaussian quadrature (Faires & Burden 2003) in S-Plus using tabulated weights
and abscissas.
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Model η - γ - σ - θ - Likelihood
baseline disability dispersion %
survival effect severe

Log-normal
Missing data 10.9 -2.3 1.3 11.9 -585.0
Complete case 9.9 -1.0 1.3 8.8

Log-logistic
Missing data 10.8 -2.1 0.7 10.7 -583.0
Complete case 9.8 -0.9 0.6 8.8

Weibull
Missing data 11.0 -1.7 0.9 7.4 -583.0
Complete case 10.2 -0.8 0.7 8.8

Exponential
Missing data 11.1 -1.8 1.0 7.0 -584.1
Complete case 10.4 -1.0 1.0 8.8

Table 1: Comparison of missing data model and complete case analysis maximum like-
lihood estimates for cerebral palsy patients in Bristol.

6.2 Estimating the missing data mechanism

Our model is also able to find maximum likelihood estimates for the parameters (a, b, c)
in the missing data mechanism. In order to consider whether we may rely on these
estimates we can consider the profile likelihoods based upon the maximum likelihood
estimates for the Bristol data analysis. These profile likelihoods are shown in Figure 2.
We can see that all have an obvious peak so we should be able to identify the missing
data mechanism parameters from our model.

We can also consider the missing data mechanism parameter maximum estimates.
Referring back to Equation 3.2, the positive b shows that an increase in the covariate
causes an increase in m i.e. those with a severe level of ambulatory disability have
a higher probability of missing covariate data. The negative c shows that those with
shorter observed lifetimes also have a higher probability of missing covariate data. This
agrees with what we might expect.

These estimates also agree with the differences that we observe between the survival
model estimates for our joint model and complete case analysis results. The estimated
missing data mechanism suggests that those with the severest disability levels and short-
est survival times are more likely to have missing data data. Hence, a complete case
analysis is more likely to miss these people. This causes the decrease in the covariate
effect in the complete case survival model that we observe in Table 1.

7 Simulation

Now that we have derived our model we must consider its robustness. We must develop
a simulation study to consider the survival model estimates that the model arrives at
under various situations. We can then compare these estimates to those from other
missing data methods and, also, estimates with complete data. The main situations to
consider are a change in the missing data mechanism and a change in the percentage of
missing data. We try to consider data similar to our Bristol cerebral palsy data to test
the validity of the results in Section 5.

In order to simulate data of size n we have to consider how to draw from the various
survival distributions, how to apply censoring, the distribution of the covariate, and the
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Figure 2: Profile likelihood for estimation of missing data mechanism parameters (a, b,
and c respectively) within the log-normal model.

construction of the missing data mechanism.
Firstly, we create a vector of length n based on realizations from a Bernoulli distri-

bution with probability θ. This gives us the true covariate values.
Secondly, we must construct the true survival times. This is done using the inverse

probability transform.

Theorem 1. If F : R→ [0, 1] is increasing and left-continuous then we define its inverse
as follows

F−1(u) = inf(t : F (t) ≥ u)

⇒ A real valued random variable X with distribution function F (x) = P (X ≤ x) can be
represented using the inverse probability transform X = F−1(U) for U a uniform [0, 1]
random variable.

We can therefore construct survival times based on errors drawn from the relevant
distribution, the corresponding covariate value, and the required η, γ, and σ.

We impose a censoring distribution similar to that which we believe applies to the
Bristol data i.e. independent uniform censoring on the interval [15 years, 65 years]. This
is because censoring is mainly due to the end of the study and not due to lost follow-up.
We have data up to 15 years following the last recruitment and the highest survival
time in the data is approximately 65 years. We can then calculate the observed survival
and censoring indicator. The enforced censoring mechanism led to approximately 80%
censoring, similar to the level found in the Bristol data.
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Again using the inverse probability transform we can construct the latent missing
data mechanism variable. We can then force the covariate data to be missing according
to the value of this.

This produces the full simulated data set and is programmed in S-plus.

7.1 Simulation design

The aim of our simulation study is to investigate the success of the model at correctly
estimating the survival model for different data sets with a variety of missing data
mechanisms. We look at data set close in structure to the Bristol data as we wish to
consider the reliability of the results that we obtained in Section 5. In order to do
this we settled upon survival data with parameters (η, γ, σ, θ) = (11,−2.3, 1.3, 0.2) and
subjected the simulations to four different missing data mechanisms. These mechanisms
were defined by the values of (b, c) with a chosen to achieve approximately the right
proportion of missing data. The four mechanisms presented here are

MCAR - b = 0, c = 0, 20% missing data
MAR - b = 0, c = -0.2, 20% missing data
NMAR - b = 0.2, c = -0.2, 20% missing data
NMAR - b = 0.2, c = -0.2, 60% missing data.

For each survival distribution previously discussed and each mechanism we then sim-
ulated 100 data sets (using methods discussed in Section 7) and compared parameter
estimates from our model with complete case estimates and the true estimates (based on
the true data) using the survReg function within S-Plus. We also considered log-normal
survival with no censoring applied to the survival times. Each data set consisted of 400
individuals and there was one binary covariate. Results are presented in Appendix A-
Appendix D.

7.2 Conclusion from the simulation study

Studying the boxplots in Appendix A-Appendix D we can discuss the reliability of our
model. There are several things to note. Firstly, we consider the results when the data
are MCAR. We can see that the distributions of parameter estimates are similar for our
model compared to that of the complete case analysis and the estimates assuming known
data. This is encouraging as it suggests that modelling the missing data mechanism does
not lead to less reliable results compared to the most simple of missing data methods.
We can look at the distributions of results as the missing data mechanism tends to
NMAR and the proportion of missing data increases. We see that the complete case
estimates tend to shift away from the true parameters while the model based estimates
stay much more consistent. We know that complete case analysis can lead to bias in
parameter estimates when data are not MCAR. This is why it is so important to be able
to relax this assumption. In particular, when the level of missing data rises to 60% the
complete case estimates are considerably biased but our model remains more reliable.
This is particularly obvious in the estimation of the dispersion parameter where complete
case analyses vastly underestimate the magnitude. The bias within the complete case
estimates is in the expected direction as we expect to miss the most severely disabled and
hence the lowest survival times which would increase survival in general and decrease
the effect of a severe level of ambulation.

Secondly, we can look at the range of the parameter estimates. While the model
estimates are obviously more variable than the estimates assuming fully known data
they are generally of a similar magnitude. This perhaps fails to be true when the level of
missing data increases to 60% but this is unsurprising as we have much less information
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upon which to base results. The range decreases when there is no censoring (note the
change in the y-axes in Appendix D) but the problems at large quantities of missing
data still arise.

It is also useful to note that our model works equally consistently over all the survival
distributions. Results from the exponential distribution are not presented here but are
also consistent.

These findings are encouraging and suggest that we may be reasonably trusting of
the results regarding the Bristol data that we found in Section 5.

However, the simulation study highlighted the problems that occur with the imple-
mentation of the model. Mainly, this concerns the numerical integration required in the
maximisation of the likelihood. A large number of points are needed in the Gaussian
Quadrature and this significantly increases the time required to do a simulation study
of this size.

8 Extensions to Categorical and Continuous Covariates
and the Multivariate model including Left Truncation

Until now we have only considered the use of a single binary covariate. However, there
is no reason why we must restrict ourselves to this. Within our Bristol data we have
information on a large number of both categorical and continuous covariates which we
may wish to investigate. We must consider how to include these different forms into our
model.

We start by considering categorical covariates. This requires only a simple extension
to our original likelihoods. In the case of a single binary covariate the information con-
tributed to the likelihood was of the form P (Z = 1) = θ = 1−P (Z = 0). For categorical
covariate with n categories this can be extended to P (Z = z) = θz such that

∑n
z=0 θz =

1. This poses no complication in the construction of the likelihood but will increase
computation time.

In a multivariate setting we start by defining a multinomial distribution for the
categorical variables denoted by Z = (Z1, ..., Zp)′. The p potentially observed covariates
form a contingency table with R = D1 ×D2 × ...×Dp cells where Dj is the number of
levels of covariate Zj . We can then number these cells. The probability assigned to cell
r is denoted as θr such that

∑R
r=1 θr = 1. If the covariate is observed we know exactly

which cell the individual falls into, and the likelihood contribution can be calculated
as before, but with missing data we only observe a set of possible cells based on the
observed observation. Therefore, in calculating the contribution to the likelihood of an
individual with missing information on some or all of the covariates we must sum over
the possible cells in which they could lie. Let Wi = (Wi1, ..., WiR) be a binary vector of
length R indicating the cells in which an individual may be. If we know individual i falls
in cell q then the qth element of Wi equals 1 and all other entries equal 0. Similarly, if
the individual has missing data and we know only a range of possible cells then these
cells are indicated in Wi by the value 1 and all others by 0. We can then calculate the
contribution for the likelihood for an individual i with missing data as

L(η, γ, σ, a, b, c, θ) =
R∑

r=1

WirθrP (M > m|T ′ = t, Z = zr)P (T ′ = t′|Z = zr) (8.1)

if that individual fails and

L(η, γ, σ, a, b, c, θ) =
R∑

r=1

WirθrP (M > m|T ′ > t, Z = zr)P (T ′ > t′|Z = zr) (8.2)
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if they are censored where zr indicates the set of covariate values that map to cell r.
We may believe that correlations exist between the covariates, in which case constraints
may be placed upon θ.

To include continuous covariates we need to use their probability distribution func-
tion. This is obviously not known exactly but must be modeled. The parameter values
will be estimated by the full joint model but a distribution form must be decided upon.
This distribution (which may be multivariate) can then be placed over the discrete
multinomial distribution so that we have a separate distribution in each multinomial
cell. These distributions can be restricted to all be equal. This is useful when there are
few individuals in many cells and will decrease computing time and difficulty.

8.1 Including Left Truncation

One of the main issues with our motivating data is the presence of left truncation. Left
truncation arises when lifetimes of individuals who fail before a certain time are not
recorded. This truncation occurs because patients were not recorded in the data until
their first appointment with Dr Woods. Up until now we have ignored this complication
but it can be shown that we can include this into our model.

Recall the earlier notation. Left truncation occurs if an individual enters a study at
time t0i < wi < ti. This means that those individuals who experience an event before
time wi are not recorded in the data.

In order to calculate the changed likelihood we again consider the full joint distribu-
tion. However, now our data is dependent upon survival until time w. Therefore,

P (M = m, T ′ = t, Z = z|T ′ > w) =
P (M = m, T ′ = t, Z = z, T ′ > w

T ′ > w
=

P (M = m, T ′ = t, Z = z)

P (T ′ > w)
.

Therefore, we condition on T ′ > w by dividing by the survival function of T’. Note
that...

P (T ′ > w) =
∑

z

P (T ′ > w|Z = z)P (Z = z).

9 Discussion

We have presented here a method for including a model of the missing covariate data
mechanism into a parametric survival analysis. Much work had been previously done in
this field but little applied to the problem of data that was not missing at random. This
was a potential concern in our motivating cerebral palsy example.

We have discussed the application of the theory to a wide variety of parametric
survival models and extended initial models to allow for various types of data.

Simulation results are encouraging and suggest that our model is useful in approach-
ing survival analysis problems with missing covariate data. They lead us to believe that
estimates based upon complete case analysis for the effect of severe ambulation on the
survival of individuals with cerebral palsy significantly underestimate the magnitude.
This has a large impact on our conclusions from this data although there is still much
more detailed analysis to be done.

There is still much left to investigate with this method. We need to do a much more
in depth analysis of our example data, including allowing for left truncation, multiple
covariates, and informative left truncation.

There are also more methodological issues. Firstly, how does our method compare
with multiple imputation results if the MAR assumption holds. MI is used widely in the
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literature and in practice and it is important that our model is not inferior to this idea.
We can use our model to explicitly test for MAR or MCAR by checking the significance
of the missing data mechanism model parameters.

Secondly, how might we go about conducting a model selection. This is well estab-
lished for complete data but choosing covariates to including in models for prediction
and also the choice of survival distribution becomes less clear when there is a proportion
of missing data, particularly if this proportion is large.

In Section 6.2 we discussed the profile likelihoods for the parameters in the missing
mechanism in our example. However, from our simulations we have information on the
estimated parameters and it would be interesting to compare these to the values used
for simulation and see if we can still use the model to estimate them.

Finally, the Cox proportional hazards model (Cox 1972) is used extensively in survival
analysis and it may be interesting to see if we can use our ideas in this semi-parametric
framework.
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10 Appendix

A Simulation with the log-normal distribution
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Figure 3: Parameter estimates for the log-normal survival model with four different
missing data mechanisms based on 100 simulated data sets each (true parameters ).
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B Simulation with the log-logistic distribution
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Figure 4: Parameter estimates for the log-logistic survival model with four different
missing data mechanisms based on 100 simulated data sets each (true parameters ).
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C Simulation with the Weibull distribution
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Figure 5: Parameter estimates for the Weibull survival model with four different missing
data mechanisms based on 100 simulated data sets each (true parameters ).
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D Simulation with the log-normal model and no censoring
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Figure 6: Parameter estimates for the log-normal survival model with four different
missing data mechanisms and no censoring based on 100 simulated data sets each (true
parameters ).
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