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Abstract: Mixture designs are represented as sets of homogeneous polynomials.

Techniques from computational commutative algebra are employed to deduce

generalised confounding relationships on power products and to determine fami-

lies of identifiable models.
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1 Introduction

In a mixture experiment the response variables depend on the proportion of the components or

factors but not on the absolute amount of the mixture. There is a vast literature on experiments

with mixtures, ranging from the seminal work by H. Scheffé Scheffé (1958, 1963) up to the work

on optimal designs for second order mixture experiments by Zhang et al. Zhang et al. (2005).

A textbook at its third edition is by J. Cornell Cornell (2002) and we refer the reader to the

bibliographical list therein. See also Aitchison (1986).
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We study mixture designs with tools from computational commutative algebra (CCA).

Specifically we tailor the polynomial algebra approach to identifiability analysis introduced

in Pistone and Wynn (1996) to mixture designs. In a few words that approach consists of

representing a design with a set of polynomials in k indeterminates, where k is the total number

of factors in the design. Relevant statistical information and objects are retrieved by analysis

of that polynomial set. From a practical view point, it is particularly useful in the analysis of

non-regular designs by describing the set of polynomials which take the same values over all

design points, and determining a finite generator set, called generalised confounding relations,

and by determining classes of saturated hierarchical models identified by the design Caboara

et al. (1999); Caboara and Riccomagno (1998); Giglio et al. (2001); Holliday et al. (1999);

Pistone et al. (2000, 2001). A technical advantage of the algebraic statistic framework is the

avoidance of the computation of the rank of design/model matrix which can be numerically ill

conditioned.

The approach is computational and the algorithms provided e.g. in Pistone and Wynn

(1996); Pistone et al. (2001) apply to mixture experiments. But the main results are in k − 1

factors. In particular only slack models are obtained and all but one of the basic generalised

confounding relations exclude entirely a factor. The one that involves all factors is a polynomial

corresponding to the sum to one condition. In Giglio et al. (2001) the missing factor is reintro-

duced by homogenization. This might not be fully satisfactory, see Example 7. This asymmetry

is intrinsic to the computational technology behind the mentioned algorithms, as they depend

on a technical algebraic tool called a term ordering, see Appendix 8.1. In Holliday et al. (1999)

this has been used at the advantage of the statistical analysis of a complex data set. Here we

suggest to represent a mixture design not as the set of all polynomials whose zeros include the

design points but as the subset of all homogeneous polynomials whose zeros include the design

points. The first set is called the design ideal in Pistone et al. (2001); Pistone and Wynn (1996)

and we call the second one the cone ideal. The use of the cone ideal reduces the effect of the

aforementioned asymmetry, gives a natural representation of a compositional dataset as a set

of polynomials, and retains the advantages, both computational and mathematical, of the use

of algebraic statistics. The needed algorithms are suitably modified.

2



CRiSM Paper No. 06-03, www.warwick.ac.uk/go/crism

Our argument is based on three observations, already present in the literature in different

forms. First, a mixture design is a projective object. Each point of the original mixture can be

assimilated to a line through the point and the origin, excluding the origin itself. We call the

set of all such lines the design cone. From an algebra geometric perspective this leads naturally

to consideration of homogeneous polynomials and thus homogeneous type regression models.

A reference to mixture models based on homogeneous polynomials is Draper and Pukelsheim

(1998), where the mathematical tool employed is the Kronecker product. So homogeneous

polynomials are at the base of our second observation. The third one is that no non-trivial

polynomial function can be defined over a cone and rational polynomial models play a relevant

role. Cornell Cornell (2002) collects and comments on many models for mixture experiments

including ratios of polynomial models.

We shall make heavy use of CCA. In Appendix 8 we collect definitions and results from

CCA we use, while in the main text we report only few essential ones. For an algebraic statistics

neophyte it might be useful to read Appendix 8 first. There are many good books of compu-

tational commutative algebra, each with its peculiarities. We mainly use the undergraduate

texts Cox et al. (1997) and Cox et al. (2004). Good books are also Adams and Loustaunau

(1994) and Kreuzer and Robbiano (2000). We would like to put the reader in the condition to

be able to perform the computations we present here for his/her own mixture designs. To this

aim we specify the name of the commands and macros required in the syntax of CoCoA which is

a freely available system for computing with multivariate polynomials CoCoATeam. We could

have used other excellent and free softwares like Singular Greuel et al. (2005) or Macaulay2

Grayson and Stillman. The proofs of the results we present are collected in Appendix 8 as

exemplificative of the way geometric properties of the experimental plan are used.

In this paper we use the terms “interaction” to mean a monomial of total degree larger than

one and “main effect” for monomials of degree one. For proper use of the terminology, statistical

interpretation and analysis of the presence or absence of an interaction in the obtained model

when dealing mixture experiments, we refer to the caveats, comments and solutions proposed

in Claringbold (1955); Cornell (2002); Cox (1971); Piepel et al. (2002); Waller (1985).

In Section 2 we study the cone ideal and its link with the design ideal. We choose mixture
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experiments with n distinct points. In Section 3 we see a method to retrieve supports for ho-

mogeneous regression models identified by a mixture experiment. The algorithm in Section 3.1,

which allows us to substitute some terms of the obtained model support retaining identifiability,

strongly resembles the algebraic FGLM and Gröbner walk algorithms Faugère et al. (1993)(Cox

et al., 2004, Ch.8§5). It proved to be very useful in practice. Some typical model structures

from the literature are considered in Section 3.2. Practical examples are collected in Section 4

where the theoretical results of the paper are applied to simplex lattice designs, simplex centroid

designs and axial designs. A brief exemplifying analysis of two data sets is performed.

2 The cone of a mixture design

The design space of a mixture design in k factors, D ⊂ Rk, is a regular (k − 1)-dimensional

simplex. For this reason we can see D alternatively in the affine space Rk or in the projective

space Pk−1(R), where every point is associated to a line through the origin. We recall that

Pk−1(R) is defined as the set of equivalence classes of points in Rk where p1 and p2 are equivalent

if p1, p2 and 0 = (0, . . . , 0) ∈ Rk lie on the same line. Moreover, if p ∈ Pk−1(R) and (x1, . . . , xk) ∈

p then (x1 : . . . : xk) are the homogeneous coordinates of p and they are defined up to a multiple

scalar. This leads us to identify naturally and uniquely D with the affine cone, CD ⊂ Rk, passing

through the origin and D: CD = {αd : d ∈ D and α ∈ R} ⊂ Rk.

Example 1 The cone of D1 = {(0, 1), (1, 0), (1/2, 1/2)} ⊂ R2 is CD1
= {(0, a), (b, 0), (c, c) :

a, b, c,∈ R} ⊂ R2, to which we can associate three projective points. For example (0, 1), (1, 0), (1, 1) ∈

P1(R) are representative of the points in D1 as well.

An analogous construction of CD2
for D2 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1/2, 1/2),

(1/2, 0, 1/2), (1/2, 1/2, 0), (1/3, 1/3, 1/3)} ⊂ R3 shows that in the projective space D2 can

be represented in P2(R) by a 23\{(0, 0, 0)} structure with levels 0, 1: a fact we shall exploit in

Section 4.

In order to define the design ideal and the cone ideal, let R[x1, . . . , xk] be the set of all

polynomials in x1, . . . , xk indeterminates and with real coefficients. A subset I ⊂ R[x1, . . . , xk]
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is a (polynomial) ideal if f +g ∈ I and hf ∈ I for all f, g ∈ I and h ∈ R[x1, . . . , xk]. The Hilbert

basis theorem states that every polynomial ideal is finitely generated, where G = {g1, . . . , gq} ∈

R[x1, . . . , xk] generates I if for all f ∈ I there exist s1, . . . , sq ∈ R[x1, . . . , xk] such that f =

Pq

i=1 sigi. We write I = 〈g1, . . . , gq〉. There exist special generating sets called Gröbner bases

which depend on a term-ordering (see Appendix 8.1). The computation of a Gröbner basis from

a generating set is considered here an “elementary” operation.

Definition 1 For D ⊂ Rk with n distinct points, define Ideal(D) = {f ∈ R[x1, . . . , xk] : f(d) = 0

for all d ∈ D}.

Ideal(D) is a polynomial ideal Pistone et al. (2001); Pistone and Wynn (1996).

Example 2 Ideal(D1) = {s1(x1 + x2 − 1) + s2x1(x1 − 1/2)(x1 − 1) : s1, s2 ∈ R[x1, x2]} and

x1 + x2 − 1 and x1(x1 − 1/2)(x1 − 1) form a generator set of Ideal(D1).

If D is a mixture experiment, then the polynomial x1 + . . . + xk − 1 always vanishes on

the design points and thus belongs to Ideal(D) Giglio et al. (2001); Pistone et al. (2000). If

the design lies on a face of the simplex then there will be a set A ⊆ {1, . . . , k} for which

P

i∈A xi − 1 ∈ Ideal(D). As we shall show in Section 3, this restricts unduly the class of

regression models for D retrieved with the algebraic statistics methodology and we need a more

general theory. The idea is to exploit the representation of a mixture design as a cone. This

will have consequences on the structure of the regression models we can associate to D, thus

extending the general theory of modelling and confounding particularly useful for non-regular

fractions of a design.

The notion of a polynomial vanishing on a projective point is rather delicate. Indeed,

the polynomial x2 − x2
3 vanishes on p = (1, 4, 2). The points p and q = (2, 8, 4) = 2p are the

same point of P2(R), but x2 − x2
3 does not vanish in q. A way to overcome this problem is to

use only homogeneous polynomials. A polynomial is homogeneous if the total degree (sum of

exponents) of each one of its terms (or power products) is the same. For example, x1x2 − x2
3 is

a homogeneous polynomial of degree 2 which vanishes on (λ, 4λ, 2λ) for all λ ∈ R.
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Definition 2 The cone ideal of a mixture design is Ideal(CD) = {f ∈ R[x1 . . . , xk] : f(d) = 0

for all d ∈ CD}, that is the ideal of polynomials vanishing on every point of the cone of the

design.

It is easy to show that Ideal(CD) is an ideal. Let I, J ⊂ R[x1 . . . , xk] be two ideals generated

by the sets GI and GJ respectively. Then I + J = {f + g : f ∈ I and g ∈ J} is an ideal and

GI ∪ GJ is a generator set of I + J . A polynomial ideal is said to be homogeneous if for each

f ∈ I the homogeneous components of f are in I as well, equivalently if I admits a generator

set formed by homogeneous polynomials (Cox et al., 1997, page 371). In some computer al-

gebra packages macros are implemented to compute generator sets of Ideal(D) and Ideal(CD)

directly from the coordinates of the points in D. In CoCoA they are called IdealOfPoints and

IdealOfProjectivePoints, respectively. See Abbott et al. (2000).

Theorem 1 For a mixture design D

1. Ideal(CD) = 〈f ∈ R[x1, . . . , xk] : f is homogeneous and f(d) = 0 for all d ∈ D〉, that is

the largest homogeneous ideal in R[x1, . . . , xk] vanishing on all the points of D.

2. Ideal(D) = Ideal(CD) + 〈
Pk

i=1 xi − 1〉, that is a polynomial vanishing on D can be

written as combination of homogeneous components vanishing on D and the sum to one

condition. If G is a generator set of Ideal(CD) then G and
Pk

i=1 xi − 1 form a generator

set of Ideal(D).

Example 3 Ideal(CD1
) = 〈x2

1x2 − x1x
2
2〉 and Ideal(CD2

) = 〈x2
1x2 − x1x

2
2, x

2
1x3 − x1x

2
3, x

2
3x2 −

x3x
2
2〉. For D3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1/3, 1/3, 1/3)}, Ideal(CD3

) = 〈x1x3 − x2x3, x1x2 −

x2x3〉.

Theorem 1 states explicitly a method to construct a generating set of Ideal(D) from a

generating set of Ideal(CD) by just adjoining the sum-to-one condition. Theorem 2 provides the

converse. A term ordering is graded if xα < xβ whenever
Pk

i=1 αi <
Pk

i=1 βi. Gröbner bases

(see Definition 5) are particular generator sets of a polynomial ideal, depend on a term ordering

and are fundamental in the computations we need. Given a term ordering, a Gröbner basis is

computed from a finite generator set of an ideal with the CoCoA command GBasis.
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Theorem 2 Let D be a mixture design and CD its cone. Let G = {l − 1, g1, . . . , gr} be a

Gröbner basis of Ideal(D) with respect to a graded term ordering τ . Then {h(g1), . . . , h(gr)} is

a generating set of Ideal(CD), where h(g) is the homogeneization of g with respect to l =
Pk

i=1 xi.

The generating set of the cone ideal obtained in Theorem 2 might not be a Gröbner basis

because we do not control the leading term of h(gi) (see Definition 4 for leading term). The

next example shows that if G is not a Gröbner basis the thesis of Theorem 2 might not hold.

Example 4 For D = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1/2, 1/2, 0),(1/2, 0, 1/2), (0, 1/2, 1/2)} Ideal(D) =

〈x1+x2+x3−1, xi(xi−1/2)(xi−1) : i = 1, 2, 3〉 and the four listed polynomials form a generator

set. For l = x1 + x2 + x3 the ideal I = 〈xi(xi − 1/2l)(xi − l) : i = 1, 2, 3〉 ( Ideal(D) does not

contain the polynomial x2
2x3 − x2x

2
3, which instead belongs to Ideal(D) and to Ideal(CD). For

a simple test to check ideal membership see Cox et al. (1997) and Pistone et al. (2001).

For αi ∈ R>0, i = 0, . . . , k, Ideal(CD) + 〈
Pk

i=1 αixi − α0〉 cuts the design cone not at

the standard simplex. It returns another affine representative of the projective representation

of the mixture experiment. In this case there is no immediate interpretation of the points on

the hyperplane as a mixture experiment. An obvious interpretation is as a fraction of a bigger

experiment with a linear generator.

2.1 Notes on confounding for mixture experiments

In Pistone and Wynn (1996) the authors use polynomials in Ideal(D) to deduce (generalised)

confounding relations between functions defined over a design D. For example x1 + x2 − 1 ∈

Ideal(D1) testifies that the polynomial functions x1 and 1 − x2 take the same values over

D1, likewise x2
1x2 = x1x

2
2 over D1 because x2

1x2 − x1x
2
2 ∈ Ideal(D1). Indeed for all d ∈ D1,

(x2
1x2)(d) = (x1x

2
2)(d) = 0. In particular a Gröbner basis of Ideal(D1) with respect to some

term ordering gives a finite set of confounding relations which is sufficient to deduce all the

others. Usually in classical experimental design theory this information is encoded in the alias

table for the design, if it is defined.

The polynomial
P

i xi − 1 belongs to Ideal(D) for every mixture design D Giglio et al.

(2001); Pistone et al. (2000), thus confounding linear terms with the intercept. In particular
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the classical algebraic approach Pistone et al. (2001); Pistone and Wynn (1996) leads to the

study of confounding relationships in a smaller set of factors and only when the sum-to-one

condition is considered the remaining factors are reintroduced in the analysis.

Example 5 For the design D containing the corner points of the simplex in Rk, for any corner

point d and α ∈ Zk
≥0

(xα)(d) =

8

>

>

>

>

<

>

>

>

>

:

1 if α = (0, . . . , 0)

(xi)(d) if α = (0, . . . , αi, 0, . . . , 0)

0 if at least two components of α are not zero

Like Ideal(D) represents all generalised confounding relations over D, a polynomial in

Ideal(CD) expresses confounding among homogeneous components. In Section 4 we study some

classes of mixture designs and discuss methods to construct classes of fractions by describing the

generating polynomials of the cone of the fraction. That is by confounding some power products.

We consider some symmetric mixture designs which have interesting statistical properties like

equal variance estimates for main factors and for interaction terms where reasonable McConkey

et al. (2000). They are considered to be particularly useful in the first stage of an experiment

when the design region needs to be fairly screened.

3 Supports for regression models

In Pistone and Wynn (1996); Pistone et al. (2001) it is noted that for any design D the set of

real functions over D is a R-vector space and it is isomorphic to the coordinate ring R[D]. In

turn, R[D] is isomorphic to the quotient ring R[x1, . . . , xk]/ Ideal(D). The quotient space is a

“computable algebraic object”, for example using Gröbner bases. This makes it an important

tool to discuss functions over a design.

For the definition and properties of a coordinate ring over a variety see (Cox et al., 1997,

Ch.5), for R[D] see (Pistone et al., 2001, Ch.2§10,Ch.5) and Cox et al. (2004). See also Appendix

8.1. Here we only recall that the quotient ring R[x1, . . . , xk]/ Ideal(D) is the set of equivalence

classes for the equivalence relationship f ∼ g if f − g ∈ Ideal(D). Special monomial R-vector
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×
×

x1

x2

0 1 2 3

1

a)

×

x1

x2

b)

Figure 1: Standard monomials for Ideal(D1) and Ideal(CD1). Both cases

were computed with a term order in which x2 > x1.

space bases of the quotient ring, called standard monomials, can be obtained from particular

generating sets of Ideal(D), namely Gröbner bases and thus depend on a term ordering. The

main steps of the computation are as follows.

1. Determine a Gröbner basis of Ideal(D) with respect to a term ordering, for example a

Gröbner basis of Ideal(D1) is {x3
1 −3/2x2

1 +1/2x1, x1 +x2 −1} with respect to any term

ordering for which x2 > x1;

2. compute the leading term of each element of the Gröbner basis, for the example x3
1 and

x2;

3. determine all monomials which are not divisible by the leading terms, for the example

1, x1 and x2
1 (see Figure 1a).

The CoCoA macros QuotientBasis performs the algorithm above. Models returned in

Step 3. above have a hierarchical structure in that if they include the monomial xα then they

also must include xβ for all β ≤ α component-wise. A set of monomials with this property is

called an order ideal. Order ideals can be used as support for saturated hierarchical polynomial

models. The authors of McCullagh and Nelder (1989); Peixoto and Dı́az (1996) among others

strongly argue in favour of hierarchical regression models. Note that any standard monomial

set includes the intercept. This might not be good when analysing a mixture experiment.
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Indeed for a mixture experiment D, the procedure above returns supports for slack models

(Cornell, 2002, page 334). These can be homogenized to return the support for a homogeneous

regression model Giglio et al. (2001). We could proceed differently and propose to adapt the

above procedure to the homogeneous component of the design ideal, that is to work with the

cone ideal instead of the design. The resulting homogeneous models can be different from those

obtained by homogeneisation of a slack model as shown in Example 7.

There are two difficulties. First, R[x1, . . . , xk]/ Ideal(CD) is infinite dimensional. Figure 1b)

shows this for Ideal(CD1
). Second, usually a polynomial does not define a polynomial function

on Pk(R) equivalently on CD (see the comment before Definition 2). One classical CCA remedy

to address the first problem considers only monomials of a certain degree say s ∈ Z≥0. The

basic algebraic definitions and results are in Appendices 8.2 and 8.4. Below we just apply them.

For a mixture design D

1. determine a Gröbner basis of Ideal(CD) with respect to a term ordering, for Ideal(CD1
)

it is {x1x
2
2 − x2

1x2};

2. compute the leading terms of each element of the Gröbner basis, for the example x1x
2
2

for term orderings for which x2 > x1;

3. consider all monomials of a sufficiently large total degree, for example in R[x1, x2] there

are four monomials of degree s = 3, namely x3
1, x

2
1x2, x1x

2
2, x

3
2;

4. determine all monomials of degree s not divisible by the leading terms of the Gröbner

basis, in the example x3
1, x

2
1x2, x

3
2.

The monomials obtained in Step 4. above form a R-vector space basis of the quotient

space R[x1, . . . , xk]s/ Ideal(D)s and form a subset of the set of standard monomials for the cone

ideal. We call it the set of degree s standard monomials. As in the affine case it can be used

to construct the support for regression models for D. The correctness of this statement follows

directly from Theorem 4 below.

10
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Lemma 3 Let D be a mixture design and s ∈ Z≥0 large enough. The R-vector space R[x1, . . . , xk]≤s/ Ideal(D)≤s

has a basis [g1], . . . , [gn] where representatives of the equivalence classes can be chosen to be ho-

mogeneous of degree s.

Theorem 4 Let D be a mixture design. Then

dim R[x1, . . . , xk]s/Ideal(CD)s = dim R[x1, . . . , xk]≤s/Ideal(D)≤s

If moreover D has n distinct points and s is sufficiently large then the dimensions equal n.

A monomial basis of degree s can be computed with the Singular macro kbase.

Example 6 The Gröbner basis of the homogeneous ideal of D3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0),

(1/3, 1/3, 1/3)} and for any ordering for which x1 > x2 > x3 is {x1x3−x2x3, x1x2−x2x3, x
2
2x3−

x2x
2
3}. The leading terms are x1x3, x1x2, x2

2x3 respectively. For s = 3 the standard monomials

are x3
1, x

3
2, x

3
3, x

2
3x2: the largest possible number of terms we can identify with a four point

design. For s = 1 we obtained the support for a non saturated model: x1, x2, x3. Below we list

the degree s standard monomials for all values of s.

s list of monomials of degree s degree s standard monomials

0 1 1

1 x1, x2, x3 x1, x2, x3

2 x2
1, x1x2, x2

2, x1x3, x2x3, x2
3 x2

1, x2
2, x2x3, x2

3

3 x3
1, x2

1x2, x1x
2
2, x3

2, x2
1x3, x3

1, x3
2, x2x

2
3, x3

3

x1x2x3, x2
2x3, x1x

2
3, x2x

2
3, x3

3

s > 3 xs
1, xs−1

1 x2, xs−2
1 x2

2, . . . , xs
3 xs

1, xs
2, x2x

s−1
3 , xs

3

Example 7 The slack model obtained for D3 with respect to any ordering with x1 > x2 >

x3 has support 1, x3, x
2
3, x2. By homogenising it following Giglio et al. (2001) we obtain

x3
1, x3x

2
1, x

2
3x1, x2x

2
1, which is the support of a saturated homogeneous model of total degree

3 but different from the degree 3 model in Example 6. For slack models we consider “or-

thogonal” projection over the axis xk = 0, while our procedure considers projection over the

simplex.

11
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Note the following things. i) For s ≥ n the procedure returns a degree s saturated support

model. Example 6 shows that smaller values of s are possible, but the returned model support

may not be saturated. ii) Equivalently for s large enough, the design/model matrix for D and

the degree s standard monomials is invertible, and for any s it is full rank. iii) These standard

monomials are not usually retrieved with the homogenization of a slack model, Example 7. iv)

Different identifiable models can be obtained by varying the term ordering, as in the affine case.

v) The degree s standard monomial set can be used as a starting set to obtain other types of

identifiable sets as shown in Section 3.1.

3.1 Changing model

Often we want to substitute standard monomials in the set obtained with the methodology of

Section 3, or in any other monomial basis of the quotient space, with monomials from a set

δ that for some reason we would prefer to consider for the construction of the final regression

model. The new set should still be a basis of the quotient space by Ideal(D). We present an

algorithm to perform such substitution.

For a mixture design D let SMτ,s(CD) be the set of standard monomials of degree s with

respect to a term ordering τ . We simplify the notation SMτ,s(CD) to SMs. It seems reasonable

to start with a monomial set of the same size as the design, thus we take s sufficiently large.

Set l =
Pk

i=1 xi and let G be a Gröbner basis of Ideal(CD) with respect to τ .

Example 8 Our running example has D = {(1/4, 1/4, 1/2),(1/8, 1/8, 3/4), (1/3, 1/3, 1/3),

(1/5, 1/5, 3/5),(0, 0, 1)}, s = 4, τ is the default term ordering in CoCoA and δ = {x1, x2, x3, x1x2,

x1x3, x2x3, x1x2x3} is a Scheffé type model (Scheffé, 1963, page 237), Scheffé (1958), (Cornell,

2002, page 334). Thus SMs = {x4
2, x

3
2x3, x

2
2x

2
3, x2x

3
3, x

4
3}.

Step 0. η := SMs is the current monomial basis of R[x1, . . . , xk]/ Ideal(D), W := ∅ set of rewrit-

ing rules, δ′ := δ.

Step 1. Chose a monomial w ∈ δ′ and let deg(w) be its total degree and update δ′ := δ′ \ {w}.

12
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Compute the normal form of wls−deg(w) with respect to G

NF(wls−deg(w)) =
P

xα∈SMs
θαxα for θα ∈ R

=
P

xα∈η θ′
αxα

These equalities are valid over D. The second one follows by substituting the rules in

W where necessary (this can be cumbersome in practice).

Step 2. Chose a term xβ in
P

xα∈η θ′
αxα for which θ′

β 6= 0 and xβ 6∈ δ, equivalently xβ ∈ SMs.

If there is not such β then repeat Step 1.

Step 3. Update η := η\{xβ}∪{w}. In each g ∈ W substitute xβ with 1
θ′

β
(w−

P

xα∈η\{xβ} θ′
αxα)

and get g′. Update W = {xβ ≡ 1
θ′

β

(w −
P

xα∈η\{xβ} θ′
αxα), g′ : g ∈ W}.

Step 4. Repeat from Step 1. until δ′ = ∅.

This is a variation of the algorithm in Babson et al. (2003) where the set δ is the union of

all the stairs and their border sets. Stair is another name for an order ideal. The border of a

monomial set is computed by multiplying any monomial in the set by xi, in turn for i = 1, . . . , k

and excluding monomials already in the set. The starting monomial set used in Babson et al.

(2003), what we call η, is a stair as well. The correctness of the our algorithm is proved as

for that in Babson et al. (2003). Its termination is guaranteed by the updating of δ′ in Step

1. and the finiteness of δ. While in Babson et al. (2003) the algorithm terminates when η

contains n monomials which are linearly independent and form an order ideal according to the

chosen term ordering. In particular the algorithm in Babson et al. (2003) returns a support for

a saturated hierarchical model. Different final monomial sets, and of possibly different sizes,

might be obtained by choosing different monomials in Step 1. In the introduction we already

mentioned the similarity with the algorithms in Faugère et al. (1993) and (Cox et al., 2004,

Ch.8§5).

Example 9 For Example 8 the basic steps of the algorithm are as follows. Step 1. We

chose terms in δ in the order they are presented left-to-right in Example 8. Thus w = x1

of degree 1 and for (x1 + x2 + x3)
3x1 NF(x1l

3) = 8x4
2 + 12x3

2x3 + 6x2
2x

2
3 + x2x

3
3. We update

13
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δ′ = δ′ \ {x1}. Steps 2. and 3. We select xβ = x4
2 and update η = {x1, x

3
2x3, x

2
2x

2
3, x2x

3
3, x

4
3}

and W = { x4
2 ≡ 1/8x1 − 12/8x3

2x3 − 3/4x2
2x

2
3 − 1/8x2x

3
3}. Steps 1. and 2. Next w = x2,

update δ′ = δ′ \ {x2} and NF(x2l
3) = 8x4

2 + 12x3
2x3 + 6x2

2x
2
3 + x2x

3
3 = x1. There is no element

to select as, over D, x1 = x2 which is already included in η. Steps 1. to 3. We try the

next monomial in δ, w = x3 which can replace x3
2x3. We update η = {x1, x3, x

2
2x

2
3, x2x

3
3, x

4
3},

W = W ∪ {x3
2x3 ≡ 1/8x3 − 12/8x2

2x
2
3 − 3/4x2x

3
3 − x4

3} and δ′. Steps 1. to 3. We update

η substituting x2
2x

2
3 with x1x2 and add the rule x2

2x
2
3 ≡ x1x2 − x2x

3
3 − 1/4x4

3 − 1/2x1 + 1/4x3

to W . Steps 1. to 3. Now we substitute in η the monomial x2x
3
3 with x1x3 and add

the rule x2x
3
3 ≡ −1/16x4

3 + 4/9x1x2 + 2/9x1x2 − 2/9x1 + 4/243x3 to W . The current η is

{x1, x3, x1x2, x1x3, x
4
3}. Steps 1. and 2. The next candidate in δ is x2x3. However, there

is no interchange possible as over D, x2x3 = x1x3 and x1x3 ∈ η. At this step δ′ = {x1x2x3}.

Steps 1. to 3. The final monomial to be removed from η is x4
3 which is substituted with

x1x2x3. We add the rule x4
3 ≡ 6x1x2x3 + 14/3x1x2 − 11/3x1x3 − 7/3x1 + 235/162x3. Step

4. As now δ′ = ∅, the algorithm ends with the new model/representatives of classes of the

quotient space η = {x1, x3, x1x2, x1x3, x1x2x3} and with the updated set of rules W to express

polynomials in terms of monomials in η.

The starting monomial set does not need to be a SMs set but could be any other set of

monomials which are linearly independent over D. McConkey et al. (2000) McConkey et al.

(2000) describe the confounding relationship between the parameters of the Scheffé quadratic

model and the model with support xi and xi(1 − xi), i = 1, . . . , k used to describe the average

deviation from linearity caused by an individual component on mixing with the other compo-

nents. The set δ could then be this support and for w = xi(1−xi) the normal form of xi

P

j 6=i xj

is computed.

Example 10 For D3 a brother algorithm of the above can be summarised in the following table,

which expresses the inverse of the rewriting rules in W , for δ = {xi, xi(1 − xi) : i = 1, 2, 3},

14
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SMτ = {1, x2, x3, x
2
3} and any τ for which x1 > x2 > x3

B =

1 x2 x3 x2
3

x1 1 −1 −1 0

x2 0 1 0 0

x3 0 0 1 0

x1(1 − x1) 0 0 1 −1

x2(1 − x2) 0 0 1 −1

x3(1 − x3) 0 0 1 −1

3.2 Rational models

Sets of linearly independent functions over D can be defined starting from a R-vector space

basis of R[x1, . . . , xk]/ Ideal(D) and considering ratios of homogeneous polynomials of the same

degree.

Example 11 To D1 and {x1, x2, x1x2} we associate the real valued rational functions f1 =

x1

x1+x2
, f2 = x2

x1+x2
, f3 = x1x2

(x1+x2)2
where for example

x1

(x1+x2)
: CD1

−→ R

(0, 1) 7−→ 0

(1, 0) 7−→ 1

(1, 1) 7−→ 1/2

The design matrix of D1 and f1, f2, f3 is the same as that of D1 and x1, x2, x1x2. As over D1

x1 +x2 = 1, there is no issue in considering a polynomial model as usually done. If x1 + x2 = a

for some a ∈ R \ {0} then a mixture-amount model either in polynomial form (Cornell, 2002,

§7.9) or rational form can be considered. The natural rational model which includes terms like

x1

a
can be written as a polynomial model by introducing two extra indeterminates say t = 1/a

and the extra polynomial ta − 1. Namely, for θ1, θ2, θ11 parameters, θ1x1 + θ2x2 + θ11x1x2

becomes the rational model θ1
x1

(x1+x2)
+ θ2

x1

(x1+x2)
+ θ11

x1x2

(x1+x2)2
which in turn translates into

the pair of polynomials at − 1 and θ1x1 + θ2x2 + θ11x1x2a.

15
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Sometimes in the literature xi is substituted with xi/(1 − xi) for i ∈ A ⊆ {1, . . . , k}. These

functions are defined over D and not over CD and are used as screening models Cornell (2002).

As the corner points with component 1 at the coordinates in A should not in the design, the

normal forms (see Definition 6) of the polynomials 1 − xi, i ∈ A, are not zero. The authors

have not been able to prove of disprove the assertion that the linear independence of a set {xα}

implies the linear independence of the “normalised” {xα/
Qk

i=1(1−xi)
αi} with α = (α1, . . . , αk).

An example is analysed in Section 5.2.

Some mixture model forms include inverse terms to model extreme changes in the response

behaviour (see (Cornell, 2002, Ch.6)) for example

k
X

i=1

θixi +

k
X

i=1

θ−ix
−1
i (1)

when no design point has a zero coordinate. Rather than checking that the design/model

matrix is full rank we could employ a standard trick in algebra which allows us to transform

the above in a polynomial model in two ways at least. Set yi = x−1
i , to Ideal(D) add the

polynomials yixi − 1, i = 1 . . . , k and work in R[y1, . . . , yk, x1, . . . , xk] with a term ordering

which eliminates the yi indeterminates (Cox et al., 1997, page 72). Alternatively, rewrite Model

(1) as y
Pk

i=1 θixi +
Pk

i=1 θ−i

Qk

j 6=i,j=1 xj and add the polynomial y
Qk

i=1 xi − 1.

3.3 Logistic transformations

Mixture designs in Rk+1 with no point on the boundary are obtained from a full factorial designs

in Rk by applying the additive logistic transformation or any other transformation that maps

Rk into the interior of the simplex in one higher dimension. Let F ⊂ Rk be a full factorial

design with li1, . . . , lini
∈ R levels for factor i. Then

Ideal(F) = 〈

ni
Y

j=1

(zi − lij), i = 1, . . . , k〉 ⊂ R[z1, . . . , zk] (2)

with the unique standard monomial set

(

zα : α ∈
k
Y

i=1

{0, 1, . . . , ni − 1}

)

(3)
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The additive logistic transformation xi =
ezi

1 +
Pk

j=1 ezj
, for i = 1, . . . , k and xk+1 =

1

1 +
Pk

j=1 ezj

with inverse transformation

zi = ln
xi

xk+1
i = 1, . . . , k (4)

maps z = (z1, . . . , zk) ∈ F into a mixture point. Call G the collection of such mixture points.

Note that substitution of the inverse relationship in (3) returns the support for a generalisation

of the model (12.6) in Aitchison (1986).

Substitution of (4) in (2) and inclusion of the sum to one condition in the xi space gives

Ideal(G) = 〈
Pk+1

i=1 xi − 1,
Qni

j=1(xi − xk+1e
lij ), i = 1, . . . , k〉 ⊂ R[x1, . . . , xk+1].

Direct application of the Buchberger algorithm (Cox et al., 1997, Ch.2§7) shows that the

polynomials above form a Gröbner basis for any term ordering for which xk+1 > xi for all

i = 1, . . . , k. The corresponding standard monomial set is directly linked with the one of the

full factorial in (3) and it gives the support for a slack model identified by G

{xα1

1 · · ·xαk
k : αi ∈ {0, 1, . . . , ni − 1}, i = 1, . . . , k} (5)

As another example of the simplicity and elegance of the algebraic statistics note that

the recursive structure of the multiplicative logistic transformation xi =
ezi

Qi

j=1 (1 + ezj )
for

i = 1, . . . , k xk+1 =
1

Qk

j=1 (1 + ezj )
with inverse zi = ln

xi

1 − x1 − . . . − xi

, i = 1, . . . , k sending

F into H is reflected in the recursive structure of the polynomials in

Ideal(H) = 〈
k+1
X

i=1

xi − 1,

ni
Y

j=1

“

xi(1 + elij ) − (1 − x1 − . . . − xi−1)e
lij

”

: i = 1, . . . , k〉

There exists at least a term ordering for which the leading terms of the polynomials above are

xni
i and for the sum to one condition it is xk+1. The corresponding standard basis is again (5)

while the substitution of the inverse relationship in (3) returns the support for a generalisation

of the model (12.7) in Aitchison (1986).

4 Some symmetric mixture designs

We start by stating a simple fact valid for mixture designs including corner points, which is

the algebraic representation of the well known fact that contrasts of all linear effects with the
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intercept are identifiable by such an experiment.

Lemma 5 Let D ⊂ Rk be the mixture design formed by the k corner points of the simplex

and τ be a term order. If xk > xi for all i ∈ {1, . . . , k}, then the (generalised) confounding

relationship for a general interaction xα = xα1

1 . . . xαk
k , α ∈ Zk

≥0, is

NF(xα) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1 −
Pk−1

i=1 xi if xα = x
αk
k

xi if xα = xi, i = 1, . . . , k − 1

0 if α has at least two non zero components

1 if α = (0, . . . , 0).

(6)

Theorem 6 Let D be a mixture that contains the corner points. Let τ be a graded term ordering

for which xk > xi for all i. Then

1. 1, x1, . . . , xk−1 are linearly independent monomials over D,

2. the coefficient of the term 1 in NF(xαk
k ) is 1,

3. the coefficient of the term 1 in NF(xα), with xα 6= x
αk
k is 0.

4.1 Simplex lattice designs

In Scheffé (1958) Scheffé discusses uniformly spaced distributions of points on the simplex

to explore the whole factor space and calls them simplex lattice designs. A {k, m} simplex

lattice design is the intersection of the simplex in Rk and the full factorial design in k factors

and with the m + 1 uniformly spaced levels {0, 1/m, . . . , 1}. It has
`

m+k−1
m

´

points. Directly

from that description we deduce that for the {k, m} simplex lattice design, D, Ideal(D) =

〈
Qm

j=0 (x1 − j/m), . . . ,
Qm

j=0 (xk − j/m),
Pk

i=1 xi−1〉 where the first k polynomials are a simple

generating set of the full factorial design and the last one is the simplex condition.

The set of slack models identified by D are well classified and they are k as Theorem 7

shows. In Caboara et al. (1999) the set of order ideals identified by a design and obtained via

the procedure in Section 3 is called the algebraic fan of the design.
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D Ideal(CD) Number of terms

{k, 1} Ideal(CD) = 〈xixj : i 6= j〉
(

k

2

)

{k, 2} Ideal(CD) = 〈x2
i xj − xix

2
j , xixjxl : i 6= j 6= l〉

(

k

2

)

+
(

k

3

)

{2, m} Ideal(CD) = 〈x1x2f(x1, x2)〉

Table 1: Ideal(CD) for some simplex lattice designs

Theorem 7 The algebraic fan of a {k, m} simplex lattice design has size k. Each one of its

elements is the set of all monomials up to degree m in k − 1 factors.

Corollary 8 There are no other saturated hierarchical polynomial models identified by the

{k, m} simplex lattice design apart from those of Theorem 7.

By Theorem 1 Ideal(CD) is the radical of the ideal generated by the homogeneous poly-

nomials
Qm

j=0 (xi − lj/m) for i = 1, . . . , k, l =
Pk

i=1 xi. Table 4.1 reports a Gröbner basis for

Ideal(CD) for various combinations of k and m. It uses the following functions g(x1, x2, w) =

Qw

j=1 (x1 −
jx2

m−j
)(x1 − x2

m−j

j
) for w ∈ Z>0

f(x1, x2) =

8

>

>

>

>

<

>

>

>

>

:

1 if m = 1

g(x1, x2, w) if m odd, m 6= 1 and w = ⌊m/2⌋

(x1 − x2)g(x1, x2, w) for m even and w = m/2 − 1

Fractions of a {k, m} design, or of any other design, can be built by confounding identifiable

terms Pistone et al. (2001). A systematic use of the Hilbert function computes how many terms

will be in any corresponding saturated model support and, in the homogeneous case, how many

terms of each degree can be at most included. The relevant theory on Hilbert functions is

in Appendix 8.4. In some cases the generator set of the fraction is easy enough to allow the

determination of the actual design points by direct investigation.
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Example 12 For the {4, 4} design, the binomials x1x2 − x3x4, x1x3 − x2x4 and x1x4 − x2x3

added to the generator set of the ideal of either the design or its cone, select the four corner points

and the centroid point. They also establish that the terms in each binomial are confounded,

take the same values over the selected fraction.

The polynomial (x1 − x2)(x3 − x4) selects the 15 points for which x1 = x2 or x3 = x4, see

Example 18. With respect to the default term ordering in CoCoA we obtain the support for a

slack model 1, x4, x
2
4, x

3
4, x

4
4, x3, x

2
3, x2, x

2
2, x

3
2, x

4
2, x3x4, x3x

2
4, x2x4, x

2
2x4.

For the same fraction and term ordering, the support for a homogeneous model of total

degree s = 0, . . . , 4 is

s SMs

0 1

1 x1, x2, x3, x4

2 x2
1, x1x2, x

2
2, x2x3, x

2
3, x1x4, x2x4, x3x4, x

2
4

3 x3
1, x

2
1x2, x1x

2
2, x

3
2, x2x

2
3, x

3
3, x

2
2x4, x2x3x4, x

2
3x4, x1x

2
4, x2x

2
4, x3x

2
4, x

3
4

4 x4
1, x

3
1x2, x

2
1x

2
2, x1x

3
2, x

4
2, x2x

3
3, x

4
3, x

3
3x4, x

2
2x

2
4, x2x3x

2
4, x

2
3x

2
4, x1x

3
4,

x2x
3
4, x3x

3
4, x

4
4

In Example 12 we had to take the saturation Hartshorne (1977) of the ideal generated by

the homogeneous polynomials
Q4

j=0(xi − lj/4), i = 1, 2, 3, 4 and (x1 −x2)(x3 −x4) with respect

to x1, x2, x3, x4. The saturation is an algebraic operation which allows us to take the largest

homogeneous ideal defined over a variety, namely the ideal of the variety. It can be performed

in e.g. CoCoA with the command Saturation. We do not study it here any further and refer

to Hartshorne (1977), but we add another example and some comments in order to clarify the

algebraic motivation.

Example 13 In P3 with coordinates x, y, z, w consider the two skew lines L1 = V(x, y) and

L2 = V(z, w) and the curve C = L1 ∪ L2 whose ideal is Ideal(C) = Ideal(L1) ∩ Ideal(L2) =

〈xz, xw, yz, yw〉. If we cut C with the plane H = V(y+z) we obtain two points A1 = (0 : 0 : 0 : 1)

and A2 = (1 : 0 : 0 : 0) whose ideal is Ideal(A1, A2) = 〈y, z, xw〉. Of course it is natural to

compute the ideal J = Ideal(C) + Ideal(y + z) more than the coordinates of the intersection

points, and we have J = 〈y + z, xy, xw, y2, yw〉.
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Clearly J 6= Ideal(A1, A2) and it is easy to verify that Js = Ideal(A1, A2)s for s ≥ 2.

So, we can say that the sum of the two ideals I and J is asymptotically equal to the ideal

of the intersection of the varieties V(I) and V(J). In fact, when we compute combinations

of homogeneous polynomials we get always polynomials of degree larger than or equal to the

degree of the operands.

The algebraic operation that allows us to compute the ideal of V(I) ∩ V(J) from I + J is

the saturation with respect to the ideal generated by all the indeterminates, and it consists in

looking for homogeneous polynomials f with the property that fxmi
i ∈ I +J for some mi ∈ Z>0

and for every i = 1, . . . , k.

In the affine space this phenomenon does not show up because when computing combi-

nations of non homogeneous polynomials we can obtain polynomials of degree strictly smaller

than the degree of the operands.

4.2 Simplex centroid designs

Simplex centroid designs introduced in Scheffé (1963) are mixture designs in which coordinates

are zero or equal to each other. Thus in the k dimensional simple centroid design there are k

points of the form (1, 0, . . . , 0),
`

k

2

´

of the form ( 1
2
, 1

2
, 0, . . . , 0),

`

k

3

´

of the form ( 1
3
, 1

3
, 1

3
, 0, . . . , 0),

..., and the point ( 1
k
, . . . , 1

k
): a total of

Pk

j=1

`

k

j

´

= 2k − 1 points. This design is the projection

of the full factorial design with levels 0 and 1, on the simplex in Rk with respect to the origin.

Again easily we see that there are 2k −1 points. We rename “2k design” the full factorial design

with levels 0 and 1 in k factors.

The ideal of the cone of D is Ideal(CD) = 〈x2
i xj − xix

2
j : i, j = 1, . . . , k; i 6= j〉. The

geometry of the design is easily deduced by inspection of the factorised generators xixj(xi−xj):

coordinates of a point in D are either 0 or equal to each other. The generator set given for

Ideal(CD) is a Gröbner basis with respect to any term ordering. The proof is a straightforward

application of the S-polynomial test (Cox et al., 1997, Ch.2§6Th.6).

Also the construction of Ideal(D) can be based on the derivation of the simplex centroid

design from the 2k design but it is more complicated and involves techniques from elimination

theory (Cox et al., 1997, Ch.3). We may want to do this when for some reasons we do not want
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to list the mixture point coordinates. The steps of the constructions are as follows.

1. The ideal of the 2k design is 〈x2
i − xi : i = 1, . . . , k〉.

2. The origin can be removed by adjoining the polynomial given by the sum of the ele-

mentary symmetric polynomials and 1 with alternate signs (Cox et al., 1997, Ch.7§2).

The elementary symmetric polynomials in R[x1, . . . , xk] are σ1 = (x1 + . . . + xk), . . .,

σr = (
P

i1<i2<···<ir
xi1 . . . xir ), . . ., σk = (x1 . . . xk).

3. The simplicial projection is performed in two steps Bocci et al. (2005). Extend the poly-

nomial ring with the variables y1, . . . , yk and adjoin to the ideal above the polynomials

yi(
Pk

j=1 xj) − xi.

4. Eliminate the indeterminates xi, i = 1, . . . , k from the ideal obtained in 3. above (Cox

et al., 1997, Ch.3) to get Ideal (D) which is now expressed in the yi indeterminates.

Example 14 For k = 3 the affine ideal of a 23 design is 〈x2
1 − x1, x

2
2 − x2, x

2
3 − x3〉. The origin

is removed with the ideal operation Ideal(23 \{(0, 0, 0)}) = Ideal(23)+ 〈σ3 −σ2 +σ1 −1〉, where

σ3 −σ2 +σ1 − 1 = x1x2x3 − x1x2 −x1x3 −x2x3 +x1 +x2 +x3 − 1. Extend the polynomial ring

with y1, y2, y3 and create the following ideal: Ideal(23\{(0, 0, 0)})+〈y1l−x1, y2l−x2, y3l−x3〉 ⊂

R[x1, x2, x3, y1, y2, y3], where l = x1 + x2 + x3. Eliminate the variables x1, x2, x3, for instance

with the CoCoA macro Elim. This last step gives a set of generators for Ideal(D) {y1 +y2 +y3 −

1, y3(y3−1)(2y3−1)(3y3−1), y2y3(y2−y3), y3(2y3−1)(2y2+y3−1), y2(2y2−1)(y2+2y3−1)}.

In Scheffé (1963) Scheffé considers two types of fractions of a simplex centroid. A fraction

D of the type in (Scheffé, 1963, §Appendix B) is built from a fraction of the 2k design, F not

including the origin. In this case Ideal(D) is computed starting the above algorithm with F

and by homogenization as in Theorem 2 Ideal(CD) can be obtained. The ideal of a fraction of

the other type (Scheffé, 1963, §5) is built starting the algorithm from an echelon fraction of the

2k design excluding the origin. For echelon designs see (Pistone et al., 2001, §3.4). Some of the

difficulties met by Scheffé (Scheffé, 1963, §Appendix B) in determining identifiably models for

these fractions are then overcome by the algebraic approach to design, specifically the algorithms

in Section 3.

22



CRiSM Paper No. 06-03, www.warwick.ac.uk/go/crism

Example 15 For 1 < m ≤ k let Fm be the fraction of a simplex centroid design that includes

all points with at most m non zero components, where Fk is the full simplex centroid. Clearly,

Fm satisfies the description in (Scheffé, 1963, §5). The number of points in Fm is
Pm

j=1

`

k

j

´

.

The cone ideal for Fm is 〈x2
i xj − xix

2
j , xi1 · · ·xim+1

: i 6= j and i1 6= · · · 6= im+1〉 if m > 1 which

for m = 1 simplifies to 〈xixj : i 6= j〉. Differently from Example 12 the given generators are

those of a saturated ideal.

Example 16 We compute the algebraic fan of D = Fm of Example 15 as an example of

the application of the techniques in Subsection 4.2. First note that the given generator set is a

universal Gröbner basis. For m = 1 and any term ordering, the leading term of xixj ∈ Ideal(CD)

is the monomial itself. Thus the homogeneous model has support {xs
1, x

s
2, . . . , x

s
k} for any

s ∈ Z≥1. If m > 1 the leading term of xi1xi2 · · ·xim+1
is the monomial itself. For a given

initial term ordering on x1, . . . , xk, e.g. x1 < x2 < x3, the leading term of x2
i xj − xix

2
j is x2

i xj

if xi > xj and xix
2
j otherwise. For a given initial term ordering there are

Pm

j=1

`

k

j

´

monomials

of total degree s not divisible by x2
i xj , with xi > xj and xi1xi2 · · ·xim+1

, namely for m = 3

{xs
i , x

s−1
i xj , x

s−2
i xjxl : i, j, l = 1, . . . , k, i < j < l}.

4.3 Snee-Marquardt designs

In Snee and Marquardt (1976) simplex screening designs which are axial designs are presented

and now they are known as Snee-Marquardt designs. The Snee-Marquardt design in k factors,

M, is formed by the points

k vertices (1, 0, . . . , 0), . . . , (0, . . . , 0, 1)

1 centroid ( 1
k
, . . . , 1

k
)

k interior points ( k+1
2k

, 1
2k

, . . . , 1
2k

), . . . , ( 1
2k

, . . . , 1
2k

, k+1
2k

)

k end effects (0, 1
k−1

, . . . , 1
k−1

), . . . , ( 1
k−1

, . . . , 1
k−1

, 0)

To construct Ideal(M) observe that each point in M lies on the line Ai through The ith

vertex and its opposite end effect point, for i = 1, . . . , k. The ideal Ideal(M∩Ai) is generated

by g =
Pk

i=1 xi − 1, fi = xixl(xi − (k + 1)xl)(xi − xl) where l ∈ {1, . . . , i − 1, i + 1, . . . , k}

and xj − xl, 1 ≤ j < l ≤ k, j 6= i, l 6= i. The ideals of other types of axial designs are
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obtained by changing the fi polynomials. First we prove that if h, l are different from i, then

xixl(xi − (k + 1)xl)(xi − xl) and xixh(xi − (k + 1)xh)(xi − xh) cut Ai on the same subset.

This remark justifies the fact that, in our notation, fi does not depend on l. In fact, it holds

xixl(xi − (k + 1)xl)(xi − xl)− xixh(xi − (k + 1)xh)(xi − xh) = (xl − xh)xi[x
2
i − (k + 2)xi(xl +

xh) + (k + 1)(x2
l + xlxh + x2

h)] ∈ Ideal(Ai). The ideal defining M is the intersection of the

Ideal(M ∩ Ai)’s. As usual we compute Ideal(CM). If k = 3, a straightforward computation

shows that Ideal(CM) = 〈(x1 − x2)(x1 − x3)(x2 − x3), x1x2(x1 − x2)(x1 + x2 − 5x3), x1x3(x1 −

x3)(x1 +x3 −5x2), x2x3(x2 −x3)(x2 +x3 −5x1)〉. Next, we want to compute a finite generating

set of Ideal(CM) for k ≥ 4.

Proposition 1 For k ≥ 4, Ideal(CM) is generated by qijkl = (xi − xj)(xh − xl) where i, j, h, l

are different from each other in {1, . . . , k} and by frs = xrxs(xr − xs)(xr + xs − (k + 1)xt)),

where r, s, t are different from each other in {1, . . . , k}.

A corollary of Proposition 1 is that

HFIdeal(CM)(s) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

1 if s = 0

k if s = 1

2k ifs = 2

3k ifs = 3

3k + 1 ifs ≥ 4

5 Notes on the analysis of two data sets

5.1 A non regular mixture design

In Giglio et al. (2001) a non-regular mixture experiment with k = 8 and n = 18 is analyzed.

For the initial term ordering h ≺ g ≺ f ≺ e ≺ d ≺ c ≺ b ≺ a on the factors a hierarchical slack

model for the response is obtained. For the same initial ordering the support for a homogeneous

saturated model of degree 2 is {df, ef, f2, ag, bg, cg, dg, eg, fg, g2, ah, bh, ch, dh, eh, fh, gh, h2}.

Call it M1. We could have chosen a submodel following the order ideal property. Some of the

terms in M1 are replaced by terms of different degree using the algorithm in Subsection 3.1.
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Initial model Final terms R2 R2
A σ̂ × 102

M1 h2, bh, df, eh 0.977 0.958 6.1

M2 f, h, bh, fh 0.983 0.978 4.4

M3
ef

(1−e)(1−f)
, g2

(1−g)2
, bh

(1−b)(1−h)
, 0.974 0.964 5.7

ch
(1−c)(1−h)

, gh

(1−g)(1−h)

Table 2: Results of model selection

In particular we may want to check if we can replace the quadratic terms of f2, g2, h2 by the

linear terms f, g, h. Indeed that is the case and we have a (more) Scheffé (like) model, named

M2. We could as well have replaced some interactions terms with linear terms, for example

building models degree by degree using a suitable δ set in the algorithm in Subsection 3.1. But

we do not pursue this here. Finally, following Cornell (2002) we can construct a support for a

third model where xixj in M1 are replaced by the rational terms xixj/((1 − xi)(1 − xj)). We

refer to this model as M3. Such a substitution with rational terms is not always possible. But

in this specific example it can be shown that the linear independence of the terms in M3 over

the design follows from the linear independence of the terms in M1, because of the particular

structure of the design.

For practical purposes, often a reduced model which fits reasonably well to the data, is

preferred to the saturated one. Table 5.1 shows the values of the determination coefficient R2,

the adjusted one R2
A and the residual error σ̂ for the submodels obtained with backward stepwise

regression. We use the leaps function in the statistical software R; see http://cran.r-project.org.

5.2 A fraction of the simplex centroid design

A particular fraction of the simplex centroid with k factors is proposed in McConkey et al. (2000)

for screening for significant interactions. It exhibits some sort of symmetries. The fraction is

constructed by considering the k corners of the simplex and those combinations with p non zero
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factors such that any pair of non zero factors appears in the design just once. The fact that there

are many such fractions, obtained by relabeling of the factors is clearest from the structure of

the polynomial representation below. The fraction obtained is of the echelon type described in

(Scheffé, 1963, §5), and it is labeled {k|p} in McConkey et al. (2000). In McConkey et al. (2000)

it is noted that there are some values of k for which a {k|p} fraction cannot be constructed.

We focus our attention on the {9|3} analysed in McConkey et al. (2000). To construct the cone

ideal consider the polynomials

xi(xj − xk), xj(xi − xk), xk(xj − xi) : (i, j, k) ∈ A and xixj(xi − xj) : i 6= j, i, j ∈ {1, . . . , 9}

where the second set of polynomials gives the simplex centroid design in 9 factors and the

set A = {(1, 2, 3), (1, 4, 8), (2, 5, 9), (3, 6, 7), (4, 5, 6), (2, 4, 7), (3, 5, 8), (1, 6, 9), (7, 8, 9), (1, 5, 7),

(2, 6, 8), (3, 4, 9)} corresponds to the non-zero triplets in our design. The centroid point (1 : . . . :

1) still satisfies that set of equations. The algebraic operation to remove it is the colon of ideals

(Cox et al., 1997, Ch.4§4) and can be achieved by taking the saturation of the ideal generated

by the above polynomials and x1x2x3x4x5x6x7x8x9 or any other degree three monomial with

exponents not in A, for example x4x8x9, where the saturation is with respect to the usual ideal

Ideal(x1, . . . , x9). The Hilbert function (Appendix 8.4) of the cone ideal is

HFIdeal(CD)(s) =

8

>

>

>

>

<

>

>

>

>

:

1 if s = 0

9 if s = 1

21 if s ≥ 2

and thus we can construct a saturated homogeneous model of degree two. For the default term

ordering in CoCoA with x1 > . . . > x9 the support for such a model is

{x2
1, x

2
2, x2x3, x

2
3, x

2
4, x4x7, x4x8, x4x9, x

2
5, x5x6, x5x7, x5x8, x5x9, x

2
6,

x6x7, x6x8, x6x9, x
2
7, x

2
8, x8x9, x

2
9}

(7)

A feature of a {k|p} fraction is that double interactions are completely confounded over the

design in sets of size p, e.g. for the {9|3} fraction the polynomials x1x2 −x1x3, x1x2 −x2x3 and

x1x3−x2x3 belong to Ideal(CD), that is the column of a design/model involving the polynomials

x1x2, x2x3 and x1x3 are equal. For this reason the analysis in (McConkey et al., 2000, Eqn.(3))

includes the sum x1x2 + x1x3 + x2x3.
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The terms xi can replace the terms x2
i in Equation (7), e.g. by application of the algorithm

in Section 3.1. The design/model matrix for the obtained model and the fraction {9|3} is a

diagonal matrix of the form
2

6

4

I9 0

P 1
9
I12

3

7

5

where Ik is the identity matrix of size k and P is the 12 × 9 matrix listing the coordinates of

the mixture points.

6 Further comments

If the points of D do not lie on a hyperplane, none of them is the origin and each line through

the origin and a design point does not contain any other design point, then the cone ideal is still

well defined. The identifiability theory of homogeneous model supports works exactly as for

mixture designs. In particular Ideal(CD) is the largest homogeneous ideal in Ideal(D). Although

mathematically sensible, this operation does not seem to be reasonable if the design points do

not lie on a hyperplane.

For an experiment where the relative proportions of the components are significant rather

than the total amount, few relevant facts are implied by considering the cone ideal. The design

points are recovered as the variety obtained from intersecting the cone ideal with the simplex

ideal as shown in Theorem 1. The generalised confounding relationships collected in Ideal(CD)

are the same whatever the total amount of the mixture is. Likewise the homogeneous model

supports are independent of the total mixture amount.

Both the confounding relationships and the model support are easily computed even for

fairly irregular designs, i.e. designs that do not manifest any geometric symmetry. An exact

evaluation of the speed of the algorithms in function of the sample size and number of factors

has not been done. An estimation can be obtained from Abbott et al. (2000). Macros in the

computational algebra package CoCoA to compute homogeneous model supports, the ideals and

the cone ideals of the designs in Section 4 are available from the first author.

A general remark on the algebraic statistics approach is that it allows a symbolic approach
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to identifiability. Thus numerical approximations are postponed to the estimation phase of

an analysis. For example rather than checking numerically if the rank of the design/model

matrix for a candidate model is maximal, one computes a basis of the quotient space. This

might be advantageous or disadvantageous according to the practical situations. We find that

the information embedded in the ideal of a design or of its cone are useful in visualising the

constraints imposed on the power terms by the design.
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8 Appendix

Reference texts for this appendix include Adams and Loustaunau (1994); Cox et al. (1997);

Kreuzer and Robbiano (2000).

8.1 Basic concepts

With R[x1, . . . , xk] we indicate the set of polynomials in x1, . . . , xk and with real coefficients.

The theory holds for whatever field K instead of R. For us T k indicates the set of power products

or monomials in R[x1, . . . , xk]: xα = xα1

1 . . . xαk
k for αi ∈ Z≥0 and a polynomial f ∈ R[x1, . . . , xk]

is a finite sum f =
P

α∈A aαxα with xα ∈ T k, aα ∈ R and for a finite subset A ⊂ Zk
≥0.

Definition 3 A set I ⊂ R[x1, . . . , xk] is a polynomial ideal if i) f + g ∈ I for all f, g ∈ I and

ii) hf ∈ I for all h ∈ R[x1, . . . , xk] and f ∈ I.

We state the very deep property of polynomial ideals known as the Hilbert Basis Theorem (Cox

et al., 1997, Ch.2§5)
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Theorem 9 Every ideal I ⊆ R[x1, . . . , xk] is finitely generated, i.e. there exist g1, . . . , gt ∈ I

such that for every f ∈ I there exist h1, . . . , ht ∈ R[x1, . . . , xk] that satisfy f = h1g1 + · · ·+htgt.

The polynomials g1, . . . , gt in the previous theorem form a set of generators of I and we write

I = 〈g1, . . . , gt〉. There are special sets of generators called Gröbner bases. To introduce them

we need the notion of term ordering. A term ordering τ is a total order relation on T k that

satisfies i) xα > 1 for all non zero α ∈ Zk
≥0 and ii) if xα > xβ then xαxγ > xβxγ for all

α, β, γ ∈ Zk
≥0.

Definition 4 Given a term ordering τ , the leading term of a polynomial f ∈ R[x1, . . . , xk] is

its largest term with respect to τ , and we write it as LTτ (f).

Given a term ordering τ and an ideal I , we consider the set of leading terms of all polynomials

in I : LTτ (I) = 〈LTτ (f) : f ∈ I〉. If g1, . . . , gt is a generator set of an ideal I , in general LTτ (g1),

. . . ,, LTτ (gt) is not a set of generators of LTτ (I). This remark justifies the following definition.

Definition 5 Let I be an ideal, τ a term ordering and G = {g1, . . . , gt} ⊆ I. G is a Gröbner

basis (sometimes called a standard basis) of I if LTτ (I) is generated by 〈LTτ (g) : g ∈ G〉.

Theorem 10 For every ideal I and term ordering τ there exist Gröbner bases of I.

Definition 6 Let r =
P

α∈A aαxα be a polynomial, τ a term ordering and I be an ideal. r is

in normal form w.r.t. I and τ if xα 6∈ LTτ (I) for all α inA.

The following result holds.

Proposition 2 Let τ be a term ordering, I an ideal and let G = {g1, . . . , gt} be a Gröbner basis

of I w.r.t. τ . For every polynomial f ∈ R[x1, . . . , xk] there exists a unique r ∈ R[x1, . . . , xk] in

normal form and h1, . . . , ht ∈ R[x1, . . . , xk] such that f = h1g1 + · · · + htgt + r. Furthermore,

r = 0 if and only if f ∈ I.

Given an ideal I , we can consider the quotient ring R[x1, . . . , xk]/I whose elements are the

equivalence classes [f ] of the relation f ∼ g if f−g ∈ I . It is easy to prove that if r is the normal

form of f w.r.t. I and τ , then [f ] = [r] and so the elements of R[x1, . . . , xk]/I (are represented)
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by polynomials obtained as combination of terms not in LTτ (I). The set SMτ (I) = T k \LTτ (I)

is called the set of the standard monomials of I w.r.t. τ . As R-vector spaces, R[x1, . . . , xk]/I

is isomorphic to R[x1, . . . , xk]/ LTτ (I) and so it is isomorphic to the vector space spanned by

SMτ (I) over R. The Singular macro kbasis returns SMτ (I) for an ideal of points.

8.2 Affine Hilbert function for ideals

For s ∈ Z≥0 let R[x1, . . . , xk]≤s = Span(xα ∈ T k :
Pk

i=1 αi ≤ s). For an ideal I ⊂ R[x1, . . . , xk],

let I≤s = I ∩ R[x1, . . . , xk]≤s. As R[x1, . . . , xk]≤s is a R-vector space of dimension
`

k+s

s

´

and

I≤s is a subvector space of R[x1, . . . , xk]≤s, we can define the affine Hilbert function of I as

aHFI(s) = dim R[x1, . . . , xk]≤s/I≤s = dim R[x1, . . . , xk]≤s − dim I≤s.

There exists s0 called the index of regularity of I such that for all s ≥ s0
aHFI(s) is a polynomial

with integer coefficients. It is called the affine Hilbert polynomial of I and denoted as aHPI(s).

That is

aHPI(s) =
k
X

i=0

bi

 

s

k − i

!

with bi ∈ Z≥0 and bi > 0. The following theorem gives the affine Hilbert function for the design

ideal I(D).

Theorem 11 Let I(D) be the ideal generated by a design D with n distinct points. Then for

s ≥ n, aHFI(D)(s) = aHPI(D)(s) = n.

Proof. This is in (Cox et al., 1997, Ex.10,Ch.9§4).

The Hilbert function counts the monomials that are not in I(D); this set of monomials

is precisely the set of standard monomials as described in Subsection 8.1. As aHPI(D)(s) is a

constant, we retrieve the standard result dim R[x1, . . . , xk]/I = n.

A term ordering τ is graded if xα is larger than xβ whenever
Pk

i=1 αi >
Pk

i=1 βi. Let τ

be a graded term ordering, then for all s ∈ Z≥0

aHFI(s) = # (SMτ (I) ∩ R[x1, . . . , xk]≤s)

where #A is the size of the set A.
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8.3 Homogenising a mixture ideal

A key point in this paper is the study of mixture designs through cone ideals, namely Ideal(CD) ⊂

R[x1, . . . , xk] for a mixture design D. As mentioned in the main text, there are macros e.g.

IdealOfProjectivePoints which construct a generator set for Ideal(CD) from the coordinates

of D. Next we outline the basic construction of Ideal(CD) which can be performed in any software

for ideal computation. Let D = {P1, . . . , Pn} be the design and assume that Pi = (ai1, . . . , aik)

with
Pk

j=1 aij = 1. Then, Pi belongs to the hyperplane H defined by the single equation

x1+. . .+xk = 1 for i = 1, . . . , n. Moreover Pi is the intersection of H with the line Li containing

Pi and the origin 0 = (0, . . . , 0). In particular, we have Ideal({Pi}) = 〈Ideal({Li}), x1 + . . . +

xk − 1〉. But Ideal(D) =
Tn

i=1 Ideal({Pi}) = 〈
Tn

i=1 Ideal({Li}), x1 + . . . + xk − 1〉. We set

Ideal(CD) =
Tn

i=1 Ideal({Li}), and so Ideal(D) = 〈Ideal(CD), x1 + . . . + xk − 1〉. Now, we

describe some properties of Ideal(CD).

Theorem 12 Ideal(CD) is generated by homogeneous polynomials.

Proof. The ideal defining the lines Li is generated by the 2 × 2 minors of the matrix

0

B

@

x1 . . . xk

ai1 . . . aik

1

C

A

and so it is generated by homogeneous linear polynomials. The intersection of ideals generated

by homogeneous polynomials is again generated by homogeneous polynomials. So the claim

follows.

Ideal(CD) can be characterized as follows.

Theorem 13 Ideal(CD) is the largest homogeneous ideal in Ideal(D).

Proof. Let f ∈ Ideal(D), f homogeneous. Then f(tai1, . . . , tsik) = tdeg ff(ai1, . . . , fik) = 0

for every i = 1, . . . , n and for all t ∈ R. Hence, f ∈ Ideal({Li}) for all i = 1, . . . , n and so

f ∈ Ideal(CD). That is every homogeneous polynomial in Ideal(D) is in Ideal(CD) and the claim

follows.
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8.4 Hilbert function

An ideal Ih ⊂ R[x1, . . . , xk] is homogeneous if it is generated by a set of homogeneous polynomi-

als. For s ∈ Z≥0 let R[x1, . . . , xk]s = Span(xα ∈ T k :
Pk

i=1 αi = s)∪{0} and for a homogeneous

ideal Ih ⊂ R[x1, . . . , xk], let Ih
s = Ih ∩ R[x1, . . . , xk]s. R[x1, . . . , xk]s is a R-vector space of

dimension
`

k+s−1
s

´

and Ih
s is a subvector space. The Hilbert function of the homogeneous ideal

I is HFI(s) = dim R[x1, . . . , xk]s/Ih
s .

Theorem 14 Let Ih ⊂ R[x1, . . . , xk] be a homogeneous ideal.

1. For s sufficiently large HFIh(s) is a polynomial with rational coefficients and integer

values.

2. For s ≥ 1

HFIh(s) = aHFIh(s) − aHFIh(s − 1) (8)

3. If Ih is a monomial ideal and thus trivially homogeneous, then HFIh(s) is the number

of monomials not in Ih and in R[x1, . . . , xk]s.

4. If τ is a term ordering and Ih a homogeneous ideal, then HFIh(s) = HF〈LT(Ih)〉(s).

5. (The dimension theorem) Let V = V (I) =
˘

a ∈ Pk−1(C) : f(a) = 0 for all f ∈ I
¯

be

non empty. Then dim(V ) = deg HPI(s) where dim(V ), for V a projective variety, is de-

fined as the degree of the Hilbert polynomial of I. Furthermore, dim(V ) = deg HP〈LT(I)〉(s)

equals the maximum dimension of a projective coordinate subspace in V (〈LT(I)〉). If

I = Ideal(V ) the last statements hold over R.

6. The previous statement holds for I an ideal, not necessarily homogeneous, V = V (I) and

HPI(s) is substituted by aHPI(s)

For the proof we refer to any classical text such as Cox et al. (1997). Here we just need to

observe that as we deal with a regular structure as V = CD then I = Ideal(V ).

The CoCoA macro Hilbert applied to a homogeneous ideal computes the Hilbert function

of the ideal. In Singular we use hilb and vdim. The affine Hilbert function of the homogeneous
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× x1

x2

0 1 2 3

1
2
3
4
5

s = 5

LT
a)

× x1

x2
s = 5
s = 4

b)

Figure 2: Standard monomials counted by a) the Hilbert function with

s = 5 and b) the affine Hilbert function for s = 4, 5. Both cases refer to

I(CD) of Example 17.

ideal can be retrieved by Equation (8) together with the initial condition aHFIh(0) = 1. If

the ideal is not homogeneous then Hilbert returns the Hilbert function of the corresponding

leading term ideal w.r.t. whatever term ordering is running in the open computer session.

Example 17 For D = {(1/2, 1/2), (1/4, 3/4), (0, 1)} and a term order in which x1 > x2,

Ideal(CD) = 〈x3
1 − 4/3x2

1x2 + 1/3x1x
2
2〉. Compare the following table with Figure 2

s HFIdeal(CD)(s)
a HFIdeal(CD)(s)

0 1 1

1 2 3

2 3 6

3 3 9

4 3 12

... 3 3 + a HFIdeal(CD)(s − 1)

Theorem 15 Let D be a mixture design with n distinct points and let CD be its cone; let

Ideal(D) and Ideal(CD) be their corresponding ideals. Then for s large enough, HFI(CD)(s) =

aHFI(D)(s).

Proof. This is Theorem 4.
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Example 18 The Hilbert function of the cone ideal of the {4, 4} design in Example 12 is

HFIdeal(CD)(s) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

1 if s = 0

4 if s = 1

10 if s = 2

20 if s = 3

35 if s ≥ 4

For the fraction cut by (x1 − x2)(x3 − x4) it is

HFIdeal(CF )(s) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

1 if s = 0

4 if s = 1

9 if s = 2

13 if s = 3

15 if s ≥ 4

We use the CoCoA macro Hilbert.

8.5 Proofs

Proof. of Theorem 1. 1. Let f ∈ I = {f ∈ R[x1, . . . , xk] : f is homogeneous and f(d) =

0 for all d ∈ D}. As f is homogeneous then f(αd) = 0 for all α ∈ R and thus f(d) = 0 for

d ∈ CD. Hence I ⊆ Ideal(CD).

Now we show that Ideal(CD) is homogeneous. If f ∈ R[x1, . . . , xk] and f(d) = 0 on the

cone then as D ⊂ CD f(d) = 0 on D. Any polynomial f can be written as f = fs +fs−1 +· · ·+f0

with fi homogeneous polynomials of degree i. For α ∈ R and d ∈ Rk

f(αd) = fs(αd) + fs−1(αd) + · · · + f0(αd) = αsfs(d) + αs−1fs−1(d) + · · · + α0f0(d) (9)

If we take f vanishing on CD then we have f(αd) = 0 for all α ∈ R and d ∈ D. Equation (9)

is a polynomial of degree s in α. As it is zero for infinitely many α’s then its coefficients are

zero that is fs(d) = . . . = f0(d) = 0. In particular for all d ∈ D. As by construction fi is

homogeneous, fj(d) = 0 for all d in the cone. Hence Ideal(CD) + 〈
Pk

i=1 −1〉 ⊆ Ideal(D).
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2. Clearly Ideal(CD) ( Ideal(D) ⊂ R[x1, . . . , xk] and 〈
Pk

i=1 xi − 1〉 ( Ideal(D) ⊂

R[x1, . . . , xk]. Hence, Ideal(CD) + 〈
Pk

i=1 xi − 1〉 ⊆ Ideal(D).

Let g ∈ Ideal(D). Then there exists s ∈ Z≥0 such that g =
Ps

i=0 fi and the fi’s are

homogeneous polynomials of total degree i. As
Pk

i=1 xi − 1 ∈ Ideal(D) we set
Ps

i=0 fi(x1 +

· · · + xk)s−i = h(g) over D. Then, for l = x1 + · · · + xk

g − h(g) = g −
Ps

i=0 fi(x1 + · · · + xk)s−i = g −
Ps

i=0 fil
s−i

= (1 − l)
`

fs−1 + (1 + l)fs−2 + · · · + (1 + l + · · · + ls−1)f0

´

= (1 − l)f̄

and we have g−h(g) = f̄(1− l). But both g and (1− l)f̄ are in Ideal(D), thus h(g) ∈ Ideal(D).

By 1. h(g) ∈ Ideal(CD) and thus g ∈ Ideal(CD) + 〈l − 1〉 and the the proof is concluded.

Proof. of Theorem 2. Let f ∈ Ideal(D) be a homogeneous polynomial of degree s. From

the defining property of a Gröbner basis, there exist q, q1, . . . , qr ∈ R[x1, . . . , xk] such that

f = q(l − 1) + q1g1 + . . . + qrgr with deg q ≤ s − 1 and δi = deg(qigi) ≤ s. Homogenising we

obtain h(f) = h(q)h(l − 1) + ls−δ1h(q1)h(g1) + . . . + ls−δr h(qr)h(gr) and of course h(l − 1) =

l − l = 0. Thus h(f) =
Pr

i=1 ls−δih(qi)h(gi). But f is homogeneous and so f = h(f) and

f =
Pr

i=1 ls−δih(qi)h(gi). The claim now follows from Theorem 1.

Proof. of Lemma 3. Let [f ] be an element in R[x1, . . . , xk]≤s/ Ideal(D)≤s. We want to

prove that there exists g ∈ [f ] such that g is homogeneous of degree s. Let l = x1 + . . . +

xk and let f = ft + . . . + f0 where fj is homogeneous of degree j and t ≤ s. Let g =

ls−t
`

ft + lft−1 + . . . + ltf0

´

ls−th(f). Then,

g − f = ls−t
`

ft + lft−1 + . . . + ltf0

´

−
`

ft + lft−1 + . . . + ltf0

´

+
`

ft + lft−1 + . . . + ltf0

´

− (ft + . . . + f0)

= (ls−t − 1)
`

ft + lft−1 + . . . + ltf0

´

+ (l − 1)ft−1 + (l2 − 1)ft−2 + . . . + (lt − 1)f0

= (l − 1)
ˆ

(ls−t−1 + . . . + 1)
`

ft + lft−1 + . . . + ltf0

´

+ ft−1 + (l + 1)ft−2 + . . . + (lt−1 + . . . + 1)f0

˜

But l − 1 ∈ Ideal(D) and so g ∈ [f ].

Proof. of Theorem 4. Let [f1], . . . , [fp] be a basis of the R-vector space R[x1, . . . , xk]≤s/Ideal(D)≤s

and let g1, . . . , gp be the degree s homogeneous polynomials constructed in Lemma 3. We want

to prove that [g1], . . . , [gp] is a basis of R[x1, . . . , xk]s/Ideal(CD)s. They are linearly independent:
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assume there exist λ1, . . . , λp ∈ R such that λ1[g1] + . . . + λp[gp] = 0. Then λ1g1 + . . . + λpgp ∈

Ideal(CD) ⊆ Ideal(D) and so λ1[g1] + . . . + λp[gp] = 0 in R[x1, . . . , xk]≤s/Ideal(D)≤s. Hence,

λ1[f1] + . . . + λp[fp] = 0 and so λ1 = . . . = λp = 0 because [f1], . . . , [fp] is a basis of

R[x1, . . . , xk]≤s/Ideal(D)≤s.

Let g ∈ R[x1, . . . , xk]s. Thus, there exist λ1, . . . , λp ∈ R such that [g] = λ1[f1] + . . . +

λp[fp] = λ1[g1]+. . .+λp[gp] and so [g1], . . . , [gp] are generators of R[x1, . . . , xk]s/Ideal(CD)s. As a

consequence, we get the claim. If s is sufficiently large then dim R[x1, . . . , xk]≤s/Ideal(D)≤s = n

(see e.g. Pistone and Wynn (1996)) and thus p = n.

Proof. of Theorem 5. It is easy to show that Ideal(CD) is generated by 〈xixj : 1 ≤ i, j ≤

k, i 6= j〉 and so Ideal(D) = 〈x1 + . . . + xk − 1, xixj : 1 ≤ i, j ≤ k, i 6= j〉. A Gröbner basis of

Ideal(D) contains also the polynomials x2
i −xi, obtained from the S-polynomial test (Cox et al.,

1997, Ch.2§6Th.6) as xi(x1 + . . . + xk − 1) −
P

i6=j xixj . The result now follows easily.

Proof. of Theorem 6. For 1. observe that as the term ordering is graded then lower order

terms are favoured over higher order terms and then included in the support for a slack model.

It follows directly from the structure of the design/model matrix involved

x1 . . . xk−1 1 · · ·

(1, 0, . . . , 0) 1 0 . . . 0 1 · · ·

... 0

(0, . . . , 1, 0) 0 0 . . . 1 1 · · ·

(0, . . . , 0, 1) 0 0 . . . 0 1 · · ·

...

For 2. let NF(xαk
k ) =

P

xα θαxα where for a slack support no xα involves xk and evaluate it at

the corner point ck = (0, . . . , 0, 1). Deduce θ0 = 1. Similarly 3. is proved.

Lemma 16 Let D be a {k, m} simplex lattice design. Then a basis of the R-vector space

R[x1, . . . , xk]≤s/ Ideal(D)≤s is {1, x2, . . . , xk, x2
2, x2x3, . . . , x

2
k, . . . , xs′

2 , xs′

2 x3, . . . , x
s′

k } where s′ =

min{s, m}.

Proof. The claim is equivalent to the following: Ideal(CD)s = 0 for s ≤ m. Indeed, x1 +

. . . + xk − 1 ∈ Ideal(D) and we can choose the other generators of Ideal(D) as homogeneous
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polynomials in Ideal(CD) by Theorem 1. Thus, let f ∈ Ideal(CD)m. We want to prove that f = 0

and we use induction on k and m. The base of the induction is as follows. First, we analyse

the case {2, m}, for which D = {P0, . . . , Pm} with Pi = (i/m, (m − i)/m) for i = 0, . . . , m. But

no homogeneous polynomial of degree m can have m + 1 distinct zeros, unless it is the null

polynomial. Second, we consider the case {k, 1}. But this design was studied in Lemma 5.

Now, we consider the general case {k, m} and we assume that no polynomial of degree m−1

belongs to a {k, m−1} design and that no polynomial of degree m belongs to a {k−1, m} design.

Let f ∈ Ideal(CD)m. We need to show that f = 0. If we set xk = 0 then we obtain a {k− 1, m}

design D′ and f(x1, . . . , xk−1, 0) ∈ Ideal(C′
D)m. By inductive hypothesis, f(x1, . . . , xk−1, 0) is

the zero polynomial. Hence, f = xkf ′ for some f ′ suitable homogeneous polynomial f ′ of degree

m−1. The affine transformation, Xi = m
m−1

xi, i = 1, . . . , k−1 and Xk = − 1
m−1

+ m
m−1

xk, takes

D\D′ into a {k, m−1} simplex lattice design, say D′′, and f ′ into
“

m
m−1

”m−1

f ′(X1, . . . , Xk−1)

∈ Ideal(D′′). By inductive hypothesis, we have f ′ = 0 and so f = 0. As a consequence the

Hilbert function of D is

dim R[x1, . . . , xk]≤s/ Ideal(D)≤0 = 1 +

 

k − 1

k − 2

!

+ . . . +

 

s′ + k − 2

k − 2

!

=

 

s′ + k − 1

k − 1

!

where s′ = min{s, m} and the claim follows because
`

m+k−1
k−1

´

is the number of points in D.

Proof. of Theorem 7. In order to respect the order ideal property, not all factors can be

included in the presence of the intercept. Moreover no higher degree power in any factor can

be included as shown in Lemma 16.

Proof. of Corollary 8. Any other candidate model support would include the terms 1, x1, , . . . , xk,

but they all cannot be identified as x1 + . . . + xk = 1 over D.

Proof. of Proposition 1. Let J be the ideal generated by the qijkl and frs. First, we prove

that if u, v are different from r, s then xrxs(xr−xs)(xr +xs−(k+1)xu)) and xrxs(xr−xs)(xr +

xs − (k + 1)xv) are equivalent modulo the qijkl’s. In fact

xrxs(xr−xs)(xr+xs−(k+1)xu))−xrxs(xr−xs)(xr+xs−(k+1)xv) = (k+2)xrxs(xr−xs)(xu−xv)

and the equivalence follows. Second, we know that Ideal(CM) = ∩k
i=1 Ideal(CM∩Ai

). Hence, if

we prove that J ⊆ Ideal(CM∩ Ai), i = 1, . . . , k, then we obtain that J ⊆ Ideal(CM). Without
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loss of generality fix i = 1. Thus we have to prove that J ⊆ 〈xj − xl, fi : j, l ∈ {1, . . . , k}〉. If

we choose four different elements i, j, k, l in {1, . . . , k}, at least one between xi −xj and xh − xl

belongs to Ideal(CM∩Ai
), and so qijkl ∈ Ideal(CM∩A1

). If r 6= 1, s 6= q the same argument

shows that frs ∈ Ideal(CM∩A1
). But

f1s − fs = x1xs(x1 − xs)(x1 + xs − (k + 2)xt) − x1xs(x1 − (k + 1)xs)(x1 − xs)

= (k + 2)x1xs(x1 − xs)(xs − xt) ∈ Ideal(CM∩A∞
)

because s 6= 1 and t 6= 1, s. Hence J ⊆ Ideal(CM∩A1
) and so J ⊆ ∩k

i=1 Ideal(CM∩Ai
) =

Ideal(CM).

To prove the converse inclusion, we argue as follows. All the points of CM but (1 : 0 : . . . :

0), (0 : 1 : 0 : . . . : 0), (0 : 1 : . . . : 1), (1 : 0 : 1 : . . . : 1), (k + 2 : 1 : . . . : 1), (1 : k + 2 : 1 : . . . : 1)

belong to the hyperplane x1 − x2. The ideal defining those six points can be computed as

Ideal(CM) : 〈x1 − x2〉 (for the colon ideal see (Cox et al., 1997, Ch4.§4)). On the other hand, a

direct computation shows that it is equal to 〈xl−xj , (x1−xk)(x2−xk), x1x2(x1+x2−(k+2)xk) :

3 ≤ l < j ≤ k〉. Again by direct computation from the generators of J we have

J : (x1 − x2) = 〈xl − xj , (x1 − xk)(x2 − xk), x1x2(x1 + x2 − (k + 2)xk) : 3 ≤ l < j ≤ k〉

Thus we have that J defines the same set of points outside of V(x1 − x2).

Analogous computation proves that Ideal(CM) : (xl − xj) = J : (xl − xj) for all l 6= j.

Thus Ideal(CM) and J define the same subset of points outside of the hyperplane V(xl − xJ ).

The only point of M which belongs to all hyperplanes xl − xj is the centroid (1 : . . . : 1).

But if we make invertible all polynomials not in IC = 〈x1 − xk, . . . , xk−1 − xk〉 we see that

JE + 〈x1 − xk, . . . , xk−1 − xk〉 because of the frs polynomials and so J and Ideal(CM) define

the same set in Pk−1, i.e. J = Ideal(CM).

References

Abbott, J., Bigatti, A., Kreuzer, M., Robbiano, L. (2000). Computing ideals of points. J.

Symbolic Comput., 30, 4, 341–356.

38



CRiSM Paper No. 06-03, www.warwick.ac.uk/go/crism

Adams, W. W., Loustaunau, P. (1994). An introduction to Gröbner bases, vol. 3 of Graduate
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